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Abstract

We use the language of homotopy topoi, as developed by Lurie [17], Rezk [21], Simpson [23], and Töen-

Vezossi [24], in order to provide a common foundation for equivariant homotopy theory and derived algebraic

geometry. In particular, we obtain the categories of G-spaces, for a topological group G, and E-schemes,

for an E∞-ring spectrum E, as full topological subcategories of the homotopy topoi associated to sheaves of

spaces on certain small topological sites. This allows for a particularly elegant construction of the equivariant

elliptic cohomology associated to an oriented elliptic curve A and a compact abelian Lie group G as an

essential geometric morphism of homotopy topoi. It follows that our definition satisfies a conceptually

simpler homotopy-theoretic analogue of the Ginzburg-Kapranov-Vasserot axioms [8], which allows us to

calculate the cohomology of the equivariant G-spectra SV associated to representations V of G.
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Chapter 1

Introduction

1.1 The Equivariant Witten Genus

1.1.1 Genera

Classically, a genus is defined to be a map of graded rings

σ : M∗ → E∗ (1.1)

where M∗ is the coefficient ring of some bordism theory. Typically, E∗ is also the coefficient ring of a

generalized homology theory.

The most general means of producing genera comes from the theory of formal groups. In [20], Quillen

proved that the coefficient ring MU∗ of complex cobordism is isomorphic to the Lazard ring, the ring

(co)representing (commutative, one-dimensional) formal group laws. In other words, the set of formal group

laws over a ring R is in one-to-one correspondence with the set of ring maps MU∗ → R. Moreover, the

MU∗-coalgebra MU∗MU classifies strict isomorphisms of formal group laws.

In the language of schemes this says that the stack M associated to the groupoid scheme

Spec(MU∗,MU∗MU) (1.2)

classifies commutative, one-dimensional formal groups. In practice, one often uses the Landweber exact

functor theorem to check whether or not the functor on spaces defined by the formula

E∗(X) := MU∗(X)⊗MU∗ E∗, (1.3)

classified by a formal group law f : SpecE∗ →M on E∗ is a homology theory. The formal group may then

be recovered from the homology theory E∗(−) as its value on CP∞, for MU∗(CP∞) is the universal formal
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group law.

Given a homology theory E∗ as above, evaluating on a point determines a genus. Conversely, if we

restrict to genera of the form σ : MU∗ → E∗ where σ is Landweber exact, we see that a genus determines a

morphism of generalized homology theories MU∗(X)→ E∗(X).

1.1.2 Elliptic genera and rigidity

Elliptic cohomology has its origins in the study of certain genera that were known to take values in various

rings of modular forms. In light of the above discussion, given such a genus σ : M∗ → E∗, one is naturally

led to the question of whether or not there exists a homology theory E with E∗(∗) ∼= E∗. Such a homology

theory is called an elliptic homology theory, for a variety of overlapping reasons, perhaps the simplest of

which stems from the fact that, roughly speaking, modular forms correspond to sections of tensor powers of

the line bundle

ω := e∗Ω1
A/S , (1.4)

where e : S → A is the identity section of the universal elliptic curve A over the moduli stack of elliptic

curves S.

The Brown Representability Theorem gives a means of representing generalized homology theories in

the homotopy category of spectra, i.e. the stabilization of the homotopy theory of spaces. In particular, an

elliptic spectrum is defined to be an even-periodic ring spectrum E together with an isomorphism of formal

groups

Specπ0E
CP∞ → Â (1.5)

where Â is the formal group of an elliptic curve A. Not only do elliptic spectra exist, but there is a sort-of

universal elliptic spectrum called the spectrum of “topological modular forms” (or “tmf” for short) which,

though not technically an elliptic spectrum, can be thought of as a sheaf of elliptic spectra over the moduli

stack of Weierstrass forms (which contains the moduli stack of elliptic curves as a dense open subspace).

Given a morphism σ : M → E of ring spectra, the corresponding genus σ∗ : M∗ → E∗ on cohomology

rings is said to be rigid if for any compact, connected Lie group G, the associated Borel-equivariant genus

σ∗G : M∗
G := M∗(BG)→ E∗(BG) =: E∗

G (1.6)

factors through the map E∗ → E∗(BG) in cohomology induced by the projection BG→ ∗.

It turns out that rigidity is a very restrictive property; for example, rigidity implies strong multiplicativity,
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which is to say that the genus of the total space of a principal fibration with structure group G is equal to

the product of the genus of the base with the genus of the fiber [?]. It has a number of other important

consequences as well.

The following heuristic argument for establishing the rigidity of the Witten genus gives some motivation

for the construction of a string-orientable equivariant elliptic cohomology theory. Suppose there exists a

genuine G-equivariant elliptic cohomology theory EllG. By this we mean an equivariant cohomology theory

with the following features:

(i) EllG is string-orientable, i.e. if V → X is a String-orientable real (or StringC-orientable complex)

G-equivariant vector bundle over a G-space X, then there is a Thom isomorphism Ell∗G(XV ) ∼= Ell∗G(X+);

(ii) For any G-space X there is a completion isomorphism Ell∗G(X)
bI → Ell∗(XG), where I is the aug-

mentation ideal and XG := EG×G X is the Borel construction on X;

(iii) Ell0G(∗) ∼= Γ(OAG
) for an elliptic curve A over Spec Ell0; here AG is scheme

AG = Hom(Hom(T, TG), A)/WG, (1.7)

where TG is a maximal torus of G and WG = NGTG/TG is the Weyl group of G.

Let M be a string manifold, and consider the commutative diagram

EllG(M) - Ell(MG)

EllG(∗)

p!

?
- Ell(∗G)

p!

?

(1.8)

in which the horizontal maps are the completion homomorphisms and the vertical maps are the Gysin maps

obtained from the Pontrjagin-Thom construction.

By definition, the Borel-equivariant Witten genus of M is p!(1) ∈ Ell(∗G) = Ell(BG). The horizontal

maps are ring maps, so p!(1) comes from a class in EG(∗). But the G-equivariant elliptic cohomology of a

point is isomorphic to the ring of regular functions on AG, and if r denotes the rank of G, then AG is a

quotient of Ar by a subgroup of Σr. Since A itself is projective it is easy to show that each AG is projective,

so the only regular functions are the constants. Hence Ell0G ∼= Ell0, so the Witten genus is rigid.
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1.1.3 The axiomatic approach of Ginzburg-Kapranov-Vasserot

We briefly review the axiomatic approach of Ginzburg-Kapranov-Vasserot [8]. Let A → S be an elliptic

curve, i.e. an abelian group S-scheme whose fiber at every geometric point is an elliptic curve. Let G be a

connected compact Lie group with maximal torus T and Weyl group W , and let AG be the S-scheme

AG := Hom(Hom(T,T), A)/W. (1.9)

Write Coh(AG) for the category of coherent sheaves of OAG
-modules.

According to Ginzburg-Kapranov-Vasserot, a G-equivariant elliptic cohomology theory associated to A

consists contravariant functors ElliG from the category of pairs of finite G-complexes into Coh(AG), together

with natural sheaf morphisms

∂ : ElliG(X)→ Elli+1
G (X,U) (1.10)

for any pair of finite G-complexes (X,U) and multiplication maps

ElliG(X,U)⊗ ElljG(Y, V )→ Elli+j
G (X × Y,X × V

∐
U×V

U × Y ) (1.11)

which are associative, graded commutative and functorial.

The functors ElliG must have the property that any two G-homotopic maps of pairs induce the same

maps on ElliG, and for every pair (X,U) the natural sequence

· · · → ElliG(X,U)→ ElliG(X)→ ElliG(U)→ Elli+1 → · · · (1.12)

is exact. Moreover, the Ell∗ should be even and periodic in the sense that there are natural isomorphisms

Elli−1
G (X,U) ∼= Elli+1

G (X,U)⊗ ω, (1.13)

where ω is the pullback to AG of the normal bundle for the inclusion of the identity section S → A,

Ell2i
G(∗) ∼= ω⊗(−i) and Ell2i−1

G (∗) = 0.

