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1 Introduction and Overview

Since their first appearance in the physics literature in the mid 60’s [1, 2] anomalies have continued

to played a very important role in the understanding of quantum field theories. Understanding

anomalies provided the basis for understanding of the π0 lifetime and later the U(1) axial problem

in QCD. Anomalies provided (and of course still do) important guidelines form model building.

In the late 70’s it was realized [3, 4, 5] that the original global U(1) axial anomaly [1, 2] can be

viewed as a consequence of the Atiyah-Singer index theorem proved in 1968 [6]. In the mid 80’s

it became clear that non-abelian and gravitational anomalies could be understood in terms of the

index theorem for families of elliptic operators [7].

In this paper we will try to illuminate some of the relations of anomalies to index theorems. Since

the use of the word anomaly seems to be slightly different in mathematics and physics it seems

worthwhile to begin by establishing a relation between the various definitions used in the literature.

Even in the physics community the meaning of the term anomaly seems to vary from person to

person. Probably the most common use of the term in physics is to say that a theory has an anomaly

if a symmetry that is present at the classical level is absent at the quantum mechanical level. It is of

crucial importance for the consistency of the theory whether the anomalous symmetry is a global

or a local symmetry of the theory. While the existence of an anomalous global symmetry may be

useful, as for example in the case of the π0 decay, the existence of an anomalous local symmetry is

fatal because it spoils the gauge invariance and hence the renormalizability of the theory. In other

words the presence of an anomalous local symmetry renders the theory inconsistent.1 What might

sound bad at first turns out to be one of the exciting features of anomalies. They provide at least

some guide in physical model building. While the restrictions imposed by anomalies are not very

severe in four dimensions the requirements become more and more stringent in higher dimensions.

It ten dimensions there are for example only two theories which are chiral, supersymmetric and

anomaly free [8].

In the mathematical literature the term anomaly seems to be used mostly for the case when a local

symmetry is broken. As we will see in section 3 the anomaly then is an obstruction to even defining

the quantum theory – the theory does not exist. In the case of an anomalous global symmetry the

theory does exist, there simply is no symmetry. The terms global and local anomalies in the

mathematical literature both refer to an anomaly in a local symmetry. A local anomaly is then

an obstruction to defining the theory that is local in field space while the global anomaly is an

obstruction global in field space.

1It might be interesting to note at this point that in physics a theory is assumed to exist until proven otherwise.
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In section 2 we will study some examples from the viewpoint of physics trying, as far as possible,

to specify what the physical objects are from a mathematical perspective. Anomalies occur in

many different areas in physics and we obviously will not try to give a case by case study. Instead

we will focus on two main examples in the standard model of particle physics. The first anomaly

to be considered will be the global U(1) axial anomaly that led to an understanding of the decay of

the pion or rather its lifetime. Before we give a path integral derivation of the anomaly, we will try

to provide some background to make the discussion more or less self-contained. The second type

of anomaly we will discuss will be the gauge anomaly in the Glashow-Salam-Weinberg model of

the weak interaction and its cancellation. We will for example not be able to talk about the famous

Green-Schwarz anomaly cancellation [8].

In the first part of section 3 we will establish a relation between the global U(1) axial anomaly and

the Atiyah-Singer index theorem by studying the compactification of the theory studied in section

2 on a sphere following [3]. In the second part of this section we will explain how anomalies

can be understood as an obstruction to defining the theory [9]. We will see that the theory will

only exist if a certain line bundle over the space of physical field configurations is trivial. In the

case of both gauge and gravitational anomalies the line bundle will be the determinant line bundle

[9, 10, 11, 12] corresponding to the Dirac-operator of the fermions of the theory.
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2 Anomalies from a Physical Perspective

2.1 The Global Abelian Anomaly

In this section we will try to provide some insight into the global U(1) axial anomaly which was

first discovered in [1, 2]. In its original form the anomaly was obtained by a careful calculation

from the following Feynman diagram:

A

V

V

This is the first non-vanishing diagram in the perturbative expansion for the divergence of the axial

current, i.e. the current corresponding to the axial symmetry of the action of a massless fermion

in Minkowski space coupled to an external gauge field. In the first part of this section we will try

to motivate why this anomaly contributes to the decay rate of the neutral pion. Our description

will be far from complete and for a more detailed account we refer the reader for instance to [13].

We still think it seems worthwhile to know what we are calculating. In the second part we will

write down a simpler model that exhibits the same type of anomaly and give a derivation using

Fujikawa’s method [14]

2.1.1 Some Background

As a starting point we will consider quantum chromodynamics with two flavors, which is defined

by the action2:

S =

∫

d4x ūi /Du+ d̄i /Dd−muūu−mdd̄d (1)

For definiteness we are now working in Minkowski space with signature (−,+,+,+) and γµγν +

γνγµ = −2ηµν . We will indicate this by using /D = γµ(∂µ − igAa
µT

a) as notation for the Dirac

operator in Minkowski signature while we will denote it D in Euclidean signature. The constant

g is a coupling constant and is a parameter of the theory. From a physical point of view both u(x)

and d(x) are Dirac-spinors transforming in the fundamental representation of SU(3) and represent

2We will ignore the kinetic term for the gluons for now
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the up- and the down-quark. The real vector fields Aa
µ(x) with a = 1 . . . 8 transform in the ad-

joint representation of SU(3) and correspond to the eight gluons. Let us now briefly sketch the

mathematical setup. We have a principal SU(3)-bundle with connection over spacetime together

with a trivialization. What we called gluons before is (up to a factor i) the local representative of

the connection. The quarks correspond to a section in the direct product S ⊗ E where S carries a

complex representation of Spin(3, 1) and E carries the fundamental representation of SU(3). In

principle the quarks should be massless if this really were the Lagrangian for quantum chromo-

dynamics. We know, however, that they will acquire a mass from the electro-weak sector in the

standard model and we will include the masses at this point explicitly. In the absence of these mass

terms the above action would posess a SU(2)V × SU(2)A symmetry, where the subscripts V and

A stand for vector and axial respectively: 3

(

u
d

)

= ei~αV ·~τ+iγ5~αA·~τ

(

u
d

)

, (2)

with ~αV , ~αA ∈ R3, γ5 = iγ0γ1γ2γ3, and:

τ1 =

(

0 1
1 0

)

τ2 =

(

0 −i
i 0

)

τ3 =

(

1 0
0 −1

)

(3)

A different way of saying this is that in the absence of these terms we could write the action in a

nicer way using only a single spinor field Q(x) that is a section of S ⊗E ⊗ V where V is a trivial

bundle with fiber C2 carrying the fundamental representation of SU(2). The conserved currents

would take the form:

Jµa = Q̄γµτ aQ and Jµa5 = Q̄γµγ5τQ (4)

In the presence of the mass terms this symmetry is only an approximate symmetry. It is assumed

that the axial part is spontaneously broken [15] due to composite fields acquiring a nonzero vacuum

expectation value. It is known that spontaneously broken global symmetries lead to massless parti-

cles. In our case the symmetry that is broken is only approximate and we expect light particles, one

for each broken generator. These light particles will be the pions. We expect that the composite

operators Jµ±5 = Jµ15 ± iJµ25 and Jµ35 will be able to create the π± and the π0 respectively.

