
CHAPTER 2

Generalized Cohomology

In the 1950s, several examples of generalized (co)homology theo-
ries were discovered. Each of them has its own geometric origin but
it turns out that they can be expressed as homotopy sets by using
the notion of spectrum. Before we list the axioms for generalized
homology and cohomology, let us take a look at classical examples.

Let A be an Abelian group and consider the ordinary cohomol-
ogy theory with coefficients in A, Hn(X; A). It is well-known that
Hn(X; A) is represented by the Eilenberg-Mac Lane space K(A, n) as
a homotopy set

H̃n(X; A) ∼= [X, K(A, n)]0.

By the definition of the Eilenberg-MacLane space (cf. the last para-
graph of §1.6), we have ΩK(A, n + 1) � K(A, n). This homotopy
equivalence induces the suspension isomorphism of cohomology un-
der the above isomorphism

[X, K(A, n)]0 H̃n(X; A)

[X, ΩK(A, n + 1)]0 H̃n+1(ΣX; A).

[ΣX, K(A, n + 1)]0

��
∼=

��∼=

��
∼=

��������������
∼=

�������������

∼=

Thus ordinary cohomology theory with coefficients in A is represented
by the sequence of spaces {K(A, n)}n≥0 satisfying ΩK(A, n + 1) �
K(A, n).

A sequence of pointed spaces {Xn} together with homotopy equiv-
alences εn : Xn

�−→ ΩXn+1 is called an Ω-spectrum (and the initial
space X0 is called an infinite loop space).

19



20 2. GENERALIZED COHOMOLOGY

K-theory is also represented by an Ω-spectrum.
Consider the set of isomorphism classes of n-dimensional com-

plex vector bundles over a paracompact space X, Vectn(X). We
have a natural bijection between Vectn(X) and the homotopy set
[X,BU (n)] by taking the associated principal U(n)-bundle and by
using the Steenrod classification theorem. While adding the trivial
1-dimensional bundle gives us a map Vectn(X) −→ Vectn+1(X), we
have a map BU (n) −→ BU (n + 1) induced by the injective homo-

morphism U(n) −→ U(n + 1) defined by A �−→
(

A 0
0 1

)
. Thus we

have the following natural map:

[X,BU (n)] −→ [X,BU (n + 1)]

making the following diagram commutative:

Vectn(X) Vectn+1(X)

[X,BU (n)] [X,BU (n + 1)].

��

��

∼=
��

∼=

��

Let us take the limit of this diagram as n → ∞.
Roughly speaking, the limit of Vectn(X) is the (reduced) complex

K-group of X, K̃(X), which can be identified with the homotopy set
[X,BU ] where BU = colimn BU (n). This space BU can be shown
to be an infinite loop space as follows. R. Bott defines a map

ϕn : U(2n)/U(n) × U(n) −→ ΩSU (2n)

by
ϕn(A)(t) = ARt(n)A−1Rt(n)−1,

where 0 ≤ t ≤ 1 and

Rt(n) =
(

eπt
√
−1En 0
0 e−πt

√
−1En

)
.

Since BU � colimn U(2n)/U(n) × U(n), we have a map

ϕ = colim
n

ϕn : BU −→ ΩSU .

Bott proves the famous Bott periodicity theorem, which states that
ϕ is a homotopy equivalence. This theorem, together with the fact
SU � ΩBSU , gives us a homotopy equivalence

BU � ΩSU � Ω2BSU .
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By modifying ϕ, we have the following homotopy equivalence:

BU × Z � ΩU(n) � Ω2(BU × Z) · · ·

and we obtain an Ω-spectrum representing (unreduced) K-theory.

The following construction is a little bit different.
Consider a compact C∞-manifold M of dimension k and its (k−

n)-dimensional compact submanifold V . A framing is an embedding
φ : V ×R

n −→ M with φ(p, 0) = p. The pair (V, φ) is called a framed
submanifold of M . We say framed submanifolds (V0, φ0) and (V1, φ1)
of M are framed cobordant if there exists a framed submanifold (W, ψ)
of M × I with W ∩M ×{0} = V0, W ∩M ×{1} = V1 and ϕ0, ϕ1 are
restrictions of ψ.

A framed submanifold (V, φ) of M defines a map

h = h(V,φ) : M −→ Sn = Dn/∂Dn

as follows:

h(x) =

{
u if x = φ(p, u)(u ∈ IntDn)
∞ if x 	∈ φ(IntDn).

When (V0, φ0) and (V1, φ1) are framed cobordant, it is proved that

h(V0,φ0) � h(V1,φ1)

and we obtain a map from the framed cobordism classes of submani-
folds of codimension n in M to the homotopy set [M, Sn].

This map can be proved to be a bijection by the following argu-
ment: Take a representative f : M −→ Sn of a homotopy class in
[M, Sn]. We can assume that f is C∞ in the neighborhood of f−1(0)
and has 0 as a regular value. Then f−1(0) is a (k − n)-dimensional
submanifold of M with a framing.

The above construction of making a homotopy class in [M, Sn]
out of a framed cobordism class is called the Pontrjagin-Thom con-
struction.

