UNIVERSITA DEGLI STUDI DI PIsA

FACOLTA DI SCIENZE MATEMATICHE FISICHE E NATURALI
DOTTORATO DI RICERCA IN INFORMATICA

Pu.D. THESIS

ON THE ALGEBRAIC APPROACH TO
CONCURRENT
TERM REWRITING

Fabio Gadducci

1996

ADDR: Corso Italia 40,56125 Pisa,Italy. TEL:439-50-887111. FAX: +39-50-887226

Bah! Kid talk!

No man is poor

who can do

what he likes to do

once in a while!

Carl Barks, as $crooge McDuck.

To my parents: it was more than paying for it...

Acknowledgements

It is not a secret that acknowledgments are the most difficult part to write, in a thesis.

You are always afraid to forget some people, or to mention them in the wrong way.

So, let me start with the most classical opening, thanking my supervisor, Ugo Mon-
tanari. His constancy and insight have always won over my unsteadiness, and guided me
during all this time. I also want to thank Andrea Corradini: working with him these
years surely helped me to learn (and improve) my craft. Together with Ugo, they are the

culprits for what you hold in your hands.

Besides them, there are a lot of friends in the Department of Computer Science that,

with their discussions and friendship, helped me through these years.

First, my roommates. In particular, Gioia Ristori, Vladimiro Sassone and my Ph.D.
collagues Corrado Priami, Paola Quaglia and Laura Semini. Among “those of my own
age”, let me at least mention also Stefano Guerrini, Alessio Guglielmi and Maria Chiara
Meo. Then, our front-office: Gianluigi Ferrari, Andrea Masini and Francesca Rossi; thanks
for all the times I came bothering you. My hidden counselor all these years, Simone Mar-
tini, and his wife Antonella. And many other people like Daniela Archieri, Paola Bruscoli,
Marco Comini, Alessandra Di Pierro, Giorgio Ghelli, Giorgio Levi, Andrea Maggiolo-
Schettini... Really many of them, and I beg pardon for all of those I forgot to mention:
they know I'm grateful for all their help.

And what about all the international connections? Let me just name a few people.
My “Italian” friends, Marcelo Fiore and Claudio Hermida: what a wonderful (not only
categorically) summer. The Spanish section, José Meseguer and Narciso Marti-Oliet:
thanks for all the interest and care you took for my work. The French rewriters, Claude

Kirchner and Patrick Viry: I hope I learned something on what rewriting is, in the end.

There would be also many people outside the Department, but I think their presence
here would be to a certain extent pointless (Hello, Mirko: finally some free time!). Let
me just thank my family: they fully supported me in many ways all these years (Ciao,

Crissie). And, last but not least, to Francesca: it is a long and winding road.

I keep my feeling buried inside a sea urchin.
Ezra Pound

Contents

1 Introduction

2 Preliminaries on (Infinitary) Rewriting

2.1 Varieties of Finite Algebras
2.2 Continuous Algebras
2.2.1 Explicit Construction of CTx
2.2.2 Varieties of (Complete) Ordered Algebras
2.3 Term Rewriting L
2.3.1 Parallel Rewriting
2.3.2 Infinite Parallel Rewriting

3 Some Notions of Category Theory

3.1 Basic Definitionso
3.2 Cartesianity as Enriched Monoidality,
3.3 Cat-Enriched Categories
3.4 Internal Categories

3.4.1 Double-categories
3.5 Algebraic Theories

4 Rewriting Logic: Syntax and Semantics

4.1 Rewriting Theories L
4.2 Algebraic Semantics Lo
4.3 R-Systems

4.4 Functorial Models of Rewriting Theories

i

Consistency with Finitary Rewriting

5.1 Consistency between Operational Semantics

5.2 Consistency between Abstract Semantics

On Concurrent Rewriting

6.1 Permutation vs. Concurrency

6.2 Flat Models Form Prime Algebraic Domains

6.3 Cartesianity vs. Interchange

Dealing with Infinitary Rewriting

7.1 Infinite Parallel Rewriting Logic

7.2 Consistency between Operational Semantics

7.3 Continuous Models of Term Rewriting

Typed Rewriting Logic

8.1 Typed Rewriting Logic: Syntax

8.2 Typed Rewriting Logic: Functorial Semantics

8.3 An Application in Concurrency Theory
8.3.1 Process Description Algebras
8.3.2 Context Systems

8.4 Strategies for Rewriting

8.4.1 Recovering ELAN

Further Work: On Term Graph Rewriting

9.1 S-Monoidal Theories
9.2 Some Results on Term Graphs

Bibliography

CONTENTS

59

.......... 60
.......... 65

71

.......... 72
.......... 7
.......... 81

83

.......... 84
.......... 86
.......... 91

Chapter 1

Introduction

As an autonomous research field, term rewriting can be actually dated to the introduction
of the so-called Knuth-Bendiz completion procedure [KB70]. The motivations for such an
algorithm lie on the mid-Thirties work on algebraic varieties by Birkoff, where a variety
is a class of algebras satisfying a given set of axioms. The deduction method to derive
new equations from a given specification is known as equational logic: it simply puts on
a formal ground the intuitive “substitution of equals” technique, allowing to derive new
equations from older ones. The aim of the Knuth-Bendix algorithm is to transform a
given input specification into a convergent rewriting system: a system such that rewriting
is always terminating, and produces a unique possible result for any term, its normal
form. In this system, the equations of the input specification are turned into one-way
rules, such that two terms are equated in the input theory if and only if they have the

same normal form.

It is not a mere understatement to say that, in these years, term rewriting has been
implicitly analyzed only as a technique, in correspondence with its use as an efficient form
of equational deduction. This explains the syntactical nature of the research in the field,
between the two guidelines of termination (we must ensure that rewriting always ter-
minates) and Church-Rosser property (we must ensure that rewriting produces a unique
normal form). Such a choice has been sustained also by the interest of computer scientists
for term rewriting, due for example to the introduction of algebraic semantics for program

schemes (see e.g. [Gue8l]).

Of course, if we are just interested in equational deduction, we can safely avoid dealing
with the “details” of how the reduction process is actually implemented. However, this

approach is too narrowing, especially so since term rewriting can be considered as a basic

2 CHAPTER 1. INTRODUCTION

computational paradigm, where terms are interpreted as states of an abstract machine,

while rewriting rules are state-transforming functions.

In the classical set-theoretical approach to term rewriting, the basic notion is that
of sequence of rewrites: to each term ¢ a derivation space is associated, i.e., a class of
“transitions” describing all the possible reductions starting from ¢. Derivation spaces
represent a naive operational model: each element of a space is interpreted as a sequence
of “concrete” steps of an underlying, sequential machine dealing with data structures
representing syntactical descriptions of terms. Such an operational description however is
not sufficient if we want to take into account different representations for terms, able to
recover notions like sharing of subterms, or if we want to deal with a distributed system,

such that the reduction mechanism is implemented over a network of processors.

The use of suitable graph expressions to describe terms, handling explicitly the shar-
ing of subexpressions, dates at least to the late Sixties [Wad71]. In this setting, a single
reduction step (on a graph) can subsume a long sequence of (sequential) rewrites: “con-
crete” derivations that are different when dealing with the syntactical description of terms
can represent the same derivation when this more complex data structure is used. When
introducing permutation equivalence [Lev80], Lévy wanted to capture the fundamental
uniqueness of such a reduction: permutation equivalence equates sequences of syntactical
rewrites that correspond to the same contractions on graphs. Two reduction steps are
then compatible if they are independent with respect to the modifications they induce on

the data structure (i.e., if they act on disjoint portions of the graph).

The studies on the permutation equivalence paradigm in the term rewriting framework
can be dated back at least to [Bou85]. Along this line of research, in [Mar91] the author
proves the adequacy of the equational representation for describing graph reduction in
the case of orthogonal term rewriting systems (informally, those such that all their rules
have no subexpression in common). Moreover, a “lazy” reduction strategy (i.e., an actual
algorithm) is provided that is “optimal”, in the sense that it is able to perform the
minimal number of graph reductions. The reduction strategy, however, implicitly assumes
a sequential machine over which the reduction mechanism is implemented, or at least
the presence of a (hidden) synchronizing agent. Furthermore, the equivalence does not
describe faithfully the behaviour of the reduction mechanism over graphs, whenever not-

orthogonal rules are taken into account.

When dealing with a distributed system, instead, we assume that the reduction process
is implemented over a network of processors. From a theoretical point of view, the easiest

choice is the one-node/one-processor architecture: terms are described as trees, and we

have a tree-like implementation schema, where processors are loosely coupled (i.e., the con-
trol is totally distributed) and each processor has knowledge only of the rewriting rules of
the system, of the information of the actual node it is associated with, and of the nodes it
is linked with (i.e, we have fine-grain parallelism). Such an architecture is well-suited for
theoretical purposes (since we consider irrelevant the eventual inter-processor communica-
tions), even if a realistic implementation should find a suitable trade-off between fine and
coarse-grain, distributed and centralized control: for a careful discussion of these topics,
we refer to the works of the Rewriting Rule Machine project [GKM87, Gog90, LMR94].
For our purposes, however, we need just remark that many concrete derivations may cor-
respond to the simultaneous execution of the same set of compatible reductions. Here
compatibility means that they act on disjoint portion of the tree, or, in different terms,
that they are “causally unrelated”. A concurrent semantics then has to provide an equiv-
alence over sequences of syntactical rewrites equating those that correspond to the same
parallel reduction, while an optimal strategy means to provide a notion of compatibility

allowing the simultaneous execution of as many single sequential reductions as possible.

An alternative approach to the semantics of term rewriting relies on the use of suit-
able cat-enriched categories, namely 2-categories and sesqui-categories. A cat-enriched
structure is given by a category such that each hom-set also forms a category: the class
of morphisms (called cells) of these hom-categories are closed under certain composition
operators, and are subject to suitable coherence axioms. Such algebraic structures are
freely generated from a c-computad: a pair (D, S), where D is a category whose arrows
represent terms, and S is a collection of cells describing the rewriting rules. This way we
obtain derivation spaces (the cells of the enriched structure) that are already subject to
an equivalence relation, due to the coherence axioms: since there exists a correspondence
between cells and sequences of rewrites, we get “for free” suitable equivalences over deriva-
tions. Moreover, the explicit description of terms and rewrites provided by the categorical
framework is such that the resulting model is much closer to a possible implementation,
since all the relevant properties of the involved operations (like substitution) that are
sometimes overlooked in the classical description of reduction are to be made explicit in
this representation. To a large extent, the categorical description underlines and clarifies
the relevant aspects of the derivation mechanism, and may furthermore suggest useful

refinements.

The set-theoretical and the categorical semantics of term rewriting can be related el-

4 CHAPTER 1. INTRODUCTION

egantly through the use of Rewriting Logic [Mes92], whose logical approach has its roots
in a seminal paper by Meseguer and Montanari [MM90] on the semantics of Petri Nets
[Rei85]. The idea of rewriting logic is to take a logical viewpoint, regarding a rewrit-
ing system R as a theory, and any rewriting - making use of rules in R - as a sequent
entailed by the theory, where the entailment relation is defined inductively by a given
set of deduction rules. Each of these rules can be considered as a general pattern for a
basic action that can occur concurrently with many others, so that rewriting logic can be
considered as a logic of changes, while different sets of rules mean different assumptions
on the reduction mechanism. Derivations are then naturally equipped with an algebraic
structure: a sequent is a triple a : s — t, where « is an element of a proof term algebra
encoding the justifications of the rewrites of s into . The underlying idea is that, if for
a sequential system a set of states and a set of transitions between states can already
be considered a faithful description of its behaviour, this is not true anymore for con-
current ones. More precisely, what allows us to recover faithfully a concurrent behaviour
is the presence of an algebraic structure. If we are just interested in equational deduc-
tion, one can immediately recover the set-theoretical rewrite relation, simply ignoring the
proof term of a sequent a : s — t. At the same time, one can easily provide different

equivalences over sequences of rewrites, imposing suitable sets of axioms over proof terms.

The aim of the thesis is twofold. As pointed out in [MOM91], rewriting logic estab-
lishes a generalization of the Curry-Howard correspondence, namely the Lambeck-Lawvere
correspondence [Lam68, Lam69, Lam72], for term rewriting, as summed up in the follow-

ing figure:
algebraic

T

set — theoretical categorical

sequents

N

rewrites cells

The first part of the thesis studies in depth the correspondence between the different
sides of the analogy in the term rewriting setting. In Chapter 4 we introduce the paradigm
of rewriting logic, using two different sets of deduction rules: the full entailment is a vari-
ant of the relation proposed by Meseguer in his paper [Mes92], while the flat entailment is

our own, and was originally introduced in [CGM95]. Then we equip the two relations with

two different set of axioms over proof terms, obtaining respectively families of abstract full
and abstract flat sequents, and we provide sound and complete categorical models for both
entailment relations. In Chapter 5 we carefully relate these semantics with two equiva-
lences induced over derivations in the set-theoretical setting, the well-known permutation
equivalence and a different one we called disjoint equivalence. Elaborating on the results
in [LM92], we prove the one-to-one correspondence between the families of permutation
(disjoint) equivalent derivations, and the families of abstract full (flat) sequents. Finally,
in Chapter 6 we study the algebraic properties of the models, with the aim of showing
that the equivalences we introduced can be considered as providing a suitable concurrent
semantics for the reduction mechanism. As already remarked in a series of papers in
the early Seventies (see e.g. [Ben75]) on the semantics of the reduction process in con-
text free grammars, and following a now common practice in the concurrency community,
we say that a given equivalence expresses a direct implementability property (i.e., it is
theoretically feasible to describe a suitable distributed network whose processors directly
implement abstract reductions) only if the families of abstract sequents form with respect
to the intuitive prefix ordering a prime algebraic domain (a model tightly related to the
well-accepted formalism of event structures [Win89]). We prove that abstract flat sequents
form such a domain; full ones, instead, do not (as could be also inferred from [Lan94]).
Moreover, we provide an intuitive justification of this fact via a possible implementation

schema of the reduction process over the one-node/one-processor distributed architecture.

Many rule-based formalisms in theoretical computer science are provided with satis-
factory operational semantics, usually given in a set-theoretical setting. The overall goal
of the second part of this thesis is to show that for a large class of formalisms a categorical
semantics can be provided as well, on the assumption that “concurrency lies on the al-
gebraic structure, modulo a suitable axiomatization”. Moreover, as for term rewriting, a
corresponding logic is defined that constitutes the “trait d'union” between the operational

and algebraic semantics. This idea will be applied to the following cases.

1. To describe infinitary parallel term rewriting (Chapter 7), dealing with terms of
infinite depth and (possibly) infinite sets of rewrites (all of them applied in parallel
to a given term). The operational semantics was presented in [Cor93], while the
corresponding rewriting logic and categorical semantics was introduced in [CG95].
The main definitions involve an infinitary rule (corresponding to an w-completion)

for the extended logic, and the use of cPO-enrichment for the categorical models.

2. To recast formalisms relying on the use of side effects in determining the actual

6 CHAPTER 1. INTRODUCTION

behaviour of a given system (Chapter 8), i.e., such that a transition relation is not
sufficient anymore to describe the evolution of the system. Suitable examples are
process algebras [Hoa85, Mil89], whose operational semantics is described by means
of labeled transition systems, or generalizations of this paradigm like context systems
[LX90] (Chapter 8). The associated logic introduces the notion of typed sequent (i.e.,
such that the algebra of proof terms is subject to suitable typing conditions), while
the categorical model uses double-categories [GM95a, GM95b)].

3. To implement strategies for term rewriting, i.e., to describe algorithms designed to
choose deterministically which rewrite to execute at each point of the computation.
Usually, a strategy is simply given by a function associating to each term a set of its
subterms. In Chapter 8 we refer some work in progress, relying on the use of typed
sequents, where the typing conditions now carry information on which rewrites can

be performed.

4. To describe term graph rewriting. The classical operational semantics can be found
in the introductory chapter of [EPS93], while in Chapter 9 we investigate on a pos-
sible algebraic (categorical) description for term graphs and term graph rewriting,
showing some preliminary but quite enlightening results. The categorical model in-
volves the use of symmetric monoidal categories, equipped with two transformations

representing the explicit sharing and garbaging of terms.

From the semantic point of view, then, we establish a Lambek-Lawvere analogy for a
large class of formalisms, usually equipped with a set-theoretical semantics, via suitable
extensions of rewriting logic, used as a tool. Moreover, the categorical side is usually dealt

with by reformulating the established categorical semantics for rewriting logic.

Chapter 2

Preliminaries on (Infinitary)
Rewriting

The aim of this chapter is to recall the basic definitions of classical, set-theoretical term
rewriting, that play an important role in the thesis. The first two sections, however, are de-
voted to the introduction of the notions of algebra, continuous algebra and variety. For the
finite case, any introductory book like [Gra79] provides a far more interesting background;

for the continuous case, our exposition is based on classical papers like [ADJ77, Blo76].

2.1 Varieties of Finite Algebras

Definition 2.1 (3-Algebras) Let X be a (one-sorted) signature, i.e., a ranked alphabet
of operator symbols ¥ = Upen Xy (saying that f is of arity n for f € ¥,). A Y-algebra is
a pair A = (|A|, pa) such that |A] is a not-empty set (the carrier), and py = {fa | f € X}
is a family of functions such that for each f € ¥, fa: |A|™ — |A|. Let A, B be two -
algebras: a Y-homomorphism 7: A — B is a function 7 : |A| — |B| preserving operators,
i.e., such that for every f € X, Tofa = fgot™: 7(falar,...,a,)) = fe(7(ar),...,7(ay)).
0

Since Y-homomorphisms are closed under (functional) composition, and the identity
function of the carrier is a ¥-homomorphism, the class ¥-Alg of -algebras and X-
homomorphisms forms a category (see Chapter 3). We recall some well-known results

for the class of Y¥-algebras.

Proposition 2.1 (Initial Algebra) Let 3 be a signature. Then the category ¥-Alg
admits an initial algebra, denoted Ty, such that for any ¥-algebra A, there exists a unique

homomorphism 74 : Ts, — A. 0

8 CHAPTER 2. PRELIMINARIES ON (INFINITARY) REWRITING

The construction of 7% is well-known, and we will not repeat it here. Next proposition,
however, states the key result for any proof carried out by “structural” induction over

terms.

Proposition 2.2 (Unique Construction) Let X be a signature, and T its initial al-
gebra. Then for any t € Tx, there exists a uniquen € N, f € ¥, and t; € Ts,, i =1...n
such that t = f(ty,...,t,). 0

We introduce now the notion of freely generated algebra over a set of variables.

Definition 2.2 (Freely Generated Algebras) Let Y be a signature, and X a set (whose
elements will be called variables) such that XN X = (. We define the free algebra over X
as the initial algebra of ¥(X)-Alg, denoted Tx(X), where X(X) is the signature obtained
from ¥ by adding the elements of X as constants. 0

The following results about substitutions and derived operators are also well-known.

Definition 2.3 (Substitutions) Let X be a signature, and X,Y be two sets of variables.
A substitution (from X to Y) is a function o : X — T5(Y) (used in postfiz notation).
A substitution o from X to'Y uniquely determines a X-homomorphism (also denoted by
o) from Ts(X) to Tx(Y), which extends o as f(ti,...,tn)o0 = f(tio,...,t,0) for each
fex,, foralln € N. If X is finite, a substitution o from X toY can be represented
as a finite set {x1/ty, ..., xp/ty} with t; = x;0 for all 1 < i < n and, given a term t such

that var(t) C {xy,...,x,}, we usually write t(ty,...,t,) for to. 0

Proposition 2.3 Let X be a signature, A a X-algebra and X a set of variables. Then
any function h : X — |A| (also called evaluation) can be uniquely extended to a -
homomorphism m, : Tx(X) — A. 0

The previous proposition states that each term ¢ € Tx({zy,...,z,}) actually defines
an n-nary function, the derived operator t,, for any Y-algebra A: given any possible
evaluation h : {zq,...,2,} — A, with h(z;) = a; for i = 1...n, then ta(ay,...,a,) =
7h(t). Note that we could define the derived operator as an m-ary function, for each
n < m, whenever we have #|var(t)| = n: the result, however, is not influenced by the

auxiliary arguments.

2.1. VARIETIES OF FINITE ALGEBRAS 9

Definition 2.4 (Equations) Let X be a signature and X a set of variables. Then an
equation over X(X) is a pair (t,s) of elements of Tx(X). An algebra A satisfies an
equation (t, s) iff for any evaluation h : {xy,...,x,} — A, with h(x;) = a; fori=1...n,
such that both ,(t) and m,(s) are defined, the identity ta(a,...,a,) = sa(aq,...,an)
holds. 0

A wariety is the class of all algebras satisfying a given set E' of equations. For a given set
of axioms E defined over X(X), let us indicate with =5 the minimal congruence induced
by the axioms in E over T¥, closed with respect to substitutions X — Tx. The quotient
algebra Tis gy = Tx/ = is defined as the X-algebra whose carrier consists the equivalence
classes of elements of |75 | modulo the congruence =, while, for each operator f € %,
frsp [l [ta]) = [f(t1,. .., ta)] (Where [t;] is the equivalence class associated to

the term ¢;).

Proposition 2.4 (Initiality in Varieties) Let ¥ be a signature, and E a set of azioms.

Then Tis gy is initial in the variety associated to E. 0

This result shows that, as for establishing identities holding in all the algebras of a
given variety, it is sufficient to consider just elements of 7. The next proposition states
that, given a set of axioms £, the identities holding in Ty g) can be inferred by a finite
application of certain deduction rules: hence, proofs can be carried out by structural

induction over terms of Tx.

Proposition 2.5 (Equational Logic) Let ¥ be a signature, X a set of variables and E
a set of axioms defined over X(X). Given two terms t,s € Ty, the equality t = s holds in

Tis,p) iff 1t can be inferred by finite application of the following rules:

[}
tETZ'
t=t"
[J
t(xy, ... zn) = s(x1,...,2p) € Bty =s; fori=1,....n
tty, ...y tn) = 8(S1,. .+, Sn) ’
. .
JEeX,ti=s; fori=1,....,n
Pl b) = Flon o)
[}

10 CHAPTER 2. PRELIMINARIES ON (INFINITARY) REWRITING

A well-studied extension of the class of algebras we introduced are partial algebras
over a given signature: pairs (A, p4) where p, characterizes a family of partial functions
over the carrier |A|. Since we will only occasionally deal with these structures, we refer
the reader to [Gra79]: next section will be devoted instead to introducing the notion of

continuous algebra.

2.2 Continuous Algebras

In this section we consider algebras whose carriers form an ordered structure, namely a
(w-complete) partial order. Correspondingly, homomorphisms do not preserve only the
algebraic structure, but are also order-preserving (e.g, monotone, continuous) functions.
The importance of these algebras in computer science has been stressed by a great deal of
work during the Seventies, mainly inside the algebraic semantics framework, for example
in providing denotational semantics for functional languages, semantical models for flow
diagrams and, in general, for formalisms dealing with unbounded computations. Let us

first recall some definition about (complete) partial orders.

Definition 2.5 ((Complete) Partial Orders) A partial order is a pair (D, <), where
< is a reflerive, antisymmetric and transitive binary relation over a set D. A partial
order is strict if it has an element — (called bottom) such that — < d for alld € D. A
partial order is w-complete (also complete) if it admits least upper bounds (LUB’s) for all
w-chains of elements. If {d;}i<, is an w-chain (i.e., d; < diyq for all i < w), we denote
its LUB by |licn{d;}. A monotone function f : (D,<p) — (D', <p) between partial

orders is a function f : D — D' which preserves the ordering relation, i.e., such that if

t < s, then f(t) < f(s); it is strict if moreover f(—p) = —p/. A continuous function
f:AD,<p) = (D', <p) between complete partial orders is a function f: D — D' which
preserves LUB’s of w-chains, i.e., f(ic,){di} = Uico{f(d)}. 0

The product of (complete) partial orders can be defined as the cartesian product of their
underlying sets, while the ordering relation is defined pointwise. Then, most properties of
Y-algebras can be extended to take into account (complete) ordered algebras, i.e., algebras

whose carriers are (complete) partial orders (CPO’s from now on).

Definition 2.6 (The Category of (Complete) Ordered X-Algebras) A (complete)
ordered Y-algebra is a pair A = ({|A], <a), pa) such that (|A|,<a) is a (complete) partial

order, and pa = {fa | f € £} is a family of monotone (continuous) functions such that for

2.2. CONTINUOUS ALGEBRAS 11

every f € Xy, fa: (|Al, <)" — (JA]|,<a). If A, B are (complete) ordered X-algebras, an
ordered (continuous) X-homomorphism 7 : A — B is a monotone (continuous) function

7 (|A], <a) = (|B|, <p) which preserves the operators. 0

¥-OAlg and ¥-COAlg denote respectively the categories having (complete) ordered
Y-algebras as objects and ordered (continuous) ¥-homomorphisms as arrows. In both
cases, the initial algebra F'Ty is given by the rather uninteresting pair ((|Tx|, =), pry.):
the algebra Ty equipped with the identity relation. A much more important class is

represented by continuous algebras.

Definition 2.7 (The Category of Continuous >-Algebras) A continuous X-algebra
is a pair A = ((JA|, <a), pa) such that (|A|,<a) is a strict cPO, and ps = {fa | f € £} is
a family of continuous functions such that for every f € Xy, fa: (JA], <a)™ = (|A], <a).
0

3-CAlg denotes the category having continuous Y.-algebras as objects and strict con-
tinuous X-homomorphisms as arrows. As shown in [ADJ77], also this class has an initial
algebra, denoted C'Tyx;: its elements are possibly infinite, possibly partial terms freely gen-
erated from ¥, and they form a strict cPO where the ordering relation is given by ¢ < ¢/
iff ' is “more defined” than ¢.

2.2.1 Explicit Construction of CTx,

Since continuous algebras will be very important in this thesis, we give in this section an

explicit construction of CTy; definitions are borrowed from [ADJ77], with minor changes.

Definition 2.8 (Occurrences) Let w* be the set of all finite strings of positive natural

numbers; its elements are called occurrences, and the empty string is denoted by A. 0

Definition 2.9 (Terms as Functions) Let ¥ be a signature and X a set of variables
such that XN X = (. A term over (¥, X) is a partial function t : w* — YU X, such that
the domain of definition of t, O(t), satisfies (for w € w* and i € w):

e wie Ot)=we O(t);
e wie Ot) = t(w) € 3, for somen > i.

O(t) is called the set of occurrences of t. A term t is total if t(w) € ¥,, = wi € O(t) for
all 0 < i <n. 0

12 CHAPTER 2. PRELIMINARIES ON (INFINITARY) REWRITING

The set of terms over (X, X) is denoted by CTx(X) (CTx stays for CTx(0)). For
finite, total terms, this description is equivalent to the usual representation of terms as
operators applied to other terms. Partial terms are made total in this representation by
introducing the undefined term —, which represents the empty function — :) — S U X,
always undefined. Thus, for example, if z € X, t = f(—,g(x)) is the term such that
Ot)={\2,2-1},t(N)=f€Xs, t(2)=ge X, and t(2-1) =z € X.

CTx(X) forms a strict cPO with respect to the “approximation” relation. We say
that ¢ approzimates t' (written ¢ < #') iff ¢ is less defined than #' as partial function®. The
least element of C'Tx(X) with respect to < is clearly —. An w-chain {¢;};<, is an infinite
sequence of terms ¢ty < t; < Every w-chain {t;},, in CTx(X) has a LUB U, {t:}
characterized as follows:

t=U{t:i} & VYwew .Ti<w.Vj>i.tj(w)="1tw).
1<w
Since each pair of terms has a greatest lower bound (GLB), CT%(X) is more than a strict

CPO: it is actually an w-complete lower semilattice. The following result was originally
proved in [ADJ77].

Proposition 2.6 (Initiality for Continuous Algebras) CTy is initial in X-CAlg,

and it 1s called the continuous word algebra over X. 0

2.2.2 Varieties of (Complete) Ordered Algebras

In this section we recall the basic results on varieties of ordered algebras that can be found
in [Blo76].

Proposition 2.7 Let ¥ be a signature, A a (complete) ordered Y-algebra and X a set
of variables. Then any evaluation h : X — |A| can be uniquely extended to a ordered

(continuous) Y-homomorphism 1, : FTx(X) — A. 0

The previous result extends the notion of derived operator to ordered and continuous
algebras. Each term ¢t € FTx({z1,...,x,}) actually defines an n-ary function, the derived
operator t4, for any ordered (continuous) Y-algebra A: given any possible evaluation
h:{xy,...,2,} = A, with h(z;) =a; fori=1...n, then ty(ay,...,a,) = 13(t).

IEquivalently, the relation ‘<’ can be defined as the minimal one such that L <t for all t; z < z for
all z € X, and f(t1,....tn) < f(t], ..., t,) if t; <t},...,t, <t forall f € X,. This is not by chance: see
next section.

2.2. CONTINUOUS ALGEBRAS 13

Definition 2.10 (Inequalities) Let ¥ be a signature and X a set of variables. An
inequality over 3X(X) is a pair (t,s) of elements of FTx(X). An algebra A satisfies an
inequality (t, s) iff for any evaluation h : {xy, ..., x,} = A, with h(z;) = a; fori=1...n,
the inequality ta(ay, ..., a,) < sa(ay,...,a,) holds. 0

A wariety of ordered algebras is the class of all ordered algebras satisfying a given set
I of inequalities. For a given set I of inequalities defined over ¥(X), let us indicate with
C; the minimal preorder induced by the inequalities in I over T, closed with respect to
substitutions X — Ty, and = the associated congruence. The quotient ordered algebra

Flis = FTsx/ =2, is defined as the ordered X-algebra whose carrier consists of the

equivalence classes of elements of |Tx| modulo the congruence 2;, while the associated
partial order is [a] < [b] iff a £; b; for each operator f € ¥, frry, : ([ti],...,[ta]) —
[f(t1,...,t,)] (where [t;] is the equivalence class associated to the term ¢;).

Proposition 2.8 (Initiality in Varieties) Let ¥ be a signature, and I a set of inequal-

ities. Then F(s 1y is initial in the variety of ordered algebras associated to I. 0

This result shows that, as for establishing inequalities holding in all the algebras of a
given variety, it is sufficient to consider just elements of F'Tx. The next proposition states
that, given a set of inequalities I, the inequalities holding in F'I(x, ;) can be inferred by
finite application of certain deduction rules: hence, proofs can be carried out by structural
induction over terms of FTx.