So far none of our particles have an electromagnetic charge. We will hence couple them to the

Maxwell field by modifying the covariant derivatives in the above action to /Du = γµ(∂µ −

igAa
µT

a − iquAµ) and /Dd = γµ(∂µ − igAa
µT

a − iqdAµ), where qu = 2/3e and qd = −1/3e

3In principle we even have a U(2)V ×U(2)A symmetry. The U(1) of the first factor represents baryon number and
is a good symmetry. The U(1) of the second factor is anomalous. To avoid this complication at this point we ignore
both U(1) factors.
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are the couplings to the photon, i.e. the electromagnetic charges. In other words we now have a

SU(3)×U(1) principle bundle and the quarks transform in the corresponding associated bundles.

We see that this explicitly breaks the SU(2)’s down to the U(1)’s generated by τ3. As mentioned

above the currents corresponding to the spontaneously broken generators will create on-shell pi-

ons from the vacuum. So if we would like to calculate the decay rate of a π0 into two photons,

we would at some point have to calculate the matrix element 〈p, q|∂µJ
µ35|0〉. The leading order

contribution is given exactly by the Feynman diagram shown above. A naive calculation predicts a

lifetime that is too long by several orders of magnitude. Something ‘anomalous’ must be going on.

The resolution to this is that the remaining global U(1)A is anomalous and the anomaly we derive

later yields the leading correction to the pion lifetime.

2.1.2 Path Integral Derivation of the Anomaly

We now have enough background knowledge to finally give a physical derivation for the global

U(1) axial anomaly. Instead of using the above action it seems convenient to consider what we

might call a toy model that exhibits all the structure we need. The theory we shall consider for this

purpose is a theory in four dimensional Minkowski space defined by the following action:

S[A,Ψ, Ψ̄] =

∫

d4x Ψ̄i /DΨ , (5)

where the Dirac operator takes the following explicit form:

/D = γµ(∂µ − iqAµ) (6)

and

Ψ̄ = Ψ†γ0 (7)

The effective action for the gauge field is obtained by integrating out the fermions:

eiSeff [A] =

∫

DΨDΨ̄eiS[A,Ψ,Ψ̄] (8)

It is well known even to physicists that the path integral in Minkowski space is not well-defined.

To give a more rigorous derivation we should study the one point compactification of the Euclidean

theory on a sphere. We will do so in the next section to establish a relation between the anomaly

and the index theorem derived in class. For now let us work with the Minkowski theory and treat

the integral as some formal object. The above action is invariant under a global transformation of

the spinor of the form:

Ψ(x)′ = eiaγ5

Ψ(x) which implies Ψ̄(x)′ = Ψ̄(x)eiaγ5

(9)
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So we would naively conclude that the corresponding current Jµ5 is conserved. Let us now perform

a coordinate change in the path integral. Since we integrate over all of field space the result will be

unchanged i.e.:

eiSeff [A] =

∫

DΨ′DΨ̄′eiS[A,Ψ′,Ψ̄′ ] (10)

Let us now take the new field Ψ′(x) to be of the form:

Ψ(x)′ = eia(x)γ5

Ψ(x) and Ψ̄(x)′ = Ψ̄(x)eia(x)γ5

(11)

Since we now allow for a local transformation, the action will not be invariant. It will change

according to:

S[A,Ψ′, Ψ̄′] = S[A,Ψ, Ψ̄] −

∫

d4xJµ5∂µa(x) (12)

with Jµ5 = Ψ̄(x)γµγ5Ψ(x). The measure will also change. In fact this is the point that leads to

the anomaly from the present point of view. If the measure were invariant we would simply find

that the current is indeed conserved. It changes according to:

DΨ′DΨ̄′ = DΨDΨ̄Det
(

e−2ia(x)γ5
)

(13)

Combining these two results and using Det
(

eM
)

= eTr(M) we find:

eiSeff [A] =

∫

DΨDΨ̄eiS[A,Ψ,Ψ̄]e−i
R

d4xJµ5∂µa(x)−2i
R

d4xa(x)tr(γ5)δ(0) (14)

where the trace runs over the spinor indices. Since all we did was a change of integration variables

this has to be independent of a(x). Taking the functional derivative with respect to a(x) and setting

it equal to zero we conclude:4

〈∂µJ
µ5〉 = 2tr(γ5)δ(0) (15)

The right hand side of this equation is often called the anomaly. We see at this point that it is

essentially what we called TrS(1) in class. As it stands it has the unfortunate form 0 × ∞ which

means we need to regulate it somehow. A convenient way of doing this is essentially the physicists

version of the heat-kernel proof of the Atiyah-Singer index theorem given in class:

Tr(γ5)δ(0) → lim
M2→0

lim
y→x

Tr(γ5e−( i /D
M )

2

δ(x− y)) (16)

This is typically evaluated by using the plane wave representation of the delta function:

δ(x− y) =

∫

d4k

(2π)4
eik(x−y) , (17)

4Recall that 〈O〉 is defined as 〈O〉 =
∫

OeiS
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and appropriately rescaling the momentum k by factors of M ,5. The trace over the γ matrices will

then be proportional to the totally antisymmetric tensor εµνρσ and the indices will be contracted

with the covariant derivative. Due to the antisymmetry of εµνρσ and the fact that the commutator of

two covariant derivatives just gives the corresponding curvature this will yield the following final

result:

