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Review: operations that preserve positive definiteness
I

Proposition 1

If ki : X × X → C (i = 1, 2, . . .) are positive definite kernels, then so
are the following:

1 (positive combination) ak1 + bk2 (a, b ≥ 0).
2 (product) k1k2 (k1(x, y)k2(x, y)) .
3 (limit) limi→∞ki(x, y), assuming the limit exists.

Remark. Proposition 1 says that the set of all positive definite kernels
is closed (w.r.t. pointwise convergence) convex cone stable under
multiplication.

Example: If k(x, y) is positive definite,

ek(x,y) = 1 + k +
1
2
k2 +

1
3!
k3 + · · ·

is also positive definite.
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Review: operations that preserve positive definiteness
II

Proposition 2

Let k : X × X → C be a positive definite kernel and f : X → C be an
arbitrary function. Then,

k̃(x, y) = f(x)k(x, y)f(y)

is positive definite. In particular,

f(x)f(y)

is a positive definite kernel.
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Review: operations that preserve positive definiteness
III

Corollary 3 (Normalization)

Let k : X × X → C be a positive definite kernel. If k(x, x) > 0 for any
x ∈ X , then

k̃(x, y) =
k(x, y)√

k(x, x)k(y, y)

is positive definite. This is called normalization of k.
Note that

|k̃(x, y)| ≤ 1

for any x, y ∈ X .

Example: Polynomial kernel k(x, y) = (xT y + c)d (c > 0).

k̃(x, y) =
(xT y + c)d

(xTx+ c)d/2(yT y + c)d/2
.
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Negative definite kernel

Definition. A function ψ : X × X → C is called a negative definite
kernel if it is Hermitian i.e. ψ(y, x) = ψ(x, y), and

n∑
i,j=1

cicjψ(xi, xj) ≤ 0

for any x1, . . . , xn (n ≥ 2) in X and c1, . . . , cn ∈ C with
∑n
i=1 ci = 0.

Note: a negative definite kernel is not necessarily minus
pos. def. kernel because of the condition

∑n
i=1 ci = 0.
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Properties of negative definite kernels

Proposition 4
1 If k is positive definite, ψ = −k is negative definite.
2 Constant functions are negative definite.

(2)
∑n
i,j=1cicj =

∑n
i=1ci

∑n
j=1cj = 0.

Proposition 5

If ψi : X × X → C (i = 1, 2, . . .) are negative definite kernels, then so
are the following:

1 (positive combination) aψ1 + bψ2 (a, b ≥ 0).
2 (limit) limi→∞ψi(x, y), assuming the limit exists.

The set of all negative definite kernels is closed (w.r.t. pointwise
convergence) convex cone.
Multiplication does not preserve negative definiteness.
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Example of negative definite kernel

Proposition 6

Let V be an inner product space, and φ : X → V . Then,

ψ(x, y) = ‖φ(x)− φ(y)‖2

is a negative definite kernel on X .

Proof. Suppose
∑n

i=1 ci = 0.∑n
i,j=1cicj‖φ(xi)− φ(xj)‖2

=
∑n

i,j=1cicj
{
‖φ(xi)‖2 + ‖φ(xj)‖2 − (φ(xi), φ(xj))− (φ(xj), φ(xi))

}
=
∑n

i=1ci‖φ(xi)‖2
∑n

j=1cj +
∑n

j=1cj‖φ(xj)‖2
∑n

i=1ci

−
(∑n

i=1ciφ(xi),
∑n

j=1cjφ(xj)
)
−
(∑n

j=1cjφ(xj),
∑n

i=1ciφ(xi)
)

= −
∥∥∑n

i=1ciφ(xi)
∥∥2 −

∥∥∑n
i=1ciφ(xi)

∥∥2 ≤ 0
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Relation between positive and negative definite
kernels

Lemma 7

Let ψ(x, y) be a hermitian kernel on X . Fix x0 ∈ X and define

ϕ(x, y) = −ψ(x, y) + ψ(x, x0) + ψ(x0, y)− ψ(x0, x0).