More generally, let V be a (k−n)-dimensional compact subman-
ifold of a compact C∞-manifold M . The tubular neighborhood of
V in M is homeomorphic to the normal bundle ν(V ), which is an
n-dimensional real vector bundle. Letting f : V −→ BO(n) be the
classifying map, we have a bundle map

f̃ : ν(V ) −→ ζn,
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where ζn is the universal bundle over BO(n). Let us denote the Dn-
and Sn−1-bundle associated to ζn by E(ζn) and E0(ζn), respectively,
and define MO(n) = E(ζn)/E0(ζn). This is called the Thom complex
of ζn. We also have E(ν(V )) and E0(ν(V )) for ν(V ) and f̃ induces a
map between associated bundles. Now define

h : M −→ MO(n)

by

h(x) =

{
f̃(x) if x ∈ E(ν(IntDn))
∞ if x 	∈ E(ν(IntDn)),

where ∞ is the point represented by E0(ζn).
The Thom complex of ζn⊕1 can be identified with ΣMO(n), and

the classifying map for ζn ⊕ 1 induces

εn : ΣMO(n) −→ MO(n + 1).

Let us denote the set of cobordism classes of closed �-dimensional
C∞-manifolds by MO�. Recall that any compact C∞-manifold can
be embedded in a Euclidean space of a large dimension and a rep-
resentative V of a cobordism class of MO� can be regarded as V ⊂
R

�+n ⊂ R
�+n ∪ {∞} = S�+n. The Pontrjagin-Thom construction for

this embedding gives us

{[V ] ∈ MO� | V ⊂ S�+n} −→ [S�+n,MO(n)]0

and
MO� −→ colim

n
[S�+n,MO(n)]0,

by taking the limit. MO� can be made into an Abelian group by
taking disjoint union. Thom proves that the above map is an isomor-
phism of Abelian groups by approximating BO(n) by Grassmannian
manifolds and by showing that an element in [S�+n,MO(n)] can be
represented by a map which is of class C∞ on the neighborhood of the
zero section and transversal to the zero section. Thom also studies
the case of orientable manifolds.

Similarly we can define a cobordism relation among the set of
continuous maps from closed �-dimensional C∞-manifolds to a fixed
space X. The set of cobordism classes of such maps is denoted by
MO�(X). Again, the Pontrjagin-Thom construction gives us an iso-
morphism

MO�(X)
∼=−→ colim

n
[S�+n,MO(n) ∧ X+]0.
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This MO∗(X) is an example of generalized homology theory.
As is indicated by this example, a sequence of pointed spaces

{En} together with a sequence of maps {εn : ΣEn −→ En+1} allows
us to define Abelian groups E�(X) = colimn[S�+n, En ∧ X+]0. Such
a sequence E = {En, εn} is called a spectrum. In general, it can
be shown that E∗(X) satisfies the axioms of generalized homology
theory.

It should be noted that the homotopy equivalences εn : En −→
ΩEn+1 of an Ω-spectrum give us maps ε′ : ΣEn −→ En+1, which
make {En, ε′} into a spectrum.

This correspondence between (co)homology theories and spectra
has been a driving force for the efforts to import algebraic structures
appearing in cohomology theories into the world of spectra.

For example, we have a map

MO� × MO�′ −→ MO�+�′ ,

by taking a product of manifolds, which makes MO∗ = ⊕MO� into a
graded ring. On the other hand, the classifying map for the product
bundle ζn × ζm induces

λ : MO(n) ∧ MO(m) −→ MO(n + m).

The ring structure on MO∗ corresponds to λ in the obvious way.
This ring structure has motivated the definition of ring spectrum.
Nowadays, the concept of ring spectrum is replaced by S-algebra and
more highly structured ring spectra. Unfortunately we cannot take
full advantage of these new objects in this book in order to make the
preliminary knowledge as little as possible. Instead, we explain some
of the ideas in Appendix C.

1. Axioms for Generalized Cohomology

In this section, we state a set of axioms for generalized (co)homology
theory on the category of CW-pairs.

A pair (X, A) of a CW-complex X and its subcomplex A is called
a CW-pair. Any CW-complex X can be regarded as a CW-pair (X, ∅)
with A = ∅.

The category of CW-pairs is denoted by CW-pairs. The full
subcategory of pairs of a finite CW-complex and its subcomplex is
denoted by CW-pairsf .



24 2. GENERALIZED COHOMOLOGY

Define a covariant functor

ρ : CW-pairs −→ CW-pairs

by

ρ(X, A) = (A, ∅) = A

ρ(f) = f |A.

Suppose we are given a sequence of contravariant functors

hn : CW-pairs −→ Abels

together with natural transformations

δn : hn ◦ ρ −→ hn+1

for n ∈ Z, where Abels is the category of Abelian groups.
For a morphism f : (X, A) −→ (Y, B) in CW-pairs, we denote

f∗ = hn(f) : hn(Y, B) −→ hn(X, A)

for simplicity and call it the induced homomorphism.
When Eilenberg and Steenrod first axiomatized (ordinary) ho-

mology theory in [ES52], the language of category theory was not
popular and they wrote down the conditions for being a contravari-
ant functor and a natural transformation as follows:

(I) For morphisms f : (X, A) −→ (Y, B) and g : (Y, B) −→
(Z, C) in CW-pairs, we have

hn(g ◦ f) = hn(f) ◦ hn(g),

or (g ◦ f)∗ = f∗ ◦ g∗.
(II) hn(1(X,A)) = 1hn(X,A), or 1∗(X,A) = 1hn(X,A).