TrS(1) = −
q2

32π2
εµνρσF

µνF ρσ , (18)

which is indeed the local form of the Atiyah-Singer index theorem derived in class for the present

case. So in the quantum theory the axial current is not conserved but instead satisfies:

〈∂µJ
µ5〉 = −

q2

16π2
εµνρσF

µνF ρσ (19)

Using the language of differential forms we could write this more neatly as:

〈d ? J5〉 = −
q2

4π2
F ∧ F (20)

If we now look back at the action for two our two quarks couple to an electromagnetic field, we see

that the global U(1) axial symmetry is indeed anomalous. Looking back at the derivation we also

see that we could easily have done the same for a non-abelian global symmetry and non-abelian

gauge fields. In this case the anomaly would have taken the form:

〈∂µJ
µi5〉 = −

1

16π2
εµνρσF

µνaF ρσbtr(T iT aT b) (21)

In the case where T i = 1 this anomaly is called the singlet anomaly and can be written nicely in

terms of forms:

〈d ? J5〉 = −
1

4π2
tr(F ∧ F ) = −

1

4π2
d tr

(

A ∧ dA +
2

3
A ∧ A ∧ A

)

(22)

This is also relevant for the QCD Lagrangian (not coupled to the electromagnetic field) because

it tells us that there is a global U(1) axial anomaly even in pure QCD. This observation lead to

the solution of the famous U(1) axial problem. As we shall see in the next part, different from

anomalies in local symmetries these anomalies are not harmful for the consistency of the theory.

Their understanding is however of crucial importance because as we shall see the gauge as well

as gravitational anomalies can be understood in terms of global anomalies of the same theory in a

higher dimensional space.

5This rescaling could be viewed as the analog of the Getzler rescaling
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2.2 Gauge Anomalies

2.2.1 Some Words on Current Conservation

Before we go ahead and derive what is called the consistent anomaly in a path integral approach,

let us first recall why anomalies in local currents ruins the consistency of the theory. To do this

let us ask what happens to the effective action if we perform a infinitesimal gauge transformation

A′
µ = Aµ + δAµ with:

δAµ = Dµv = ∂µv + [Aµ, v] (23)

On the one hand we can write the resulting change in the effective action as:

δSeff =

∫

d4xDµv
δSeff

δAµ

= −

∫

d4xvDµ〈J
µ〉 (24)

In the last step we have used that we define the current as what couples to the gauge field and

we have integrated by parts. This is justified because we are free to choose what v should be. In

particular we can choose it to vanish outside some region of spacetime.

On the other hand we know from our definition of the effective action via the path integral that:

eiδSeff [A] =

∫

DΨDΨ̄eiS[A′,Ψ,Ψ̄]

∫

DΨDΨ̄eiS[A,Ψ,Ψ̄]
(25)

We can “undo” the transformation by changing variables of integration. Using the gauge invariance

of the classical action and taking into account that under a change of the fermions:

Ψ′ = UΨ and Ψ̄′ = Ψ̄Ū (26)

the measure changes we find:

eiδSeff [A] =

∫

DΨDΨ̄Det−1(UŪ)(eiS[A,Ψ,Ψ̄]

∫

DΨDΨ̄eiS[A,Ψ,Ψ̄]
(27)

and finally in a somewhat unfortunate notation:

〈(DµJ
µ)a〉 = −i Tr

δ ln (UŪ)

δva

∣

∣

∣

∣

v=0

=: Aa(x) , (28)

So if the fermion measure is invariant the right hand side vanishes and the current is covariantly

conserved. If the measure is not invariant, gauge invariance is broken, the theory becomes non-

renormalizable, and hence inconsistent. We also see that the global U(1) axial anomaly or the

singlet anomaly do not affect the gauge invariance of the theory because a change in the gauge

9



field can still be absorbed by a change in the fermions without picking up the anomaly.

It is important to note that, if we have an effective theory containing the composit particle cor-

responding to the current of the broken symmetry, we have to include a term that cancels the

transformation of that field. From the point of view of an effective theory containing pions this is

the term that gives rise to the corrections in the pion lifetime.

2.2.2 Path-Integral Derivation of the Consistent Anomaly

Since the Glashow-Salam-Weinberg model of the weak interaction is certainly one of the most

important models, some basic introduction and motivation would certainly be useful. Since it can

hardly be described in a few sentences, we do, however, refer the reader to the literature [16]. We

will at this point only use one crucial feature that makes it so different from what we have seen so

far and hence potentially dangerous. The left-handed and right-handed particles have completely

different couplings to the gauge fields. In other words the gauge fields couple to chiral currents.

The toy model action we will study for these purposes is given by:

S[A,Ψ, Ψ̄] =

∫

d2nx Ψ̄i /̂DΨ , (29)

where /̂D = γµ(∂µ + AµP+) with Aµ = −iT aAa
µ and P± = 1

2
(1 ± γ̄) where γ̄2 = 1.6 This

immediately shows us that only the positive chirality part of the spinor couples to the gauge field

or in other words that the gauge field couples to a chiral current. The effective action is then given

by:

eiSeff [A] =

∫

DΨDΨ̄eiS[A,Ψ,Ψ̄] (30)

This theory is often interpreted as a way to define what is meant by the effective action for a

positive chirality spinor but we could just as well take this to be our theory. Let us just mention

that by adding a local counterterm to regularize the theory it is possible to obtain a different form

of the anomaly. “Our” choice seems rather natural an leads us directly to the relation between

the consistent non-abelian anomaly and a global anomaly in the same theory in two dimensions

higher [17]. According to our result from the last subsection the anomaly is given in terms of the

transformation of the fermions needed to undo a gauge transformation of the gauge field. This

transformation in the present case takes the form:

Ψ′ = eivP+Ψ + P−Ψ and hence Ψ̄′ = Ψ̄P−e
−iv + Ψ̄P+ , (31)

6The derivation is independent of the number dimensionality of our spacetime so we will generalize at this point
to arbitrary even dimensional spacetime.
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or more conveniently:

U = eivP+ and Ū = e−ivP− . (32)

According to equation (28) this leads to:

〈(DµJ
µ)a〉 = Tr(T aγ̄) , (33)

where we use capital letters for the trace if we still have to trace (or rather integrate) over spacetime.