Then, ψ is negative definite if and only if ϕ is positive definite.

Proof. "If" part is easy (exercise). Suppose ψ is neg. def. Take any
xi ∈ X and ci ∈ C (1 = 1, . . . , n). Define c0 = −

∑n
i=1 ci. Then,

0 ≥
∑n
i,j=0cicjψ(xi, xj) [for x0, x1, . . . , xn]

=
∑n
i,j=1cicjψ(xi, xj) + c0

∑n
i=1ciψ(xi, x0) + c0

∑n
j=1ciψ(x0, xj)

+ |c0|2ψ(x0, x0)

=
∑n
i,j=1cicj

{
ψ(xi, xj)− ψ(xi, x0)− ψ(x0, xj) + ψ(x0, y0)

}
= −

∑n
i,j=1cicjϕ(xi, xj).
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Schoenberg’s theorem

Theorem 8 (Schoenberg’s theorem)

Let X be a nonempty set, and ψ : X × X → C be a kernel.
ψ is negative definite if and only if exp(−tψ) is positive definite for all
t > 0.

Proof.
If part:

ψ(x, y) = lim
t↓0

1− exp(−tψ(x, y))
t

.

Only if part: We can prove only for t = 1. Take x0 ∈ X and define

ϕ(x, y) = −ψ(x, y) + ψ(x, x0) + ψ(x0, y)− ψ(x0, x0).

ϕ is positive definite (Lemma 7).

e−ψ(x,y) = eϕ(x,y)e−ψ(x,x0)e−ψ(y,x0)eψ(x0,x0).

This is also positive definite.
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More examples I

Proposition 9

If ψ : X × X → C is negative definite and ψ(x, x) ≥ 0. Then, for any
0 < p ≤ 1,

ψ(x, y)p

is negative definite.

Proof. Use the following formula.

ψ(x, y)p =
p

Γ(1− p)

∫ ∞
0

t−p−1(1− e−tψ(x,y))dt

The integrand is negative definite for all t > 0. .

For any 0 < p ≤ 2 and α > 0,

exp(−α‖x− y‖p)

is positive definite on Rn.
α = 2⇒ Gaussian kernel. α = 1⇒ Laplacian kernels.

14 / 31



Positive and negative definite kernels
Bochner’s theorem

Mercer’s theorem

Review on positive definite kernels
Negative definite kernel
Operations that generate new kernels

More examples II

Proposition 10

If ψ : X × X → C is negative definite and ψ(x, x) ≥ 0. Then,

log(1 + ψ(x, y))

is negative definite.

Proof.

log(1 + ψ(x, y)) =
∫ ∞

0

(1− e−tψ(x,y))
e−t

t
dt

.
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More example III

Corollary 11

If ψ : X × X → (0,∞) is negative definite. Then,

logψ(x, y)

is negative definite.

Proof. For any c > 0,

log(ψ + 1/c) = log(1 + cψ)− log c

is negative definite. Take the limit of c→∞.

ψ(x, y) = x+ y is negative definite on R.

ψ(x, y) = log(x+ y) is negative definite on (0,∞).
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More examples IV

Proposition 12

If ψ : X ×X → C is negative definite and Reψ(x, y) ≥ 0. Then, for any
a > 0,

1
ψ(x, y) + a

is positive definite.

Proof.
1

ψ(x, y) + a
=
∫ ∞

0

e−t(ψ(x,y)+a)dt.

The integrand is positive definite for all t > 0. .

For any 0 < p ≤ 2,
1

1 + |x− y|p

is positive definite on R.
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Positive definite functions

Definition. Let φ : Rn → C be a function. φ is called a positive definite
function (or function of positive type) if

k(x, y) = φ(x− y)

is a positive definite kernel on Rn, i.e.∑n
i,j=1cicjφ(xi − xj) ≥ 0

for any x1, . . . , xn ∈ X and c1, . . . , cn ∈ C.

