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Chapter 1Introduction
As an autonomous research �eld, term rewriting can be actually dated to the introductionof the so-called Knuth-Bendix completion procedure [KB70]. The motivations for such analgorithm lie on the mid-Thirties work on algebraic varieties by Birko�, where a varietyis a class of algebras satisfying a given set of axioms. The deduction method to derivenew equations from a given speci�cation is known as equational logic: it simply puts ona formal ground the intuitive \substitution of equals" technique, allowing to derive newequations from older ones. The aim of the Knuth-Bendix algorithm is to transform agiven input speci�cation into a convergent rewriting system: a system such that rewritingis always terminating, and produces a unique possible result for any term, its normalform. In this system, the equations of the input speci�cation are turned into one-wayrules, such that two terms are equated in the input theory if and only if they have thesame normal form.It is not a mere understatement to say that, in these years, term rewriting has beenimplicitly analyzed only as a technique, in correspondence with its use as an e�cient formof equational deduction. This explains the syntactical nature of the research in the �eld,between the two guidelines of termination (we must ensure that rewriting always ter-minates) and Church-Rosser property (we must ensure that rewriting produces a uniquenormal form). Such a choice has been sustained also by the interest of computer scientistsfor term rewriting, due for example to the introduction of algebraic semantics for programschemes (see e.g. [Gue81]).Of course, if we are just interested in equational deduction, we can safely avoid dealingwith the \details" of how the reduction process is actually implemented. However, thisapproach is too narrowing, especially so since term rewriting can be considered as a basic



2 CHAPTER 1. INTRODUCTIONcomputational paradigm, where terms are interpreted as states of an abstract machine,while rewriting rules are state-transforming functions.In the classical set-theoretical approach to term rewriting, the basic notion is thatof sequence of rewrites: to each term t a derivation space is associated, i.e., a class of\transitions" describing all the possible reductions starting from t. Derivation spacesrepresent a na��ve operational model: each element of a space is interpreted as a sequenceof \concrete" steps of an underlying, sequential machine dealing with data structuresrepresenting syntactical descriptions of terms. Such an operational description however isnot su�cient if we want to take into account di�erent representations for terms, able torecover notions like sharing of subterms, or if we want to deal with a distributed system,such that the reduction mechanism is implemented over a network of processors.The use of suitable graph expressions to describe terms, handling explicitly the shar-ing of subexpressions, dates at least to the late Sixties [Wad71]. In this setting, a singlereduction step (on a graph) can subsume a long sequence of (sequential) rewrites: \con-crete" derivations that are di�erent when dealing with the syntactical description of termscan represent the same derivation when this more complex data structure is used. Whenintroducing permutation equivalence [Lev80], L�evy wanted to capture the fundamentaluniqueness of such a reduction: permutation equivalence equates sequences of syntacticalrewrites that correspond to the same contractions on graphs. Two reduction steps arethen compatible if they are independent with respect to the modi�cations they induce onthe data structure (i.e., if they act on disjoint portions of the graph).The studies on the permutation equivalence paradigm in the term rewriting frameworkcan be dated back at least to [Bou85]. Along this line of research, in [Mar91] the authorproves the adequacy of the equational representation for describing graph reduction inthe case of orthogonal term rewriting systems (informally, those such that all their ruleshave no subexpression in common). Moreover, a \lazy" reduction strategy (i.e., an actualalgorithm) is provided that is \optimal", in the sense that it is able to perform theminimal number of graph reductions. The reduction strategy, however, implicitly assumesa sequential machine over which the reduction mechanism is implemented, or at leastthe presence of a (hidden) synchronizing agent. Furthermore, the equivalence does notdescribe faithfully the behaviour of the reduction mechanism over graphs, whenever not-orthogonal rules are taken into account.When dealing with a distributed system, instead, we assume that the reduction processis implemented over a network of processors. From a theoretical point of view, the easiestchoice is the one-node/one-processor architecture: terms are described as trees, and we



3have a tree-like implementation schema, where processors are loosely coupled (i.e., the con-trol is totally distributed) and each processor has knowledge only of the rewriting rules ofthe system, of the information of the actual node it is associated with, and of the nodes itis linked with (i.e, we have �ne-grain parallelism). Such an architecture is well-suited fortheoretical purposes (since we consider irrelevant the eventual inter-processor communica-tions), even if a realistic implementation should �nd a suitable trade-o� between �ne andcoarse-grain, distributed and centralized control: for a careful discussion of these topics,we refer to the works of the Rewriting Rule Machine project [GKM87, Gog90, LMR94].For our purposes, however, we need just remark that many concrete derivations may cor-respond to the simultaneous execution of the same set of compatible reductions. Herecompatibility means that they act on disjoint portion of the tree, or, in di�erent terms,that they are \causally unrelated". A concurrent semantics then has to provide an equiv-alence over sequences of syntactical rewrites equating those that correspond to the sameparallel reduction, while an optimal strategy means to provide a notion of compatibilityallowing the simultaneous execution of as many single sequential reductions as possible.An alternative approach to the semantics of term rewriting relies on the use of suit-able cat-enriched categories, namely 2-categories and sesqui-categories. A cat-enrichedstructure is given by a category such that each hom-set also forms a category: the classof morphisms (called cells) of these hom-categories are closed under certain compositionoperators, and are subject to suitable coherence axioms. Such algebraic structures arefreely generated from a c-computad: a pair hD; Si, where D is a category whose arrowsrepresent terms, and S is a collection of cells describing the rewriting rules. This way weobtain derivation spaces (the cells of the enriched structure) that are already subject toan equivalence relation, due to the coherence axioms: since there exists a correspondencebetween cells and sequences of rewrites, we get \for free" suitable equivalences over deriva-tions. Moreover, the explicit description of terms and rewrites provided by the categoricalframework is such that the resulting model is much closer to a possible implementation,since all the relevant properties of the involved operations (like substitution) that aresometimes overlooked in the classical description of reduction are to be made explicit inthis representation. To a large extent, the categorical description underlines and clari�esthe relevant aspects of the derivation mechanism, and may furthermore suggest usefulre�nements.The set-theoretical and the categorical semantics of term rewriting can be related el-



4 CHAPTER 1. INTRODUCTIONegantly through the use of Rewriting Logic [Mes92], whose logical approach has its rootsin a seminal paper by Meseguer and Montanari [MM90] on the semantics of Petri Nets[Rei85]. The idea of rewriting logic is to take a logical viewpoint, regarding a rewrit-ing system R as a theory, and any rewriting - making use of rules in R - as a sequententailed by the theory, where the entailment relation is de�ned inductively by a givenset of deduction rules. Each of these rules can be considered as a general pattern for abasic action that can occur concurrently with many others, so that rewriting logic can beconsidered as a logic of changes, while di�erent sets of rules mean di�erent assumptionson the reduction mechanism. Derivations are then naturally equipped with an algebraicstructure: a sequent is a triple � : s ! t, where � is an element of a proof term algebraencoding the justi�cations of the rewrites of s into t. The underlying idea is that, if fora sequential system a set of states and a set of transitions between states can alreadybe considered a faithful description of its behaviour, this is not true anymore for con-current ones. More precisely, what allows us to recover faithfully a concurrent behaviouris the presence of an algebraic structure. If we are just interested in equational deduc-tion, one can immediately recover the set-theoretical rewrite relation, simply ignoring theproof term of a sequent � : s ! t. At the same time, one can easily provide di�erentequivalences over sequences of rewrites, imposing suitable sets of axioms over proof terms.The aim of the thesis is twofold. As pointed out in [MOM91], rewriting logic estab-lishes a generalization of the Curry-Howard correspondence, namely the Lambeck-Lawverecorrespondence [Lam68, Lam69, Lam72], for term rewriting, as summed up in the follow-ing �gure: algebraicset� theoretical categoricalsequentsrewrites cellsThe �rst part of the thesis studies in depth the correspondence between the di�erentsides of the analogy in the term rewriting setting. In Chapter 4 we introduce the paradigmof rewriting logic, using two di�erent sets of deduction rules: the full entailment is a vari-ant of the relation proposed by Meseguer in his paper [Mes92], while the at entailment isour own, and was originally introduced in [CGM95]. Then we equip the two relations with



5two di�erent set of axioms over proof terms, obtaining respectively families of abstract fulland abstract at sequents, and we provide sound and complete categorical models for bothentailment relations. In Chapter 5 we carefully relate these semantics with two equiva-lences induced over derivations in the set-theoretical setting, the well-known permutationequivalence and a di�erent one we called disjoint equivalence. Elaborating on the resultsin [LM92], we prove the one-to-one correspondence between the families of permutation(disjoint) equivalent derivations, and the families of abstract full (at) sequents. Finally,in Chapter 6 we study the algebraic properties of the models, with the aim of showingthat the equivalences we introduced can be considered as providing a suitable concurrentsemantics for the reduction mechanism. As already remarked in a series of papers inthe early Seventies (see e.g. [Ben75]) on the semantics of the reduction process in con-text free grammars, and following a now common practice in the concurrency community,we say that a given equivalence expresses a direct implementability property (i.e., it istheoretically feasible to describe a suitable distributed network whose processors directlyimplement abstract reductions) only if the families of abstract sequents form with respectto the intuitive pre�x ordering a prime algebraic domain (a model tightly related to thewell-accepted formalism of event structures [Win89]). We prove that abstract at sequentsform such a domain; full ones, instead, do not (as could be also inferred from [Lan94]).Moreover, we provide an intuitive justi�cation of this fact via a possible implementationschema of the reduction process over the one-node/one-processor distributed architecture.Many rule-based formalisms in theoretical computer science are provided with satis-factory operational semantics, usually given in a set-theoretical setting. The overall goalof the second part of this thesis is to show that for a large class of formalisms a categoricalsemantics can be provided as well, on the assumption that \concurrency lies on the al-gebraic structure, modulo a suitable axiomatization". Moreover, as for term rewriting, acorresponding logic is de�ned that constitutes the \trait d'union" between the operationaland algebraic semantics. This idea will be applied to the following cases.1. To describe in�nitary parallel term rewriting (Chapter 7), dealing with terms ofin�nite depth and (possibly) in�nite sets of rewrites (all of them applied in parallelto a given term). The operational semantics was presented in [Cor93], while thecorresponding rewriting logic and categorical semantics was introduced in [CG95].The main de�nitions involve an in�nitary rule (corresponding to an !-completion)for the extended logic, and the use of cpo-enrichment for the categorical models.2. To recast formalisms relying on the use of side e�ects in determining the actual



6 CHAPTER 1. INTRODUCTIONbehaviour of a given system (Chapter 8), i.e., such that a transition relation is notsu�cient anymore to describe the evolution of the system. Suitable examples areprocess algebras [Hoa85, Mil89], whose operational semantics is described by meansof labeled transition systems, or generalizations of this paradigm like context systems[LX90] (Chapter 8). The associated logic introduces the notion of typed sequent (i.e.,such that the algebra of proof terms is subject to suitable typing conditions), whilethe categorical model uses double-categories [GM95a, GM95b].3. To implement strategies for term rewriting, i.e., to describe algorithms designed tochoose deterministically which rewrite to execute at each point of the computation.Usually, a strategy is simply given by a function associating to each term a set of itssubterms. In Chapter 8 we refer some work in progress, relying on the use of typedsequents, where the typing conditions now carry information on which rewrites canbe performed.4. To describe term graph rewriting. The classical operational semantics can be foundin the introductory chapter of [EPS93], while in Chapter 9 we investigate on a pos-sible algebraic (categorical) description for term graphs and term graph rewriting,showing some preliminary but quite enlightening results. The categorical model in-volves the use of symmetric monoidal categories, equipped with two transformationsrepresenting the explicit sharing and garbaging of terms.From the semantic point of view, then, we establish a Lambek-Lawvere analogy for alarge class of formalisms, usually equipped with a set-theoretical semantics, via suitableextensions of rewriting logic, used as a tool. Moreover, the categorical side is usually dealtwith by reformulating the established categorical semantics for rewriting logic.



Chapter 2Preliminaries on (In�nitary)RewritingThe aim of this chapter is to recall the basic de�nitions of classical, set-theoretical termrewriting, that play an important r�ole in the thesis. The �rst two sections, however, are de-voted to the introduction of the notions of algebra, continuous algebra and variety. For the�nite case, any introductory book like [Gra79] provides a far more interesting background;for the continuous case, our exposition is based on classical papers like [ADJ77, Blo76].2.1 Varieties of Finite AlgebrasDe�nition 2.1 (�-Algebras) Let � be a (one-sorted) signature, i.e., a ranked alphabetof operator symbols � = [n2IlN�n (saying that f is of arity n for f 2 �n). A �-algebra isa pair A = hjAj; �Ai such that jAj is a not-empty set (the carrier), and �A = ffA j f 2 �gis a family of functions such that for each f 2 �n, fA : jAjn ! jAj. Let A;B be two �-algebras: a �-homomorphism � : A! B is a function � : jAj ! jBj preserving operators,i.e., such that for every f 2 �n, � �fA = fB��n: �(fA(a1; : : : ; an)) = fB(�(a1); : : : ; �(an)).Since �-homomorphisms are closed under (functional) composition, and the identityfunction of the carrier is a �-homomorphism, the class �-Alg of �-algebras and �-homomorphisms forms a category (see Chapter 3). We recall some well-known resultsfor the class of �-algebras.Proposition 2.1 (Initial Algebra) Let � be a signature. Then the category �-Algadmits an initial algebra, denoted T�, such that for any �-algebra A, there exists a uniquehomomorphism �A : T� ! A.



8 CHAPTER 2. PRELIMINARIES ON (INFINITARY) REWRITINGThe construction of T� is well-known, and we will not repeat it here. Next proposition,however, states the key result for any proof carried out by \structural" induction overterms.Proposition 2.2 (Unique Construction) Let � be a signature, and T� its initial al-gebra. Then for any t 2 T� there exists a unique n 2 IlN, f 2 �n and ti 2 T�, i = 1 : : : nsuch that t = f(t1; : : : ; tn).We introduce now the notion of freely generated algebra over a set of variables.De�nition 2.2 (Freely Generated Algebras) Let � be a signature, andX a set (whoseelements will be called variables) such that � \X = ;. We de�ne the free algebra over Xas the initial algebra of �(X)-Alg, denoted T�(X), where �(X) is the signature obtainedfrom � by adding the elements of X as constants.The following results about substitutions and derived operators are also well-known.De�nition 2.3 (Substitutions) Let � be a signature, and X; Y be two sets of variables.A substitution (from X to Y ) is a function � : X ! T�(Y ) (used in post�x notation).A substitution � from X to Y uniquely determines a �-homomorphism (also denoted by�) from T�(X) to T�(Y ), which extends � as f(t1; : : : ; tn)� = f(t1�; : : : ; tn�) for eachf 2 �n, for all n 2 IlN. If X is �nite, a substitution � from X to Y can be representedas a �nite set fx1=t1; : : : ; xn=tng with ti = xi� for all 1 � i � n and, given a term t suchthat var(t) � fx1; : : : ; xng, we usually write t(t1; : : : ; tn) for t�.Proposition 2.3 Let � be a signature, A a �-algebra and X a set of variables. Thenany function h : X ! jAj (also called evaluation) can be uniquely extended to a �-homomorphism �h : T�(X)! A.The previous proposition states that each term t 2 T�(fx1; : : : ; xng) actually de�nesan n-nary function, the derived operator tA, for any �-algebra A: given any possibleevaluation h : fx1; : : : ; xng ! A, with h(xi) = ai for i = 1 : : : n, then tA(a1; : : : ; an) =�h(t). Note that we could de�ne the derived operator as an m-ary function, for eachn � m, whenever we have #jvar(t)j = n: the result, however, is not inuenced by theauxiliary arguments.



2.1. VARIETIES OF FINITE ALGEBRAS 9De�nition 2.4 (Equations) Let � be a signature and X a set of variables. Then anequation over �(X) is a pair ht; si of elements of T�(X). An algebra A satis�es anequation ht; si i� for any evaluation h : fx1; : : : ; xng ! A, with h(xi) = ai for i = 1 : : : n,such that both �h(t) and �h(s) are de�ned, the identity tA(a1; : : : ; an) = sA(a1; : : : ; an)holds.A variety is the class of all algebras satisfying a given set E of equations. For a given setof axioms E de�ned over �(X), let us indicate with �=E the minimal congruence inducedby the axioms in E over T�, closed with respect to substitutions X ! T�. The quotientalgebra T(�;E) = T�= �=E is de�ned as the �-algebra whose carrier consists the equivalenceclasses of elements of jT�j modulo the congruence �=E, while, for each operator f 2 �n,fT(�;E) : h[t1]; : : : ; [tn]i ! [f(t1; : : : ; tn)] (where [ti] is the equivalence class associated tothe term ti).Proposition 2.4 (Initiality in Varieties) Let � be a signature, and E a set of axioms.Then T(�;E) is initial in the variety associated to E.This result shows that, as for establishing identities holding in all the algebras of agiven variety, it is su�cient to consider just elements of T�. The next proposition statesthat, given a set of axioms E, the identities holding in T(�;E) can be inferred by a �niteapplication of certain deduction rules: hence, proofs can be carried out by structuralinduction over terms of T�.Proposition 2.5 (Equational Logic) Let � be a signature, X a set of variables and Ea set of axioms de�ned over �(X). Given two terms t; s 2 T�, the equality t = s holds inT(�;E) i� it can be inferred by �nite application of the following rules:� t 2 T�t = t ;� t(x1; : : : ; xn) = s(x1; : : : ; xn) 2 E; ti = si for i = 1; : : : ; nt(t1; : : : ; tn) = s(s1; : : : ; sn) ;� f 2 �n; ti = si for i = 1; : : : ; nf(t1; : : : ; tn) = f(s1; : : : ; sn) ;� s = t; t = us = u :



10 CHAPTER 2. PRELIMINARIES ON (INFINITARY) REWRITINGA well-studied extension of the class of algebras we introduced are partial algebrasover a given signature: pairs hA; �Ai where �A characterizes a family of partial functionsover the carrier jAj. Since we will only occasionally deal with these structures, we referthe reader to [Gra79]: next section will be devoted instead to introducing the notion ofcontinuous algebra.2.2 Continuous AlgebrasIn this section we consider algebras whose carriers form an ordered structure, namely a(!-complete) partial order. Correspondingly, homomorphisms do not preserve only thealgebraic structure, but are also order-preserving (e.g, monotone, continuous) functions.The importance of these algebras in computer science has been stressed by a great deal ofwork during the Seventies, mainly inside the algebraic semantics framework, for examplein providing denotational semantics for functional languages, semantical models for owdiagrams and, in general, for formalisms dealing with unbounded computations. Let us�rst recall some de�nition about (complete) partial orders.De�nition 2.5 ((Complete) Partial Orders) A partial order is a pair hD;�i, where� is a reexive, antisymmetric and transitive binary relation over a set D. A partialorder is strict if it has an element ? (called bottom) such that ? � d for all d 2 D. Apartial order is !-complete (also complete) if it admits least upper bounds (lub's) for all!-chains of elements. If fdigi<! is an !-chain (i.e., di � di+1 for all i < !), we denoteits lub by Fi<!fdig. A monotone function f : hD;�Di ! hD0;�D0i between partialorders is a function f : D ! D0 which preserves the ordering relation, i.e., such that ift � s, then f(t) � f(s); it is strict if moreover f(?D) = ?D0. A continuous functionf : hD;�Di ! hD0;�D0i between complete partial orders is a function f : D ! D0 whichpreserves lub's of !-chains, i.e., f(Fi<!)fdig = Fi<!ff(di)g.The product of (complete) partial orders can be de�ned as the cartesian product of theirunderlying sets, while the ordering relation is de�ned pointwise. Then, most properties of�-algebras can be extended to take into account (complete) ordered algebras, i.e., algebraswhose carriers are (complete) partial orders (cpo's from now on).De�nition 2.6 (The Category of (Complete) Ordered �-Algebras) A (complete)ordered �-algebra is a pair A = hhjAj;�Ai; �Ai such that hjAj;�Ai is a (complete) partialorder, and �A = ffA j f 2 �g is a family of monotone (continuous) functions such that for



2.2. CONTINUOUS ALGEBRAS 11every f 2 �n, fA : hjAj;�Ain ! hjAj;�Ai. If A;B are (complete) ordered �-algebras, anordered (continuous) �-homomorphism � : A ! B is a monotone (continuous) function� : hjAj;�Ai ! hjBj;�Bi which preserves the operators.�-OAlg and �-COAlg denote respectively the categories having (complete) ordered�-algebras as objects and ordered (continuous) �-homomorphisms as arrows. In bothcases, the initial algebra FT� is given by the rather uninteresting pair hhjT�j;=i; �T�i:the algebra T� equipped with the identity relation. A much more important class isrepresented by continuous algebras.De�nition 2.7 (The Category of Continuous �-Algebras) A continuous �-algebrais a pair A = hhjAj;�Ai; �Ai such that hjAj;�Ai is a strict cpo, and �A = ffA j f 2 �g isa family of continuous functions such that for every f 2 �n, fA : hjAj;�Ain ! hjAj;�Ai.�-CAlg denotes the category having continuous �-algebras as objects and strict con-tinuous �-homomorphisms as arrows. As shown in [ADJ77], also this class has an initialalgebra, denoted CT�: its elements are possibly in�nite, possibly partial terms freely gen-erated from �, and they form a strict cpo where the ordering relation is given by t � t0i� t0 is \more de�ned" than t.2.2.1 Explicit Construction of CT�Since continuous algebras will be very important in this thesis, we give in this section anexplicit construction of CT�; de�nitions are borrowed from [ADJ77], with minor changes.De�nition 2.8 (Occurrences) Let !� be the set of all �nite strings of positive naturalnumbers; its elements are called occurrences, and the empty string is denoted by �.De�nition 2.9 (Terms as Functions) Let � be a signature and X a set of variablessuch that �\X = ;. A term over (�, X) is a partial function t : !� ! �[X, such thatthe domain of de�nition of t, O(t), satis�es (for w 2 !� and i 2 !):� wi 2 O(t)) w 2 O(t);� wi 2 O(t)) t(w) 2 �n for some n � i.O(t) is called the set of occurrences of t. A term t is total if t(w) 2 �n ) wi 2 O(t) forall 0 < i � n.



12 CHAPTER 2. PRELIMINARIES ON (INFINITARY) REWRITINGThe set of terms over (�, X) is denoted by CT�(X) (CT� stays for CT�(;)). For�nite, total terms, this description is equivalent to the usual representation of terms asoperators applied to other terms. Partial terms are made total in this representation byintroducing the unde�ned term ?, which represents the empty function ? : ; ! � [X,always unde�ned. Thus, for example, if x 2 X, t = f(?; g(x)) is the term such thatO(t) = f�; 2; 2 � 1g, t(�) = f 2 �2, t(2) = g 2 �1, and t(2 � 1) = x 2 X.CT�(X) forms a strict cpo with respect to the \approximation" relation. We saythat t approximates t0 (written t � t0) i� t is less de�ned than t0 as partial function1. Theleast element of CT�(X) with respect to � is clearly ?. An !-chain ftigi<! is an in�nitesequence of terms t0 � t1 � : : :. Every !-chain ftigi<! in CT�(X) has a lub Si<!ftigcharacterized as follows:t = [i<!ftig , 8w 2 !� : 9i < ! : 8j � i : tj(w) = t(w):Since each pair of terms has a greatest lower bound (glb), CT�(X) is more than a strictcpo: it is actually an !-complete lower semilattice. The following result was originallyproved in [ADJ77].Proposition 2.6 (Initiality for Continuous Algebras) CT� is initial in �-CAlg,and it is called the continuous word algebra over �.2.2.2 Varieties of (Complete) Ordered AlgebrasIn this section we recall the basic results on varieties of ordered algebras that can be foundin [Blo76].Proposition 2.7 Let � be a signature, A a (complete) ordered �-algebra and X a setof variables. Then any evaluation h : X ! jAj can be uniquely extended to a ordered(continuous) �-homomorphism �h : FT�(X)! A.The previous result extends the notion of derived operator to ordered and continuousalgebras. Each term t 2 FT�(fx1; : : : ; xng) actually de�nes an n-ary function, the derivedoperator tA, for any ordered (continuous) �-algebra A: given any possible evaluationh : fx1; : : : ; xng ! A, with h(xi) = ai for i = 1 : : : n, then tA(a1; : : : ; an) = �h(t).1Equivalently, the relation `�' can be de�ned as the minimal one such that ? � t for all t; x � x forall x 2 X , and f(t1; :::; tn) � f(t01; :::; t0n) if t1 � t01; : : : ; tn � t0n, for all f 2 �n. This is not by chance: seenext section.



2.2. CONTINUOUS ALGEBRAS 13De�nition 2.10 (Inequalities) Let � be a signature and X a set of variables. Aninequality over �(X) is a pair ht; si of elements of FT�(X). An algebra A satis�es aninequality ht; si i� for any evaluation h : fx1; : : : ; xng ! A, with h(xi) = ai for i = 1 : : : n,the inequality tA(a1; : : : ; an) � sA(a1; : : : ; an) holds.A variety of ordered algebras is the class of all ordered algebras satisfying a given setI of inequalities. For a given set I of inequalities de�ned over �(X), let us indicate withvI the minimal preorder induced by the inequalities in I over T�, closed with respect tosubstitutions X ! T�, and �=I the associated congruence. The quotient ordered algebraFT(�;I) = FT�= �=I is de�ned as the ordered �-algebra whose carrier consists of theequivalence classes of elements of jT�j modulo the congruence �=I , while the associatedpartial order is [a] � [b] i� a vI b; for each operator f 2 �n, fFT(�;I) : h[t1]; : : : ; [tn]i ![f(t1; : : : ; tn)] (where [ti] is the equivalence class associated to the term ti).Proposition 2.8 (Initiality in Varieties) Let � be a signature, and I a set of inequal-ities. Then FT(�;I) is initial in the variety of ordered algebras associated to I.This result shows that, as for establishing inequalities holding in all the algebras of agiven variety, it is su�cient to consider just elements of FT�. The next proposition statesthat, given a set of inequalities I, the inequalities holding in FT(�;I) can be inferred by�nite application of certain deduction rules: hence, proofs can be carried out by structuralinduction over terms of FT�.Proposition 2.9 (Logic of Inequalities) Let � be a signature, X a set of variablesand I a set of inequalities de�ned over �(X). Given two terms t; s 2 T�, the inequalityt � s holds in FT(�;I) i� it can be inferred by a �nite application of the following rules:� t 2 T�t � t ;� t(x1; : : : ; xn) � s(x1; : : : ; xn) 2 I; ti � si for i = 1; : : : ; nt(t1; : : : ; tn) � s(s1; : : : ; sn) ;� f 2 �n; ti � si for i = 1; : : : ; nf(t1; : : : ; tn) � f(s1; : : : ; sn) ;� s � t; t � us � u :



14 CHAPTER 2. PRELIMINARIES ON (INFINITARY) REWRITINGA fundamental result, associating to each ordered algebra a suitable completion, isgiven by the following proposition.Proposition 2.10 (Minimal Extension) Let � be a signature, and A be an ordered�-algebra, belonging to a given variety. There exists a complete ordered algebra A! in thesame variety of A and an ordered homomorphism �A : A ! A! such that, for any othercomplete ordered algebra B and ordered homomorphism � : A! B, there exists a uniquecontinuous homomorphism �A! : A! ! B such the following diagram commutes:A �A� A!�A!BGiven an ordered algebra A, the previous result implies also that for establishing aninequality t � t0 for t; t0 2 A!, it is enough to reason inductively over (!-chains of)elements in A. Roughly, A! is obtained from A just adding the lub's of !-chains, andequating those terms that are obtained as lub's of chains whose components are equal.For example, with a signature � = ff; ag and an axiom Q = fa � f(x)g, the inequalitiesfn(a) � fm(a) holds in FT(�;Q) for all 0 � n � m < !. Also, the ordering induced by Qimplies that (FT(�;Q))! contains also the in�nite term f!(a) = Fi<!ff i(a)g. This propertycan be used to provide an alternative description of CT�, in term of the completion ofthe initial ordered algebra of a given variety.Proposition 2.11 Let �(?) be a signature � extended with a new constant ?, and letus consider the inequality Q = f? � xg. Then CT� is isomorphic to (FT�(?)= �=Q)!.
2.3 Term RewritingWe introduce now term rewriting over CT� (implicitly describing also term rewriting overT�). A term rewriting system (briey, trs) over a set of variables X is a (labeled) setof rules, i.e., of pairs of �nite, total terms in CT�. A rule can be applied to a term t ifits left-hand side matches a subterm of t, and the result is the term t where the matchedsubterm is replaced by a suitable instantiation of the right-hand side of the rule. Note thatrestricting our attention only to CT�, instead of CT�(Y ) for a given set Y of variables,is by no means limiting the generality.