Proposition 2.9 (Logic of Inequalities) Let ¥ be a signature, X a set of variables
and I a set of inequalities defined over X(X). Given two terms t,s € Tx, the inequality
t <'s holds in F1(s 1) iff it can be inferred by a finite application of the following rules:

[}
tETZ'
t<t’
[J
ty, .. n) < s(zy, .. ,xn) €1t < s fori=1,...,n
t(ty, .y tn) < S(S1y..,8n) ’
[J
feX, ti<s;fori=1,....n
f(tla---;tn) Sf(sl,...,sn) ’
[J
s<tt<u
s<u

14 CHAPTER 2. PRELIMINARIES ON (INFINITARY) REWRITING

A fundamental result, associating to each ordered algebra a suitable completion, is

given by the following proposition.

Proposition 2.10 (Minimal Extension) Let ¥ be a signature, and A be an ordered
Y-algebra, belonging to a given variety. There exists a complete ordered algebra AY in the
same variety of A and an ordered homomorphism 174 : A — AY such that, for any other
complete ordered algebra B and ordered homomorphism 7 : A — B, there exists a unique

continuous homomorphism 1. : AY — B such the following diagram commutes:

A2 g

B

Given an ordered algebra A, the previous result implies also that for establishing an
inequality ¢ < ¢’ for ¢,t' € A“, it is enough to reason inductively over (w-chains of)
elements in A. Roughly, A¥ is obtained from A just adding the LUB’s of w-chains, and
equating those terms that are obtained as LUB’s of chains whose components are equal.
For example, with a signature ¥ = {f, a} and an axiom @ = {a < f(x)}, the inequalities
f™(a) < f™(a) holds in FT(5,) for all 0 < n < m < w. Also, the ordering induced by @
implies that (FT(s,g))” contains also the infinite term f*(a) = | ;. {f*(a)}. This property
can be used to provide an alternative description of C'Ty, in term of the completion of

the initial ordered algebra of a given variety.

Proposition 2.11 Let (=) be a signature Y extended with a new constant —, and let
us consider the inequality QQ = {— < x}. Then CTx, is isomorphic to (FTx1)/ Zg).
0

2.3 Term Rewriting

We introduce now term rewriting over C'Ty; (implicitly describing also term rewriting over
Ts). A term rewriting system (briefly, TRS) over a set of variables X is a (labeled) set
of rules, i.e., of pairs of finite, total terms in CTy;. A rule can be applied to a term ¢ if
its left-hand side matches a subterm of ¢, and the result is the term ¢ where the matched
subterm is replaced by a suitable instantiation of the right-hand side of the rule. Note that
restricting our attention only to CTy, instead of CTx(Y) for a given set Y of variables,

is by no means limiting the generality.

2.3. TERM REWRITING 15

Definition 2.11 (Term Rewriting Systems) Let X be a set of variables. A term
rewriting system R (over X) is a tuple (3, L, R), where ¥ is a signature, L is a set
of labels, and R is a function R : L — Tx(X) X Tx(X), such that for all d € L, if
R(d) = (l,r) then var(r) Cwar(l) C X and [is not a variable. 0

Given a term rewriting system (also TRS) R, we usually write d : [— r € R if
d € L and R(d) = (l,r); to make explicit the variables contained in a rule, we write
d(zr,...,x) Uz, oy xn) = r(z, ... 1) € R where {xq, ..., 2,} = var(l).

Now we instantiate the notion of substitution to the case of continuous algebras, and
we introduce some basic operations on terms that are needed to define the notion of
rewriting over continuous algebras. We recall that these definitions subsume the finitary
case, in the sense that they coincide with the classical definitions, when we restrict our

attention to terms in T,.

Definition 2.12 (Substitutions over Continuous Algebras) Let X and Y be two
sets of variables. A continuous substitution from X to Y (just substitution from now
on) is a function o : X — CTx(Y) (used in postfiz notation). A substitution o from X

to Y uniquely determines a strict continuous X-homomorphism (also denoted by o) from
CTx(X) to CTs(Y), which extends o as follows:

[} —0':—,'
o f(t1,...,ty)o = f(tio,... ty0);

o (Uico{ti}) o = Uicu{tio}.

If X is finite, a substitution o from X toY is described as a finite set {x1/t1, ..., Tn/tn}
with t; = x;0 for all 1 <i <n and, given a finite term t such that var(t) C {x1,..., T, },

we usually write t(ty,...,t,) forto. 0

Definition 2.13 (Subterm Selection) Given an occurrence w € w* and a term t €
CTx(X), the subterm of t at (occurrence) w is the term t/w defined as t/w(u) = t(wu)
for all uw € w*. In the alternative representation of terms, t/w is equivalently defined by

the following clauses:

t ifw=\;

Hw = ti/w' ifw=1w" andt = f(ty,... t;,...,t,);
Ui<w{ti/w} Z.ft = (Ui<w{ti});
— otherwise.

It is easy to check that t/w = — iff w & O(t). 0

16 CHAPTER 2. PRELIMINARIES ON (INFINITARY) REWRITING

We recall now some definitions useful in the following.

Definition 2.14 (On Occurrences) Let u,v be occurrences: we write u < v if u is a
prefix of v. We say that they are disjoint (denoted u|v) if neither u < v nor v < u.
The length of an occurrence w, denoted |w|, is defined as |N\| = 0 and |wi| = |w| + 1
for w € w* and 1 € w. The depth of a term t is defined only if t is finite; in this case,
depth(t) = maz{|jw| | w € O(t)}. We will denote by O,(t) the set of occurrences of the
variables x in't, i.e., O, (t) = {v € O(t) | t(v) = x}, and with Ox (t) the set of occurrences
of all the variables in X. A term t is linear if no variable occurs more than once in it,
i.e., if v,u € Ox(t) and v # u implies t(v) # t(u). 0

Definition 2.15 (Subterm Replacement) Given termst,s € CTx and an occurrence
w € w*, the replacement of s in t at (occurrence) w, denoted tlw < s, is the term
defined as tfw < s|(u) = t(u) if w L u or t/w = —, and t{w < s|(wu) = s(u) otherwise.
Equivalently, subterm replacement can be defined as follows:

o tlwsl=t ift/w=— (ie, if wgO{))

o tA—s]=s ift#—;

o flt,.. to)iw s = f(tr,. .. blw s, ... tn) ifi<n
o (Uicofti}) [w ¢ 5] = Uicu{tilw < s}

The first clause also implies that —[w < s| = — for all w, s (even if w = \). 0

A particular relevance is due to orthogonal TRS’s.

Definition 2.16 (Orthogonal TRs’s) Let R be a TRS. A rule (I,r) is left-linear if | is
linear. R s orthogonal if all its rules are left-linear and non-overlapping, that is, the
left-hand side of each rule does not unify with a non-variable subterm of any other rule

in R, or with a proper, non-variable subterm of itself. 0

The set-theoretical approach to term rewriting relies on the notion of redex (for re-
ducible expression). A redex is just a pair A = (w,d) where w is the occurrence of the
root of the subterm matching the left-hand side of the rule d.

2.3. TERM REWRITING 17

Definition 2.17 (Redexes and Derivations) Let R = (X, L, R) be a TRS. A redex
A of t is a pair A = (w,d) where w € w* is an occurrence, d : | — r € R is a rule,
and there exists a substitution o : var(l) — CTx such that t/w = lo. The result of its
application is s = t{w < ro|. We also write t —a s, and we say that t rewrites to s (via
A). We say that there is a derivation from t to t' if there are redexes Aq,..., A\, such
that t —a, t1 —=a, .. —a, tn = 1. 0

2.3.1 Parallel Rewriting

Sequential term rewriting can be generalized to parallel term rewriting by allowing for
the simultaneous application of two or more redexes to a term. Clearly, the result of such
a parallel rewriting must be well defined, and should be related in some way to the result
obtained by applying the redexes in any order. The definitions below summarize those
in [Bou85] (see also [LM92, Cor93]). Intuitively, finite parallel rewriting can be defined
easily by exploiting the confluence of sets of (pairwise) compatible redexes. The parallel
reduction of a finite set of such redexes is defined simply as any complete development of
them: any such development ends with the same term, so the result is well-defined. Note
however that, given two redexes of a term, the reduction of one of them can transform
the other in various ways: the second redex can be destroyed, can be left intact, or can

be copied a number of times; the situation is captured by the definition of residual.

Definition 2.18 (Compatible Redexes) Let A = (w,d : | — r) and A" = (w',d" :
I'" = 1) be two redexes in a term t. They are disjoint (and we write A||A’) if so are
the respective occurrences (i.e., w|w'), or if they are equal. They are compatible (and we
write A||A") if they are disjoint, or if wu, < w', where l/u, is a variable, or if w'u!, < w,

where I' /u', is a variable. 0

Note that the definition is rather involved, due to the presence of critical pairs between
the rules. This affects also the definition of residual: it is defined only for compatible
redexes, since the reduction of a given redex in a critical pair “destroys” the possibility
to reduce the other. Moreover, it is fundamental to take into account only left-linear
TRS’s: i.e., such that all the left-hand sides of the deduction rules are linear. Otherwise,
it wouldn’t be true that the reduction of a redex does not destroy the possibility to execute
a compatible one: as an example, let us consider the TRS Z = {d : f(z,z) — ¢(x),d :
a — b}: the redexes A = (A, d) and A" = (1,d') of t = f(a, a) are compatible according to
Definition 2.18, but the reduction of A’ forbids to reduce A (until also (2, d') is executed).

18 CHAPTER 2. PRELIMINARIES ON (INFINITARY) REWRITING

If we take into account disjoint rewrites only, instead, left-linearity can be dropped. In
the rest of the section we implicitly assume that, when dealing with compatibility, all the

TRS’s are left-linear; this restriction is not applied when dealing with disjointness.

Definition 2.19 (Residuals) Let A = (w,d) and A" = (w',d" : I' — r') be two compat-
ible redexzes in a term t. The set of residuals of A by A’ denoted by A\A', is defined

as:

0 iFA= A
A\AI — {A} wa } wl;
{(w'wyu, d) | ' Jw, =1"Jv,} if w = wvu and I'Jvy is a
variable.

Note that A\A’ can actually be a set of redexes, whenever the rule d' is not right-
linear. As an example, let us consider the TRS Z' = {d : f(z) — g(z,z),d' : a — b} and
the compatible redexes A = (1,d’), A" = (A, d): then A/A" = {(1,d'),(2,d")}. When two

redexes A, A’ are disjoint, the third case never happens.

Proposition 2.12 (Reduction Preserves Compatibility) Let PU{A} be a finite set
of pairwise compatible redexes of t, such that t —a s. Then the set ®P\A of residuals of
® by A, defined as the union of A'\A for all A" € ®, is still compatible. Moreover, each
A\A is a redex in s. 0

The previous result obviously holds for sets of disjoint redexes, and it allows to extend

the definition of residual to include also sequences of reductions.

Definition 2.20 (Residual of a Sequence) Let ® be a finite set of pairwise compatible
redezes of t and p = (t =a, t1... —=a, tn) be a reduction sequence, such that ® U {A}
is compatible. Then ®\p is defined as ® if n = 0, and as (P\Aq)\p', where p' =
(t1 = A, ta... =, t,), otherwise. 0

Note that the residual of a sequence is not always defined. It is necessary that, at each
step 4, the redex A, is compatible with ((...((®\A;)\A2) ...)\A)).

Definition 2.21 (Complete Development) Let @ be a finite set of pairwise compati-
ble redexes of t. A development of ® is a reduction sequence such that after each initial
segment p, the next reduced redex is an element of ®\p. A complete development of @ is

a development p such that ®\p = (. 0

2.3. TERM REWRITING 19

The complete development of a set of compatible redexes is well-defined, due to the

result stated in Proposition 2.12. The following result was originally proved in [Bou85].

Proposition 2.13 All complete developments p and p' of a finite set of pairwise compati-
ble redexes ® in a term t are finite, and end with the same term. Moreover, for each redex
A of t, compatible with those in ®, it holds A\p = A\p'. Therefore we can safely denote
by A\® the residuals of A by any complete development of ® (and similarly replacing A
with a finite set of compatible redexes @' of t). 0

Exploiting this result, we define the parallel reduction of a finite set of compatible

redexes as any complete development of them.

Definition 2.22 (Parallel Redex Reduction) A parallel redex ® of a term t is a fi-
nite set of pairwise compatible redexes in t. We write t —¢ t' and say that there is a

parallel reduction from t to t' if there ezists a complete development t —a, t1... —a, t'
of ®. 0

Obviously, all the results can be lifted to disjoint sets of redexes: we indicate this case
as disjoint reduction. Despite its straightforward definition, disjoint reduction will play a
fundamental réle in our analysis of the concurrency of the reduction process (see Chapter
6). Instead, parallel reduction will be pivotal when defining infinitary term rewriting

(next section and Chapter 7).

Definition 2.23 (Disjoint Redex Reduction) A disjoint redex ® of a term t is a
finite set of pairwise disjoint redexes in t. We write t —¢ t' and say that there is a

disjoint reduction from t to t' if there ezists a complete development t —a, t1... —a, t'
of ®. 0

2.3.2 Infinite Parallel Rewriting

Parallel rewriting allows to reduce a finite set of redexes of a term in a single, parallel
step. If we consider an infinite term, there might be infinitely many distinct redexes in it:
since the simultaneous rewriting of any finite subset of those redexes is well-defined, by a
continuity argument one would expect that also the simultaneous rewriting of infinitely
many redexes in an infinite term can be properly defined. Note however that, since in the

finite case the parallel application of a redex ® is defined as the sequential application of

20 CHAPTER 2. PRELIMINARIES ON (INFINITARY) REWRITING

all the contained redexes, a naive extension to infinity could not work, because it would
correspond to an infinite sequence of reductions. We present here a definition which makes
use of a suitable limit construction: for details we refer to [Cor93, CD96]. Note however
that, for the sake of simplicity, we restrict our attention to orthogonal TRS’s. In fact, for
a given orthogonal TRS the residual operation is total, since any two redexes A, A" are

the same or do not overlap: then, any set of redexes is compatible.

Given an infinite parallel redex ® (i.e., an infinite set of redexes) of a term ¢, we
consider a chain of finite approximations of ¢, ty < t; < t5... such that their limit is .
For each i < w, let ®; be the finite subset of ® containing all and only those redexes of
t which are also redexes of ¢;, and call s; the result of the parallel reduction of ®;, i.e.,
t; —o, ;- Then the crucial fact is that the sequence of terms s, s1, 5o, ... defined in this
way forms a chain: by definition we say that there is an infinite parallel reduction from ¢

to s = U<y, i via @, written ¢ —4¢ s. Here is the formal definition.

Definition 2.24 (Infinite Parallel Redex Reduction) Given an infinite parallel re-
dex ® of a term t, let to < t; < ty... be any chain of finite approximations of t, such that
for each i < w, every redex (w,d) € ® is either a redex of t; or t;(w) = — (that is, the
image of the left-hand side of every redex in ® is either all in t;, or it is outside, but does
not “cross the boundary”). Let ®; be the subset of all redexes in ® which are also redexes
of t;, and let s; be the result of the (finite) parallel reduction of t; via ®; (i.e., t; —o, S;).
Then we say that there is an (infinite) parallel reduction from t to s f Uicw{si} via @,

and we write t — 4 S. 0

Let us consider the TRS V = {d : f(z) — g(z),d' : a — b}. Then the infinite parallel
redex {(1*,d)} can be applied to the infinite term ¢t = f = U,.,{f'(—)}: a suitable
chain of finite approximations is given by t; = fi(—), and the associated subset & is
{(17,d) | j < i}. Then t; —s, g'(—), and t —4 ¢g“. Next result (originally proved in
[Cor93]) states that the reduction of an infinite, parallel redex is a well-given definition.

Proposition 2.14 (Infinite Parallel Redex Reduction is Well-Defined) In the
hypotheses of Definition 2.24:

1. for each i < w, $; < Si11; i-e., {Si}icw 18 a chain.

2. Definition 2.24 is well-given; i.e., the result of the infinite parallel reduction of t
via ® does not depend on the choice of the chain approzimating t, provided that it

satisfies the required conditions. 0

2.3. TERM REWRITING 21

Finally, we shall need the following easy result, stating the compatibility of finite and
infinite parallel reduction.

Proposition 2.15 (Strong Confluence of Parallel Reduction) Let R be an orthog-
onal TRS. Then parallel reduction is strongly confluent, i.e., if t' <t —q t" for (even-
tually infinite) sets ®, " of redexes, then there exist t"', VU, W' such that t' —g " g 1".
Hence, parallel reduction is confluent. 0

22

CHAPTER 2. PRELIMINARIES ON (INFINITARY) REWRITING

Chapter 3

Some Notions of Category Theory

In the first section we briefly recall some basic concepts of category theory; except for
Section 3.2 (where the notion of s-monoidal category is an original one) we refer the
interested reader to [ML71]. The rest of the chapter is devoted to provide an introduction
to categorical structures like 2-categories and algebraic theories, that are not so common

in the computer science community.

3.1 Basic Definitions

We first introduce the underlying notion of graph.

Definition 3.1 (Graphs) A graph G is a 4-tuple (Og, Ag, dy,61) where Og, Ag are
classes whose elements are called respectively objects and arrows (ranged over by a,b, ...

and f,g,...), and 89,01 : Aqg — Og are functions, called respectively source and target.
0

A graph is smallif its arrows form a set; it is locally small if for each pair of objects a, b,
the hom-set Gla, b] (i.e., the class of arrows from a to b) forms a set. Let Gy, Gy be two
graphs. A graph morphism 7 : G; — G5 is a couple of functions 74 : A; — Ay, 70 : O1 —
O, preserving source and target. The product G x G is the graph (O xOs, A1 x Ag, 6f), 0}):
its components are given by the cartesian product of the underlying classes, while d;, 0]
are defined pointwise. A graph with pairing is a graph G such that its class of objects
form a monoid (Og,®,1): ® : Og x Og — Og is an associative function, and 1 is a
distinguished element such that a ® 1 =1 ® a = a for all a € Og. A reflexive graph is a
graph G equipped with a function idg : Og — Ag such that dg(idg(a)) = d1(idg(a)) = a

24 CHAPTER 3. SOME NOTIONS OF CATEGORY THEORY

for all @ € Og. The set of composable arrows A xy A of a graph G is given by the subset
of A x A satisfying {(f, g) | 0:1(f) = do(9)}-
A category is obtained simply enriching the structure of a graph, in order to describe

composition of arrows.

Definition 3.2 A category C is a 6-tuple (Oc, Ac, 0o, 01,1dc, ;) (we forget the subscript
when there is no ambiguity) where Go = (O¢, Ac, 0y, 01, idc) is a reflexive graph, and ;¢

(composition) is a function ;c: Ac Xo Ac — Ac satisfying:

o do(ficg) = do(f) and 6:(ficg) = 61(g), for f.g € Ac;
e ;¢ is associative, i.e., (fic9)ich = fic(gich) for f,g,h € Ac;

o [icide(b) =idc(a)ic f=f, for f € Ac, do(f) = a, 6:1(f) =b. I

All the various classes of algebras introduced in the previous chapter form categories,
since the identity function is a continuous Y-homomorphism and (ordered, continuous)
Y-homomorphisms are closed with respect to functional composition. The paradigmatic
example of category is Set, the category of sets and functions. A category is discrete if
all its arrows are identity arrows: interesting examples are 0, the empty category, and 1,

the category with one object and one arrow.

Definition 3.3 (Functors and Natural Transformations) Let C and D be two cat-
egories. A functor F' : C — D is a graph morphism (Fo, F4) preserving identities and

composition:
e Fu(idc(a)) =idp(Fo(a)), for a € Oc;
o Fu(ficg) = Falf)ip Falg), for f,g € Ac.

Given two functors F,G : C — D, a transformation n : F' = G is a function o : Oc — Ap
such that n(a) € D[Fo(a), Go(a)]. A transformation n: F = G : C — D is natural if
the identity Fa(f);pn(b) =n(a);p Ga(f) holds for all f:a — b € Ag; or, equivalently, if
the following diagram commutes:

3.1. BASIC DEFINITIONS 25

Now let us consider the situation denoted by the following transformations:

/N K
¢y T B
V1~
H

The vertical composition - : F = H : C — D s defined as (a - 3)(a) = a(a);p B(a)
for every a € O¢.

The right composition axg K : FK = GK : C — E is defined as (axgp K)(a) = K4(a(a))
for every a € Cp; the left composition (F x; n) : FK = FL : C — E is defined as
(F x5, m)(a) =n(Fo(a)) for every a € Og.

If o, are natural, then the horizontal composition axn: FK = GL : C — E is defined
as (axn)(a) = Ka(a(a));zn(Gola)) = n(Fo(a));p La(a(a)) for every a € Oc. 0

A subcategory D of C is a category whose arrows and objects form subclasses of
those in C or, equivalently, if there exists an inclusion functor In : D — C such that
the underlying graph morphism Ing : Gp — G¢ is the identity function on arrows and
nodes. An inclusion functor is full if, for all objects a,b € D, DJa,b] = Cla,b]. Given
categories C and D, the product category C x D has as underlying graph the product
G¢c X Gp, while composition and identity are defined pointwise.

Definition 3.4 (Functor Category) Let C and D be two locally small categories. The
functor category [C — D] is defined' as follows:

e objects of |[C — D] are functors F : C — Dy

e an arrow « : F' = G between two parallel functors F,G : C — D is a natural

transformation. 0

One of the main features of categories are universal constructions: they allow to

characterize some elements as those satisfying “in a unique way” suitable properties.

n order for the functor category [C — D] to be defined, C and D must be locally small. We will not
deal with foundational issues, assuming that our categories are locally small whenever this requirement
is necessary.

26 CHAPTER 3. SOME NOTIONS OF CATEGORY THEORY

Definition 3.5 (Product, Terminal Object, Pullback) Let C be a category. An ob-
ject 1 in C is terminal if for every object a in C there exists a unique arrow !y : a — 1,
while an object 0 is initial if for every object a in C there exists a unique arrow I, : 0 — a
The product of a pair (a,b) of objects in C is a triple mop = (a X b,my 1 a X b — a, 7y :
ax b — b) such that, given a pair of arrows (f : ¢ — a, g : ¢ = b), there is a unique arrow
(f,g) : ¢ = axb satisfying (f,q9);cm = f and {f,g);cm™ = g; or, equivalently, making
the following diagram commute:

c
f | 9
1
<vg)
Ad=<——aXb-—b

The pullback of a (or along a) pair of arrows (f : a = ¢, g : b — ¢) is a triple pbs, =
(a Xg b, Ao : axgb— a,axgb — b) verifying \o;c f = Ai;c g and such that, given a
pair of arrows (h : d — a,l : d — by satisfying h;c f = l;c g, there is a unique arrow
[h, 1] : d = a Xq b satisfying [h,1]; \g = h and [h,l]; \y = [; or, equivalently, making the

following diagram commute:

Usually, the wuniversal property characterizes an object only up-to-isomorphism: for
example, there may exist many elements satisfying the terminal object property, but they
are isomorphic by a canonical isomorphism. In particular, if both 1 and 1’ satisfy the
universal property of terminal object in a category C, then !y;¢!) = id; and 0!y =
tdy. A universal construction is strict if it is uniquely determined, in the sense that the
canonical isomorphism is actually an identity: for the terminal object, e.g., we require
Iy =11 = idy;. More generally, we say that a universal construction is on-the-nose if we
characterize each class of elements satisfying the conditions of the universal construction
by a canonical representative.

Definition 3.6 (Cartesian Category) A category C is cartesian if it has terminal 0b-
ject 1 and product m,y for each pair of objects a,b. A functor F : C — D between

3.1. BASIC DEFINITIONS 27

cartesian categories is cartesian if it preserves products and terminal objects; i.e., if the
canonical morphisms (F(mo), F(m)) : F(axcb) = F(a)xp F(b) and!pqo) : F(le) = 1p

are isomorphisms. 0

Definition 3.7 (Monoidal Categories) A monoidal category C is a 6-tuple of the kind
(Co, ®, e,a,m,), where Cqy is a category, e € Cy and ® : Cy x Cq — Cyq are functors
amda: (-0 =)+ =>-Q((=Q+), m:e®@— = —, 0 : — e = — are natural
isomorphisms, satisfying the following coherence axioms:

a(a,b,c®d) a(a®b,c,d)
_—

0®(b®(c®d) (a®b) & (c®d) (a®b) ®c)®d
a®a(b,c,d)l Ta(a,b,c)@d

a® ((b®c)®d) (a®(b®c))®d

aa,bRc,d)
a(a,e,b)
a®(e®b)—>(a®e)®b
lnr(a)@)b
a®b

a®n;(b)

(where for the sake of readability we indicate the identity of an object with the object itself).
A symmetric monoidal category is a 7-tuple (Cq, ®, e, o, ny, 0y, p) where (Co, ®, €, v, ny, 1)
is a monoidal category, and p: — ® + = + ® — 1s a natural isomorphism satisfying the

coherence axioms

afa,b,c a®b,c
a®(b®c) 2 (a0b) ©c M cq (a®b)
a®p(b,c)l la(c,a,b)
a® (c®b) o (a®c)®b T (c®a)®b
e,a a,b
e®aua®e a®bL)>b®a
m(a) lm(a) P, lp(b,a)
a a®b

A monoidal functor F' : C — C' is a triple (Fy, v, ¢) where Fy : Cy — Cy is a functor,
and v : Fy(e) = € and ¢ : Fo(— @ +) = Fy(—) & Fy(+) are natural isomorphisms,

satisfying the axrioms:

28 CHAPTER 3. SOME NOTIONS OF CATEGORY THEORY

Fle®a) —“L F(e) & F(a) Fla®e) —2" Fla) o F(e)
F(m(a))l lV®’F(a) F(nr(a))l iF(a)®’V
(F@) n,.(F(a)) '
F(a) e ® F(a) F(a) F(a)®'e

(where we omitted subscripts for the sake of readability). A monoidal functor is symmetric

if moreover:

Fla®b) —"“% F(a) &' F(b)

F(p(a;b)) l lp’(F(a),F(b))

F(b® a) oo F(b) ® F(a)

A (symmetric) monoidal (natural) transformation § : F = G between (symmetric)

monoidal functors F,G is a (natural) transformation satisfying:

Fla®b) —2L Fla) &' F(b) F(e) -2

ﬂ(mb)l lﬂ(a)@ﬁ(b) \ l,/

G(a®b)mG(a) Q' G(b) e

All the coherence properties required for the monoidal version of the definition of
functor and (natural) transformation can be summed up simply saying that, in the richer
context, all the underlying definitions must preserve also the new relevant structure (and
this fact will be fundamental in the next sections). In the following, a (symmetric)
monoidal functor is usually indicated with the underlying (symmetric) functor whenever
the associated natural isomorphisms are identities. Moreover, we will denote as strict
monoidal all those monoidal categories such that the associated natural isomorphisms

a,n;, 1, are identities; note that in this case most of the coherence axioms collapse.

Definition 3.8 (Adjoint Functors) Let C, D be categories. An adjunction between C
and D is a triple (F, G, ¢) where F : C — D, G : D — C are functors, and ¢ is a function
which assigns to each pair of objects ¢ € C,d € D a bijection ¢.q4 : Clc, G(d)] = D[F(c), d]

3.2. CARTESIANITY AS ENRICHED MONOIDALITY 29

which is natural both in ¢ and d, i.e., such that for all f : ¢ — ¢, g:d — d', the following

diagrams commute:

D[F(c),d 2" Cle,G(d)] DIF(c),d] 2"~ Cle, G(d)]

F(f);ll lf;L L;gl ll;G(g)
DIF(c),d] 5= Cl¢,G(d)] D[F(c),d]— Cle, G(d')]

! d d

We say that F is a left-adjoint of G (G is a right-adjoint of F') and we write F < G.
We indicate as unit of the adjunction the natural transformation p : Ide = G(F(-)),
associating to each object ¢ € C the arrow associated by d¢ p () to id(F(c)); and we indicate
as co-unit of the adjunction the natural transformation n : F(G(—)) = Idp, associating
to each object c € C the arrow associated by dcay,a to id(G(d)). 0

We say that a category C is refiective inside a category D if C is a sub-category of D,
the inclusion functor has a left-adjoint and the co-unit is a natural isomorphism. A very
particular case is represented by forgetful functors, i.e., those functors that “forget” part
of the structure of the source category; they usually have a left-adjoint that simply “adds”
the relevant structure with a “free” construction. An intuitive example is represented by
the inclusion functor of Cat in Gr, the category of small graphs and graph-morphisms:
the left-adjoint simply adds the identity function and the composition function, requiring
they satisfy the axioms of categories. A relevant example is the adjunction arising from the
inclusion functors Cpog — Cpo — Set, where Cpo is the category of small cPO’s and
continuous functors, and Cpoyg is the category of small, strict CPO’s and strict continuous

functors. The following result relates initial objects and adjoint functors.

Proposition 3.1 Let F': C — D be a functor with a left-adjoint G. If 0 is initial in D,
then G(0) is initial in C. 0

3.2 Cartesianity as Enriched Monoidality

In the latest years there has been some interest in getting suitable equational character-
ization of cartesian categories (see e.g. [Bur91, Laf95]). In this section we try to recast

the previous results in a more general framework; our formalism is indebted to [Jac93].

Definition 3.9 (S-Monoidal Categories) A s-monoidal category is a 9-tuple of the
kind (Co, ®, €, c,ny, nr, p, V., 1), where (Co, ®, €, a, ny, ., p) is a symmetric monoidal cate-

30 CHAPTER 3. SOME NOTIONS OF CATEGORY THEORY

gory, and V : Id = (— @ +,id, — @ p(+,—) ® —) and ! : Id = e are symmetric monoidal

transformations satisfying the coherence axioms:

a1 a®a —>a®v(a)a ® (a®a) a— a®a
al la(a,a,a) al la@!(a)
- - a a®e
@t —sra®a v(a)m(a ®a)®a ()
a l(i)a X a € i@e Xe
X\ lﬂ(a,a) \ lm(e)
a®a €

A s-monoidal functor is a symmetric monoidal functor such that the following diagram

commutes:
Fla) "YPF (4 g a) Fa) ™M p(e)
V/(F(2) ld)(a,a) Y (F(a)) lﬁb(a’a)

F(a) ®" F(a) e

An s-monoidal (natural) transformation between s-monoidal functors is a symmetric (nat-

ural) transformation. 0

The monoidality of the transformations amounts to say that !(a ® b) =!(a)®!(b) and
Vie®b) = (V(a) @ V(b); (a ® pla,b) ®b). As we remarked before, different versions of
the following results became part of the categorical “folklore” in the past years.