A positive definite kernel of the form φ(x− y) is called shift
invariant (or translation invariant).
Gaussian and Laplacian kernels are examples of shift-invariant
positive definite kernels.
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Bochner’s theorem I

The Bochner’s theorem characterizes all the continuous shift-invariant
kernels on Rn.

Theorem 13 (Bochner)

Let φ be a continuous function on Rn. Then, φ is positive definite if
and only if there is a finite non-negative Borel measure Λ on Rn such
that

φ(x) =
∫
e
√
−1ωT xdΛ(ω).

φ is the inverse Fourier (or Fourier-Stieltjes) transform of Λ.
Roughly speaking, the shift invariant functions are the class that
have non-negative Fourier transform.
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Bochner’s theorem II

The Fourier kernel e
√
−1xTω is a positive definite function for all

ω ∈ Rn.

exp(
√
−1(x− y)Tω) = exp(

√
−1xTω)exp(

√
−1yTω).

The set of all positive definite functions is a convex cone, which
is closed under the pointwise-convergence topology.

The generator of the convex cone is the Fourier kernels
{e
√
−1xTω | ω ∈ Rn}.

Example on R: (positive scales are neglected)

exp(− 1
2σ2x

2) exp(−σ
2

2 |ω|
2)

exp(−α|x|) 1
ω2 + α2

Bochner’s theorem is extended to topological groups and
semigroups [BCR84].

21 / 31



Positive and negative definite kernels
Bochner’s theorem

Mercer’s theorem
Mercer’s theorem

1 Positive and negative definite kernels
Review on positive definite kernels
Negative definite kernel
Operations that generate new kernels

2 Bochner’s theorem
Bochner’s theorem

3 Mercer’s theorem
Mercer’s theorem

22 / 31



Positive and negative definite kernels
Bochner’s theorem

Mercer’s theorem
Mercer’s theorem

Integral characterization of positive definite kernels I

Ω: compact Hausdorff space.
µ: finite Borel measure on Ω.

Proposition 14

Let K(x, y) be a continuous function on Ω× Ω.
K(x, y) is a positive definite kernel on Ω if and only if∫

Ω

∫
Ω

K(x, y)f(x)f(y)dxdy ≥ 0

for each function f ∈ L2(Ω, µ).

c.f. Definition of positive definiteness:∑
i,j

K(xi, xj)cicj ≥ 0.
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Integral characterization of positive definite kernels II

Proof.
(⇒). For a continuous function f , a Riemann sum satisfies∑

i,jK(xi, xj)f(xi)f(xj)µ(Ei)µ(Ej) ≥ 0.

The integral is the limit of such sums, thus non-negative. For
f ∈ L2(Ω, µ), approximate it by a continuous function.

(⇐). Suppose ∑n
i,j=1cicjK(xi, xj) = −δ < 0.

By continuity of K, there is an open neighborhood Ui of xi such that∑n
i,j=1cicjK(zi, zj) ≤ −δ/2.

for all zi ∈ Ui.
We can approximate

∑
i

ci

µ(Ui)
IUi

by a continuous function f with
arbitrary accuracy.
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Integral Kernel
(Ω,B, µ): measure space.
K(x, y): measurable function on Ω× Ω such that∫

Ω

∫
Ω

|K(x, y)|2dxdy <∞. (square integrability)

Define an operator TK on L2(Ω, µ) by

(TKf)(x) =
∫

Ω

K(x, y)f(y)dy (f ∈ L2(Ω, µ)).

TK : integral operator with integral kernel K.

Fact: TKf ∈ L2(Ω, µ).

∵)
∫
|TKf(x)|2dx =

∫ {∫
K(x, y)f(y)dy

}2
dx

≤
∫ ∫
|K(x, y)|2dy

∫
|f(y)|2dydx

=
∫ ∫
|K(x, y)|2dxdy‖f‖2L2 .
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Hilbert-Schmidt operator I

H: separable Hilbert space.
Definition. An operator T on H is called Hilbert-Schmidt if for a CONS
{ϕi}∞i=1 ∑∞

i=1‖Tϕi‖
2 <∞.