We will now regulate this trace using the new Dirac operator /̂D and again writing the delta-function

in terms of plane waves. We obtain:

Tr(T aγ5) = lim
M→0

∫

d4

(2π)4
e−ikxtr

(

T ae−( i /̂D
M

)2
)

eikx =

lim
M→0

∫

d4

(2π)4
e−ikx

(

tr
(

T aP+e
/∂ /D

M2

)

− tr
(

T aP−e
/D/∂

M2

))

eikx ,

(34)

or

Tr(T aγ5) = lim
M→0

∫

d4

(2π)4

(

tr
(

T aP+e
(i/k+/∂)(i/k+ /D)

M2

)

− tr
(

T aP−e
(i/k+ /D)(/k+/∂)

M2

))

, (35)

where the remaining derivatives are only nonvanishing when they act on the gauge potential. What

remains is to rescale the momentum by a factor of M and a fair amount of traces and integrals.

The result in four dimensions finally takes the form:

〈(DµJ
µ)a〉 =

1

24π2
εµνρσ∂µtr

(

T aAν∂ρAσ +
1

2
AνAρAσ

)

. (36)

This is the result for a positive chirality spinor. We know that there was no anomaly in the case of

a Dirac spinor. So we can conclude that the result for a negative chirality spinor must be the same

expression with the opposite sign. In the language of forms this is usually written in the following

way [17]:

δvSeff = ±
1

24π2

∫

d4x tr

(

vd(A ∧ dA +
1

2
A ∧ A ∧ A

)

. (37)

This form of the anomaly is called the consistent anomaly because it satisfies the so-called Wess-

Zumino consistency conditions [18]. Since these conditions have a nice physical meaning let us

briefly sketch where these conditions come from and what they look like. Recall that we defined

the anomaly as:
δSeff

δva
= −Dµ

δSeff

δAa
µ

= Aa (38)
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The action of the gauge group on field space gives rise to the following induced vector fields Xa

[19]:

Xa = −Dµ

δ

δAa
µ

(39)

In terms of these vector fields the anomaly can then simply be written as:

Aa = XaSeff (40)

We know that the map −iT a → Xa is a homomorphism of the Lie-algebra of the gauge group G

into the space of vector fields on field space. As can be checked by explicit calculation the induced

vector fields hence satisfy the following commutation relations:

[Xa(x),Xb(y)] = fabcXc(x)δ(x− y) (41)

The consistency conditions are obtained by applying this commutator to the effective action:

Xa(x)Ab(y) − Xb(y)Aa(x) = fabcAc(x)δ(x− y) (42)

This equation is non-linear in the gauge potential implying that the anomaly can be determined

completely once the leading order piece is known. It is interesting to note that this has a very nice

physical interpretation. We saw that the leading order piece can be related to the π0 → 2γ decay.

Similarly, the remainder can be related to the processes γ → 2π and 2γ → 3π. This implies that

the rates for the latter two processes can be determined once the pion decay is known.

The equation is, however, linear in the anomaly implying that the normalization cannot be fixed

from the above equation. Let us now go back and compare the global U(1) axial anomaly with the

consistent anomaly. The former was of the form:

A(x) ∼ d tr

(

A ∧ dA +
2

3
A ∧ A ∧ A

)

, (43)

while the latter was given by:

A(x) ∼ tr

(

vd(A ∧ dA+
1

2
A ∧ A ∧ A

)

. (44)

At first sight the two expressions look very similar and seem to differ only by the factor of 2
3

vs.
1
2
. Their origin, however, is completely different. As we saw above and as we shall see later in

more detail, the global U(1) axial anomaly is given directly in terms of the Atiyah-Singer index

theorem.

It was first discovered by Zumino et al. [19] that there was a formal algebraic relation between the
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form of the consistent anomaly in 2n dimensions and the form of the global axial anomaly of the

same theory in 2n + 2 dimensions as follows. The global axial anomaly in 2n + 2 dimensions is

given by the 2n+ 2 nd Chern character:

A ∼ trF n+1 =: Ω2n+2(A) (45)

(We only saw the derivation for n = 2 but on symmetry grounds alone it is not hard to believe that

this will generalize. The anomaly has to be a 2n+ 2 form that is gauge invariant, and that reverses

its sign under a parity transformation due to the fact that the current does.) This 2n + 2 form is

closed and can be written locally as an exact form:

A ∼ dω0
2n+1 , (46)

Noting that the global axial anomaly is gauge invariant we also conclude that the gauge transform

of this 2n+ 1 form is a closed form:

dδvω
0
2n+1 = 0 , (47)

and can again be written locally as an exact form:

δvω
0
2n+1 = dω1

2n (48)

It was shown in [19] that this 2n form, ω1
2n, satisfies the Wess-Zumino consistency condition [18]

and hence up to the normalization provides the consistent anomaly. L. Alvarez-Gaumé and P.

Ginsparg showed [17] that this was not just a formal coincidence but that the consistent anomaly

in 2n dimensions could indeed be understood in terms of a global anomaly in 2n+ 2 dimensions.

Soon after that it was realized that this could be put into a very nice mathematical form using the

index theorem for families of elliptic operators.

To sketch the pedestrian way of understanding the anomaly let us consider the Euclidean version

of the theory studied so far and let us assume that we have compactified R
2n to S

2n.7 The effective

action for the gauge field is then defined by:

e−Seff [A] =

∫

DΨDΨ̄e−
R

d2nx Ψ̄iD̂Ψ (49)

7The usual argument given when studying instantons as to why this should not affect the theory goes as follows.
Requiring the Euclidean action to be finite forces the gauge field to tend to pure gauge at infinity. The physics will
hence not be affected by compactifying to S2n. In our case this is less clear because we would only require the
total action, i.e. gauge field plus fermions to be finite. So for the compactification to make sense we have to restrict
ourselves to the case where the action of the gauge field and the fermions are separately finite.

13



where D̂ = /∂ + /AP+. We should note two things at this point. The first one is that the Euclidean

action in general is not real and in fact the imaginary part of the effective action will play a crucial

role later. The second one is that this choice of Dirac operator is not self-adjoint. It is, however

an elliptic operator, has a well-defined eigenvalue problem and has discrete spectrum, which is all

we shall need from it. This also implies that the eigenvalues are not gauge invariant. Since we can

think of the determinant as the product of the eigenvalues (in some regularized way), we conclude

that the determinant detiD̂ and hence the effective action will not be gauge invariant in general,

which is of course what allows for an anomaly to occur. We do know however, that the absolute

value of the determinant is gauge invariant because:

|det(iD̂)|2 = det(iD)det(∂2) , (50)

where D = /∂ + /A is the ordinary Dirac operator.