Furthermore, there are axioms relating the functors Elli(−) for different groups. Let ϕ : H → G be a

homomorphism of compact connected Lie groups. Then ϕ induces a restriction map

ϕ∗ : Coh(AG)→ Coh(AH) (1.14)

4



with a right adjoint

ϕ∗ : Coh(AH)→ Coh(AG); (1.15)

the fact that ϕ∗ takes coherent OAH
-modules to coherent OAG

-modules follows from the fact that the in-

duced map AH → AG is proper. On the level of spaces, ϕ induces an induction map ϕ! : SH → SG given by

(−)×H G which is left adjoint to the restriction map ϕ∗ : SG → SH . The Ell∗(−) should satisfy the following

change-of-groups axioms.

(i) Restriction: There exists an Eilenberg-Moore spectral sequence

Ei,j
1 = Liϕ

∗ ◦ ElljG =⇒ Ellj−i
H ◦ ϕ∗, (1.16)

where Liϕ
∗ is the ith left derived functor of the inverse image; in particular, if ϕ is flat (which is the case

when ϕ : H → G is a fibration) then ϕ∗ ◦ ElliG ∼= ElliH ◦ ϕ∗.

(ii) Induction: There exists a natural multiplicative morphism of functors

Tϕ : EllG ◦ ϕ! =⇒ ϕ∗ ◦ EllH (1.17)

from the category of pairs of finite G-complexes to Coh(AG) such that if ϕ is a surjection with kernel K and

Y is a K-free H-complex with quotient map q : Y → Y/K then the composite

p∗ ◦ Tϕ : EllG(ϕ!Y/K)→ ϕ∗EllH(Y/K)→ ϕ∗EllH(Y ) (1.18)

is an isomorphism.

(iii) Künneth: For any G-complex X and H-complex Y , the natural map

π∗GElliG(X)⊗ π∗HElljH(Y )→ Elli+j
G×H(X × Y ), (1.19)

where πG : G×H → G and πH : G×H → H are the projections, is an isomorphism.

Ginzburg-Kapranov-Vasserot go on to conjecture that any elliptic curve A gives rise to a unique equivari-

ant elliptic cohomology theory, natural in A. They add that better formulation of this conjecture would
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involve the Lewis-May-Steinberger category of G-spectra. In other words, there should exist a sheaf FG of

G-spectra on AG such that for any homomorphism ϕ : H → G there is an equivalence

Lϕ∗FG ' FH , (1.20)

where Lϕ∗ is the total derived functor of the inverse image.

We shall see that these axioms are really statements about geometric morphisms of homotopy topoi [17],

[21]. In particular, it is possible to define elliptic cohomology as a map of homotopy topoi and derive the

change-of-group formulas from relations among the geometric morphisms defined by the induction-restriction

adjunction of a group homomorphism.

1.1.4 Equivariant elliptic cohomology via derived algebraic geometry

To make the Ginzburg-Kapranov-Vasserot conjecture precise entails rather a lot of machinery, much of which

we set up in the next two chapters. We give a quick summary here.

Recently there has been quite a bit of work on the subject of derived algebraic geometry. The general

idea is that one ought to be able to construct a category of “derived schemes” by gluing together “affine

derived schemes”. A category of affine derived affine schemes is roughly the opposite category of the cat-

egory of monoids in a closed symmetric monoidal topological (or simplicial) model category together with

a Grothendieck topology on these affine objects. Continuous functors from such a category to another

topological category then admit derived analogues in the usual way. Examples include topological abelian

groups or spectra, in which case the monoids are the topological commutative rings or E∞ ring spectra,

respectively, equipped with one of the standarn topologies (i.e. Zariski, ètale, etc.). The classical example is

that of discrete abelian groups. In this case the monoids are the discrete commutative rings endowed with

the Zariski topology, and one recovers classical scheme theory.

Let us suppose for the moment that we have an algebraic geometry of E∞-ring spectra in which we can

define the notion of a derived elliptic curve A. In particular, we require A to be an abelian group derived

S-scheme, say, where S = SpecE for some elliptic spectrum E. Then it is reasonable to suppose that

we can define AG as above as a starting point in the construction of equivariant elliptic cohomology. The

main point here is that in order to specify a continuous homotopy-colimit preserving functor from G-spaces

to an arbitrary topological category T, it is enough to specify a continuous functor on the full topological

subcategory of G-orbits. This then gives a good candidate for the equivariant elliptic cohomology associated

to the derived elliptic curve A, at least for abelian compact Lie groups G, as follows.
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Any G-orbit is isomorphic to one of the form G/H for a closed subgroup H of G. The functor that sends a

compact connected Lie group G to the derived scheme AG should associate to the closed inclusion i : H → G

the affine derived AG-scheme AH and therefore a coherent OAG
-algebra i∗OAH

. We might hope that there

is a natural topological model structure on the category of quasicoherent OAG
-algebras and consequently on

its opposite category of affine AG-schemes. Then the assignment which takes the closed subgroup H of G to

the affine AG-scheme AH should provide the object function of a covariant functor from G-orbits to affine

AG-schemes.

Provided we can extend this to a continuous functor on the topological category of G-orbits, the theorem

tell us that this extends to a functor on all G-spaces by forming a derived analogue of the left Kan extension

construction. Passing from affine AG-schemes to the opposite category of quasicoherent OAG
-modules, we

obtain a continuous contravariant functor from G-spaces to quasicoherent OAG
-algebras. This extends in

the obvious way to a functor from pairs of G-spaces to quasicoherent OAG
-modules, yielding a candidate for

equivariant elliptic cohomology.

This is essentially the construction we will give. It turns out that one needs an extra bit of information

in order to make this work, namely, Lurie’s notion of an “orientation” on a derived elliptic curve, or, in

the rational case, Greenlees’ notion of a “coordinate divisor” on a rational elliptic curve. Given this, it is

possible to construct equivariant elliptic cohomology theories satisfying a derived version of the Ginzburg-

Kapranov-Vasserot axioms which are actually much simpler to state and not too difficult to prove, provided

the necessary machinery is in place.

1.2 Summary of Results and Preliminary Remarks

1.2.1 Notations and coventions

Throughout this paper we let S denote the usual topological model category of compactly generated Hausdorff

spaces. We think of S as providing an ambient universe in which to carry out our various constructions,

playing the same role in topological category theory as the category of sets does in the ordinary category

theory. This point of view is consistent with the fact that S is the basic homotopy topos, in the sense that all

other homotopy topoi are left-exact localizations of categories of presheaves of spaces on small topological

categories.

We want to model spaces in such a way that the mapping spaces have the correct homotopy type. One

way to do this it to define Map(X,Y ) to be the geometric realization of the simplicial set of maps between

the singular complexes of X and Y . Since the singular complex of a space is always cofibrant and fibrant,
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our mapping spaces are homotopy invariant. Note that composition is strictly associative in S, at least up

to coherent isomorphism, and that S is cartesian closed with respect to this mapping space.

If T is a topological model category then tensors and cotensors of spaces K with objects X of T will

be written K ⊗X and XK , respectively. The space of maps between any pair of objects X,Y of T will be

written Map(X,Y ), and ∗ will denote a terminal object in T.

We remind the reader that there are canonical equivalences

Map(K ⊗X,Y ) ∼= Map(K,Map(X,Y )) ∼= Map(X,Y K), (1.21)

so that in particular the functor K ⊗ (−) : T → S commutes with colimits while the functor (−)K : T → S

commutes with limits. Moreover, we have ∗ ⊗X ∼= X ∼= X∗, since Map(∗,Map(X,Y )) ∼= Map(X,Y ).