Proposition 3.2 (Cartesianity as Enriched Monoidality) Let D be an s-monoidal
category. If both the associated transformations V and! are natural, then D is a cartesian

cateqory. 0

In the thesis, using a non-standard notation, we say that a triple D = (C, V,!) where
C is a symmetric monoidal category and both V,! are natural is a cartesian category
with chosen products; it is a cartesian category with finite products if the underlying
monoidal category C is strict monoidal. A chosen functor F' : D — E between cartesian
categories with (finite) chosen products is a s-monoidal functor between the underlying

(strict) s-monoidal categories; a chosen functor is also cartesian.

3.3. CAT-ENRICHED CATEGORIES 31

Both Set and Cat can be equipped with a finite products structure: for each set S
(category C), the n-th product is given by the set S™ (category C") where the objects

are n-tuples of objects in S, and the functions are defined pointwise.

In the rest of the chapter (actually, in the whole thesis), particular importance will be

played by the following adjunction:
GR, < SSM-Cat <—— SM-Cat

[

FC-Cat <=—— CC-Cat

relating the category of small graphs with pairing GR,, (and graph morphisms preserving
pairing), the category of (strict) s-monoidal small categories SM-Cat (SSM-Cat) and
s-monoidal functors, and the category of cartesian small categories with chosen (finite)
products CC-Cat (FC-Cat) and chosen functors.

3.3 Cat-Enriched Categories

Given a monoidal category V, a V-category (or a category enriched over V) is basically
just a category such that, for any two objects a,b, the hom-set Cla,b], i.e., the class of
arrows from a to b is an object of V; moreover, this hom-objects satisfy suitable coherence
axioms. In particular, a cat-enriched category is a category C such that, given any two
objects a, b, the hom-set Cla, b] is a category. Both 2-categories and sesqui-categories are
particular examples of cat-enriched categories?, and they admit also a naive description:

for 2-categories, the classical reference is [KS74].

Let us fix some notation. An arrow of the category Cla,b], a cell, is denoted as
a: f = g:a— b with source d(a) = f, target §;(a) = g and where f,g : a — b; or
graphically, as

The following definition is adapted from [Ste92].

2We are quite informal here, since both 2-categories and sesqui-categories are categories enriched over
Cat, in the sense of [Kel82], but the tensor product used is different in the two cases (see [Ste94]). For
2-categories is the usual cartesian product, while for sesqui is the so-called funny tensor: we refer the
reader to [Str92] for a comprehensive introduction.

32 CHAPTER 3. SOME NOTIONS OF CATEGORY THEORY

Definition 3.10 (2-Categories and Sesqui-Categories) Let C be a category such that
each hom-set Cla,b] also forms a category. Moreover, let us assume that for each triple

a, b, c of objects there are two composition functions x;, and xg such that, given o : f =

h:a—band f:g=1:b—c, then ' = fx; f € Cla,c] and o/ = axrg € Cla,c|.

Graphically,

9 fig
f _ N
a——=p |8 c = a_ {5 c € Cla, c|
i fii
a\lﬁ}g{b%c = a\hi_}.i;c € Cla, c|
9

where ; denotes composition inside C. Let us consider the situation denoted by the follow-
ing cells:

a

€.

j k
! b@a\c/h@ﬂ\d i
NN

A 2-category Co (or simply C) is a category C (called the underlying category) with a
structure as the one defined above, such that the composition functions are subject to the

following equations:

(1) ide*1 B = B; (2) (f19) *r B=f*r (9% B);
(3) g *r idn = idg; (4) g*1 (B-0) = (g1 B) - (9 %1 0);
(5) a*pid. = (6) avsr (h;i) = (o *g h) *r i;
(7) idy xp h = idg; (8) (- 7)*r h = (g h)- (y*gh);

(9) (f *xr @) *r h = f *p, (e xg h);

(10) (G # B) - (a*r h) = (xr k) - (9 #1 B).

where - denotes composition inside hom-categories. A sesqui-category Cg (or simply C:

3.3. CAT-ENRICHED CATEGORIES 33

usually, there is no ambiguity) is a category C with a structure subject to equations (1)-(9).
ad

Note also that, thanks to axiom (10), it is possible to define the notion of horizontal
composition of cells, so that the given definition for 2-category is then equivalent to the
classical one (see [KS74])

axfB=(jxB) (axrh) = (a*xgk)-(gx*5).

Then, 2-categories C also have another underlying category, C;, with the same objects as
C and 2-cells as arrows. The generalized version of axiom 10 is the so-called interchange

rule, stating that, whenever both sides are defined, then

(axB) - (y*6)=(axy)-(8*9).

For the sake of simplicity, in the following some of the definitions will be ambiguously
given for enriched categories: the corresponding definition for sesqui- and 2-categories can

be obtained simply putting the correct prefix instead of “enriched”.

Definition 3.11 (Enriched Functors and (Natural) Transformations) Let C, D
be two enriched categories. An enriched functor F' : C — D is a triple (Fo, Fa, Fo) of
functions, mapping objects to objects, arrows to arrows and cells to cells, respectively,
preserving identities and compositions of all kinds. Let F,G : C — D be two parallel
enriched functors: an enriched transformation n : F = G is a function Ac — Op
assigning to each object a € C an arrow n, : Fo(a) — Go(a) € D; it is natural if
moreover for any cell v : f = g:a— b€ C, n,xp Fo(a) = Ge(a) xpny. If C and D are
two enriched categories, the enriched functor category [C — D] has enriched functors as

objects and enriched natural transformations as arrows. 0

Let 2-Cat (S-Cat) be the category of 2-categories (sesqui-categories) and 2-functors
(sesqui-functors): there exists an inclusion functor U; : 2-Cat — S-Cat, whose left-
adjoint F; simply quotients the structure of a sesqui-category with respect to axiom (10),
and such that 2-Cat is reflective inside S-Cat. The paradigmatic example of 2-category
is Cat: objects are small categories, arrows are functors, cells are natural transformations.
For sesqui-categories, the paradigmatic example is Catg: differently from Cat, cells are

just transformations, i.e., they are not required to satisfy the naturality condition.

To define universal constructions over enriched categories, we need to require suitable

properties to hold for cells, instead of just for arrows.

34 CHAPTER 3. SOME NOTIONS OF CATEGORY THEORY

Definition 3.12 (Cartesian Enriched Categories) Let C be an enriched category such
that the underlying category C is cartesian. We say that C has enriched products if for
every pair o : f = g:c—a and f: h =k :c— b of cells, there exists a unique cell
v=Aa,B): {f,h) = (g,k) : ¢ = axb satisfying y*rmy = @ and yxgm = (. Graphically,

(£:h) PN
¢’ raxb>a = c e a
Tk 7
}f& 71' /h\
¢ raxb——=bh = c_ 8 b

~—_ <7

k

gl

(9,

C has terminal enriched object if for every cell a : f = g : ¢ = a we have axg!. =,,
where 0 is terminal in C and !, :a — 0, !, :¢c — 0. 0

Again, products and terminal objects are defined up-to-isomorphism: we say that, if
the underlying cartesian category D = (C, V,!) has finite products, the cartesian enriched
category D = (C,V,!) has finite enriched products, where the monoidal structure of
C has the intuitive definition (and it preserves the one on C), while V,! are natural
transformations in Cat. An enriched functor F' = (Fp, F4, Fc) : C — D is cartesian if
for all objects a, b the canonical maps (Fa(mg), Fa(m)) : Fo(a x b) — Fo(a) X Fo(b) and
'poo) : Fo(Oc) — 0p are isomorphisms. A chosen functor F': D — E between cartesian
enriched categories with (finite) chosen products is a symmetric monoidal enriched functor
between the underlying symmetric (strict) monoidal enriched categories, preserving the
additional structure: it is also cartesian in the previously defined sense.

Let 2C-Cat (SC-Cat) be the category of cartesian 2-categories (sesqui-categories)
and 2-functors (s-functors) with chosen products, and let 2FC-Cat (SFC-Cat) be its
counterpart with finite products: the pair of functors (U;, F;) introduced above still forms
an adjunction when restricted to the appropriate sub-categories.

We will be interested in a finitary presentation of an enriched structure, i.e., in a set
of generators such that a cat-enriched category can be obtained freely composing cells.

An appropriate structure for that is represented by c-computads.

Definition 3.13 (C-Computads) A c-computad is a pair (C, S), where C is a category
and S is a set of cells, each of which has a pair of parallel arrows of C as source and
target, respectively. Given the c-computads (C,S) and (C',S"), a c-morphism is a pair
(F,h) such that F : C — C' is a functor, h : S — S’ is a function, and for every cell
a:f=g€S wehave h(a) : F(f) = F(g) € S". 0

3.4. INTERNAL CATEGORIES 35

A c-computad (C, S) is cartesian (with finite products) if so is C, while a c-morphism
(F, h) preserves products and terminal object (is chosen) if F' does so (is chosen). Let
FC-Comp be the category of cartesian c-computads with finite products and chosen c-
morphisms: there exists an obvious forgetful functor U, : 2FC-Cat — FC-Comp which
forgets the composition of cells, with left-adjoint F3;. This adjoint composes the cells of
a c-computad in all the possible ways, both horizontally and vertically, imposing further
equalities in order to satisfy the axioms of a 2-category (and preserving finite products
on the underlying category). The main result of [Pow90] assures us that this pasting
operation is well-defined, i.e., that it is indipendent from the order in which cells are
composed. There exists also a similar adjunction pair (Us, F;) between SFC-Cat and
FC-Comp, such that the following diagram commutes:

FC-Com
Fy

SFC-Cat T 2FC-Cat

3.4 Internal Categories

Basically, an internal category of C (see [BW90]; also denoted a cat-object in C) D¢ is
just a category such that its classes of arrows and objects are objects of C, while its
composition, identity, source and target morphisms are arrows in C. An internal functor
F : De — E¢ between categories internal to C is a pair of arrows Fly : Ap, = Ag., Fo :
Op
of D¢ and Eg, and the objects in C representing the classes of arrows of Dy and Eg.

o« — Og, between, respectively, the objects in C representing the classes of objects
As an example, a category internal to Set, the category of small sets and functions, is
just a locally small category C. An internal transformation n : F = G : De — E¢ is
an arrow Op, — Apg,, satisfying the requirement 7;- 0y = Fp and n;c 6, = G, where
09,01 are arrows in C representing the source and target functions in E¢o, while ;¢ is the

composition function in C.

Actually, the definition is slightly more involved: it is necessary, in order to cor-
rectly define categories internal to C, that C has pullbacks, so that for the category
D¢ the composition operator ;5. is defined as an arrow in C from the pullback Ap, X,
Ap, (along ((81)p., (d0)p.)) to Ap.,. Then we can define the wertical composition of
two internal transformations as n : F' = G,y : G = H as the arrow [n,7];c (g,),

or informally as n;g. . We have naturality as the axiom [Fla, (01)g.;0nic Gre) =

36 CHAPTER 3. SOME NOTIONS OF CATEGORY THEORY

[(00)Ecicn, Galse G); and so on. An interesting example is already given by a sim-
ple category like Cpo, the category of small cPO’s and continuous functions. For the
sake of readability, we will refer to categories, functors and (natural) transformations

internal to Cpo simply prefixing the adjective continuous.

Definition 3.14 (Continuous Categories) A continuous category C is a tuple of the
kind (O¢, Ac, idc, o, 01, ;¢), such that:

e Oc, Ac are small CPO’s;
e idc: Oc — Ac and by, 01 : Ac — O¢ are continuous functions;

e o: Ac xXqgAc — A is a continuous function, where Ac X Ac is the pullback along

(01, 0p)-

Moreover, these functions satisfy the conditions holding for the corresponding structures
in an ordinary category. A continuous functor is just a pair of continuous functions pre-
serving identities and composition. A continuous category C is strict if all its components

are strict. 0

We can analogously extend the definitions of functor and natural transformation. Also
the horizontal and wvertical composition of continuous natural transformations are the
intuitive extensions of those defined on Cat, and allows us to define the internalization
of Cat inside Cpo. We indicate with Cat(Cpo) the 2-category such that its objects are
continuous categories, its arrows are continuous functors, and its 2-cells are continuous
natural transformations. An interesting sub-2-category is obtained simply restricting
the class of objects to strictly continuous category: the resulting 2-category is denoted
Cat(Cpo)_.

3.4.1 Double-categories

A 2-category C can be described as a internal object to Cat, such that the categories
O¢ and As have the same set of objects. In general, an internal object to Cat is a
double-category (see [BET4]; also [DP93] for some recent results on pasting). It represents
an intuitive generalization of a 2-category, and it admits the following naive presentation,
adapted from [KS74].

3.4. INTERNAL CATEGORIES 37

Definition 3.15 (Double-Categories) A double-category C (shortly, d-category) con-
sists of a collection {a, b, c, ...} of objects, or 0-cells, a collection {f, g, h, ...} of horizon-
tal arrows, or horizontal 1-cells, a collection {x,y,z,...} of vertical arrows, or vertical
1-cells, and a collection {a, 3,7,...} of double-cells, also d-cells. Objects and horizontal
arrows form a category, the horizontal 1-category C, with identity id, for each object a;
also objects and vertical arrows form a category, the vertical 1-category, with identity i1d”
for each object a. D-cells are assigned horizontal source and target (which are vertical
1-cells), written as « : x =, y, and vertical source and target (which are horizontal
1-cells), written as a : f =, g; furthermore, these 1-cells must be compatible, i.e., they

must satisfy particular requirements on their source and target: in graphical terms

f

— =}
(0% ly
—d

9

x

O<—-8

In addition, d-cells can be composed both vertically (ax, (3) and horizontally (y*,6): given
a:x =y and [y = 2z, then

zl « % ﬂ lz = xla*hﬂlz
C—gd—m T
a—t > b - b
xiwl’)/*v 5ly1z = Il ’y ly
e—h>m c—9—(
wl (5 lz
€E—=m
h

Under each of these laws d-cells form a category, the horizontal category C; and the

vertical category respectively, with identities

0% g a—f>b
xl lz lx idal 1f lzdb
bfdb'b a—f>b

Moreover, the following equations must hold:

1. whenever the composite

38 CHAPTER 3. SOME NOTIONS OF CATEGORY THEORY

BN

O<—0<—0

—_—
(6

—_—
Y

E—

is well-defined, then (a %,) %5 (8%, 0) = (%5) %, (7 %1 9);

2. the composite

has to be 1739, and similarly for vertical composition of horizontal identities;

3. finally, the horizontal and vertical identities

idg idg
a——=a a—-—a
zd“l 1ida lz’d“ zdal 1540 lzd“
a——=a a—=a
idg idg

must coincide.

Given C, D d-categories, a d-functor F' : C — D is a 4-tuple of functions mapping objects
to objects, horizontal (vertical) arrows to horizontal (vertical) arrows and d-cells to d-cells,

preserving identities and compositions of all kinds. 0

We denote by D-Cat the category of d-categories and d-functors. It includes 2-Cat as
a subcategory, since each 2-category is a double-category such that the vertical 1-category

is a discrete one, i.e., all its arrows are identities.

Since a d-category is a cat-object in Cat, a d-functor F' : C — D can be equivalently
defined as a triple (F, F},, F.) of functors, such that F': C — D is a functor between the
horizontal 1-categories, F}, : C,, — Dy, is a functor between the horizontal categories and
Fo : Cp %o Cp, = Dy, xg Dy, between their pullbacks, preserving vertical compositions and
identities of all kind. Let F,G : C — D be d-functors: a d-transformation n : F = G
is a functor n : C — D, from the horizontal 1-category C to the horizontal category
D, satisfying n;09 = F and n;6; = G, where ; is composition in Cat, while dy, d; are

3.4. INTERNAL CATEGORIES 39

functors from D, to D. A d-transformation is natural if it satisfies the intuitive natural
requirement. We say that a d-category is cartesian with chosen (finite) products if it is a
cat-object in CC-Cat (FC-Cat) — the category of small categories with chosen (finite)
products and chosen functors — and the associated functors representing, source, target,
composition and identity strictly preserve products (we are then considering a suitable
subcategory of Cat(CC-Cat) (Cat(FC-Cat)), analogously to what already done about

strict continuous categories).

We give now an equivalent, yet more explicit definition of horizontal product. Let C
be a d-category: we say that C is cartesian (with horizontal products) if C; and C have
(finite) chosen products, and they preserve composition in the vertical (1-)category. The
preservation requirement is equivalent to imposing the functoriality of horizontal product
with respect to vertical composition: that is, whenever the composite is well defined, then
(v %y 3,7 % 8) = (e, 7y) %, (3,0). For instance, let a,b and ¢, d be 0-cells such that their
products in the horizontal 1-category are the triples (ax b, py, p1) and (cx d, py, p}): we say
that two objects z : @ — cand y : b — d in Cj, have product x X y : (a xb — ¢ x d, m, m1),

where
DPo p1
axXb——=a axb——=D0
mxyl o lz mel 1 ly
cXd———c cxXd——=d
po Py

if, given any two double cells

e —f> a e —h> b
l (0% l zl ﬂ ly
m Hg C m ? d
then there exists a unique double-cell
e——
m o >< d

such that a = (a, 3) *, mo, B = (a,) *, m or, equivalently, such that the following
identities hold:

40 CHAPTER 3. SOME NOTIONS OF CATEGORY THEORY

e <f7h> b Po a e <f7h> % b D1 b
o=+ {aB)ely ™ J g5 (e Ty
m ~cX d—>C m —cxd——d

(9,%) o (9:1) P}

In the following, we will denote with DC-Cat (DFC-Cat) the category of d-categories

with chosen (finite) horizontal products, and chosen d-functors.

Definition 3.16 (Double-Computads) A d-computad is a triple (C, Cp,) such that
C, Cy, are categories, and T = (19, 11, id,) is a triple of functors T; : C, — C,id, : C — Cy,
such that id,; 7o = id,; 71 = idc. A d-morphism is a pair (F, F,) of functors F: C — D,

Fy, . Cp, — Dy, between the underlying categories, such that T, T; are preserved. 0

In other words, a d-computad is an reflexive graph internal to Cat. It can also be
described in a slightly more restrictive way (but for our purposes there will be no loss of
generality) as a triple (C, D, S), where C is a category, D is a reflexive graph (and its set
of nodes is the same as the set of objects of C) and S is a set of d-cells, each of which
has assigned two pairs of compatible arrows in C and D as horizontal and vertical source
and target, respectively. Given the d-computads (C, D, S) and (C', D', S"), a d-morphism
is a triple (F, G, h) such that F': C — C' is a functor, G : D — D' is a graph morphism,
and h : S — S is a function (such that if « : f — g € Ag and §: x — y € Ap, then
h(a) : F(f) — F(g) € A and h(B) : G(z) — G(y) € A,), preserving identities and
compositions of all kind.

Let D-Comp be the category of d-computads and d-morphisms: there exists an ob-
vious forgetful functor U, : D-Cat — D-Comp, with a left-adjoint F;. This adjoint
composes the cells of a d-computad in all the possible ways, both horizontally and ver-
tically, imposing further equalities in order to satisfy the axioms of a d-category. We
indicate with DFC-Comp the category of d-computads (C, D, S) such that C has
finite products and D has pairing: also in this case there exists a forgetful functor
Uy : DFC-Cat — DFC-Comp, with a left-adjoint Fy.

3.5 Algebraic Theories

The categories of algebras we introduced can be presented in an equivalent way by us-
ing simple categorical techniques. Although such definitions are slightly more involved

than the classical, set-theoretical ones, they have the advantage of separating in a better

3.5. ALGEBRAIC THEORIES 41

way the “Y-structure” from the additional algebraic structure that the carrier can enjoy.
An algebraic theories [Law63, Law68, KR77] is just a cartesian category having natural
numbers as objects. Given a signature X, the associated algebraic theory Th(X) (usually
denoted in the following as the Lawvere theory associated to ¥) can be also described by

means of a suitable free construction.

Definition 3.17 (Lawvere Theories) Given a signature 3, the associated Lawvere the-
ory is the cartesian category Th(X) with finite products, freely generated from the graph
with pairing Gy, such that

e its objects are underlined natural numbers: 0 is the identity element and pairing s

defined as n ® m = n + m;

o for every operator f € X, there is a basic arrow fx :n — 1. 0

The relevant property of Th(X) is that arrows from m to n are in one-to-one corre-
spondence with n-tuple of terms of the free Y-algebra with at most m variables. Each
arrow tsx: n — 1 identifies a Y-term ¢ with variables among z1,....z,; an arrow n — m is
a m-tuple of ¥-terms with n variables, and arrow composition is term substitution. The
Lawvere theory can be regarded as an alternative presentation of a signature. Indeed,
the additional structure it contains (besides the operators of the signature) is generated
in a completely free way, so, in a sense, it does not add “information” to the original
signature. The advantage of this presentation is that, using categorical techniques, we
can easily define a very general notion of model for a Lawvere theory, which subsumes

both algebras and continuous algebras.

Definition 3.18 (Models of Lawvere Theories) Let C be a cartesian category with
chosen products. A C-model of the Lawvere theory associated to a signature X is a chosen
functor M : Th(X) — C, while a model morphism is a natural transformation between
models. The category C-Mody, of C-models is the functor category [Th(X) — Cl: its

objects are C-models of Th(X), while its arrows are model morphisms. 0

By replacing the generic cartesian category C with specific categories, we obtain mod-
els which are equivalent (in a strong sense) to the various kinds of ¥-algebras introduced
above. In particular, the Set-models of Th(X) turn out to be essentially the ¥-algebras,

while its Cpo-models are nothing else than the complete ordered ¥-algebras.

42 CHAPTER 3. SOME NOTIONS OF CATEGORY THEORY

Proposition 3.3 (Categories of Algebras as Functor Categories) For any signa-
ture X, the categorical equivalences ¥-Alg = Set-Mody, and ¥-COAlg = Cpo-Mody
hold. Moreover, let S-Cpo-Mody- be the sub-category of Cpo-Mody, such that the tar-
get of the functors are strict continuous categories, and all the components of the natural
transformations are strict: then -SCAlg = S-CPO-Mody. 0

The result for Set-models is well-known: here we only sketch the underlying ideas.
Given a Set-model M: Th(X) — Set, consider the pair Ay = (M(1),p={M(fs) | f €
Y}). It is easy to check that Ay, is a Y-algebra: indeed, M(1) is a set, and for any f € %,,,
since fy :n — 1in Th(X), we have fa,, et M(fs) : M(n) - M(1), and thus M(fyx) :
M(1)" — M(1) (because M is product preserving and n = 1" in Th(X)), showing that
fa,, has the correct type. Besides, each natural transformation oo : M = N between
Set-models characterizes a homomorphism between A, and A in fact, the naturality
requirement implies that for any operator f € X, we have ay o M(f) = N(f) o aup, i.e.,
@1 0 fa,, = fay ool

These ideas apply also to (strict) Cpo-models: here M is by definition a (strict) cpPo,
all operators of the signature are mapped by M to continuous functions of the right
type, while a model is a natural transformation n : M = N associating to 1 a (strict)
continuous homomorphism 7, = M (1) — N (1).

All the previous results can be easily lifted when we deal with an equational theory
(X, E): for each axiom s = ¢, let X = var(s)Uvar(t) be the set of (distinguished) variables
in s and ¢, with #|X| = n. Due to the correspondence between terms and arrows, we
consider ty, sy € Th(X)[n, 1], and we quotient Th(X) with the axiom ¢y = sy. The
resulting algebraic theory is denoted Th(X, E'). Also in this case we can get a suitable
functor category [Th((X, E)) — Set]. An equivalent category could be obtained also
“internalizing” the axioms, that’s to say, restricting our attention to the full sub-category
of [Th(X) — Set], whose functors F' preserve the axioms, i.e, such that F(t5) = F(sx).

Chapter 4

Rewriting Logic: Syntax and
Semantics

In this chapter we introduce the basic definitions of (unconditional) Rewriting Logic. As
devised in the introduction, the basic idea is to provide a logic that is able to reason about
the changes of a computational system in an intrinsically concurrent way. A rewriting
theory is roughly described by an equational theory, and a set of (labeled) rewriting rules
over terms of the theory. Each rule can be considered as a general pattern for a basic
action, while an actual rewrite is described by a sequent: a tuple (a1, s), stating that ¢
rewrites to s via o, where « is a suitable encoding of the causes of the rewrite. A sequent
is obtained by finitely many applications of a set of rules of deduction: a rewriting logic
is actually given by a rewriting theory, and a set of deduction rules; obviously, different
sets may entail different families of sequents. In the first section of the chapter we present
the syntax of rewriting logic, we formally define rewriting theories, and introduce two
sets of deduction rules. (An equivalent version of) the first one was originally proposed
in [Mes92], while the second was introduced in [CGM95]. In the second section we pro-
vide two algebraic axiomatizations over sequents; this way we provide a somewhat more
abstract description of the computations performed by a system, equating families of
sequents that are computationally equivalent. In the third and fourth sections we aim in-
stead at describing the model-theoretic side of the Lambek-Lawvere analogy we devised in
the introduction. We introduce two different kinds of categorical semantics for rewriting

theories, and we prove their “equivalence” with the axiomatic one.

44 CHAPTER 4. REWRITING LOGIC: SYNTAX AND SEMANTICS

4.1 Rewriting Theories

We open this section introducing rewriting logic. For a summary of the basic notions

about universal algebras, we refer to Chapter 2.

Definition 4.1 (Rewriting Theories) Let X be a set of variables. A rewriting theory
R (over X) is a tuple (X, E), L, R), where (X, E) is an equational theory, L is a set
of labels, and R is a function R : L — Tx(X) x Tx(X), such that for all d € L, if
R(d) = (l,r) then var(r) C var(l) C X and [is not a variable. 0

Given a rewriting theory R, we write d : | — r € Rif d € L and R(d) = (l,r);
sometimes, to make explicit the variables contained in a rule, we will write d(xy, ..., z,) :
l(z1,...,20) — r(z1,...,2,) € R where {z1,...,2,} = wvar(l); given a substitution
o={x1/ty,...,x,/t,}, we will write [(¢y,...,t,) for lo.

Actually, in this thesis we are going to deal mainly with term rewriting systems (TRS’s):
i.e., rewriting theories such that the associated equational theory has an empty set of
axioms. A TRS is simply indicated by (X, L, R), and (usually) is uniquely determinated
by its set of rules.

In classical term rewriting, a rule d : [— r can be applied to a term ¢ if there is a
subterm (w, s) of ¢ such that [matches s, and the result is the term ¢ where the matched
subterm is replaced by a suitable instantiation of r. Moreover, a term can be rewritten
into another if there exists an appropriate chain of rule applications. This presentation
makes sequences of rewrites the basic notion: it does not allow to reason about how a
rewrite can be executed, i.e., to record the possible, different justifications of a derivation.
Instead, in rewriting logic the idea is to take a logical viewpoint, regarding a rewriting
theory R as a logical theory, and any rewriting — making use of rules in R — as a sequent
entailed by the theory. The entailment relation is defined inductively by a set of deduction
rules. With respect to the set-theoretical viewpoint, this choice allows us to equip each

rewriting step with a reasonable encoding of its causes.

Definition 4.2 (Rewriting Sequents) Let R = ((X, E), L, R) be a rewriting theory.
Let A = U,A,, be the signature containing all the rules d : | — r € R with the cor-
responding arity given by the number of variables in d: more precisely, for each n,
Ay = {d | d(xy,...,20) : Wzy, .., 20) — r(21,...,2,) € R}. A proof term «a is a

“ o»

term of the algebra Tr = Txuaugy, where is a binary operator (we assume that there
are no clashes of names between the various sets of operators). A (rewriting) sequent is

a triple (a, t,s) (usually written as a: t — s) where « is a proof term and t,s € Tx. [

4.1. REWRITING THEORIES 45

So, sequents in rewriting logic have the form « : ¢ — s, where ¢ and s are terms of
the algebra T(sx gy and « is a proof term, encoding a justification of the rewriting of ¢
into s. Note that, for the sake of simplicity, we are restricting ourselves to ground proof
terms, i.e., to deal only with rewrites over Tx: this does not limit the generality, since
each variable can be considered as a new constant, as already remarked in Chapter 2. We
say that t rewrites to s via « if the sequent o : ¢ — s can be obtained by finitely many

applications of certain rules of deduction.

Definition 4.3 (Rewriting Logic) Let R = (X, E), L, R) be a rewriting theory. We
say that R entails the full sequent a : s — t if it can be obtained by a finite number of

applications of the following rules of deduction:

e (Full Instantiation)

d:l—=reRdeN,,a;:t; —s;fori=1,....n
d(ag,...,on) Ut ty) = 1r(s1, .00 80)

e (Congruence) e t fori -1
€ 2p,; i t; —>S; Jorv=1,...,n

Flan, - am): ftr - tn) = f(S1s-m50)

e (Transitivity)
a:s—t f:t—u
a-B:s—u

Let R be a rewrite theory: the class of full sequents entailed by R induces a set-
theoretical rewrite relation over terms, simply obtained by dropping the proof term of a

sequent. We indicate such a relation with By.

The deduction system we introduced is equivalent to the one defined in [Mes92]. Of
course, this is only one of the possible, equivalent ways to define the class of sequents
that are actually entailed by the system, and a fortiori, to obtain the relation Br. It
has, however, the advantage of being rather intuitive. Transitivity states that the rewrite
relation entailed by the system is (not-so-surprisingly) transitive: two suitable rewrites
can be composed, and the resulting proof term is given by the composition of the two
components. Congruence states that the rewrite relation is also compatible with respect
to the algebraic structure, since it is closed under contexts; moreover, there are sequents

entailed by the theory describing the parallel execution of disjoint rewrites: the associated

46 CHAPTER 4. REWRITING LOGIC: SYNTAX AND SEMANTICS

proof term provides the context for the respective justifications. This rule also says that
the rewrite relation is refiexive: each term t can be rewritten to itself, if all its subcom-
ponents are idle, i.e., the sequent (¢,¢,¢) can be obtained by an inductive application (on
the structure of ¢) of the congruence rule. Maybe, the most interesting rule is full instan-
tiation: first, it implies that the transition relation is stable under substitution, that is, it
is closed under substitutions. But the associated sequent describes also the simultaneous
execution of nested rewrites: two subterms matching the left-hand sides of two rules can
be rewritten in parallel even if their roots are not disjoint, i.e., if one is above the other,

provided that they do not overlap.

Full Instantiation is not the only possible choice to get a stable and compatible rewrite
relation: the property is shared by flat sequents, originally introduced in [CGM95] as the

algebraic counterpart of a (categorical) model of term rewriting proposed in [Ste94].