2.3. TERM REWRITING 15De�nition 2.11 (Term Rewriting Systems) Let X be a set of variables. A termrewriting system R (over X) is a tuple (�; L; R), where � is a signature, L is a setof labels, and R is a function R : L ! T�(X) � T�(X), such that for all d 2 L, ifR(d) = hl; ri then var(r) � var(l) � X and l is not a variable.Given a term rewriting system (also trs) R, we usually write d : l ! r 2 R ifd 2 L and R(d) = hl; ri; to make explicit the variables contained in a rule, we writed(x1; : : : ; xn) : l(x1; : : : ; xn)! r(x1; : : : ; xn) 2 R where fx1; : : : ; xng = var(l).Now we instantiate the notion of substitution to the case of continuous algebras, andwe introduce some basic operations on terms that are needed to de�ne the notion ofrewriting over continuous algebras. We recall that these de�nitions subsume the �nitarycase, in the sense that they coincide with the classical de�nitions, when we restrict ourattention to terms in T�.De�nition 2.12 (Substitutions over Continuous Algebras) Let X and Y be twosets of variables. A continuous substitution from X to Y (just substitution from nowon) is a function � : X ! CT�(Y ) (used in post�x notation). A substitution � from Xto Y uniquely determines a strict continuous �-homomorphism (also denoted by �) fromCT�(X) to CT�(Y ), which extends � as follows:� ?� = ?;� f(t1; : : : ; tn)� = f(t1�; : : : ; tn�);� (Si<!ftig) � = Si<!fti�g.If X is �nite, a substitution � from X to Y is described as a �nite set fx1=t1; : : : ; xn=tngwith ti = xi� for all 1 � i � n and, given a �nite term t such that var(t) � fx1; : : : ; xng,we usually write t(t1; : : : ; tn) for t�.De�nition 2.13 (Subterm Selection) Given an occurrence w 2 !� and a term t 2CT�(X), the subterm of t at (occurrence) w is the term t=w de�ned as t=w(u) = t(wu)for all u 2 !�. In the alternative representation of terms, t=w is equivalently de�ned bythe following clauses:t=w = 8>>><>>>: t if w = �;ti=w0 if w = iw0 and t = f(t1; : : : ; ti; : : : ; tn);Si<!fti=wg if t = (Si<!ftig);? otherwise.It is easy to check that t=w = ? i� w 62 O(t).



16 CHAPTER 2. PRELIMINARIES ON (INFINITARY) REWRITINGWe recall now some de�nitions useful in the following.De�nition 2.14 (On Occurrences) Let u; v be occurrences: we write u � v if u is apre�x of v. We say that they are disjoint (denoted ujv) if neither u � v nor v � u.The length of an occurrence w, denoted jwj, is de�ned as j�j = 0 and jwij = jwj + 1for w 2 !� and i 2 !. The depth of a term t is de�ned only if t is �nite; in this case,depth(t) = maxfjwj j w 2 O(t)g. We will denote by Ox(t) the set of occurrences of thevariables x in t, i.e., Ox(t) = fv 2 O(t) j t(v) = xg, and with OX(t) the set of occurrencesof all the variables in X. A term t is linear if no variable occurs more than once in it,i.e., if v; u 2 OX(t) and v 6= u implies t(v) 6= t(u).De�nition 2.15 (Subterm Replacement) Given terms t; s 2 CT� and an occurrencew 2 !�, the replacement of s in t at (occurrence) w, denoted t[w  s], is the termde�ned as t[w  s](u) = t(u) if w 6� u or t=w = ?, and t[w  s](wu) = s(u) otherwise.Equivalently, subterm replacement can be de�ned as follows:� t[w s] = t if t=w = ? (i.e., if w 62 O(t));� t[� s] = s if t 6= ?;� f(t1; : : : ; tn)[iw s] = f(t1; : : : ; ti[w s]; : : : ; tn) if i � n;� (Si<!ftig) [w s] = Si<!fti[w s]g.The �rst clause also implies that ?[w s] = ? for all w, s (even if w = �).A particular relevance is due to orthogonal trs's.De�nition 2.16 (Orthogonal trs's) Let R be a trs. A rule hl; ri is left-linear if l islinear. R is orthogonal if all its rules are left-linear and non-overlapping, that is, theleft-hand side of each rule does not unify with a non-variable subterm of any other rulein R, or with a proper, non-variable subterm of itself.The set-theoretical approach to term rewriting relies on the notion of redex (for re-ducible expression). A redex is just a pair � = (w; d) where w is the occurrence of theroot of the subterm matching the left-hand side of the rule d.



2.3. TERM REWRITING 17De�nition 2.17 (Redexes and Derivations) Let R = h�; L; Ri be a trs. A redex� of t is a pair � = (w; d) where w 2 !� is an occurrence, d : l ! r 2 R is a rule,and there exists a substitution � : var(l) ! CT� such that t=w = l�. The result of itsapplication is s = t[w  r�]. We also write t!� s, and we say that t rewrites to s (via�). We say that there is a derivation from t to t0 if there are redexes �1; : : : ;�n suchthat t!�1 t1 !�2 : : :!�n tn = t0.2.3.1 Parallel RewritingSequential term rewriting can be generalized to parallel term rewriting by allowing forthe simultaneous application of two or more redexes to a term. Clearly, the result of sucha parallel rewriting must be well de�ned, and should be related in some way to the resultobtained by applying the redexes in any order. The de�nitions below summarize thosein [Bou85] (see also [LM92, Cor93]). Intuitively, �nite parallel rewriting can be de�nedeasily by exploiting the conuence of sets of (pairwise) compatible redexes. The parallelreduction of a �nite set of such redexes is de�ned simply as any complete development ofthem: any such development ends with the same term, so the result is well-de�ned. Notehowever that, given two redexes of a term, the reduction of one of them can transformthe other in various ways: the second redex can be destroyed, can be left intact, or canbe copied a number of times; the situation is captured by the de�nition of residual.De�nition 2.18 (Compatible Redexes) Let � = (w; d : l ! r) and �0 = (w0; d0 :l0 ! r0) be two redexes in a term t. They are disjoint (and we write �jj�0) if so arethe respective occurrences (i.e., wjw0), or if they are equal. They are compatible (and wewrite �jjc�0) if they are disjoint, or if wux � w0, where l=ux is a variable, or if w0u0x � w,where l0=u0x is a variable.Note that the de�nition is rather involved, due to the presence of critical pairs betweenthe rules. This a�ects also the de�nition of residual: it is de�ned only for compatibleredexes, since the reduction of a given redex in a critical pair \destroys" the possibilityto reduce the other. Moreover, it is fundamental to take into account only left-lineartrs's: i.e., such that all the left-hand sides of the deduction rules are linear. Otherwise,it wouldn't be true that the reduction of a redex does not destroy the possibility to executea compatible one: as an example, let us consider the trs Z = fd : f(x; x) ! g(x); d0 :a! bg: the redexes � = (�; d) and �0 = (1; d0) of t = f(a; a) are compatible according toDe�nition 2.18, but the reduction of �0 forbids to reduce � (until also (2; d0) is executed).



18 CHAPTER 2. PRELIMINARIES ON (INFINITARY) REWRITINGIf we take into account disjoint rewrites only, instead, left-linearity can be dropped. Inthe rest of the section we implicitly assume that, when dealing with compatibility, all thetrs's are left-linear; this restriction is not applied when dealing with disjointness.De�nition 2.19 (Residuals) Let � = (w; d) and �0 = (w0; d0 : l0 ! r0) be two compat-ible redexes in a term t. The set of residuals of � by �0, denoted by �n�0, is de�nedas: �n�0 = 8>>><>>>: ; if � = �0;f�g if w 6> w0;f(w0wxu; d) j r0=wx = l0=vxg if w = w0vxu and l0=vx is avariable.Note that �n�0 can actually be a set of redexes, whenever the rule d0 is not right-linear. As an example, let us consider the trs Z 0 = fd : f(x)! g(x; x); d0 : a! bg andthe compatible redexes � = (1; d0), �0 = (�; d): then �=�0 = f(1; d0); (2; d0)g. When tworedexes �;�0 are disjoint, the third case never happens.Proposition 2.12 (Reduction Preserves Compatibility) Let �[f�g be a �nite setof pairwise compatible redexes of t, such that t !� s. Then the set �n� of residuals of� by �, de�ned as the union of �0n� for all �0 2 �, is still compatible. Moreover, each�0n� is a redex in s.The previous result obviously holds for sets of disjoint redexes, and it allows to extendthe de�nition of residual to include also sequences of reductions.De�nition 2.20 (Residual of a Sequence) Let � be a �nite set of pairwise compatibleredexes of t and � = (t!�1 t1 : : :!�n tn) be a reduction sequence, such that � [ f�1gis compatible. Then �n� is de�ned as � if n = 0, and as (�n�1)n�0, where �0 =(t1 !�2 t2 : : :!�n tn), otherwise.Note that the residual of a sequence is not always de�ned. It is necessary that, at eachstep i, the redex �i+1 is compatible with ((: : : ((�n�1)n�2) : : :)n�i).De�nition 2.21 (Complete Development) Let � be a �nite set of pairwise compati-ble redexes of t. A development of � is a reduction sequence such that after each initialsegment �, the next reduced redex is an element of �n�. A complete development of � isa development � such that �n� = ;.



2.3. TERM REWRITING 19The complete development of a set of compatible redexes is well-de�ned, due to theresult stated in Proposition 2.12. The following result was originally proved in [Bou85].Proposition 2.13 All complete developments � and �0 of a �nite set of pairwise compati-ble redexes � in a term t are �nite, and end with the same term. Moreover, for each redex� of t, compatible with those in �, it holds �n� = �n�0. Therefore we can safely denoteby �n� the residuals of � by any complete development of � (and similarly replacing �with a �nite set of compatible redexes �0 of t).Exploiting this result, we de�ne the parallel reduction of a �nite set of compatibleredexes as any complete development of them.De�nition 2.22 (Parallel Redex Reduction) A parallel redex � of a term t is a �-nite set of pairwise compatible redexes in t. We write t !� t0 and say that there is aparallel reduction from t to t0 if there exists a complete development t !�1 t1 : : :!�n t0of �.Obviously, all the results can be lifted to disjoint sets of redexes: we indicate this caseas disjoint reduction. Despite its straightforward de�nition, disjoint reduction will play afundamental r�ole in our analysis of the concurrency of the reduction process (see Chapter6). Instead, parallel reduction will be pivotal when de�ning in�nitary term rewriting(next section and Chapter 7).De�nition 2.23 (Disjoint Redex Reduction) A disjoint redex � of a term t is a�nite set of pairwise disjoint redexes in t. We write t !� t0 and say that there is adisjoint reduction from t to t0 if there exists a complete development t !�1 t1 : : :!�n t0of �.2.3.2 In�nite Parallel RewritingParallel rewriting allows to reduce a �nite set of redexes of a term in a single, parallelstep. If we consider an in�nite term, there might be in�nitely many distinct redexes in it:since the simultaneous rewriting of any �nite subset of those redexes is well-de�ned, by acontinuity argument one would expect that also the simultaneous rewriting of in�nitelymany redexes in an in�nite term can be properly de�ned. Note however that, since in the�nite case the parallel application of a redex � is de�ned as the sequential application of



20 CHAPTER 2. PRELIMINARIES ON (INFINITARY) REWRITINGall the contained redexes, a na��ve extension to in�nity could not work, because it wouldcorrespond to an in�nite sequence of reductions. We present here a de�nition which makesuse of a suitable limit construction: for details we refer to [Cor93, CD96]. Note howeverthat, for the sake of simplicity, we restrict our attention to orthogonal trs's. In fact, fora given orthogonal trs the residual operation is total, since any two redexes �;�0 arethe same or do not overlap: then, any set of redexes is compatible.Given an in�nite parallel redex � (i.e., an in�nite set of redexes) of a term t, weconsider a chain of �nite approximations of t, t0 � t1 � t2 : : : such that their limit is t.For each i < !, let �i be the �nite subset of � containing all and only those redexes oft which are also redexes of ti, and call si the result of the parallel reduction of �i, i.e.,ti !�i si. Then the crucial fact is that the sequence of terms s0; s1; s2; : : : de�ned in thisway forms a chain: by de�nition we say that there is an in�nite parallel reduction from tto s = Si<! si via �, written t!� s. Here is the formal de�nition.De�nition 2.24 (In�nite Parallel Redex Reduction) Given an in�nite parallel re-dex � of a term t, let t0 � t1 � t2 : : : be any chain of �nite approximations of t, such thatfor each i < !, every redex (w; d) 2 � is either a redex of ti or ti(w) = ? (that is, theimage of the left-hand side of every redex in � is either all in ti, or it is outside, but doesnot \cross the boundary"). Let �i be the subset of all redexes in � which are also redexesof ti, and let si be the result of the (�nite) parallel reduction of ti via �i (i.e., ti !�i si).Then we say that there is an (in�nite) parallel reduction from t to s def= Si<!fsig via �,and we write t!� s.Let us consider the trs V = fd : f(x) ! g(x); d0 : a ! bg. Then the in�nite parallelredex f(1�; d)g can be applied to the in�nite term t = f! = Si<!ff i(?)g: a suitablechain of �nite approximations is given by ti = f i(?), and the associated subset � isf(1j; d) j j � ig. Then ti !�i gi(?), and t !� g!. Next result (originally proved in[Cor93]) states that the reduction of an in�nite, parallel redex is a well-given de�nition.Proposition 2.14 (In�nite Parallel Redex Reduction is Well-De�ned) In thehypotheses of De�nition 2.24:1. for each i < !, si � si+1; i.e., fsigi<! is a chain.2. De�nition 2.24 is well-given; i.e., the result of the in�nite parallel reduction of tvia � does not depend on the choice of the chain approximating t, provided that itsatis�es the required conditions.



2.3. TERM REWRITING 21Finally, we shall need the following easy result, stating the compatibility of �nite andin�nite parallel reduction.Proposition 2.15 (Strong Conuence of Parallel Reduction) Let R be an orthog-onal trs. Then parallel reduction is strongly conuent, i.e., if t0 �0 t!� t00 for (even-tually in�nite) sets �;�0 of redexes, then there exist t000;	;	0 such that t0 !	0 t000 	 t00.Hence, parallel reduction is conuent.



22 CHAPTER 2. PRELIMINARIES ON (INFINITARY) REWRITING



Chapter 3Some Notions of Category TheoryIn the �rst section we briey recall some basic concepts of category theory; except forSection 3.2 (where the notion of s-monoidal category is an original one) we refer theinterested reader to [ML71]. The rest of the chapter is devoted to provide an introductionto categorical structures like 2-categories and algebraic theories, that are not so commonin the computer science community.3.1 Basic De�nitionsWe �rst introduce the underlying notion of graph.De�nition 3.1 (Graphs) A graph G is a 4-tuple hOG; AG; �0; �1i where OG, AG areclasses whose elements are called respectively objects and arrows (ranged over by a; b; : : :and f; g; : : :), and �0; �1 : AG ! OG are functions, called respectively source and target.A graph is small if its arrows form a set; it is locally small if for each pair of objects a; b,the hom-set G[a; b] (i.e., the class of arrows from a to b) forms a set. Let G1; G2 be twographs. A graph morphism � : G1 ! G2 is a couple of functions �A : A1 ! A2, �O : O1 !O2 preserving source and target. The productG1�G2 is the graph hO1�O2; A1�A2; �00; �01i:its components are given by the cartesian product of the underlying classes, while �00; �01are de�ned pointwise. A graph with pairing is a graph G such that its class of objectsform a monoid hOG;
; 1i: 
 : OG � OG ! OG is an associative function, and 1 is adistinguished element such that a
 1 = 1
 a = a for all a 2 OG. A reexive graph is agraph G equipped with a function idG : OG ! AG such that �0(idG(a)) = �1(idG(a)) = a



24 CHAPTER 3. SOME NOTIONS OF CATEGORY THEORYfor all a 2 OG. The set of composable arrows A�0 A of a graph G is given by the subsetof A� A satisfying fhf; gi j �1(f) = �0(g)g.A category is obtained simply enriching the structure of a graph, in order to describecomposition of arrows.De�nition 3.2 A category C is a 6-tuple hOC; AC ; �0; �1; idC ; ;C i (we forget the subscriptwhen there is no ambiguity) where GC = hOC; AC ; �0; �1; idCi is a reexive graph, and ;C(composition) is a function ;C : AC �0 AC ! AC satisfying:� �0(f ;C g) = �0(f) and �1(f ;C g) = �1(g), for f; g 2 AC ;� ;C is associative, i.e., (f ;C g);C h = f ;C (g;C h) for f; g; h 2 AC ;� f ;C idC(b) = idC(a);C f = f , for f 2 AC , �0(f) = a, �1(f) = b.All the various classes of algebras introduced in the previous chapter form categories,since the identity function is a continuous �-homomorphism and (ordered, continuous)�-homomorphisms are closed with respect to functional composition. The paradigmaticexample of category is Set, the category of sets and functions. A category is discrete ifall its arrows are identity arrows: interesting examples are 0, the empty category, and 1,the category with one object and one arrow.De�nition 3.3 (Functors and Natural Transformations) Let C and D be two cat-egories. A functor F : C ! D is a graph morphism hFO; FAi preserving identities andcomposition:� FA(idC(a)) = idD(FO(a)), for a 2 OC ;� FA(f ;C g) = FA(f);D FA(g), for f; g 2 AC .Given two functors F;G : C! D, a transformation � : F ) G is a function � : OC ! ADsuch that �(a) 2 D[FO(a); GO(a)]. A transformation � : F ) G : C ! D is natural ifthe identity FA(f);D �(b) = �(a);DGA(f) holds for all f : a! b 2 AC ; or, equivalently, ifthe following diagram commutes:af F (a) �(a)F (f) G(a)G(f)b F (b) �(b) G(b)



3.1. BASIC DEFINITIONS 25Now let us consider the situation denoted by the following transformations:C F�H�G D KL� E:The vertical composition � � � : F ) H : C ! D is de�ned as (� � �)(a) = �(a);D �(a)for every a 2 OC.The right composition ��RK : FK ) GK : C! E is de�ned as (��RK)(a) = KA(�(a))for every a 2 CO; the left composition (F �L �) : FK ) FL : C ! E is de�ned as(F �L �)(a) = �(FO(a)) for every a 2 OC .If �; � are natural, then the horizontal composition � � � : FK ) GL : C! E is de�nedas (� � �)(a) = KA(�(a));E �(GO(a)) = �(FO(a));E LA(�(a)) for every a 2 OC.A subcategory D of C is a category whose arrows and objects form subclasses ofthose in C or, equivalently, if there exists an inclusion functor In : D ,! C such thatthe underlying graph morphism InG : GD ! GC is the identity function on arrows andnodes. An inclusion functor is full if, for all objects a; b 2 D, D[a; b] = C[a; b]. Givencategories C and D, the product category C � D has as underlying graph the productGC �GD, while composition and identity are de�ned pointwise.De�nition 3.4 (Functor Category) Let C and D be two locally small categories. Thefunctor category [C! D] is de�ned1 as follows:� objects of [C! D] are functors F : C! D;� an arrow � : F ) G between two parallel functors F;G : C ! D is a naturaltransformation.One of the main features of categories are universal constructions: they allow tocharacterize some elements as those satisfying \in a unique way" suitable properties.1In order for the functor category [C! D] to be de�ned, C and D must be locally small. We will notdeal with foundational issues, assuming that our categories are locally small whenever this requirementis necessary.



26 CHAPTER 3. SOME NOTIONS OF CATEGORY THEORYDe�nition 3.5 (Product, Terminal Object, Pullback) Let C be a category. An ob-ject 1 in C is terminal if for every object a in C there exists a unique arrow !a : a ! 1,while an object 0 is initial if for every object a in C there exists a unique arrow Ia : 0! aThe product of a pair ha; bi of objects in C is a triple �a;b = ha � b; �0 : a � b ! a; �1 :a� b! bi such that, given a pair of arrows hf : c! a; g : c! bi, there is a unique arrowhf; gi : c ! a � b satisfying hf; gi;C �0 = f and hf; gi;C �1 = g; or, equivalently, makingthe following diagram commute: chf;gi gfa a� b�0 �1 bThe pullback of a (or along a) pair of arrows hf : a ! c; g : b ! ci is a triple pbf;g =ha �0 b; �0 : a �0 b ! a; a �0 b ! bi verifying �0;C f = �1;C g and such that, given apair of arrows hh : d ! a; l : d ! bi satisfying h;C f = l;C g, there is a unique arrow[h; l] : d ! a �0 b satisfying [h; l];�0 = h and [h; l];�1 = l; or, equivalently, making thefollowing diagram commute: d [h;l] lh a�0 b �1�0 bga f c
Usually, the universal property characterizes an object only up-to-isomorphism: forexample, there may exist many elements satisfying the terminal object property, but theyare isomorphic by a canonical isomorphism. In particular, if both 1 and 10 satisfy theuniversal property of terminal object in a category C, then !10 ;C !01 = id1 and !01;C !10 =id10. A universal construction is strict if it is uniquely determined, in the sense that thecanonical isomorphism is actually an identity: for the terminal object, e.g., we require!10 =!01 = id1. More generally, we say that a universal construction is on-the-nose if wecharacterize each class of elements satisfying the conditions of the universal constructionby a canonical representative.De�nition 3.6 (Cartesian Category) A category C is cartesian if it has terminal ob-ject 1 and product �a;b for each pair of objects a; b. A functor F : C ! D between



3.1. BASIC DEFINITIONS 27cartesian categories is cartesian if it preserves products and terminal objects; i.e., if thecanonical morphisms hF (�0); F (�1)i : F (a�C b)! F (a)�DF (b) and !F (1C) : F (1C)! 1Dare isomorphisms.
De�nition 3.7 (Monoidal Categories) A monoidal category C is a 6-tuple of the kindhC0;
; e; �; �l; �ri, where C0 is a category, e 2 C0 and 
 : C0 �C0 ! C0 are functorsand � : (�
 =) 
 + ) � 
 (= 
+), �l : e 
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 b(where for the sake of readability we indicate the identity of an object with the object itself).A symmetric monoidal category is a 7-tuple hC0;
; e; �; �l; �r; �i where hC0;
; e; �; �l; �riis a monoidal category, and � : � 
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0 F0(+) are natural isomorphisms,satisfying the axioms:



28 CHAPTER 3. SOME NOTIONS OF CATEGORY THEORYF (a
 (b
 c)) �(a;b
c)F (�(a;b;c)) F (a)
0 F (b
 c) F (a)
0�(b;c)F (a)
0 (F (b)
0 F (c))�0(F (a);F (b);F (c))F ((a
 b)
 c) �(a
b;c) F (a
 b)
0 F (c) �(a;b)
0F (c)(F (a)
0 F (b))
0 F (c)F (e
 a) �(e;a)F (�l(a)) F (e)
0 F (a)�
0F (a)F (a) e0 
0 F (a)�0l(F (a)) F (a
 e) �(a;e)F (�r(a)) F (a)
0 F (e)F (a)
0�F (a) F (a)
0 e0�0r(F (a))(where we omitted subscripts for the sake of readability). A monoidal functor is symmetricif moreover: F (a
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All the coherence properties required for the monoidal version of the de�nition offunctor and (natural) transformation can be summed up simply saying that, in the richercontext, all the underlying de�nitions must preserve also the new relevant structure (andthis fact will be fundamental in the next sections). In the following, a (symmetric)monoidal functor is usually indicated with the underlying (symmetric) functor wheneverthe associated natural isomorphisms are identities. Moreover, we will denote as strictmonoidal all those monoidal categories such that the associated natural isomorphisms�; �l; �r are identities; note that in this case most of the coherence axioms collapse.De�nition 3.8 (Adjoint Functors) Let C, D be categories. An adjunction between Cand D is a triple hF;G; �i where F : C! D, G : D! C are functors, and � is a functionwhich assigns to each pair of objects c 2 C; d 2 D a bijection �c;d : C[c; G(d)] �= D[F (c); d]



3.2. CARTESIANITY AS ENRICHED MONOIDALITY 29which is natural both in c and d, i.e., such that for all f : c0 ! c; g : d! d0, the followingdiagrams commute:D[F (c); d] �c;dF (f);� C[c; G(d)]f ;�D[F (c0); d] �c0;d C[c0; G(d)] D[F (c); d] �c;d�;g C[c; G(d)]�;G(g)D[F (c); d0] �c;d0 C[c; G(d0)]We say that F is a left-adjoint of G (G is a right-adjoint of F ) and we write F / G.We indicate as unit of the adjunction the natural transformation � : IdC ) G(F (�)),associating to each object c 2 C the arrow associated by �c;F (c) to id(F (c)); and we indicateas co-unit of the adjunction the natural transformation � : F (G(�)) ) IdD, associatingto each object c 2 C the arrow associated by �G(d);d to id(G(d)).We say that a category C is reective inside a category D if C is a sub-category of D,the inclusion functor has a left-adjoint and the co-unit is a natural isomorphism. A veryparticular case is represented by forgetful functors, i.e., those functors that \forget" partof the structure of the source category; they usually have a left-adjoint that simply \adds"the relevant structure with a \free" construction. An intuitive example is represented bythe inclusion functor of Cat in Gr, the category of small graphs and graph-morphisms:the left-adjoint simply adds the identity function and the composition function, requiringthey satisfy the axioms of categories. A relevant example is the adjunction arising from theinclusion functors CpoS ,! Cpo ,! Set, where Cpo is the category of small cpo's andcontinuous functors, and CpoS is the category of small, strict cpo's and strict continuousfunctors. The following result relates initial objects and adjoint functors.Proposition 3.1 Let F : C! D be a functor with a left-adjoint G. If 0 is initial in D,then G(0) is initial in C.3.2 Cartesianity as Enriched MonoidalityIn the latest years there has been some interest in getting suitable equational character-ization of cartesian categories (see e.g. [Bur91, Laf95]). In this section we try to recastthe previous results in a more general framework; our formalism is indebted to [Jac93].De�nition 3.9 (S-Monoidal Categories) A s-monoidal category is a 9-tuple of thekind hC0;
; e; �; �l; �r; �;r; !i, where hC0;
; e; �; �l; �r; �i is a symmetric monoidal cate-



30 CHAPTER 3. SOME NOTIONS OF CATEGORY THEORYgory, and r : Id) h�
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r(b)); (a
 �(a; b)
 b). As we remarked before, di�erent versions ofthe following results became part of the categorical \folklore" in the past years.Proposition 3.2 (Cartesianity as Enriched Monoidality) Let D be an s-monoidalcategory. If both the associated transformations r and ! are natural, then D is a cartesiancategory.In the thesis, using a non-standard notation, we say that a triple D = hC;r; !i whereC is a symmetric monoidal category and both r; ! are natural is a cartesian categorywith chosen products; it is a cartesian category with �nite products if the underlyingmonoidal category C is strict monoidal. A chosen functor F : D! E between cartesiancategories with (�nite) chosen products is a s-monoidal functor between the underlying(strict) s-monoidal categories; a chosen functor is also cartesian.