If in addition T is closed symmetric monoidal with respect to a product ⊗ (not to be confused with the

tensor operation above), then we write F⊗(Y,−), or simply F(Y,−) when the operation ⊗ is understood, for

the right adjoint of (−)⊗ Y . In other words, each Y determines an isomorphim

Map(X ⊗ Y, Z) ∼= Map(X,F(Y, Z)), (1.22)

natural in X, Y and Z.

Note that any topological category T has an underlying ordinary category π0T with the same class of

objects but whose morphism set

π0T(X,Y ) := π0Map(X,Y ) (1.23)

is defined as the set of path components of the mapping space Map(X,Y ). Of course, since Map(X,Y ) will

normally be a cofibrant space this is the same as the set of connected components of Map(X,Y ). If T is

a topological model category and Map(X,Y ) is defined properly as to be homotopy invariant, then π0T is

equivalent to the homotopy category of T.

1.2.2 Outline of this paper

It is clear from the derived version of the Ginzburg-Kapranov-Vasserot axioms that the theory of derived

schemes provides a natural framework for the consideration of certain equivariant cohomology theories. Just

as in the classical context, the category of derived schemes may be regarded as the full topological subcategory

of the derived Zariski site consisting of the locally representable objects. In other words, derived schemes

are a full topological subcategory of a homotopy topos. But G-spaces are also a full topological subcategory
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of the a homotopy topos of Orb(G)-spaces. Our construction of equivariant elliptic cohomology amounts to

specifying a morphism of homotopy topoi.

We begin with a discussion of topological model categories with emphasis on the Bousfield-Kan model

categories, i.e. those that are Quillen equivalent to the category of presheaves of spaces on a small topological

category. The homotopy topoi, then, are precisely the topological model categories which are topologically

Quillen equivalent to left-exact localizations of Bousfield-Kan model categories.

In the next chapter we give the introduce the necessary derived algebro-geometric machinery, following

recent work of Töen-Vezossi [24]. We state and prove some basic results necessary for the definition of a

derived elliptic curve. When equipped with Lurie’s notion of an orientation, a derived elliptic curve encodes

the exact data necessary to specify the geometric morphism defining equivariant elliptic cohomology.

In the fourth chapter we present our construction of the equivariant elliptic cohomology associated to

an oriented elliptic curve A and a compact abelian Lie group G. In particular, we show that the theory in

questions satisfies a derived version of the Ginzburg-Kapranov-Vasserot axioms.

The fifth and final chapter is devoted to calculating the equivariant elliptic cohomology of the Thom

space of an equivariant vector bundle as a line bundle over the equivariant elliptic cohomology of the base.

We show that the cohomology of the sphere associated to a virtual complex string representation is a trivial

line bundle.

1.2.3 Statement of Results

The precise statements of our main results are as follows.

Theorem 1 The category of SG of G-spaces for a topological group G and SchE of E-schemes for a com-

mutative S-algebra E are full topological subcategories of the homotopy topoi of sheaves of spaces on the

topological sites Orb(G) of G-orbits and AffE of affine E-schemes.

This observation allows us to define the equivariant elliptic cohomology associate to an oriented elliptic

curve, which is done in two steps.

Theorem 2 To specify a homotopy colimit preserving functor from the homotopy topos of sheaves on Orb(G)

to the homotopy topos of sheaves on AffE it suffices to specify a continuous orb(G)-diagram of sheaves on

AffE.

We then consider the special case of the Orb(G)-diagrams of E-schemes induced by an oriented elliptic curve

A over SpecE.
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Theorem 3 An elliptic curve A over SpecE equipped with an orientation Spf EBT ' Â determines for each

compact abelian Lie group G an Orb(G)-diagram of abelian group E-schemes such that the induced Quillen

map SOrb(G) → SAffE/AG is an essential geometric morphism of homotopy topoi.

We write X ⊗G A for the left adjoint of the inverse image functor SAffE/AG → SOrb(G) and call this the

G-equivariant elliptic cohomology functor. In order to justify this terminology, let Γ denote the composite

functor SAffE → AffE → AlgE obtained by composing the left adjoint of the Yoneda embedding AffE → SAffE

with the opposite category functor AffE → AlgE .

Theorem 4 The assignment which associates to a finite G-space X the π∗E-algebra π∗Γ(X ⊗G A) satisfies

the G-equivariant suspension and cofibration axioms and therefore determines a cohomology theory on the

category of finite G-spaces.

In general, however, we do not apply the functor π∗Γ(−); rather, following Ginzburg-Kapranov-Vasserot [8],

we simply regard the sheaf X ⊗G A as the elliptic cohomology of the G-space X.

Theorem 5 If V → X is a virtual G-equivariant complex vector bundle on X then the G-equivariant elliptic

cohomology of V is naturally a line bundle over the scheme X ⊗G A.
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Chapter 2

Homotopy Theory of Diagrams and
Homotopy Topoi

2.1 Continuous diagrams of spaces

2.1.1 Algebras and coalgebras

Let I be a small topological category, which we regard as a category object in S by writing I0 for the discrete

space of objects of I and I1 for the space of arrows of I. Since I0 is a discrete space, any space X over

I0 is canonically isomorphic to the disjoint union of its fibers Xi over the points i of I0. In particular, the

category SI0 inherits the structure of a closed symmetric monoidal category from that of S, since any space

Y over I0 determines an adjunction

Map(X × Y,Z) ∼=
∏

i

Map(Xi × Yi, Zi) ∼=
∏

i

(Xi, Z
Yi
i ) ∼= Map(X,F(Y,Z)) (2.1)

which is evidently natural in Y . Moreover, SI0 is topologically complete and cocomplete, with limits, colimits,

tensors and cotensors taken fiberwise over I0.

This rather trivial observation will ultimately imply that the category SI of continuous functors from

I to S, or I-diagrams in S, is itself a closed symmetric monoidal, topologically complete and cocomplete

category. To begin, define endomorphisms EI and FI of SI0 by the formulas

(EIX)j :=
∐

i

Xi ×Map(i, j)

(FIY )i :=
∏
j

F(Map(i, j), Yj), (2.2)

and note that EI and FI fit into an adjunction

Map(EIX,Y ) ∼= Map(X,FIY ). (2.3)

Proposition 1 The endomorphisms EI and FI extend to a monad and comonad, repspectively, on SI0 , such

11



that the category AlgI of EI-algebras is isomorphic to the category CoalgI of FI-coalgebras, each of which

are isomorphic to the topological category SI of continuous functors I → S.

Proof. Define natural transformations ηI : 1→ EI ← E2
I : µI by the formulas

Xk
(ηIX)k - (EIX)k

� (µIX)k (E2
IX)k

Xk

∼=

?
-

∐
j

Xj ×Map(j, k)

∼=
6

�
∐
i,j

Xi ×Map(i, j)×Map(j, k)

∼=
?

(2.4)

and, dually, natural transformations εi : 1← Fi → F2
i : δI by the formulas

Zi
�(εIZ)i (FIZ)i

(δIZ)i - (F2
IZ)i

Zi

∼=
6

�
∏
j

F(Map(i, j), Zj)

∼=
?

-
∏
i,j

F(Map(i, j)×Map(j, k), Zk).

∼=
6

(2.5)

The fact that I is a topological category forces the requisite relations among the natural transformations.

