
What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

Type Theory and the Opetopes
HDACT - Ljubljana

Eric Finster

June 20, 2012

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

Outline

1 What are the Opetopes?

2 Formalizing the Definition

3 Notation and Implementation

4 The Opetopes and Type Theory

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

Shape Categories

Definitions of higher categories typically begin with the selection of
a shape to represent higher dimensional cells:

For example, there’s the globe category Gop:

(0) (1) (2) (3)

We’ve got the simplicial category ∆op:

[0] [1] [2] [3]

But there’s also the category of opetopes O:

⇐???

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

The Idea of Opetopes

The two main priciples behind the definition of the opetopes are
the following:

The Informal Version

1 Cells will be allowed to have many sources (input faces), but
only a single target (output face)

2 Cells of dimension n + 1 should be in bijection with pasting
diagrams in dimension n, that is, all possible ways of
attaching cells by gluing compatible sources and targets

We think of the process of turning a given pasting diagram into a
cell as extruding it into the next dimension up.

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

Low Dimensions

In dimension 0, we have a point. It has no source and no
target.

The only way to arrange a family of points, gluing sources to
targets is to simply have a single point. Points do not cohere
in any meaningful way.

Extending our unique 0-dimensional pasting diagram gives us
the unique 1-dimensional cell, the arrow.

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

Low Dimensions (cont’d)

Now in dimension 1, we have the arrow: it has a single source
and a single target.

What are all the ways of coherently gluing sources to targets
in a collection of arrows?

There are an N’s worth:

0 1 2 3

Now we extrude each pasting diagram into the next
dimension, and give it an “appropriate” target. In the case at
hand, we have only one choice: the arrow.

So our two cells look like this:

⇐ ⇐ ⇐ ⇐

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

Low Dimensions (cont’d)

Here are some 2-dimensional pasting diagrams:

⇐
⇐

⇐

⇐
⇐

⇐ ⇐

⇐

⇐

And and example 3-dimensional cell:

⇐

⇐
⇐

⇐ ⇐V

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

Low Dimensions (cont’d)

And finally a 3-pasting diagram:

W⇐ ⇐
⇐

⇐
⇐

⇐

⇐ ⇐

⇐
⇐⇐

⇐

W

W

W

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

Opetopes from Polynomial Funtors

1 How can we make this intuitive definition precise?

2 One of the simplest ways to do this (due to Kock, Joyal,
Batanin and Mascari) is to realize these shapes as a canonical
sequence polynomial functors

3 These have different names in the computer science
community: inductive families, indexed containers, indexed
W -types, . . .

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

Polynomial Functors

Definition

A polynomial P is a diagram of sets

E
p
> B

I

t

< I

r
>

Any polynomial dertermines a functor JPK : Set/I → Set/I (its
extension) defined for an I -Set X → I by the formula:

JPK(X ) =
∑
b∈B

∏
p∈Eb

Xt(p)

(Lower subscripts indicate the fibers of appropriate maps.)

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

Graphical Interpretation

It’s useful to represent the elements b ∈ B as corollas

b

i0

i1 i2 i3 in

We can then picture the set JPK(X ) as the collection of such
corollas labelled with elements from X of the correct type:

JPK(X ) =

 s

i0

x1 x2 x3 xn 
b∈B

That is, t(xk) = ik .

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

Useful Special Cases

Write 1I for the terminal object of Set/I . Then it is easily
seen that JPK(1I ) = B. Graphically:

JPK(1I ) =

 b

i0

i1 i2 i3 in 
b∈B

For the initial object, we have

JPK(∅) =

{
b

i0

}
i.e., the set of constructors with no places.

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

Useful Special Cases (cont’d)

By iterating the functor, we generate trees: for example,
JPK2(1I ) = JPK(B) is the set of two leveled trees

JPK2(1I ) =

 b0

b1 bn



Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

Monads

When is the extension of an indexed container a monad?

In particular, we would need to have a map

µ1 : JPK2(1I )→ JPK(1I ) = B

We can view this as a way to compose two-leveled trees:

b0

b1 bn⇒
µ(b0; b1, . . . , bn)

We say the monad is cartesian if the places of the multiplied
constructor are in bijection with the leaves of the two-level
tree (and their types match)

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

The Free Monad

We can freely generate a monad from any polynomial, and
moreover, this functor is again the extension of a polynomial

Write

tr(P) =
⋃

n→∞
(I + JPK)n(∅)

The elemenets are the finite tree’s built from constructors in
P (plus some units)

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

The Free Monad (cont’d)

For a tree t ∈ tr(P) write L(t) for its set of leaves

Then the free monad on JPK is given by the polynomial

∑
t∈tr(P)

L(t)
π
> tr(P)

I < I
>

The multiplication in this monad is given by simply grafting
trees together at their leaves

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

The Slice Construction

Observe that when P is a (cartesian) monad, we have a map

µ∞ : tr(P)→ B

which “collapses” each tree to a corolla

Write N(t) for the set of internal nodes of a tree t ∈ tr(P)

The slice construction P+ on P is the polynomial

∑
t∈tr(P)

N(t)
π
> tr(P)

B
<

B

µ∞

>

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

Multiplication in the Slice Construction

Theorem

The slice construction P+ is again a (cartesian) monad

Multiplication is given by substitution of trees.

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

Definition of the Opetopes

One useful monad is the identity functor on Set, represented by
the trivial polynomial:

∗ > ∗ = O(1)

∗ < ∗ = O(0)

µ∞

>

Definition

The set O(n) of n-dimensional opetopes is the indexing set of the
n-th slice of the identity functor on Set.