3.3. CAT-ENRICHED CATEGORIES 31Both Set and Cat can be equipped with a �nite products structure: for each set S(category C), the n-th product is given by the set Sn (category Cn) where the objectsare n-tuples of objects in S, and the functions are de�ned pointwise.In the rest of the chapter (actually, in the whole thesis), particular importance will beplayed by the following adjunction:GRp SSM-Cat SM-CatFC-Cat CC-Catrelating the category of small graphs with pairingGRp (and graph morphisms preservingpairing), the category of (strict) s-monoidal small categories SM-Cat (SSM-Cat) ands-monoidal functors, and the category of cartesian small categories with chosen (�nite)products CC-Cat (FC-Cat) and chosen functors.3.3 Cat-Enriched CategoriesGiven a monoidal category V, a V-category (or a category enriched over V) is basicallyjust a category such that, for any two objects a; b, the hom-set C[a; b], i.e., the class ofarrows from a to b is an object of V; moreover, this hom-objects satisfy suitable coherenceaxioms. In particular, a cat-enriched category is a category C such that, given any twoobjects a; b, the hom-set C[a; b] is a category. Both 2-categories and sesqui-categories areparticular examples of cat-enriched categories2, and they admit also a na��ve description:for 2-categories, the classical reference is [KS74].Let us �x some notation. An arrow of the category C[a; b], a cell, is denoted as� : f ) g : a ! b, with source �0(�) = f , target �1(�) = g and where f; g : a ! b; orgraphically, as a fg� b:The following de�nition is adapted from [Ste92].2We are quite informal here, since both 2-categories and sesqui-categories are categories enriched overCat, in the sense of [Kel82], but the tensor product used is di�erent in the two cases (see [Ste94]). For2-categories is the usual cartesian product, while for sesqui is the so-called funny tensor: we refer thereader to [Str92] for a comprehensive introduction.



32 CHAPTER 3. SOME NOTIONS OF CATEGORY THEORYDe�nition 3.10 (2-Categories and Sesqui-Categories) Let C be a category such thateach hom-set C[a; b] also forms a category. Moreover, let us assume that for each triplea; b; c of objects there are two composition functions �L and �R such that, given � : f )h : a ! b and � : g ) i : b ! c, then � 0 = f �L � 2 C[a; c] and �0 = � �R g 2 C[a; c].Graphically, a f b gi � c = a f ;gf ;i�0 c 2 C[a; c]
a fh� b g c = a f ;gh;g�0 c 2 C[a; c]where ; denotes composition inside C. Let us consider the situation denoted by the follow-ing cells: a f b j �g c k��h d i e:

A 2-category C2 (or simply C) is a category C (called the underlying category) with astructure as the one de�ned above, such that the composition functions are subject to thefollowing equations:(1) idc �L � = �; (2) (f ; g) �L � = f �L (g �L �);(3) g �L idh = idg;h; (4) g �L (� � �) = (g �L �) � (g �L �);(5) � �R idc = �; (6) � �R (h; i) = (� �R h) �R i;(7) idg �R h = idg;h; (8) (� � ) �R h = (� �R h) � ( �R h);(9) (f �L �) �R h = f �L (� �R h);(10) (j �L �) � (� �R h) = (� �R k) � (g �L �):where � denotes composition inside hom-categories. A sesqui-category CS (or simply C:



3.3. CAT-ENRICHED CATEGORIES 33usually, there is no ambiguity) is a category C with a structure subject to equations (1)-(9).Note also that, thanks to axiom (10), it is possible to de�ne the notion of horizontalcomposition of cells, so that the given de�nition for 2-category is then equivalent to theclassical one (see [KS74])� � � = (j �L �) � (� �R h) = (� �R k) � (g �L �):Then, 2-categories C also have another underlying category, Ch, with the same objects asC and 2-cells as arrows. The generalized version of axiom 10 is the so-called interchangerule, stating that, whenever both sides are de�ned, then(� � �) � ( � �) = (� � ) � (� � �):For the sake of simplicity, in the following some of the de�nitions will be ambiguouslygiven for enriched categories: the corresponding de�nition for sesqui- and 2-categories canbe obtained simply putting the correct pre�x instead of \enriched".De�nition 3.11 (Enriched Functors and (Natural) Transformations) Let C, Dbe two enriched categories. An enriched functor F : C ! D is a triple hFO; FA; FCi offunctions, mapping objects to objects, arrows to arrows and cells to cells, respectively,preserving identities and compositions of all kinds. Let F;G : C ! D be two parallelenriched functors: an enriched transformation � : F ) G is a function AC ! ODassigning to each object a 2 C an arrow �a : FO(a) ! GO(a) 2 D; it is natural ifmoreover for any cell � : f ) g : a! b 2 C, �a �L FC(�) = GC(�) �L �b. If C and D aretwo enriched categories, the enriched functor category [C! D] has enriched functors asobjects and enriched natural transformations as arrows.Let 2-Cat (S-Cat) be the category of 2-categories (sesqui-categories) and 2-functors(sesqui-functors): there exists an inclusion functor Ui : 2-Cat ! S-Cat, whose left-adjoint Fi simply quotients the structure of a sesqui-category with respect to axiom (10),and such that 2-Cat is reective inside S-Cat. The paradigmatic example of 2-categoryisCat: objects are small categories, arrows are functors, cells are natural transformations.For sesqui-categories, the paradigmatic example is CatS: di�erently from Cat, cells arejust transformations, i.e., they are not required to satisfy the naturality condition.To de�ne universal constructions over enriched categories, we need to require suitableproperties to hold for cells, instead of just for arrows.



34 CHAPTER 3. SOME NOTIONS OF CATEGORY THEORYDe�nition 3.12 (Cartesian Enriched Categories) Let C be an enriched category suchthat the underlying category C is cartesian. We say that C has enriched products if forevery pair � : f ) g : c ! a and � : h ) k : c ! b of cells, there exists a unique cell = h�; �i : hf; hi ) hg; ki : c! a�b satisfying �R�0 = � and �R�1 = �. Graphically,c hf;hihg;kia� b �0 a = c fg� ac hf;hihg;kia� b �1 b = c hk� bC has terminal enriched object if for every cell � : f ) g : c ! a we have ��R!c =!a,where 0 is terminal in C and !a : a! 0, !c : c! 0.Again, products and terminal objects are de�ned up-to-isomorphism: we say that, ifthe underlying cartesian category D = hC;r; !i has �nite products, the cartesian enrichedcategory D = hC;r; !i has �nite enriched products, where the monoidal structure ofC has the intuitive de�nition (and it preserves the one on C), while r; ! are naturaltransformations in Cat. An enriched functor F = hFO; FA; FCi : C ! D is cartesian iffor all objects a; b the canonical maps hFA(�0); FA(�1)i : FO(a� b)! FO(a)� FO(b) and!F (0C) : FO(0C)! 0D are isomorphisms. A chosen functor F : D! E between cartesianenriched categories with (�nite) chosen products is a symmetric monoidal enriched functorbetween the underlying symmetric (strict) monoidal enriched categories, preserving theadditional structure: it is also cartesian in the previously de�ned sense.Let 2C-Cat (SC-Cat) be the category of cartesian 2-categories (sesqui-categories)and 2-functors (s-functors) with chosen products, and let 2FC-Cat (SFC-Cat) be itscounterpart with �nite products: the pair of functors hUi; Fii introduced above still formsan adjunction when restricted to the appropriate sub-categories.We will be interested in a �nitary presentation of an enriched structure, i.e., in a setof generators such that a cat-enriched category can be obtained freely composing cells.An appropriate structure for that is represented by c-computads.De�nition 3.13 (C-Computads) A c-computad is a pair hC; Si, where C is a categoryand S is a set of cells, each of which has a pair of parallel arrows of C as source andtarget, respectively. Given the c-computads hC; Si and hC0; S 0i, a c-morphism is a pairhF; hi such that F : C ! C0 is a functor, h : S ! S 0 is a function, and for every cell� : f ) g 2 S we have h(�) : F (f)) F (g) 2 S 0.



3.4. INTERNAL CATEGORIES 35A c-computad hC; Si is cartesian (with �nite products) if so is C, while a c-morphismhF; hi preserves products and terminal object (is chosen) if F does so (is chosen). LetFC-Comp be the category of cartesian c-computads with �nite products and chosen c-morphisms: there exists an obvious forgetful functor U2 : 2FC-Cat! FC-Comp whichforgets the composition of cells, with left-adjoint F2. This adjoint composes the cells ofa c-computad in all the possible ways, both horizontally and vertically, imposing furtherequalities in order to satisfy the axioms of a 2-category (and preserving �nite productson the underlying category). The main result of [Pow90] assures us that this pastingoperation is well-de�ned, i.e., that it is indipendent from the order in which cells arecomposed. There exists also a similar adjunction pair hUs; Fsi between SFC-Cat andFC-Comp, such that the following diagram commutes:FC-CompFs F2SFC-Cat FiUs 2FC-CatUiU2
3.4 Internal CategoriesBasically, an internal category of C (see [BW90]; also denoted a cat-object in C) DC isjust a category such that its classes of arrows and objects are objects of C, while itscomposition, identity, source and target morphisms are arrows in C. An internal functorF : DC ! EC between categories internal to C is a pair of arrows FA : ADC ! AEC ; FO :ODC ! OEC between, respectively, the objects in C representing the classes of objectsof DC and EC, and the objects in C representing the classes of arrows of DC and EC.As an example, a category internal to Set, the category of small sets and functions, isjust a locally small category C. An internal transformation � : F ) G : DC ! EC isan arrow ODC ! AEC , satisfying the requirement �;C �0 = FO and �;C �1 = GO, where�0; �1 are arrows in C representing the source and target functions in EC , while ;C is thecomposition function in C.Actually, the de�nition is slightly more involved: it is necessary, in order to cor-rectly de�ne categories internal to C, that C has pullbacks, so that for the categoryDC the composition operator ;DC is de�ned as an arrow in C from the pullback ADC �0ADC (along h(�1)DC ; (�0)DCi) to ADC . Then we can de�ne the vertical composition oftwo internal transformations as � : F ) G;  : G ) H as the arrow [�; ];C (;EC ),or informally as �;EC . We have naturality as the axiom [FA; (�1)EC ;C �];C (;EC ) =



36 CHAPTER 3. SOME NOTIONS OF CATEGORY THEORY[(�0)EC ;C �;GA];C (;EC ); and so on. An interesting example is already given by a sim-ple category like Cpo, the category of small cpo's and continuous functions. For thesake of readability, we will refer to categories, functors and (natural) transformationsinternal to Cpo simply pre�xing the adjective continuous.De�nition 3.14 (Continuous Categories) A continuous category C is a tuple of thekind (OC ; AC; idC ; �0; �1; ;C ), such that:� OC, AC are small cpo's;� idC : OC ! AC and �0; �1 : AC ! OC are continuous functions;� ;C : AC �0AC ! AC is a continuous function, where AC �0AC is the pullback alongh�1; �0i.Moreover, these functions satisfy the conditions holding for the corresponding structuresin an ordinary category. A continuous functor is just a pair of continuous functions pre-serving identities and composition. A continuous category C is strict if all its componentsare strict.We can analogously extend the de�nitions of functor and natural transformation. Alsothe horizontal and vertical composition of continuous natural transformations are theintuitive extensions of those de�ned on Cat, and allows us to de�ne the internalizationof Cat inside Cpo. We indicate with Cat(Cpo) the 2-category such that its objects arecontinuous categories, its arrows are continuous functors, and its 2-cells are continuousnatural transformations. An interesting sub-2-category is obtained simply restrictingthe class of objects to strictly continuous category: the resulting 2-category is denotedCat(Cpo)S.3.4.1 Double-categoriesA 2-category C can be described as a internal object to Cat, such that the categoriesOC and AC have the same set of objects. In general, an internal object to Cat is adouble-category (see [BE74]; also [DP93] for some recent results on pasting). It representsan intuitive generalization of a 2-category, and it admits the following na��ve presentation,adapted from [KS74].



3.4. INTERNAL CATEGORIES 37De�nition 3.15 (Double-Categories) A double-category C (shortly, d-category) con-sists of a collection fa; b; c; : : :g of objects, or 0-cells, a collection ff; g; h; : : :g of horizon-tal arrows, or horizontal 1-cells, a collection fx; y; z; : : :g of vertical arrows, or vertical1-cells, and a collection f�; �; ; : : :g of double-cells, also d-cells. Objects and horizontalarrows form a category, the horizontal 1-category C, with identity ida for each object a;also objects and vertical arrows form a category, the vertical 1-category, with identity idafor each object a. D-cells are assigned horizontal source and target (which are vertical1-cells), written as � : x )h y, and vertical source and target (which are horizontal1-cells), written as � : f )v g; furthermore, these 1-cells must be compatible, i.e., theymust satisfy particular requirements on their source and target: in graphical termsa f�x byc g dIn addition, d-cells can be composed both vertically (��v�) and horizontally (�h�): given� : x)h y and � : y)h z, thena f�x b h�y ez =c g d i m a f ;h� �h �x ezc g;i ma f �v �x;w by;z =e h m a fx byc g�w dze h mUnder each of these laws d-cells form a category, the horizontal category Ch and thevertical category respectively, with identitiesa ida1xx axb idb b a f1fida bidba f bMoreover, the following equations must hold:1. whenever the composite



38 CHAPTER 3. SOME NOTIONS OF CATEGORY THEORY� � � � ��  � � �� � �is well-de�ned, then (� �v ) �h (� �v �) = (� �h �) �v ( �h �);2. the composite a f1fida b g1gidb cidca f b g chas to be 1f ;g, and similarly for vertical composition of horizontal identities;3. �nally, the horizontal and vertical identitiesa ida1idaida aidaa ida a a ida1idaida aidaa ida amust coincide.Given C;D d-categories, a d-functor F : C! D is a 4-tuple of functions mapping objectsto objects, horizontal (vertical) arrows to horizontal (vertical) arrows and d-cells to d-cells,preserving identities and compositions of all kinds.We denote by D-Cat the category of d-categories and d-functors. It includes 2-Cat asa subcategory, since each 2-category is a double-category such that the vertical 1-categoryis a discrete one, i.e., all its arrows are identities.Since a d-category is a cat-object in Cat, a d-functor F : C! D can be equivalentlyde�ned as a triple hF; Fh; Fci of functors, such that F : C! D is a functor between thehorizontal 1-categories, Fh : Ch ! Dh is a functor between the horizontal categories andFC : Ch�0Ch ! Dh�0Dh between their pullbacks, preserving vertical compositions andidentities of all kind. Let F;G : C ! D be d-functors: a d-transformation � : F ) Gis a functor � : C ! Dh from the horizontal 1-category C to the horizontal categoryDh, satisfying �; �0 = F and �; �1 = G, where ; is composition in Cat, while �0; �1 are



3.4. INTERNAL CATEGORIES 39functors from Dh to D. A d-transformation is natural if it satis�es the intuitive naturalrequirement. We say that a d-category is cartesian with chosen (�nite) products if it is acat-object in CC-Cat (FC-Cat) | the category of small categories with chosen (�nite)products and chosen functors | and the associated functors representing, source, target,composition and identity strictly preserve products (we are then considering a suitablesubcategory of Cat(CC-Cat) (Cat(FC-Cat)), analogously to what already done aboutstrict continuous categories).We give now an equivalent, yet more explicit de�nition of horizontal product. Let Cbe a d-category: we say that C is cartesian (with horizontal products) if Ch and C have(�nite) chosen products, and they preserve composition in the vertical (1-)category. Thepreservation requirement is equivalent to imposing the functoriality of horizontal productwith respect to vertical composition: that is, whenever the composite is well de�ned, thenh� �v �;  �v �i = h�; i �v h�; �i. For instance, let a; b and c; d be 0-cells such that theirproducts in the horizontal 1-category are the triples ha�b; p0; p1i and hc�d; p00; p01i: we saythat two objects x : a! c and y : b! d in Ch have product x�y : ha�b! c�d; �0; �1i,where a� b p0�0x�y axc� d p00 c a� b p1�1x�y byc� d p01 dif, given any two double cells e f�z axm g c e h�z bym i dthen there exists a unique double-cell e hf;hih�; �iz a� bx�ym hg;ii c� dsuch that � = h�; �i �h �0, � = h�; �i �h �1 or, equivalently, such that the followingidentities hold:



40 CHAPTER 3. SOME NOTIONS OF CATEGORY THEORYe hf;hih�; �i� = z a� b p0�0x�y axm hg;ii c� d p00 c e hf;hih�; �i� = z a� b p1�1x�y bym hg;ii c� d p01 dIn the following, we will denote with DC-Cat (DFC-Cat) the category of d-categorieswith chosen (�nite) horizontal products, and chosen d-functors.De�nition 3.16 (Double-Computads) A d-computad is a triple hC;Ch; �i such thatC, Ch are categories, and � = h�0; �1; id� i is a triple of functors �i : Ch ! C; id� : C! Chsuch that id� ; �0 = id� ; �1 = idC. A d-morphism is a pair hF; Fhi of functors F : C! D,Fh : Ch ! Dh between the underlying categories, such that �; �i are preserved.In other words, a d-computad is an reexive graph internal to Cat. It can also bedescribed in a slightly more restrictive way (but for our purposes there will be no loss ofgenerality) as a triple hC; D; Si, where C is a category, D is a reexive graph (and its setof nodes is the same as the set of objects of C) and S is a set of d-cells, each of whichhas assigned two pairs of compatible arrows in C and D as horizontal and vertical sourceand target, respectively. Given the d-computads hC; D; Si and hC0; D0; S 0i, a d-morphismis a triple hF;G; hi such that F : C! C0 is a functor, G : D ! D0 is a graph morphism,and h : S ! S 0 is a function (such that if � : f ! g 2 AC and � : x ! y 2 AD, thenh(�) : F (f) ! F (g) 2 A0C and h(�) : G(x) ! G(y) 2 A0D), preserving identities andcompositions of all kind.Let D-Comp be the category of d-computads and d-morphisms: there exists an ob-vious forgetful functor Ud : D-Cat ! D-Comp, with a left-adjoint Fd. This adjointcomposes the cells of a d-computad in all the possible ways, both horizontally and ver-tically, imposing further equalities in order to satisfy the axioms of a d-category. Weindicate with DFC-Comp the category of d-computads hC; D; Si such that C has�nite products and D has pairing: also in this case there exists a forgetful functorUdf : DFC-Cat! DFC-Comp, with a left-adjoint Fdf .3.5 Algebraic TheoriesThe categories of algebras we introduced can be presented in an equivalent way by us-ing simple categorical techniques. Although such de�nitions are slightly more involvedthan the classical, set-theoretical ones, they have the advantage of separating in a better



3.5. ALGEBRAIC THEORIES 41way the \�-structure" from the additional algebraic structure that the carrier can enjoy.An algebraic theories [Law63, Law68, KR77] is just a cartesian category having naturalnumbers as objects. Given a signature �, the associated algebraic theory Th(�) (usuallydenoted in the following as the Lawvere theory associated to �) can be also described bymeans of a suitable free construction.De�nition 3.17 (Lawvere Theories) Given a signature �, the associated Lawvere the-ory is the cartesian category Th(�) with �nite products, freely generated from the graphwith pairing G� such that� its objects are underlined natural numbers: 0 is the identity element and pairing isde�ned as n
m = n+m;� for every operator f 2 �n, there is a basic arrow f� : n! 1.The relevant property of Th(�) is that arrows from m to n are in one-to-one corre-spondence with n-tuple of terms of the free �-algebra with at most m variables. Eacharrow t�: n! 1 identi�es a �-term t with variables among x1,...,xn; an arrow n! m isa m-tuple of �-terms with n variables, and arrow composition is term substitution. TheLawvere theory can be regarded as an alternative presentation of a signature. Indeed,the additional structure it contains (besides the operators of the signature) is generatedin a completely free way, so, in a sense, it does not add \information" to the originalsignature. The advantage of this presentation is that, using categorical techniques, wecan easily de�ne a very general notion of model for a Lawvere theory, which subsumesboth algebras and continuous algebras.De�nition 3.18 (Models of Lawvere Theories) Let C be a cartesian category withchosen products. A C-model of the Lawvere theory associated to a signature � is a chosenfunctor M : Th(�) ! C, while a model morphism is a natural transformation betweenmodels. The category C-Mod� of C-models is the functor category [Th(�)! C]: itsobjects are C-models of Th(�), while its arrows are model morphisms.By replacing the generic cartesian category C with speci�c categories, we obtain mod-els which are equivalent (in a strong sense) to the various kinds of �-algebras introducedabove. In particular, the Set-models of Th(�) turn out to be essentially the �-algebras,while its Cpo-models are nothing else than the complete ordered �-algebras.



42 CHAPTER 3. SOME NOTIONS OF CATEGORY THEORYProposition 3.3 (Categories of Algebras as Functor Categories) For any signa-ture �, the categorical equivalences �-Alg � Set-Mod� and �-COAlg � Cpo-Mod�hold. Moreover, let S-Cpo-Mod� be the sub-category of Cpo-Mod� such that the tar-get of the functors are strict continuous categories, and all the components of the naturaltransformations are strict: then �-SCAlg � S-CPO-Mod�.The result for Set-models is well-known: here we only sketch the underlying ideas.Given a Set-modelM: Th(�)! Set, consider the pair AM = hM(1); � = fM(f�) j f 2�gi. It is easy to check that AM is a �-algebra: indeed,M(1) is a set, and for any f 2 �n,since f� : n! 1 in Th(�), we have fAM def= M(f�) :M(n)!M(1), and thusM(f�) :M(1)n !M(1) (becauseM is product preserving and n = 1n in Th(�)), showing thatfAM has the correct type. Besides, each natural transformation � : M ) N betweenSet-models characterizes a homomorphism between AM and AN : in fact, the naturalityrequirement implies that for any operator f 2 �n, we have �1 �M(f) = N (f) � �n, i.e.,�1 � fAM = fAN � �n1 .These ideas apply also to (strict) Cpo-models: hereM is by de�nition a (strict) cpo,all operators of the signature are mapped by M to continuous functions of the righttype, while a model is a natural transformation � :M ) N , associating to 1 a (strict)continuous homomorphism �1 =M(1)!N (1).All the previous results can be easily lifted when we deal with an equational theory(�; E): for each axiom s = t, letX = var(s)[var(t) be the set of (distinguished) variablesin s and t, with #jXj = n. Due to the correspondence between terms and arrows, weconsider t�; s� 2 Th(�)[n; 1], and we quotient Th(�) with the axiom t� = s�. Theresulting algebraic theory is denoted Th(�; E). Also in this case we can get a suitablefunctor category [Th((�; E)) ! Set]. An equivalent category could be obtained also\internalizing" the axioms, that's to say, restricting our attention to the full sub-categoryof [Th(�)! Set], whose functors F preserve the axioms, i.e, such that F (t�) = F (s�).



Chapter 4
Rewriting Logic: Syntax andSemantics
In this chapter we introduce the basic de�nitions of (unconditional) Rewriting Logic. Asdevised in the introduction, the basic idea is to provide a logic that is able to reason aboutthe changes of a computational system in an intrinsically concurrent way. A rewritingtheory is roughly described by an equational theory, and a set of (labeled) rewriting rulesover terms of the theory. Each rule can be considered as a general pattern for a basicaction, while an actual rewrite is described by a sequent: a tuple h�; t; si, stating that trewrites to s via �, where � is a suitable encoding of the causes of the rewrite. A sequentis obtained by �nitely many applications of a set of rules of deduction: a rewriting logicis actually given by a rewriting theory, and a set of deduction rules; obviously, di�erentsets may entail di�erent families of sequents. In the �rst section of the chapter we presentthe syntax of rewriting logic, we formally de�ne rewriting theories, and introduce twosets of deduction rules. (An equivalent version of) the �rst one was originally proposedin [Mes92], while the second was introduced in [CGM95]. In the second section we pro-vide two algebraic axiomatizations over sequents; this way we provide a somewhat moreabstract description of the computations performed by a system, equating families ofsequents that are computationally equivalent. In the third and fourth sections we aim in-stead at describing the model-theoretic side of the Lambek-Lawvere analogy we devised inthe introduction. We introduce two di�erent kinds of categorical semantics for rewritingtheories, and we prove their \equivalence" with the axiomatic one.



44 CHAPTER 4. REWRITING LOGIC: SYNTAX AND SEMANTICS4.1 Rewriting TheoriesWe open this section introducing rewriting logic. For a summary of the basic notionsabout universal algebras, we refer to Chapter 2.De�nition 4.1 (Rewriting Theories) Let X be a set of variables. A rewriting theoryR (over X) is a tuple h(�; E); L; Ri, where (�; E) is an equational theory, L is a setof labels, and R is a function R : L ! T�(X) � T�(X), such that for all d 2 L, ifR(d) = hl; ri then var(r) � var(l) � X and l is not a variable.Given a rewriting theory R, we write d : l ! r 2 R if d 2 L and R(d) = hl; ri;sometimes, to make explicit the variables contained in a rule, we will write d(x1; : : : ; xn) :l(x1; : : : ; xn) ! r(x1; : : : ; xn) 2 R where fx1; : : : ; xng = var(l); given a substitution� = fx1=t1; : : : ; xn=tng, we will write l(t1; : : : ; tn) for l�.Actually, in this thesis we are going to deal mainly with term rewriting systems (trs's):i.e., rewriting theories such that the associated equational theory has an empty set ofaxioms. A trs is simply indicated by h�; L; Ri, and (usually) is uniquely determinatedby its set of rules.In classical term rewriting, a rule d : l ! r can be applied to a term t if there is asubterm hw; si of t such that l matches s, and the result is the term t where the matchedsubterm is replaced by a suitable instantiation of r. Moreover, a term can be rewritteninto another if there exists an appropriate chain of rule applications. This presentationmakes sequences of rewrites the basic notion: it does not allow to reason about how arewrite can be executed, i.e., to record the possible, di�erent justi�cations of a derivation.Instead, in rewriting logic the idea is to take a logical viewpoint, regarding a rewritingtheory R as a logical theory, and any rewriting | making use of rules inR| as a sequententailed by the theory. The entailment relation is de�ned inductively by a set of deductionrules. With respect to the set-theoretical viewpoint, this choice allows us to equip eachrewriting step with a reasonable encoding of its causes.De�nition 4.2 (Rewriting Sequents) Let R = h(�; E); L; Ri be a rewriting theory.Let � = [n�n be the signature containing all the rules d : l ! r 2 R with the cor-responding arity given by the number of variables in d: more precisely, for each n,�n = fd j d(x1; : : : ; xn) : l(x1; : : : ; xn) ! r(x1; : : : ; xn) 2 Rg. A proof term � is aterm of the algebra TR = T�[�[f�g, where \�" is a binary operator (we assume that thereare no clashes of names between the various sets of operators). A (rewriting) sequent isa triple h�; t; si (usually written as � : t! s) where � is a proof term and t; s 2 T�.



