
Towards Higher Universal Algebra in Type Theory
HoTT Electronic Seminar Talks

Eric Finster

December 6, 2018

Eric Finster Higher Universal Algebra in Type Theory December 6, 2018 1 / 31



Voevodsky’s Vision for Univalent Mathematics

h-level 0 The Mathematics of Cantor

Sets and structured sets

h-level 1 The Mathematics of Grothendieck

Groupoids and structured groupoids
In particular the theory of categories

h-level ∞ “Higher” Mathematics

The study of structured homotopy types

Problem

How can we describe structures on homotopy types without recourse to a
“strict” equality?

Eric Finster Higher Universal Algebra in Type Theory December 6, 2018 2 / 31



The Current State of Affairs

Solutions in some special cases are known:

Voevodsky Contractibility, equivalences, ...
Shulman ∞-idempotents

Rijke ∞-equivalence relations

Long standing approach to the problem:
I Construct some notion of semi-simplicial type
I Use this to internalize the theory of (∞, 1)-categories
I Reduce other coherence problems to this case

There are many other kinds of higher structures:
I En-spaces, ring spectra, homotopy Lie algebras, ...
I (∞, n)-categories, ∞-double categories, ...
I Even if these can be reduced to simplicial methods, will this be an

efficient way to describe them?
I Can we describe a natural class of higher structures directly?

Eric Finster Higher Universal Algebra in Type Theory December 6, 2018 3 / 31



In this talk ...

Adapt Baez and Dolan’s operadic method of describing coherent
algebraic objects to type theory

Give an elementary definition of cartesian polynomial monad

Special cases of this definition are
1 (∞, 1)-operad
2 (∞, 1)-category
3 ∞-groupoid

There is a corresponding elementary defintion of an algebra

Special cases of this definition are
1 A∞-types, E∞-types, etc
2 Type-valued diagrams on (∞, 1)-categories
3 Corollary: simplicial types are definable in MLTT with coinduction.

Eric Finster Higher Universal Algebra in Type Theory December 6, 2018 4 / 31



Formalization

Where are we in terms of formalization?

The formalization of the definition of monad given here is complete.

https://github.com/ericfinster/higher-alg

Hence so are any of the definitions which are special cases:
∞-operad, ∞-category, ∞-groupoid, ...

The definition of algebra relies on a construction which is not yet
completely formalized (though it is sketched ...)

Hence the complete definition of simplicial type is not yet finished.

The “on paper” definition of algebra, however, is completely
transparent. I do not expect any difficulties in finishing it other than
the fact that it is somewhat long.

Eric Finster Higher Universal Algebra in Type Theory December 6, 2018 5 / 31

https://github.com/ericfinster/higher-alg


Polynomials as Multi-sorted Signatures

Definition

Fix a type I of sorts. A polynomial over I is the data of

1 A family of operations
Op : I → Type

2 For each operation, a family of sorted parameters

Param : {i : I}(f : Op i)→ I → Type

For i : I , an element f : Op i represents an operation whose output
sort is i .

For f : Op i and j : I , an element p : Param f j represents an input
parameter of sort j .

Eric Finster Higher Universal Algebra in Type Theory December 6, 2018 6 / 31



Representations of Operations

We can think of our polynomial as a collection of typed operation
symbols, which we might denote, for example, by

f (j , k , l) : i

We can depict such an operation graphically as a corolla:

However, we specifically allow for higher homotopy both in the
operations and the parameters

Eric Finster Higher Universal Algebra in Type Theory December 6, 2018 7 / 31



Trees
A polynomial P : Poly I generates an associated type of trees.

Definition

The inductive family Tr P : I → Type has constructors:

lf : (i : I )→Tr P i

nd : {i : I} → (f : OpPi)

→ (φ : (j : J)(p : Param f j)→ TrP j)

→ TrP i

We can represent trees both geometrically and algebraically

k(h(g(i , j), g(i , h(l)), l) : j

Eric Finster Higher Universal Algebra in Type Theory December 6, 2018 8 / 31



Leaves and Nodes

For a tree w : TrP i , we will need its type of leaves and type of nodes.