Now a continuous functor I → S consists of a space Y =
∐

i Yi over I0 along with an associative, unital

action ∐
i

Yi ×Map(i, k)→ Yk (2.6)

or, equivalently, a coassciative, counital coaction

Yi →
∏
k

F(Map(i, k), Yk) (2.7)

of I. The former is the same as an EI -algebra structure on Y while the latter is the same as an FI -coalgebra

structure on Y . 2

2.1.2 Free and cofree diagrams

Let Y be a space over I0. It is well known that the I0-space EIY has a canonical EI -algebra structure,

called the free EI -algebra on Y , and dually that the I0-space FIY has a canonical FI -coalgebra structure,

called the cofree FI -coalgebra on Y . The terminology reflects the fact that EI is left-adjoint to the forgetful

functor AlgI → SI0 and FI is right-adjoint to the forgetful functor CoalgI → SI0 .
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Thus if X is an EI -algebra and Z is an FI -coalgebra, we may form the free EI -algebra EIX and the cofree

FI -coalgebra FIZ on the underlying I0-spaces of X and Z, respectively, in order to obtain an endofunctor EI

on AlgI and an endofunctor FI on CoalgI . Iterating this process yields an augmented simplicial EI -algebra

· · ·
--- E2

IX0
-
- EIX0

- X (2.8)

and a coaugmented cosimplicial FI -coalgebra

Z - FIZ0
-- F2

IZ0

--
- · · · , (2.9)

where the augmentation map is the EI -algebra structure map ϕX of X and the face and degeneracy maps

are various composites of µI , ηI and Ep
Iϕ, just as the coaugmentation map is the FI -coalgebra structure map

ψZ of Z and the coface and codegneracy maps are various composites of δI , εI and Fq
Iψ.

Lemma 1 Any EI-algebra X is the colimit of the simplicial EI-algebra E∗IX, and any FI-coalgebra Z is the

limit of the cosimplicial FI-coalgebra F∗IZ.

Proof. It is enough to show that X is the coequalizer of the pair

E2
IX0

EIϕX-

µIX
- EIX0 (2.10)

and that Z is the equalizer of the pair

FIZ0

FIψZ-

δIZ
- F2

IZ0, (2.11)

which is immediate. Indeed, any EI -algebra Y fits into the diagram

Map(X0, Y0)
-- Map(EIX0, Y0)

AlgI(EIX0, Y )

∼=

?
-- AlgI(E2

IX0, Y ),

∼=
?

(2.12)

the equalizer of which is Map(X,Y ); likewise, any FI -coalgebra Y fits into the diagram

Map(Y0, Z0)
-- Map(Y0,FIZ0)

CoalgI(Y,FIZ0)

∼=

?
-- CoalgI(Y,F2

IZ0),

∼=
?

(2.13)
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the equalizer of which is Map(Y, Z). 2

2.1.3 Topological bicompleteness and cartesian closedness

The ordinary notions of completeness and cocompleteness are not adequate in the topologically enriched

setting. The root of the problem lies in what is meant by an adjunction. Since functors between topological

categories are assumed continuous, it is natural to assume that adjunctions are continuous as well, i.e. that

they determine natural homeomorphisms on mapping spaces.

In particular, if I is topological category and X is a continuous I-diagram in a topological category T,

the statement that X has a limit L must mean that the space of morphisms from the constant I-diagram

on a space K to X is naturally equivalent to the space of maps from K to L. We adopt the corresponding

convention concerning colimits, and that the topological category T is bicomplete if for every small topological

category I, every I-diagram X in T has a limit and a colimit.

There is also the important notion of tensors and cotensors of objects of T with spaces. Given an object

X of T, the tensor functor (−)⊗X and the cotensor functor Y (−) can be defined as adjoints to the mapping

space functor, and hence are essentially unique if they exist. A bicomplete topological category T will be said

to be topologically bicomplete if in addition it is tensored and cotensored over spaces. This is the convention

adopted in EKMM [7], and is equivalent to the statement that T has all indexed limits and colimits in the

sense of Kelly [16].

Recall that a topological category T is said to be topologically bicomplete if it is complete and cocomplete

as well as tensored and cotensored over spaces. Note that tensors and cotensors, when defined, are unique up

to natural isomorphism, since for any object Y of T, the tensor (−)⊗ Y : S→ T is by definition left-adjoint

to the mapping space Map(Y,−) : T → S while the cotensor Y (−) : S → Top is left adjoint to the mapping

space Map(−, Y ) : Top → S.

The following fact is a topological generalization of well-known results in ordinary category theory. See

EKMM [7] for similar results along these lines.

Proposition 2 Let T be a cartesian-closed topologically bicomplete category equipped with a continuous

monad E and a continuous comonad F that fit into a continuous adjunction

Map(EX,Z) ∼= Map(X,FZ). (2.14)

Then the categories AlgE of E-algebras and CoalgF of F-coalgebras are isomorphic cartesian-closed topologi-

cally bicomplete categories.
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Proof. Any E-algebra EY → Y is adjoint to an F-coalgebra Y → FY and conversely, giving the isomorphism

AlgE
∼= CoalgF. Given a diagram of E-algebras Xα, let limXα be the limit of the underlying diagram in T.

The natural map

E limXα → lim EXα → Xα (2.15)

endows limXα with a canonical E-algebra structure in such a way that E limXα → limXα is easily seen

to be the limit of the Xα in the category of E-algebras. Similarly, given a diagram Zα of F-coalgebras, let

colimZα be the colimit of the underlying diagram in T. Again, then natural map

colimZα → colim FZα → F colimZα (2.16)

endows colimZα with a canonical F-coalgebra structure such that colimZα → F colimZα is the F-coalgebra

colimit of the Zα. Therefore AlgE
∼= CoalgF are both bicomplete.

Next we construct tensors and cotensors with spaces. To do so, note that E commutes with tensors and

F commutes with cotensors, since

Map(E(K ⊗X), Y ) ∼= Map(K ⊗X,FY ) ∼= Map(K,Map(X,FY ))

∼= Map(K,Map(EX,Y )) ∼= Map(K ⊗ EX,Y ) (2.17)

and

Map(Y,F(ZK)) ∼= Map(EY, ZK) ∼= Map(K,Map(EY, Z))

∼= Map(K,Map(Y,FZ)) ∼= Map(Y,FZK). (2.18)

Hence the E-algebras are naturally tensored over S and the F-coalgebras are naturally cotensored over S. It

follows that AlgE
∼= CoalgF is naturally tensored and cotensored over S.

It remains to show that both categories are cartesian closed. Write ZY for the T-object of maps from

Y to Z. Then the structure map of an E-algebra Y and the costructure map of an F-coalgebra Z induce a

pair of maps

ZY → ZEY ∼= (FZ)Y (2.19)

and

ZY → (FZ)Y (2.20)
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from ZY to (FZ)Y , the second being F applied to the functor (−)Y . Apply F to this pair of maps and define

ZY
F to be the equalizer

F(Y Z) -
- F((FZ)Y ) (2.21)

in the category of F-coalgebras. Then if X is another F-coalgebra, we obtain a morphism of equalizer

diagrams
Map(X,ZY

F ) - Map(X,F(ZY )) -- Map(X,F((FZ)Y ))

Map(X × Y, Z)
?

- MapT(X × Y,Z)

∼=

?
-- MapT(X × Y,FZ)

∼=

?

(2.22)

in which the second and third vertical maps are isomorphisms. Hence the first vertical maps is an isomor-

phism as well, so the categories are cartesian closed. 2

Corollary 1 For any small topological category I the category SI of continuous I-diagrams in S is a

cartesian-closed topologically bicomplete category. 2

2.1.4 Continuous Kan extensions

Given small topological categories I and J and a functor Π : J → I we obtain a functor Π∗ : SI → SJ by

pulling back an I-space along Π. Note that Π∗ necessarily preserves limits and colimits in SI , so it is natural

to ask whether or not Π∗ has left and right adjoints Π! : SJ → SI and Π∗ : SJ → SI , respectively.

It is automatic that Π∗ has a right adjoint Π∗, defined by the formula

(Π∗Y )i := Map(Π∗Ei, Y ). (2.23)

The left adjoint is a topologically enriched notion of the left Kan extension of SJ along Π.

Proposition 3 The functor Π∗ : SI → SJ has a left adjoint Π! : SJ → SI .

Proof. Recall that any J-space Y is canonically isomorphic to the coequalizer of the pair of maps

E2
JY0

-- EJY0, (2.24)

one of which is induced by the monadic structure map µJ : E2
J → EJ applied to Y0 and the other of which

is the composite of EJ with the J-space structure map EJY0 → Y0.