(III) For a morphism f : (X, A) −→ (Y, B) in CW-pairs, we
have

δn(Y, B) ◦ hn(f |A) = hn+1(f) ◦ δn(X, A),

or δn ◦ (f |A)∗ = f∗ ◦ δn.
If these data h∗ = {hn, δn}n∈Z satisfy the following conditions,

we say h∗ is a (generalized) cohomology theory:
(IV) (Exactness Axiom) For any object (X, A) in CW-pairs, the

following sequence is exact

. . . −→ hn−1(A) δn−1

−→ hn(X, A)
j∗−→ hn(X)

i∗−→ hn(A) δn

−→ hn+1(X, A) −→ · · · .
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(V) (Homotopy Axiom) If two morphisms f and g in CW are
homotopic, i.e., if there exists a morphism

F : (X × I, A × I) −→ (Y, B)

with f(x) = F (x, 0) and g(x) = F (x, 1), then we have

f∗ = g∗ : hn(Y, B) −→ hn(X, A)

for all n.
(VI) (Excision Axiom) For objects (X, A) and (X, B) in CW-

pairs, the inclusion map k : (A, A ∩ B) −→ (A ∪ B, B)
induces an isomorphism

k∗ : hn(A ∪ B, B) −→ hn(A, A ∩ B)

for all n. Note that (A, A ∩ B) and (A ∪ B, B) are also
objects in CW-pairs.

When (X, A) and (X, B) are objects in CW-pairs, (X; A, B)
is called a triad in CW. When (X, A) and (A, B) are objects in
CW-pairs, (X, A, B) is called a triple in CW.

Theorem 2.1 (Exact sequence for triple). For a triple (X, A, B)
in CW, we have the following exact sequence:

· · · −→ hn−1(A, B) δn−1

−→ hn(X, A)
j∗−→ hn(X, B)

i∗−→ hn(A, B) δn

−→ hn+1(X, A) −→ · · ·
where i and j are inclusion maps.

Theorem 2.2 (Exact sequence for triad). For a triad (X; A, B)
in CW, we have the following exact sequence:

· · · −→ hn−1(A, A ∩ B) ∆−→ hn(X, A ∪ B)
j∗−→ hn(X, B)

i∗−→ hn(A, A ∩ B) ∆−→ hn+1(X, A ∪ B) −→ · · ·
where i and j are inclusion maps and ∆ is defined by the following
composition:

hn−1(A, A ∩ B) ∼= hn−1(A ∪ B, B) δn−1

−→ hn(X, A ∪ B).

Theorem 2.3 (Mayer-Vietoris exact sequence). For a triad
(X; A, B) in CW, we have the following exact sequence:

· · · −→ hn−1(A ∩ B) ∆−→ hn(A ∪ B) α−→ hn(A) ⊕ hn(B)
β−→ hn(A ∩ B) ∆−→ hn+1(A ∪ B) −→ · · ·
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where ∆ is defined by the following composition:

hn−1(A ∩ B) −→ hn(B, A ∩ B) ∼= hn(A ∪ B, A) −→ hn(A ∪ B)

and α, β are defined by α(x) = (j∗A(x), j∗B(x)), β(y, z) = i∗A(y)−i∗B(z),
respectively. The maps iA, iB, jA, jB are inclusion maps described in
the following diagram:

A

A ∩ B A ∪ B

B

���
��

��
��

jA

���������

iA

���
��

��
��

iB

��������� jB

Eilenberg and Steenrod require one more axiom.
(VII) (Dimension Axiom) For n 	= 0, hn(pt) = 0.
When the axioms (I) through (VII) are all satisfied, h∗ is called

an ordinary cohomology theory. h0(pt) is called the coefficient group.
For a generalized cohomology theory h∗(−), the graded Abelian group
h∗(pt) =

⊕
n hn(pt) is called the coefficient group.

While a cohomology theory on CW-pairsf is uniquely charac-
terized by its coefficient group, this is not necessarily the case for
cohomology theories on CW-pairs (see §3).

(Generalized) homology theory is similarly defined:
Suppose we are given a sequence of covariant functors

hn : CW-pairs −→ Abels

together with natural transformations

∂n : hn −→ hn−1 ◦ ρ

for n ∈ Z. The system h∗ = {hn, ∂n}n∈Z is called a (generalized)
homology theory if it satisfies axioms corresponding to (IV), (V) and
(VI). We also have exact sequences for triple and triad for generalized
homology theory. The Mayer-Vietoris sequence also exists.

2. Reduced Cohomology

A based CW-complex is an object (X, x0) in CW-pairs where
x0 is a point in X(0). The full subcategory of based CW-complexes
is denoted by CW0. Note that morphisms and homotopies in CW0
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are those that preserve base points. The full subcategory of based
finite CW-complexes is denoted by CWf

0 . We sometimes omit the
base points when they are not necessary.

For based spaces (X, x0) and (Y, y0), recall that the wedge sum
is defined by

X ∨ Y = {(x, y) ∈ X × Y | x = x0 or y = y0}.

Its base point is ∗ = (x0, y0). More generally, for a family of objects
{(Xλ, xλ) | λ ∈ Λ} in CW0, we define the wedge sum∨

λ∈Λ

Xλ

as a subspace of
∏

λ∈Λ Xλ. Note that we need to modify the product
topology of

∏
λ∈Λ Xλ in order to make it into a CW-complex.