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

Notation for the Opetopes

Our picture of tree substitution above leads naturally to the
following graphical notation for depicting opetopes in all
dimensions

A nesting is a configuration of non-intersecting cicles and dots
in the plane which corresponds to a tree

⇒

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

Notation (cont’d)

A constellation is a nesting and a tree superimposed so that
the nodes of the tree are the dots in the nesting

These are subject to two rules

1 There must be an outer circle containing all other dots and
circles, except possibly if the tree contains exactly one node

2 Every circle must cut a subtree (no “hanging” circles)

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

Notation (cont’d)

An opetope can now be represented by a sequence of such
constellations, with the dimension given by the number of
terms in the sequence

This is subject to an initial condition and a simple rule for
moving to higher dimensions

You can play with this notation in a graphical editor here:

http://sma.epfl.ch/~finster/opetope/opetope.html

Eric Finster Type Theory and the Opetopes

http://sma.epfl.ch/~finster/opetope/opetope.html


What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

Notational Example

⇐

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

Notation (cont’d)

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

Opetopes and Globs

Globular shapes are a special case of opetopes:

⇒

V

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

Implemetation

Opetopes can be represented by the following inductive type:

data MTree (A : Set) : N → Set where

obj : MTree A 0

drop : {n : N} → MTree > n → MTree A (n + 2)

node : {n : N} → A → MTree (MTree A (n + 1)) n

→ MTree A (n + 1)

Elements of this type are “possible ill-typed A-labelled pasting
diagrams”

It is not hard to implement a “type-checker”

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

The Derivative

For implementing type-checking, the following “higher-dimensional
zipper” is extremely useful:

data Deriv (A : Set) : N → Set where

∂ : {n : N} → MTree (MTree A (n + 1)) n

→ Zipper A (n + 1) → Deriv A (n + 1)

data Zipper (A : Set) : N → Set where

Nil : {n : N} → Zipper A (n + 1)

Cons : {n : N} → A → Deriv (MTree A (n + 1)) n

→ Zipper A (n + 1) → Zipper A (n + 1)

Context : Set → N → Set

Context A n = Tree A n × Zipper A n

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

Cells, Frames and Niches

When working with simplicial sets, we have three canonical
families

1 Simplices: ∆n

2 Boundaries: ∂∆n

3 Horns: Λn
k

Opetopic sets have similar notations:

⇐

Cell Frame Niche

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

Opetopic “Identity” Types

Consider the formation rule for identity types:

Γ ` A : Type

Γ, x : A, y : A ` IdA(x , y) : Type

Iteration gives a derived rule:

Γ ` A : Type

Γ, x : A, y : A, f : IdA(x , y), g : IdA(x , y) ` IdIdA(x ,y)(f , g) : Type

In each case, the data required in the context is exactly
corresponds to a frame for a globular opetope.

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

Opetopic ”Identity” Types (cont’d)

Let π denote an abitrary opetope

Write Γ, JF : AKπ ` · · · as shorthand for the assumption of a
variable for every face of the frame associated to π

Example: for π the 2-frame below

x

f

y g

h

k

z

w

we would have

Γ, x : A, y : A, z : A,w : A, f : IdA(x , y), · · · ` · · ·

Similarly, Γ, [N : A]π ` · · · means enough variables for the
faces of the niche associated to π

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

Opetopic Formation and Introduction

Γ ` A : Type
O-Formation

Γ, JF : AKπ ` Fill(F ) : Type

Γ ` [N : A]π O-composition
Γ ` comp(N) : Fill(N|τ(π))

Γ ` [N : A]π O-reflection
Γ ` refl(N) : Fill(N . comp(N))

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

Introduction Examples

x

f

y g

h

z

w

x

comp(x)

refl(x)

comp(N)

refl(N)

When π is a glob, it contains a unique top dimensional source
face, say x , and a new reduction rule says that comp(x)→ x
in this case

This corresponds to the slogan “a nullary composition is an
isomorphism”

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

A Generalized J-Rule

The J-Rule

Γ, x : A, y : A, f : IdA(x , y) ` P(x , y , f ) : Type

Γ, x : A ` p(x) : P(x , x , refl(x))

Γ ` a : A Γ ` b : A Γ ` g : Fill(G )

Γ ` J(a, b, g) : P(a, b, g)

An Opetopic J-Rule:

Γ, JF : AKπ, α : Fill(F ) ` P(F , α) : Type

Γ, [N : A]π ` p(N) : P(N . comp(N), refl(N))

Γ ` JG : AKπ Γ ` β : Fill(G )

Γ ` J(G , β) : P(G , β)

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

The Opetopes as a Substitution Calculus

The opetopes come equipped with a natural substitution
operation arising from the fact that they are constructors in a
polynomial monad

W

W

W

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

Substitution (cont’d)

By introducing binding, we can build a rewrite system
reminiscent of λ-calculus:

Eric Finster Type Theory and the Opetopes



What are the Opetopes?
Formalizing the Definition

Notation and Implementation
The Opetopes and Type Theory

Opetopic Type Theory

The opetopes provide a natural framework for organizing higher
dimensional type-theoretic concepts geometrically:

Dimension Terms

0 Contexts
1 Types
2 Proofs
3 Proofs w/ Metavariables
· · · · · ·

Eric Finster Type Theory and the Opetopes


	What are the Opetopes?
	Formalizing the Definition
	Notation and Implementation
	The Opetopes and Type Theory