Define a functor Π0! : SJ0 → SI0 by composition with Π0 : J0 → I0, and observe that this yields a
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continuous adjunction

SI0(Π0!Y0, X0) ∼= SJ0(Y0, J0 ×I0 X0). (2.25)

Since Π : J → I is a functor, there is a natural transformation

Π1! : Π0! ◦ EJ → EI ◦Π0! (2.26)

given by the evident map

Π0!(J1 ×J0 (−))→ I1 ×I0 Π0!(−) (2.27)

induced by Π1 : J1 → I1. Since SI has coequalizers, we may extend Π0! to a functor Π! : SJ → SI by defining

Π!Y to be the coequalizer of the pair of I-space maps

EIΠ0!EJY0
-- EIΠ0!Y0, (2.28)

where one of the maps is the composite µI ◦ EI ◦Π1! applied to Y0 and the other is EI ◦Π0! applied to the

J-space structure map EJY0 → Y0.

Now it is straightforward to check that Π! is left adjoint to Π∗. Indeed, we have a chain of adjunctions

SI(EIΠ0!Y0, X) ∼= SI0(Π!Y0, X0) ∼= SJ0(Y0, J0 ×I0 X0) ∼= SJ(EJY0,Π∗X); (2.29)

it follows that the middle and bottom horizontal maps in the commutative diagram

SI(Π!Y,X) - SJ(Y,Π∗X)

SI(EIΠ0!Y0, X)
?

- SJ(EJY0,Π∗X)
?

SI(EIΠ0!EJY0, X)
??

- SJ(E2
JY0,Π∗X)

??

(2.30)

are isomorphisms. But the vertical forks are equalizers, so the top horizontal map is an isomorphism as well.

2

Example 1 Let Π : H → G be a homomorphism of topological monoids. Thinking ofH andG as topological

categories (with a single object) and Π as a continuous functor, we see that Π∗ takes a G-space X and regards
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it as an H-space X with structure map

H ×X → G×X → X. (2.31)

The right adjoint Π∗ takes an H-space to the coinduced G-space MapH(G, Y ), i.e. equalizer of the evident

pair of G-space maps

Map(G, Y ) -- Map(H ×G, Y ), (2.32)

while the left adjoint Π! takes an H-space Y is the induced G-space G×H Y , the coequalizer of the evident

pair of G-space maps

G×H × Y -
- G× Y, (2.33)

and is precisely dual to Π∗.

2.2 Homotopy Topoi

2.2.1 The topological model category of I-spaces

We briefly sketch the basic steps involved in providing SI0 with the structure of a cofibrantly generated

topological model category. Recall [9] that the cofibrations

∂∆p → ∆p, (2.34)

for each p ≥ 0, generate the cofibrations in S, while the trivial cofibrations

Λq → ∆q, (2.35)

for each q > 0, generate the trivial cofibrations. Here, the space Λq may be taken to be the geometric

realization of any horn Λq
n.

Observe that for each object i of I we have a functor from spaces to I0-spaces that takes a space S to

the I0-space Si → {i} → I0, and is left adjoint to the functor from I0-spaces to spaces which restricts an

I0-space X → I0 to its fiber Xi over i. We claim that the set of maps

∂∆p
i → ∆p

i , (2.36)
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for each i ∈ I0 and p ≥ 0, together with the maps

Λq
j → ∆q

j , (2.37)

for each j ∈ I0 and q > 0, form, respectively, sets of generating cofibrations and trivial cofibrations for a

topological model structure on SI0 in which a map X → Y is a fibration or equivalence if and only if each

fiber Xi → Yi is a fibration or equivalence of spaces.

Proposition 4 A map f : V → W has the left lifting property with respect to the class of trivial fibrations

in SI0 if and only if for each i the fiber gi : Vi →Wi is a cofibration in S.

Proof. Let g : X → Y be a trivial fibration. Then

Map(W,X)→ Map(V,X)×Map(V,Y ) Map(W,Y ) (2.38)

is a trivial fibration if and only if each component

Map(Wi, Xi)→ Map(Vi, Xi)×Map(Vi,Yi) Map(Wi, Yi) (2.39)

is a trivial fibration. Since the maps Xi → Yi are trivial fibrations, we see that f has the left lifting property

with respect to g if each Vi →Wi is a cofibration.

Conversely, suppose for some i the map fi : Vi → Wi is not a cofibration. Then there exists a trivial

fibration gi : Xi → Yi and maps Vi → Xi, Wi → Yi, such that the composites Vi → Yi are equal and there is

no lift ofWi toXi. Let g be a trivial fibration in SI0 whose fiber over i is gi. Then there is no lift ofW toX. 2

This shows that a map f : X → Y of I0-spaces is therefore a fibration or cofibration if and only if f is

a fibration or cofibration of spaces. Hence, in order to factor a map of I0-spaces, we need only factor it in

the underlying category S, since any such factorization extends to a factorization in SI0 . Thus we see that

SI0 has a topological model category structure induced by that of S, in which Ei of the sets of generating

(trivial) cofibrations are generating (trivial) cofibrations in SI0 . The lifting axioms are immediate.

Similar arguments work to provide a cofibrantly generated topological model structure on SI , except it is

no longer true in general that the forgetful functor detects cofibrations. In this case, the model structure is

induced from that on SI0 by the adjunction Map(EIX0, Y ) ∼= Map(X0, Y0); in other words, a map f : X → Y

of I-spaces is defined to be a fibration or equivalence if the underlying map of I0-spaces f0 : X0 → Y0 is a

fibration or equivalence.
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We have already shown that SI is topologically complete and cocomplete. It therefore suffices to prove

the factorization and lifting axioms. To do so, let Ei be the functor from spaces to I-spaces that associates

to a space S the free I-space on the I0-space Si → {i} → I0, and observe that Ei is left adjoint to the functor

which associates to an I-space X its fiber Xi over I0. Thus if S is a small object in S it follows that EiS is

a small object in SI .

It is clear that the set of maps

Ei∂∆p → Ei∆p, (2.40)

for each i in I0 and p ≥ 0, detect the trivial fibrations in SI , and similarly that the set of maps

EjΛq → Ej∆q, (2.41)

for each j in I0 and q > 0, detect the fibrations in SI . Hence these sets of maps generate the cofibrations

and trivial cofibrations in SI , where by definition a map of I-spaces is a cofibration (respectively, trivial

cofibration) if it has the left lifting property with respect to the class of trivial fibrations (respectively, the

class of fibrations) in SI . Since each of these maps are maps of small objects, we may use the small object

argument to prove the factorization axioms. We will need the following fact.

Proposition 5 Let f : V →W be a trivial cofibration. Then f is a cofibration and an equivalence.

Proof. Clearly f is a cofibration, for if f has the left lifting property with respect to the class of fibrations

in SI then f also has the left lifting property with respect to the subclass of trivial fibrations in SI .

To show that f is an equivalence, let g0 : X0 → Y0 be a fibration in SI0 . Then g = I ×I0 g0 is a fibration

in SI , so there is a lift of W to X = I ×I0 X0. Since the underlying I0-space map of g is g0, this determines

a lift of W0 to X0. Hence f0 is a trivial cofibration in SI0 , so in particular it is an equivalence. Therefore,

by definition, f is an equivalence in SI . 2

Let f : X → Y be a map of I-spaces. To factor f as a trivial cofibration followed by a fibration, set

X0 = X and inductively define Xn to be the pushout

∐
j

∐
Dj

EjΛq - Xn−1

∐
j

∐
Dj

Ej∆q

?
- Xn

?

(2.42)
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where Dj is the set of commutative diagrams of the form

Λq - Xn−1
j

∆q
?

- Yj

?

(2.43)

in S. Let X∞ be the colimit of the sequence X0�̃X1�̃ · · ·�̃Xn�̃ · · · of trivial cofibrations in SI . By

construction, X → X∞ has the left lifting property with respect to the class of fibrations in SI , so X → X∞

is a trivial cofibration, and in particular an equivalence.