For an object (X, A) in CW-pairs, (X/A, ∗) with ∗ = A/A is
an object of CW0. Thus for (X, x0) and (Y, y0) in CW0, the smash
product

(X ∧ Y, ∗) = (X × Y/X ∨ Y, X ∨ Y/X ∨ Y )

is also an object of CW0. Note that the smash product of (X1, x
(1)
0 ),

· · · , (Xn, x
(n)
0 ) is defined to be

(X1 ∧ · · · ∧ Xn, ∗) = ((X1 × · · · × Xn)/W (X1, · · · , Xn), ∗),
where

W (X1, · · · , Xn) = {(x1, · · · , xn) ∈ X1×· · ·×Xn | xi = x
(i)
0 for some i}

is the fat wedge.
For an object X in CW0, ΣX = X ∧ S1 is called the reduced

suspension of X. Σ defines a functor

Σ : CW0 −→ CW0

by Σf = f ∧ 1S1 : ΣX −→ ΣY for a morphism f : X −→ Y . The
functor Σ also restricts to give a functor Σ : CWf

0 −→ CWf
0 .

A reduced cohomology (theory) on CW0 is a sequence of con-
travariant functors

h̃n : CW0 −→ Abels

together with natural transformations

σn : h̃n −→ h̃n+1 ◦ Σ

satisfying the following three axioms:
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(IV′) (Exactness Axiom) For objects A ⊂ X in CW0, the follow-
ing sequence is exact:

h̃n(X/A)
p∗

−→ h̃n(X) i∗−→ h̃n(A).

(V′) (Homotopy Axiom) If two morphisms f and g in CW0 are
homotopic, then we have

f∗ = g∗ : h̃n(Y ) −→ h̃n(X)

for all n.
(VI′) (Suspension Axiom) For an object X in CW0,

σn(X) : h̃n(X) −→ h̃n+1(ΣX)

is an isomorphism for all n.

Remark 2.4. The definition of reduced homology theory is anal-
ogous.

In order to relate reduced and unreduced theories, consider the
functor

π : CW-pairs −→ CW0

given by π(X, A) = (X/A, ∗) for objects. It is easy to verify that,
for any reduced cohomology theory h̃∗(−), h̃∗ ◦ π is an unreduced
cohomology theory. On the other hand, the natural transformation
defined by the projection p : (X, A) −→ π(X, A) factors as follows:

p : (X, A) k−→ (X ∪ CA, CA)
q−→ (X/A, ∗),

where k is the inclusion into the bottom of the cone and q is defined
by collapsing the cone. Theorem 1.5 together with the fact that CA
is contractible implies that q is a homotopy equivalence.

For an unreduced cohomology theory h∗(−), k∗ is an isomor-
phism by the Excision Axiom and q∗ is also an isomorphism by the
Homotopy Axiom. Thus we have the following.

Theorem 2.5. For any reduced cohomology theory h̃∗ on CW0,
h∗ = h̃∗ ◦ π is a cohomology theory on CW-pairs. Conversely any
cohomology theory on CW-pairs can be written as h̃∗ ◦ π with a
reduced cohomology h̃∗ on CW0. The same is true for unreduced and
reduced cohomology theories on CW-pairsf and CWf

0 .

We also have an analogous relation between reduced and unre-
duced homology theories. The details are omitted.
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We close this section with the following relation between induced
homomorphisms in ordinary homology theory and generalized coho-
mology theory.

Theorem 2.6. For a morphism f : X −→ Y in CW0, if

f∗ : H∗(X) −→ H∗(Y )

is an isomorphism, then

f∗ : h̃∗(Y ) −→ h̃∗(X)

is also an isomorphism for any reduced cohomology theory h̃∗.
When f is a morphism in CWfinite

0 , we can replace the assump-
tion with the condition

f∗ : H∗(Y ) −→ H∗(X)

is an isomorphism.

Proof. Consider the double suspension of f :

Σ2(f) : Σ2X −→ Σ2Y.

Suppose

f∗ : H∗(X) −→ H∗(Y )

is an isomorphism. Then

Σ2(f)∗ : H∗(Σ2X) −→ H∗(Σ2Y )

is also an isomorphism. Since Σ2X and Σ2Y are 1-connected, Corol-
lary 1.8 and Corollary 1.22 imply that Σ2(f) is a homotopy equiva-
lence. Now the following commutative diagram completes the proof.

h̃n+2(Σ2X) h̃n+2(Σ2Y )

h̃n(X) h̃n(Y )

��Σ
2(f)∗

∼=��

∼= σn+1◦σn

��

∼= σn+1◦σn

�� f∗

�
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3. Uniqueness and Milnor’s Additivity Axiom

In order to compare two cohomology theories h∗ and k∗ on the
category CW-pairs, we need the following definition. A sequence
of natural transformations Ψn : hn −→ kn+s that commutes with
connecting homomorphisms (δn+s◦Ψn = Ψn+1◦δn) is called a natural
transformation (between cohomology theories) of degree s and written
as

Ψ : h∗ −→ k∗+s.

When s = 0, it is simply called a natural transformation (of coho-
mology theories). When h∗ = k∗, it is called a stable cohomology
operation of degree s. Ψ determines a natural transformation be-
tween corresponding reduced cohomology theories

Ψ̃ : h̃∗ −→ k̃∗+s

by Theorem 2.5, which satisfies σn+s ◦ Ψ̃n = Ψ̃n+1 ◦σn. The converse
also holds. The same is true for cohomology theories on CW-pairsf .