4.1. REWRITING THEORIES 45So, sequents in rewriting logic have the form � : t ! s, where t and s are terms ofthe algebra T(�;E) and � is a proof term, encoding a justi�cation of the rewriting of tinto s. Note that, for the sake of simplicity, we are restricting ourselves to ground proofterms, i.e., to deal only with rewrites over T�: this does not limit the generality, sinceeach variable can be considered as a new constant, as already remarked in Chapter 2. Wesay that t rewrites to s via � if the sequent � : t ! s can be obtained by �nitely manyapplications of certain rules of deduction.De�nition 4.3 (Rewriting Logic) Let R = h(�; E); L; Ri be a rewriting theory. Wesay that R entails the full sequent � : s ! t if it can be obtained by a �nite number ofapplications of the following rules of deduction:� (Full Instantiation)d : l! r 2 R; d 2 �n; �i : ti ! si for i = 1; : : : ; nd(�1; : : : ; �n) : l(t1; : : : ; tn)! r(s1; : : : ; sn) ;� (Congruence) f 2 �n; �i : ti ! si for i = 1; : : : ; nf(�1; : : : ; �n) : f(t1; : : : ; tn)! f(s1; : : : ; sn) ;� (Transitivity) � : s! t; � : t! u� � � : s! u :
Let R be a rewrite theory: the class of full sequents entailed by R induces a set-theoretical rewrite relation over terms, simply obtained by dropping the proof term of asequent. We indicate such a relation with BR.The deduction system we introduced is equivalent to the one de�ned in [Mes92]. Ofcourse, this is only one of the possible, equivalent ways to de�ne the class of sequentsthat are actually entailed by the system, and a fortiori, to obtain the relation BR. Ithas, however, the advantage of being rather intuitive. Transitivity states that the rewriterelation entailed by the system is (not-so-surprisingly) transitive: two suitable rewritescan be composed, and the resulting proof term is given by the composition of the twocomponents. Congruence states that the rewrite relation is also compatible with respectto the algebraic structure, since it is closed under contexts; moreover, there are sequentsentailed by the theory describing the parallel execution of disjoint rewrites: the associated



46 CHAPTER 4. REWRITING LOGIC: SYNTAX AND SEMANTICSproof term provides the context for the respective justi�cations. This rule also says thatthe rewrite relation is reexive: each term t can be rewritten to itself, if all its subcom-ponents are idle, i.e., the sequent ht; t; ti can be obtained by an inductive application (onthe structure of t) of the congruence rule. Maybe, the most interesting rule is full instan-tiation: �rst, it implies that the transition relation is stable under substitution, that is, itis closed under substitutions. But the associated sequent describes also the simultaneousexecution of nested rewrites: two subterms matching the left-hand sides of two rules canbe rewritten in parallel even if their roots are not disjoint, i.e., if one is above the other,provided that they do not overlap.Full Instantiation is not the only possible choice to get a stable and compatible rewriterelation: the property is shared by at sequents, originally introduced in [CGM95] as thealgebraic counterpart of a (categorical) model of term rewriting proposed in [Ste94].De�nition 4.4 (Flat Rewriting Logic) Let R = h(�; E); L; Ri be a rewriting theory.We say that R entails the at sequent � : s ! t if it can be obtained by a �nite numberof applications of the following rules of deduction:(Flat Instantiation) d : l! r 2 R; d 2 �n; ti 2 T� for i = 1; : : : ; nd(t1; : : : ; tn) : l(t1; : : : ; tn)! r(t1; : : : ; tn) :(Congruence) As in De�nition 4.3;(Transitivity) As in De�nition 4.3.Flat instantiation still induces a compatible rewrite relation, even if it does not o�ersuitable sequents for describing the nesting of rewrites. A rule can only be instantiatedwith elements of T�, and thus the rule names in a proof term generated using this ruleinstead of full instantiation will appear at mutually disjoint positions. Nevertheless, theat rewrite relation is equivalent to BR, since each nested rewrite can be described asa suitable sequence of at ones. Then, the basic di�erence between the two approachesrelies on the assumptions we have on a possible implementation schema1.As for now, let us put to work the two di�erent de�nitions of instantiation, and considerthe trs V = fd(x) : f(x)! g(x); d0 : a! bg. It entails the at sequents d(a) � g(d0) and1For other suitable instantiations of the logic, as well as a careful mapping into classic term rewriting,the reader has to wait for the next chapters.



4.2. ALGEBRAIC SEMANTICS 47f(d0) �d(b) both with source f(a) and target g(b): rule d has been instantiated with fx=agand fx=bg respectively, while d0 has been contextualized; it also entails the full sequentd(d0) : f(a)! g(b), where d0 is nested inside d. Graphically, we have the rewritesf d(a) g ga a g(d0) b f f d(b) ga f(d0) b bf d(d0) ga busing the standard (yet suggestive, in our case) representation of terms as trees. Wealready said that, when considering just the rewrite relation, the two systems are equiv-alent: it is easy to show (and the proposition will be made more precise in the nextsection) that a trs R entails a full sequent � : t ! s, i� there exists a �nite chain�i : ti ! si; i = 1; : : : ; n of at sequents, such that �1 � : : : � �n : t ! s. So, why todistinguish between at and full rewrites? First of all, we must remind the reader thatsequents represent an operational model for rewriting theories: each sequent can be con-sidered as the encoding of a \concrete" computation of the machine. If we consider aterm as a totally distributed structure, i.e., such that an actual rewriting machine canact separately on each occurrence of the term, then full sequents are able to describethe simultaneous execution of nested rewrites. Instead, a at sequent can express only\disjoint" concurrency: two rewrites can be executed simultaneously only if they act ondisjoint positions of a term. This is what we were saying stating that choosing a set ofdeduction rules is implicitly the same as choosing a particular implementation schema, soto say, for a rewriting theory.4.2 Algebraic SemanticsIn our view, the slogan of rewriting logic should be \an algebraic structure and a suitableaxiomatization capture the concurrency of a system". In Chapter 6 we will elaborate onthis statement about concurrency, trying to explain why (and when) equipping the set ofderivations of a rewriting theory with a suitable equivalence relation means to provide aconcurrent semantics for the system the theory aims at describing. As for now, we recallthe reader that choosing a set of deduction rules means to specify a given implementa-



48 CHAPTER 4. REWRITING LOGIC: SYNTAX AND SEMANTICStion schema for the reduction mechanism. From this point of view, an equivalence overderivations can be considered just as a way to abstract away from implementation de-tails, equating derivations that are computationally equivalent. Describing an equivalenceover derivations is a particularly easy task in the setting of rewriting logic, where theelements of the space of computations are encoded by terms of the algebra TR: a suitableequivalence can be easily expressed as an appropriate set of axioms on proof terms.De�nition 4.5 (Abstract Flat Sequents) Let R = h(�; E); L; Ri be a rewriting the-ory. An abstract at sequent entailed by R is an equivalence class of at sequents entailedby R modulo the following set E1 of axioms, which are intended to apply to the corre-sponding proof terms:� (Associativity) �; �;  2 TR� � (� � ) = (� � �) �  ;� (Axiomatizing)t(x1; : : : ; xn) = s(x1; : : : ; xn) 2 E; �i 2 TR for i = 1; : : : ; nt(�1; : : : ; �n) = s(�1; : : : ; �n) ;� (Distributivity) f 2 �n; �i; �i 2 TR for i = 1; : : : ; nf(�1 � �1; : : : ; �n � �n) = f(�1; : : : ; �n) � f(�1; : : : ; �n) ;� (Identity) � : s! ts � � = � = � � t :Note that we are rather informal here, since we are not in the classical framework ofalgebraic varieties: we implicitly assume to apply the axioms only to well-formed proofterms, i.e., those that are actually entailed by the deduction rules. The problem can beovercome simply noting that the class of entailed at sequents forms a partial algebra:its total operators are induced by those in � (e.g., its constants are the triples ha; a; aifor a constant in �, etc.); while rules and composition induce partial operators de�nedonly over a subset of tuples of elements, determined by suitable equations (e.g., a ruled(x1 : : : xn) induces an operator de�ned on the tuples ht; t; ti for t 2 T�). All this amountsto say that the class of entailed at sequents can be de�ned by means of an essentially



4.2. ALGEBRAIC SEMANTICS 49algebraic structure, and can be formally described by means of sketches [BW90]. A carefultreatment of partial algebras in the framework of algebraic semantics can be found in[Rei87], while for some basic results we refer the reader to [Gra79]. The following fact isactually su�cient for our purposes.Fact 4.1 Let us consider two at entailed sequents � : t ! s, � : u ! v, and let �=E1be the minimal congruence obtained closing the axioms in E1 with respect to substitution.The at proof terms �; � are equated if there exists a sequence �i : ti ! si for i = 1 : : : n, ofat entailed sequents such that �i �=E1 �i+1, �1 = �, �n = �. Moreover, at entailed proofterms equated by the axioms in E1 have the same source and target terms: if � : s ! tand � : u ! v are at sequents entailed by R, and � �=E1 �, then s �=E u and t �=E v.Thus, an abstract at sequent can be safely represented as a triple � : s! t.The axioms have an intuitive meaning. Associativity and Identity need no explana-tion. Also Distributivity has an obvious meaning: to give a context to the compositionof two rewrites is the same as to compose the contextualization of the single rewrites.Axiomatizing lifts on proof terms the axioms veri�ed by the underlying algebra of terms.Let us consider for example the trs W = fd(x) : f(x) ! g(x; x); d0 : a ! b; d00(x) :h(x) ! cg. The distributivity axiom identi�es the proof terms g(d0; d0), g(d0; a) � g(b; d0)and g(a; d0) � g(d0; b). Graphically, the following rewrites are equated.g g ga a g(a;d0)a g(d0;a)b b bg g ga g(d0;a)a b a g(b;d0)b bg ga g(d0;d0)a b b



50 CHAPTER 4. REWRITING LOGIC: SYNTAX AND SEMANTICSThe equivalence induced by E1 equates proof terms representing derivations di�eringonly in the order in which disjoint rewrites are performed. This is not the case forderivations di�ering in the order in which nested rewrites are executed. Let us take thetrs V described in the previous section: the proof terms f(d0) � d(b) and d(a) � g(d0) arenot equated by E1. A di�erent axiomatization, taking care of such identi�cations, is thefollowing, originally proposed in [Mes92].De�nition 4.6 (Abstract Full Sequents) Let R = h(�; E); L; Ri be a rewriting the-ory. An abstract full sequent entailed by R is an equivalence class of full sequents entailedby R modulo the set E2 of axioms, which are intended to apply to the corresponding proofterms; E2 is the union of the axioms in E1 with the following one:� (Interchange) d : l! r 2 R; d 2 �n; �i : ti ! si for i = 1; : : : ; nd(�1; : : : ; �n) = l(�1; : : : ; �n) � d(s1; : : : ; sn) = d(t1; : : : ; tn) � r(�1; : : : ; �n) :The Interchange axiom is applied to full sequents only: it states that, whenever wehave the simultaneous execution of nested rewrites, it can be simulated as the sequentialcomposition of two simpler rewrites. Its intuitive meaning is that rewriting at the topby means of a rule d, and rewriting \below", i.e. in the subterms matched by the left-hand side of the rule, are to a certain extent independent processes, and therefore can beexecuted in any order. Let us consider again the trs V: the proof term d(d0), correspond-ing to the parallel execution of the rewrites of f and a, is equated to the linearizationsf(d0) � d(b) and d(a) � g(d0).Fact 4.2 Let us consider two full entailed sequents � : t ! s, � : u ! v, and let �=E2be the minimal congruence obtained closing the axioms in E2 with respect to substitution.The full proof terms �; � are equated if there exists a sequence �i : ti ! si for i = 1 : : : n, offull entailed sequents such that �i �=E2 �i+1, �1 = �, �n = �. Moreover, full entailed proofterms equated by the axioms in E2 have the same source and target terms: if � : s ! tand � : u ! v are full sequents entailed by R, and � �=E2 �, then s �=E u and t �=E v.Thus, an abstract full sequent can be safely represented as a triple � : s! t.A third relation over sequents can be obtained simply applying the axioms E1 to fullsequents. In this case, the theory entails the sequent d(d0) : f(a) ! g(b), describing the



4.3. R-SYSTEMS 51simultaneous execution of two nested rewrites, but the three proof terms d(d0), f(d0) �d(b)and d(a) � g(d0) are not identi�ed anymore: that's to say, we assume that our actualimplementation is able to distinguish the concurrent execution of nested rewrites from anyof its linearizations. In Chapter 6 we deal extensively with the analysis of the properties ofthe models from the point of view of a concurrent implementation. Again, for our purposesit is enough to note that these \abstractions" do not change the intuitive equivalence (froman operational point of view) of the rewrite relations induced by full and at sequents, asshown by the following proposition, already stated in [Mes92].Proposition 4.1 Let R = h(�; E); L; Ri be a rewriting theory: it entails an abstract fullsequent � : t ! s, i� there exists a �nite chain �i : ti ! si; i = 1; : : : ; n of abstract atsequents such that �1 � : : : � �n : t! s, and � �=E2 �1 � : : : � �n.4.3 R-SystemsThe classes of abstract sequents, both full and at, represent possible models for our logic.Actually, they turn out to be a very special case of a more general notion. According to[Mes92], a reasonable model for the full entailment is de�ned as follows.De�nition 4.7 (R-Systems) Let R = h(�; E); L; Ri be a rewriting theory. An R-system S is a category S together with� a (�; E)-algebraic structure, i.e., for each f 2 �n a functor fS : Sn ! S, preservingthe equations in E: for any t = s 2 E, the identity tS = sS holds;� for each rewrite rule d : s! t 2 R, a natural transformation �S : sS ) tS ;where the functors sS, tS are de�ned inductively from the basic functors fS .An R-homomorphism F : S ! S 0 is a functor F : S ! S0 preserving the algebraicstructure (i.e., fS0 � F n = F � fS for each f 2 �n) and the rewriting rules (i.e., givenidF : F ! F the identity natural transformation, idF � �S = �S0 � idFn holds for everyrule � 2 R). R-Sys denotes the category of R-systems and R-homomorphisms.Then R-systems are triples hS; �S; �Si where �S = ffS j f 2 �g is a family of functors,and �S = fdS j d 2 Rg is a family of natural transformations.Some remarks are in order. As a start, with Sn we denote the n-fold product categoryof S: its objects are n-tuples of objects of S, and its arrows are n-tuples of arrows, with



52 CHAPTER 4. REWRITING LOGIC: SYNTAX AND SEMANTICSsource and target de�ned pointwise. In particular, S0 = 1, the category with one objectand one arrow, terminal in Cat.Moreover, with identity of two functors we mean that they identify objects \on-the-nose", instead of \up-to-isomorphism". Equivalently, this means that the two functorscoincide in the (functor) category of functors and (natural) transformations.Finally, let us consider the trs W: in any rewriting system S, the functor associatedto h(x) and a are respectively h� : S ! S and a� : 1 ! S. To provide a suitablenatural transformation, we must realize that, when considering a as an object of T�(x),the associated functor is actually a�;fxg : S ! S, with a�;fxg =!S; a�, where !S : S ! 1is uniquely determined. This discussion is analogous to the one about axiomatizations inLawvere theories, and we refer the reader to Section 3.5.This notion of model is reasonable, since, as put in [Mes92], it \captures the ideathat the models of a rewrite theory are systems", i.e., a system is a \machine-like entitythat can be in a variety of states, and that can change its state by performing certaintransitions". This intuition is further con�rmed by the following characterization of theinitial model of R-Sys (originally proved in [Mes92]).Proposition 4.2 (Initial Model, I) Let R = h(�; E); L; Ri be a rewriting theory. Theinitial object IR of R-Sys is the category having as objects equivalence classes of terms inthe algebra T(�;E), and as arrows the elements of the class of abstract full sequents entailedby R, where h�; s; ti has source s and target t.This characterization allows for an intuitive soundness and completeness result (alsodue to Meseguer), expressing the fact that any R-system faithfully describes the fullentailment relation.Proposition 4.3 (Soundness and Completeness of R-Systems) Let R be a rewrit-ing theory: it entails an abstract full sequent � : t! s i� there exists a natural transfor-mation �IR : tIR ) sIR (then, i� there exists a natural transformation �S : tS ) sS foreach R-system S).Proof We simply sketch the relevant cases.� (Sequent implies Transformation). The proof is constructive, in the sense that anysequent � : t ! s inductively de�nes a natural transformation �S : tS ) sSfor each R-system hS; �S; �Si. We proceed by induction on the structure of proof



4.3. R-SYSTEMS 53terms. Let us assume that we have a sequent � = d(�1; : : : ; �n) : t(t1; : : : ; tn) !s(s1; : : : ; sn). By hypothesis there exist (�i)S : (ti)S ) (si)S : 1 ! S naturaltransformations: then, we can build the natural transformation h(�1)S; : : : ; (�n)Si :h(t1)S; : : : ; (tn)Si ) h(s1)S; : : : ; (sn)Si : 1 ! Sn, where the components are de�nedpointwise. Then the natural transformation associated to � is h(�1)S; : : : ; (�n)Si�dS.The other cases are similar.� (Transformation implies Sequent). The result is an immediate consequence of thecharacterization of the initial model IR.As an example, let us consider a genericR-system S associated to the trs V: the ruleshave associated natural transformations dS : fS ) gS : S! S and d0S : aS ) bS : 1! S.The abstract full sequents d(d0) is associated to the natural transformation dS � d0S :aS ; fS ) bS ; gS : 1 ! S; it is uniquely de�ned thanks to the naturality requirement,identifying the natural transformations (idaS � dS) � (d0S � idgS) and (d0S � idfS ) � (idbS � dS).It is rather intuitive that the previous notion of model can be generalized in order tocharacterize also abstract at sequents by dropping the naturality requirement.De�nition 4.8 (Flat R-Systems) Let R = h(�; E); L; Ri be a rewriting theory. A atR-system S is a category S together with� a (�; E)-algebraic structure, i.e., for each f 2 �n a functor fS : Sn ! S, preservingthe equations in E: for any t = s 2 E, the identity tS = sS holds;� for each rewrite rule d : s! t 2 R, a transformation �S : sS ) tS .where the functors sS, tS are de�ned inductively from the basic functors fS .A at R-homomorphism F : S ! S 0 is a functor F : S! S0 preserving the algebraicstructure (i.e., fS0 � F n = F � fS for each f 2 �n) and the rewriting rules (i.e., such thatthe identity of transformations F �R�S = �S0 �LF n holds for every rule � 2 R). FR-Sysdenotes the category of at R-systems and at R-homomorphisms.FR-systems are triples hS; �S; �Si where �S = ffS j f 2 �g is a family of functors,and �S = fdS j d 2 Rg is a family of transformations; hence, R-Sys is a sub-categoryof FR-Sys. Actually, R-Sys is reective inside FR-Sys: the inclusion functor has aleft-adjoint, and the co-unit of the adjunction pair is a natural isomorphism. Note thatthe left-adjoint simply adds all the identi�cations necessary to make a transformation intoa natural one: then Proposition 4.2 is an obvious consequence of the following result.



54 CHAPTER 4. REWRITING LOGIC: SYNTAX AND SEMANTICSProposition 4.4 (Initial Model, II) Let R = h(�; E); L; Ri be a rewriting theory. Theinitial object IFR of FR-Sys is the category having as objects equivalence classes of termsin the algebra T(�;E), and as arrows the elements of the class of abstract at sequentsentailed by R.Proof The forgetful functor FR-Sys ,! Cat, associating to each FR-system its un-derlying category, has a left-adjoint associating to each category C the free FR-systemobtained adding the �-structure. Since also the forgetful functor Cat ,! Set, associat-ing to each category C its set of objects OC has a left-adjoint associating to each set Xthe discrete category X (with only identity arrows), there is an adjoint pair hF;Gi fromFR-Sys to Set. Since 0 is initial in Set, then G(0) is initial in FR-Sys. G(0) hasthe structure of IFR (since there is an obvious one-to-one correspondence between theat axioms and the coherence requirements for source, target and identity function in acategory), then the thesis holds.The result proved in Proposition 4.3 can be easily reformulated for FR-systems.Proposition 4.5 (Soundness and Completeness of FR-Systems) LetR be a rewrit-ing theory: it entails an abstract at sequent � : t ! s i� there exists a transformation�IPR : tIPR ) sIPR (then, i� there exists a transformation �S : tS ) sS for each FR-system S).Note that, since R-Sys is reective inside FR-Sys, then Proposition 4.4 impliesProposition 4.2, and Proposition 4.3 implies Proposition 4.5.A more abstract notion of model can be de�ned, as already done for the categoryof (continuous) algebras in Chapter 3. The main concern of the next section will befor functorial models; we will introduce enriched structures such that their cells are inone-to-one correspondence with the sequents of a rewriting system. We �rst de�ne astructure such that its set of cells is in one-to-one correspondence with the rewrite rulesin R and, moreover, such that the underlying category is able to describe in a faithfulway the structure of the initial algebra associated to a given equational theory.4.4 Functorial Models of Rewriting TheoriesAlong the presentation in Section 3.5, an algebra can be considered as a \model" of asignature. The presentation of categories of algebras as functor categories makes this



4.4. FUNCTORIAL MODELS OF REWRITING THEORIES 55interpretation explicit, showing that categories of models in di�erent universes (like Setand Cpo) can be taken into account. Essentially the same ideas can be applied torewriting theories as well: such systems can be considered as syntactical speci�cations,and models for them are algebraic structures where all the \possible rewrites" have asuitable interpretation. Once again, this approach has the advantage of separating in aclear way what we can call the \R-structure" (i.e., the algebraic structure de�ned by theequational theory, the axioms and the deduction rules of the rewriting logic) from theadditional algebraic structure that can be enjoyed by the model. As for signatures, twokinds of categorical models for a system will be considered, namely the Set-based (in thelast part of this section) and the Cpo-based (in Chapter 7). For a given rewriting theoryR = h(�; E); L; Ri, the arrows of the Lawvere theory Th(�; E) are the \states" of thesystem (because those arrows represent terms of the algebra T(�;E)(X)), and rewrites arecells, i.e., arrows between arrows.De�nition 4.9 (From Theories to Computads) Let R = h(�; E); L; Ri be a rewrit-ing theory. The associated c-computad Th(R) is given by the pair hTh(�; E); Rci,where Th(�; E) is the Lawvere theory associated to the equational theory (�; E) andRc is a set of cells between the arrows of Th(�; E), such that d : s ! t 2 R i�dc : s(�;E) ) t(�;E) 2 Rc.After seminal studies in the late Eighties (see e.g. [RS87, Pow89] and in particular[Mes90], as for the use of Lawvere theories; but also [See87, Str92, Ste94]), the correspon-dence between rewriting systems and c-computads has been (often implicitly!!) at thebasis of many works on the semantics of rewriting. We freely generate an enriched cat-egory from a c-computad, such that its cells represent (equivalence classes of) sequencesof rewrites.De�nition 4.10 (Spaces of Computations) Let R be a rewriting theory and Th(R)its associated c-computad. Then the associated Lawvere 2-Theory 2-Th(R) is the carte-sian 2-category F2(Th(R)) with �nite products, while its Lawvere S-Theory S-Th(R) isthe cartesian sesqui-category Fs(Th(R)) with �nite products.In a moment we will make more precise the relationship between these enriched cat-egories and the models presented in the previous section. Note only that they describedi�erent models, since they impose di�erent equivalences over cells, due to the inter-change axiom. Let us consider the rewriting theory W = fd(x) : f(x)! g(x; x); d0 : a!b; d00(x) : h(x)! cg; the computad Th(W) has the following set of cells
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1 f dr1 2 g 1 0 abd0 1 1 hd"!1 0 b 1

First of all, note the importance of duplicator r1 and terminal arrow !1 for thecorrespondence between deduction rules and cells: it is the same problem we dealtwith when de�ning R-systems. Note also that cells such as (d0 �R f) � (b �L d) and(a �L d) � (d0 �R (r1; g)) = (a �L d) � (hd0; d0i �R g), originating from a; f : 0 ! 1 (thearrow associated to the term f(a)), belong to both spaces of computations. The associ-ated cells can be graphically represented as:0 abd0 1 f 1�0 b 1 f dr1 2 g 1 0 a 1 f dr1 2 g 1�0 ha;aihb;bi2d0 2 g 1where 2d0 = hd0; d0i. The diagrams should make clear the di�erent meaning of left andright composition: left-composition instantiates a rewrite (for example, a�Ld correspondsto instantiating d(x) with fx=ag); while right-composition inserts a rewrite in a context(d0 �R f inserts d0 in the context f(�)).The two cells are di�erent in the sesqui-category S-Th(W), while in the 2-category2-Th(W) they are equated, thanks to the interchange axiom. The same happens to thecells (d0�Rh)�(b�Ld00) and (a�Ld00)�(d0�R (!1; b)) = (a�Ld00) originating from the morphisma; h.The equations above suggest that sesqui-categories are suitable models of at entail-ment. As an example, there is no intuitive semantic counterpart for the abstract fullsequent d(d0) : f(a) ! g(b; b) in S-Th(W). On the contrary, 2-categories are models forthe full entailment relation. Since the interchange axiom holds, the cell associated to thatsequent is given by (d0 �R f) � (b �L d) = (a �L d) � (d0 �R (r1; g)) = d � d0. That cell isgraphically represented as:



4.4. FUNCTORIAL MODELS OF REWRITING THEORIES 57
0 abd0 1 f dr1 2 g 1Proposition 4.6 (Correspondence with Algebraic Models, I) Let R be a rewrit-ing theory. Then there exists a bijective function � between the set of all abstract fullsequents entailed by R and the cells in 2-Th(R)[0; 1], such that �(�) : s(�;E) ! t(�;E) i�� : s! t.Proof The proof is constructive, and proceeds by induction on the structure of proofterms and cells, respectively; it is analogous to the (sequent implies transformation) sideof the proof carried out for R-systems in Proposition 4.3. Note however that it is funda-mental that 2-Th(R) has �nite products, since it provides a suitable structure on cellsthat is respectful of the �nite products on terms.Models of the Lawvere theory of a signature are cartesian functors to a suitable carte-sian category with chosen �nite products. Similarly, we can de�ne the models of the Law-vere 2-theory and S-theory associated to a rewriting theory R as functors to a suitableuniverse; however, those functors (as well as the corresponding natural transformations)have to preserve the relevant structure, which is now much richer.De�nition 4.11 (Models of Lawvere 2-Theories) Let R be a rewriting theory, andC a cartesian 2-category with chosen products. A C-model for the Lawvere 2-theoryassociated to R is a chosen 2-functor M : 2�Th(R) ! C, while a model morphismis a 2-natural transformation between models. The category C-ModR of C-models is the2-functor category [2�Th(R)! C]: its objects are C-models of R, while its arrows aremodel morphisms.As Set is the paradigmatic example of category, so Cat is the paradigmatic exampleof 2-category: the objects are small categories, the arrows are functors, and the 2-cellsare natural transformations. Since Cat is cartesian with chosen products (where themonoidal operator C
D is just given by the product category C�D), we are allowedto consider Cat-models of a rewriting theory R; they are nothing else than the R-modelsintroduced in the previous section.Proposition 4.7 (The Functor Category of R-Systems) Let R be a rewriting the-ory. The category of R-systems (see De�nition 4.7) is equivalent to the category Cat-ModR of Cat-models for R.



58 CHAPTER 4. REWRITING LOGIC: SYNTAX AND SEMANTICSProof Any R-system hS; �S; �Si induces a functorMS : 2�Th(R) ! Cat, such thatMS(1) = S, while arrows and cells are de�ned accordingly. Also the converse holds,in the sense that each functor M induces an R-system whose underlying category isSM =M(1), while functions and natural transformations are de�ned accordingly.This result (in a di�erent form) was already stated in [Mes90], and provides an elegantcharacterization of R-systems. Note however that the categories are just equivalent, sincethe functor category is much larger than the other: to get an isomorphism we needto restrict the functor category, in order to take into account only one representativefor each class of chosen functors that di�er only for the choice of the monoidal naturaltransformations associated. For example, if we consider two functorsM1;M2 such thatM1(1) =M2(1), they induce the same R-system, even if they may be di�erent: however,they are isomorphic by a natural transformation.All the previous results given for the full entailment relation are easily reformulatedto take into account the at entailment. They are stated in the following, without proof.Proposition 4.8 (Correspondence with Algebraic Models, II) Let R be a rewrit-ing theory. Then there exists a bijective function � between the set of all abstract atsequents entailed by R and the cells in S-Th(R)[0; 1], such that �(�) : s(�;E) ! t(�;E) i�� : s! t.As explained in Chapter 3, Cat can also be equipped with a di�erent enriched struc-ture: we indicate with CatS the sesqui-category with small categories as objects, functorsas arrows and transformations as cells.De�nition 4.12 (Models of Lawvere S-theories) Let R be a rewriting theory, andCS a cartesian sesqui-category with chosen products. A CS-model for the Lawvere s-theoryassociated to R is a chosen s-functorM : S-Th(R)S ! CS, while a model morphism isa s-natural transformation between models. The category CS-ModR of CS-models is thes-functor category [S-Th(R)S ! CS]: its objects are CS-models of R, while its arrowsare model morphisms.The results proved for R-systems are easily extended to at R-systems.Proposition 4.9 (The Functor Category of Flat R-Systems) Let R be a rewritingtheory. The category of at R-systems (see De�nition 4.8) is equivalent to the categoryCatS-ModR of CatS-models for R.