Leaves

Leaf : {i : I}(w : Tr i)→ I → Type

Leaf (lf i) j := i = j

Leaf (nd(f , φ)) j :=
∑
k:I

∑
p:Param f k

Leaf (φ k p) j

Nodes

Node : {i : I}(w : Tr i)(j : I )→ Op j → Type

Node (lf i) j g := ⊥

Node (nd(f , φ)) j g := (i , f ) = (j , g) t
∑
k:I

∑
p:Param f k

Node (φ k p) j g

Eric Finster Higher Universal Algebra in Type Theory December 6, 2018 9 / 31



Frames

Definition

Let P : Poly I be a polynomial w : TrP i a tree and f : OpP i an
operation. A frame from w to f is a family of equivalences

(j : I )→ Leaf w j ' ParamP f j

Eric Finster Higher Universal Algebra in Type Theory December 6, 2018 10 / 31



Polynomial Relations

Definition

A polynomial relation for P is a type family

R : {i : I}(f : Op i)(w : Tr i)(α : Frame w f )→ Type

Eric Finster Higher Universal Algebra in Type Theory December 6, 2018 11 / 31



The Slice of a Polynomial by a Relation

Definition

Let P : Poly I and let R be a relation on P. The slice of P by R, denoted
P//R, is the polynomial with sorts Σ I Op defined as follows:

Op(P//M) (i , f ) :=
∑

(w :Tr P i)

∑
(α:Framew f )

R f w α

Param(P//M)(w , α, r)(j , g) := Nodew g

Eric Finster Higher Universal Algebra in Type Theory December 6, 2018 12 / 31



Trees in the Slice Polynomial

Eric Finster Higher Universal Algebra in Type Theory December 6, 2018 13 / 31



Flattening

flatten
=⇒

flatten-frm
=⇒

bd-frm
=⇒

flatten : {i : I}{f : Op i} → Tr(P//R) (i , f )→ TrP i

flatten-frm : {i : I}{f : Op i}(pd : Tr(P//R) (i , f ))

→ Frame(flatten pd) f

bd-frm : {i : I}{f : Op i}(pd : Tr(P//R) (i , f ))

→ (j : I )(g : Op j)→ Leaf(P//R) pd g ' NodeP (flatten pd)g

Eric Finster Higher Universal Algebra in Type Theory December 6, 2018 14 / 31



Polynomial Magmas

Polynomials serve as our notion of higher signature. Following ideas from
the categorical approach to universal algebra, we are going to encode the
relations or axioms of our structure using a monadic multiplication on P.

Definition

Let P be a polynomial with sorts in I . A polynomial magma M over P is

1 A function µ : {i : I} → TrP i → OpP i

2 A function µfrm : {i : I}(w : TrP i)→ Framew (µw)

Notice that a magma M determines a polynomial relation on P by using
the identity type:

MgmRel : PolyMagmaP → PolyRelP

MgmRelM f w α := (µw , µfrm w) = (f , α)

Eric Finster Higher Universal Algebra in Type Theory December 6, 2018 15 / 31



Polynomial Magmas (cont’d)

Using the graphical notation we have developed, we can “picture” the
multiplication µ as follows:

In algebraic notation, this corresponds to the relation

k(h(g(x , y)), g(u, h(v)),w) = f (x , y , u, v ,w)

Eric Finster Higher Universal Algebra in Type Theory December 6, 2018 16 / 31



Coherent Relations

Furthermore, we can now interpret a pasting diagram pd : Tr(P//M) (i , f )
as a sequence of multiplications applied to subterms of flatten pd :

But: without further structure, there is simply no reason that this
sequence of multiplications gives rise to the “obvious” relation

µ(g , h, h, g , k) = f

Eric Finster Higher Universal Algebra in Type Theory December 6, 2018 17 / 31



Coherent Relations

Furthermore, we can now interpret a pasting diagram pd : Tr(P//M) (i , f )
as a sequence of multiplications applied to subterms of flatten pd :

But: without further structure, there is simply no reason that this
sequence of multiplications gives rise to the “obvious” relation

µ(g , h, h, g , k) = f

Eric Finster Higher Universal Algebra in Type Theory December 6, 2018 17 / 31



Subdivision Invariance

Definition

Let P be a polynomial and R a relation on P. We say that R is
subdivision invariant if we are given a function.

Ψ :{i : I}{f : OpP i}(pd : Tr(P//R) (i , f ))

→ R f (flatten pd) (flatten-frm pd)

We write SubInvar for the associated predicate on polynomial relations.