Before we go on let us for definiteness specify the setup in more detail. We are considering a

chiral spinor on a 2n-sphere transforming in some representation of a compact, simply connected,

semi-simple Lie group G . That is we have a trivial principal G-bundle over the base manifold S2n

with a connection, which we specify as usual by giving a Lie-algebra valued one-form A on the

base manifold. Let us now consider a one parameter family of connections defined by:

Aθ = g−1(θ)Ag(θ) + g−1(θ)dxg(θ) , (51)

where dx is the standard exterior derivative on the sphere and the reason for the subscript will

become clear later. g(x, θ) is a gauge function satisfying periodic boundary conditions g(x, 0) =

g(x, 2π) = 1:

g : S1 × S2n → G (52)

It is easy to see that this one-parameter family describes a circle in the space of gauge conections.

We saw above that the anomaly was given by the failure of the effective action to be gauge invariant.

In terms of this parameter θ the anomaly can hence be written in a compact form:

dSeff [A
θ]

dθ
= −A , (53)

or using that the absolute value of the effective action is gauge invariant and writing Seff [A
θ ] =

|det(i ˆD(A)|eiw(θ,A) we find:

i
dw(θ,A)

dθ
= A . (54)
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Let us now extend to a two parameter family of gauge connections (not necessarily related by

gauge transformations) as follows:

At,θ = tAθ = tg−1(θ)(A+ dx)g(θ) , (55)

where 0 ≤ t ≤ 1 (Note that this step requires a trivial principal bundle since otherwise we could in

general not continously deform to A = 0.) This gives rise to a complex valued function det(iDt,θ)

on the disc in the space of gauge connections parametrized by t, θ. 8 Restricted to the boundary,

i.e. for t = 1, this map clearly gives rise to a map eiw : S1 → S1 which will be characterized by

its winding number n defined as:9

n =
1

2π

2π
∫

0

dθ
dw(θ,A)

dθ
(56)

A non-zero winding number then implies that the effective action is not gauge invariant and hence

that we have an anomaly. The goal will now be to define a Dirac operator on the 2n+2 dimensional

space parametrized by x, t, θ, where x are the coordinates on the sphere, such that its index equals

the winding number. If we can do that, the local version of the Atiyah-Singer index theorem

determines the anomaly as can be seen by comparing equations (54) and (56). Before we do so,

let us briefly discuss the properties of det(iD̂t,θ) for t 6= 1. For a generic gauge field we will

have isolated zeros inside the disc at the points where one (or more) eigenvalues become zero.

We can now imagine restricting our function to small circle enclosing only a single zero. This

again defines a map from an S1 to an S1 and will be characterized by a winding number. In this

way we can assign an index to each of the zeros. If we continuously (without enclosing another

zero) deform the contour the winding number cannot change because it is discrete. Similarly if

we consider a contour that encloses several zeros, its winding number will be given by summing

the indices of all zeros inside the contour. If we now recall that the determinant is defined as the

regularized product of the eigenvalues of the Dirac operator, and that a zero of the determinant

corresponds to one eigenvalues going to zero, we see that we can associate the winding number

to the single eigenvalues and we only have to analyze the smallest eigenvalues near the zero to

determine the index of a given zero. So to determine the winding number of the function restricted

to the boundary circle can be reduced to analyzing and calculating the behavior of the smallest

8In general this should be considered as a section in some line bundle, the determinant line bundle, but since the
base space is a disc and hence contractible it must be trivial. Determinant line bundles will play a crucial role for a
more general understanding of anomalies.

9We can without loss of generality choose a gauge connection such that the determinant is non-vanishing on the
circle.
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eigenvalues near the zeros. “Near the zeros” means that we are looking at small changes in the

gauge field configuration and it suggests that winding number can be obtained by studying the

behavior of the lowest lying eigenvalues in (degenerate) perturbation theory. This is indeed what

is used in [17] to show that index of the following Dirac operator indeed reproduces these winding

numbers:

i /D2n+2 = iΓa(∂a + A
+

a ) (57)

where the index a = 1 . . . 2n + 2, 1 . . . 2n corresponds to the 2n spacetime coordinates, 2n + 1

corresponds to the coordinate t, and 2n+ 2 corresponds to the coordinate θ.

The gauge Lie-algebra valued one-form A + on the 2n + 2 dimensional manifold is defined as

A +(x, t, θ) = At,θ = tg−1(A + dx)g. So far we cannot use the familiar Atiyah-Singer index

theorem because our manifold has a boundary. We would instead have to use a generalization to

manifolds with boundary [7]. We can avoid this complication by thinking of our disc in the space

of gauge fields as the northern hemisphere of a two-sphere and we will call it H+ from now on.

We can the define a second disc which will be the southern hemisphere of our disc and we will call

that H−. To define a Lie-algebra valued one-form and hence a gauge field on the entire manifold

S2 × S2n we will have to specify a Lie-algebra valued one form A − on the lower hemisphere (or

rather H− × S2n) that is related to A + by a gauge transformation on the overlap. We see that a

possible choice is given by:

A
−(x, s, θ) = A− s(dθg)g

−1 (58)

It is straightforward to see that this is indeed related to A + on the overlap, i.e. t = s = 1, by the

transition function g(x, θ). 10 So the gauge connection A +, A − indeed defines a connection in a

trivial principal G-bundle over the base manifold S2 × S2n.

Before we go on let us give a brief sketch of what our construction looks like so far. We have

constructed a (trivial) fiber bundle over the base manifold S2, a sphere in the space of gauge

connections, with fibers given by our spacetime S2n including a Dirac operator on the total space.

Furthermore we have constructed a principal G-bundle with connection whose base space is given

by the total space, S2 × S2n of our fiber bundle over the S2. We would like to remark at this point

that this is almost all the data needed to define a family of Dirac operators.

We can now make use of the index theorem for this Dirac operator and we find:

indi /D2n+2 =
in+1

(2π)n+1(n+ 1)!

∫

S2×S2n

trF n+1 , (59)

10We note that due to the condition g(0, x) = g(2π, x) = 1 and the fact that we only consider simply connected G
these maps are classified by π2n+1(G).