Thus it suffices to show that the map X∞ → Y is a fibration. Fix an object j of I and a q > 0, and

suppose given a commutative diagram
EjΛq - X∞

Ej∆q
?

- Y.
?

(2.44)

Since EjΛq is small, the map EjΛq → X∞ factors through some Xn−1, and we obtain a commutative

diagram
EjΛq - Xn−1 - X∞

Ej∆q
?

- Xn
?

- Y.
?

(2.45)

By construction of Xn there is a lift of Xn to X∞ such that the whole diagram commutes. This gives a lift

of Ej∆q to X∞ and shows that X∞ → Y is a fibration.

The same argument (with the generating trivial cofibrations replaced by the generating cofibrations)

works to factor a map as a cofibration followed by a trivial fibration. Thus it only remains to verify the

lifting axioms.

Since a cofibration is defined to be a map of I-space that has the left lifting property with respect to

the class of trivial fibrations, we only need to show that a cofibration that is also an equivalence has the left

lifting property with respect to the class of all fibrations. Let V →W be such a cofibration and let X → Y

be a fibration. We use the small object argument to factor V →W as the composite of the trivial cofibration

and equivalence V → V∞ followed by the fibration V∞ → W , and note that since V → W and V → V∞
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are equivalences, the map V∞ →W is actually a trivial fibration. Consider the commutative diagram

V - V - X

V
?

- V∞
?

- Y
?

W
?

- W
?

- Y,
?

(2.46)

and note that there is lift of W to V∞ in the lower left-hand square since V → W is a cofibration and

V∞ →W is a trivial fibration, and that there is also a lift of V∞ to X in the upper right-hand square since

V → V∞ is a trivial cofibration and X → Y is a fibration. Hence the composite of the two lifts gives the

desired lift of W to X.

We record our results in the following theorem.

Theorem 6 Let I be a small topological category. Then the category SI of I-spaces admits a topological

model category structure such that the set of maps

Ei∂∆p → Ei∆p, (2.47)

for each i ∈ I0 and p ≥ 0, generate the class of cofibrations, and the set of maps

EjΛq → Ej∆q, (2.48)

for each j ∈ I0 and q > 0, generate the class of trivial cofibrations. Moreover, a map of I-spaces is a fibration

or equivalence if and only if the underlying I0-space map is a fibration or equivalence in SI0 . 2

2.2.2 Presentable topological model categories

The notion of a “universal homotopy theory” first appeared in [6] in the context of simplicial sets and was

used implicitly in [18] in the topological context. Since we will make extensive use of the topological analogue

of [6] we adapt the formalism introduced there to the category of spaces.

A particularly nice class of topological model categories are the presheaf categories, by which we mean

those of the form SI for some small topological category I. The utility of these topological presheaf categories

lies in their following universal property, a direct homotopy-theoretic analogue of the usual universal property
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enjoyed by presheaf categories.

Theorem 7 Let I be an essentially small topological category and let T be a topological model category.

Then an I-diagram ∆ in T determines a morphism of topological model categories T → SI .

Proof. The argument is a slight generalization of the one given in [6]. The basic idea is simple enough. The

freeness property of presheaf categories allows one to canonically express a presheaf of spaces X on I as a

weighted colimit of free presheaves Ei. Specifically, the presheaf X is naturally isomorphic to the coequalizer

of pair of maps of representable presheaves

∐
i,j

Xi ⊗Map(Ei,Ej)⊗ Ej
--

∐
i

Xi ⊗ Ei, (2.49)

and the I-diagram ∆ allows us to define a T-object ∆∗X as the coequalizer of the pair of maps

∐
i,j

Xi ⊗Map(Ei,Ej)⊗∆∗Ej
--

∐
i

Xi ⊗∆∗Ei, (2.50)

where

∆∗Ei := ∆i (2.51)

is the evaluation of the I-diagram ∆ at i. Note that ∆∗ is evidently left-adjoint to the functor ∆∗ which

associates to an object Y in T the presheaf of spaces Map(∆, Y ) on I, so we obtain a continuous adjunction

T(Delta∗X,Y ) ∼= SI(X,∆∗Y ) (2.52)

which is easily seen to be a Quillen adjunction. 2

Proposition 6 Let I be a small topological category and let J be a set of maps in SI . Then the left local-

ization SI
J exists in the sense that there is an essentially unique topological model category SI

J together with

a morphism of topological model categories SI → SI
J such that any morphism of topological model categories

SI → T which sends the maps in J to equivalences in T factors through SI
J.

Proof. This is the usual construction of a J-local model category structure on SI . A good reference in

Hirschhorn’s book [14]. 2

Definition 1 (Dugger [6]) A topological model category T is presentable if there exists a small topological

category I and a morphism of topological model categories SI → T such that for some set of maps J in SI
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that are taken to equivalences in T, the induced morphism SI
J → T is an equivalence of topological model

categories. The data (SI → T, J) will be called a presentation of T.

2.2.3 Topological sites and sheaves

Following the approach of Toën-Vezzosi, we define the notion of a small topological site I and the associated

homotopy topos of sheaves of spaces on I.

Definition 2 An object K of a topological model category T is compact if for all filtered categories Λ and

all Λ-diagrams Xλ in T, the natural map

colimλ Map(K,Xλ)→ Map(K, colimλXλ) (2.53)

is an equivalence.

The notion of a covering family generalizes to the topological setting without change.

Definition 3 A topological site (I, J) is a small topological category I with finite homotopy limits such that

for each object i of I there is a specified collection Ji of families of objects iα → i over i, called covering

families, such that:

(i) any collection of equivalences {iα → i} is a covering of i;

(ii) if {iα → i} is a covering of i and f : i′ → i is any morphism in I then {iα ×i i
′ → i′} is a covering

of i′;

(iii) if {iα → i} is a covering of i and for each α, {iαβ → iα} is a covering of iα, then {iαβ → i} is a

covering of i.

Let X be a presheaf of spaces on a topological site (I, J). Since the nerve of a covering family of an

object i is an augmented simplicial object over i, evaluation gives a coaugmented cosimplicial space under

Xi. We say that X is a sheaf if for all objects i and all coverings of i, the coaugmentation map induces an

equivalence between Xi and the total space of the cosimplicial space associated to the covering.

Let SI
J denote the full subcategory of the presheaf category SI consisting of the sheaves.

Theorem 8 The category SI
J of sheaves of spaces on I is a presentable topological model category over SI .

Proof. The idea is to identify SI
J with the left Bousfield localization of SI with respect to the set of maps

hocolimα iα → i (2.54)
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for each cover {iα → i} of i. Here, the homotopy colimit is meant to denote the geometric realization of the

simplicial nerve of the cover. Note that since SI is a presentable topological model category, it is known how

to localize SI with respect to an arbitrary set of maps.

But the J-local objects of SI are precisely the sheaves, and the localization construction provides a left

adjoint to the inclusion of the full subcategory of J-local objects. The resulting Quillen map SI
J → SI gives

SI
J the structure of a presentable topological model category over SI . 2

Given a site structure J on a small topological category I, we refer to the model structure on SI
J as the

J-local model structure on SI .

2.2.4 Homotopy topoi

Just as a Grothendieck topos is defined to be a left-exact localization of a presheaf category, a homotopy

topos may be defined as a left-exact localization of a topological model category of presheaves of spaces on

a small topological category. While this is certainly the most concise definition of a homotopy topos, there

are other more geometric approaches.

The following definition is due to C. Rezk [21]. For ease of notation, all limits and colimits is the following

definition are assumed to be derived.