The following theorem gives us a criterion to compare two coho-
mology theories on CW-pairsf and can be easily proved by using
the long exact sequences induced by a cellular decomposition.

Theorem 2.7. Let h∗ and k∗ be cohomology theories on CW-
pairsf and Ψ : h∗ −→ k∗+s be a natural transformation of degree s.

If Ψ : h∗(pt) −→ k∗+s(pt) is an isomorphism, then

Ψ(X, A) : h∗(X, A) −→ k∗+s(X, A)

is an isomorphism for all (X, A) in CW-pairsf .

In order to prove an analogous theorem for cohomology theories
on CW-pairs, we need to add the following to our list of axioms for
cohomology theory.
(VIII′) (Additivity Axiom) For a family of objects {Xλ | λ ∈ Λ}

in CW0, let X = ∨Xλ and iλ : Xλ ↪→ X be the inclusion
map. Then∏

i∗λ : h̃∗(X) −→
∏
λ∈Λ

h̃∗(Xλ)

is an isomorphism.
The Additivity Axiom (VIII) for unreduced cohomology theory is

analogously defined by replacing ∨ by
∐

. When a reduced cohomol-
ogy theory h̃∗ satisfies the Additivity Axiom, h∗ = h̃ ◦ π also satisfies
the Additivity Axiom.
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Note that the axioms (I) through (VI) do not imply the isomor-
phism in the Additivity Axiom for a wedge of an infinite number of
summands.

Theorem 2.8. Let h̃∗ be a reduced cohomology theory on CW0

satisfying the Additivity Axiom. Then for an object X in CW0 and
an increasing sequence of subcomplexes

X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ X

with X =
⋃

n Xn, we have the following short exact sequence:

0 −→ lim1

q
h̃n−1(Xq) −→ h̃n(X) −→ lim

q
h̃n(Xq) −→ 0

for all n, where lim1 is the derived functor of lim discussed in Appen-
dix B.1.

The above short exact sequence is called the Milnor exact se-
quence.

For an object X in CW0 we have a filtration defined by its skele-
tons

X(0) ⊂ X(1) ⊂ X(2) ⊂ · · · ⊂
⋃
n

X(n) = X.

Milnor [Mil62] proves the following uniqueness theorem for cohomol-
ogy theories on CW by applying the Additivity Axiom to the quotient
X(p)/X(p−1) =

∨
Sp

α and then using the Milnor exact sequence.

Theorem 2.9. Let h∗ and k∗ be cohomology theories on the cat-
egory CW-pairs and Ψ : h∗ −→ k∗+s be a natural transformation of
degree s.

If Ψ : h∗(pt) −→ k∗+s(pt) is an isomorphism, then

Ψ(X, A) : h∗(X, A) −→ k∗+s(X, A)

is an isomorphism for all (X, A) in CW-pairs.

The following is a sketch of a proof of this theorem: once Ψ(X(p))
is proved to be an isomorphism for all p, the result follows from the
Milnor exact sequence. In order to prove that Ψ(X(p)) is an isomor-
phism, we use the following identification:

(2) hp+q(X(p), X(p−1)) ∼= h̃p+q
(∨

Sp
α

)
∼= Hom(Cp(X), hq(pt)),

where Cp(X) is the free Abelian group generated by p-cells of X.
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Since Ψ(pt) is an isomorphism by the assumption, it follows from
the naturality of the above isomorphism and the induction on p that
Ψ(X(p)) is an isomorphism.

The isomorphism (2) appearing in the above argument is used to
identify the E2-term of the Atiyah-Hirzebruch spectral sequence in
section 2 of Chapter 5.

Given a generalized cohomology theory h∗ defined on CW-pairs
and a set of primes P, since the P-localization of Abelian groups is an
exact functor, the functors (X, A) �−→ hn(X, A)P form a generalized
cohomology theory h∗(−)P together with a natural transformation

LP : h∗(−) −→ h∗(−)P.

If h∗(−) satisfies the Additivity Axiom, so does h∗(−)P.

Theorem 2.10. Let h∗ be a generalized cohomology theory defined
on CW satisfying the Additivity Axiom and P be a set of primes. If
h∗(pt) is P-local, so is h∗(X, A) for any object (X, A) in CW-pairs
and LP is an isomorphism.

The same is true for cohomology theories on CW-pairsf .

Proof. By assumption, LP(pt) : h∗(pt) −→ h∗(pt)P is an iso-
morphism. �

Theorem 2.11. For a morphism f : X −→ Y in CW0, if

f∗ : H∗(X; ZP) −→ H∗(Y ; ZP)

is an isomorphism, then

f∗ : h̃∗(Y ) ⊗ ZP −→ h̃∗(X) ⊗ ZP

is also an isomorphism for any reduced cohomology theory h̃∗ satisfy-
ing the Additivity Axiom.

When f is a morphism in CWf
0 , we can replace the assumption

with the condition on cohomology.

Proof. By assumption,

fP : (Σ2X)P −→ (Σ2Y )P

is a homotopy equivalence. Letting k̃∗(−) = h̃∗(−)P, the result follows
from the fact that k∗(Σ2X) ∼= k∗((Σ2X)P). �
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4. Brown Functor and Representability Theorem

The full subcategory of CW0 (or CWf
0 ) consisting of connected

CW-complexes is denoted by CW∗ (or CWf
∗). Ed Brown studies

contravariant functors from CW∗ to the category of sets satisfying
the “homotopy axiom” [Bro62, Bro65].