16



where F = dA +A ∧A . To recover the consistent anomaly from this formula we will have to do

two things. We have to rewrite this in terms of the local version of the index theorem because we

saw above that that is what will give us the consistent anomaly, and we have to express the result

in terms of the spacetime fields A and F .

Given the above definitions for the gauge connection on the total space it is straightforward but

somewhat tedious to show that:

1
∫

0

dt trF n = n(n + 1)

1
∫

0

dt(1 − t)Str
(

g−1dθgdx(A
θF t,θ)n−1

)

− (n+ 1)tr((dθg)g
−1F n)

(60)

where Str denotes the symmetrized trace. Similarly, we obtain for the southern hemisphere:

1
∫

0

ds, trF n = (n+ 1)tr((dθg)g
−1F n) (61)

We see that this just has the effect of cancelling the last term in the result for the northern hemi-

sphere and we conclude that [17]:

dθw =
in+1

(2π)n(n− 1)!

1
∫

0

dt(1 − t)Str
(

g−1dθgdx(A
θF t,θ)n−1

)

(62)

or using the notation used above:

A = i
dw

dθ

∣

∣

∣

∣

0

=
in+2

(2π)n(n− 1)!
ω1

2n , (63)

which in four dimensions becomes:

A = i
dw

dθ

∣

∣

∣

∣

0

=
1

24π2
tr(vdx(A ∧ dA+

1

2
A ∧ A ∧ A) , (64)

with v = g−1 dg

dθ

∣

∣

0
in agreement with the path integral derivation.

This concludes our discussion of anomalies from a physical point of view.
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3 Anomalies from a Mathematical Perspective

In this second part we will now try to take a more rigorous and more general approach towards

anomalies.

We saw in the first part that the understanding of what we called the singlet anomaly is of crucial

importance both because of its physical implications for the theory in 2n dimensions and because

it provided some insight into what we called the consistent anomaly. In the next subsection we will

hence give a more rigorous (and more general) derivation of the relation of the singlet anomaly to

the index theorem.

We will then sketch, how anomalies in currents corresponding to local symmetries can be under-

stood from a mathematical point of view. We would like to apologize in advance because even

what we call a “mathematical point of view” will make use of the general idea of the path integral

and hence lack mathematical rigor. We will still be able to gain a lot of insight into the general

structure of anomalies.

3.1 The Abelian Anomaly and the Atiyah-Singer Index Theorem

To relate the singlet anomaly to the Atiyah-Singer theorem, we will start with the following setup.

Let (X, g) be an (orientable) even-dimensional compact Riemannian manifold and let

(M,∇M , < ·, · >) → X be a Cliff(X)-module with admissible connection and compatible

metric over the base manifoldX. That is we have a smooth map: Cliff(X)⊗M →M that makes

Mx into a Cln(T ∗
xX) module for all x ∈ X. We will write this map as (α,m) 7→ γ(α)m = α ·m.

The connection should satisfy:

∇M (α ·m) = (∇Xα)m+ α · ∇Mm, (65)

where ∇X is the connection on Cliff(X) induced by the Levi-Civita connection. The metric

should satisfy:

〈m1, γ(α)m2〉 = −〈γ(α)m1,m2〉 (66)

for all vectors α, which is the infinitesimal version of requiring a Pin-invariant metric.

We define the Dirac operator acting on sections ofM as the composition of covariant differentiation

and Clifford-multiplication D = γ ◦ ∇. It will be relevant later that this operator is formally self-

adjoint. For sections ψ : X →M we can then define the following action functional:

S = 〈ψ̄,Dψ〉L2 =

∫

X

〈ψ̄,Dψ〉 , (67)

18



giving rise to the classical equations of motion:

Dψ = 0 and Dψ̄ = 0 (68)

In the classical theory we can then define the following one-form:11

J5 = 〈ψ̄, γ()γ̄ψ〉 , (69)

where γ̄ = γ(ω) is the grading homomorphism on M , γ̄ acts as ±1 on M±. This then acts on a

vector field ξ as:

J5(ξ) = 〈ψ̄, γ(ξ̂)γ̄ψ〉 , (70)

where ξ̂ is the one-form defined by ξ̂(η) = g(ξ, η) for all vector fields η.

It is easy to check that this current is conserved in the sense that:

d∗J5 = 〈Dψ̄, γ̄ψ〉 + 〈ψ̄, γ̄Dψ〉 , (71)

which clearly vanishes if we impose the equations of motion.

Since we are working on a compact Riemannian manifold, we know how to diagonalize the Dirac

operator:

Dψn = λnψn

Dψ̄n = λnψ̄n ,
(72)

where the eigenvalues λn are discrete, the eigenspaces to a given eigenvalue are finite dimensional,

and the eigenfunctions are actually smooth sections. We can then define the following Green’s

function:

G′(x, y) =
∑

n

′ψn(x) ⊗ ψ̄n(y)

λn

, (73)

where the ′ denotes that we exclude the zero modes from the sum. This satisfies:

DG′(x, y) = δ(x, y) −
∑

α

ψ0
α(x)⊗ ψ̄0

α(y) , (74)

where in the second term we sum over the zero modes. Note that since G′(x, y) ∈ Hom(My,Mx)

the first term should be multiplied by the identity operator on Mx, which we have suppressed in

our notation.

In the quantum theory we are now interested not in the current J 5 itself but rather in its vacuum

11The superscript 5 does not indicate that we are working on a four dimensional. It simply indicates that this is the
analog of the axial current considered in the first part
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expectation value 〈J5〉,12 which we shall define now. Naively, we would like to define a one-form

as follows:

〈J5
x〉 = tr(γ()γ̄G′(x, x)) , (75)

for all x ∈ X. Again this acts on a vector field ξ on X according to:

〈J5
x(ξ)〉 = tr(γ(ξ̂)γ̄G′(x, x)) , (76)

and the trace is taken over the endomorphism from Mx to Mx defined by γ(ξ̂)γ̄G′(x, x). (In terms

of physics we might want to say we trace over Dirac and color indices.)