Definition 4.4 (Flat Rewriting Logic) Let R = (X, E), L, R) be a rewriting theory.
We say that R entails the flat sequent o : s — t if it can be obtained by a finite number
of applications of the following rules of deduction:

(Flat Instantiation)

d:l—reRdel,, t,eTy fori=1,...,n
d(tl,...,tn):l(tl,...,tn)—)T(tl,...,tn)

(Congruence) As in Definition 4.5;

(Transitivity) As in Definition 4.3. 0

Flat instantiation still induces a compatible rewrite relation, even if it does not offer
suitable sequents for describing the nesting of rewrites. A rule can only be instantiated
with elements of Ty, and thus the rule names in a proof term generated using this rule
instead of full instantiation will appear at mutually disjoint positions. Nevertheless, the
flat rewrite relation is equivalent to Bg, since each nested rewrite can be described as
a suitable sequence of flat ones. Then, the basic difference between the two approaches

relies on the assumptions we have on a possible implementation schema'.

As for now, let us put to work the two different definitions of instantiation, and consider
the TRS V = {d(x) : f(z) = g(z),d' : a — b}. It entails the flat sequents d(a) - g(d') and

!For other suitable instantiations of the logic, as well as a careful mapping into classic term rewriting,
the reader has to wait for the next chapters.

4.2. ALGEBRAIC SEMANTICS 47

f(d')-d(b) both with source f(a) and target g(b): rule d has been instantiated with {z/a}
and {x/b} respectively, while d’ has been contextualized; it also entails the full sequent
d(d) : f(a) = g(b), where d' is nested inside d. Graphically, we have the rewrites

g -9
(@) Az}b (@~ -b b

using the standard (yet suggestive, in our case) representation of terms as trees. We
already said that, when considering just the rewrite relation, the two systems are equiv-
alent: it is easy to show (and the proposition will be made more precise in the next
section) that a TRS R entails a full sequent « : ¢t — s, iff there exists a finite chain
a; : t; = s;,1 = 1,...,n of flat sequents, such that oy - ... a, : t — s. So, why to
distinguish between flat and full rewrites? First of all, we must remind the reader that
sequents represent an operational model for rewriting theories: each sequent can be con-
sidered as the encoding of a “concrete” computation of the machine. If we consider a
term as a totally distributed structure, i.e., such that an actual rewriting machine can
act separately on each occurrence of the term, then full sequents are able to describe
the simultaneous execution of nested rewrites. Instead, a flat sequent can express only
“disjoint” concurrency: two rewrites can be executed simultaneously only if they act on
disjoint positions of a term. This is what we were saying stating that choosing a set of
deduction rules is implicitly the same as choosing a particular implementation schema, so

to say, for a rewriting theory.

4.2 Algebraic Semantics

In our view, the slogan of rewriting logic should be “an algebraic structure and a suitable
axiomatization capture the concurrency of a system”. In Chapter 6 we will elaborate on
this statement about concurrency, trying to explain why (and when) equipping the set of
derivations of a rewriting theory with a suitable equivalence relation means to provide a
concurrent semantics for the system the theory aims at describing. As for now, we recall

the reader that choosing a set of deduction rules means to specify a given implementa-

48 CHAPTER 4. REWRITING LOGIC: SYNTAX AND SEMANTICS

tion schema for the reduction mechanism. From this point of view, an equivalence over
derivations can be considered just as a way to abstract away from implementation de-
tails, equating derivations that are computationally equivalent. Describing an equivalence
over derivations is a particularly easy task in the setting of rewriting logic, where the
elements of the space of computations are encoded by terms of the algebra Tk: a suitable

equivalence can be easily expressed as an appropriate set of axioms on proof terms.

Definition 4.5 (Abstract Flat Sequents) Let R = ((X, E), L, R) be a rewriting the-
ory. An abstract flat sequent entailed by R is an equivalence class of flat sequents entailed
by R modulo the following set Ey of axioms, which are intended to apply to the corre-

sponding proof terms:

e (Associativity)
Q, ﬂa € TR .
a-(B-7)=(a-f)-7

¢ (Axiomatizing)

ty, ... 2n) = 8(x1,...,20) EE,a; €T fori=1,...,n
tlag, ... an) =s(ag,...,ap) ’

e (Distributivity)

feX,, B €Tr fori=1,...,n ‘
f(al-ﬂl,...,an-ﬂn):f(al,...,an)-f(ﬂl,...,ﬂn)’

e (Identity)
a:s—t

sca=a=a-t

Note that we are rather informal here, since we are not in the classical framework of
algebraic varieties: we implicitly assume to apply the axioms only to well-formed proof
terms, i.e., those that are actually entailed by the deduction rules. The problem can be
overcome simply noting that the class of entailed flat sequents forms a partial algebra:
its total operators are induced by those in ¥ (e.g., its constants are the triples (a, a, a)
for a constant in X, etc.); while rules and composition induce partial operators defined
only over a subset of tuples of elements, determined by suitable equations (e.g., a rule
d(xq...x,) induces an operator defined on the tuples (¢, ¢,¢) for t € Tx). All this amounts

to say that the class of entailed flat sequents can be defined by means of an essentially

4.2. ALGEBRAIC SEMANTICS 49

algebraic structure, and can be formally described by means of sketches [BW90]. A careful
treatment of partial algebras in the framework of algebraic semantics can be found in
[Rei87], while for some basic results we refer the reader to [Gra79]. The following fact is

actually sufficient for our purposes.

Fact 4.1 Let us consider two flat entailed sequents a : t — s, f:u — v, and let =p,
be the minimal congruence obtained closing the azioms in Ey with respect to substitution.
The flat proof terms «, 3 are equated if there exists a sequence oy : t; — s; fori =1...n, of
flat entailed sequents such that a; =g, a;11, oy = , a, = . Moreover, flat entailed proof
terms equated by the azioms in Ey have the same source and target terms: if o @ s — t
and B 1 u — v are flat sequents entailed by R, and o =g, B, then s =g u and t =g v.

Thus, an abstract flat sequent can be safely represented as a triple o : s — t. 0

The axioms have an intuitive meaning. Associativity and Identity need no explana-
tion. Also Distributivity has an obvious meaning: to give a context to the composition
of two rewrites is the same as to compose the contextualization of the single rewrites.

Azxiomatizing lifts on proof terms the axioms verified by the underlying algebra of terms.

Let us consider for example the TRs W = {d(z) : f(z) — g(z,z),d" : a — b,d"(x) :
h(x) — c}. The distributivity axiom identifies the proof terms g(d',d'), g(d',a) - g(b,d")
and g(a,d’) - g(d',b). Graphically, the following rewrites are equated.

9

a%%@,}\

a\\

g(b,d’)

(a a) (b D

g(d',d)

50 CHAPTER 4. REWRITING LOGIC: SYNTAX AND SEMANTICS

The equivalence induced by E; equates proof terms representing derivations differing
only in the order in which disjoint rewrites are performed. This is not the case for
derivations differing in the order in which nested rewrites are executed. Let us take the
TRS V described in the previous section: the proof terms f(d') - d(b) and d(a) - g(d') are
not equated by F;. A different axiomatization, taking care of such identifications, is the

following, originally proposed in [Mes92].

Definition 4.6 (Abstract Full Sequents) Let R = ((3, E), L, R) be a rewriting the-
ory. An abstract full sequent entailed by R is an equivalence class of full sequents entailed
by R modulo the set Ey of axioms, which are intended to apply to the corresponding proof

terms; Ey is the union of the axioms in E; with the following one:

e (Interchange)

d:l—reRdel,,a;:t; > s; fori=1,...,n
dlag,...,an) =, ...,0n) - d(st,...,80) =d(t, ... tn) (g, ... o)

The Interchange axiom is applied to full sequents only: it states that, whenever we
have the simultaneous execution of nested rewrites, it can be simulated as the sequential
composition of two simpler rewrites. Its intuitive meaning is that rewriting at the top
by means of a rule d, and rewriting “below”, i.e. in the subterms matched by the left-
hand side of the rule, are to a certain extent independent processes, and therefore can be
executed in any order. Let us consider again the TRS V: the proof term d(d'), correspond-

ing to the parallel execution of the rewrites of f and a, is equated to the linearizations
f(d') - d(b) and d(a) - g(d).

Fact 4.2 Let us consider two full entailed sequents o : t — s, f: u — v, and let =g,
be the minimal congruence obtained closing the azioms in Ey with respect to substitution.
The full proof terms «, B are equated if there exists a sequence a; : t; — s; fort =1...n, of
full entailed sequents such that a; =g, a1, oy = , a, = 3. Moreover, full entailed proof
terms equated by the azioms in Fo have the same source and target terms: if a1 s — t
and B 1 u — v are full sequents entailed by R, and o =g, B, then s =g u and t =g v.

Thus, an abstract full sequent can be safely represented as a triple o : s — t. 0

A third relation over sequents can be obtained simply applying the axioms E; to full
sequents. In this case, the theory entails the sequent d(d') : f(a) — ¢(b), describing the

4.3. R-SYSTEMS o1

simultaneous execution of two nested rewrites, but the three proof terms d(d'), f(d')-d(b)
and d(a) - g(d') are not identified anymore: that’s to say, we assume that our actual
implementation is able to distinguish the concurrent execution of nested rewrites from any
of its linearizations. In Chapter 6 we deal extensively with the analysis of the properties of
the models from the point of view of a concurrent implementation. Again, for our purposes
it is enough to note that these “abstractions” do not change the intuitive equivalence (from
an operational point of view) of the rewrite relations induced by full and flat sequents, as

shown by the following proposition, already stated in [Mes92].

Proposition 4.1 Let R = (X, E), L, R) be a rewriting theory: it entails an abstract full
sequent v 1 t — s, iff there exists a finite chain o; : t; — s;,1 = 1,...,n of abstract flat

sequents such that oy - ... apn :t— s, and o =g, a1+ ... - ap. 0

4.3 'R-Systems

The classes of abstract sequents, both full and flat, represent possible models for our logic.
Actually, they turn out to be a very special case of a more general notion. According to

[Mes92], a reasonable model for the full entailment is defined as follows.

Definition 4.7 (R-Systems) Let R = ((3,E),L,R) be a rewriting theory. An R-
system S s a category S together with

e o (3, E)-algebraic structure, i.e., for each f € ¥, a functor fs: S™ — S, preserving
the equations in E: for anyt = s € E, the identity ts = sg holds;

e for each rewrite rule d : s — t € R, a natural transformation as : ss = ts;

where the functors ss, ts are defined inductively from the basic functors fs.

An R-homomorphism F : & — S’ is a functor F : S — S’ preserving the algebraic
structure (i.e., fsr o F" = F o fg for each f € %,) and the rewriting rules (i.e., given
tdp : F — F the identity natural transformation, idr o as = as o idpn holds for every

rule a € R). R-Sys denotes the category of R-systems and R-homomorphisms. 0

Then R-systems are triples (S, ps, ¢s) where ps = {fs | f € £} is a family of functors,
and ¢g = {ds | d € R} is a family of natural transformations.
Some remarks are in order. As a start, with S™ we denote the n-fold product category

of S: its objects are n-tuples of objects of S, and its arrows are n-tuples of arrows, with

52 CHAPTER 4. REWRITING LOGIC: SYNTAX AND SEMANTICS

source and target defined pointwise. In particular, S® = 1, the category with one object

and one arrow, terminal in Cat.

Moreover, with identity of two functors we mean that they identify objects “on-the-
nose”, instead of “up-to-isomorphism”. Equivalently, this means that the two functors

coincide in the (functor) category of functors and (natural) transformations.

Finally, let us consider the TRS W: in any rewriting system S, the functor associated
to h(z) and a are respectively hy : S — S and ay : 1 — S. To provide a suitable
natural transformation, we must realize that, when considering a as an object of Tx(z),
the associated functor is actually ax () : S — S, with ay ;3 =!s;ax, where lg: S — 1
is uniquely determined. This discussion is analogous to the one about axiomatizations in

Lawvere theories, and we refer the reader to Section 3.5.

This notion of model is reasonable, since, as put in [Mes92], it “captures the idea
that the models of a rewrite theory are systems”, i.e., a system is a “machine-like entity
that can be in a variety of states, and that can change its state by performing certain
transitions”. This intuition is further confirmed by the following characterization of the
initial model of R-Sys (originally proved in [Mes92]).

Proposition 4.2 (Initial Model, I) Let R = ((3, E), L, R) be a rewriting theory. The
initial object I of R-Sys is the category having as objects equivalence classes of terms in
the algebra Tis gy, and as arrows the elements of the class of abstract full sequents entailed

by R, where (c, s,t) has source s and target t. 0

This characterization allows for an intuitive soundness and completeness result (also
due to Meseguer), expressing the fact that any R-system faithfully describes the full

entailment relation.

Proposition 4.3 (Soundness and Completeness of R-Systems) Let R be a rewrit-
ing theory: it entails an abstract full sequent o : t — s iff there exists a natural transfor-
mation oz, : tr, = Sz, (then, iff there exists a natural transformation as : ts = ss for
each R-system S).

Proof We simply sketch the relevant cases.

e (Sequent implies Transformation). The proof is constructive, in the sense that any
sequent a : t — s inductively defines a natural transformation as : ts = sg

for each R-system (S, ps, ¢s). We proceed by induction on the structure of proof

4.3. R-SYSTEMS 53

terms. Let us assume that we have a sequent o = d(ay,...,ap) @ t(t1,... ty) —
s(s1,...,8n). By hypothesis there exist (;)s : (t)s = (si)s : 1 — S natural
transformations: then, we can build the natural transformation ((ay)s, ..., (ay)s) :
((t1)sy .-y (tn)s) = ((s1)s, -+, (Sn)s) : 1 — S™, where the components are defined
pointwise. Then the natural transformation associated to a is ((a1)s, - - -, (n)s) *ds.

The other cases are similar.

e (Transformation implies Sequent). The result is an immediate consequence of the

characterization of the initial model 7. 0

As an example, let us consider a generic R-system S associated to the TRS V: the rules
have associated natural transformations ds : fs = gs:S — S and ds:as = bs: 1 — S.
The abstract full sequents d(d') is associated to the natural transformation dgs o ds :
as; fs = bs;g9s : 1 — S; it is uniquely defined thanks to the naturality requirement,
identifying the natural transformations (id,g o ds) - (ds 0idys) and (dsoidys) - (idpg 0 ds).

It is rather intuitive that the previous notion of model can be generalized in order to

characterize also abstract flat sequents by dropping the naturality requirement.

Definition 4.8 (Flat R-Systems) Let R = ((3, E), L, R) be a rewriting theory. A flat
R-system S is a category S together with

e a (3, E)-algebraic structure, i.e., for each f € ¥, a functor fs: S™ — S, preserving
the equations in E: for any t = s € E, the identity ts = sg holds;

e for each rewrite rule d : s — t € R, a transformation as : ss = ts.

where the functors ss, ts are defined inductively from the basic functors fs.

A flat R-homomorphism F' : § — S’ is a functor F': S — S’ preserving the algebraic
structure (i.e., fsro F™ = F o fs for each f € ¥,) and the rewriting rules (i.e., such that
the identity of transformations F xr as = agr x5, F™ holds for every rule « € R). FR-Sys
denotes the category of flat R-systems and flat R-homomorphisms. 0

FR-systems are triples (S, ps, ¢s) where ps = {fs | f € X} is a family of functors,
and ¢s = {ds | d € R} is a family of transformations; hence, R-Sys is a sub-category
of FR-Sys. Actually, R-Sys is reflective inside FR-Sys: the inclusion functor has a
left-adjoint, and the co-unit of the adjunction pair is a natural isomorphism. Note that
the left-adjoint simply adds all the identifications necessary to make a transformation into

a natural one: then Proposition 4.2 is an obvious consequence of the following result.

o4 CHAPTER 4. REWRITING LOGIC: SYNTAX AND SEMANTICS

Proposition 4.4 (Initial Model, IT) Let R = ((3, E), L, R) be a rewriting theory. The
initial object Zrr of FR-Sys is the category having as objects equivalence classes of terms
in the algebra T(s, gy, and as arrows the elements of the class of abstract flat sequents
entailed by R. 0

Proof The forgetful functor FR-Sys — Cat, associating to each FR-system its un-
derlying category, has a left-adjoint associating to each category C the free FR-system
obtained adding the Y-structure. Since also the forgetful functor Cat — Set, associat-
ing to each category C its set of objects O¢ has a left-adjoint associating to each set X
the discrete category X (with only identity arrows), there is an adjoint pair (F,G) from
FR-Sys to Set. Since O is initial in Set, then G(0) is initial in FR-Sys. G(0) has
the structure of Zrr (since there is an obvious one-to-one correspondence between the
flat axioms and the coherence requirements for source, target and identity function in a
category), then the thesis holds. 0

The result proved in Proposition 4.3 can be easily reformulated for FR-systems.

Proposition 4.5 (Soundness and Completeness of FR-Systems) LetR be a rewrit-
ing theory: it entails an abstract flat sequent o 1 t — s iff there exists a transformation
OZpr © tIpn = STpp (then, iff there exists a transformation as : ts = ss for each FR-
system S). 0

Note that, since R-Sys is reflective inside FR-Sys, then Proposition 4.4 implies

Proposition 4.2, and Proposition 4.3 implies Proposition 4.5.

A more abstract notion of model can be defined, as already done for the category
of (continuous) algebras in Chapter 3. The main concern of the next section will be
for functorial models; we will introduce enriched structures such that their cells are in
one-to-one correspondence with the sequents of a rewriting system. We first define a
structure such that its set of cells is in one-to-one correspondence with the rewrite rules
in R and, moreover, such that the underlying category is able to describe in a faithful

way the structure of the initial algebra associated to a given equational theory.

4.4 Functorial Models of Rewriting Theories

Along the presentation in Section 3.5, an algebra can be considered as a “model” of a

signature. The presentation of categories of algebras as functor categories makes this

4.4. FUNCTORIAL MODELS OF REWRITING THEORIES 25

interpretation explicit, showing that categories of models in different universes (like Set
and Cpo) can be taken into account. Essentially the same ideas can be applied to
rewriting theories as well: such systems can be considered as syntactical specifications,
and models for them are algebraic structures where all the “possible rewrites” have a
suitable interpretation. Once again, this approach has the advantage of separating in a
clear way what we can call the “R-structure” (i.e., the algebraic structure defined by the
equational theory, the axioms and the deduction rules of the rewriting logic) from the
additional algebraic structure that can be enjoyed by the model. As for signatures, two
kinds of categorical models for a system will be considered, namely the Set-based (in the
last part of this section) and the Cpo-based (in Chapter 7). For a given rewriting theory
R = ((X,E), L, R), the arrows of the Lawvere theory Th(X, E) are the “states” of the
system (because those arrows represent terms of the algebra Tix gy(X)), and rewrites are

cells, i.e., arrows between arrows.

Definition 4.9 (From Theories to Computads) Let R = (X, E), L, R) be a rewrit-
ing theory. The associated c-computad Th(R) is given by the pair (Th(X, E), R,),
where Th(X, E) is the Lawvere theory associated to the equational theory (X, E) and
R, is a set of cells between the arrows of Th(X,E), such that d : s — t € R iff
d,: Si,5) = liz,p) € R.. 0

After seminal studies in the late Eighties (see e.g. [RS87, Pow89] and in particular
[Mes90], as for the use of Lawvere theories; but also [See87, Str92, Ste94]), the correspon-
dence between rewriting systems and c-computads has been (often implicitly!!) at the
basis of many works on the semantics of rewriting. We freely generate an enriched cat-
egory from a c-computad, such that its cells represent (equivalence classes of) sequences

of rewrites.

Definition 4.10 (Spaces of Computations) Let R be a rewriting theory and Th(R)
its associated c-computad. Then the associated Lawvere 2-Theory 2-Th(R) is the carte-
sian 2-category Fy(Th(R)) with finite products, while its Lawvere S-Theory S-Th(R) is
the cartesian sesqui-category Fs(Th(R)) with finite products. 0

In a moment we will make more precise the relationship between these enriched cat-
egories and the models presented in the previous section. Note only that they describe
different models, since they impose different equivalences over cells, due to the inter-
change axiom. Let us consider the rewriting theory W = {d(z) : f(z) — g(z,x),d" : a —
b,d"(x) : h(x) — c}; the computad Th(W) has the following set of cells

26 CHAPTER 4. REWRITING LOGIC: SYNTAX AND SEMANTICS

§>\
I
i}
=
§>D‘

|
|

First of all, note the importance of duplicator V; and terminal arrow !; for the
correspondence between deduction rules and cells: it is the same problem we dealt
with when defining R-systems. Note also that cells such as (d' g f) - (b %, d) and
(axpd) - (d *g (Vi;9) = (axpd)- ({(d,d) *g g), originating from a; f : 0 — 1 (the
arrow associated to the term f(a)), belong to both spaces of computations. The associ-

ated cells can be graphically represented as:

: ! a
D WL 1 0—">1"g=2—5~1
TR (@)
0-to17 3t 07 e 32-7-1
- (b,b)

where 2d' = (d',d’). The diagrams should make clear the different meaning of left and
right composition: left-composition instantiates a rewrite (for example, ax;,d corresponds
to instantiating d(z) with {z/a}); while right-composition inserts a rewrite in a context
(d' % f inserts d’ in the context f(—)).

The two cells are different in the sesqui-category S-Th(W), while in the 2-category
2-Th(W) they are equated, thanks to the interchange axiom. The same happens to the
cells (d'xgh)-(bx,d") and (axpd")-(d'xg(!1;b)) = (a*;d") originating from the morphism
a; h.

The equations above suggest that sesqui-categories are suitable models of flat entail-
ment. As an example, there is no intuitive semantic counterpart for the abstract full
sequent d(d') : f(a) — g(b,b) in S-Th(W). On the contrary, 2-categories are models for
the full entailment relation. Since the interchange axiom holds, the cell associated to that
sequent is given by (d' *g f) - (b*, d) = (a*g d) - (d *r (V1;9)) = dx d. That cell is
graphically represented as:

4.4. FUNCTORIAL MODELS OF REWRITING THEORIES o7

Proposition 4.6 (Correspondence with Algebraic Models, I) Let R be a rewrit-
ing theory. Then there exists a bijective function ¢ between the set of all abstract full
sequents entailed by R and the cells in 2-Th(R)[0,1], such that ¢(a) : s,p) = tz,p) iff
a:s—t.

Proof The proof is constructive, and proceeds by induction on the structure of proof
terms and cells, respectively; it is analogous to the (sequent implies transformation) side
of the proof carried out for R-systems in Proposition 4.3. Note however that it is funda-
mental that 2-Th(R) has finite products, since it provides a suitable structure on cells

that is respectful of the finite products on terms. 0

Models of the Lawvere theory of a signature are cartesian functors to a suitable carte-
sian category with chosen finite products. Similarly, we can define the models of the Law-
vere 2-theory and S-theory associated to a rewriting theory R as functors to a suitable
universe; however, those functors (as well as the corresponding natural transformations)

have to preserve the relevant structure, which is now much richer.

Definition 4.11 (Models of Lawvere 2-Theories) Let R be a rewriting theory, and
C a cartesian 2-category with chosen products. A C-model for the Lawvere 2-theory
associated to R is a chosen 2-functor M : 2 — Th(R) — C, while a model morphism
s a 2-natural transformation between models. The category C-Modg of C-models is the
2-functor category [2 — Th(R) — C]: its objects are C-models of R, while its arrows are

model morphisms. 0

As Set is the paradigmatic example of category, so Cat is the paradigmatic example
of 2-category: the objects are small categories, the arrows are functors, and the 2-cells
are natural transformations. Since Cat is cartesian with chosen products (where the
monoidal operator C ® D is just given by the product category C x D), we are allowed
to consider Cat-models of a rewriting theory R; they are nothing else than the R-models

introduced in the previous section.

Proposition 4.7 (The Functor Category of R-Systems) Let R be a rewriting the-
ory. The category of R-systems (see Definition 4.7) is equivalent to the category Cat-
Mody of Cat-models for R. 0

58 CHAPTER 4. REWRITING LOGIC: SYNTAX AND SEMANTICS

Proof Any R-system (S, ps, ¢s) induces a functor Mg : 2 — Th(R) — Cat, such that
Ms(1) = S, while arrows and cells are defined accordingly. Also the converse holds,
in the sense that each functor M induces an R-system whose underlying category is

Sy = M(1), while functions and natural transformations are defined accordingly. 0

This result (in a different form) was already stated in [Mes90], and provides an elegant
characterization of R-systems. Note however that the categories are just equivalent, since
the functor category is much larger than the other: to get an isomorphism we need
to restrict the functor category, in order to take into account only one representative
for each class of chosen functors that differ only for the choice of the monoidal natural
transformations associated. For example, if we consider two functors M, M, such that
M (1) = My(1), they induce the same R-system, even if they may be different: however,
they are isomorphic by a natural transformation.

All the previous results given for the full entailment relation are easily reformulated

to take into account the flat entailment. They are stated in the following, without proof.

Proposition 4.8 (Correspondence with Algebraic Models, II) Let R be a rewrit-
ing theory. Then there exists a bijective function & between the set of all abstract flat
sequents entailed by R and the cells in S-Th(R)[0,1], such that £(c) : s(z,m) = tx,E) iff
a:s—t. 0

As explained in Chapter 3, Cat can also be equipped with a different enriched struc-
ture: we indicate with Catg the sesqui-category with small categories as objects, functors

as arrows and transformations as cells.

Definition 4.12 (Models of Lawvere S-theories) Let R be a rewriting theory, and
Cg a cartesian sesqui-category with chosen products. A Cg-model for the Lawvere s-theory
associated to R is a chosen s-functor M : S—Th(R)S — Cg, while @ model morphism s
a s-natural transformation between models. The category Cg-Modyg of Cg-models is the
s-functor category [S—Th(R)S — Cgl: its objects are Cg-models of R, while its arrows

are model morphisms. 0

The results proved for R-systems are easily extended to flat R-systems.

Proposition 4.9 (The Functor Category of Flat R-Systems) Let R be a rewriting
theory. The category of flat R-systems (see Definition 4.8) is equivalent to the category
Caty-Mody of Catg-models for R. 0

Chapter 5

Consistency with Finitary Rewriting

In the previous chapter we introduced the basic notions of rewriting logic, developing the
categorical side of the Lambek-Lawvere analogy we devised in the introduction. The first
aim of this chapter instead is to discuss some of the aspects of the set-theoretical side of

the analogy, taking into account the classical approach to term rewriting.

The basic notion of the set-theoretical approach to term rewriting is that of redex
of a term ¢: a pair (w,d) where w is an occurrence of ¢, and d is a rule such that its
left-hand side matches the subterm ¢/wj; such a redex rewrites t to a term s, obtained by
substituting the subterm ¢/w with a suitable instantiation of the right-hand side of the
rule. A derivation is just a suitable chain of rewrites, while the derivation space of a term
t is just the set of co-initial derivations, starting from ¢. Derivation spaces represent a very
intuitive operational model for TRS’s: in Section 1 we will show that these structures are
in one-to-one correspondence with a particular class of sequents entailed by a rewriting

theory.

Derivation spaces are easily defined, but, unfortunately, the resulting operational se-
mantics is usually too concrete: in order to obtain a description as much as possible
independent from the actual execution of the reduction process performed (implemented)
by a given machine, we need to abstract away from irrelevant details. Usually, such a
description is recovered imposing a suitable equivalence relation on derivations, equat-
ing sequences of rewrites that are the same up to some conditions. Those conditions
express the properties of the reduction mechanism over the system under examination:
each equivalence class represents an abstract derivation, corresponding to a family of

computationally equivalent sequences of rewrites.

Depending on the conditions we choose to take into account, we get different equiva-

lences. We open Section 2 recalling the definition of the most famous one, the so-called

60 CHAPTER 5. CONSISTENCY WITH FINITARY REWRITING

permutation equivalence [Lev80, Bou85]: it equates derivations that are the same up to
permutation of compatible rewrites. Then, we introduce here a new equivalence we call
disjoint equivalence, equating derivations that are the same up to permutation of disjoint
rewrites. In the last part of Section 2 we show that these equivalences can be characterized
also in terms of suitable axiomatizations over sequents: we will show that for any term
t there is a one-to-one correspondence between the families of permutation equivalent
derivations originating from ¢, and the families of abstract full sequents with source ¢. A
careful inspection of the proof allows us to extend the result also to the other equivalence:
namely, that for any term ¢ there is a one-to-one correspondence between the families of
disjoint equivalent derivations originating from ¢, and the families of abstract flat sequents

with source t.

5.1 Consistency between Operational Semantics

Let us consider the definition of derivation given in Definition 2.17: simultaneous exe-
cutions of redexes cannot be taken into account, since in any rewrite only one rule is
applied. This is confirmed by the particular class of sequents corresponding to sequential

derivations. We first need some definitions.

Definition 5.1 (Classes of Sequents) Let R = (X, L, R) be a TRS. A proof term « is

“on

one-step if it does not contain the operator “7, i.e., it is a term of the algebra To = Tisun);
it is linear if it is one-step and contains exactly one operator in A; it is many steps if
a=aqa ... a, with1 <n <w and o; is one-step for each i € {1,...,n}'; finally, it is
sequential if it is many steps and all the component one-step proof terms are linear. A

sequent o : t — s is one-step (linear, many steps, sequential) if so is . 0

The rules of deduction we now introduce constitute the fragment of rewriting logic
necessary to describe just the application of a redex to a term or a derivation from a

term: they allow to derive only sequential sequents.

Definition 5.2 (Sequential Rewriting Logic) Let R = (X, L, R) be a TRS. We say
that R entails the sequential sequent o: s — t if it can be obtained by a finite number of

applications of the following rules of deduction:

IThe application order in this case is not influent. Note however that there are sequents that are
neither one-step, nor many-steps.

5.1. CONSISTENCY BETWEEN OPERATIONAL SEMANTICS 61

e (Flat Instantiation)

d:l—=reRdelA,t; €Ty fori=1,....,n
Aty oootn) Uty oy tn) = (b, b))

e (Linear Congruence)

f€¥,, a5 =5, a€Tot;eTs forje{l,...,n}\i

f(tillla «, ;l-l—l) : f(tillla S, zn—l—l) — f(tillla sla ;l-l—l) ,

e (Transitivity)

a:s—t f:t—u
a-f:5—>u '

where t1, p < q, stands for the tuple t,,... 1, 0

The following proposition states the precise relationship between the classical presen-

tation of rewriting and the one using sequents (in the sequential case).