A contravariant functor

H : CW∗ −→ Sets

is called a homotopy functor if H(f) = H(g) holds whenever f � g.
An object Y in CW∗ defines a typical example of a homotopy functor
FY by

FY (X) = [X, Y ]0
FY (f) = f∗ : [X ′, Y ]0 −→ [X, Y ]0

for f : X −→ X ′ in CW∗.
A homotopy functor H is said to be representable if there exists

an object Y in CW∗ with a natural isomorphism

FY
∼= H,

in which case we say H is represented by Y .
When H is representable, the following properties are conse-

quences of elementary properties of homotopy sets.

Wedge Axiom: When X = ∨αXα, the map H(iα) : H(X) −→
H(Xα) induced by the inclusion map iα : Xα ↪→ X gives
rise to a bijection∏

α

: H(X) −→
∏
α

H(Xα).

Mayer-Vietoris Axiom: For the inclusion A ↪→ X of a sub-
complex and u ∈ H(X), denote H(i)(u) by u|A.

For subcomplexes A, B ⊂ X, a ∈ H(A) and b ∈ H(B)
with a|A∩B = b|A∩B , there exists c ∈ H(A∪B) with c|A = a
and c|B = b.

Brown proves that a homotopy functor satisfying these “Axioms”
is always representable.

Definition 2.12. A homotopy functor satisfying the above two
axioms is called a Brown functor.
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Since pt ∨pt = pt , we have H(pt)×H(pt) ∼= H(pt) by the Wedge
Axiom. Therefore if H(pt) 	= ∅, H(pt) = {∗}. We assume H(pt) 	= ∅
in the rest of this section.

Theorem 2.13. A Brown functor H has its range in the category
of pointed sets. H(ΣX) is a group and H(ΣkX) is an Abelian group
for k ≥ 2.

For a Brown functor H : CW∗ −→ Sets, Y ∈ CW∗ and an
element u ∈ H(Y ), define a natural transformation

Tu : FY −→ H

by
Tu(X)([f ]) = H(f)(u)

for [f ] ∈ [X, Y ]0 = FY (X). Note that Tu(ΣkX) is a homomorphism
of groups for k ≥ 1. When Tu(Sn) is an isomorphism for n ≥ 1, u
is called a universal element and Y is called a classifying space of H.
Y is unique in the following sense: suppose we have two universal
elements u ∈ H(Y ) and u′ ∈ H(Y ′). Since Tu′ is an isomorphism,
there exists f : Y −→ Y ′ with H(f)(u′) = u. By the definition of uni-
versal element, f is a weak homotopy equivalence, hence a homotopy
equivalence by Corollary 1.8.

Brown proves that every Brown functor has a classifying space.

Theorem 2.14. Any Brown functor H : CW∗ −→ Sets is rep-
resentable.

When the domain is CWf
∗ , we need a few assumptions.

Theorem 2.15. A Brown functor H : CWf
∗ −→ Sets is repre-

sentable if one of the following conditions is satisfied:
(1) H(Sn) is countable for all n ≥ 1;
(2) H has its values in the category of groups.

Remark 2.16. When a Brown functor H : CW∗ −→ Sets takes
its values in the category of groups, its classifying space has a struc-
ture of a homotopy associative Hopf space.

5. Generalized Cohomology as a Representable Functor

Suppose h∗ is a generalized cohomology theory defined on the
category CW-pairs. Then it follows from the Additivity Axiom and
Theorem 2.3 that h̃n is a functor defined on CW∗ satisfying the
Wedge Axiom and the Mayer-Vietoris Axiom of a Brown functor.
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When h∗ is a generalized cohomology theory defined on CW-pairsf ,
h̃n satisfies the condition for Theorem 2.15, since it takes values in the
category of Abelian groups. Hence h̃n satisfies the conditions either
for Theorem 2.14 or Theorem 2.15 and is a representable functor.

Let us consider the case when h∗ is defined on CW-pairs. There
exists E′

n ∈ CW0 and un ∈ h̃n(E′
n) for which

Tun
: FE′

n
−→ h̃n|CW∗

is a natural isomorphism of functors. The suspension isomorphism
σ : h̃n(X) ∼= h̃n+1(ΣX) implies an isomorphism of corresponding
homotopy sets

[X, E′
n]0 ∼= [ΣX, E′

n+1]0 ∼= [X, ΩE′
n+1]0.

The uniqueness of a universal element for Brown functors gives us a
homotopy equivalence (of Hopf spaces)

fn : E′
n −→ Ω0E

′
n+1

where Ω0E
′
n+1 denotes the connected component of ΩE′

n+1 containing
the constant loop.

Definition 2.17. A sequence E = {Ek, εk}k∈Z of objects Ek in
CW0 and morphisms εk : ΣEk −→ Ek+1 is called a spectrum. εk is
called a structure map. If the adjoint map of εk

ε′k : Ek −→ ΩEk+1

is a homotopy equivalence for all k ∈ Z, it is called an Ω-spectrum.

Let us return to the case of spaces E′
n representing a cohomology

theory h̃n. Define En = ΩE′
n+1 and

εn = Ωfn+1 : En = ΩE′
n+1

�−→ ΩΩ0E
′
n+2 = Ω2E′

n+2 = ΩEn+1.

Then En together with the adjoint map εn to ε′n form an Ω-spectrum
{En, εn}.