If we formally calculate the divergence of this one-form using our definition of G′(x, x) we find

that it vanishes:

d∗〈J5〉 = 2
∑

n

′

〈ψ̄n, γ̄ψn〉 = 0 (77)

The second equality of course holds because we know that the asymmetry of the spectrum is

concentrated on the space of zero modes which we have excluded from the sum. There is, however,

clearly a problem with the above expression because we know that the Green’s function is singular

in the limit y → x. Probably the most common way in physics to “regulate” this singularity is the

point splitting method due to Schwinger. For the above expression the rough idea would be define

the regulated current as a limit:

〈J̃5
x(ξ)〉 = ˜lim

y→x
tr(γ(ξ̂)γ̄G′(x, y)P (x, y) , (78)

where P (x, y) is the parallel transport map from the fiber atMy to the fiber atMx which is included

to maintain gauge invariance. (Or simply to make sense of the trace.) The tilde indicates that the

limit should be made symmetric in x and y. This way to define the current can indeed be used to

give an independent derivation of the Atiyah-Singer index theorem which can be found in [3, 4, 5].

This is rather tedious and we will instead define a one-form that will lead us directly to the heat-

kernel proof of the Atiyah index theorem given in class.

Let us first define a one-parameter family of Green’s functions as follows:

G′
t(x, y) =

∑

n

′ψn(x) ⊗ ψ̄n(y)

λn

e−tλ2
n . (79)

This notation is intentionally chosen as to remind the reader of the heat-kernel defined in class:

pt(x, y) =
∑

n

ψn(x)⊗ ψ̄n(y)e−tλ2
n . (80)

12We hope that the use of 〈〉 for both the metric on M and here for the vacuum expectation value will not cause
confusion. The only place it is used to denote the vacuum expectation value is when a J5 appears between the brackets
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We saw that the Ck norm of pt(·, ·) is finite for all finite k as long as t > 0 and hence that pt(x, y)

is smooth for all t ∈ R>0 and all x, y ∈ X. The steps of the proof can be repeated to show that

G′
t(x, y) is also smooth in t ∈ R>0 and x, y ∈ X. For the details we refer the reader to the lecture

notes. This naturally suggests that we should define a one-parameter family of one-forms:

〈J5
x〉t = tr(γ()γ̄G′

t(x, x)) , (81)

which will be well-behaved as long as t > 0. Using d∗ = −ι ◦ ∇, the definition of G′
t(x, x),

Dψn = λnψn, and Dψn = λnψn it is straightforward to calculate the divergence of this one-form:

d∗〈J5
x〉t = 2

∑

n

′

tr(γ̄ψn(x)⊗ ψ̄n(x))e
−tλ2

n . (82)

The right hand side is almost twice the supertrace of the heat-kernel. The important difference

we have to note is that the above sum does not include the zero modes while the heat kernel was

defined including the zero modes. This tells us that we can write the divergence as:

d∗〈J5
x〉t = 2tr(γ̄pt(x, x)) − 2

∑

α

〈ψ̄0
α(x), γ̄ψ0

α(x)〉 , . (83)

Let us now recall that γ̄ was used to grade our Clifford module. We can hence choose a basis for the

zero modes that respects the grading in the sense that ψ0
α± are sections of M±,i.e. γ̄ψ0

α± = ±ψ0
α± .

With this choice of basis the divergence of our one-form becomes:

d∗〈J5
x〉t = 2tr(γ̄pt(x, x)) − 2

(

∑

α+

〈ψ̄0
α+(x), ψ0

α+(x)〉 −
∑

α−

〈ψ̄0
α−(x), ψ0

α−(x)〉

)

, . (84)

We should note that, since γ̄ is our grading homomorphism, the first term could written in terms of

the supertrace trS of pt(x, x). We can identify this term as what we called the anomaly in the last

section. That is we have:

A(x) = 2trS(pt(x, x)) , (85)

which is exactly what we found there. So we have recovered our previous result. Not only have

we recovered the previous result but we have derived something that is far more general as should

be clear immediately. We were working on an arbitrary even-dimensional compact Riemannian

manifold. In particular we were not working on a flat space and our result knows about the anomaly

in the current due to the coupling of the theory to gravity. (Of course only once we know the index

theorem.)

Let us now consider the second term in the divergence of our one-form. This is often referred to
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as the index density for reasons that will become clear after the next few manipulations. The main

ingredient will be that on a compact manifold the divergence of any one-form integrated over the

manifold will vanish. This can easily be seen using the identity d∗ = (−1)np+n+1 ∗d∗ when acting

on a p-form. If n is even as in the present case this simplifies to d∗ = − ∗ d∗. So if α ∈ Ω1(X) we

find:
∫

X

d∗αdµg = −

∫

X

∗d ∗ αdµg = −

∫

X

d ∗ α = 0 , (86)

where dµg is the volume form on X induced by the metric g. If we normalize our zero modes such

that 〈ψ̄0
α± , ψ0

α±〉L2 = 1, which is of course always possible on a compact manifold, and integrate

the divergence of our current one-form, we obtain the global version of the Atiyah-Singer index

theorem:

indD = dim kerD|M+ − dim kerD|M− = n+ − n− =

∫

X

trS(pt(x, x)) . (87)

We can of course also write this in terms of the anomaly:

indD =
1

2

∫

X

∗A . (88)

Conversely we can of course also use the local version of the Atiyah-Singer index theorem derived

in class to determine what the anomaly is. Recall that any Clifford module M can (at least locally)

be written13 as S ⊗ V ⊕ S′ ⊗ V ′ where S and S′ are the two inequivalent Z/2Z-graded irreducible

Cliff(X)-modules and V and V ′ are some vector bundles. In terms of these we found:14

lim
t→0

trS(pt(x, x)) = Â(R)(ch(F ) − ch(F ′)) (89)

So the anomaly is given by:

A(x) = 2Â(R)(ch(F )− ch(F ′)) , (90)

where R is the Riemann curvature and F and F ′ are the curvatures associated with the connections

in V and V ′ respectively. So we see that the anomaly is entirely determined by topology.

3.2 Gauge Anomalies – the General Idea

In this last subsection we will finally try to understand the more “dangerous” anomalies associated

with currents corresponding to local symmetries from a more mathematical point of view follow-

ing mostly reference [9]. The discussion is kept rather general. We will realize that the consistent

13In the examples considered in the first part of the paper it was indeed of the form S ⊗ V
14Recall that even though we took the limit t → 0 to evaluate the expression but that the result was independent of

t.
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anomaly is just one of many examples all of which have the same underlying mathematical struc-

ture. In what follows we shall limit ourselves to Euclidean quantum field theories.