SubInvar : PolyRelP → Type

SubInvar R := {i : I}{f : OpP i}(pd : Tr(P//R) (i , f ))

→ R f (flatten pd) (flatten-frm pd)

Eric Finster Higher Universal Algebra in Type Theory December 6, 2018 18 / 31



The Slice Magma

Observation

Let P be a polynomial and R a relation on P. Given a witness Ψ that R is
subdivision invariant, the slice polynomial P//R admits a magma
structure given by

µ(SlcMgmR) pd := ((flatten pd , flatten-frm pd),Ψ pd)

µfrm(SlcMgmR) pd := bd-frm pd

Eric Finster Higher Universal Algebra in Type Theory December 6, 2018 19 / 31



Example: Associativity
Let us see why, if a magma is subdivision invariant, then it is associative.

µ(µ(g , h), µ(h, g), k) = µ(g , h, h, g , k)

Hence
µ(µ(g , h), µ(h, g), k) = µ(g , h, µ(h, g , k))

Eric Finster Higher Universal Algebra in Type Theory December 6, 2018 20 / 31



Example: Associativity
Let us see why, if a magma is subdivision invariant, then it is associative.

µ(µ(g , h), µ(h, g), k) = µ(g , h, h, g , k)

µ(g , h, µ(h, g , k)) = µ(g , h, h, g , k)

Hence
µ(µ(g , h), µ(h, g), k) = µ(g , h, µ(h, g , k))

Eric Finster Higher Universal Algebra in Type Theory December 6, 2018 20 / 31



Polynomial Monads

Let P be a polynomial and M a magma on P.

Definition

A coherence structure for M consists of

1 A proof Ψ : SubInvar M

2 Coninductively, a coherence structure on SlcMgmM Ψ

Definition

A polynomial monad consists of

1 A polynomial P : Poly I

2 A magma M : PolyMagmaP

3 A coherence structure C for M

4 A proof that M is univalent

Eric Finster Higher Universal Algebra in Type Theory December 6, 2018 21 / 31



Univalence for Monads

For an operation f : Op i we define

Arity f :=
∑
j :I

Param f j

is-unary f := is-contr(Arity f )

UnaryOpM :=
∑
i :I

∑
f :Op i

is-unary f

id i :=µ(lf i)

One can easily check (using µfrm) that id i is unary.

We can think of a unary operation f : Op i as a “morphism”

f : j → i

where j is the sort of its unique parameter.

The multiplication µ can now be used to define a composition
operation

◦ : UnaryOp×UnaryOp→ UnaryOp

Eric Finster Higher Universal Algebra in Type Theory December 6, 2018 22 / 31



Univalence for Monads (cont’d)

Definition

Let M be a polynomial monad. A unary operation f : j → i is said to be
an isomorphism if satisfies the bi-inverse property:

is-iso f :=
∑
g :i→j

∑
h:i→j

(f ◦ g = id i)× (h ◦ f = id j)

Write IsoM for the space of isomorphisms in M.

It is routine to check that for i : I , the operation id i is an isomorphism in
this sense. Hence we have

id-to-iso : {ij : I} → i = j → IsoM

id-to-iso{i} idp = id i

Definition

M is said to be univalent if the above map is an equivalence.

Eric Finster Higher Universal Algebra in Type Theory December 6, 2018 23 / 31



Special Cases of Monads

For a type X : Type let

is-finiteX :=
∑
n:N
‖X ' Fin n‖−1

Let M be a polynomial monad. We define

is-∞-operadM :={i : I}(f : Op i)→ is-finite(Arity f )

is-∞-categoryM :={i : I}(f : Op i)→ is-unary f

is-∞-groupoidM := is-∞-categoryM × (f : Op i)→ is-iso f

More special cases are possible:
I A symmetric monoidal ∞-category is an ∞-operad with enough

“universal” operations.
I An A∞-type is an ∞-category for which the type I is connected
I etc ...

Eric Finster Higher Universal Algebra in Type Theory December 6, 2018 24 / 31



Future Directions

Finish the definition of simplicial type

Conjecture:
∞-groupoid ' Type

Loop spaces are grouplike A∞-types?

Initial algebras and HIT’s

Develop higher category theory

Thanks!

Eric Finster Higher Universal Algebra in Type Theory December 6, 2018 25 / 31