Chapter 5Consistency with Finitary Rewriting
In the previous chapter we introduced the basic notions of rewriting logic, developing thecategorical side of the Lambek-Lawvere analogy we devised in the introduction. The �rstaim of this chapter instead is to discuss some of the aspects of the set-theoretical side ofthe analogy, taking into account the classical approach to term rewriting.The basic notion of the set-theoretical approach to term rewriting is that of redexof a term t: a pair (w; d) where w is an occurrence of t, and d is a rule such that itsleft-hand side matches the subterm t=w; such a redex rewrites t to a term s, obtained bysubstituting the subterm t=w with a suitable instantiation of the right-hand side of therule. A derivation is just a suitable chain of rewrites, while the derivation space of a termt is just the set of co-initial derivations, starting from t. Derivation spaces represent a veryintuitive operational model for trs's: in Section 1 we will show that these structures arein one-to-one correspondence with a particular class of sequents entailed by a rewritingtheory.Derivation spaces are easily de�ned, but, unfortunately, the resulting operational se-mantics is usually too concrete: in order to obtain a description as much as possibleindependent from the actual execution of the reduction process performed (implemented)by a given machine, we need to abstract away from irrelevant details. Usually, such adescription is recovered imposing a suitable equivalence relation on derivations, equat-ing sequences of rewrites that are the same up to some conditions. Those conditionsexpress the properties of the reduction mechanism over the system under examination:each equivalence class represents an abstract derivation, corresponding to a family ofcomputationally equivalent sequences of rewrites.Depending on the conditions we choose to take into account, we get di�erent equiva-lences. We open Section 2 recalling the de�nition of the most famous one, the so-called



60 CHAPTER 5. CONSISTENCY WITH FINITARY REWRITINGpermutation equivalence [Lev80, Bou85]: it equates derivations that are the same up topermutation of compatible rewrites. Then, we introduce here a new equivalence we calldisjoint equivalence, equating derivations that are the same up to permutation of disjointrewrites. In the last part of Section 2 we show that these equivalences can be characterizedalso in terms of suitable axiomatizations over sequents: we will show that for any termt there is a one-to-one correspondence between the families of permutation equivalentderivations originating from t, and the families of abstract full sequents with source t. Acareful inspection of the proof allows us to extend the result also to the other equivalence:namely, that for any term t there is a one-to-one correspondence between the families ofdisjoint equivalent derivations originating from t, and the families of abstract at sequentswith source t.5.1 Consistency between Operational SemanticsLet us consider the de�nition of derivation given in De�nition 2.17: simultaneous exe-cutions of redexes cannot be taken into account, since in any rewrite only one rule isapplied. This is con�rmed by the particular class of sequents corresponding to sequentialderivations. We �rst need some de�nitions.De�nition 5.1 (Classes of Sequents) Let R = h�; L; Ri be a trs. A proof term � isone-step if it does not contain the operator \�", i.e., it is a term of the algebra TO = T(�[�);it is linear if it is one-step and contains exactly one operator in �; it is many steps if� = �1 � : : : � �n with 1 � n < ! and �i is one-step for each i 2 f1; : : : ; ng1; �nally, it issequential if it is many steps and all the component one-step proof terms are linear. Asequent � : t! s is one-step (linear, many steps, sequential) if so is �.The rules of deduction we now introduce constitute the fragment of rewriting logicnecessary to describe just the application of a redex to a term or a derivation from aterm: they allow to derive only sequential sequents.De�nition 5.2 (Sequential Rewriting Logic) Let R = h�; L; Ri be a trs. We saythat R entails the sequential sequent �: s! t if it can be obtained by a �nite number ofapplications of the following rules of deduction:1The application order in this case is not inuent. Note however that there are sequents that areneither one-step, nor many-steps.



5.1. CONSISTENCY BETWEEN OPERATIONAL SEMANTICS 61� (Flat Instantiation)d : l! r 2 R; d 2 �n; ti 2 T� for i = 1; : : : ; nd(t1; : : : ; tn) : l(t1; : : : ; tn)! r(t1; : : : ; tn) ;� (Linear Congruence)f 2 �n; � : s! s0; � 2 TO; tj 2 T� for j 2 f1; : : : ; ngnif(ti�11 ; �; tni+1) : f(ti�11 ; s; tni+1)! f(ti�11 ; s0; tni+1) ;� (Transitivity) � : s! t; � : t! u� � � : s! u :where tqp, p � q, stands for the tuple tp; : : : ; tq.The following proposition states the precise relationship between the classical presen-tation of rewriting and the one using sequents (in the sequential case).Proposition 5.1 (Sequential Sequents and Derivations) Let R be a trs. (1) If �is a redex of t and t !� s, then there is a linear proof term �� such that R entails thesequent �� : t! s (using the rules of De�nition 5.2). Viceversa, (2) if R entails a linearsequent � : t ! s, then there is a redex �� of t such that t !�� s. Hence, there is aderivation from t to t0 i� R entails a sequential sequent � : t! t0.Proof The proof is constructive, in the sense that we inductively de�ne a function overlinear proof terms (redexes) that returns the associated redex (proof term, respectively).1. Let � = (w; d : l ! r): then t(u) = s(u) for each u 6� w, and there exists� = fx1=t1; : : : ; xn=tng such that l� = t=w, r� = s=w. By the instantiation rule, wehave d(t1; : : : ; tn) : t=w ! s=w. Then, to construct ��, we just need the function�t, parametric over the terms in T�:�t(�) = ( d(t1; : : : ; tn) if w = �;f(si�11 ; �si((w0; d)); sni+1) if w = iw0 and t = f(s1; : : : ; sn).We say �� = �t(�): it is well de�ned, and it is easy to check that �� : t! s.



62 CHAPTER 5. CONSISTENCY WITH FINITARY REWRITING2. We de�ne instead a function � over proof terms:�(�) = ( (�; d) if � = d(t1; : : : ; tn);(iw; d) if � = f(si�11 ; �0; sni+1) and �(�0) = (w; d).We say �� = �(�). The soundness of � is easily proved. Let us assume that, inthe �rst case, � = d(t1; : : : ; tn) : l(t1; : : : ; tn) ! r(t1; : : : ; tn). By de�nition l� = tand r� = s, where � = fx1=t1; : : : ; xn=tng, so that � is the substitution associatedto (�; d). In the second case the corresponding substitution is the same inductivelyassociated to �(�0).Note that in the �rst part of the proof it was fundamental to consider the termto which the redex is applied, in order to get the right context for the proof term ofthe associated sequent. We remark again that the proof is constructive. In fact, weactually de�ned a one-to-one correspondence between sequential sequents and sequentialderivations, supporting the claim that the two operational descriptions of term rewritingare actually equivalent.Proposition 5.2 (Equivalence between Operational Models, I) Let R be the trsh�; L; Ri. Then for each t 2 T� there is a one-to-one correspondence between the familiesof sequential derivations entailed by R originating from t, and the families of sequentialsequents with source t.Proof Given � = (w; d : l ! r) redex of t, we want to show that �(�t(�)) = �. Weproceed by induction on the length of w. The inductive base w = � is obvious. Let usassume w = iw0: t = f(t1; : : : ; tn), �0 = (w0; d) is a redex of ti and by induction hypothesis�(�ti(�0)) = �0. The thesis immediately follows.Conversely, we want to show that �t(�(�)) = �. We proceed by induction on the struc-ture of �. If � = d(t1; : : : ; tn), then �(�) = (�; d) with substitution � = fx1=t1 : : : xn=tng,and by de�nition the thesis holds. If � = f(si�11 ; �0; sni+1), then by induction hypothesis�0 has associated a redex �(�0) = (w; d) with substitution �, such that �si(�(�0)) = �0.Then �(�) = (iw; d) with substitution �, and by de�nition of �t the thesis holds.The previous proof is quite straightforward, but it is paradigmatic of the analogous,but more di�cult ones that we will state in the rest of the chapter. Let us now consideragain rewriting logic: small changes to the deduction rules of De�nition 5.2 are su�cientto generate many-steps sequents.



5.1. CONSISTENCY BETWEEN OPERATIONAL SEMANTICS 63De�nition 5.3 (Parallel Rewriting Logic) Let R = h�; L; Ri be a trs. We say thatR entails the many-steps full sequent � : s! t if it can be obtained by a �nite number ofapplications of the following rules of deduction:� (Elementary Instantiation)d : l! r 2 R; d 2 �n; �i : ti ! si; �i 2 TO; for i = 1; : : : ; nd(�1; : : : ; �n) : l(t1; : : : ; tn)! r(s1; : : : ; sn) ;� (Elementary Congruence)f 2 �n; �i : ti ! si; �i 2 TO; for i = 1; : : : ; nf(�1; : : : ; �n) : f(t1; : : : ; tn)! f(s1; : : : ; sn) ;� (Transitivity) � : s! t; � : t! u� � � : s! u :We say that R entails a many-steps at sequent if we substitute the ElementaryCongruence rule with the Flat Instantiation rule of De�nition 5.2De�nition 5.4 (Disjoint Rewriting Logic) Let R = h�; L; Ri be a trs. We say thatR entails the many-steps at sequent � : s! t if it can be obtained by a �nite number ofapplications of the following rules of deduction:� (Flat Instantiation) and (Transitivity) as in De�nition 5.2;� (Elementary Congruence) as in De�nition 5.3.Given a parallel redex � and an occurrence w, we de�ne the restriction of � at oc-currence w as the parallel redex �=w = f(v; d) j (wv; d) 2 �g. The following propositiongeneralizes to the parallel case the relationship between the two presentations of rewriting,stated in Proposition 5.1.Proposition 5.3 (Many-Steps Sequents and Parallel Derivations) LetR be a left-linear trs. (1) If � is a parallel redex of t and t !� s, then there is a one-step proofterm �� such that R entails the full sequent �� : t! s (using the rules of De�nition 5.3).Viceversa, (2) if R entails a one-step full sequent � : t! s, then there is a parallel redex�� of t such that t!�� s. Hence, there is a parallel derivation from t to t0 i� R entailsa many-steps full sequent � : t! t0.



64 CHAPTER 5. CONSISTENCY WITH FINITARY REWRITINGProof Also in this case we give a constructive proof, providing suitable functions overfull proof term and parallel redexes.1. Let � = f�1; : : : ;�mg be the redex under examination, such that the generic i-thredex is given by the pair (wi; di). Moreover, let us assume it is ordered, in thesense that 1 � i < j � n implies that either wi < wj or wijwj. Then t(u) = s(u)for each u 6� w1, and there exists � = fx1=t1; : : : ; xn=tng such that l1� = t=w1,r1� = s=w1. By the instantiation rule we have d(t1; : : : ; tn) : t=w1 ! s=w1, wheret=w1Oxi(l1) = ti = s=w1uxi for uxi 2 Oxi(r1). Also in this case we use a function �t,parametric over the class of terms in T� and de�ned over sets of compatible redexes;if we assume t = f(s1; : : : ; sn),�t(�) = 8><>: t if � = ;;f(�s1(�=1); : : : ; �sn(�=n)) if w1 6= �;d1(�t1(�=Ox1(l1)); : : : ; �tn(�=Oxn(l1))) if w1 = �We de�ne �� as �t(�): it is well de�ned, and it is proved by induction on � that�� : t! s. The idea is that �t(�) describes the simultaneous application of all theredexes in �. In particular, in the case w1 = �, each �=Oxi(l1) describes the redexesapplicable to ti; and since by de�nition t=Oxi(l1) = ti = s=uxi for uxi 2 Oxi(r1), ifby induction hypothesis the various �ti(�=Oxi(l1)) are well-de�ned, so is �t(�).2. We de�ne a function  over proof terms; if we assume  (�i) = (wi; di), then (�) = ( f(�; d)g [ Sni=1f(Oxi(l1)wi; di)g if � = d(�1; : : : ; �n);Sni=1(iwi; di) if � = f(�1; : : : ; �n).We say that �� =  (�). The soundness is proved by induction on the number ofredexes. Let us assume that, in the �rst case, � = d(t1; : : : ; tn) : l(t1; : : : ; tn) !r(t1; : : : ; tn). By de�nition l� = t and r� = s, where � = fx1=t1; : : : ; xn=tng, sothat � is the substitution associated to (�; d). In the second case the correspondingsubstitution is the same inductively associated to �(�0).Also for many-steps the correspondence is one-to-one, since we provided a suitablesequent, equivalent to the parallel execution of all the redexes of the compatible set.Proposition 5.4 (Equivalence between Operational Models, II) LetR be the left-linear trs h�; L; Ri. Then for each t 2 T� there is a one-to-one correspondence betweenthe families of parallel derivations entailed by R originating from t, and the families ofmany-steps full sequents with source t.



5.2. CONSISTENCY BETWEEN ABSTRACT SEMANTICS 65Proof We proceed by induction on �. The base case � = f�g is proved by Proposition5.2. Let us assume that the redex � is ordered, and that all the hypotheses of the proofof 5.3 hold. Then we proceed by induction on w1. If w1 6= � and t = f(s1; : : : ; sn),by de�nition �t(�) = f(�s1(�=1); : : : ; �sn(�=n)); by induction hypothesis,  (�si(�=i)) =�=i, and by the de�nition of  , the result holds. The case w1 = � is analogous.Conversely, we want to show that �t( (�)) = �. We proceed by induction on thestructure of �. If � = f(�1; : : : ; �n) : f(t1; : : : ; tn) ! f(s1; : : : ; sn), then by de�nitionthere are sequents �i : ti ! si, and by induction hypothesis each �i has associated aredex 	(�i) = (wi; di) with substitution �i, such that �ti(	(�i)) = �i. Then by de�nitionof �t(f(�1; : : : ; �n)) the thesis holds. The case � = d(�1; : : : ; �n) for d rule is analogous.Similar properties also hold for disjoint derivations: the following results can be easilyrecovered just by analyzing the corresponding ones for compatible redexes, and are statedwithout proof.Proposition 5.5 (Many-Steps Sequents and Disjoint Derivations) Let R be atrs. (1) If � is a disjoint redex of t and t !� s, then there is a one-step proof term�� such that R entails the at sequent �� : t ! s (using the rules of De�nition 5.4).Viceversa, (2) if R entails a one-step at sequent � : t! s, then there is a parallel redex�� of t such that t!�� s. Hence, there is a disjoint derivation from t to t0 i� R entailsa many steps at sequent � : t! t0.Proposition 5.6 (Equivalence between Operational Models, III) Let R be theleft-linear trs h�; L; Ri. Then for each t 2 T� there is a one-to-one correspondencebetween the families of disjoint derivations entailed by R originating from t, and thefamilies of many-steps at sequents with source t.5.2 Consistency between Abstract SemanticsWe open this section recalling the de�nition of permutation equivalence.De�nition 5.5 (Permutation Equivalence) Let R be a left-linear trs. Permutationequivalence (indicated as �p) is the least equivalence relation over parallel derivationssatisfying:1. if �jjc�0, then �� � ��0n� �p ��0 � ��n�0 ;



66 CHAPTER 5. CONSISTENCY WITH FINITARY REWRITING2. if � �p �0, then � � � � � 0 �p � � �0 � � 0 for �; � 0 derivations.where �;�0 are compatible sets of redexes, and ��; ��0 any of their complete developments.
Thanks to Proposition 2.13, the de�nition is well-given. It can be obviously reformu-lated to deal only with disjoint derivations.De�nition 5.6 (Disjoint Equivalence) Let R be a trs. Disjoint equivalence (indi-cated as �d) is the least equivalence relation over disjoint derivations satisfying:1. if �jj�0, then �� � �(�0��) �d ��0 � �(���0);2. if � �d �0, then � � � � � 0 �d � � �0 � � 0 for �; � 0 derivations.where �;�0 are disjoint sets of redexes, and ��; ��0 any of their complete developments.
Disjoint equivalence has a much simpler formulation, since given any two set �;�0 ofdisjoint redexes, it is easy to prove that the residual �n�0 corresponds to the set-di�erence�� �0.The following result was originally proved in [LM92].Proposition 5.7 (Correspondence between Abstract Models, I) LetR be the left-linear trs h�; L; Ri. Then for each t 2 T� there is a one-to-one correspondence betweenthe families of permutation equivalent derivations in R originating from t, and the familiesof abstract full sequents with source t entailed by R.In our setting, this is proved in a simpler way than in the original paper. A �rststep is to show that the one-to-one correspondence between operational models stated inProposition 5.4 preserve permutation equivalence.Proof We proceed by induction on the length of the derivation (number of one-stepsequents, respectively).



5.2. CONSISTENCY BETWEEN ABSTRACT SEMANTICS 67(Permutation implies Abstractness). All we need to show is that, given a set � ofcompatible redexes, then for any two complete developments �� and �0� of � theproof terms �t(��) and �t(�0�) are equated. We proceed by induction on �. Thebase case is � = f�;�0g, and the situation is indicated by the following diagram:t1 �0n�t ��0 st2 �n�0The case �jj�0 is obvious, so let us assume � = (w; d) and �0 = (w0; d0), withw � w0 and w0 = w � Oxi(l) � v for some xi 2 var(l). By de�nition�t(�) = t[w  d(ti�11 ; �ti(�0); tni+1)] = t[w  d(ti�11 ; ti[v  d0(s1; : : : ; sm)]; tni+1)].Then by construction �t(�0) = t[w0  d0(s1; : : : ; sm)], with the same substitutionassociated to �ti(�0), and t2 = t[w0  r(s1; : : : ; sm)]. Also by de�nition�t2(�) = t[w d(ti�11 ; ti[v  r(s1; : : : ; sm)]; tni+1)].Finally, thanks to the interchange axiom we have �t(�) = �t(�0) � �t2(�). Analo-gously, �t(�) = �t(�) � �t1(�0).Now, for a generic �, let us consider two developments �� = � � � and �0� = �0 � �0.By construction we have � = f�g [ f�0g [ �0, and a situation represented by thefollowing diagram: t1�0n� �t ��0 t3 � st2�n�0 �0By construction � is a development of �nf�;�0g, while � (�0) is a development of�n� (�n�0). Now, if both �n� and �n�0 have a smaller number of redexes than �(e.g., if � and �0 are disjoint with the other redexes of �, or they are right-linear),then by induction hypothesis �t(�) = �t((�0n�) � �) and �t(�0) = �t((�n�0) � �).Since by induction we also have �t(�) � �t1(�0n�) = �t(�0) � �t2(�n�0), then thethesis holds. If instead for example �n�0 has more redexes than �, then we applythis procedure to �0 = �00 � �00; if �1 � �1 is a complete development of �n�0, then



68 CHAPTER 5. CONSISTENCY WITH FINITARY REWRITINGwe have a situation of this kind: t4�1n�00 �00t2�00�1 t5 �0 st3�00n�1 �1��Surely �t2(�00)��t4(�00n�1) = �t2(�1)��t3(�1n�00). Now we check the number of re-dexes of (�n�0)n�00 and (�n�0)n�1, to eventually prove by induction that �t4(�00) =�t4((�1n�00) � �0) and �t(�1 � �) = �t5((�00n�1) � �), hence �t(�0) = �t((�n�0) � �).Since all the possible developments of � are �nite, the procedure is convergent, andwe are then assured that the thesis holds.(Abstractness implies Permutation). We proceed by induction on the last axiom ap-plied. All the cases are obvious, except for interchange. Let assume for the sake ofsimplicity that we are applying the axiom on the top, i.e., that� = d(�1; : : : ; �n) = l(�1; : : : ; �n) � d(s1; : : : ; sn) : t(t1; : : : ; tn)! s(s1; : : : ; sn).Then by construction the set of redexes  (l(�1; : : : ; �n)) [  (d(s1; : : : ; sn)) and (d(�1; : : : ; �n)) coincide. The case d(�1; : : : ; �n) = d(t1; : : : ; tn) � r(�1; : : : ; �n) isentirely analogous.After that, it is enough to note that, although the parallel rewriting logic of De�nition5.3 seems less powerful than full rewriting logic (since the sequents appearing in thepremises of the congruence and instantiation rules are not bound to be one-step, but theycan be arbitrary, and the operator \�" can appear inside other operators in the proof termof a sequent), they entail the same families of abstract sequents.Proposition 5.8 (Equivalence of Rewriting Logics, I) Let R be a trs: it entails asequent � : t ! s in full rewriting logic i� it entails a many-steps sequent �0 : t ! s inparallel rewriting logic, such that � �=E2 �0.Proof The proof can be found in Lemma 2.6 (and Lemma 3.6) of [Mes92]. Anyway,it is quite straightforward, proceeding by induction on the last rule applied. Let us justconsider the sequent f(�1; : : : ; �n) : f(t1; : : : ; tn)! f(s1; : : : ; sn), such that Congruence isthe last rule applied; by induction, each �i can be decomposed in a �nite chain of one-stepsequents �1i � : : : ��kii : then �0 = f(�11; t2 : : : ; tn) � f(�21; t2; : : : ; tn) � : : : � f(s1; : : : ; sn�1; �knn )



5.2. CONSISTENCY BETWEEN ABSTRACT SEMANTICS 69is one of the possible many-steps proof terms corresponding to f(�1; : : : ; �n), and �0 =E2f(�1; : : : ; �n).An inspection of the proof of Proposition 5.7 shows that the following result holds.Proposition 5.9 (Correspondence between Abstract Models, II) Let R be thetrs h�; L; Ri. Then for each t 2 T� there is a one-to-one correspondence between thefamilies of disjoint equivalent derivations originating from t, and the families of abstractat sequents with source t entailed by R.This is proved showing that the functions de�ned in Proposition 5.3 preserve theequivalences (as just done in Proposition 5.7), and then using the following result.Proposition 5.10 (Equivalence of Rewriting Logics, II) Let R be a trs: it entailsa sequent � : t! s in at rewriting logic i� it entails a many-steps sequent �0 : t! s indisjoint rewriting logic, such that � �=E1 �0.



70 CHAPTER 5. CONSISTENCY WITH FINITARY REWRITING



Chapter 6On Concurrent Rewriting
In this chapter we focus our attention on the concurrent aspects of the semantical modelsfor the reduction mechanism proposed in Chapter 4 and Chapter 5. L�evy introduced per-mutation equivalence in his study of the optimal reduction strategies for �-calculus. As werecalled in the introduction of the thesis, his approach was to discard the usual, syntacticalrepresentation of terms, in order to describe them as suitable graph expressions, where thesharing of subexpressions is explicit: subexpressions that should be \syntactically" copiedin a reduction step are kept shared in the corresponding graphical contraction. In thissetting, a single reduction step (on a graph) can then subsume a long sequence of (single)rewrites, and permutation equivalence equates precisely those sequences of syntacticalrewrites that correspond to the same contraction on graphs.In Section 6.3 we will argue about the adequacy of permutation equivalence in de-scribing graph reduction, showing in particular the kind of problems arising when notorthogonal trs's are taken into account. However, the main focus of the chapter is adiscussion about the adequacy of disjoint and permutation equivalences in describing asuitable concurrent semantics of the reduction mechanism. In the concurrent approach weassume to have a distributed system: a network of (loosely) coupled processors, on whichto implement the reduction process. Moreover, we also assume a minimal data structure,dealing implicitly with a one-node/one-processor architecture, where terms are describedas trees, and we have a tree-like implementation schema. Since we aim at describing thesimultaneous reduction of compatible redexes, it is then necessary to check out that thenotion of compatibility is directly implementable, in the sense that without any furtherassumption on the structure of (the coupling of) the network, the simultaneous executionof two compatible redexes is feasible. In the concurrency area (and in Section 6.1 wewill try to provide some intuitive motivations about that) such a property is considered



72 CHAPTER 6. ON CONCURRENT REWRITINGequivalent to show that the abstract derivation space forms a prime algebraic domain(pad).pad's are a simple, general and well-accepted model to describe the behaviour of con-current, non-deterministic systems. Their acceptance in the concurrency �eld is due totheir tight correspondence with prime event structures (pes's, [Win89]). First introducedin the early Eighties, pes's are partial orders of \events", equipped with a \conict" re-lation. Such structures are very suitable for describing the behaviour of distributed andnon-deterministic computational devices generating instantaneous atomic events, whichcan be causally related or mutually exclusive. The level of abstraction they capture isconsidered as directly reecting that of a possible, concurrent implementation, where eachevent corresponds to a basic action of the underlying machine. To each pes is associateda set of con�gurations: compatible, left-closed subsets of its events. Intuitively, a con�gu-ration corresponds to a speci�c state of the system reached after some computation, andits events are all those generated during that speci�c computation. A fundamental resultdue to Winskel shows that the set of all con�gurations of a pes ordered by set inclusion(its \domain" of con�gurations) forms a pad; moreover, for each pad there is a pes suchthat its domain of con�gurations is isomorphic to the given pad. Thus the use of pad'sor pes's for the description of computational systems is equivalent.Coming back to trs's, both the classes of abstract full and at sequents starting froma given initial term t can be equipped easily with a pre�x pre-ordering: � � � i� thereexists a proof term  such that � �  �= �. In Section 2 we will show that only the pre�xpre-order induced by at entailment is a pad, while that induced by full entailment fails tosatisfy the \distributive property" of pad's. Section 1 just provides a brief introductionto pad's, while Section 3 gives some remarks on the interweaving about the algebraicdescription of terms and the notion of redexes compatibility: a topic we will deal againwith in Chapter 9.6.1 Permutation vs. ConcurrencyIn this section we analyze the algebraic properties of the abstract models we just in-troduced. We open the section introducing Prime Algebraic Domains (pad's for short;see [Win89]). A pad is a partial order verifying some additional properties. The use ofpartial orders in semantics relies on the old idea that a computing machine determinesan ordered space of computations; the richer structure of pad's, however, makes themespecially suited for modeling distributed systems.



6.1. PERMUTATION VS. CONCURRENCY 73De�nition 6.1 (Prime Algebraic Domains) Let D = hD;vi be a po:1. The least upper bound of a set X � D is an element FX such that x � FX forall x 2 X, and such that for all z 2 D, (8x 2 X : x � z) ) FX � z. We writex t y for Ffx; yg.2. Symmetrically, the greatest lower bound of a set X � D is an element uX such thatuX � x for all x 2 X, and such that for all z 2 D, (8x 2 X : z � x) ) z � uX.We write x u y for ufx; yg.3. A directed subset of D is a subset S � D such that for any �nite subset X � Sthere is an element s 2 S such that 8x 2 X : x � s.4. An element x 2 D is �nite if for all directed sets S, x v FS implies that there issome s 2 S such that x v s.5. D is �nitary if for every �nite element x 2 D, the set fy j y v xg is �nite.6. An element x 2 D is complete prime (prime) if for each X � D (each �nite X � D),if FX exists and x v FX, then there exists an y 2 X such that x v y.7. D is prime algebraic if for all x 2 D, x = Ffy v x j y is complete primeg.8. For x; y 2 D, we write x " y (and we say that x and y are compatible) if thereexists a z such that x v z and y v z. We say that X � D is pairwise compatibleif for all x; y 2 X we have x " y.9. A �nitary partial order hD;vi is distributive if, whenever x " y, then we have(x t y) u z = (x u z) t (y u z).10. D is �nitely coherent if it has lub's of �nite, pairwise compatible subsets. D is acoherent domain if it has lub's of arbitrary, pairwise compatible subsets.The following characterization is due to Winskel [Win87].Fact 6.1 Any coherent, �nitary domain D is prime algebraic i� it is distributive.As we remarked in the introduction, whenever the derivation spaces (set of co-initialabstract derivations, for any given term t) of a model form a pad, this can be seen asan implicit con�rmation of the \adequate degree of concurrency" of that model. Given aterm t, we de�ne now formally its derivation space as the subset of cells originating fromit, representing the possible evolutions of the machine with that particular initial state.