Before we begin it seems useful to recall what we mean by a Euclidean quantum field theory and

what we would like to compute. Our field theory will be defined on an n-dimensional Riemannian

manifold (X, g). The fields will in general be maps from X to some fixed space as would be the

case for example in bosonic string theory or sections in bundles over X as in most of the examples

we saw in the first part. We will denote the space of all possible field configurations C(X) follow-

ing the notation in [9]. Usually we will limit ourselves to compact manifolds to avoid having to

worry about boundary conditions on the fields which would have to be specified on non-compact

manifolds. This might seem like a restriction from a mathematical point of view. From a physical

point of view let us just note that we can, at least if we think of X as spacetime, think of it as

a compact manifold. The compactness would be reflected in some way by observing a discrete

spectrum of some sort, i.e. of momenta. If we make X large enough we will not be able to detect

whether the spectrum is in fact discrete or not due limited resolution in measurements.

As we saw in the last section, where one of our fields was a gauge connection, we will in general

have a symmetry group acting on the space of all possible field configurations, which in that ex-

ample was given by the automorphism group of the underlying principle bundle, which is often

denoted G. These symmetry transformations will relate physically equivalent fields. So the space

of physical fields will be the set of equivalence classes C(X). This space will of course in general

not be a nice manifold.

We will define a given field theory by its action S, if we wish a complex valued “function” on field

space.15 To “solve” the quantum field theory we have to calculate the partition function Z defined

as:

Z =

∫

C(X)

Dφe−S(φ) (91)

In principle what we would like to know is not the partition function per se but rather the correlation

or n-point functions of operators O (functions on field space):

〈O1O2 . . .On〉 =

∫

Dφe−S(φ)O1O2 . . .On (92)

which are some kind of weighted averages where the weight is given by the exponentiated action.

The reason why one typically considers the field theory as solved once the partition function is

known is that it can be used as a generating functional for n-point functions and somehow contains

15The reason why we have to allow for a complex action is of course that we consider Euclidean quantum field
theories. The action of the field theory on Minkowski space has to be real but the reality is in general lost due to the
Wick-rotation.
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all the information about the theory. If we look at the expression for the partition function, there

is an immediate problem. The space of fields will in general be infinite dimensional and it is not

clear how to define a measure on this space. Essentially the only exceptions are matrix models, or

0-dimensional field theories, in which case the space of fields is usually finite dimensional. For our

discussion we assume that we do have some measure Dφ on the space of fields and we will see that

we will encounter problems, or anomalies, even before we get to integrate.16 The problem is that

in general the exponentiated action will not be a complex-valued function on the space of physical

fields but rather a section in a complex line bundle over field space. We could have encountered the

problem when we considered the relation of the consistent anomaly in 2n-dimensional space to the

singlet anomaly in 2n + 2 dimensions. We noted that the effective action for the gauge field was

given by the determinant of the Dirac-operator. We should hence have considered it as a section in

the determinant line bundle over the space of physical gauge fields. We avoided that by working

instead on the space of all gauge fields which was contractible implying that the bundle had to be

trivial. In general it is, however, more appropriate to think of the exponentiated action as a section

of a complex line bundle over the space of physical fields. That is we should think of it as [9]:

e−S =
∏

i

e−Si , (93)

where every factor e−Si is a section of a geometric line-bundle over the space of physical fields

Li → C(X). The term geometric refers to the fact that we have a metric and a compatible unitary

connection. The entire exponentiated action is then a section in the direct product of all the line

bundles:

e−S : C(X) → L =
⊗

i

Li . (94)

This immediately tells us that the integration we should do to calculate the partition function does

not necessarily make sense. We need to specify a trivialization of the line bundle L, which we will

denote 1, to be able to give a meaningful definition of the partition function as follows:

Z =

∫

C(X)

Dφ
e−S

1
(φ) , (95)

where we of course divide the sections point by point.

Indeed we require the trivialization to be a geometric trivialization, by which we mean it should

satisfy:

|1| = 1

∇1 = 0
(96)

16It is not clear why Dφ and the exponentiated action should indeed exist separately. We might think that it should
be enough if Dφe−S(φ) exists as our measure. Unfortunately, not even that is typically the case.
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In general there may be obstructions to finding such a trivialization. This would imply that we

would not even be able to define the partition function of the theory. This obstruction is what we

would call the anomaly from our present point of view. We know that line bundles over a given

base space B are classified by the second integer cohomology class of the base space H2(B,Z).

In analogy to that we can define Ȟ2(C(X)) to be the set of equivalence classes of geometric line

bundles over the space of physical field configurations. We can then think of the anomaly as the

equivalence class of the line bundle L in Ȟ2(C(X)).

We can even assign an anomaly to each of the factors e−Si as the equivalence class of the corre-

sponding line bundle Li, [Li] ∈ Ȟ2(C(X)). We would then say that the anomaly cancels if the

[Li]
′s sum to zero implying that the direct product admits a trivialization and that the partition

function can be defined.

The equivalence class of a given geometric bundle L is determined by the holonomy around any

smooth loop in the base space. We know that there is a map from Ȟ2(C(X)) onto H2(C(X),Z)

obtained by simply forgetting about the geometric data. So clearly a line bundle will only admit a

trivialization if it is trivial as a topological line bundle. We also know that the curvature of the line

bundle determines the holonomy around contractible loops. So we can use the curvature of the line

bundles and its topological class as approximations to the anomaly [9].17

This tells us that we might have an anomaly either due to the local geometry of our field space

or due to its topology. These two cases are typically refered to as local and global anomalies in

the mathematical literature, respectively. Our example of the consistent anomaly is an example for

a local anomaly and indeed what we calculated was the curvature or the first Chern class of the

determinant line bundle. Examples of global gravitational anomalies were for example studied in

[20] Since the space of physical fields is in general not even a manifold it seems useful to “probe”

it by nicer spaces, for example by spheres. We can map a space T into the space of fields and pull

back the line bundle. If it turns out to be non-trivial over the space T then we know that it must

have come from a non-trivial bundle over C(X), and we know that there is an anomaly.

This unfortunately already concludes our brief discussion of anomalies from a mathematical point

of view. There would be a good deal more to say in particular about determinant line bundles and

the index theorem for families of elliptic operators, but at this point we can only refer the reader to

the literature.

17By approximation we mean that these are sufficient conditions for the presence of an anomaly but not necessary.
An interesting question should be whether “higher order” obstructions appear in some physical setup.
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