Proposition 5.1 (Sequential Sequents and Derivations) Let R be a TRS. (1) If A
is a redex of t and t —a s, then there is a linear proof term aa such that R entails the
sequent ap : t — s (using the rules of Definition 5.2). Viceversa, (2) if R entails a linear
sequent o : t — s, then there is a redex A, of t such that t —a, s. Hence, there is a

derivation from t to t' iff R entails a sequential sequent ot — t'.

Proof The proof is constructive, in the sense that we inductively define a function over

linear proof terms (redexes) that returns the associated redex (proof term, respectively).

1. Let A = (w,d : I — r): then t(u) = s(u) for each u ? w, and there exists
o={x/ty,...,z,/t,} such that lo = t/w, ro = s/w. By the instantiation rule, we
have d(t1,...,t,) : t/w — s/w. Then, to construct aa, we just need the function

&, parametric over the terms in Tx:

o d(tyy . t) if w=2X\
&(A) = { f(sliil,fgi((w’,d)),sﬁl) if w=iw' and t = f(s1,..., sn).

We say an = &(A): it is well defined, and it is easy to check that aa : ¢ — s.

62 CHAPTER 5. CONSISTENCY WITH FINITARY REWRITING

2. We define instead a function x over proof terms:

(D) ifa=d(t,....t):
x(a) = (iw,d) if a= f(si"', o/, s7,) and x(o') = (w, d).

We say A, = x(«). The soundness of x is easily proved. Let us assume that, in
the first case, a = d(t1,...,t,) : l(t1,...,tn) — r(t1,...,t,). By definition lo = ¢
and ro = s, where 0 = {x1/t1,...,2,/tn}, so that o is the substitution associated
to (A, d). In the second case the corresponding substitution is the same inductively

associated to x(a). 0

Note that in the first part of the proof it was fundamental to consider the term
to which the redex is applied, in order to get the right context for the proof term of
the associated sequent. We remark again that the proof is constructive. In fact, we
actually defined a one-to-one correspondence between sequential sequents and sequential
derivations, supporting the claim that the two operational descriptions of term rewriting

are actually equivalent.

Proposition 5.2 (Equivalence between Operational Models, I) Let R be the TRS
(3, L, R). Then for each t € Ty, there is a one-to-one correspondence between the families
of sequential derivations entailed by R originating from t, and the families of sequential

sequents with source t.

Proof Given A = (w,d : | — r) redex of ¢, we want to show that x(&(A)) = A. We
proceed by induction on the length of w. The inductive base w =)\ is obvious. Let us
assume w = iw': t = f(t1,...,t,), A" = (w',d) is a redex of ¢; and by induction hypothesis
X(&;(A’)) = A’. The thesis immediately follows.

Conversely, we want to show that & (x(«)) = . We proceed by induction on the struc-
ture of . If & = d(t4,...,t,), then x(a) = (A, d) with substitution o = {z/t1 ...z, /t,},
and by definition the thesis holds. If o = f(si{"',a/, s,,), then by induction hypothesis
o' has associated a redex x(o/) = (w,d) with substitution o, such that &, (x(a/)) = o'
Then x(a) = (iw, d) with substitution o, and by definition of & the thesis holds. 0

The previous proof is quite straightforward, but it is paradigmatic of the analogous,
but more difficult ones that we will state in the rest of the chapter. Let us now consider
again rewriting logic: small changes to the deduction rules of Definition 5.2 are sufficient

to generate many-steps sequents.

5.1. CONSISTENCY BETWEEN OPERATIONAL SEMANTICS 63

Definition 5.3 (Parallel Rewriting Logic) Let R = (X, L, R) be a TRS. We say that
R entails the many-steps full sequent o : s — t if it can be obtained by a finite number of

applications of the following rules of deduction:

¢ (Elementary Instantiation)

d:l—=reRdeN,,a;:t; = s;,a; €To, fori=1,....,n
d(ar, ... o) Ut ... tn) = 7(S1,. ..,) ’

e (Elementary Congruence)

J€Xn,aiiti = si,a;€To, fori=1,...,n

flag, .. o) s flt, oo tn) = f(S1,..0,80)

e (Transitivity)

a:s—t f:t—u
a-B:s—u

We say that R entails a many-steps flat sequent if we substitute the Elementary

Congruence rule with the Flat Instantiation rule of Definition 5.2

Definition 5.4 (Disjoint Rewriting Logic) Let R = (3, L, R) be a TRS. We say that
R entails the many-steps flat sequent o : s — t if it can be obtained by a finite number of

applications of the following rules of deduction:

e (Flat Instantiation) and (Transitivity) as in Definition 5.2;

e (Elementary Congruence) as in Definition 5.5. 0

Given a parallel redex ® and an occurrence w, we define the restriction of ® at oc-
currence w as the parallel redex ®/w = {(v,d) | (wv,d) € ®}. The following proposition
generalizes to the parallel case the relationship between the two presentations of rewriting,

stated in Proposition 5.1.

Proposition 5.3 (Many-Steps Sequents and Parallel Derivations) Let R be a left-
linear TRS. (1) If @ is a parallel redex of t and t —¢ s, then there is a one-step proof
term ag such that R entails the full sequent ag : t — s (using the rules of Definition 5.3).
Viceversa, (2) if R entails a one-step full sequent o : t — s, then there is a parallel redex
&, of t such that t —o, s. Hence, there is a parallel derivation from t to t' iff R entails

a many-steps full sequent o 1 t — t'.

64 CHAPTER 5. CONSISTENCY WITH FINITARY REWRITING

Proof Also in this case we give a constructive proof, providing suitable functions over

full proof term and parallel redexes.

1. Let ® = {Aq,...,A,,} be the redex under examination, such that the generic i-th
redex is given by the pair (w;,d;). Moreover, let us assume it is ordered, in the
sense that 1 < ¢ < j < n implies that either w; < w; or w;|w;. Then t(u) = s(u)
for each u # wy, and there exists 0 = {x1/t1,...,2,/t,} such that ljo = t/wy,
rio = s/w;. By the instantiation rule we have d(t1,...,t,) : t/w; — s/w;, where
t/u1 Oy, () = t; = s/wyuy, for uy, € Oy (r1). Also in this case we use a function k,

parametric over the class of terms in 7%, and defined over sets of compatible redexes;

if we assume ¢t = f(s1,...,,),
t if & = ();
(@) = f8s, (R/1), ... Ky, (D/n)) if wy #

dy (i, (8O0, (1), -+ i, (B)O,. (1)) if wy = A

We define ag as k;(®P): it is well defined, and it is proved by induction on ® that
ag : t — s. The idea is that x;(®) describes the simultaneous application of all the
redexes in ®. In particular, in the case w; = A, each ®/O,, (1) describes the redexes
applicable to t;; and since by definition ¢t/O,,(l;) = t; = s/u,, for u,, € O, (r1), if
by induction hypothesis the various k¢, (®/O,, (1)) are well-defined, so is x;(P).

2. We define a function 1 over proof terms; if we assume ¢ (q;) = (w;, d;), then

_ J AN DO UL (O (hwi di)} if o = d(ay, ..., om);
o) = { U, (iw;, d;) if o= flog,...,an).

We say that A, = ¢(«). The soundness is proved by induction on the number of
redexes. Let us assume that, in the first case, o = d(t1,...,t,) @ l(t1,... tn) —
r(ti,...,t,). By definition lo = t and ro = s, where 0 = {1/t1,...,2,/t,}, so
that o is the substitution associated to (A, d). In the second case the corresponding

substitution is the same inductively associated to x(o’). 0

Also for many-steps the correspondence is one-to-one, since we provided a suitable

sequent, equivalent to the parallel execution of all the redexes of the compatible set.

Proposition 5.4 (Equivalence between Operational Models, IT) Let R be the left-
linear TRS (X, L, R). Then for each t € Tx, there is a one-to-one correspondence between
the families of parallel derivations entailed by R originating from t, and the families of

many-steps full sequents with source t.

5.2. CONSISTENCY BETWEEN ABSTRACT SEMANTICS 65

Proof We proceed by induction on ®. The base case ® = {A} is proved by Proposition
5.2. Let us assume that the redex ® is ordered, and that all the hypotheses of the proof
of 5.3 hold. Then we proceed by induction on wy. If wy # X and t = f(sy,...,s,),
by definition k;(®) = f(ks, (®/1),..., ks, (P/n)); by induction hypothesis, (ks (®/i)) =
® /i, and by the definition of ¢, the result holds. The case w; = A is analogous.

Conversely, we want to show that ;(¢(a)) = «a. We proceed by induction on the
structure of a. If @ = f(ay,...,an) @ f(t1,...,tn) = f(S1,...,8n), then by definition
there are sequents «; : t; — s;, and by induction hypothesis each a; has associated a
redex ¥(«;) = (w;, d;) with substitution o;, such that sy, (V(a;)) = ;. Then by definition
of ky(f(c,...,ay)) the thesis holds. The case & = d(ay, ..., ay) for d rule is analogous.
O

Similar properties also hold for disjoint derivations: the following results can be easily
recovered just by analyzing the corresponding ones for compatible redexes, and are stated

without proof.

Proposition 5.5 (Many-Steps Sequents and Disjoint Derivations) Let R be a
TRS. (1) If @ is a disjoint redex of t and t —4 s, then there is a one-step proof term
ag such that R entails the flat sequent ag : t — s (using the rules of Definition 5.4).
Viceversa, (2) if R entails a one-step flat sequent o : t — s, then there is a parallel redex
®, of t such that t —4, s. Hence, there is a disjoint derivation from t to t' iff R entails
a many steps flat sequent o : t — ', 0

Proposition 5.6 (Equivalence between Operational Models, III) Let R be the
left-linear TRS (X, L, R). Then for each t € T, there is a one-to-one correspondence
between the families of disjoint derivations entailed by R originating from t, and the

families of many-steps flat sequents with source t. 0

5.2 Consistency between Abstract Semantics

We open this section recalling the definition of permutation equivalence.

Definition 5.5 (Permutation Equivalence) Let R be a left-linear TRS. Permutation
equivalence (indicated as =,) is the least equivalence relation over parallel derivations
satisfying:

1. if ®||.D', then po - pone =p por - Po\a';

66 CHAPTER 5. CONSISTENCY WITH FINITARY REWRITING

2. ifp=pp, thent-p-7'=, 7 p - 7" for 7,7 derivations.

where ®, ®' are compatible sets of redexes, and pg, ps any of their complete developments.

0

Thanks to Proposition 2.13, the definition is well-given. It can be obviously reformu-

lated to deal only with disjoint derivations.

Definition 5.6 (Disjoint Equivalence) Let R be a TRS. Disjoint equivalence (indi-

cated as =y) is the least equivalence relation over disjoint derivations satisfying:

1. if @|[®', then ps - pa La) =a par - P@Lar);
2. ifp=qp, thent-p-7 =47-p -7 for 7,7 derivations.

where ®, ®' are disjoint sets of redexes, and pg, pe any of their complete developments.

0

Disjoint equivalence has a much simpler formulation, since given any two set ®, &' of
disjoint redexes, it is easy to prove that the residual ®\®' corresponds to the set-difference
o — 9.

The following result was originally proved in [LM92].

Proposition 5.7 (Correspondence between Abstract Models, I) Let R be the left-
linear TRS (X, L, R). Then for each t € T, there is a one-to-one correspondence between
the families of permutation equivalent derivations in R originating from t, and the families

of abstract full sequents with source t entailed by R. 0

In our setting, this is proved in a simpler way than in the original paper. A first
step is to show that the one-to-one correspondence between operational models stated in

Proposition 5.4 preserve permutation equivalence.

Proof We proceed by induction on the length of the derivation (number of one-step

sequents, respectively).

5.2. CONSISTENCY BETWEEN ABSTRACT SEMANTICS 67

(Permutation implies Abstractness). All we need to show is that, given a set ® of
compatible redexes, then for any two complete developments ps and pjy of ® the
proof terms ky(ps) and k;(p}) are equated. We proceed by induction on ®. The
base case is ® = {A, A’}, and the situation is indicated by the following diagram:

ty
y Y\A
t S
N
to

The case AJ|A’ is obvious, so let us assume A = (w,d) and A" = (w',d"), with
w < w and w' = w - O, (1) - v for some z; € var(l). By definition
k(@) = tlw « d(t Ky, (A), #2,)] = tlw « d(t ti[v < d' (51, -+, 5m)], 1))
Then by construction x;(A’) = t[w' + d'(s1,..., Sm)], with the same substitution
associated to ry, (A), and to = t{w' < r(s1,...,Sm)]. Also by definition

Ky (A) = tlw < d(t{" 4o < r(s1, ..o, 8m)], 100)]-
Finally, thanks to the interchange axiom we have r;(®) = ry(A') - £y, (A). Analo-
gously, r¢(P) = ki (A) - Ky, (A).

Now, for a generic ®, let us consider two developments pg = A -0 and pf = A" - o',
By construction we have ® = {A} U {A’} U ®', and a situation represented by the

following diagram:

1y
RN
A\A
t t3 #— S
A\A/
A/ / o’
Lo

By construction p is a development of ®\{A, A}, while o (¢') is a development of
P\A (P\A'). Now, if both ®\A and &\ A’ have a smaller number of redexes than @
(e.g., if A and A’ are disjoint with the other redexes of ®, or they are right-linear),
then by induction hypothesis k(o) = k;((A\A) - p) and ki (0') = k((A\A') - p).
Since by induction we also have k;(A) - k4 (A'\A) = ki(A) - Kk, (A\A'), then the
thesis holds. If instead for example ®\A’ has more redexes than ®, then we apply
this procedure to o' = A" - ¢"; if Ay - 0y is a complete development of A\A', then

68 CHAPTER 5. CONSISTENCY WITH FINITARY REWRITING

we have a situation of this kind:

17}

Al o'
/AI\A’\A\\
ty P

II\A1

A\A %

l3

Surely kg, (A") ke, (A"\A1) = K, (A1) - K15 (A1\A”). Now we check the number of re-
dexes of (®\A")\A” and (®\A’)\A;, to eventually prove by induction that , (0”) =
ke, ((A\A") - ') and k(o7 - p) = ki, ((A"\Ay) - p), hence g (0") = ki ((A\A') - p).
Since all the possible developments of ® are finite, the procedure is convergent, and

we are then assured that the thesis holds.

(Abstractness implies Permutation). We proceed by induction on the last axiom ap-
plied. All the cases are obvious, except for interchange. Let assume for the sake of

simplicity that we are applying the axiom on the top, i.e., that

a=d(ag,...,an) =lag,...,0p) - d(s1,. .., 8n) t(tr, ... ty) = S(S1,. ., Sn)-

Then by construction the set of redexes ¢(l(a1,...,ay)) U ¥(d(s1,...,s,)) and
Y(d(aq, ..., ay)) coincide. The case d(aq,...,an) = d(t1,...,tn) - r(Q1,..., Q) i8

entirely analogous. 0

After that, it is enough to note that, although the parallel rewriting logic of Definition
5.3 seems less powerful than full rewriting logic (since the sequents appearing in the
premises of the congruence and instantiation rules are not bound to be one-step, but they

“on

can be arbitrary, and the operator can appear inside other operators in the proof term

of a sequent), they entail the same families of abstract sequents.

Proposition 5.8 (Equivalence of Rewriting Logics, I) Let R be a TRS: it entails a
sequent o : t — s in full rewriting logic iff it entails a many-steps sequent o' : t — s in

parallel rewriting logic, such that o =g, .

Proof The proof can be found in Lemma 2.6 (and Lemma 3.6) of [Mes92]. Anyway,
it is quite straightforward, proceeding by induction on the last rule applied. Let us just
consider the sequent f(aq,...,ap) : f(t1,...,tn) = f(S1,...,8n), such that Congruence is

the last rule applied; by induction, each a; can be decomposed in a finite chain of one-step

sequents o) - ... afi: then o = f(al,ty... . tn) - f(02 tay .. ty) ..o (s, ., Snir, 0fn)

5.2. CONSISTENCY BETWEEN ABSTRACT SEMANTICS 69

is one of the possible many-steps proof terms corresponding to f(ay,...,ay,), and o/ =g,
flag, ..., ap). 0

An inspection of the proof of Proposition 5.7 shows that the following result holds.

Proposition 5.9 (Correspondence between Abstract Models, IT1) Let R be the
TRS (X, L, R). Then for each t € Ty, there is a one-to-one correspondence between the
families of disjoint equivalent derivations originating from t, and the families of abstract
flat sequents with source t entailed by R. 0

This is proved showing that the functions defined in Proposition 5.3 preserve the

equivalences (as just done in Proposition 5.7), and then using the following result.

Proposition 5.10 (Equivalence of Rewriting Logics, IT) Let R be a TRS: it entails
a sequent o : t — s in flat rewriting logic iff it entails a many-steps sequent o : t — s in

0

disjoint rewriting logic, such that o =g, o.

70

CHAPTER 5. CONSISTENCY WITH FINITARY REWRITING

Chapter 6

On Concurrent Rewriting

In this chapter we focus our attention on the concurrent aspects of the semantical models
for the reduction mechanism proposed in Chapter 4 and Chapter 5. Lévy introduced per-
mutation equivalence in his study of the optimal reduction strategies for A-calculus. As we
recalled in the introduction of the thesis, his approach was to discard the usual, syntactical
representation of terms, in order to describe them as suitable graph expressions, where the
sharing of subexpressions is explicit: subexpressions that should be “syntactically” copied
in a reduction step are kept shared in the corresponding graphical contraction. In this
setting, a single reduction step (on a graph) can then subsume a long sequence of (single)
rewrites, and permutation equivalence equates precisely those sequences of syntactical

rewrites that correspond to the same contraction on graphs.

In Section 6.3 we will argue about the adequacy of permutation equivalence in de-
scribing graph reduction, showing in particular the kind of problems arising when not
orthogonal TRS’s are taken into account. However, the main focus of the chapter is a
discussion about the adequacy of disjoint and permutation equivalences in describing a
suitable concurrent semantics of the reduction mechanism. In the concurrent approach we
assume to have a distributed system: a network of (loosely) coupled processors, on which
to implement the reduction process. Moreover, we also assume a minimal data structure,
dealing implicitly with a one-node/one-processor architecture, where terms are described
as trees, and we have a tree-like implementation schema. Since we aim at describing the
simultaneous reduction of compatible redexes, it is then necessary to check out that the
notion of compatibility is directly implementable, in the sense that without any further
assumption on the structure of (the coupling of) the network, the simultaneous execution
of two compatible redexes is feasible. In the concurrency area (and in Section 6.1 we

will try to provide some intuitive motivations about that) such a property is considered

72 CHAPTER 6. ON CONCURRENT REWRITING

equivalent to show that the abstract derivation space forms a prime algebraic domain
(PAD).

PAD’s are a simple, general and well-accepted model to describe the behaviour of con-
current, non-deterministic systems. Their acceptance in the concurrency field is due to
their tight correspondence with prime event structures (PES’s, [Win89]). First introduced
in the early Eighties, PES’s are partial orders of “events”, equipped with a “conflict” re-
lation. Such structures are very suitable for describing the behaviour of distributed and
non-deterministic computational devices generating instantaneous atomic events, which
can be causally related or mutually exclusive. The level of abstraction they capture is
considered as directly reflecting that of a possible, concurrent implementation, where each
event corresponds to a basic action of the underlying machine. To each PES is associated
a set of configurations: compatible, left-closed subsets of its events. Intuitively, a configu-
ration corresponds to a specific state of the system reached after some computation, and
its events are all those generated during that specific computation. A fundamental result
due to Winskel shows that the set of all configurations of a PES ordered by set inclusion
(its “domain” of configurations) forms a PAD; moreover, for each PAD there is a PES such
that its domain of configurations is isomorphic to the given PAD. Thus the use of PAD’s

or PES’s for the description of computational systems is equivalent.

Coming back to TRS’s, both the classes of abstract full and flat sequents starting from
a given initial term ¢ can be equipped easily with a prefiz pre-ordering: o < [iff there
exists a proof term v such that o -y = 3. In Section 2 we will show that only the prefix
pre-order induced by flat entailment is a PAD, while that induced by full entailment fails to
satisfy the “distributive property” of PAD’s. Section 1 just provides a brief introduction
to PAD’s, while Section 3 gives some remarks on the interweaving about the algebraic
description of terms and the notion of redexes compatibility: a topic we will deal again
with in Chapter 9.

6.1 Permutation vs. Concurrency

In this section we analyze the algebraic properties of the abstract models we just in-
troduced. We open the section introducing Prime Algebraic Domains (PAD’s for short;
see [Win89]). A PAD is a partial order verifying some additional properties. The use of
partial orders in semantics relies on the old idea that a computing machine determines
an ordered space of computations; the richer structure of PAD’s, however, makes them

especially suited for modeling distributed system:s.

6.1. PERMUTATION VS. CONCURRENCY 73

Definition 6.1 (Prime Algebraic Domains) Let D = (D,C) be a PO:

1.

10.

The least upper bound of a set X C D is an element |1 X such that x < || X for
all v € X, and such that for all z € D, (Vr € X .z < z2) = [|X < z. We write

z Uy for [{z, y}.

Symmetrically, the greatest lower bound of a set X C D is an element ['1X such that
MX <z for all z € X, and such that for all z € D, (Vx € X .z < z) = z < T1X.
We write x My for Tz, y}.

A directed subset of D is a subset S C D such that for any finite subset X C S
there is an element s € S such that Vo € X .x < s.

An element x € D 1is finite if for all directed sets S, x T || S implies that there is

some s € S such that x C s.
D is finitary if for every finite element x € D, the set {y |y C z} is finite.

An element x € D is complete prime (prime) if for each X C D (each finite X C D),
if LU X exists and x T || X, then there exists an y € X such that x C y.

D is prime algebraic if for all x € D, x = | |{y C = | y is complete prime}.

For x,y € D, we write x 1 y (and we say that x and y are compatible) if there
exists a z such that x C z and y C z. We say that X C D is pairwise compatible
if for all x,y € X we have x 1 y.

A finitary partial order (D,C) is distributive if, whenever x 1 y, then we have
(xUy)Nz=(xMNz)U(yMNz).

D s finitely coherent if it has LUB’s of finite, pairwise compatible subsets. D is a

coherent domain if it has LUB’s of arbitrary, pairwise compatible subsets. 0

The following characterization is due to Winskel [Win87].

Fact 6.1 Any coherent, finitary domain D is prime algebraic iff it is distributive. 0

As we remarked in the introduction, whenever the derivation spaces (set of co-initial

abstract derivations, for any given term ¢) of a model form a PAD, this can be seen as

an implicit confirmation of the “adequate degree of concurrency” of that model. Given a

term ¢, we define now formally its derivation space as the subset of cells originating from

it, representing the possible evolutions of the machine with that particular initial state.

74 CHAPTER 6. ON CONCURRENT REWRITING

Definition 6.2 (Derivation Spaces) Let R = (X, L, R) be a TRS, and t € Tx.. The full
derivation space Ly(t) associated to t is the pre-order (Da(t), Co), where Da(t) is the class
of abstract full proof terms in Tr entailed by R with source t, and Co is the pre-ordering
relation defined as o Ty [iff there exists v such that oy =g, 3. Similarly, we define the
flat derivation space Lg(t) = (Ds(t),Cs) associated to t, by simply considering abstract

flat proof terms in the above definition, and the set of axioms E. 0

The ordering relation is obviously well-defined. Actually, both Lg(¢) and Ly(t) are
partial orders. The result for the ordering induced by permutation equivalence was shown
in [Bou85]; for disjoint equivalence we refer the reader to next section. Let us now
restate the previous definitions in categorical terms (thanks to the correspondence between

algebraic and categorical models).

Definition 6.3 (Categorical Derivation Spaces) Let R = (X, L, R) be a TRS, and
t € Tx: then ts : 0 — 1, and let us denote 2-Th(R)[0, 1] by C. The full categorical
derivation space Loc(t) associated to t is the pre-order (Daoc(t), Coc), where Doc(t) is
the class of objects of the comma-category (ts, | C), and Coc is the pre-ordering relation
defined as dy Coc do iff there exists v in the class of arrows of the comma category, such
that v : di — dy. Similarly, we define the flat categorical derivation space Lsc(t) =
(Dsc(t), Cse) associated to t, by simply replacing 2-Th(R) with S-Th(R) in the above
definition. 0

It turns out that, in general, the derivation spaces induced by 2-categorical models
fail to satisfy the distributive property of PAD’s, since the ordering in which rewrites
are executed influences the number of basic steps which are to be performed. This is
summarized by a naive result of category theory: due to their structure, in a cartesian
2-category no notion of length for cells is definable [Mit72, Ste92].

As for a counterexample to distributivity, let us consider the TRS W. The derivation

space (Dy(f(a)),Cy) has the following structure (where the ordering flows downwards)

o o)
) - gla.d) dla) - glt,a)

F(d)-d) = da) - g(d', &) = d(d,d)

6.1. PERMUTATION VS. CONCURRENCY 75

Let x = d(a) - g(a,d"), y = d(a) - g(d';a), and z = f(d'): then z = (x Uy) Nz #
(xMz)U (yMz) = f(a), hence Dy(f(a)) is not distributive.

In categorical terms, if we consider the space of computations 2-Th(W), the term
f(a) and the associated arrow f(a)y, = a; f, the associated derivation space Doc(f(a))

has the following structure (where the ordering flows downwards):

idlq;f
denf asd
axpd-d xg (axivdl);g axpd-d *p (idy x a); g

dxpf-bxpd=axpd-(d xd);qg

Again, let x = a*pd-d' *g (a X idy); 9, y =axpd-d *g (id, X a); g, and z = d' *g f: then
z = (zUy)Nz # (xMz)U(yMNz) = id,, s, hence Dy (f(a)) is not distributive. In categorical
terms, this means that to allow together the cartesian structure and the interchange axiom
does not permit to recover a PAD semantics: since the execution ordering influences in
2-categorical models the number of basic steps, it creates a causal link between different

processors.

Let us remember that we consider terms as trees and that the underlying hypothesis
about our implementation schema is that we have a distributed architecture, of the kind
one-node/one-processor; each processor “knows” the rewriting rules of the system, the
information on the actual node it is associated with, and the nodes it is linked with. Then,
performing a reduction can be thought of as a two-steps procedure: first, the information
on the nodes to be rewritten is updated, then the information of the connected nodes
is eventually duplicated or discarded. If we consider as an example the TRS W, the
execution of the reduction d(a) : f(a) — g(a,a) consists of the updating of the node
containing f, and the duplication of the node containing a. Now let us consider the proof
term d(d') = f(d') - d(b) = d(a) - g(d',d"). Since the two computations are equated, we
assume that our “actual” implementation can perform in parallel the rewriting of f and
a. The reduction of f, however, implies that we have to duplicate the information we
have on the node containing a. The parallel execution of the redexes would then imply a
kind of read-write conflict, that could be resolved only if the underlying implementation

schema does not rely on the tree-like representation of terms.

In the flat model the interchange axiom is dropped: the cartesian structure on cells

is preserved, but all the causes of the possible conflicts are removed, since redexes that

76 CHAPTER 6. ON CONCURRENT REWRITING

have overlapping occurrences are not anymore considered independent.

Let us talk also about the reason why we avoided to take into account a possible
axiomatization of the algebra of terms. The methodological reason is that we are assuming
to deal with a fixed one-node/one-processor architecture, and that even a simple axiom
like f(z) = g(z) would spoil this view. Moreover, an axiom like f(z) = a would destroy
the possibility to recover a PAD semantics, even for the flat model, since for any rewrite «
we would get f(a) = a, equating again computations with different length. In fact, only
the restriction to linear axioms could work, even if some identities between computations
could hold that are difficult to relate to the actual behaviour of a possible implementation.
As an example, let us consider the rewriting theory with signature {f,a,b,c, e}, axiom
f(z,b) = f(c,z), and rules {d : a — e,d" : b — e,d" : ¢ — e}. The derivation space
associated to t(x gy = f(a,b) = f(c,a) has the following structure (where the ordering
flows downwards)

Fa,) = f(e.a)

fla,d) f(cﬂiv,vb) = f(‘c, d) f(d", a)

fd.dy J(d.d)

The derivation space actually forms a PAD, but the ordering suggests a situation with
only three different basic rewrites, difficult to relate to a feasible concurrent execution of
reductions. In general, this problem arises where there is an overlapping of the left-hand
side of a rule with an axiom: a discussion of a case study in the setting of permutation
equivalence for A-calculus can be found in [LM92], while for a study of the problems
involved in turning the axioms into rewriting rules, see [Vir95]. However, if we consider

flat models just for TRS’s, we are able to prove the following result.

Theorem 6.1 (Flat Derivation Spaces and PAD’s) Let R = (%, L, R) be a TRS. Then
for any t € Ty, the pre-order Ls(t) is a coherent, finitary PAD. 0

Next section is devoted to the proof of the theorem. Actually (and it can be proved

in an analogous way) also the following theorem holds.

Proposition 6.1 (Full Derivation Spaces and PAD’s) Let R = (X, L, R) be a linear
TRS. For any t € Ty, the pre-order Lo(t) is a coherent, finitary PAD. 0

6.2. FLAT MODELS FORM PRIME ALGEBRAIC DOMAINS 77

6.2 Flat Models Form Prime Algebraic Domains

We start by giving the definition of length of a derivation, providing for each derivation

the number of its basic steps.

Definition 6.4 (Length of a Derivation) Let « be an abstract flat proof term. Its
length [(t) is defined inductively as:

o I(flan, .. am)) =3 le);
o I(d(t1,... ty)) =1;
o l(ag-ay) =1(ay) + (). 0

The definition is well-given, since all the flat axioms preserve length. In the case of a

linear TRS, we could define a notion of length also for full proof terms, simply adding:
Wd(ar, ..., an) =1+ U(a).

If the TRS is linear, the interchange axiom preserves length.

We state now some (easy) properties of length. For the sake of readability, in the

following we will write o = (8 for a =g, .

Proposition 6.2 (Basic Lengths) Let « be an abstract flat proof term. Then the fol-

lowing properties hold:
o l(a)=0iff HeTs, a=t;

e l(a)=1iff ' € To, a = . 0

As a first step we prove that the pre-order Lg(t) is actually a partial order.

Proposition 6.3 (Disjointness implies Partial Order) Let R = (X, L, R)be a TRS,
and t € Tx. Then the flat derivation space Lg(t) = (Dy(t), Ca) associated to t is a partial

order.

78 CHAPTER 6. ON CONCURRENT REWRITING

Proof It is sufficient to prove that the disjoint equivalence is cancellative; i.e., if a-5 = -9
and o = v, then 8 = §. From this property immediately follows that Cg is a partial or-

dering relation.