Definition 4 A category with patching is a topological model category such that:

(1a) if Xα is a set of objects and Y is an object over X :=
∐

αXα then the natural map
∐

α Y ×XXα → Y

is an equivalence;

(1b) if Yα → Xα if a set of maps, giving a map Y :=
∐

α Yα →
∐

αXα =: X, then for each α the natural

map Yα → Y ×X Xα is an equivalence;

(2a) if X ∼= X1

∐
X0
X2 and for each i we define Yi := Y ×X Xi then the natural map Y → Y1

∐
Y0
Y2 is

an equivalence;

(2b) if Y1×X1X0
∼= Y0

∼= X0×X2 Y2 and X := X1

∐
X0
X2 then for each i the natural map Yi → Y ×XXi

is an equivalence.

The following theorem of Rezk [21] is a homotopical analogue of Giraud’s theorem.

Theorem 9 (Rezk [21]) A presentable topological model category is a homotopy topos if and only if it has

patching. 2

It is easy to generalize the notion of a geometric morphism of topoi to the topological context.
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Definition 5 A geometric morphism of homotopy topoi Γ : U→ T consists of a continuous Quillen adjunc-

tion

U(Γ∗X,Y ) ∼= T(X,Γ∗Y ) (2.55)

such that LΓ∗ preserves finite homotopy limits.

Since we will not consider analogues of the so-called “logical” morphisms, a morphism of homotopy topoi

will always refer to a geometric morphism.

Definition 6 A geometric morphism Γ : U→ T is essential if Γ∗ : T → U has a left adjoint Γ! : U→ T.

For the most part, we will only be concerned will essential geometric morphisms. These frequently arise via

the induction-restriction adjunction on sheaves that results from a morphism of topological sites. Of course,

we still have to check that our categories of sheaves of spaces on topological sites are actually homotopy

topoi, which is to say, that the J-localization functor is left exact.

The basic idea is that the category of coverings of an object is filtered in a suitable sense [15], and that

quite generally filtered colimits commute with finite limits.

Corollary 2 If (I, J) is a small topological site then the topological model category SI
J of continuous sheaves

of spaces on I with respect to J is a homotopy topos. 2

2.3 Homotopy Theory of G-Spaces

2.3.1 The topological model structure

Let Orb(G) be the small, full topological subcategory of the category SG of G-spaces consisting of those

G-orbits of the form G/H for some closed subgroup H of G, and let SOrb(G) denote the homotopy topos of

presheaves of spaces on Orb(G). The inclusion of the subcategory Orb(G) → SG determines a continuous

adjunction

SG(Y ⊗Orb(G), X)→ SOrb(G)(Y,Map(Orb(G), X)) (2.56)

by left Kan extension and therefore a morphism of topological model categories SG → SOrb(G).

Proposition 7 The functor (−)⊗Orb(G) : SOrb(G) → SG is a left-exact localization functor.

Proof. We must show that (−)⊗Orb(G) is homotopy left-exact and that the derived counit of the adjunction

LMap(Orb(G),RX)⊗Orb(G)→ X (2.57)
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is a weak equivalence of G-spaces for all G-spaces X.

Left-exactness is a consequence of the fact that geometric realization of simplicial G-spaces is left-exact,

a direct corollary of the analogous fact for simplicial spaces. Note that this implies in particular that the

cofibrant replacement functor on G-spaces is left-exact.

To see that the derived counit is a weak equivalence of G-spaces, first observe that any G-space X is

already fibrant so it suffices to consider the natural transformation

LMap(Orb(G), X)⊗Orb(G)→ X. (2.58)

If X is a G-cell complex, then this is just Elmendorf’s theorem [19]. Otherwise, take a cofibrant replace-

ment LX and observe that since both LMap(Orb(G),LX) and LMap(Orb(G), X) are weakly equivalent

to Map(Orb(G),LX), they are in particular weakly equivalent to each other, and are therefore cofibrant

replacements of Map(Orb(G), X). Hence me may reduce to the case in which X is cofibrant. 2

In particular we see that G-spaces form a homotopy topos, and also embed into the larger homotopy

topos of Orb(G)-spaces.

2.3.2 The geometric morphism associated to a group homomorphism

Let ϕ : H → G be a group homomorphism. Then the restriction functor

ϕ∗ : SG → SH (2.59)

preserves limits and colimits, so it is natural to ask whether or not ϕ∗ is the inverse image of an essential

geometric morphism ϕ∗ : SH → SG. Of course the left and right adjoints of ϕ∗ exist and are nothing more

than induction and coinduction, respectively.

Explicitely, the essential geometric morphism ϕ : SH → SG is given by the adjunction

SH(ϕ∗X,Y ) ∼= SG(X,ϕ∗Y ) (2.60)

in which ϕ∗Y is the G-space

ϕ∗Y = MapH(G, Y ) (2.61)

of H-equivariant maps from G to Y , where G is regarded as an H-space via ϕ. The left adjoint ϕ! of ϕ∗ is

the induced G-space

ϕ!Y := Y ×H G; (2.62)
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its definition is precisely dual to ϕ∗.

Although the functors ϕ∗ and ϕ! are easier to define in SG, it is instructive to compute their analogues

on SOrb(G). The homomorphism ϕ : H → G defines a continuous functor ϕ : Orb(H)→ Orb(G) by the rule

ϕ(H/L) := G/ϕ(L). (2.63)

Hence the restriction functor ϕ∗ may be regarded as precomposition with ϕ.

Having determined ϕ∗, we can say something about ϕ∗. Taking X = G/K for some closed subgroup K

of G, we have that

ϕ∗Y (G/K) ∼= SG(G/K,ϕ∗Y ) ∼= SH(ϕ∗G/K, Y ), (2.64)

so ϕ∗ is completely determined by restriction of G-orbits. Unfortunately restriction is rather poorly behaved

unless Orb(H)→ Orb(G) is essentially surjective; that is, unless ϕ : H → G is surjective, in which case

ϕ∗G/K ∼= H/ϕ−1K. (2.65)

In general, however, ϕ∗G/K need not be an H-orbit.

2.3.3 Fibrations of topological abelian groups

Let i : H → G be a closed immersion of compact abelian Lie groups with cokernel G/H. Then for each n,

the sequence

∗ → Hn → Gn → (G/H)n → ∗ (2.66)

is a short exact sequence of compact abelian Lie groups, and so the induced map of classifying spaces

∗ → BH → BG→ B(G/H)→ ∗ (2.67)

is a short exact sequence of topological abelian groups.

Since the map BG → B(G/H) is in fact a fibration, its kernel BH is therefore also the homotopy fiber

of the map BG → B(G/H). If instead we use the canonical homotopy fiber BG ×B(G/H) B(G/H)∆
1
, we

28



obtain a short exact sequence of short exact sequences of topological abelian groups

∗ ∗ ∗

∗ - ∗
?

- ΩB(G/H)
?

- ΩB(G/H)
?

- ∗

∗ - BH
?

- BG×B(G/H) B(G/H)∆
1

?
- B(G/H)∆

1
?

- ∗

∗ - BH
?

- BG
?

- B(G/H)
?

- ∗

∗
?

∗
?

∗
?

(2.68)

in which the map BH → BG×B(G/H) B(G/H)∆
1

is an equivalence.

Lemma 2 The map i∗ : G/H → ΩB(G/H) adjoint to the inclusion of the subspace i∗ : Σ(G/H)→ B(G/H)

is a homomorphism of topological abelian groups.

Proof. Clearly i∗ commutes with products and respects the terminal object. 2

Corollary 3 The composite

G/H → ΩB(G/H)→ BG×B(G/H) B(G/H)∆
1

(2.69)

is a homomorphism of topological abelian groups. 2

Corollary 4 A morphism of short exact sequences of topological abelian groups of the form

∗ - K - G - G/K - ∗

∗ - H
?

- G
?

- G/H
?

- ∗

(2.70)
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induces a morphism of fiber sequences of topological abelian groups

G/K - BG×B(G/K) B(G/K)∆
1 - BG - B(G/K)

G/H
?

- BG×B(G/H) B(G/H)∆
1

?
- BG

?
- B(G/H)

?