74 CHAPTER 6. ON CONCURRENT REWRITINGDe�nition 6.2 (Derivation Spaces) Let R = h�; L; Ri be a trs, and t 2 T�. The fullderivation space L2(t) associated to t is the pre-order hD2(t);v2i, where D2(t) is the classof abstract full proof terms in TR entailed by R with source t, and v2 is the pre-orderingrelation de�ned as � v2 � i� there exists  such that � � �=E2 �. Similarly, we de�ne theat derivation space LS(t) = hDS(t);vSi associated to t, by simply considering abstractat proof terms in the above de�nition, and the set of axioms E1.The ordering relation is obviously well-de�ned. Actually, both LS(t) and L2(t) arepartial orders. The result for the ordering induced by permutation equivalence was shownin [Bou85]; for disjoint equivalence we refer the reader to next section. Let us nowrestate the previous de�nitions in categorical terms (thanks to the correspondence betweenalgebraic and categorical models).De�nition 6.3 (Categorical Derivation Spaces) Let R = h�; L; Ri be a trs, andt 2 T�: then t� : 0 ! 1, and let us denote 2-Th(R)[0; 1] by C. The full categoricalderivation space L2C(t) associated to t is the pre-order hD2C(t);v2Ci, where D2C(t) isthe class of objects of the comma-category (t� # C), and v2C is the pre-ordering relationde�ned as d1 v2C d2 i� there exists  in the class of arrows of the comma category, suchthat  : d1 ! d2. Similarly, we de�ne the at categorical derivation space LSC(t) =hDSC(t);vSCi associated to t, by simply replacing 2-Th(R) with S-Th(R) in the abovede�nition.It turns out that, in general, the derivation spaces induced by 2-categorical modelsfail to satisfy the distributive property of pad's, since the ordering in which rewritesare executed inuences the number of basic steps which are to be performed. This issummarized by a na��ve result of category theory: due to their structure, in a cartesian2-category no notion of length for cells is de�nable [Mit72, Ste92].As for a counterexample to distributivity, let us consider the trs W. The derivationspace hD2(f(a));v2i has the following structure (where the ordering ows downwards)f(a)f(d0) d(a)d(a) � g(a; d0) d(a) � g(d0; a)f(d0) � d(b) = d(a) � g(d0; d0) = d(d0; d0)



6.1. PERMUTATION VS. CONCURRENCY 75Let x = d(a) � g(a; d0), y = d(a) � g(d0; a), and z = f(d0): then z = (x t y) u z 6=(x u z) t (y u z) = f(a), hence D2(f(a)) is not distributive.In categorical terms, if we consider the space of computations 2-Th(W), the termf(a) and the associated arrow f(a)� = a; f , the associated derivation space D2C(f(a))has the following structure (where the ordering ows downwards):ida;fd0 �R f a �L da �L d � d0 �R (a� id1); g a �L d � d0 �R (id1 � a); gd0 �R f � b �L d = a �L d � (d0 � d0); gAgain, let x = a �L d � d0 �R (a� id1); g, y = a �L d � d0 �R (id1� a); g, and z = d0 �R f : thenz = (xty)uz 6= (xuz)t(yuz) = ida;f , hence D2C(f(a)) is not distributive. In categoricalterms, this means that to allow together the cartesian structure and the interchange axiomdoes not permit to recover a pad semantics: since the execution ordering inuences in2-categorical models the number of basic steps, it creates a causal link between di�erentprocessors.Let us remember that we consider terms as trees and that the underlying hypothesisabout our implementation schema is that we have a distributed architecture, of the kindone-node/one-processor; each processor \knows" the rewriting rules of the system, theinformation on the actual node it is associated with, and the nodes it is linked with. Then,performing a reduction can be thought of as a two-steps procedure: �rst, the informationon the nodes to be rewritten is updated, then the information of the connected nodesis eventually duplicated or discarded. If we consider as an example the trs W, theexecution of the reduction d(a) : f(a) ! g(a; a) consists of the updating of the nodecontaining f , and the duplication of the node containing a. Now let us consider the proofterm d(d0) = f(d0) � d(b) = d(a) � g(d0; d0). Since the two computations are equated, weassume that our \actual" implementation can perform in parallel the rewriting of f anda. The reduction of f , however, implies that we have to duplicate the information wehave on the node containing a. The parallel execution of the redexes would then imply akind of read-write conict, that could be resolved only if the underlying implementationschema does not rely on the tree-like representation of terms.In the at model the interchange axiom is dropped: the cartesian structure on cellsis preserved, but all the causes of the possible conicts are removed, since redexes that



76 CHAPTER 6. ON CONCURRENT REWRITINGhave overlapping occurrences are not anymore considered independent.Let us talk also about the reason why we avoided to take into account a possibleaxiomatization of the algebra of terms. The methodological reason is that we are assumingto deal with a �xed one-node/one-processor architecture, and that even a simple axiomlike f(x) = g(x) would spoil this view. Moreover, an axiom like f(x) = a would destroythe possibility to recover a pad semantics, even for the at model, since for any rewrite �we would get f(�) = a, equating again computations with di�erent length. In fact, onlythe restriction to linear axioms could work, even if some identities between computationscould hold that are di�cult to relate to the actual behaviour of a possible implementation.As an example, let us consider the rewriting theory with signature ff; a; b; c; eg, axiomf(x; b) = f(c; x), and rules fd : a ! e; d0 : b ! e; d00 : c ! eg. The derivation spaceassociated to t(�;E) = f(a; b) = f(c; a) has the following structure (where the orderingows downwards) f(a; b) = f(c; a)f(a; d0) f(d; b) = f(c; d) f(d00; a)f(d; d0) f(d00; d)The derivation space actually forms a pad, but the ordering suggests a situation withonly three di�erent basic rewrites, di�cult to relate to a feasible concurrent execution ofreductions. In general, this problem arises where there is an overlapping of the left-handside of a rule with an axiom: a discussion of a case study in the setting of permutationequivalence for �-calculus can be found in [LM92], while for a study of the problemsinvolved in turning the axioms into rewriting rules, see [Vir95]. However, if we considerat models just for trs's, we are able to prove the following result.Theorem 6.1 (Flat Derivation Spaces and pad's) LetR = h�; L; Ri be a trs. Thenfor any t 2 T�, the pre-order LS(t) is a coherent, �nitary pad.Next section is devoted to the proof of the theorem. Actually (and it can be provedin an analogous way) also the following theorem holds.Proposition 6.1 (Full Derivation Spaces and pad's) Let R = h�; L; Ri be a lineartrs. For any t 2 T�, the pre-order L2(t) is a coherent, �nitary pad.



6.2. FLAT MODELS FORM PRIME ALGEBRAIC DOMAINS 776.2 Flat Models Form Prime Algebraic DomainsWe start by giving the de�nition of length of a derivation, providing for each derivationthe number of its basic steps.De�nition 6.4 (Length of a Derivation) Let � be an abstract at proof term. Itslength l(t) is de�ned inductively as:� l(f(�1; : : : ; �n)) = Pi l(�i);� l(d(t1; : : : ; tn)) = 1;� l(�1 � �2) = l(�1) + l(�2).The de�nition is well-given, since all the at axioms preserve length. In the case of alinear trs, we could de�ne a notion of length also for full proof terms, simply adding:l(d(�1; : : : ; �n)) = 1 +Xi l(�i):If the trs is linear, the interchange axiom preserves length.We state now some (easy) properties of length. For the sake of readability, in thefollowing we will write � � � for � �=E1 �.Proposition 6.2 (Basic Lengths) Let � be an abstract at proof term. Then the fol-lowing properties hold:� l(�) = 0 i� 9t 2 T�, � � t;� l(�) = 1 i� 9�0 2 TO, � � �0.As a �rst step we prove that the pre-order LS(t) is actually a partial order.Proposition 6.3 (Disjointness implies Partial Order) Let R = h�; L; Ribe a trs,and t 2 T�. Then the at derivation space LS(t) = hD2(t);v2i associated to t is a partialorder.



78 CHAPTER 6. ON CONCURRENT REWRITINGProof It is su�cient to prove that the disjoint equivalence is cancellative; i.e., if ��� � ��and � � , then � � �. From this property immediately follows that vS is a partial or-dering relation.Let � = �1 � �1 � �2 � �2, such that �1 � �2. We proceed by induction on the lengthof �, and on the last axiom applied (i.e., on the length of the proof of the equivalence).We prove only the induction base for l(�) = 2, since for a generic l(�) is analogous.About the length of the derivations, the only relevant case is l(�1) = l(�2) = 1. Forthe induction step on the last rule applied, the only relevant case is the Distributivityaxiom, hence �2 = �1 � t[w1  1], �2 = t[w2  2] � �2 with w1; w2 disjoint occurrencesand l(�1) = l(�2) = 0. In the proof of �1 � �1 � �1 � t[w2  2] � t[w1  1] � �2 theDisjoint rule on the same subterms must be used again: on the contrary we would have�1 � t[w2  2] � �2 and �2 � t[w1  1] � �1. And since the axioms preserve length,the result follows.Now let �; � 2 D2(t) such that � v � and � v �. By de�nition there exist �0; � 0 suchthat � � � � �0 � � 0. By the cancellative property t � �0 � � 0, and the thesis follows.Now we start giving the basilar de�nitions to characterize the prime algebraic structureover LS(t).Fact 6.2 Let �; � 2 LS(t) be two derivations. They are compatible, and we write � " �,if there exists a derivation  2 LS(t) such that � vS  and � vS .The following result characterizes compatible derivations of length 1.Proposition 6.4 (Compatible Derivations of Length 1) Let �; � 2 LS(t) be twocompatible derivations such that l(�) = l(�) = 1. If � 6� �, then there exists a uniquepair w1; w2 of disjoint occurrences of t and d1; d2 2 � such that � � t[w1  d1(t1; : : : ; tn)],� � t[w2  d2(s1; : : : ; sm)], and � t � = t[w1  d1(t1; : : : ; tn); w2  d2(s1; : : : ; sm)].Proof Since �; � are compatible, then there exist �i; �i such that � = �1 � t[w1  f(si�11 ; �0; sni+1)], � = �1 � t[w2  g(sj�11 ; � 0; smj+1)] (with l(�1) = l(�1) = 0) and � � �2 �� � �2. Now the characterization of �; � follows by induction on the last axiom applied,similarly to the proof of Proposition 6.3. The characterization of � t � is an immediateconsequence.



6.2. FLAT MODELS FORM PRIME ALGEBRAIC DOMAINS 79The following is an immediate consequence of the characterization of compatiblederivations of length 1.Proposition 6.5 (Compatible Set of Derivations of Length 1) Let �; �;  2 LS(t)be pairwise compatible derivations of length 1. Then the lub Ff�; �; g exists.We can generalize the existence of the lub to derivations of arbitrary length.Proposition 6.6 (Compatible Derivations) Let �; � 2 LS(t) be two compatible deriva-tions. Then they have lub , with derivations �1; �2 such that � � �1 � � � �2 �  andl(�1) � l(�); l(�2) � l(�).Proof Let � be the greatest common pre�x of �; �, i.e., such that � � � ��0 and � � � �� 0.We proceed by induction on l = l(�) + l(�0) + l(� 0). The case l = 2 is obvious, due toProposition 6.4. Now, let us assume � � � � �1 � �2, � � � � �1 � �2 with l(�2) = (�2) = 1;then, we have a situation denoted by the following diagram�� �� � �1 � �2 � � � �1 � �2� � �1 � � �1�where we applied the inductive hypothesis to the di�erent computations, and from whichwe infer that �; � have a lub.From the previous result the following proposition can be easily inferred.Proposition 6.7 (Compatible Set of Derivations) Let X � LS(t) be a set of pair-wise compatible derivations. Then the lub FX exists.Proposition 6.8 (glb of Derivations) Let X � LS(t) be a set of derivations: thenthe glb uX exists.



80 CHAPTER 6. ON CONCURRENT REWRITINGFact 6.3 Let � 2 LS(t) be a derivation: it is complete prime if, whenever there arederivations �;  2 LS(t) such that � v � t , then either � v � or � v .We de�ne now a unique predecessor property for derivations, that will be used as analternative characterization of complete primeness.De�nition 6.5 (Unique Predecessor) Let � 2 LS(t) be a derivation. We say thatit has a unique predecessor if, whenever there are derivations �;  2 LS(t) such thatl(�) = l() = l(�)� 1, then � � .Proposition 6.9 (Uniqueness Implies Primeness) Let � 2 LS(t) be a derivation,such that it has a unique predecessor. Then it is a complete prime.Since the converse trivially holds, then a derivation � 2 LS(t) is a complete prime i�it has a unique predecessor. Thanks to this characterization, we can �nally give the proofof our theorem.Proof (of Theorem 6.1). Let us indicate the set f� v � j � complete primeg with P�;we have to show that for all � 2 LS(t) the identity � � FP� holds. If � is completeprime, the thesis is obviously veri�ed. On the contrary, we proceed by induction on theordering relation. The case � = t is immediate. Now let us assume that � = FP�, with� 6= �: by construction � < �, and by induction hypothesis � � FP�. Now we showthat l(�) = l(�)� 1. In fact, if for example l(�) < l(�)� 1, then there would be � suchthat � < � < �, and by induction hypothesis � � FP�: hence, it would follow that� < � � GP� v GP� � �that would imply � � �, absurd. Since � is not a complete prime it has not a uniquepredecessor; then there exists ~� such that ~� < �, l(~�) = l(�) � 1 and ~� 6� �; moreover,by induction hypothesis ~� � FP~�. From this we have that� � � t ~� � GP� tGP~� v GP�t~� � GP� � �that would imply � � �, absurd.



6.3. CARTESIANITY VS. INTERCHANGE 816.3 Cartesianity vs. InterchangeIn this chapter we have analyzed the abstract models presented in Chapter 4 from a con-current point of view, proving that the derivation spaces associated to the at model formprime algebraic domains, that is, a well accepted model for expressing the concurrencyof an abstract formalism. On the contrary, this is not true in general for the derivationspaces of the full model (based on cartesian structure plus interchange axiom).However, we view the at model as too narrow: dropping interchange means limitingthe degree of concurrency expressible by the model in an unacceptable way. For instance,let us consider the trs V = fd(x) : f(x) ! g(x); d0 : a ! bg. The computationscorresponding to d(a); d0 and d0; d(b) : f(a)! g(b) are not equated in the sesqui-categoryS-Th(V). On the other hand, the 2-categorical model fails to generate a pda when non-linear rewriting rules are involved, since for such rules the execution order inuences thenumber of basic steps to be performed. As an example, in the 2-category 2-Th(W) thefollowing derivations with di�erent length are equated
0 abd0 1 r1 2 = 0 ha;aihb;bi2d0 2 = 0 ha;aid0rhb;bid0lha;bi 2 (y)

0 abd0 1 !1 0 = 0 id0 0 (z)where 2d0 = d0 �L r1 = hd0; d0i, d0l = hd0; idbi and d0r = hida; d0i.The cartesian structure on cells allows for \implicit" garbage collection and duplication(as discussed in [Cor96]): these \housekeeping" operations are performed silently, in thesense that the abstract machine corresponding to the model cannot distinguish for instancebetween states where garbage has been already collected, and states where it has not.The situation is well-shown by (y) and (z): it seems evident that models with interchangeaxiom and implicit behaviour on these operations cannot be the basis for a pad semantics.The at solution still keeps these operations silent, while dropping interchange forces themodel to distinguish between derivations di�ering for the order of execution of nestedrewrites.



82 CHAPTER 6. ON CONCURRENT REWRITINGThis discussions is strictly related also to the statement we made in the introductionabout the fact that\the [permutation] equivalence does not describe faithfully the be-haviour of the reduction mechanism over graphs, whenever not-orthogonal rules are takeninto account". Let us consider the trs W, extended with the rule fdn : g(b; x) ! cg.The derivation space associated to f(a) would have the following structure (where theordering ows downwards) f(a)f(d0) d(a)d(a) � g(a; d0) d(a) � g(d0; a)d(d0; d0) d(a) � g(d0; a) � dn(a)with a conict between dn(a) and g(b; d0). From a graph reduction point of view, however,the conict should not happen, since the occurrences of a in g(a; a) should be uni�ed,after performing d(a). Again, this is due to the ambiguous nature of coupling in thecartesian setting, and its reversibility, characterized in the present case by the identitya; �1 = ha; ai. In Chapter 9 we will investigate the case of preserving interchange anddealing with some kind of weak cartesianity. We will take into account s-monoidal theories(partly inspired by [Jac93], on the semantics of linear logic, and [Laf95], on equationalreasoning), making housekeeping explicit in order to algebraically characterize term graphrewriting.Although a detailed discussion about the actual implementability of term rewriting ina way reecting the degree of concurrency of either models goes beyond the scope of thethesis, some further comments are in order. Even if the computations of the 2-categoricalmodel do not form a pad, it does not mean that the model cannot be implemented on aparallel computer, as by the way has been shown by Meseguer's work on the RewritingRule Machine (see [LMR94]). However, if a concurrent machine (one with loosely cou-pled processors) is chosen as target, the results of this paper show that the 2-categorymodel cannot be implemented directly, i.e., by representing operations of processors withevents of a pes having the same domain of computations. Of course the 2-categoricalmodel can be mapped to a concrete, concurrent machine, but the compilation processshould be designed carefully in order to minimize hidden, expensive synchronizations andsequentializations of processors, which are unavoidable according to our results.



Chapter 7Dealing with In�nitary Rewriting
One of (maybe the) assumption of this thesis is that, despite their simplicity, rewritingtheories can be considered a basic paradigm for computational devices: terms are statesof an abstract machine, while rewriting rules are state-transforming functions; in thisframework, computations simply are sequences of rewrites. Usually, however, trs's dealwith �nite terms and �nite computations; although the seminal work on continuous al-gebras by Goguen et al. dates back to the mid-Seventies [ADJ77], the extension of termrewriting to in�nite terms is a subject raised to a certain interest only in recent years,mainly due to the use of graphs to model rewriting. In fact, in term graph rewriting,a �nite, cyclic graph may represent an in�nite term, and a single rewriting step can beequivalent to an in�nite sequence of rewrites (see e.g. [Cor93, DKP91, KK+95]). Themain di�erence among the various proposals presented in the literature concerns the de-scription of such a sequence: i) as the limit of an in�nite, sequential application of therules ([DKP91, KK+94, KK+95], but also [AN80, Bou85]); ii) as the result of a simul-taneous, parallel application of the rules to parts of the term [Cor93, CD96]. These twoviews really are alternative, since they behave di�erently with collapsing rules (such asf(x) ! x). Starting with the work of Boudol [Bou85] in the mid-Eighties, the sequen-tial approach has received further more attention than the other: both these approaches,however, just extend the classical, set-theoretical approach to term rewriting.In this chapter we introduce a new formalism for dealing with in�nitary term rewriting,relying on rewriting logic. In the previous chapters we worked in the �nitary setting, wheresequents represent �nite sequences of rewrites over �nite terms. Here we consider proofterms as elements of a continuous algebra. Since the elements of a continuous algebraform a strict cpo, fully exploiting this structure over proof terms we are able to introducein�nitary rules: whenever there exists a suitable chain of sequents, then we add the



84 CHAPTER 7. DEALING WITH INFINITARY REWRITINGderivation corresponding to its supremum. Therefore, continuous algebras allow us tode�ne a natural extension of rewriting logic we call in�nite rewriting logic. The formalismhas a nice and clean presentation and, even if straightforward, it is quite powerful: indeed,it consistently includes the in�nite parallel term rewriting (iptr) previously proposed in[Cor93], in the sense that for each derivation admissible in iptr there exists a sequententailed in irl with the same source and target.In the �rst section of the chapter we introduce irl (originally presented in our paper[CG95]), proving in Section 2 a result analogous to Proposition 5.4 about its operationalsemantics, showing a one-to-one correspondence between derivations admissible in iptrand (a class of) sequents entailed in irl. In Section 3 we extend instead the functorialsemantics of rewriting logic to the in�nitary case. In Chapter 4 we showed how suitablemodels for a trs R are given by the functor category [2-Th(R)! C] of chosen functorsfrom the Lawvere 2-theory 2-Th(R) to a given 2-category with chosen 2-products C.This notion of model has been proved to be adequate for �nitary rewriting logic whenconsidering the case C = Cat, where Cat is the 2-category of categories, functors andnatural transformations. In this chapter we show that this method lifts smoothly to irl,when considering the sub-2-category Cat(Cpo)S of categories internal to Cpo, provinga soundness and completeness theorem for the in�nitary case.7.1 In�nite Parallel Rewriting LogicIn this section we present our extension of the rewriting logic approach to deal with in�niteterms and in�nitary rewrites. For the basic notion of ordered algebras, and the de�nitionof iptr, we refer to Chapter 2. Note that we are not changing the de�nition of trs: westill assume that our rules are �nite, i.e., that for a given h�; L; Ri, the elements of Rare pairs of terms in T�. We need however to extend the de�nition of proof terms andsequents, in order to take into account in�nitary rewrites.De�nition 7.1 (Continuous Sequents) Let R = h�; L; Ri be a trs, and � = [n�nthe signature satisfying �n = fd j d(x1; : : : ; xn) : l(x1; : : : ; xn) ! r(x1; : : : ; xn) 2 Rg foreach n 2 IlN. A continuous proof term � is a term of CT(�[�[f�g), where \�" is a binaryoperator (we assume that no name-clashing between the various sets of operators occur).A continuous proof term � is one-step if it does not contain the operator \�" (i.e., it is aterm of the algebra CTO = CT(�[�)); it is many steps if � = �1 �: : :��n with 1 � n < ! and�i is one-step for each i 2 f1; : : : ; ng. A continuous sequent is a triple h�; t; si (usually



7.1. INFINITE PARALLEL REWRITING LOGIC 85written as � : t ! s) where � is a continuous proof term and t; s 2 CT�: it is one-step(many steps) if so is �.Now we introduce a natural extension of rewriting logic which allows for the generationof sequents corresponding to in�nite parallel derivations. Since each sequent is composedof three terms which belong (by de�nition) to continuous algebras, the \in�nitary" se-quents we are looking for are obtained by taking the lub's of suitable chains.De�nition 7.2 (In�nite Parallel Rewriting Logic) Let R = h�; L; Ri be a trs. Wesay that R entails the in�nite, parallel sequent � : s ! t if it can be obtained by a �nitenumber of applications of the following rules of deduction:� (Reexivity) ? : ? ! ? ;� (Elementary Instantiation), (Elementary Congruence) and (Transitivity) as in Def-inition 5.3;� (In�nite Parallel Rewriting)�i : ti ! si; �i 2 CTO; �i � �i+1 for i 2 IlNFi �i : Si ti ! Si si :
According to De�nition 7.1, the sequent Fi �i : Si ti ! Si si is also one-step. It is easyto check that the in�nitary rule is well-de�ned: whenever the proof terms of a sequenceof one-step sequents (entailed by a rewriting system) form a chain, then the source andtarget terms form a chain as well, and thus the lub's exist. In fact, sequents themselvescan be equipped with a continuous (partial) algebra structure: the bottom element ish?;?;?i, and so on. We refer the reader to the analogous discussion in Chapter 4.For example, let us consider the trs h�; L; Ri such that � = fa; fg and R has theonly rule d(x) : f(x)! x. The continuous algebra CT� has the following structure (wherethe partial ordering ows upwards):



86 CHAPTER 7. DEALING WITH INFINITARY REWRITINGf 2(a) f!f(a) f(f(?))a f(?)?The class of in�nite, parallel one-step sequents entailed by the trs has instead thefollowing structure (again, the partial ordering ows upwards):d2(f 2(a)) d2(f!)d2(f(a)) d2(f 2(?)) d(f 2(a)) d(f!)d! d2(a) d2(f(?)) d(f(a)) d(f 2(?)) f 2(a) f!d2(?) d(a) d(f(?)) f(a) f 2(?)d(?) a f(?)?The sequent d! : f! ! ? describes the simultaneous reduction of the whole set ofredexes contained in f!. Instead, each dn(f!) : f! ! f! describes the reduction ofthe �rst n redexes of the term, thus the in�nite term (as a whole) is una�ected by therewriting. Note that the family fdn(f!) j n < !g does not form a chain: in general,in�nite sequences of reductions are not de�ned.7.2 Consistency between Operational SemanticsIn order to extend the correspondence between the set-theoretical and the algebraic pre-sentation of parallel rewriting to the in�nite case, we need a pair of technical lemmas. Inthe following, we will say that a sequent is �nitely entailed if in its derivation the In�nite



7.2. CONSISTENCY BETWEEN OPERATIONAL SEMANTICS 87Parallel Rewriting rule is not used1; or, equivalently, if it is a full sequent obtained ex-tending the signature of the trs with a constant ?. The �rst lemma is the analogous ofthe compression lemma for in�nitary term rewriting a l�a Huet-L�evy: it shows that eachin�nite parallel sequent can be obtained with a single application of the In�nite Parallelrule to an !-chain of �nite, one-step sequents.Proposition 7.1 (In�nite Proof Terms are Finitely Generated) Let R be a trs,entailing the (possibly in�nite) one-step sequent � : t! s. Then there exists an !-chainf�i : si ! tigi2IlN of �nitely entailed sequents, such that � = Fi �i, t = Si ti and s = Si si.Proof The class of (in�nite) one-step proof terms coincides with the class of terms of thealgebra CTO. Then, it is enough to show that, for each element � of FTO[f?g, there existsa full sequent of the form � : t ! s; this is easily showed by induction on the structureof proof terms. We already remarked that, whenever two �nite sequents �i : ti ! si areentailed, then �1 � �2 implies t1 � t2 and s1 � s2 (and �1 = �2 implies t1 = t2 ands1 = s2). Combining these two facts, the result holds by a continuity argument, sinceeach term in CTO is equivalent to the lub of a suitable !-chain of elements of FTO.The following results shows that i) the function � de�ned in Proposition 5.4 for left-linear trs's (parametric over �nite terms, and ranging over �nite sets of redexes) actuallypreserves the ordering relation; and ii) an analogous property holds for  .Proposition 7.2 (Redexes and the Ordering over Proof Terms) Let t, s 2 FT�be �nite terms, and �;�0 �nite parallel redexes of t and s, respectively, such that:� t � s and � � �0;� if (w; d) 2 �0 � �, then t=w = ?.Then �t(�) � �s(�0).Proof We proceed by induction on the structure of t and the number of redexes in �0.The base case �0 = ; is immediate. Note that, unless t = ?, there can be no rule d suchthat (�; d) 2 �0 � �.� t = ?. Immediate;1Note that for each �nitely entailed sequent, its components are �nite, while the converse is not true,since !-chains are not strictly increasing



88 CHAPTER 7. DEALING WITH INFINITARY REWRITING� t = f(t1; : : : ; tn). Since t � s, then s = f(s1; : : : ; sn) with ti � si for i = 1 : : : n. Wedistinguish between two cases:{ If there is no rule d such that (�; d) 2 �, then by de�nition�t(�) = f(�t1(�=1); : : : ; �t1(�=n)),and analogously for �s(�0). By construction �=i � �0=i and, whenever (w; d) 2(�0=i)=(�=i), ti=w = ?. Hence by induction �ti(�=i) � �si(�0=i), and thethesis follows.{ If there is a rule d such that (�; d : l ! r) 2 �: then by de�nition there existsubstitutions � = fx1=u1; : : : ; xn=ung and �0 = fx1=v1; : : : ; xn=vng such thatl=� = t, l=�0 = s. Then by the hypothesis ui � vi,�t(�) = d(�u1(�=Ox1(l)); : : : ; �un(�=Oxn(l))),and analogously for �s(�0). By construction �=Oxi(l) � �0=Oxi(l) and, when-ever (w; d) 2 (�0=Oxi(l))=(�=Oxi(l)), ui=w = ?. Hence by induction�ui(�=Oxi(l)) � �vi(�0=Oxi(l)),and the thesis follows.Proposition 7.3 (Proof Terms and the Inclusion of Redexes) Let t, s 2 FT� be�nite terms, and �; �0 �nite one-step sequents of t and s, respectively, such that � � �0(hence, t � s). Then  (�) �  (�0) and, if (w; d) 2  (�0)�  (�), then t=w = ?.Now we are ready to show the relationship between in�nite sequents and in�nite,parallel redexes. We restrict again to non-overlapping, left-linear rules only.Proposition 7.4 (Many-Steps Sequents and In�nite Parallel Derivations) LetR be an orthogonal trs and � be a (possibly in�nite) parallel redex. (1) If t !� s,then there is a one-step proof term �� such that R entails the sequent �� : t! s (usingthe rules of De�nition 7.2). Viceversa, (2) if R entails a one-step sequent � : t! s, thenthere is a (possibly in�nite) parallel redex �� such that t!�� s. As a consequence, thereis a parallel derivation from t to t0 i� R entails a many-steps sequent � : t! t0.Proof We generalize the proof of Proposition 5.3.1. Let � be an in�nite, parallel redex and a chain ftigi2IlN, de�ned according to Def-inition 2.24. Let �ti(�i) = ��i : ti ! si be the one-step sequents associated to�i: according to Proposition 7.2, �ti(�i) � �tj (�j) for i � j. Then the sequentassociated to � simply is �� = Fi ��i : Si ti ! Si si.