Let a = ay - 1 = ay + (3, such that a; = as. We proceed by induction on the length
of a, and on the last axiom applied (i.e., on the length of the proof of the equivalence).
We prove only the induction base for I(a) = 2, since for a generic [(«) is analogous.
About the length of the derivations, the only relevant case is I(«;) = l(as) = 1. For
the induction step on the last rule applied, the only relevant case is the Distributivity
axiom, hence ay = 9y - t{wy < y1], B2 = t{wy < 73] - 09 with wy, we disjoint occurrences
and 1(d;) = 1(62) = 0. In the proof of oy - B = 01 - tfwy « o] - t{wy < 7] - §2 the
Disjoint rule on the same subterms must be used again: on the contrary we would have
a1 = tlwy < 5] = P2 and ap = t{wy < v1] = f1. And since the axioms preserve length,

the result follows.

Now let a, 3 € Dy(t) such that o C § and § C «. By definition there exist o/, 3’ such
that « = a- o - #'. By the cancellative property t = o - §', and the thesis follows. 0

Now we start giving the basilar definitions to characterize the prime algebraic structure

over Lg(t).

Fact 6.2 Let o, 8 € Lg(t) be two derivations. They are compatible, and we write o 1 3,
if there exists a derivation v € Lg(t) such that o Cg vy and 3 Cg . 0

The following result characterizes compatible derivations of length 1.

Proposition 6.4 (Compatible Derivations of Length 1) Let o, € Lg(t) be two
compatible derivations such that l(o) = I(f) = 1. If « # 3, then there exists a unique
pair wy, wy of disjoint occurrences of t and dy,dy € 7 such that a = t{wy « dy(ty, ..., t,)],
B = tlwy < do(s1,. .., Sm)], and a Ll B = tlwy < di(t1, ..., tn), wy < do(S1, ..., Sm)].

Proof Since a, 3 are compatible, then there exist «;, 3; such that a = «ay - tfw; +
Fst ol st)] B = By tlws < g(s1, B, s7)] (with I(aq) = 1(81) = 0) and a0y =
(- Bs. Now the characterization of a, 8 follows by induction on the last axiom applied,
similarly to the proof of Proposition 6.3. The characterization of a LI § is an immediate

consequence. 0

6.2. FLAT MODELS FORM PRIME ALGEBRAIC DOMAINS 79

The following is an immediate consequence of the characterization of compatible

derivations of length 1.

Proposition 6.5 (Compatible Set of Derivations of Length 1) Let«, 3,y € Ls(t)
be pairwise compatible derivations of length 1. Then the LUB | [{«, 8,7} erists. 0

We can generalize the existence of the LUB to derivations of arbitrary length.

Proposition 6.6 (Compatible Derivations) Let o, 3 € Lg(t) be two compatible deriva-

tions. Then they have LUB vy, with derivations 0,09 such that -0y = -0y = v and

I(o1) < 1(B), (o) < I(c).

Proof Let p be the greatest common prefix of «, 3, i.e., such that a« = p-o’ and g = p- .
We proceed by induction on [= I(p) + I(a’) + I(3'). The case | = 2 is obvious, due to
Proposition 6.4. Now, let us assume a = p- oy - ag, § = p- (1 - § with l(az) = () = 1;

then, we have a situation denoted by the following diagram

[}
e N
Ve N
- ~
e N
N
// N // >~
- N e ~
- N s S
N s
Py Qg PN p- B B
\ Ve N /
/ N
// \\
P'al\ p- B
P

where we applied the inductive hypothesis to the different computations, and from which
we infer that o, § have a LUB. 0

From the previous result the following proposition can be easily inferred.

Proposition 6.7 (Compatible Set of Derivations) Let X C Lg(t) be a set of pair-

wise compatible derivations. Then the LUB || X exists. 0

Proposition 6.8 (GLB of Derivations) Let X C Lg(t) be a set of derivations: then
the GLB I'1X exists. 0

80 CHAPTER 6. ON CONCURRENT REWRITING

Fact 6.3 Let o € Lg(t) be a derivation: it is complete prime if, whenever there are
derivations (3,7 € Lg(t) such that o T U7y, then either « C 3 or a C 7. 0

We define now a unique predecessor property for derivations, that will be used as an

alternative characterization of complete primeness.

Definition 6.5 (Unique Predecessor) Let o € Lg(t) be a derivation. We say that

it has a unique predecessor if, whenever there are derivations 3,y € Lg(t) such that
1(B)=1(y) =1l(a) =1, then B = 1. 0

Proposition 6.9 (Uniqueness Implies Primeness) Let o € Lg(t) be a derivation,

such that it has a unique predecessor. Then it is a complete prime. 0

Since the converse trivially holds, then a derivation o € Lg(¢) is a complete prime iff
it has a unique predecessor. Thanks to this characterization, we can finally give the proof

of our theorem.

Proof (of Theorem 6.1). Let us indicate the set {# C « | § complete prime} with P,;
we have to show that for all & € Lg(t) the identity o« = || P, holds. If a is complete
prime, the thesis is obviously verified. On the contrary, we proceed by induction on the
ordering relation. The case o =t is immediate. Now let us assume that @ = || P,, with
a # @: by construction @ C «, and by induction hypothesis @ = | | Ps. Now we show
that [(@) = l(«) — 1. In fact, if for example [(@) < [(a) — 1, then there would be « such
that @ C a C «, and by induction hypothesis a = | | P,: hence, it would follow that

aCa=||P.C||P.=7

that would imply @ = @, absurd. Since « is not a complete prime it has not a unique
predecessor; then there exists & such that & T «a, I[(&) = l[(a) — 1 and & # @; moreover,

by induction hypothesis & = | | P;. From this we have that

(o]

a=ala=||PU|PC||Pua=]|]|Ps

that would imply o = @, absurd. 0

6.3. CARTESIANITY VS. INTERCHANGE 81

6.3 Cartesianity vs. Interchange

In this chapter we have analyzed the abstract models presented in Chapter 4 from a con-
current point of view, proving that the derivation spaces associated to the flat model form
prime algebraic domains, that is, a well accepted model for expressing the concurrency
of an abstract formalism. On the contrary, this is not true in general for the derivation

spaces of the full model (based on cartesian structure plus interchange axiom).

However, we view the flat model as too narrow: dropping interchange means limiting
the degree of concurrency expressible by the model in an unacceptable way. For instance,
let us consider the TRs V = {d(z) : f(z) — g(z),d : a — b}. The computations
corresponding to d(a); d’ and d’;d(b) : f(a) — g(b) are not equated in the sesqui-category
S-Th(V). On the other hand, the 2-categorical model fails to generate a PDA when non-
linear rewriting rules are involved, since for such rules the execution order influences the
number of basic steps to be performed. As an example, in the 2-category 2-Th(WW) the

following derivations with different length are equated

(a.0)
a (a,a) ’
. Vi _ TR _ a,by\d;
04f1—2 = 0T bel2 = 0752 (1)

b (b,b) !
(b.5)

“ ! id

0 Jol—=0 = 00 (1)
b

where 2d' = d' %, V, = (d',d'), dj = (d', idy) and d| = (id,,d').

The cartesian structure on cells allows for “implicit” garbage collection and duplication
(as discussed in [Cor96]): these “housekeeping” operations are performed silently, in the
sense that the abstract machine corresponding to the model cannot distinguish for instance
between states where garbage has been already collected, and states where it has not.
The situation is well-shown by (1) and (}): it seems evident that models with interchange
axiom and implicit behaviour on these operations cannot be the basis for a PAD semantics.
The flat solution still keeps these operations silent, while dropping interchange forces the
model to distinguish between derivations differing for the order of execution of nested

rewrites.

82 CHAPTER 6. ON CONCURRENT REWRITING

This discussions is strictly related also to the statement we made in the introduction
about the fact that“the [permutation] equivalence does not describe faithfully the be-
haviour of the reduction mechanism over graphs, whenever not-orthogonal rules are taken
into account”. Let us consider the TRS W, extended with the rule {d, : ¢g(b,z) — c}.
The derivation space associated to f(a) would have the following structure (where the

ordering flows downwards)

fla)
F) » o)
d(a) .g(a,'d'") ‘»d'('a) g, a)
Add) d(o)gldsa) - dalo)

with a conflict between d,,(a) and g(b, d'). From a graph reduction point of view, however,
the conflict should not happen, since the occurrences of a in g(a,a) should be unified,
after performing d(a). Again, this is due to the ambiguous nature of coupling in the
cartesian setting, and its reversibility, characterized in the present case by the identity
a; Ay = (a,a). In Chapter 9 we will investigate the case of preserving interchange and
dealing with some kind of weak cartesianity. We will take into account s-monoidal theories
(partly inspired by [Jac93], on the semantics of linear logic, and [Laf95], on equational
reasoning), making housekeeping explicit in order to algebraically characterize term graph
rewriting.

Although a detailed discussion about the actual implementability of term rewriting in
a way reflecting the degree of concurrency of either models goes beyond the scope of the
thesis, some further comments are in order. Even if the computations of the 2-categorical
model do not form a PAD, it does not mean that the model cannot be implemented on a
parallel computer, as by the way has been shown by Meseguer’s work on the Rewriting
Rule Machine (see [LMR94]). However, if a concurrent machine (one with loosely cou-
pled processors) is chosen as target, the results of this paper show that the 2-category
model cannot be implemented directly, i.e., by representing operations of processors with
events of a PES having the same domain of computations. Of course the 2-categorical
model can be mapped to a concrete, concurrent machine, but the compilation process
should be designed carefully in order to minimize hidden, expensive synchronizations and

sequentializations of processors, which are unavoidable according to our results.

Chapter 7

Dealing with Infinitary Rewriting

One of (maybe the) assumption of this thesis is that, despite their simplicity, rewriting
theories can be considered a basic paradigm for computational devices: terms are states
of an abstract machine, while rewriting rules are state-transforming functions; in this
framework, computations simply are sequences of rewrites. Usually, however, TRS’s deal
with finite terms and finite computations; although the seminal work on continuous al-
gebras by Goguen et al. dates back to the mid-Seventies [ADJ77], the extension of term
rewriting to infinite terms is a subject raised to a certain interest only in recent years,
mainly due to the use of graphs to model rewriting. In fact, in term graph rewriting,
a finite, cyclic graph may represent an infinite term, and a single rewriting step can be
equivalent to an infinite sequence of rewrites (see e.g. [Cor93, DKP91, KK+95]). The
main difference among the various proposals presented in the literature concerns the de-
scription of such a sequence: i) as the limit of an infinite, sequential application of the
rules ([DKP91, KK+94, KK+95], but also [AN80, Bou85]); ii) as the result of a simul-
taneous, parallel application of the rules to parts of the term [Cor93, CD96|. These two
views really are alternative, since they behave differently with collapsing rules (such as
f(z) — x). Starting with the work of Boudol [Bou85] in the mid-Eighties, the sequen-
tial approach has received further more attention than the other: both these approaches,

however, just extend the classical, set-theoretical approach to term rewriting.

In this chapter we introduce a new formalism for dealing with infinitary term rewriting,
relying on rewriting logic. In the previous chapters we worked in the finitary setting, where
sequents represent finite sequences of rewrites over finite terms. Here we consider proof
terms as elements of a continuous algebra. Since the elements of a continuous algebra
form a strict cpoO, fully exploiting this structure over proof terms we are able to introduce

infinitary rules: whenever there exists a suitable chain of sequents, then we add the

84 CHAPTER 7. DEALING WITH INFINITARY REWRITING

derivation corresponding to its supremum. Therefore, continuous algebras allow us to
define a natural extension of rewriting logic we call infinite rewriting logic. The formalism
has a nice and clean presentation and, even if straightforward, it is quite powerful: indeed,
it consistently includes the infinite parallel term rewriting (IPTR) previously proposed in
[Cor93], in the sense that for each derivation admissible in IPTR there exists a sequent

entailed in IRL with the same source and target.

In the first section of the chapter we introduce IRL (originally presented in our paper
[CG95]), proving in Section 2 a result analogous to Proposition 5.4 about its operational
semantics, showing a one-to-one correspondence between derivations admissible in IPTR
and (a class of) sequents entailed in IRL. In Section 3 we extend instead the functorial
semantics of rewriting logic to the infinitary case. In Chapter 4 we showed how suitable
models for a TRS R are given by the functor category [2-Th(R) — C] of chosen functors
from the Lawvere 2-theory 2-Th(R) to a given 2-category with chosen 2-products C.
This notion of model has been proved to be adequate for finitary rewriting logic when
considering the case C = Cat, where Cat is the 2-category of categories, functors and
natural transformations. In this chapter we show that this method lifts smoothly to IRL,
when considering the sub-2-category Cat(Cpo)S of categories internal to Cpo, proving

a soundness and completeness theorem for the infinitary case.

7.1 Infinite Parallel Rewriting Logic

In this section we present our extension of the rewriting logic approach to deal with infinite
terms and infinitary rewrites. For the basic notion of ordered algebras, and the definition
of IPTR, we refer to Chapter 2. Note that we are not changing the definition of TRS: we
still assume that our rules are finite, i.e., that for a given (X, L, R), the elements of R
are pairs of terms in Ty;. We need however to extend the definition of proof terms and

sequents, in order to take into account infinitary rewrites.

Definition 7.1 (Continuous Sequents) Let R = (3, L, R) be a TRS, and A = U, A,
the signature satisfying A, = {d | d(z1,...,z,) : l(z1,...,2,) = 7(21,...,2,) € R} for

“on

each n € IN. A continuous proof term a is a term of CTisuauyy), where s a binary
operator (we assume that no name-clashing between the various sets of operators occur).
A continuous proof term « is one-step if it does not contain the operator “7 (i.e., it is a
term of the algebra CTp = CT(suypy); it is many steps if @ = oy -...-op, with 1 <n < w and

«; 18 one-step for each i € {1,...,n}. A continuous sequent is a triple {c,t,s) (usually

7.1. INFINITE PARALLEL REWRITING LOGIC 85

written as « : t — s) where « is a continuous proof term and t,s € CTx: it is one-step

(many steps) if so is a. 0

Now we introduce a natural extension of rewriting logic which allows for the generation
of sequents corresponding to infinite parallel derivations. Since each sequent is composed
of three terms which belong (by definition) to continuous algebras, the “infinitary” se-

quents we are looking for are obtained by taking the LUB’s of suitable chains.

Definition 7.2 (Infinite Parallel Rewriting Logic) Let R = (X, L, R) be a TRs. We
say that R entails the infinite, parallel sequent oo : s — t if it can be obtained by a finite

number of applications of the following rules of deduction.:

e (Reflexivity)
PR
e (Elementary Instantiation), (Elementary Congruence) and (Transitivity) as in Def-
ination 5.3,

e (Infinite Parallel Rewriting)

o; ity — S, 04 € CTC),CYZ' < @i fOT'i €N
Ll i - Uiti = U; s

According to Definition 7.1, the sequent | |; ; : U; t; — U; s; is also one-step. It is easy
to check that the infinitary rule is well-defined: whenever the proof terms of a sequence
of one-step sequents (entailed by a rewriting system) form a chain, then the source and
target terms form a chain as well, and thus the LUB’s exist. In fact, sequents themselves
can be equipped with a continuous (partial) algebra structure: the bottom element is

(—,—,—), and so on. We refer the reader to the analogous discussion in Chapter 4.

For example, let us consider the TRs (3, L, R) such that ¥ = {a, f} and R has the
only rule d(z) : f(z) — x. The continuous algebra C'T, has the following structure (where

the partial ordering flows upwards):

86 CHAPTER 7. DEALING WITH INFINITARY REWRITING

The class of infinite, parallel one-step sequents entailed by the TRS has instead the

following structure (again, the partial ordering flows upwards):

P(P@) ()

The sequent d*“ : f“ — — describes the simultaneous reduction of the whole set of
redexes contained in f“. Instead, each d"(f“) : f“ — f“ describes the reduction of
the first n redexes of the term, thus the infinite term (as a whole) is unaffected by the
rewriting. Note that the family {d"(f¥) | n < w} does not form a chain: in general,

infinite sequences of reductions are not defined.

7.2 Consistency between Operational Semantics

In order to extend the correspondence between the set-theoretical and the algebraic pre-
sentation of parallel rewriting to the infinite case, we need a pair of technical lemmas. In

the following, we will say that a sequent is finitely entailed if in its derivation the Infinite

7.2. CONSISTENCY BETWEEN OPERATIONAL SEMANTICS 87

Parallel Rewriting rule is not used'; or, equivalently, if it is a full sequent obtained ex-
tending the signature of the TRS with a constant —. The first lemma is the analogous of
the compression lemma for infinitary term rewriting a la Huet-Lévy: it shows that each
infinite parallel sequent can be obtained with a single application of the Infinite Parallel

rule to an w-chain of finite, one-step sequents.

Proposition 7.1 (Infinite Proof Terms are Finitely Generated) Let R be a TRS,
entailing the (possibly infinite) one-step sequent o : t — s. Then there exists an w-chain
{a; @ s; = titien of finitely entailed sequents, such that o = |; oy, t = U; t; and s = U; s;.

Proof The class of (infinite) one-step proof terms coincides with the class of terms of the
algebra C'Tp. Then, it is enough to show that, for each element a of F'Tpy(1y, there exists
a full sequent of the form « : ¢ — s; this is easily showed by induction on the structure
of proof terms. We already remarked that, whenever two finite sequents «; : t; — s; are
entailed, then oy < o implies ¢; < ty and s; < sy (and a3 = ay implies t; = ¢ and
$; = S). Combining these two facts, the result holds by a continuity argument, since

each term in C'Tp is equivalent to the LUB of a suitable w-chain of elements of F'Tp. [

The following results shows that 7) the function x defined in Proposition 5.4 for left-
linear TRS’s (parametric over finite terms, and ranging over finite sets of redexes) actually

preserves the ordering relation; and i) an analogous property holds for 1.

Proposition 7.2 (Redexes and the Ordering over Proof Terms) Let t, s € FTx
be finite terms, and ®,®" finite parallel redexes of t and s, respectively, such that:

e t<sand ® C P,
o if (w,d) € ' —®, thent/w = —.

Then ki (P) < kg(D').

Proof We proceed by induction on the structure of ¢ and the number of redexes in @'
The base case ® = () is immediate. Note that, unless t = —, there can be no rule d such
that (\,d) € &' — ®.

e t = —. Immediate;

INote that for each finitely entailed sequent, its components are finite, while the converse is not true,
since w-chains are not strictly increasing

88 CHAPTER 7. DEALING WITH INFINITARY REWRITING

e t=f(t1,...,t,). Since t < s, then s = f(sy,...,s,) with t; <s; fori=1...n. We
distinguish between two cases:

— If there is no rule d such that (A, d) € ®, then by definition
Ht(q)) = f(K’tl ((D/l)a KR /{t1(q)/n))a
and analogously for k,(®'). By construction ®/i C &' /i and, whenever (w, d) €
(®'/i)/(®/i), t;/w = —. Hence by induction k, (®/i) < k4, (P'/i), and the
thesis follows.

— If there is a rule d such that (A\,d: [— r) € ®: then by definition there exist
substitutions o = {z/uy,...,x,/u,} and o' = {x1 /vy, ..., x,/v,} such that
l/o =t,1/o' =s. Then by the hypothesis u; < v;,

Fi(®) = d(hu, (/O (1)), - - s i, (B/ O, (1)),
and analogously for k4(®'). By construction ®/0,,(I) C ®'/O,,(l) and, when-
ever (w,d) € ('/O,,(1))/(®/O,, (1)), u;/w = —. Hence by induction
Fu (/04 (1)) < £y (D) Oy, (1)),
and the thesis follows. 0

Proposition 7.3 (Proof Terms and the Inclusion of Redexes) Let t, s € FTy, be

finite terms, and o, o' finite one-step sequents of t and s, respectively, such that o < o
(hence, t <'s). Then () C P(') and, if (w,d) € P(a') — (), then t/w = —. 0

Now we are ready to show the relationship between infinite sequents and infinite,

parallel redexes. We restrict again to non-overlapping, left-linear rules only.

Proposition 7.4 (Many-Steps Sequents and Infinite Parallel Derivations) Let

R be an orthogonal TRS and ® be a (possibly infinite) parallel redex. (1) If t —¢ s,
then there is a one-step proof term ag such that R entails the sequent ag : t — s (using
the rules of Definition 7.2). Viceversa, (2) if R entails a one-step sequent v : t — s, then
there is a (possibly infinite) parallel redex ®, such that t —, s. As a consequence, there

is a parallel derivation from t to t' iff R entails a many-steps sequent o =t — t'.

Proof We generalize the proof of Proposition 5.3.

1. Let ® be an infinite, parallel redex and a chain {t;};cn, defined according to Def-
inition 2.24. Let k;(®;) = ag, : t; — s; be the one-step sequents associated to
®;: according to Proposition 7.2, iy, (®;) < ky (®;) for i < j. Then the sequent
associated to ® simply is ag = |l; s, : U; ti — U, s

7.2. CONSISTENCY BETWEEN OPERATIONAL SEMANTICS 89

2. Since each one-step sequent is finitely generate, i.e., is the LUB of an appropriate
w-chain of finitely entailed one-step sequents (see Proposition 7.1), we can simply
extend the function defined in the proof of Proposition 5.3 with the following case,

without loss of generality
Y(L; i) = L (i) for oy € FTouqy-

Thanks to Proposition 7.3, |-, ¥(c;) is a parallel redex. Now, let us consider
the w-chain {¢;};en: it satisfies the requirement of Definition 2.24, and the parallel
redex (contained in (| ; o;)) associated to each ¢; is exactly ¢ (a;). Then ¢ (Ll; o)
is well-defined. 0

The following proposition states that we can lift the results about the one-to-one
correspondence between operational models described in the previous chapter, to the

infinite case.

Proposition 7.5 (Equivalence between Operational Models, IV) Let R be the
orthogonal TRS (X, L, R). Then for each t € Ty, there is a one-to-one correspondence
between the families of infinite parallel derivations entailed by R originating from t, and
the families of infinite parallel sequents with source t.

Proof It is a routine extension of the proof of Proposition 5.4. We need to take into
account also infinite redexes, checking the infinitary cases, but restricting our attention,
thanks to Proposition 7.1, to infinite proof terms obtained with only one application of
the infinite parallel rule. 0

Now we introduce the full version of infinite parallel rewriting logic, to which we

provide a suitable categorical model in the next section.

Definition 7.3 (Full Infinite Rewriting Logic) Let R = (X, L, R) be a TRS. We say
that R entails the infinite sequent o : s — t if it can be obtained by a finite number
of applications of the finitary rules of deduction of infinite parallel rewriting logic (see
Definition 7.2), where the Infinite Parallel Rewriting rule is substituted by the following

one:

e (Infinite Rewriting)

a; t; = s, < iy fori € IN

Ll i = Ui i — U si

90 CHAPTER 7. DEALING WITH INFINITARY REWRITING

Note that the full version of infinitary rewriting logic seems to be stronger than its
parallel counterpart. We suspect that there are TRS’s R such that infinite sequents « :
t — s have no counterpart in a finite sequence ay - ... - a, : t — s of infinite parallel
sequents. It is still true that each sequent a : s — ¢ entailed by full infinite rewriting logic
can be described by an w-chain of finitely entailed, many-steps proof terms; but there are

“n

chains such that the number of occurrences of the operator inside each finite proof

term is increasing, hence a result analogous to Proposition 5.8 is unlikely to hold.

A simple example can be given by considering a TRs with cycles, like U = {a(z) :
f(z) = g(x),B(z) : g(x) — f(x)}. U entails the family v = |; v;, where the elements are
inductively defined as v = a(=)-5(=), 72 = ala(=)-5(=))-fla(=)-5(=)) = a(n)-B(n)
and v; = a(v;11) - B(7i11). It is easy to show that + actually forms a w-chain, and that
each sequent describes a sequence of rewrites of increasing length. Graphically, we have

the following:

V3

A

Even if in this particular case the system entails also the infinite, parallel sequent
§=a*- (Y= {a' (=)} -UAB(-)} = U {a’(—) - B'(—)}, this is “intrinsically” different
from 7y, because ¢ acts exactly once (actually, twice) on each subterm to be reduced, while

with + the length of the reduction increases with the height of the elements in the chain.

7.3. CONTINUOUS MODELS OF TERM REWRITING 91

7.3 Continuous Models of Term Rewriting

It is worth stressing here in which sense we regard a Cat-model for R as a Set-based
model, because this will hint the correct structure for the universe 2-category of Cpo-
based models. A 2-functor M: 2-Th(R) — Cat maps each object of 2-Th(R) (say n)
to a category M(n); in this category, the objects provide an interpretation to the n-tuples
of terms, while the arrows give an interpretation to the rewrites. Since M(n) is a (small)
category, both its objects and its arrows form a set, by definition. Thus M is considered
a Set-based model because terms and rewrites are interpreted in a set. By analogy, a
Cpo-model for R would interpret (tuples of) terms in a small, strict cPO, and rewrites
as continuous functions: in such cPO’s we could find an interpretation also for infinite
terms and for the sequents generated by the infinitary deduction rules. A model should
therefore map each object of 2-Th(R) to a category having more structure, namely a

strict cPO of objects and a strict CPO of arrows: i.e., a strict continuous category.

Definition 7.4 (Continuous R-Models) Let R = (X, L, R) be a TRS. A continuous

R-model S is a strict continuous category S together with

e a Y-algebraic structure: for each f € X, a continuous functor fs: S™ — S;

o for eachd:s—t € R, a continuous natural transformation ag : ss = ts.

A continuous R-homomorphism F: & — S’ is a strict continuous functor F: S — S’
preserving the algebraic structure and the rewriting rules. CR-Mod is the category of

continuous R-models and continuous R-homomorphisms. 0

A CR-system is then a triple (S, ps, ¢s) where ps = {fs | f € X} is a family of contin-
uous functors, and ¢g = {dg | d € R} is a family of continuous natural transformations.
It is easy to show that CR-Mod is reflective inside R-Mod. Then, since left-adjoints
preserve initiality, there exists a continuous R-system Zqx that is initial in CR-Mod,

and the following soundness and completeness result holds.

Proposition 7.6 (Soundness and Completeness of Continuous R-Systems) Let R
be a rewriting theory: it entails a continuous sequent o : t — s iff there exists a continuous
natural transformation az,y, : tr,, = Sz.r (and then, iff there exists a continuous natural

transformation ag : ts = ss for each continuous R-model S).

92 CHAPTER 7. DEALING WITH INFINITARY REWRITING

Proof First we recall that, whenever we have a; < b; objects in S, then «a(ay, ..., a,) <
a(by,...,by) and F(ay,...,a,) < F(by,...,b,) for any continuous natural transformation
a and for any continuous functor F'; hence, also the classes of continuous natural trans-
formations and continuous functors comes equipped with a strict cPO structure, that is
defined pointwise. Moreover, each continuous natural transformation « : |; F; = |; G;
can be obtained as a suitable w-chain | |; a;, with «; : F; = G; and where Fj, G; are
obtained by completion of suitable functors over Zz, (and R’ is obtained extending the

signature of the equational theory associated to R with the constant —).

Now we proceed by induction, recalling that also each infinite sequent can actually be
described as the LUB of an w-chain | |; ; of finitely entailed ones, relying on the existing
correspondence between finite sequents and natural transformations between functors
defined over Zgs (see Proposition 4.3). In the case of the sequent a = |]; o;, for example,
each finite sequents «; induces a natural transformation (ai)n, in Zxs, that can be extended
to a continuous one in Zeg, such that «;(aq, ..., a,) < a;y1(aq, ..., a,) for all i. Then the
w-chain on proof terms induces a suitable continuous natural transformation | J;(c;)z,
and the result follows. 0

Now, let Cat(Cpo)S be the 2-category such that objects are strict continuous cate-
gories, arrows are continuous functors, and 2-cells are continuous natural transformations,
and equipped with the intuitive, chosen products structure. Thus we can define the Cpo-
based models of a term rewriting system as 2-functors from the Lawvere 2-theory of R to
Cat(Cpo)_.

Definition 7.5 (Continuous Models of Term Rewriting Systems) LetR be a TRS.
A Cat(Cpo)-model for R is a chosen cartesian 2-functor M : 2-Th(R) — Cat(Cpo)_,

and a model morphism is a strict continuous 2-natural transformation between models.

The category Cat(Cpo)-Modgr of Cat(Cpo)-models is given by a sub-category of the
2-functor category [2 — Th(R) — Cat(Cpo)]: its objects are Cat(Cpo)-models of R,

and its arrows are model morphisms. 0

Finally, we are able to state the main result of this section, precisely relating continuous

R-models and functorial models.

Proposition 7.7 (The Functor Category of Continuous R-models) Let R be a TRS.
The category of continuous R-models (see Definition 7.4) is equivalent to the category
Cat(Cpo)-Modgr of Cat(Cpo)-models for R. 0

Chapter 8

Typed Rewriting Logic

In the previous chapters we have tried to show the relevance and flexibility of the rewriting
logic paradigm. We hope we have made clear why the use of a suitable algebra of proof
terms (this way equipping the computations of a system with an algebraic structure) allows
to recover information about the concurrent and spatial structure of a system. However,
we always dealt with an unconditional version of the logic, where proof terms are just
elements of a term algebra, and sequents are freely generated from a given signature.
With the exception of the composition operator, there is no way to express any suitable
restriction over the class of sequents entailed from a given set of deduction rules. This is
a main limitation, if we want to take into account in our framework formalisms relying
on the use of side-effects in determining the actual behaviour of a given system. In the
classical setting, this aim has been pursued by enriching the structure of the algebra of
terms (taking as an example into account order-sorted theories) or using conditional rules,
where the application of a rule is subject to the satisfaction of a suitable equation. This is
also the starting point of conditional rewriting logic [Mes92]; the logic is extended allowing
rules with the format d : [— r if u — v, where the conditions do not require equalities
to hold, but the existence of suitable rewrites between terms. The resulting formalism is
quite powerful, but to allow such a general format in the conditions makes the reduction
mechanism difficult to be effectively implemented. In this chapter we introduce a new
formalism, typed rewriting logic, that is able to express some restrictions about the class
of sequents to which a given rule can be applied. Differently from the more traditional
approach, however, we assume that the additional information is carried out by typing

conditions ower proof terms.

In Section 1 we introduce typed rewriting logic, while in Section 2 we propose a

categorical semantics, similar to the one of classical rewriting logic described in Chapter

94 CHAPTER 8. TYPED REWRITING LOGIC

4, but relying on the use of double-categories. Finally, in Section 3 we will recast some
well-known formalisms in our typed logic, in order to sustain the claim of generality and
flexibility of our paradigm; while in Section 4 we present some preliminary work on the

implementation of strategies for rewriting in typed rewriting logic.