Theorem 2.18. A generalized cohomology theory h∗ defined on
CW satisfying the Additivity Axiom can be represented by an Ω-
spectrum. The Ω-spectrum representing h∗ is unique up to homotopy
equivalence. A generalized cohomology theory defined on CW-pairsf

can also be represented by an Ω-spectrum.
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On the other hand, we can define a cohomology theory by a spec-
trum as follows. Recall that the homotopy set [ΣX, Y ]0 has a struc-
ture of a group under the multiplication which assigns f, g : ΣX −→
Y to the composition

ΣX
ξ−→ ΣX ∨ ΣX

f∨g−→ Y ∨ Y
∇−→ Y,

where ξ is the map that collapses X × { 1
2} to the base point. Fur-

thermore [Σ2X, Y ]0 becomes an Abelian group.
Given a spectrum E = {En, εn}, define

[X, E]n = colim
k≥1

[ΣkX, En+k]0

via the map

[ΣkX, En+k]0
E−→ [Σk+1X, ΣEn+k]0

εn+k−→ [Σk+1X, En+k+1]0.

Note that the Freudenthal suspension map

E : [ΣX, Y ]0 −→ [Σ2X, ΣY ]0

is a homomorphism of groups and

[X, E]n = colim
k≥1

[ΣkX, En+k]0 = colim
k≥2

[ΣkX, En+k]0

is an Abelian group for all n.
The Freudenthal suspension map also gives us a suspension iso-

morphism

σ : [X, E]n −→ [X, E]n+1

by [f ] �−→ [E(f)].

Theorem 2.19. For a spectrum E, define

Ẽn(X) = [X, E]n

for X ∈ CW0. Then Ẽ∗(−) is a generalized cohomology theory.

Note that when E is an Ω-spectrum, Ẽn(X) can be described as
a homotopy set

Ẽn(X) ∼= [X, En]0.

From this description it is clear that Ẽ∗(−) satisfies the Additivity
Axiom.
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Recall that, for an Abelian group A, K(A, n) denotes the Eilenberg-
Mac Lane space of type (A, n), defined at the end of section 6 of
Chapter 1. It is a CW-complex with

πj(K(A, n)) =

{
0 j 	= n

A j = n.

By the construction, ΩK(A, n + 1) � K(A, n) and we have an Ω-
spectrum with Ek = K(A, k). This is called the Eilenberg-MacLane
spectrum and denoted by HA.

The Dimension Axiom for ordinary cohomology theory H∗(−; A)
implies that the Ω-spectrum representing the reduced cohomology
theory H̃∗(−; A) is the Eilenberg-Mac Lane spectrum.

An object X in CW∗ defines a spectrum by Ek = ΣkX in an
obvious way. This is called the suspension spectrum of X and denoted
by Σ∞X. When X = S0, it is called the sphere spectrum.

Recall from section 5 of Chapter 1 that a connected pointed space
X can be regarded as a subspace of ΩΣX under the Freudenthal
suspension map

E : X −→ ΩΣX.

For an Ω-spectrum E = {Ek, εk}, we have a map going the other way

ξ1 : ΩΣEk
Ωεk−→ ΩEk+1

ε′−1
k−→ Ek,

where ε′k is the adjoint to εk.
More generally, define

ξk : ΩkΣkEn
ΩkΣk−1εn−→ ΩkΣk−1En+1 −→ · · · −→ ΩkEn+k

Ωk−1ε′−1
n+k−1−→ Ωk−1En+k−1 −→ · · · −→ En.

Then we have the following commutative diagram:

Ωk+1Σk+1En En

ΩkΣkEn

��ξk+1

		�����������
ξk

��

��

Recall that the colimit of the left column is denoted by QEn and the
commutativity of the above diagrams induces a well-defined map

ξ : QEn −→ En.
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On the other hand, for a pointed space X, we have a homotopy equiv-
alence

Q(X) � ΩQ(ΣX)

and the sequence Ek = Q(ΣkX) forms an Ω-spectrum. This is the Ω-
spectrum associated with the suspension spectrum of X. In general,
we can construct an Ω-spectrum from a spectrum in a natural way.

This functor Q can be used to obtain a homology theory as fol-
lows. Thanks to the commutativity of colimit and homotopy group,
for a pointed space X, we have

colim
k

πn+k(ΣkX) ∼= πn(QX).

This group is usually denoted by πS
n (X) and is called the n-th stable

homotopy group of X. The fact that the functor πS
∗ (−) satisfies the

axioms for homology theory is mainly due to the homotopy excision
theorem of Blakers-Massey (Theorem 1.31).

Proposition 2.20. The functor πS
∗ (−) is a (reduced) generalized

homology theory.

As we have seen at the beginning of this chapter, (unoriented)
cobordism theory has a similar description. In general, we have the
following theorem.

Theorem 2.21. For a spectrum E, the sequence of functors de-
fined by

Ẽn(X) = colim
k

πn+k(Ek ∧ X)

gives rise to a generalized homology theory.

Another important object related to the Ω-spectrum is infinite
loop space. If there exists an Ω-spectrum E = {Ek, εk} with X = E0,
we say X is an infinite loop space. Ek is called the k-fold delooping
of X.