7.2. CONSISTENCY BETWEEN OPERATIONAL SEMANTICS 892. Since each one-step sequent is �nitely generate, i.e., is the lub of an appropriate!-chain of �nitely entailed one-step sequents (see Proposition 7.1), we can simplyextend the function de�ned in the proof of Proposition 5.3 with the following case,without loss of generality (Fi �i) = Fi  (�i) for �i 2 FTO[f?g:Thanks to Proposition 7.3, Fi<!  (�i) is a parallel redex. Now, let us considerthe !-chain ftigi2IlN: it satis�es the requirement of De�nition 2.24, and the parallelredex (contained in  (Fi �i)) associated to each ti is exactly  (�i). Then  (Fi �i)is well-de�ned.The following proposition states that we can lift the results about the one-to-onecorrespondence between operational models described in the previous chapter, to thein�nite case.Proposition 7.5 (Equivalence between Operational Models, IV) Let R be theorthogonal trs h�; L; Ri. Then for each t 2 T� there is a one-to-one correspondencebetween the families of in�nite parallel derivations entailed by R originating from t, andthe families of in�nite parallel sequents with source t.Proof It is a routine extension of the proof of Proposition 5.4. We need to take intoaccount also in�nite redexes, checking the in�nitary cases, but restricting our attention,thanks to Proposition 7.1, to in�nite proof terms obtained with only one application ofthe in�nite parallel rule.Now we introduce the full version of in�nite parallel rewriting logic, to which weprovide a suitable categorical model in the next section.De�nition 7.3 (Full In�nite Rewriting Logic) Let R = h�; L; Ri be a trs. We saythat R entails the in�nite sequent � : s ! t if it can be obtained by a �nite numberof applications of the �nitary rules of deduction of in�nite parallel rewriting logic (seeDe�nition 7.2), where the In�nite Parallel Rewriting rule is substituted by the followingone:� (In�nite Rewriting) �i : ti ! si; �i � �i+1 for i 2 IlNFi �i : Si ti ! Si si :



90 CHAPTER 7. DEALING WITH INFINITARY REWRITINGNote that the full version of in�nitary rewriting logic seems to be stronger than itsparallel counterpart. We suspect that there are trs's R such that in�nite sequents � :t ! s have no counterpart in a �nite sequence �1 � : : : � �n : t ! s of in�nite parallelsequents. It is still true that each sequent � : s! t entailed by full in�nite rewriting logiccan be described by an !-chain of �nitely entailed, many-steps proof terms; but there arechains such that the number of occurrences of the \�" operator inside each �nite proofterm is increasing, hence a result analogous to Proposition 5.8 is unlikely to hold.A simple example can be given by considering a trs with cycles, like U = f�(x) :f(x)! g(x); �(x) : g(x)! f(x)g. U entails the family  = Fi i, where the elements areinductively de�ned as 1 = �(?)��(?), 2 = �(�(?)��(?))��(�(?)��(?)) = �(1)��(1)and i = �(i�1) � �(i�1). It is easy to show that  actually forms a !-chain, and thateach sequent describes a sequence of rewrites of increasing length. Graphically, we havethe following:
1 = 8>>><>>>: f g? ? 2 = 8>>>>>>>>>><>>>>>>>>>>:

f g ff g f g f? ? ? ? ?
3 =

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
f g ff g f g ff g f g f g f g f? ? ? ? ? ? ? ? ?Even if in this particular case the system entails also the in�nite, parallel sequent� = �! � �! = Fif�i(?)g � Fif�i(?)g = Fif�i(?) � �i(?)g, this is \intrinsically" di�erentfrom , because � acts exactly once (actually, twice) on each subterm to be reduced, whilewith  the length of the reduction increases with the height of the elements in the chain.



7.3. CONTINUOUS MODELS OF TERM REWRITING 917.3 Continuous Models of Term RewritingIt is worth stressing here in which sense we regard a Cat-model for R as a Set-basedmodel, because this will hint the correct structure for the universe 2-category of Cpo-based models. A 2-functorM: 2-Th(R) ! Cat maps each object of 2-Th(R) (say n)to a categoryM(n); in this category, the objects provide an interpretation to the n-tuplesof terms, while the arrows give an interpretation to the rewrites. SinceM(n) is a (small)category, both its objects and its arrows form a set, by de�nition. ThusM is considereda Set-based model because terms and rewrites are interpreted in a set. By analogy, aCpo-model for R would interpret (tuples of) terms in a small, strict cpo, and rewritesas continuous functions: in such cpo's we could �nd an interpretation also for in�niteterms and for the sequents generated by the in�nitary deduction rules. A model shouldtherefore map each object of 2-Th(R) to a category having more structure, namely astrict cpo of objects and a strict cpo of arrows: i.e., a strict continuous category.De�nition 7.4 (Continuous R-Models) Let R = h�; L; Ri be a trs. A continuousR-model S is a strict continuous category S together with� a �-algebraic structure: for each f 2 �n, a continuous functor fS : Sn ! S;� for each d : s! t 2 R, a continuous natural transformation �S : sS ) tS .A continuous R-homomorphism F : S ! S 0 is a strict continuous functor F : S ! S0preserving the algebraic structure and the rewriting rules. CR-Mod is the category ofcontinuous R-models and continuous R-homomorphisms.A CR-system is then a triple hS; �S; �Si where �S = ffS j f 2 �g is a family of contin-uous functors, and �S = fdS j d 2 Rg is a family of continuous natural transformations.It is easy to show that CR-Mod is reective inside R-Mod. Then, since left-adjointspreserve initiality, there exists a continuous R-system ICR that is initial in CR-Mod,and the following soundness and completeness result holds.Proposition 7.6 (Soundness and Completeness of Continuous R-Systems) LetRbe a rewriting theory: it entails a continuous sequent � : t! s i� there exists a continuousnatural transformation �ICR : tICR ) sICR (and then, i� there exists a continuous naturaltransformation �S : tS ) sS for each continuous R-model S).



92 CHAPTER 7. DEALING WITH INFINITARY REWRITINGProof First we recall that, whenever we have ai � bi objects in S, then �(a1; : : : ; an) ��(b1; : : : ; bn) and F (a1; : : : ; an) � F (b1; : : : ; bn) for any continuous natural transformation� and for any continuous functor F ; hence, also the classes of continuous natural trans-formations and continuous functors comes equipped with a strict cpo structure, that isde�ned pointwise. Moreover, each continuous natural transformation � : Fi Fi ) FiGican be obtained as a suitable !-chain Fi �i, with �i : Fi ) Gi and where Fi; Gi areobtained by completion of suitable functors over IR0 (and R0 is obtained extending thesignature of the equational theory associated to R with the constant ?).Now we proceed by induction, recalling that also each in�nite sequent can actually bedescribed as the lub of an !-chain Fi �i of �nitely entailed ones, relying on the existingcorrespondence between �nite sequents and natural transformations between functorsde�ned over IR0 (see Proposition 4.3). In the case of the sequent � = Fi �i, for example,each �nite sequents �i induces a natural transformation (�i)R0 in IR0 , that can be extendedto a continuous one in ICR, such that �i(a1; : : : ; an) � �i+1(a1; : : : ; an) for all i. Then the!-chain on proof terms induces a suitable continuous natural transformation Fi(�i)ICR,and the result follows.Now, let Cat(Cpo)S be the 2-category such that objects are strict continuous cate-gories, arrows are continuous functors, and 2-cells are continuous natural transformations,and equipped with the intuitive, chosen products structure. Thus we can de�ne the Cpo-based models of a term rewriting system as 2-functors from the Lawvere 2-theory of R toCat(Cpo)S.De�nition 7.5 (Continuous Models of Term Rewriting Systems) LetR be a trs.A Cat(Cpo)-model for R is a chosen cartesian 2-functorM : 2-Th(R)! Cat(Cpo)S,and a model morphism is a strict continuous 2-natural transformation between models.The category Cat(Cpo)-ModR of Cat(Cpo)-models is given by a sub-category of the2-functor category [2�Th(R) ! Cat(Cpo)]: its objects are Cat(Cpo)-models of R,and its arrows are model morphisms.Finally, we are able to state the main result of this section, precisely relating continuousR-models and functorial models.Proposition 7.7 (The Functor Category of Continuous R-models) LetR be a trs.The category of continuous R-models (see De�nition 7.4) is equivalent to the categoryCat(Cpo)-ModRof Cat(Cpo)-models for R.



Chapter 8Typed Rewriting Logic
In the previous chapters we have tried to show the relevance and exibility of the rewritinglogic paradigm. We hope we have made clear why the use of a suitable algebra of proofterms (this way equipping the computations of a system with an algebraic structure) allowsto recover information about the concurrent and spatial structure of a system. However,we always dealt with an unconditional version of the logic, where proof terms are justelements of a term algebra, and sequents are freely generated from a given signature.With the exception of the composition operator, there is no way to express any suitablerestriction over the class of sequents entailed from a given set of deduction rules. This isa main limitation, if we want to take into account in our framework formalisms relyingon the use of side-e�ects in determining the actual behaviour of a given system. In theclassical setting, this aim has been pursued by enriching the structure of the algebra ofterms (taking as an example into account order-sorted theories) or using conditional rules,where the application of a rule is subject to the satisfaction of a suitable equation. This isalso the starting point of conditional rewriting logic [Mes92]; the logic is extended allowingrules with the format d : l ! r if u ! v, where the conditions do not require equalitiesto hold, but the existence of suitable rewrites between terms. The resulting formalism isquite powerful, but to allow such a general format in the conditions makes the reductionmechanism di�cult to be e�ectively implemented. In this chapter we introduce a newformalism, typed rewriting logic, that is able to express some restrictions about the classof sequents to which a given rule can be applied. Di�erently from the more traditionalapproach, however, we assume that the additional information is carried out by typingconditions over proof terms.In Section 1 we introduce typed rewriting logic, while in Section 2 we propose acategorical semantics, similar to the one of classical rewriting logic described in Chapter



94 CHAPTER 8. TYPED REWRITING LOGIC4, but relying on the use of double-categories. Finally, in Section 3 we will recast somewell-known formalisms in our typed logic, in order to sustain the claim of generality andexibility of our paradigm; while in Section 4 we present some preliminary work on theimplementation of strategies for rewriting in typed rewriting logic.8.1 Typed Rewriting Logic: SyntaxThe assumption of typed rewriting logic is that sequents carry information about the typeof the associated reduction. Then a typed sequent is a 4-tuple h�; t; a; si, where � : t! sis an untyped sequent, and a is the type of the sequent itself. Thus, rewrite rules aretuples hd; a1; : : : an; t; a; si, where t and s are respectively source and target, d is the label,a1; : : : ; an are the (input) types needed by the sequents to which we want to apply therule d, and a is the (output) type of the resulting sequent. This enrichment is in linewith the intuition that proof terms are the central objects of the paradigm and, from thispoint of view, it is \analogous" to the extensions of the logic adopted for in�nitary andterm graph rewriting.De�nition 8.1 (Typed Rewriting Theories) Let X be a set of variables. A typedrewriting theory (trt) R (over X) is a tuple h(�; E); A; L;Ri, where (�; E) is an equa-tional signature, L is a set of labels, A is a set of types (with a distinguished element,�), and R is a function R : L ! T�(X) � A� � A � T�(X) such that for all d 2 L, ifR(d) = hl; a1 : : : an; a; ri, then var(r) � var(l) � X, #var(l) = n and l is not a variable:we usually write d : l a�!a1:::an r.The type � means \no information", and it implies that we are not imposing to theunderlying sequents to satisfy any particular requirement.De�nition 8.2 (Proof Terms and Typed Sequents) Let R = h(�; E); A; L;Ribe atrt. Let � = [n�n be the signature containing all the rules d : l ! r 2 R with thecorresponding arity given by the number of variables in d; more precisely, for each n,�n = fd j d(x1; : : : ; xn) : l(x1; : : : ; xn)! r(x1; : : : ; xn) 2 Rg. A proof term � is a term ofthe algebra TR = T�[�[f�g, where \�" is a binary operator (we assume that there are noclashes of names between the various sets of operators). A (typed) sequent is a 4-tupleh�; t; a; si (usually written as � : t a�! s) where � is a proof term, t; s 2 T� and a 2 A�.



8.1. TYPED REWRITING LOGIC: SYNTAX 95Typed sequents then record not only the justi�cation of a given rewrite, but providealso information on the \type" of the reduction step. As for the untyped case, we saythat t rewrites to s via � (with an e�ect a) if the sequent � : t a�! s can be obtained by�nitely many applications of the following rules of deduction.De�nition 8.3 (Typed Rewriting Logic) Let R = h(�; E); A; L;Ri be a trt. Wesay that R entails the typed sequent � : s a�! t if it can be obtained by a �nite numberof applications of the following rules of deduction:� (Instantiation)d : l a�!a1:::an r 2 R; d 2 �n; �i : ti ai�! si for i = 1; : : : ; nd(�1; : : : ; �n) : l(t1; : : : ; tn) a�! r(s1; : : : ; sn) ;� (Congruence) f 2 �n; �i : ti ��! si for i = 1; : : : ; nf(�1; : : : ; �n) : f(t1; : : : ; tn) ��! f(s1; : : : ; sn) ;� (Transitivity) � : s a�! t; � : t b�! u� � � : s ab�! u :where a; b 2 A+ are strings, and ab means string composition.Congruence is de�ned only over sequents with type �; this means that we can correctlycontextualize only sequents whose type carries no additional information. Type � (andthe Congruence rule) provide a notion of idleness for transitions; as for untyped logic, aterm can be rewritten to itself (with a type specifying such a behaviour), only if all thesubterms are themselves idle. If there is no rule d such that its output type is �, thenonly identity sequents can be provided with a context, and the Congruence rule can besubstituted by� (Reexivity) t 2 T�t : t ��! t :



96 CHAPTER 8. TYPED REWRITING LOGICWhenever we want to allow a more general kind of congruence, we need to introducespeci�c rules for each operator f 2 �n and each family f�i : ti ai�! sig for which we askf(�1; : : : ; �n) to be de�ned.Transitivity is the only deduction rule that builds sequences of types. Note that,since the input types for the rewrite rules are elements in A, then both congruence andinstantiation can be applied only to one-step sequents. This is reected in the algebraicsemantics, that is analogous to the one de�ned in Chapter 4 for at rewriting logic.De�nition 8.4 (Abstract Typed Sequents) LetR = h(�; E); A; L;Ri be a typed rewrit-ing theory. An abstract typed sequent entailed by R is an equivalence class of typed se-quents entailed by R modulo the following set E3 of axioms, which are intended to applyto the corresponding proof terms:� (Associativity) �; �;  2 TR� � (� � ) = (� � �) �  ;� (Axiomatizing)t(x1; : : : ; xn) = s(x1; : : : ; xn) 2 E; �i : ti ��! si for i = 1; : : : ; nt(�1; : : : ; �n) = s(�1; : : : ; �n) ;� (Distributivity) f 2 �n; �i : ti ��! si; �i : ui ��! vi for i = 1; : : : ; nf(�1 � �1; : : : ; �n � �n) = f(�1; : : : ; �n) � f(�1; : : : ; �n) ;� (Identity) � : s a�! ts � � = � = � � t :where we implicitly assumed that � is the identity (empty sequence) over A�: i.e., a� =�a = a for each a 2 A�.8.2 Typed Rewriting Logic: Functorial SemanticsIt is not possible to de�ne a notion of R-system for typed rewriting; its de�nition in theuntyped case was due to the particular structure of 2-categories as enriched categories overCat. Instead, it is easy to generalize the functorial approach; it is enough to describe a



8.2. TYPED REWRITING LOGIC: FUNCTORIAL SEMANTICS 97suitable double-category, equivalent to the Lawvere 2-theory de�ned for untyped rewriting.First, note that for any trt R = h(�; E); A; L;Ri, we can de�ne a graph with monoidalstructure AG (informally, a reexive graph G with a graph morphism 
 : G � G ! G),freely generated from the set of actions A; nodes are the (underlined) natural numbers,� : 0! 0 is the identity and a : 1! 1 2 AG for any a 2 A.De�nition 8.5 (From Typed Rewriting Theories to D-Computads) Let R bethe trt h(�; E); A; L;Ri. The associated d-computad Th(R) is the tuple hTh(C); AG; SRi,where SR is the set of d-cells such thatn t(�;E)dRa 1a 2 SR i� d : t a�!a1:::an s 2 Rn s(�;E) 1where a = a1 
 : : :
 an.Again, the existence of a left-adjoint between the category of d-computads with �niteproducts andDFC-Cat is pivotal in de�ning a suitable model for typed rewriting theories;a double-category is freely generated from a d-computad, such that its cells represent(abstract) sequents.De�nition 8.6 (Spaces of Typed Computations) Let R be a trt, and let Th(R)be its associated d-computad. Then the associated Lawvere D-Theory D-Th(R) is thecartesian d-category Fdf (Th(Vd)) with �nite horizontal products.Let us consider the typed rewriting theoryVd = fd : u a�! v; d0(x) : f(x) b�!a g(x); d00(x) : f(x) c�!b f(x)g.The d-computad Th(Vd) has the following set of cells (where, for the sake of readabil-ity, we did not put the subscript on generators):0 udid 1a0 v 1 1 fd0a 1b1 g 1 B1 fd00b 1c1 f 1The only (ground) typed sequents di�erent from identities that are entailed by thetheory are d : u a�! v, d0(d) : f(u) b�! g(v) and d00(d0(d)) : f(f(u)) f�! (g(v)); graphi-cally,



98 CHAPTER 8. TYPED REWRITING LOGIC0 udid 1 fd0a 1b0 v 1 g 1 0 udid 1 fd0a 1 fd00b 1c0 v 1 g 1 f 1The following proposition states the precise relationship, for a typed rewriting theoryR, between cells of the associated Lawvere d-theory, and families of abstract derivations.Proposition 8.1 (Correspondence between Abstract Models, III) LetR be a trt.Then there exists a bijective function � between the set of all abstract typed sequents en-tailed by R and the cells in D-Th(R)[0; 1], such that �(�) : s(�;E) ! t(�;E) i� � : s! t.The proof is along the lines of the equivalent results for the untyped logic. In fact, acell is obtained simply closing with respect to the monoidal operation and the vertical andhorizontal composition. The axioms of double-categories with chosen horizontal productsinduce a one-to-one correspondence with the abstract sequents of the logic. Note howeverthat type � is fundamental in establishing the correspondence, since it o�ers a suitablecounterpart to those cells that are identities of the vertical category.In Chapter 4 we de�ned the class of models for the Lawvere 2-theory and s-theoryassociated to an untyped rewriting theory R as functors to a suitable universe. For typedrewriting logic, it is enough to consider double-categories; the constraints on types havetheir semantical counterpart in the additional structure that double-categories have withrespect to 2-categories.De�nition 8.7 (Models of Lawvere D-Theories) Let C be a cartesian d-category with�nite products. A C-model for the Lawvere d-theory associated to a trt R is a cho-sen d-functor M : D�Th(R) ! C, and a model morphism is a d-natural transfor-mation between models. The category C�ModR of C-models is the d-functor category[D�Th(R) ! C]; its objects are C-models of R, and its arrows are model morphisms.
8.3 An Application in Concurrency TheoryIt is quite common in concurrency theory to deal with formalisms relying on the use ofside-e�ects in determining the actual behaviour of a given system. In this case, usually



8.3. AN APPLICATION IN CONCURRENCY THEORY 99a transition relation is not su�cient anymore to describe their evolution, and this makesquite di�cult to recast them in the framework of (classical) term rewriting. In thissection we provide the reader with two suitable examples, where typed theories are used todescribe process algebras, a well-known example of speci�cation languages, and a recentlyintroduced generalization of this paradigm, context systems.8.3.1 Process Description AlgebrasProcess (Description) Algebras [BK84, Hoa85, Mil89] o�er a constructive way to describeconcurrent systems, considered as structured entities (the agents) interacting by means ofsome synchronization mechanism. They de�ne each system as a term of an algebra overa set of process constructors, building new systems from existing ones, on the assumptionthat algebraic operators represent basic features of a concurrent system. In the followingwe will present one of the better known example of process algebra, the Calculus of Com-municating Systems (ccs), introduced by Milner in the early Eighties [Mil89], restrictingourselves, for the sake of exposition, to the case of �nite ccs.De�nition 8.8 (The Calculus of Communicating Systems) Let Act be a set ofatomic actions, ranged over by �, with a distinguished symbol � and equipped with aninvolutive function � such that � = � . Moreover, let �; �; : : : range over Actnf�g. A ccsprocess is a term freely generated by the following syntaxP ::= nil; �:P; Pn�; P [�]; P1 + P2; P1jjP2where � : Act ! Act is a relabeling function, preserving involution. Usually, we letP;Q;R::: range over the set Proc of processes.In the following, we will indicate as �CCS the signature associated with ccs processes(for example, nil is a constant, � a unary operator for each element in Act, and so on...).Given a process P , its dynamic behaviour can be described in a suitable transition system,along the lines of the so-called sos approach [Plo81], where the transition relation is freelygenerated from a set of labeled inference rules.De�nition 8.9 (Operational Semantics of ccs) The ccs transition system is the re-lation TCCS � Proc� Act� Proc inductively generated from the following set of axiomsand deduction rules



100 CHAPTER 8. TYPED REWRITING LOGIC
�:P ��! P for � 2 Act P ��! QP [�] �(�)�! Q[�] for � relabelingP ��! QPn� ��! Qn� for � 62 f�; �gP ��! QP +R ��! Q P ��! QR + P ��! QP ��! QP jjR ��! QjjR P ��! Q;P 0 ��! Q0P jjP 0 ��! QjjQ0 P ��! QRjjP ��! RjjQwhere P ��! Q means that hP; �;Qi 2 TCCSA process P can execute an action � and become Q if we can inductively construct asequence of rule applications. As an example, to infer that from P = (�:nil+�:nil)jj�:nilwe can deduct P ��! Q = niljj�:nil, three di�erent rules must be taken into account.Moreover, a process P can be rewritten into another if there exists an appropriate chainof one-step reductions P �1�! P1 : : : Pn�1 �n�! Pn.From an operational point of view, then, a process algebra can be faithfully describedby a triple h�; A; Ri, where � is the signature of the algebra of agents, A is the set ofactions and R is the set of deduction rules. There are two di�erences, with respect to termrewriting. First, deduction rules are conditional: you need information on the label of theunderlying transitions, before applying a rule. Moreover, the rewriting steps are alwaysperformed on top; the order in which the rewrites are actually executed is important since,as an example, the correct operational behaviour of the agent P = �:�:nil is expressedsaying that it executes �rst � and then �.Both these features are easily described in the framework of typed rewriting logic.Actually, we will show how to describe a whole class of process algebras sharing a givenformat of the rules, the well-studied case of the De Simone format [DeS85].De�nition 8.10 (Deduction Rules in De Simone format) A process algebra P isin the De Simone format if all its deduction rules have the formPi �i�! Qi for i = 1 : : : nC[P1 : : : Pn] �! D[Q1 : : : Qn]where C;D are process contexts and each process variable appears exactly once in thepremise and at most once in the conclusion of the rule.



8.3. AN APPLICATION IN CONCURRENCY THEORY 101We start noting that process algebras can be considered as a generalization of trs's,where the constraints on labels have a syntactical counterpart in the typing over proofterms, and a semantical counterpart in the additional structure that double-categorieshave with respect to 2-categories.De�nition 8.11 (From Process Algebras to Typed Rewriting Theories) Let Pbe the process algebra h�; A; Ri. Then the associated trt is the tuple h�; A; L;DRi, whereL is an arbitrary set of names, and DR is the set of rules such thatd(x1 : : : xn) : C a�!a1:::an D 2 DR i� Pi ai�! Qi for i = 1 : : : nC[P1 : : : Pn] a�! D[Q1 : : : Qn] 2 R:
The translation is even more clear if we consider the associated d-computad, where thedistinction between process contexts and constraints is stressed by the di�erent dimensionthey act in.De�nition 8.12 (From Process Algebras to D-Computads) Let P be the processalgebra h�; A; Ri. Then the associated d-computad Th(P) is given by hTh(�); AG; SRi,where SR is the set of d-cells such thatn C�daA maA 2 SR i� Pi ai�!Qi for i=1:::nC[P1:::Pn] a�!D[Q1:::Qn] 2 Rn D� mwhere AG is the graph with monoidal structure freely associated to the set of actions A,and aA = (a1)A 
 : : :
 (an)A.As an example, the following d-computad is just an instance of the previous, moregeneral construction.De�nition 8.13 (The ccs D-Computad) The d-computad Th(PCCS) associated toccs is the tuple hTh(�CCS); ActG; SRCCSi, with the following structure:1. ActG is the graph freely associated to Act;2. Th(�CCS) is the Lawvere theory associated to the signature �CCS;



102 CHAPTER 8. TYPED REWRITING LOGIC3. SRCCS is the following set of cells1 �act�id 1�1 id 1 1 �rel�� 1�(�)1 � 11 n�res�� 1� for � 62 f�; �g1 n� 12 +h+�
id 1�2 �0 1 2 ++iid
� 1�2 �1 12 jj��
id 1�2 jj 1 2 jj�id
� 1�2 jj 1 2 jj��
� 1�2 jj 1(where we omitted the subscripts for the sake of readability).
Note again that there is exactly one cell for each rule; some of them (such as act�and rel�) are parametric with respect to the set of actions or to the set of relabelingfunctions, since the corresponding rules are so. The vertical arrow � indicates that the`underlying' process is actually running, outputting the action �. It is the cell act� thatpre�xes an idle process with the action �, and then starts the execution, consuming thatsame action. There are three cells dealing with the parallel operator: � synchronizes tworunning processes, while � and � perform an asynchronous move, and to this end theytake a running and an idle process.As an example of d-cells construction, let us consider the process P = �:�:nil, ex-ecuting sequentially �rst the action �, then the action �. It is not easy to model evensuch a simple agent in term rewriting, since the execution ordering, that is fundamentalfor expressing its behaviour correctly, is di�cult to model in that setting. Instead, thecomputation is described by the double-cell



8.3. AN APPLICATION IN CONCURRENCY THEORY 1030 nilid0 1 �id1 1 �id1 1�0 nilid0 1 �id1 1 id1� 1�0 nil 1 id1 1 id1 1showing the importance of the vertical dimension in expressing the ordering constraints:the process can execute � only if the underlying process is actually idle.Note that the axioms of double-categories impose an equivalence relation over d-cells(i.e., over computations), and then o�er a description that, even if more concrete thanthe one given by the set{theoretical relation entailed by a given transition system, is stillsomewhat \abstract": there are many derivations that are identi�ed, corresponding to\essentially" equivalent ccs derivations. There is an obvious adequacy result, holding forany generic pda, stated by the following theorem.Proposition 8.2 (Correspondence between Models) Let P = h�; A; Ri be a pda.Then the derivation s a�! t is entailed by P i� there exists a cell d in Fdc(Th(P)) with0 sdid 1a0 t 1(where we omitted the subscripts for the sake of readability).8.3.2 Context SystemsContext systems (briey, cs's) have been introduced by Larsen and Xinxin [LX90] as aframework for developing a veri�cation methodology for concurrent systems, providing amodular solution to the problem of characterizing what properties the subcomponents of aprocess must satisfy, in order to infer that the process itself satis�es a given speci�cation.In this setting, \modular" means that the required properties should be decomposable intoconstraints to be veri�ed by each subcomponent. Their proposal is based on an operationalsemantics of contexts. A context is a triple (C; n;m) (also, Cmn ) where C denotes thepiece of the system already designed, taking an n-tuple of subcomponents and makingavailable an m-tuple of parts, so that it can be considered as a partial implementation. Atransduction between contexts is a 4-tuple hCmn ; (a1; : : : ; an); (b1; : : : ; bm); Dmn i; its meaningis that by consuming the actions a1; : : : ; an, the context Cmn produces the actions b1; : : : ; bm



104 CHAPTER 8. TYPED REWRITING LOGICfor an external observer and it changes into Dmn . Transduction subsumes the classical sosapproach, since a sos rule can be considered in most cases as a transduction of the formhC1n; (a1; : : : ; an); b; D1ni. Transductions can be composed both sequentially and in parallel,and it can be proved that, whenever each rule of a sos speci�cation can be described bya transduction, for each derivation possible in the associated transition system there is acorresponding one in the induced context system.De�nition 8.14 (Context Systems) A context system CS is a triple hC; A; Ri whereC is a set of contexts (i.e., of triples (C; n;m) for n;m 2 IlN: briey, Cmn ); A is a set ofactions with a distinguished one �; and R is a set of (labeled) rules (i.e., a set of 4-tupleshCmn ; (a1; : : : ; an); (b1; : : : ; bm); Dmn i for ai; bj 2 A) satisfying hC; a; �; Di 2 R i� C = Dand a = �.We already said that, given a generic hC; (a1; : : : ; an); (b1; : : : ; bm); Di, its implicitmeaning is that by consuming the actions a1; : : : ; an, the context C makes available theactions b1; : : : ; bm and evolves into D. When a component is �, it means that the (internal)process is not involved in the transduction, i.e., it is idle. Two basic operators are de�nedon contexts: composition (given the contexts Cmn and Drm, then also the combined context(C �D)rn is de�ned) and product (given the contexts Cmn and Drs, then also the combinedcontext (C �D)m+rn+s is de�ned).De�nition 8.15 (Operational Semantics of Context Systems) Let CS be thecontext system hC; A; Ri. Then the associated transduction relation is the relation onCmn � An � Am � Dmn for generic n;m and Cmn ; Dmn 2 C containing the tuples in R andclosed with respect to the following rules:� t1 : Cmn b�!a C 0mn ; t2 : Drm c�!b D0rmt1 � t2 : C �D c�!a C 0 �D0 ;� t1 : Cmn b�!a C 0mn ; t2 : Dsr d�!c D0srt1 � t2 : C �D bd�!ac C 0 �D0 ;where ab means string composition. A transduction is just an element C b�!a D of theentailed relation.