8.1 Typed Rewriting Logic: Syntax

The assumption of typed rewriting logic is that sequents carry information about the type
of the associated reduction. Then a typed sequent is a 4-tuple {(«, ¢, a, s), where o : t — s
is an untyped sequent, and a is the type of the sequent itself. Thus, rewrite rules are
tuples (d, a1, ...an,t,a,s), where t and s are respectively source and target, d is the label,
ai,...,a, are the (input) types needed by the sequents to which we want to apply the
rule d, and a is the (output) type of the resulting sequent. This enrichment is in line
with the intuition that proof terms are the central objects of the paradigm and, from this
point of view, it is “analogous” to the extensions of the logic adopted for infinitary and

term graph rewriting.

Definition 8.1 (Typed Rewriting Theories) Let X be a set of variables. A typed
rewriting theory (TRT) R (over X) is a tuple (¥, E), A, L, R), where (X, E) is an equa-
tional signature, L is a set of labels, A is a set of types (with a distinguished element,
t), and R is a function R : L — Tx(X) x A* x A x T5(X) such that for all d € L, if
R(d) ={l,ay...an,a,r), then var(r) Cvar(l) C X, #var(l) =n and [is not a variable:

we usually write d : 1 = . 0

ag...an

The type ¢ means “no information”, and it implies that we are not imposing to the

underlying sequents to satisfy any particular requirement.

Definition 8.2 (Proof Terms and Typed Sequents) Let R = ((X,E), A, L, R)be a
TRT. Let A = U,A,, be the signature containing all the rules d : | — r € R with the
corresponding arity given by the number of variables in d; more precisely, for each n,
Ap={d|d(xy,...,zn) : Wz, .. 2n) = (21, ..., 2,) € R}. A proof term « is a term of

@

the algebra Tr = Txupugy, where is a binary operator (we assume that there are no
clashes of names between the various sets of operators). A (typed) sequent is a 4-tuple
{a,t,a,s) (usually written as o : t — s) where « is a proof term, t,s € Ty and a € A*.

0

8.1. TYPED REWRITING LOGIC: SYNTAX 95

Typed sequents then record not only the justification of a given rewrite, but provide
also information on the “type” of the reduction step. As for the untyped case, we say
that ¢ rewrites to s via a (with an effect a) if the sequent o : t =+ s can be obtained by

finitely many applications of the following rules of deduction.

Definition 8.3 (Typed Rewriting Logic) Let R = ((X,F), A, L, R) be a TRT. We
say that R entails the typed sequent a : s —— t if it can be obtained by a finite number
of applications of the following rules of deduction:

¢ (Instantiation)

d:l = reRdeAy,o;:t; s fori=1,....n
ai...an
don, ... o) Uty ... ty) —=7(51,...,5,) ’
e (Congruence)
feS,a;:ti—s; fori=1,...,n

b

flay,...;an) : ft, ..o tn) = f(51,...,55)

e (Transitivity)

a:siﬂf, 6:ti>u

a-ﬂ:sa—b>u

where @,b € AT are strings, and ab means string composition. 0

Congruence is defined only over sequents with type ¢; this means that we can correctly
contextualize only sequents whose type carries no additional information. Type ¢ (and
the Congruence rule) provide a notion of idleness for transitions; as for untyped logic, a
term can be rewritten to itself (with a type specifying such a behaviour), only if all the
subterms are themselves idle. If there is no rule d such that its output type is ¢, then
only identity sequents can be provided with a context, and the Congruence rule can be
substituted by

e (Reflexivity)
teTy
tit—st

96 CHAPTER 8. TYPED REWRITING LOGIC

Whenever we want to allow a more general kind of congruence, we need to introduce
specific rules for each operator f € ¥, and each family {a; : t; = s;} for which we ask
f(ai, ..., ay) to be defined.

Transitivity is the only deduction rule that builds sequences of types. Note that,
since the input types for the rewrite rules are elements in A, then both congruence and
instantiation can be applied only to one-step sequents. This is reflected in the algebraic

semantics, that is analogous to the one defined in Chapter 4 for flat rewriting logic.

Definition 8.4 (Abstract Typed Sequents) LetR = ((%, E), A, L, R) be a typed rewrit-
ing theory. An abstract typed sequent entailed by R is an equivalence class of typed se-
quents entailed by R modulo the following set E5 of axioms, which are intended to apply

to the corresponding proof terms:

e (Associativity)
a, 67 S T’R

o (B=(a B

¢ (Axiomatizing)

txy,. . wp) =5(@y,...,2,) € B oy ity — s fori=1,....,n

tlag,...,an) = s(aq, ..., ap)

e (Distributivity)

feEn,ai:ti%si,ﬂi:ui%viforizl,...,n

f(al'ﬂla"'aan'ﬂn):f(ala"';an)'f(ﬂl:"':ﬂn);

e (Identity)
a:s —t

sca=a=a-t

where we implicitly assumed that v is the identity (empty sequence) over A*: i.e., aL =
ta =1a for each a € A*. 0

8.2 Typed Rewriting Logic: Functorial Semantics

It is not possible to define a notion of R-system for typed rewriting; its definition in the
untyped case was due to the particular structure of 2-categories as enriched categories over

Cat. Instead, it is easy to generalize the functorial approach; it is enough to describe a

8.2. TYPED REWRITING LOGIC: FUNCTORIAL SEMANTICS 97

suitable double-category, equivalent to the Lawvere 2-theory defined for untyped rewriting.
First, note that for any TRT R = (%, E), A, L, R), we can define a graph with monoidal
structure Ag (informally, a reflexive graph G' with a graph morphism ® : G x G = G),
freely generated from the set of actions A; nodes are the (underlined) natural numbers,
t:0— 0is the identity and a: 1 — 1 € Ay for any a € A.

Definition 8.5 (From Typed Rewriting Theories to D-Computads) Let R be
the TRT (3, E), A, L, R). The associated d-computad Th(R) is the tuple (Th(C), Ag, Sr),
where Sg is the set of d-cells such that

n—->-1
2| dp l €Sy M d:it % seR
ai...an
nS(E,E)l
wherea=a1 Q...Q ay,. 0

Again, the existence of a left-adjoint between the category of d-computads with finite
products and DFC-Cat is pivotal in defining a suitable model for typed rewriting theories;
a double-category is freely generated from a d-computad, such that its cells represent

(abstract) sequents.

Definition 8.6 (Spaces of Typed Computations) Let R be a TRT, and let Th(R)
be its associated d-computad. Then the associated Lawvere D-Theory D-Th(R) is the
cartesian d-category Fg(Th(Vy)) with finite horizontal products. 0

Let us consider the typed rewriting theory

Vi={d: u-—"sv,d(x): f(z) %) g(x),d"(z) : f(x) %) f(z)}.

The d-computad Th(V;) has the following set of cells (where, for the sake of readabil-

ity, we did not put the subscript on generators):

0—“-1 1—1o1 p1L1
ST
0T>1 1T>1 1?1

The only (ground) typed sequents different from identities that are entailed by the
theory are d : u — v, d'(d) : f(u) == g(v) and d"(d'(d)) : f(f(u)) SN (g9(v)); graphi-
cally,

98 CHAPTER 8. TYPED REWRITING LOGIC

0—“1-T01 01T 1-1 4
idl d iz d lb idl d iz d % d" lc
0—1—5~1 0—=1—~1——1

The following proposition states the precise relationship, for a typed rewriting theory

R, between cells of the associated Lawvere d-theory, and families of abstract derivations.

Proposition 8.1 (Correspondence between Abstract Models, IIT) LetR be a TRT.
Then there exists a bijective function ¢ between the set of all abstract typed sequents en-
tailed by R and the cells in D-Th(R)[0, 1], such that ¢(a) : sz) = temyp) iff i s — ¢
0

The proof is along the lines of the equivalent results for the untyped logic. In fact, a
cell is obtained simply closing with respect to the monoidal operation and the vertical and
horizontal composition. The axioms of double-categories with chosen horizontal products
induce a one-to-one correspondence with the abstract sequents of the logic. Note however
that type ¢ is fundamental in establishing the correspondence, since it offers a suitable

counterpart to those cells that are identities of the vertical category.

In Chapter 4 we defined the class of models for the Lawvere 2-theory and s-theory
associated to an untyped rewriting theory R as functors to a suitable universe. For typed
rewriting logic, it is enough to consider double-categories; the constraints on types have
their semantical counterpart in the additional structure that double-categories have with

respect to 2-categories.

Definition 8.7 (Models of Lawvere D-Theories) Let C be a cartesian d-category with
finite products. A C-model for the Lawvere d-theory associated to a TRT R is a cho-

sen d-functor M : D — Th(R) — C, and a model morphism is a d-natural transfor-

mation between models. The category C—Modg of C-models is the d-functor category

[D — Th(R) — CJ; its objects are C-models of R, and its arrows are model morphisms.

0

8.3 An Application in Concurrency Theory

It is quite common in concurrency theory to deal with formalisms relying on the use of

side-effects in determining the actual behaviour of a given system. In this case, usually

8.3. AN APPLICATION IN CONCURRENCY THEORY 99

a transition relation is not sufficient anymore to describe their evolution, and this makes
quite difficult to recast them in the framework of (classical) term rewriting. In this
section we provide the reader with two suitable examples, where typed theories are used to
describe process algebras, a well-known example of specification languages, and a recently

introduced generalization of this paradigm, context systems.

8.3.1 Process Description Algebras

Process (Description) Algebras [BK84, Hoa85, Mil89] offer a constructive way to describe
concurrent systems, considered as structured entities (the agents) interacting by means of
some synchronization mechanism. They define each system as a term of an algebra over
a set of process constructors, building new systems from existing ones, on the assumption
that algebraic operators represent basic features of a concurrent system. In the following
we will present one of the better known example of process algebra, the Calculus of Com-
municating Systems (ccs), introduced by Milner in the early Eighties [Mil89], restricting

ourselves, for the sake of exposition, to the case of finite ccCs.

Definition 8.8 (The Calculus of Communicating Systems) Let Act be a set of
atomic actions, ranged over by u, with a distinguished symbol T and equipped with an
involutive function T such that T = 7. Moreover, let o, @, . .. range over Act\{r}. A ccs

process is a term freely generated by the following syntaz
P = mnil, p.P, P\o, P[®], P1 + Py, Pi|| P,

where ® : Act — Act is a relabeling function, preserving involution. Usually, we let
P,Q, R... range over the set Proc of processes. 0

In the following, we will indicate as ¥ccg the signature associated with cCs processes
(for example, nil is a constant, p a unary operator for each element in Act, and so on...).
Given a process P, its dynamic behaviour can be described in a suitable transition system,
along the lines of the so-called sOs approach [Plo81], where the transition relation is freely

generated from a set of labeled inference rules.

Definition 8.9 (Operational Semantics of ccs) The CCs transition system is the re-
lation Toos € Proc x Act x Proc inductively generated from the following set of axioms

and deduction rules

100 CHAPTER 8. TYPED REWRITING LOGIC

P-5Q
Pla] 2 Qo)

T p for u € Act for ® relabeling

u.P—
P15 Q
P\a = Q\a

P-5Q P-5Q
P+R-%5Q R+P-5qQ

for p & {o, @}

P50 P-%5Q,P -5 P50
P||R % Q||R P||P" = QJ|Q' R||P % R||Q

where P -5 Q means that (P, 1, Q) € Tees 0

A process P can execute an action p and become @) if we can inductively construct a
sequence of rule applications. As an example, to infer that from P = (a.nil+ 3.nil)||@.nil
we can deduct P -2 Q) = nil|[a.nil, three different rules must be taken into account.
Moreover, a process P can be rewritten into another if there exists an appropriate chain
of one-step reductions P +5 P, ... P, £ P,.

From an operational point of view, then, a process algebra can be faithfully described
by a triple (3, A, R), where ¥ is the signature of the algebra of agents, A is the set of
actions and R is the set of deduction rules. There are two differences, with respect to term
rewriting. First, deduction rules are conditional: you need information on the label of the
underlying transitions, before applying a rule. Moreover, the rewriting steps are always
performed on top; the order in which the rewrites are actually executed is important since,
as an example, the correct operational behaviour of the agent P = «a.(3.nil is expressed
saying that it executes first @ and then f.

Both these features are easily described in the framework of typed rewriting logic.
Actually, we will show how to describe a whole class of process algebras sharing a given
format of the rules, the well-studied case of the De Simone format [DeS85].

Definition 8.10 (Deduction Rules in De Simone format) A process algebra P is
in the De Simone format if all its deduction rules have the form
P, 25Q; fori=1...n
C[P,...P,] -5 D[Q; ...Qx]

where C, D are process contexts and each process variable appears exactly once in the

premise and at most once in the conclusion of the rule. 0

8.3. AN APPLICATION IN CONCURRENCY THEORY 101

We start noting that process algebras can be considered as a generalization of TRS’s,
where the constraints on labels have a syntactical counterpart in the typing over proof
terms, and a semantical counterpart in the additional structure that double-categories

have with respect to 2-categories.

Definition 8.11 (From Process Algebras to Typed Rewriting Theories) Let P
be the process algebra (X, A, R). Then the associated TRT is the tuple (X, A, L, Dg), where

L is an arbitrary set of names, and Dpg is the set of rules such that

a . ‘PZ & 1 .:]....
d(zy...2,):C — D€ Dg iff — Qi fori n

. € R.
ai...an C[Plpn] —>D[Q1Qn]

The translation is even more clear if we consider the associated d-computad, where the
distinction between process contexts and constraints is stressed by the different dimension
they act in.

Definition 8.12 (From Process Algebras to D-Computads) Let P be the process
algebra (X, A, R). Then the associated d-computad Th(P) is given by (Th(X), Ag, Sg),
where Sg is the set of d-cells such that

Cs

n—m
_ A . P (5Q; for i=1..n
aAl d l E SR i C[Pl---Pn}la_)D[Ql---Qn} E R
n—sm
Dy

where Ag is the graph with monoidal structure freely associated to the set of actions A,

andaA:(al)A@)...@(an)A. 0

As an example, the following d-computad is just an instance of the previous, more

general construction.

Definition 8.13 (The ccs D-Computad) The d-computad Th(Pccs) associated to
ccs is the tuple (Th(Xces), Actg, Srees), with the following structure:

1. Actg s the graph freely associated to Act;

2. Th(X¢cs) is the Lawvere theory associated to the signature Yccs;

102 CHAPTER 8. TYPED REWRITING LOGIC

3. Skees @8 the following set of cells

1—">1 1—>1
idl acty, lu Ml relg l@(u)
1 ?‘ 1 1 ?‘ 1
1
“l resa l” for u ¢ {a,a}
21 21
u®z‘dl <+ lu id@ul +> lu
2 ?0' 1 2 ?‘ 1
2 . 1 2 . 1 2 - 1
u®idl £ lu id®ul P lu a®&l o lf
2—>H 1 2—>H 1 2—>H 1
(where we omitted the subscripts for the sake of readability). 0

Note again that there is exactly one cell for each rule; some of them (such as act,
and rely) are parametric with respect to the set of actions or to the set of relabeling
functions, since the corresponding rules are so. The vertical arrow p indicates that the
‘underlying’ process is actually running, outputting the action . It is the cell act, that
prefixes an idle process with the action u, and then starts the execution, consuming that
same action. There are three cells dealing with the parallel operator: ¢ synchronizes two
running processes, while £ and p perform an asynchronous move, and to this end they

take a running and an idle process.

As an example of d-cells construction, let us consider the process P = «.(.nil, ex-
ecuting sequentially first the action «a, then the action 3. It is not easy to model even
such a simple agent in term rewriting, since the execution ordering, that is fundamental
for expressing its behaviour correctly, is difficult to model in that setting. Instead, the

computation is described by the double-cell

8.3. AN APPLICATION IN CONCURRENCY THEORY 103

nil 1 B 1 «a

i?&l i?&l

0 1
idol l
0 —nil>=1 —F— 1 —idi> 1
0 1

«

g

b

v
1 1

nil idq idq

showing the importance of the vertical dimension in expressing the ordering constraints:

the process can execute « only if the underlying process is actually idle.

Note that the axioms of double-categories impose an equivalence relation over d-cells
(i.e., over computations), and then offer a description that, even if more concrete than
the one given by the set—theoretical relation entailed by a given transition system, is still
somewhat “abstract”: there are many derivations that are identified, corresponding to
“essentially” equivalent cCs derivations. There is an obvious adequacy result, holding for

any generic PDA, stated by the following theorem.

Proposition 8.2 (Correspondence between Models) Let P = (X, A, R) be a PDA.
Then the derivation s — t is entailed by P iff there exists a cell d in Fy.(Th(P)) with

0—>

1
z’dl d la
1

0=

(where we omitted the subscripts for the sake of readability). 0

8.3.2 Context Systems

Context systems (briefly, ¢s’s) have been introduced by Larsen and Xinxin [LX90] as a
framework for developing a verification methodology for concurrent systems, providing a
modular solution to the problem of characterizing what properties the subcomponents of a
process must satisfy, in order to infer that the process itself satisfies a given specification.
In this setting, “modular” means that the required properties should be decomposable into
constraints to be verified by each subcomponent. Their proposal is based on an operational
semantics of contexts. A context is a triple (C,n,m) (also, C!") where C' denotes the
piece of the system already designed, taking an n-tuple of subcomponents and making
available an m-tuple of parts, so that it can be considered as a partial implementation. A
transduction between contexts is a 4-tuple (C'™, (ay, ..., ay), (b1, ..., by), D); its meaning

is that by consuming the actions ay, . .., a,, the context C)" produces the actions by, ..., by,

104 CHAPTER 8. TYPED REWRITING LOGIC

for an external observer and it changes into D). Transduction subsumes the classical sos
approach, since a sos rule can be considered in most cases as a transduction of the form
(Cl (ar,...,a,),b,D}). Transductions can be composed both sequentially and in parallel,
and it can be proved that, whenever each rule of a SOS specification can be described by
a transduction, for each derivation possible in the associated transition system there is a

corresponding one in the induced context system.

Definition 8.14 (Context Systems) A context system CS is a triple (C, A, R) where
C is a set of contexts (i.e., of triples (C,n,m) for n,m € WN: briefly, CI"); A is a set of
actions with a distinguished one 1; and R is a set of (labeled) rules (i.e., a set of 4-tuples
(Cm (ary ... an), (b1,...,by), D7) for a;,b; € A) satisfying (C,a,7,D) € R iff C = D
and @ =1. 0

We already said that, given a generic (C,(ay,...,a,), (b1,...,by), D), its implicit
meaning is that by consuming the actions ay,...,a,, the context C' makes available the
actions by, . .., by, and evolves into D. When a component is ¢, it means that the (internal)
process is not involved in the transduction, i.e., it is idle. Two basic operators are defined
on contexts: composition (given the contexts C'™ and D] . then also the combined context
(C - D) is defined) and product (given the contexts C'™ and D?, then also the combined

context (C' x D)7 is defined).

Definition 8.15 (Operational Semantics of Context Systems) Let CS be the
context system (C, A, R). Then the associated transduction relation is the relation on
C' x A" x A™ x D™ for generic n,m and C)', D" € C containing the tuples in R and

closed with respect to the following rules:

[]
tl:CTT % C;lm, tQ:D;;1 —g) D;:;
a
tl'tQZC'D %CI'DI
[]

tl:C’,’;’l %}C;lm, tQ:DTS.—)DS
a

tlxtQ:CXD b—_d)C’XDI

ac

where ab means string composition. A transduction is just an element C LA ») of the

a

entailed relation. 0

8.3. AN APPLICATION IN CONCURRENCY THEORY 105

Context systems offer a framework where the classical, operational semantics of ccs
can be easily recovered: each operator induces a context, and each rule of the sOs seman-

tics has a corresponding rule in the associated context system.

Definition 8.16 (CCS Context System) The context system CSccs associated to CCS
is the tuple (Cceos, Act, Rocs), with the following structure:

1. its set of contexts is
(nil, 0,1) (u,1,1) (®,1,1)
N\, (+21) (2,1
(I,1,1) (70,2, 1) (71,2,1)

associating a basic context to each CCS operator (the first siz) and introducing some

auziliary ones (the latter three);
2. its set of actions is that of the basic actions of CCS;

3. its set of rules is

actu:ui>] rele : ® 2
L 1
resa : \a = \a for u & {a, @}
In
N N
(+:+ L +) 4+ T
N TN TIN
= Y I S |
Projo : To £ 70 projy : m Hs I:1 71
(m:t) (,0) 7

Auxiliary contexts are needed due to the syntactical nature of transduction entailment.
The context systems approach to the dynamic behaviour forces the introduction of the
rules projg, proj; and I, that make actions “floating” outside. Let us consider for instance

the process () = «a.f.nil, and the sequence (.a.nil By a.mil =% nil. From the associated

106 CHAPTER 8. TYPED REWRITING LOGIC

context Cg = nil - - 3, both transductions nil - a - actg : C % D = nil - - I and

nil-acty-1: D % nil-I-1 are entailed (where) is the empty string). Note that instead

there is no need of auxiliary cells in the d-computad (hence, in the typed rewriting logic)
associated to ccs, due to the cartesian structure of the horizontal category; action floating
is “automatic”, so to say, thanks to the structural axioms. For instance, many different
contexts (such as nil -« - I - (-1, (nil x nil) - proj; - a- 3 and nil - o - 3) are associated
to the ccs process P = a.(3.nil, all of them essentially equivalent. In the Lawvere theory
Th(Xccs), instead, all this contexts are again identified, and the auxiliary rules simply
correspond to d-cells induced by the cartesian and categorical structure of the space of

computations.

Now let us consider again the ccs process P = (a.nil + (B.nil)|[@.nil. One of its
associated contexts is Cp = ((((nil - @) x (nil - 8)) - +) x (nil - @)) - ||, while an entailed

transduction is ¢ : Cp % D, where t = ((((nil - &) x (nil - actg)) - +)) x (nil -@)) - £ and

D = ((((nil - &) x (nil - I)) - m) x (nil -@)) - ||. In general, for each process P there exist
many associated contexts, each of them with the same operational behaviour, but there
is obviously a minimal one we will indicate with (Cp,0,1). The following result assures

that transduction preserves the derivation relation of the transition system.

Proposition 8.3 (Transduction as Derivation) Let P be a CCS process: then P —
Q@ in the ccs transition system iff a transduction t : Cp %) D s entailed by the ccs

context system, where D is a context associated to process Q). 0

The proposition can be generalized to any process algebra that can be expressed in

the so-called basic De Simone format: i.e., such that the rules have the form

P, 25 Qfori=1...n
ClP,...P,] - D[Q; ...Q,]

where C, D are process contexts and each process variable appears exactly once both in

the premise and in the conclusion of the rule.

Definition 8.17 (From Context Systems to D-Computads) Given a context sys-
tem CS = (C, A, R), the associated d-computad Th(CS) is the tuple (Th(C), Ag, Sr),
where Sg is the set of d-cells such that

8.4. STRATEGIES FOR REWRITING 107

n m
aAl IR lEA € Sk iff r.om L pmec
n m

a

Proposition 8.4 (Correspondence between Models) Let CS be a context system.
Then the transduction C" -2 D is entailed by CS iff there exists a cell d in UF(CS),
such that

3

-
S

C
n ——-—
al d
n ——m

D

3

(where we omitted the subscripts for the sake of readability). 0

8.4 Strategies for Rewriting

Given a TRS R = (X, L, R), a strategy for R is a function Tz, — Tg, associating to
each term ¢ a subset of the (full) concrete derivation space of ¢. The idea is to prune
those parts of a derivation space that represent forbidden choices, i.e., to avoid all those
derivations that a programmer does not want to be performed. In this sense, strategies

define “allowed” proof-terms in the same way as types define allowed terms.

The easiest example is head-rewriting: our processor may perform a reduction only
on the top-operator of a given term, that is, the possible redex has the format (\,d)
for a given rule d. Given a TRS R = (3, L, R), to implement such a strategy means to
provide a typed rewriting theory performing just the allowed sequents; in this case, it
is simply defined as Ry, = (X, A, L, Ry) such that A = {1, e} and dj, : t %> s € Ry, iff
d:t— s € R. If we consider the TRS W and the term f(a), then only the typed sequent
dr(a) : f(a) = g(a,a) is allowed, corresponding to the untyped sequent d(a) : f(a) —
g(a,a), while the untyped sequent f(d) has no corresponding typed one.

Now, more general strategies can be defined by appropriate congruence rules. If we
consider a strictly left-most strategy, it means that only the possible reductions on the
left-most operators (i.e., those occurring at a position 1...1) are executed. Given a

TRS R = (3, L, R), to implement such a strategy we define a typed rewriting theory
R, = (X, A, L, Ry) such that A = {., e}, while for all d : ¢t = s € R and f € o then d, :

108 CHAPTER 8. TYPED REWRITING LOGIC

t — s, f;: f — f € R;. If we consider again the TRS W and the term f(a), then both

derivations f(a) — g(a,a) — g(b,a) and f(a) — f(b) — ¢g(b,b) can be executed, with
corresponding typed sequents d;(a) - g;(d',a) : f(a) — g(b,a) and fi(d)) - dy(b) : f(a) ~=
g(b,b). Note however that the untyped sequent d(d') : f(a) — ¢(b), corresponding to
the parallel execution of two strictly left-most reductions, can not be executed. Such a
strategy could be called strictly parallel left-most, and for each TRs (3, L, R) a suitable

typed rewriting theory is obtained simply adding to the one for strictly left-most the rule
dy:t — s€ R, foralld:t—s€R.
oL

Typed rewriting seems to be the most expressive way of describing strategies, able to
recover all the usual notions, either position-based, like leftmost or innermost, or operator
based, like in OBJ [GK+87]. It may also provide a simple and clear semantics to strategies,
which have always been considered as an implementation device and never studied for

themselves.

The problem is that, in general, a strategy needs to make negative assumptions on
the derivation spaces of a term, in order to correctly define the “pruning” function. For
example, the usual left-most strategy executes the reduction occurring at the far left
among all those that can actually be executed, and this means that it does not necessarily
reduce the left-most operator. In the TRsS W, both head-rewriting and strictly left-most
prune the whole derivation space of g(b, a), while the left-most selects the only reduction

g(b,d") : g(b,a) — g(b,b), since no reduction can take place in the left-most subterms.

A possible solution to this problem lies in computing the complement of the sets of
“patterns” that can match a given set of rules, thus expressing the non applicability of
a set of rules only with positive conditions. This is known to be possible for left-linear
rules, but the general case should be investigated. From a general point of view, however,
difficulties arise due to the simple kind of constraints we used in the typed version of
the logic. We aimed at providing a formalism as similar as possible to the unconditional
version of rewriting logic, in order to get a “nice” and “clean” algebraic (categorical)
formulation. Our hope is that we will be able to suitable extend the notion of “type”, in
order to make typed rewriting logic an useful tool for implementing the reduction process

when more general constraints are taken into account (see e.g. [KKR90]).

8.4.1 Recovering ELAN

ELAN [Vit94, KKV95] is a high-level language based on rewriting in a many-sorted alge-

bra, possibly modulo axioms of associativity and/or commutativity. It has some unique

8.4. STRATEGIES FOR REWRITING 109

features like possibilities to describe maps of logics, and what interests us more directly,

an original notion of strategies, defined by the following language :

S = R apply at the head a rule whose label is in R
| S1; S S; followed by S,
| dont-care(Si,...,S,) don’t care choice with priority
| dont-know(Sy,...,S,) don’t know not determistic choice (backtrack)
| iterate(S) apply S any number of times
| repeat(S) apply S as much as possible

Strategies are applied only at the top of a term. In order to handle subterms, congru-
ence must be made explicit in the side conditions of rules using the where construct, as

for instance
[r] f(z) — g(y) where y :=(S)x
whose intuitive meaning is that whenever the rule r is applied, apply recursively the strat-

egy S to the argument x.

A strategy can either fail or be successful. If at some point no rule can be applied,
evaluation is restarted from the previous dont-care or dont-know choice point. In case
of success, a result is output, and evaluation restarts from the previous dont-know choice

point.

Since congruence must always be explicited, a powerful preprocessor allows to write

schemes of rules like congruence for any operator:

Strategy S = dont-care(cong)
For each symbol f with arity n,

[cong]l f(xy,...,2n) — f(y1,...,yn) where 7 :=(S)zy

Then, for instance, a parallel outer-most strategy for a set R of rules would be described

just using a single expression:

S := dont-care(R, cong);

110 CHAPTER 8. TYPED REWRITING LOGIC

There is an obvious problem of non termination, because congruence can always be
applied. The ad-hoc solution, though not very satisfying aesthetically, is to add a rule

rewriting the top of a term with a side condition:
r—>y where y:=(S)z ify#ux

Coming back to typed proof terms, only part of the full power of ELAN can be recovered
using typed rewriting logic. The problem is, as usual, linked with the possibility of
negative premises, that are presented in the implementation of the dont-care and repeat
strategy operators. If we assume not to deal with such a strategy, however, it is easy to

see that we can get typed rules where labels on the arrows correspond to properties to be
verified, like

for

[r] f(x) — g(y) where vy :=(S3)x

We are currently trying to recover a precise correspondence between typed rewriting
theories and ELAN, looking for suitable extensions of typed rewriting logic that could still

be equipped both with an algebraic and a categorical semantics.

Chapter 9

Further ork: On Term Graph
Rewriting

We can say that our thesis has pursued a two-fold aim. First, we reviewed the classical
approach to term rewriting and, via rewriting logic, we studied the algebraic properties
of the set-theoretical semantics. Along this line, we investigated some categorical models,
in order to get some suggestions about the fine structure of a possible concurrent imple-
mentation. At the same time, we remarked the relevance of term rewriting as a basic
computational paradigm and, to this purpose, we introduced (usually via suitable exten-
sions of rewriting logic) formalisms to deal with infinite computations and side-effects.
In our current work we try to further stretch these intuitions, providing an algebraic
characterization also for term graph rewriting. The two equivalences on derivations we
studied in the thesis rely on different assumptions about the actual implementation of the
reduction process. In the case of permutation equivalence, we assume to have a complex
data structure describing graphs, and a sequential machine; with disjoint equivalence we
assume instead to have a distributed system, and a one-node/one-processor architecture,

where terms are described as trees.