6. Multiplicative Structure

Let h∗
1, h∗

2 and h∗
3 be generalized cohomology theories on the

category of CW-pairs. Suppose, for each (m, n) ∈ Z × Z and (X, A),
(Y, B) in CW-pairs, we have a homomorphism

µm,n : hm
1 (X, A) ⊗ hn

2 (Y, B) −→ hm+n
3 (X × Y, A × Y ∪ X × B)

which is
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(1) a natural transformation from CW-pairs×CW-pairs to
CW-pairs

(2) and the following diagrams are commutative:

hm
1 (A) ⊗ hn

2 (Y, B) hm+1
1 (X, A) ⊗ hn

2 (Y, B)

hm+n
3 (A × Y, A × B)

hm+n
3 (A × Y ∪ X × B, X × B) hm+n+1

3 ((X, A) × (Y, B))

��
µm,n

��δm
1 ⊗1

��

µm+1,n

��
e

��δm+n
3

hm
1 (X, A) ⊗ hn

2 (B) hm
1 (X, A) ⊗ hn+1

2 (Y, B)

hm+n
3 (X × B, A × B)

hm+n
3 (A × Y ∪ X × B, A × Y ) hm+n+1

3 ((X, A) × (Y, B))

��
µm,n

��(−1)m⊗δn
2

��

µm,n+1

��
e

��δm+n
3

where e is the excision isomorphism.
If the above two conditions are satisfied, the family of natural

transformations µ = {µm,n} is called a pairing of cohomology theories
from h∗

1 and h∗
2 to h∗

3 and denoted by

µ : h∗
1 ⊗ h∗

2 −→ h∗
3.

Furthermore, suppose h∗
1 = h∗

2 = h∗
3 (= h∗). We say h∗ has a

multiplication µ if the following conditions are satisfied:
(3) (Associativity) µ ◦ (1 ⊗ µ) = µ ◦ (µ ⊗ 1)
(4) (Existence of 1) There exists an element 1 ∈ h0(pt) which

satisfies
µ(1 ⊗ x) = µ(x ⊗ 1) = x

for any x ∈ hn(X, A).
Define the switching map

t : hm(X, A) ⊗ hn(Y, B) −→ hn(Y, B) ⊗ hm(X, A)

by t(u ⊗ v) = (−1)mnv ⊗ u and

T : (X, A) × (Y, B) −→ (Y, B) × (X, A)

by T (x, y) = (y, x). If the following condition
(5) (Commutativity) µ = T ∗ ◦ µ ◦ t
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is satisfied µ is said to be commutative. A cohomology theory equipped
with a commutative multiplication µ is called a multiplicative coho-
mology theory.

When h∗ has a multiplication µ, the composition with the map
∆∗ induced by the diagonal map ∆ : X −→ X × X defines a natural
homomorphism

ϕ : hm(X, A) ⊗ hn(X, B) −→ hm+n(X, A ∪ B).

This is called the internal multiplication or the cup product. The
map µ is called the external multiplication and, for x ∈ h∗(X, A) and
y ∈ h∗(Y, B), µ(x ⊗ y) is denoted by x × y and is called the cross
product.

Conversely, the external multiplication can be written as

µ = ϕ ◦ (p∗1 ⊗ p∗2),

where p1 and p2 are projections:

p1 : (X × Y, A × Y ) −→ (X, A),
p2 : (X × Y, X × B) −→ (Y, B).

When A = B = ∅, the direct sum

h∗(X) =
⊕

n

hn(X)

is a graded ring under the internal multiplication and 1 = π∗(1) ∈
h0(X), where π : X −→ pt . If µ is commutative, h∗(X) is a graded
commutative ring. When A = ∅,

h∗(X, B) =
⊕

n

hn(X, B)

is a graded module over this graded ring h∗(X).
We also have multiplications on the corresponding reduced coho-

mology theory. We can also define notions of pairing and multiplica-
tion on spectra which correspond to the pairing and the multiplication
on cohomology theories. See Appendix C for details.

Before we end this section, let us briefly take a look at the rela-
tionship between cohomology theory and homology theory.

As we have seen in §5, a generalized cohomology theory is always
represented by a spectrum E = {En}, and the spectrum E gives
rise to a generalized homology theory as described in Theorem 2.21.
In other words, given a cohomology theory h∗(−), we always have a
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corresponding homology theory h∗(−). Suppose that the cohomology
theory is multiplicative and that the multiplication is induced by maps

Ek ∧ E� −→ Ek+�.

Recall that

h̃p(X) = colim
k

[Σk, Ep+k]0,

h̃q(X) = colim
�

[Sq+�, E� ∧ X]0.

The composition

h̃p(X) ⊗h∗(pt) h̃p+q(X)

= colim
k

[ΣkX, Ep+k]0 ⊗h∗(pt) colim
�

[Sp+q+�, E� ∧ X]

1⊗∆∗−→ colim
k

[ΣkX, Ep+k]0 ⊗h∗(pt) colim
�

[Sp+q+�, E� ∧ X ∧ X]0

−→ colim
k

[ΣkX, Ep+k]0 ⊗h∗(pt) colim
�

[Sp+q+k+�, E� ∧ (ΣkX) ∧ X]0

−→ colim
k,�

[Sp+q+k+�, E� ∧ Ep+k ∧ X]0

−→ colim
k,�

[Sp+q+k+�, Ep+k+� ∧ X]0

∼= colim
k

[Sq+k, Ek ∧ X]0

= h̃q(X)

is bilinear and called the cap product. Following the notation of
ordinary (co)homology theory, it is denoted by

∩ : h̃p(X) ⊗h∗(pt) h̃p+q(X) −→ h̃q(X).