For a Hilbert-Schmidt operator T , the Hilbert-Schmidt norm ‖T‖HS is
defined by

‖T‖HS =
(∑∞

i=1‖Tϕi‖
2
)1/2

.

‖T‖HS does not depend on the choice of a CONS.

∵) From Parseval’s equality, for a CONS {ψj}∞j=1,

‖T‖2HS =
∑∞
i=1‖Tϕi‖

2 =
∑∞
i=1

∑∞
j=1|(ψj , Tϕi)|

2

=
∑∞
j=1

∑∞
i=1|(T

∗ψj , ϕi)|2 =
∑∞
j=1‖T

∗ψj‖2.
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Hilbert-Schmidt operator II

Fact: ‖T‖ ≤ ‖T‖HS .

Hilbert-Schmidt norm is an extension of Frobenius norm of a
matrix:

‖T‖2HS =
∞∑
i=1

∞∑
j=1

|(ψj , Tϕi)|2.

(ψj , Tϕi) is the component of the matrix expression of T with the
CONS’s {ϕi} and {ψj}.
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Hilbert-Schmidt operator and integral kernel I
Recall

(TKf)(x) =
∫

Ω

K(x, y)f(y)dy (f ∈ L2(Ω, µ))

with square integrable kernel K.

Theorem 15

Assume L2(Ω, µ) is separable. Then, TK is a Hilbert-Schmidt
operator, and

‖TK‖2HS =
∫ ∫
|K(x, y)|2dxdy.

Proof. Let {ϕi} be a CONS. From Parseval’s equality,∫
|K(x, y)|2dy =

∑
i

∣∣(K(x, ·), ϕi)L2

∣∣2 =
∑

i

∣∣∫K(x, y)ϕi(y)dy
∣∣2 =

∑
i|TKϕi(x)|2.

Integrate w.r.t. x, ({ϕi} is also a CONS)∫ ∫
|K(x, y)|2dxdy =

∑
i‖TKϕi‖

2 = ‖TK‖2HS .
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Hilbert-Schmidt operator and integral kernel II

Converse is true!

Theorem 16

Assume L2(Ω, µ) is separable. For any Hilbert-Schmidt operator T on
L2(Ω, µ), there is a square integrable kernel K(x, y) such that

Tϕ =
∫
K(x, y)ϕ(y)dy.

Outline of the proof.
Fix a CONS {ϕi}. Define

Kn(x, y) =
∑n
i=1(Tϕi)(x)ϕi(y) (n = 1, 2, 3, . . . , ).

We can show {Kn(x, y)} is a Cauchy sequence in L2(Ω× Ω, µ× µ),
and the limit works as K in the statement.
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Integral operator by positive definite kernel

Ω: compact Hausdorff space.
µ: finite Borel measure on Ω.

K(x, y): continuous positive definite kernel on Ω.

(TKf)(x) =
∫

Ω

K(x, y)f(y)dy (f ∈ L2(Ω, µ))

Fact: From Proposition 14

(TKf, f)L2(Ω,µ) ≥ 0 (∀f ∈ L2(Ω, µ)).

In particular, any eigenvalue of TK is non-negative.
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Mercer’s theorem

K(x, y): continuous positive definite kernel on Ω.

{λi}∞i=1, {ϕi}∞i=1: the positive eigenvalues and eigenfunctions of TK .

λ1 ≥ λ2 ≥ · · · > 0, lim
i→∞

λi = 0.

TKϕi = λiϕi,
∫
K(x, y)ϕi(y)dy = λiϕi(x).

Theorem 17 (Mercer)

K(x, y) =
∞∑
i=1

λiϕi(x)ϕi(y),

where the convergence is absolute and uniform over Ω× Ω.

Proof is omitted. See [RSN65], Section 98, or [Ito78], Chapter 13.
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