The aim of this chapter is to suggest a way to unify the two different views, provid-
ing a suitable algebra able to describe term graphs. Starting from there, we are working
on a recasting of the original notion of term graphs rewriting. Term graphs are defined
in [BE+87] as rooted DAG’s, i.e., DAG’s with a distinguished node, which are not really
related with our ranked DAG’s, as defined in Section 9.2. We intend to rephrase such
definitions in a way that is essentially equivalent, but more consistent with our formal
framework. If our claim about the algebras of term graphs holds, we will be able to easily
recast in a 2-categorical setting also term graph rewriting. We will then provide an oper-

ational description of rewriting that is free of the problems of duplication and garbaging

112 CHAPTER 9. FURTHER WORK: ON TERM GRAPH REWRITING

we mentioned in Section 6.3, and whose derivation spaces should form prime algebraic do-
mains; i.e., providing a concurrent semantics where also “garbaged reductions” are taken
into account (in the vein of [Cor93], and differently from [KK+93]).

9.1 S-Monoidal Theories

Given a signature X, the relevant property of the algebraic theory Th(X) is that arrows
from m to n are in one-to-one correspondence with n-tuple of terms of the free -algebra
with at most m variables. Each arrow ¢s: n — 1 identifies a Y-term ¢ with variables
among Ti,...,T,; an arrow n. — m is a m-tuple of X-terms with n variables, and arrow
composition is term substitution. The theory can be regarded as an alternative presenta-
tion of a signature. Indeed, the additional structure it contains (besides the operators of
the signature) is generated in a completely free way, so, in a sense, it does not add “infor-
mation” to the original signature. On this section we introduce s-monoidal theories: they
represent an original generalization of Lawvere theories (potentially more general than
the one proposed in [Pfe74], from which we borrowed the name and some intuitions), and
they have benefited from a careful look at [Laf95, Jac93].

Definition 9.1 (S-Monoidal Theories) Given a signature 3, the associated s-monoidal
theory is the s-monoidal category S-Th(X), freely generated from the graph with pairing
Gy such that

e its objects are underlined natural numbers: 0 is the identity element and pairing is

defined as n ® m = n + m;

o for every operator f € X, there is a basic arrow fx :n — 1. 0

Note that, since we have a very particular structure on objects, we can also define the

arrows as those generated by the following inference rules:

(generators) A
g frin—1
(4)s:n%m,t:m—w (sum) s:n—mt:n —m
composition sum
p s;t:n—k s@t:n+n —->m+m
identities ermutation) ————
()Zl 151 (p)P;,122—>2
duplicator discharger) ———
(dup)Vl.l—>2 (g)!1:l—>Q

9.2. SOME RESULTS ON TERM GRAPHS 113

and satisfying the intuitive axioms. Even if the additional operators have been defined
only for the basic object 1, they can be inductively derived for all the objects starting
from these basic arrows, interpreting in a constructive way the coherence axioms. For
example, the duplicator V,, for each object n can be defined by means of V,,1; and pni1,
as (V11 ®@ Vi); (idn 11 ® pniig ®idy).

Whenever we require the transformation V,! to be natural, we get the algebraic theory
associated to the signature Y. The fact that the arrows from n to 1 are in one-to-one
correspondence with Y-terms whose variables are among xi,...,x, requires that both V
and ! are natural. As an example, let us consider a constant c¢: as a generator, the
corresponding arrow is ¢y, : 0 — 1, while, when considering ¢ as an element of T5(x1, z3),
then the associated arrow is lp;cy 1 2 — 1; moreover, these arrows are unique, since for
each s : n — m, we have s;!,, =!,,.

The main result we aim at is the proof that an analogous property holds for s-monoidal
theories with respect to term graph algebras: i.e., that the arrows of the hom-set [n, m)]
are in a one-to-one correspondence with term graphs with a specified m-tuple of accessible
nodes and a specified n-tuple of variables. In the next section we report our preliminary

results on this topic.

9.2 Some Results on Term Graphs

We open the section recalling the basic definitions regarding term graphs.

Definition 9.2 (Directed Acyclic Graphs) Let ¥ be a signature, i.e., a ranked set of
operator symbols, and let arity be the function returning the arity of an operator symbol,
i.e., arity(f) = n iff f € ¥,. A labeled graph d (over ¥) is a triple d = (N, 1, s), where N
15 a set of nodes, [: N — X is a partial function called the labeling function, s : N — N*
15 a partial function called the successor function, and such that the following conditions

are satisfied:

e dom(l) = dom(s), i.e., labeling and successor functions are defined on the same
subset of N; a node n € N is called empty if n & dom(l).

e for each node n € dom(l), arity(l(n)) = length(s(n)), i.e., each non-empty node

has as many successor nodes as the arity of its label.

If s(n) = (ny,...,ng), we say that n; is the i-th successor of n and denote it by s(n);. A

labeled graph is discrete if all its nodes are empty. A path in d is a sequence

114 CHAPTER 9. FURTHER WORK: ON TERM GRAPH REWRITING

<n0,20,n1,21a v M1 1 Ymd s nm>

where m > 0, ng, ...,y € N, ig,...,0m11 € N (the natural numbers), and ny is theiy -
th successor of ixq1 for k € {1,...,m}. The length of this path is m; if m = 0, the path

is empty. A cycle is a path like above where ng = n,,.

A directed acyclic graph (over X)), shortly DAG, is a labeled graph having no non-empty
cycles. If n € N is a node of a DAG d = (N, 1, s), then by d|n we denote the sub-DAG of d
rooted at n, defined in the obvious way. For a DAG d we shall often denote its components

by N(d), lg and sq, respectively. 0

In order to provide a suitable abstraction of the too concrete notion of DAG, we define

the notion of morphism between DAG’s.

Definition 9.3 (DAG Morphisms and the Category Dags) Let d, d' be DAG’s. A
(DAG) morphism f : d — d' is a function f : N(d) — N(d') that preserves labeling and
successors, i.e., such that for each non-empty node n € N(d), lg(f(n)) = lg(n), and
sa(f(n))i = f(sa(n);) for each i € {1,... arity(ls(n))}.

Directed acyclic graphs over ¥ and DAG morphisms clearly form a category that will
be denoted Dags;. 0

Now we introduce an (original) generalization of the notion of DAG, that is suited to
describe graphs with multiple roots. Then, we will define a term graph as an equivalence

class over such a generalization. In the following, for each i € IN we shall denote by 7 the
set i = {1,...,1} (thus 0 = ().

Definition 9.4 (Ranked DAG’s and Term Graphs) An (i, j)-ranked DAG (or also, a
DAG of rank (i,7)) is a triple g = (r,d,v), where d is a DAG with exactly j empty nodes,
r i — N(d) is a function called the root mapping, and v : j — N(d) is a bijection
between j and the empty nodes of d, called the variable mapping. Node r(k) is called the
k-th root of d, and v(k) is called the k-th variable of d, for each admissible i.

Two (i, j)-ranked DAG’s g = (r,d,v) and g’ = (r',d',v') are isomorphic if there exists
a ranked DAG isomorphism ¢ : ¢ — ¢', i.e., a dag isomorphism ¢ : d — d' such that
por =71 and pov = v'. A (i,j)-ranked term graph G (or with rank (i,7)) is an
isomorphism class of (i,j)-ranked DAG’s. We shall often write G; to recall that G has
rank (i, 7). 0

9.2. SOME RESULTS ON TERM GRAPHS 115

We introduce now two operations on ranked term graphs. The composition of two term
graphs is obtained by gluing the variables of the first one with the roots of the second
one, and it is defined only if their number is equal. The union instead is always defined,

and it is a sort of disjoint union where roots and variables are suitably renumbered.

Definition 9.5 (Composition of Ranked Term Graphs) Let G = [(r,d,v)], G =
[(r',d',v")] be two ranked term graphs. Their composition is the ranked term graph H} =
G o G’ defined as Hy = [(ing o r,d" ing ov')], where d",ing : d — d" and ing : d' —
d" are obtained as follows. Assuming that d = (N(d),lg, sq) and d' = (N(d'),lqg, sa),
we have d" = ((N(d) & N(d'))/~, 1", s"), where W denotes disjoint union, =~ is the least
equivalence relation such that v(i) ~ r'(i) for i € j, and " and s" are determined by I
and sq, respectively, for all ~-equivalence classes containing only nodes of d, and by ly
and sq, respectively, for all other classes. Furthermore, the injections ing : d — d" and

ing :d — d" map each node to its ~-equivalence class. 0

It is worth stressing that such composition can be characterized elegantly as a pushout,
in the sense that (d",ing,ing) is a pushout of (v : j — d,r': j — d') in Dagy, (set j is
regarded as a discrete dag). Actually, the pushout of two arrows in category Dagy, does
not always exist. Necessary and sufficient conditions are given in [CR93]| for the category
of jungles, that can be regarded as a hypergraph variant of DAG’s; indeed the categories
of jungles and DAG’s over the same signature are shown to be equivalent in [CM+91], and
therefore the conditions presented in [CR93] also apply, mutatis mutandis, to Dags,. In
particular, an easy consequence of the results in [CR93] is that the pushout does exist in
the case we are interested in, since morphism v : j — d is injective and has only empty

nodes in the codomain.

Definition 9.6 (Union of Ranked Term Graphs) Let us consider G, = [(r, d, v)] and
G’f = [(r',d',v")] ranked term graphs. Their union or parallel composition is the term
graph of rank (i + k,j +1) G @ G = (", dwd "], where " : i+ k — dwd and
V" j+ 1= dwd are defined as

" T(ZU) fo,EEl
o7 (30)—{ 'z —14) ifzef{i+l,...,i+k}.

vy v(x) ifxej
ov(x)—{vl(x_z‘) ifee{j+1,....5+1}.

116 CHAPTER 9. FURTHER WORK: ON TERM GRAPH REWRITING

It is easy to check that composition and union of ranked term graphs are associative.

Example 9.1 Let us consider the following four term graphs.

1*?791 """" 1
gea—f 2
[~] 1= h- 1 129 h 1 S 3
g f 2 2 / P AR
4 4 6
G1 GQ Gl X G2 Gl > G2

Empty nodes are represented by the natural numbers corresponding to their position in
the list of variables, and are depicted as a vertical sequence on the left; non-empty nodes
are represented by their label, from where the edges pointing to the successors leave; the
list of numbers on the right represent pointers to the roots, and a dashed arrow from j to
a node indicates that it is the j-th root. For example, the first term graph G has rank
(4,2), four nodes (two empty, 1 and 2, and two non-empty, f and g), the successors of
g are the variables 2 and 1 (in this order), the successors of f are g and 2, and the four
roots are g, f, 2, and f.

These graphical conventions make easy the operation of composition, that can be per-
formed by matching the roots of the first graph with the variables of the second one, and
then by eliminating them. For example, term graph G1; G5 is the composition of G1 and
of Gy of rank (1,4). The last term graph is Gy @ G, the union of Gi and Go, of rank
(5,6).

In the rest of this section we will show that every term graph can be constructed,

using composition and union, from a small set of atomic term graphs.

Definition 9.7 (Atomic Term Graphs) An atomic term graph is a term graph in
{fre | f € 2} U {id, p,V,!}, which are depicted in the following

1—1f1
2 11 1. .1 11 10
J id p \Y !

fra

9.2. SOME RESULTS ON TERM GRAPHS 117

Since every node of an atomic term graph is a root or a variable, such term graphs can
be formally defined as follows (using, a bit improperly, r,v,s, and [for the root, variable,

successor, and labeling functions, respectively):

e For each f € ¥ with arity(f) = j, fre has rank (1,7), with I(r(1)) = f, and
s(r(1))y = v(x) for each x € j.

e The term graph id has rank (1,1), with r(1) = v(1).
e The term graph p has rank (2,2), with r(1) = v(2) and r(2) = v(1).
e The term graph ¥V has rank (2,1), with r(1) = r(2) = v(1).

e The term graph ! has rank (0,1), one empty node, and no roots. 0

Theorem 9.1 (Decomposition of Term Graphs) FEvery term graph can be obtained
as the value of an expression containing only atomic term graphs as constants and com-
position and union as operators.

Proof We first need to define some auxiliary term graphs using atomic ones, composition
and union. They are shown in the following

Lo o

11 : Lo 1 1 f 1

2 T R
33 x+1 x4+1 x R J ;/] “"

: J+1 Jr J

Jod Jro J J = j+1
id; Gy m; 2% j .
V()

These arrows are defined formally as follows:
[Identities] Term graph id; is defined as id; =id & ... @ id (j times).

[Permutations] For each permutation II over j (i.e., a bijective mapping IT : j — j),
G is the discrete term graph of rank (j, j) such that for all z € j, v(z) = r(Il(z)).
Since every permutation can be obtained by a finite sequence of exchanges of pairs
of adjacent elements, every such term graph can be obtained as the composition of

more elementary graphs like GHZ;' In turn, we have GHZ; = idy 1 D pDidjigia.

118 CHAPTER 9. FURTHER WORK: ON TERM GRAPH REWRITING

[Multiplicators] For each j € IN, term graph m; has rank (1, j). It is defined recursively

as mg =!,my =id,my =V, and m; =V ; (id® m;) if j > 2.

[Duplicators] Term graph V(j) for j € IN* has rank (2%, j) and it is defined recursively
as V(1) =V,and V(j) = (VeV(i—1)); (id®Gw@id;) if j > 1, where II" is the
permutation on j which maps 1 to j and all other numbers to their predecessors.

[Multi-rooted atoms| Term graph fr. (for f € ¥ and arity(f) = j) is similar to the
atomic graph frq, but all its nodes are roots. It has rank (j + 1,), and is defined

as frq =V (j); (id; ® fra).

[Elementary term graphs] A term graph is elementary is it has rank (j+1, j) for some
J € IN, has only one non-empty node which is the j + 1-th root, and for each z € j,
r(z) = v(xz). Every elementary term graph can be obtained as the composition of
six term graphs which are easily expressed in terms of the above defined auxiliary

graphs;, Let us consider the following case

e e | 111
2 22 22 2
3% 333 3--3. 3
5 5. b ,,,5\\\1 5 5
B O 6 66

\f- 777777777 7

showing the elementary graph G and its decomposition. Informally, G3 has the
form idy & frqo, Go implements a permutation that puts close to each other the
successor nodes of f which are shared in G, GGy is made of V’s and identities and
glues together such nodes, G4 is made of !’s and identities and “forgets” all nodes

that all glued together by G1, and GGy and G5 are suitable permutation graphs.

We prove now the statement by induction on the number of non-empty nodes of
the term graph. Suppose first that G is a discrete term graph of rank (i,j), and let
g§ = (r,d,v) be a ranked DAG in G. Clearly d has exactly j nodes. For each z € j, let
a, = #{y €i| r(y) = v(r)} be the number of times the x-th variable of g appears in the

9.2. SOME RESULTS ON TERM GRAPHS 119

list of roots. Then we have that G = (mq, @ ... @ my;); G for a suitable permutation IT
on 1.

Now, let G be a term graph of rank (i, j) with at least one non-empty node, and let
n be a non empty node such that all its successors are empty: Such a node must exist by
acyclicity. Let G’ be the term graph of rank (i, j+1) obtained from G by making the node
n empty, and adding it as the j + 1-th variable. Furthermore, let G” be the elementary
term graph of rank (j 4+ 1,7) which is the subgraph of G' containing all its variables and
node n. It is easy to see that G = G"; G'. Then since elementary term graphs can
be constructed from atomic ones, the statement follows by induction hypothesis over G’,

since it has one non-empty node less than G. 0

The previous results implies the existence of a full functor S-Th(X) — Dagy. In our
current work we are trying to prove the existence also a suitable faithful functor between

the two categories, in order to sustain our claim about the algebraicization of term graphs.

120 CHAPTER 9. FURTHER WORK: ON TERM GRAPH REWRITING

Bibliography

[ADJ77]

[ANS0]

[BET4]

[BE-+87)

[Ben75]

[BK84]

[Blo76]

[Bou85]

[Bur91]

[BW90]

J.A. Goguen, J.W. Tatcher, E.G. Wagner, J.R. Wright, Initial Algebra Seman-
tics and Continuous Algebras, Journal of the ACM 24 (1), 1977, pp. 68-95.

A. Arnold, M. Nivat, The Metric Space of Infinite Trees. Algebraic and Topo-
logical Properties, Fundamenta Informaticae 4, 1980, pp. 445-476.

A. Bastiani, C. Ehresmann Multiple Functors I: Limits Relative to Double
Categories, Cahiers de Topologie ed Géométrie Différentielle 15 (3), 1974, pp.
545-621.

H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Kennaway, M.J.
Plasmeijer, M.R. Sleep, Term Graph Reduction, in Proc. PARLE, LNCS 259,
1987, pp. 141-158.

D.B. Benson, The Basic Algebraic Structures in Categories of Derivations,
Information and Control 28, 1975, pp. 1-29.

J.A. Bergstra, J.W. Klop, Process Algebra for Synchronous Communication,
Information and Computation 60, 1984, pp. 109-137.

S. Bloom, Varieties of Ordered Algebras, Journal of Comp. and System Science
13, 1976, pp. 200-212.

G. Boudol, Computational Semantics of Term Rewriting Systems, in Algebraic
Methods in Semantics, eds. M.Nivat and J. Reynolds, Cambridge University
Press, 1985.

A. Burroni, Higher Dimensional Word Problem, in CTCS’91, LNCS 530, pp.
94-105.

M. Barr, C. Wells, Category Theory for Computing Science, Prentice Hall

Series in Computer Science, 1990.

122

[CDY6]

[CGOS]

[CGMO3]

[CM92]

[CM+491]

[Cor93|

[Cor96]

[CR93]

[DeS85]

[DJIO]

[DKP91]

[DPY3]

BIBLIOGRAPHY

A. Corradini, F. Drewes, (Cyclic) Term Graph Rewriting is Adequate for Ra-

tional Parallel Term Rewriting, draft.

A. Corradini, F. Gadducci, CPO Models for Infinite Term Rewriting, in Proc.
AMAST’95, LNCS 936, 1995, pp. 368-384.

A. Corradini, F. Gadducci, U. Montanari, Relating Two Categorical Models of
Concurrency, in Proc. RTA’95, LNCS 914, 1995, pp. 225-240.

A. Corradini, U. Montanari, An Algebraic Semantics for Structured Transition
Systems and its Application to Logic Programs, Theoretical Computer Science
103, 1992, pp. 51-106.

A. Corradini, U. Montanari, F. Rossi, H. Ehrig, M. Lowe, Logic Programming
and Graph Grammars, in Proc. of the 4" International Workshop on Graph-
Grammars and Their Application to Computer Science, LNCS 532, 1991, pp.
221-237.

A. Corradini, Term Rewriting in C'Tx, in Proc. TAPSOFT’93 (CAAP), LNCS
668, 1993, pp. 468-484.

A. Corradini, Term Rewriting, in Parallel, draft.

A. Corradini, F. Rossi, Hyperedge Replacement Jungle Rewriting for Term
Rewriting Systems and Logic Programming, in Theoretical Computer Science
109 (1) pp 7-48.

R. De Simone Higher Level Synchronizing Devices in MEIJE-SCCS, Theoret-
ical Computer Science 37 (3), pp. 245-267, 1985.

N. Dershowitz, J.-P. Jouannaud, Rewrite Systems, in Handbook of Theoretical
Computer Science, Vol. B, ed. J. van Leeuwen, North Holland, 1990, pp. 243-
320.

N. Dershowitz, S. Kaplan, D.A. Plaisted, Rewrite, Rewrite, Rewrite, Rewrite,
Rewrite,... *, in Selected Papers of 16" ICALP (1989), Theoretical Computer
Science 83, 1991, pp. 71-96.

R. Dawson, R. Paré, General Associativity and General Composition for Double
Categories, in Cahiers de Topologie et Géométrie Différentielle Catégoriques
25 (1), 1993, pp. 57-79.

BIBLIOGRAPHY 123

[EPS93]

[Gog90]

[GK+87]

[GKMS87]

[GM92]

[GMO95a]

[GMO5b)

[GraT9]

[Gue81]

[HLO1]

[Hoa85]

[Hue80]

[Jac93]

[KB70]

M.C.J.D. van Eekelen, M.J. Plasmeijer, M.R. Sleep, Term Graph Rewriting,
Theory and Practice, John Wiley & Sons, 1993.

J.A. Goguen, Semantic Specifications for the Rewrite Rule Machine, in Con-
currency: Theory, Language and Architecture, eds. A. Yonezawa, W. McColl
and T. Tto, LNCS 491, 1990, pp. 216-234.

J.A. Goguen, C. Kirchner, H. Kirchner, J. Meseguer, T. Winkler, An Introduc-
tion to OBJ-3, in Proc. CTRS’87, LNCS 308, pp. 258-263.

J.A. Goguen, C. Kirchner, J. Meseguer, Concurrent Term Rewriting as a Model
of Computation, in Proc. Graph Reduction Workshop, LNCS 279, pp. 53-93.

J.A. Goguen, J. Meseguer, Order-Sorted Algebra I, Theoretical Computer Sci-
ence 105, 1992, pp. 217-273.

F. Gadducci, U. Montanari, Enriched Categories as Models of Computations,
in Italian Conference on Theoretical Computer Science 1995, ed. A. De Santis,

World Scientific, to appear.

F. Gadducci, U. Montanari, SOS Contexts as Cells in Double-Categories, draft.
G. Gratzer, Universal Algebra, Springer-Verlag, New York, 1979.

I. Guesserian, Algebraic Semantics, LNCS 99, 1981.

G. Huet, J.J. Lévy, Computations in Orthogonal Rewriting Systems, in Com-
putational Logic, Essays in Honour of A. Robinson, eds. J.L. Lassez and G.
Plotkin, MIT Press, 1991, chapter 11.

C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.

G. Huet, Confluent Reductions: Abstract Properties and Applications to Term
Rewriting Systems, Journal of the ACM 27 (4), 1980, pp. 797-821.

B. Jacobs, Semantics of Weakening and Contraction, Annals of Pure and Ap-
plied Logic 69, 1994, pp 73-106.

D.E. Knuth, P.B. Bendix, Simple Word Preoblem in Universal Algebra in Com-
putational Problems in Abstract Algebra, Pergamon Press, Oxford, 1970, pp.
263-297.

124

[Kel82]

[KKR90]

[KK+93]

[KK-+94]

[KK+95]

[KKV95]

[K1o91]

[KR77]

[KS74]

[Laf95]

[Lam68)]

BIBLIOGRAPHY

G.M. Kelly, Basic Concepts of Enriched Category Theory, London Mathemat-
ical Society, LN Series 64, 1982.

C. Kirchner, H. Kirchner, M. Rusinovitch, Deduction with Symbolic Con-
straints, in Revue d’Intelligence Artificielle 4 (3), 1990, pp. 9-52.

J.R. Kennaway, J.W. Klop, M.R. Sleep, F.J. de Vries, Fvent Structures and
Orthogonal Term Graph Rewriting, in [EPS93], pp. 141-155.

J.R. Kennaway, J.W. Klop, M.R. Sleep, F.J. de Vries, The Adequacy of Term
Graph Rewriting for Simulating Term Rewriting, ACM Transaction on Pro-
gramming Languages and Systems 12 (1), 1994, pp. 493-523.

J.R. Kennaway, J.W. Klop, M.R. Sleep, F.J. de Vries, Transfinite Reductions
in Orthogonal Term Rewriting System, Information and Computation 119 (1),
pp. 18-38.

C. Kirchner, H. Kirchner, M. Vittek, Designing Constraint Logic Programming
Languages Using Computational Systems, in Principles and Practice of Con-
straint Programming, eds. P. Van Hentenryck and V. Saraswat, MIT Press,
1995, pp. 131-158.

J.W. Klop, Term Rewriting Systems, to appear in Handbook of Logic in Com-
puter Science, Vol. I, eds. S. Abramsky, D. Gabbay, and T. Maibaum, Oxford
University Press, 1991.

A. Kock, G.E. Reyes, Doctrines in Categorical Logic, in Handbook of Mathe-
matical Logic, ed. John Bairwise, North Holland, 1977, pp. 283-313.

G.M. Kelly, R.H. Street, Review of the Elements of 2-categories, Lecture Notes
in Mathematics 420, 1974, pp. 75-103.

J. Lafont, Fquational Reasoning with 2-dimensional Diagramsin Term Rewrit-
ing, French Spring School of Theoretical Computer Science, Font-Romeu, May
1993, LNCS 909, 1995, pp. 170-195.

J. Lambek, Deductive Systems and Categories I, Mathematical Systems The-
ory 2, 1968, pp. 287-318.

BIBLIOGRAPHY 125

[Lam69]

[Lam72]

[Lan94]

[Law63]

[Law68]

[Lev80)]

[LM92]

[LMRO4]

[LX90]

[Mar91]

[Mit72]

J. Lambek, Deductive Systems and Categories II, in Category Theory, Homol-
ogy Theory and their Applications I, Lecture Notes in Mathematics 86, 1969,
pp. 76-122.

J. Lambek, Deductive Systems and Categories III, in Toposes, Algebraic Ge-
ometry and Logic, Lecture Notes in Mathematics 274, 1972, pp. 57-82.

C. Laneve, Distributive Fvaluations of A-calculus, Fundamenta Informaticae
20 (4), 1994, pp. 333-352.

F. W. Lawvere, Functorial Semantics of Algebraic Theories, Proc. National
Academy of Science 50, 1963, pp. 869-872.

F. W. Lawvere, Some Algebraic Problems in the Context of Functorial Seman-
tics of Algebraic Theories, in Reports of the 2 Midwest Category Seminar,
Lecture Notes in Mathematics 61, 1968, pp. 41-61.

J.J. Lévy, Optimal Reductions in the A-calculus, in To H.B. Curry, Essays in
Combinatory Logic, Lambda Calculus and Formalism, eds. J.P. Seldin and
J.R. Hindley, Academic Press, 1980, pp. 159-191.

C. Laneve, U. Montanari, Aziomatizing Permutation Equivalence in the \-
calculus, in Proc. 3" International Conference on Algebraic and Logic Pro-
gramming, LNCS 632, 1992, pp. 350-363. To appear in Mathematical Struc-

tures in Computer Science.

P. Lincoln, J. Meseguer, L. Ricciulli, The Rewrite Rule Machine Node Ar-
chitecture and its Performance, in Proc. CONPAR’94, LNCS 854, 1994, pp.
509-520.

K.G. Larsen, L. Xinxin, Compositionality Through an Operational Semantics
of Contexts, in Proc. ICALP’90, LNCS 443, 1990, pp. 526-539.

L. Maranget, Optimal Derivations in Weak A-calculi and in Orthogonal Term
Rewriting Systems, in Proc. POPL’91, 1991, pp. 255-269.

B. Mitchell, Rings with Several Objects, in Advances in Mathematics 8, 1972,
pp. 1-161.

126

[Mes90)]

[Mes92]

[Mil89]
[ML71]

[MMO90]

[MOMO1]

[MOMO93]

[PfeT4]

[Plo81]

[Pow89)]

[Pow90)]

[Rei85]

[Rei87]

[RS87]

BIBLIOGRAPHY

J. Meseguer, Rewriting as a Unified Model of Concurrency, SRI Technical
Report, CSL-93-02R, 1990. See in particular the appendix on Functorial Se-

mantics of Rewrite Systems.

J. Meseguer, Conditional Rewriting Logic as a Unified Model of Concurrency,
in Selected Papers of 2 Workshop on Concurrency and Compositionality,
Theoretical Computer Science 96, 1992, pp. 73-155.

R. Milner, Communication and Concurrency, Prentice-Hall, 1989.
S. MacLane, Categories for the Working Mathematician, Springer, 1971.

J. Meseguer, U. Montanari, Petri Nets are Monoids, Information and Compu-
tation 88, 1990, pp. 105-154.

N. Marti-Oliet, J. Meseguer, From Petri Nets to Linear Logic through Cate-
gories: a Survey, International Journal of Foundations in Computer Science 2
(4), 1991, pp. 297-399.

N. Marti-Oliet, J. Meseguer, Rewriting Logic as a Logical and Semantic Frame-
work, SRI Technical Report, CSL-93-05, 1993.

Michael Pfender, Universal Algebra in S-Monoidal Categories, Algebra-
Berichte 20, Mathematisches Institut der Universitat Munchen, 1974.

G. Plotkin, A Structural Approach to Operational Semantics, Technical Report
DAIMI FN-19, Computer Science Department, Aarhus University, 1981.

A.J. Power, An Abstract Formulation for Rewrite Systems, in Proc. CTCS’89,
LNCS 389, 1989, pp. 300-312.

A.J. Power, A 2-categorical Pasting Theorem, Journal of Algebra 129, 1990,
pp. 439-445.

W. Reisig, Petri Nets, Springer-Verlag, 1985.

H. Reichel, Initial Computability, Algebraic Specification and Partial Algebras,
Oxford University Press, 1987.

D.E. Rydeheard and J.G. Stell, Foundations of Equational Deduction: A Cat-
egorical Treatment of Equational Proofs and Unification Algorithm, in Proc.
CTCS’87, LNCS 283, 1987, pp. 114-339.

BIBLIOGRAPHY 127

[See87]

[Ste92]

[Ste94]

[Str92]

[Wad71]

[Wel89)]

[Vir95]

[Vit94]

[Win87]

[Win89]

R.A.G. Seely, Modelling Computations: a 2-categorical Framework, in Proc.

2"? Symposium on Logic in Computer Science, 1987, pp. 65-71.

J. G. Stell, Categorical Aspects of Unification and Rewriting, Ph.D. Thesis,
Faculty of Science, University of Manchester, 1992.

J. G. Stell, Modelling Term Rewriting System by Sesqui-categories, Technical
Report TR94-02, Keele University, 1994. An abstract appear also in Actes des
Journées Mathématiques “Catégories, Algebres, Esquisses and Néo-Esquisses”
(C.A.E.N.), 1994, pp. 121-126.

R.H. Street, Categorical Structures, in Handbook of Algebra, eds M.
Hazewinkel et al., Elsevier, preprint 1992.

C.P. Wadsworth, Semantics and Pragmatics of the \-Calculus, Ph.D. Thesis,
Oxford University, 1971.

C. Wells, Path Grammars, in Proc. Conference on Algebraic Methods and
Software Technology, University of Towa, May 19809.

P.Viry, Rewrite modulo a Rewrite System, Technical Report TR-20/85, Com-
puter Science Department, University of Pisa, 1995.

M. Vittek, ELAN: Un Cadre Logique pour le Prototypage de Langages de Pro-

grammation avec Contraintes, Ph.D. thesis, University of Nancy, 1994.

G. Winskel, Event Structures, in Advanced Course on Petri Nets, LNCS 255,
1987, pp. 325-392.

G. Winskel, An Introduction to Event Structures, Lecture Notes for the REX
Summerschool in Temporal Logic, LNCS 354, 1989, pp. 285-363.