8.3. AN APPLICATION IN CONCURRENCY THEORY 105Context systems o�er a framework where the classical, operational semantics of ccscan be easily recovered: each operator induces a context, and each rule of the sos seman-tics has a corresponding rule in the associated context system.De�nition 8.16 (CCS Context System) The context system CSCCS associated to ccsis the tuple hCCCS; Act; RCCSi, with the following structure:1. its set of contexts is (nil; 0; 1) (�; 1; 1) (�; 1; 1)(n�; 1; 1) (+; 2; 1) (jj; 2; 1)(I; 1; 1) (�0; 2; 1) (�1; 2; 1)associating a basic context to each ccs operator (the �rst six) and introducing someauxiliary ones (the latter three);2. its set of actions is that of the basic actions of ccs;3. its set of rules is act� : � ��!� I rel� : � �(�)�!� �res� : n� ��!� n� for � 62 f�; �gh+ : + ��!(�;�) �0 +i : + ��!(�;�) �1� : jj ��!(�;�) jj � : jj ��!(�;�) jj � : jj ��!(�;�) jjproj0 : �0 ��!(�;�) �0 proj1 : �1 ��!(�;�) �1 I : I ��!� I
Auxiliary contexts are needed due to the syntactical nature of transduction entailment.The context systems approach to the dynamic behaviour forces the introduction of therules proj0, proj1 and I, that make actions \oating" outside. Let us consider for instancethe process Q = �:�:nil, and the sequence �:�:nil ��! �:nil ��! nil. From the associated



106 CHAPTER 8. TYPED REWRITING LOGICcontext CQ = nil � � � �, both transductions nil � � � act� : C ��!� D = nil � � � I andnil �act� �I : D ��!� nil �I �I are entailed (where � is the empty string). Note that insteadthere is no need of auxiliary cells in the d-computad (hence, in the typed rewriting logic)associated to ccs, due to the cartesian structure of the horizontal category; action oatingis \automatic", so to say, thanks to the structural axioms. For instance, many di�erentcontexts (such as nil � � � I � � � I, (nil � nil) � proj1 � � � � and nil � � � �) are associatedto the ccs process P = �:�:nil, all of them essentially equivalent. In the Lawvere theoryTh(�CCS), instead, all this contexts are again identi�ed, and the auxiliary rules simplycorrespond to d-cells induced by the cartesian and categorical structure of the space ofcomputations.Now let us consider again the ccs process P = (�:nil + �:nil)jj�:nil. One of itsassociated contexts is CP = ((((nil � �)� (nil � �)) � +)� (nil � �)) � jj, while an entailedtransduction is t : CP ��!� D, where t = ((((nil ��)� (nil � act�)) �+i)� (nil ��)) � � andD = ((((nil � �)� (nil � I)) � �1)� (nil � �)) � jj. In general, for each process P there existmany associated contexts, each of them with the same operational behaviour, but thereis obviously a minimal one we will indicate with (CP ; 0; 1). The following result assuresthat transduction preserves the derivation relation of the transition system.Proposition 8.3 (Transduction as Derivation) Let P be a ccs process: then P ��!Q in the ccs transition system i� a transduction t : CP ��!� D is entailed by the ccscontext system, where D is a context associated to process Q.The proposition can be generalized to any process algebra that can be expressed inthe so-called basic De Simone format: i.e., such that the rules have the formPi �i�! Qi for i = 1 : : : nC[P1 : : : Pn] �! D[Q1 : : : Qn]where C;D are process contexts and each process variable appears exactly once both inthe premise and in the conclusion of the rule.De�nition 8.17 (From Context Systems to D-Computads) Given a context sys-tem CS = hC; A; Ri, the associated d-computad Th(CS) is the tuple hTh(C); AG; SRi,where SR is the set of d-cells such that



8.4. STRATEGIES FOR REWRITING 107n CCrRaA mbA 2 SR i� r : Cmn b�!a Dmn 2 Cn DC mProposition 8.4 (Correspondence between Models) Let CS be a context system.Then the transduction Cmn b�!a Dmn is entailed by CS i� there exists a cell d in UF (CS),such that n Cda mbn D m(where we omitted the subscripts for the sake of readability).8.4 Strategies for RewritingGiven a trs R = h�; L; Ri, a strategy for R is a function T� ! TR, associating toeach term t a subset of the (full) concrete derivation space of t. The idea is to prunethose parts of a derivation space that represent forbidden choices, i.e., to avoid all thosederivations that a programmer does not want to be performed. In this sense, strategiesde�ne \allowed" proof-terms in the same way as types de�ne allowed terms.The easiest example is head-rewriting: our processor may perform a reduction onlyon the top-operator of a given term, that is, the possible redex has the format (�; d)for a given rule d. Given a trs R = h�; L; Ri, to implement such a strategy means toprovide a typed rewriting theory performing just the allowed sequents; in this case, itis simply de�ned as Rh = h�; A; L;Rhi such that A = f�; �g and dh : t ��!� s 2 Rh i�d : t! s 2 R. If we consider the trs W and the term f(a), then only the typed sequentdR(a) : f(a) ��! g(a; a) is allowed, corresponding to the untyped sequent d(a) : f(a) !g(a; a), while the untyped sequent f(d) has no corresponding typed one.Now, more general strategies can be de�ned by appropriate congruence rules. If weconsider a strictly left-most strategy, it means that only the possible reductions on theleft-most operators (i.e., those occurring at a position 1 : : : 1) are executed. Given atrs R = h�; L; Ri, to implement such a strategy we de�ne a typed rewriting theoryRl = h�; A; L;Rti such that A = f�; �g, while for all d : t ! s 2 R and f 2 � then dl :



108 CHAPTER 8. TYPED REWRITING LOGICt ��!� s; fl : f ��!�� f 2 Rl. If we consider again the trsW and the term f(a), then bothderivations f(a) ! g(a; a) ! g(b; a) and f(a) ! f(b) ! g(b; b) can be executed, withcorresponding typed sequents dl(a) � gl(d0; a) : f(a) ���! g(b; a) and fl(d0l) � dl(b) : f(a) ���!g(b; b). Note however that the untyped sequent d(d0) : f(a) ! g(b), corresponding tothe parallel execution of two strictly left-most reductions, can not be executed. Such astrategy could be called strictly parallel left-most, and for each trs h�; L; Ri a suitabletyped rewriting theory is obtained simply adding to the one for strictly left-most the ruledp : t ��!�� s 2 Rp for all d : t! s 2 R.Typed rewriting seems to be the most expressive way of describing strategies, able torecover all the usual notions, either position-based, like leftmost or innermost, or operatorbased, like in OBJ [GK+87]. It may also provide a simple and clear semantics to strategies,which have always been considered as an implementation device and never studied forthemselves.The problem is that, in general, a strategy needs to make negative assumptions onthe derivation spaces of a term, in order to correctly de�ne the \pruning" function. Forexample, the usual left-most strategy executes the reduction occurring at the far leftamong all those that can actually be executed, and this means that it does not necessarilyreduce the left-most operator. In the trs W, both head-rewriting and strictly left-mostprune the whole derivation space of g(b; a), while the left-most selects the only reductiong(b; d0) : g(b; a)! g(b; b), since no reduction can take place in the left-most subterms.A possible solution to this problem lies in computing the complement of the sets of\patterns" that can match a given set of rules, thus expressing the non applicability ofa set of rules only with positive conditions. This is known to be possible for left-linearrules, but the general case should be investigated. From a general point of view, however,di�culties arise due to the simple kind of constraints we used in the typed version ofthe logic. We aimed at providing a formalism as similar as possible to the unconditionalversion of rewriting logic, in order to get a \nice" and \clean" algebraic (categorical)formulation. Our hope is that we will be able to suitable extend the notion of \type", inorder to make typed rewriting logic an useful tool for implementing the reduction processwhen more general constraints are taken into account (see e.g. [KKR90]).8.4.1 Recovering elanelan [Vit94, KKV95] is a high-level language based on rewriting in a many-sorted alge-bra, possibly modulo axioms of associativity and/or commutativity. It has some unique



8.4. STRATEGIES FOR REWRITING 109features like possibilities to describe maps of logics, and what interests us more directly,an original notion of strategies, de�ned by the following language :S := R apply at the head a rule whose label is in R| S1;S2 S1 followed by S2| dont-care(S1; :::; Sn) don't care choice with priority| dont-know(S1; :::; Sn) don't know not determistic choice (backtrack)| iterate(S) apply S any number of times| repeat(S) apply S as much as possibleStrategies are applied only at the top of a term. In order to handle subterms, congru-ence must be made explicit in the side conditions of rules using the where construct, asfor instance[r] f(x) �! g(y) where y := (S)xwhose intuitive meaning is that whenever the rule r is applied, apply recursively the strat-egy S to the argument x.A strategy can either fail or be successful. If at some point no rule can be applied,evaluation is restarted from the previous dont-care or dont-know choice point. In caseof success, a result is output, and evaluation restarts from the previous dont-know choicepoint.Since congruence must always be explicited, a powerful preprocessor allows to writeschemes of rules like congruence for any operator :Strategy S = dont-care(cong)For each symbol f with arity n,[cong] f(x1; :::; xn) �! f(y1; :::; yn) where y1 := (S)x1...yn := (S)xnThen, for instance, a parallel outer-most strategy for a set R of rules would be describedjust using a single expression:S := dont-care(R; cong);



110 CHAPTER 8. TYPED REWRITING LOGICThere is an obvious problem of non termination, because congruence can always beapplied. The ad-hoc solution, though not very satisfying aesthetically, is to add a rulerewriting the top of a term with a side condition :x �! y where y := (S)x if y 6= xComing back to typed proof terms, only part of the full power of elan can be recoveredusing typed rewriting logic. The problem is, as usual, linked with the possibility ofnegative premises, that are presented in the implementation of the dont-care and repeatstrategy operators. If we assume not to deal with such a strategy, however, it is easy tosee that we can get typed rules where labels on the arrows correspond to properties to beveri�ed, likef(x) S1�!S2 g(y)for S1 := r[r] f(x) �! g(y) where y := (S2) xWe are currently trying to recover a precise correspondence between typed rewritingtheories and elan, looking for suitable extensions of typed rewriting logic that could stillbe equipped both with an algebraic and a categorical semantics.



Chapter 9Further Work: On Term GraphRewritingWe can say that our thesis has pursued a two-fold aim. First, we reviewed the classicalapproach to term rewriting and, via rewriting logic, we studied the algebraic propertiesof the set-theoretical semantics. Along this line, we investigated some categorical models,in order to get some suggestions about the �ne structure of a possible concurrent imple-mentation. At the same time, we remarked the relevance of term rewriting as a basiccomputational paradigm and, to this purpose, we introduced (usually via suitable exten-sions of rewriting logic) formalisms to deal with in�nite computations and side-e�ects.In our current work we try to further stretch these intuitions, providing an algebraiccharacterization also for term graph rewriting. The two equivalences on derivations westudied in the thesis rely on di�erent assumptions about the actual implementation of thereduction process. In the case of permutation equivalence, we assume to have a complexdata structure describing graphs, and a sequential machine; with disjoint equivalence weassume instead to have a distributed system, and a one-node/one-processor architecture,where terms are described as trees.The aim of this chapter is to suggest a way to unify the two di�erent views, provid-ing a suitable algebra able to describe term graphs. Starting from there, we are workingon a recasting of the original notion of term graphs rewriting. Term graphs are de�nedin [BE+87] as rooted dag's, i.e., dag's with a distinguished node, which are not reallyrelated with our ranked dag's, as de�ned in Section 9.2. We intend to rephrase suchde�nitions in a way that is essentially equivalent, but more consistent with our formalframework. If our claim about the algebras of term graphs holds, we will be able to easilyrecast in a 2-categorical setting also term graph rewriting. We will then provide an oper-ational description of rewriting that is free of the problems of duplication and garbaging



112 CHAPTER 9. FURTHER WORK: ON TERM GRAPH REWRITINGwe mentioned in Section 6.3, and whose derivation spaces should form prime algebraic do-mains; i.e., providing a concurrent semantics where also \garbaged reductions" are takeninto account (in the vein of [Cor93], and di�erently from [KK+93]).9.1 S-Monoidal TheoriesGiven a signature �, the relevant property of the algebraic theory Th(�) is that arrowsfrom m to n are in one-to-one correspondence with n-tuple of terms of the free �-algebrawith at most m variables. Each arrow t�: n ! 1 identi�es a �-term t with variablesamong x1,...,xn; an arrow n ! m is a m-tuple of �-terms with n variables, and arrowcomposition is term substitution. The theory can be regarded as an alternative presenta-tion of a signature. Indeed, the additional structure it contains (besides the operators ofthe signature) is generated in a completely free way, so, in a sense, it does not add \infor-mation" to the original signature. On this section we introduce s-monoidal theories: theyrepresent an original generalization of Lawvere theories (potentially more general thanthe one proposed in [Pfe74], from which we borrowed the name and some intuitions), andthey have bene�ted from a careful look at [Laf95, Jac93].De�nition 9.1 (S-Monoidal Theories) Given a signature �, the associated s-monoidaltheory is the s-monoidal category S-Th(�), freely generated from the graph with pairingG� such that� its objects are underlined natural numbers: 0 is the identity element and pairing isde�ned as n
m = n +m;� for every operator f 2 �n, there is a basic arrow f� : n! 1.Note that, since we have a very particular structure on objects, we can also de�ne thearrows as those generated by the following inference rules:(generators) f 2 �nf� : n! 1(composition) s : n! m; t : m! ks; t : n! k (sum) s : n! m; t : n0 ! m0s
 t : n+ n0 ! m+m0(identities) id1 : 1! 1 (permutation) �1;1 : 2! 2(duplicator) r1 : 1! 2 (discharger) !1 : 1! 0



9.2. SOME RESULTS ON TERM GRAPHS 113and satisfying the intuitive axioms. Even if the additional operators have been de�nedonly for the basic object 1, they can be inductively derived for all the objects startingfrom these basic arrows, interpreting in a constructive way the coherence axioms. Forexample, the duplicator rn for each object n can be de�ned by means of rn�1 and �n�1;1as (rn�1 
r1); (idn�1 
 �n�1;1 
 id1).Whenever we require the transformationr; ! to be natural, we get the algebraic theoryassociated to the signature �. The fact that the arrows from n to 1 are in one-to-onecorrespondence with �-terms whose variables are among x1,...,xn requires that both rand ! are natural. As an example, let us consider a constant c: as a generator, thecorresponding arrow is c� : 0! 1, while, when considering c as an element of T�(x1; x2),then the associated arrow is !2; c� : 2 ! 1; moreover, these arrows are unique, since foreach s : n! m, we have s; !m =!n.The main result we aim at is the proof that an analogous property holds for s-monoidaltheories with respect to term graph algebras: i.e., that the arrows of the hom-set [n;m]are in a one-to-one correspondence with term graphs with a speci�ed m-tuple of accessiblenodes and a speci�ed n-tuple of variables. In the next section we report our preliminaryresults on this topic.9.2 Some Results on Term GraphsWe open the section recalling the basic de�nitions regarding term graphs.De�nition 9.2 (Directed Acyclic Graphs) Let � be a signature, i.e., a ranked set ofoperator symbols, and let arity be the function returning the arity of an operator symbol,i.e., arity(f) = n i� f 2 �n. A labeled graph d (over �) is a triple d = hN; l; si, where Nis a set of nodes, l : N ! � is a partial function called the labeling function, s : N ! N�is a partial function called the successor function, and such that the following conditionsare satis�ed:� dom(l) = dom(s), i.e., labeling and successor functions are de�ned on the samesubset of N ; a node n 2 N is called empty if n 62 dom(l).� for each node n 2 dom(l), arity(l(n)) = length(s(n)), i.e., each non-empty nodehas as many successor nodes as the arity of its label.If s(n) = hn1; : : : ; nki, we say that ni is the i-th successor of n and denote it by s(n)i. Alabeled graph is discrete if all its nodes are empty. A path in d is a sequence



114 CHAPTER 9. FURTHER WORK: ON TERM GRAPH REWRITINGhn0; i0; n1; i1; : : : ; nm�1; im�1; nmiwhere m � 0, n0; : : : ; nm 2 N , i0; : : : ; im�1 2 IlN (the natural numbers), and nk is theik�1-th successor of ik�1 for k 2 f1; : : : ; mg. The length of this path is m; if m = 0, the pathis empty. A cycle is a path like above where n0 = nm.A directed acyclic graph (over �), shortly dag, is a labeled graph having no non-emptycycles. If n 2 N is a node of a dag d = hN; l; si, then by djn we denote the sub-dag of drooted at n, de�ned in the obvious way. For a dag d we shall often denote its componentsby N(d), ld and sd, respectively.In order to provide a suitable abstraction of the too concrete notion of dag, we de�nethe notion of morphism between dag's.De�nition 9.3 (dag Morphisms and the Category Dag�) Let d, d0 be dag's. A(dag) morphism f : d ! d0 is a function f : N(d) ! N(d0) that preserves labeling andsuccessors, i.e., such that for each non-empty node n 2 N(d), ld0(f(n)) = ld(n), andsd0(f(n))i = f(sd(n)i) for each i 2 f1; : : : ; arity(ld(n))g.Directed acyclic graphs over � and dag morphisms clearly form a category that willbe denoted Dag�.Now we introduce an (original) generalization of the notion of dag, that is suited todescribe graphs with multiple roots. Then, we will de�ne a term graph as an equivalenceclass over such a generalization. In the following, for each i 2 IlN we shall denote by i theset i = f1; : : : ; ig (thus 0 = ;).De�nition 9.4 (Ranked dag's and Term Graphs) An (i; j)-ranked dag (or also, adag of rank (i; j)) is a triple g = hr; d; vi, where d is a dag with exactly j empty nodes,r : i ! N(d) is a function called the root mapping, and v : j ! N(d) is a bijectionbetween j and the empty nodes of d, called the variable mapping. Node r(k) is called thek-th root of d, and v(k) is called the k-th variable of d, for each admissible i.Two (i; j)-ranked dag's g = hr; d; vi and g0 = hr0; d0; v0i are isomorphic if there existsa ranked dag isomorphism � : g ! g0, i.e., a dag isomorphism � : d ! d0 such that� � r = r0 and � � v = v0. A (i; j)-ranked term graph G (or with rank (i; j)) is anisomorphism class of (i; j)-ranked dag's. We shall often write Gij to recall that G hasrank (i; j).



9.2. SOME RESULTS ON TERM GRAPHS 115We introduce now two operations on ranked term graphs. The composition of two termgraphs is obtained by gluing the variables of the �rst one with the roots of the secondone, and it is de�ned only if their number is equal. The union instead is always de�ned,and it is a sort of disjoint union where roots and variables are suitably renumbered.De�nition 9.5 (Composition of Ranked Term Graphs) Let Gij = [hr; d; vi], G0jk =[hr0; d0; v0i] be two ranked term graphs. Their composition is the ranked term graph H ik =G0jk � Gij de�ned as H ik = [hind � r; d00; ind0 � v0i], where d00; ind : d ! d00 and ind0 : d0 !d00 are obtained as follows. Assuming that d = hN(d); ld; sdi and d0 = hN(d0); ld0; sd0i,we have d00 = h(N(d) ] N(d0))=�; l00; s00i, where ] denotes disjoint union, � is the leastequivalence relation such that v(i) � r0(i) for i 2 j, and l00 and s00 are determined by ldand sd, respectively, for all �-equivalence classes containing only nodes of d, and by ld0and sd0, respectively, for all other classes. Furthermore, the injections ind : d ! d00 andind0 : d0 ! d00 map each node to its �-equivalence class.It is worth stressing that such composition can be characterized elegantly as a pushout,in the sense that hd00; ind; ind0i is a pushout of hv : j ! d; r0 : j ! d0i in Dag� (set j isregarded as a discrete dag). Actually, the pushout of two arrows in category Dag� doesnot always exist. Necessary and su�cient conditions are given in [CR93] for the categoryof jungles, that can be regarded as a hypergraph variant of dag's; indeed the categoriesof jungles and dag's over the same signature are shown to be equivalent in [CM+91], andtherefore the conditions presented in [CR93] also apply, mutatis mutandis, to Dag�. Inparticular, an easy consequence of the results in [CR93] is that the pushout does exist inthe case we are interested in, since morphism v : j ! d is injective and has only emptynodes in the codomain.De�nition 9.6 (Union of Ranked Term Graphs) Let us consider Gij = [hr; d; vi] andG0kl = [hr0; d0; v0i] ranked term graphs. Their union or parallel composition is the termgraph of rank (i + k; j + l) Gij � G0kl = [hr00; d ] d0; v00i], where r00 : i + k ! d ] d0 andv00 : j + l! d ] d0 are de�ned as� r00(x) = ( r(x) if x 2 ir0(x� i) if x 2 fi+ 1; : : : ; i+ kg.� v00(x) = ( v(x) if x 2 jv0(x� i) if x 2 fj + 1; : : : ; j + lg.



116 CHAPTER 9. FURTHER WORK: ON TERM GRAPH REWRITINGIt is easy to check that composition and union of ranked term graphs are associative.Example 9.1 Let us consider the following four term graphs.
G112 g f 123421 12 G21234 h 112 G1 ; G212 g f21 12 h 11 2 G1 �G2

123456
g f21 12 h 1234512

Empty nodes are represented by the natural numbers corresponding to their position inthe list of variables, and are depicted as a vertical sequence on the left; non-empty nodesare represented by their label, from where the edges pointing to the successors leave; thelist of numbers on the right represent pointers to the roots, and a dashed arrow from j toa node indicates that it is the j-th root. For example, the �rst term graph G1 has rank(4; 2), four nodes (two empty, 1 and 2, and two non-empty, f and g), the successors ofg are the variables 2 and 1 (in this order), the successors of f are g and 2, and the fourroots are g, f , 2, and f .These graphical conventions make easy the operation of composition, that can be per-formed by matching the roots of the �rst graph with the variables of the second one, andthen by eliminating them. For example, term graph G1 ; G2 is the composition of G1 andof G2 of rank (1; 4). The last term graph is G1 � G2, the union of G1 and G2, of rank(5; 6).In the rest of this section we will show that every term graph can be constructed,using composition and union, from a small set of atomic term graphs.De�nition 9.7 (Atomic Term Graphs) An atomic term graph is a term graph inffTG j f 2 �g [ fid; �;r; !g, which are depicted in the following
fTG12...j f 112j id1 1 �12 12 r1 12 !1 ;



9.2. SOME RESULTS ON TERM GRAPHS 117Since every node of an atomic term graph is a root or a variable, such term graphs canbe formally de�ned as follows (using, a bit improperly, r; v; s; and l for the root, variable,successor, and labeling functions, respectively):� For each f 2 � with arity(f) = j, fTG has rank (1; j), with l(r(1)) = f , ands(r(1))x = v(x) for each x 2 j.� The term graph id has rank (1; 1), with r(1) = v(1).� The term graph � has rank (2; 2), with r(1) = v(2) and r(2) = v(1).� The term graph r has rank (2; 1), with r(1) = r(2) = v(1).� The term graph ! has rank (0; 1), one empty node, and no roots.Theorem 9.1 (Decomposition of Term Graphs) Every term graph can be obtainedas the value of an expression containing only atomic term graphs as constants and com-position and union as operators.Proof We �rst need to de�ne some auxiliary term graphs using atomic ones, compositionand union. They are shown in the following
idj

123...j 123...j G�jx
1...xx + 1...j

1...xx + 1...j mj
1 123...j r(j)

1...j 1...jj + 1...2 � j f 0TG
12...j f 12...jj + 112j

These arrows are de�ned formally as follows:[Identities] Term graph idj is de�ned as idj = id� : : :� id (j times).[Permutations] For each permutation � over j (i.e., a bijective mapping � : j ! j),G� is the discrete term graph of rank (j; j) such that for all x 2 j, v(x) = r(�(x)).Since every permutation can be obtained by a �nite sequence of exchanges of pairsof adjacent elements, every such term graph can be obtained as the composition ofmore elementary graphs like G�jx. In turn, we have G�jx = idx�1 � �� idj�x�1.



118 CHAPTER 9. FURTHER WORK: ON TERM GRAPH REWRITING[Multiplicators] For each j 2 IlN, term graphmj has rank (1; j). It is de�ned recursivelyas m0 =!; m1 = id;m2 = r, and mj = r ; (id�mj�1) if j > 2.[Duplicators] Term graph r(j) for j 2 IlN+ has rank (2�j; j) and it is de�ned recursivelyas r(1) = r, and r(j) = (r�r(j�1)) ; (id�G�0� idj�1) if j > 1, where �0 is thepermutation on j which maps 1 to j and all other numbers to their predecessors.[Multi-rooted atoms] Term graph f 0TG (for f 2 � and arity(f) = j) is similar to theatomic graph fTG, but all its nodes are roots. It has rank (j + 1; j), and is de�nedas f 0TG = r(j) ; (idj � fTG).[Elementary term graphs] A term graph is elementary is it has rank (j+1; j) for somej 2 IlN, has only one non-empty node which is the j + 1-th root, and for each x 2 j,r(x) = v(x). Every elementary term graph can be obtained as the composition ofsix term graphs which are easily expressed in terms of the above de�ned auxiliarygraphs> Let us consider the following case

G
12345 f213 123456

12345 G0
12345; G1

123456; G2
123456; f123 G3

1234567; G4
123456; G5

123456
showing the elementary graph G and its decomposition. Informally, G3 has theform idk � f 0TG, G2 implements a permutation that puts close to each other thesuccessor nodes of f which are shared in G, G1 is made of r's and identities andglues together such nodes, G4 is made of !'s and identities and \forgets" all nodesthat all glued together by G1, and G0 and G5 are suitable permutation graphs.We prove now the statement by induction on the number of non-empty nodes ofthe term graph. Suppose �rst that G is a discrete term graph of rank (i; j), and letgij = hr; d; vi be a ranked dag in G. Clearly d has exactly j nodes. For each x 2 j, letax = #fy 2 i j r(y) = v(x)g be the number of times the x-th variable of g appears in the



9.2. SOME RESULTS ON TERM GRAPHS 119list of roots. Then we have that G = (ma1 � : : :�maj ) ; G� for a suitable permutation �on i.Now, let G be a term graph of rank (i; j) with at least one non-empty node, and letn be a non empty node such that all its successors are empty: Such a node must exist byacyclicity. Let G0 be the term graph of rank (i; j+1) obtained from G by making the noden empty, and adding it as the j + 1-th variable. Furthermore, let G00 be the elementaryterm graph of rank (j + 1; j) which is the subgraph of G containing all its variables andnode n. It is easy to see that G = G00 ; G0. Then since elementary term graphs canbe constructed from atomic ones, the statement follows by induction hypothesis over G0,since it has one non-empty node less than G.The previous results implies the existence of a full functor S-Th(�)! Dag�. In ourcurrent work we are trying to prove the existence also a suitable faithful functor betweenthe two categories, in order to sustain our claim about the algebraicization of term graphs.
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