(2.71)

such that all the maps are group homomorphisms.

2.3.4 Topological abelian group valued functors on the orbit category

In this section we present an important construction fundamental to our definition of equivariant elliptic

cohomology. As usual, fix a compact abelian Lie group G, let Sub(G) denote the category of closed subgroups

of G, and define Orb(G) to be the full topological subcategory of the category SG of G-spaces on the objects

of the form G/H for some H in Sub(G).

Let B : Sub(G)→ Ab(S) be the classifying space functor, taking a subgroupH ≤ G to its classifying space

BH, which (if we model BH correctly) is itself a topological abelian group with multiplication, inversion,

and identity induced from that on H.

Proposition 8 Let K ≤ H ≤ G be a chain of closed subgroups of G. Then there is a canonical isomorphism

of topological abelian groups

G/H ∼= MapG(G/K,G/H) (2.72)

given by sending gH to the G-map which takes g′K to g′gH.

Proof. In general, a G-orbit P has the property that a G-map f : P → X is completely determined by its

value on a single point p ∈ P , since any other q ∈ P is of the form gp for some g ∈ G and f(gp) = gf(p).

In particular, we see that if P = G/K and X = G/H, then f(K) = gH for some g ∈ G, giving the inverse

MapG(G/K,G/H)→ G/H. 2

Now Sub(G) may be regarded as a topological subcategory of Orb(G) via the embedding which takes

K ≤ H to the unique map f : G/K → G/H characterized by f(K) = H, and the question arises as to

whether or not one may extend B to all of Orb(G) in a homotopy coherent manner. Specifically, we ask for

a continuous functor A : Orb(G)→ AbS together with a natural equivalence B → A|Sub(G).

We present one possible solution here. Define A(G/H) to be the homotopy fiber of the map

A(G/H)→ B(G)→ B(G/H), (2.73)
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and note that the universal property of A(G/H) together with the natural fiber sequence

B(H)→ B(G)→ B(G/H) (2.74)

gives a natural equivalence B(H) → A(G/H). The results from the previous section imply that G/H

naturally acts on A(G/H), so we get a natural map

G/H ∼= Aut(G/H)→ Aut(A(G/H)) (2.75)

which gives the value of A on the mapping spaces MapG(G/H,G/H).

Proposition 9 To specify a continuous functor A : Orb(G)→ AbS it suffices to specify A on the subcategory

Sub(G) together with a natural action of Aut(G/H) on A(G/H) for each H in Sub(G).

Proof. If K ≤ H, then any map G/K → G/H factors as the composite of the based map G/K → G/H

followed by an automorphism of G/H. 2
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Chapter 3

Algebraic Geometry over the Sphere
Spectrum

3.1 Topoi Associated to S

3.1.1 Affine S-schemes

We outline the Toën-Vezzosi approach [24] to algebraic geometry over the sphere spectrum. Given a

Grothendieck topology on the (opposite) category of commutative Z-algebras, such as the Zariski or étale,

it is possible to lift this topology to the (opposite) category of commutative S-algebras in a standard way.

The associated topos is then the resulting homotopy topos of sheaves of spaces on this site.

Let AlgS denote the topological model category of commutative S-algebras. We will refer to an object R

of AlgS simply as an S-algebra and use the convention that by an S-algebra we always mean a commutative

S-algebra. We ignore the issue of universes entirely and simply note that when necessary, we will freely

restrict (without change of notation) to the full subcategory of κ-presentable S-algebra for some cardinal κ.

The opposite topological model category AffS := Alg◦S is called the category of affine S-schemes. If E is

an S-algebra, we write SpecE for the corresponding affine S-scheme, so that

Map(SpecF,SpecE) ∼= Map(E,F ) (3.1)

by definition.

It is important to note that there is a continuous functor π0 : AlgS → AlgZ which associates to an

S-algebra E its “underlying” π0S = Z-algebra π0E, and that (as the notation would suggest) this functor

factors through the homotopy category π0AlgS of AlgS. However, the resulting functor (of discrete topological

categories) π0AlgS → AlgZ need not be full, faithful, or essentially surjective. The question of determining

its essential image is an interesting one, which we will not elaborate upon here, save for remarking that the

restriction of π0 to the category Alg+
S of connective S-algebras has a continuous right adjoint H : AlgZ →

Alg+
S which associates to a Z-algebra R the Eilenberg-Mac Lane S-algebra HR. In other words, there is a
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natural map

Alg+
S (E,HR) ∼= AlgZ(π0E,R) (3.2)

which is an equivalence of spaces (in particular, this implies that the space of algebra maps E → HR is

homotopy discrete).

We suggestively abuse notation and generally write π0 Spec and H Spec, instead of Specπ0 and SpecH,

for the corresponding functors of affine schemes. Hence

AffZ(π0 SpecE,SpecR) ∼= Aff+
S (SpecE,H SpecR), (3.3)

and one might naturally ask whether or not we can put a topology on AffS such that the functor π0 : AffS →

AffZ, where AffZ is given one of the standard topologies, such that H takes covers to covers.

We shall see that such a topology does in fact exist and is based upon the following notion of flatness.

Definition 7 An E-algebra f : E → F is flat if π0f : π0E → π0F is a flat π0E-algebra and the natural map

π∗E ⊗π0E π0F ∼= π∗F (3.4)

is an isomorphism of π∗E-algebras.

3.1.2 Schemes and stacks over S

Let SAffS denote the topos of presheaves of spaces on AffS. Recall that SAffS is a presentable topological

model category in which the fibrations and equivalences are defined levelwise, so in particular every object

is fibrant. Given a topology τ on AffS, we want to localize SAffS so that the fibrant objects are the τ -sheaves.

If f : SpecF → SpecE is a cover of E then we may form the geometric realization Bf of the groupoid

associated to the cover. We claim that the natural map Bf → B1E
∼= SpecE is a homotopy monomorphism,

and should therefore be regarded as a sieve on SpecE.

Definition 8 The homotopy topos SAffS
τ is the (left-exact) localization of SAffS with respect to the sieves

Bf → SpecE induced by the τ -covers f : SpecF → SpecE.

3.1.3 The underlying ordinary scheme of a derived scheme

By definition, as S-scheme is a Zariski-locally affine sheaf on AffS. In particular, and S-scheme X admits an

atlas, i.e. an affine cover SpecE → X. Write SpecF for the homotopy pullback SpecE ×X SpecE, so X is
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equivalent to the realization of the nerve of the groupoid scheme

SpecF -- SpecE. (3.5)

Define the underlying ordinary scheme π0X to be the coequalizer of the pair of maps

Specπ0F
-- Specπ0E, (3.6)

which necessarily exists by the gluing lemma [12], which is to say that schemes are stable under Zariski-

descent.

In particular, we see that any S-scheme scheme X defines a topological space SpcX := Spcπ0X, patched

together from the topological spaces Spc SpecEi constituting an affine cover of X. We also obtain the

structure sheaf OX of X as a sheaf of E∞-ring spectra on SpcX. Of course, we have that π0OX
∼= Oπ0X as

sheaves of rings on SpcX.

Associated to this structure sheaf OX is the category ModOX
of OX -modules, and the subcategories of

(quasi)coherent sheaves of OX -modules. If X ∼= SpecE is affine, then a quasicoherent OX -module is any

OX -module equivalent to one induced from an E-module.

Definition 9 A sheaf of OX-modules F is quasicoherent if and only if for each map of the form f : SpecE →

X, the induced OSpec E-module f∗F is quasicoherent.

Of course it is sufficient to check this on any collection of affine schemes which cover of X.

3.2 The Derived Category of a Derived Ringed Space

3.2.1 Derived Ringed Spaces

A derived ringed space (X,OX) is simply a topological space X equipped with a sheaf OX of E∞-ring

spectra on X. A morphism (f,Of ) : (X,OX) → (Y,OY ) consists of a continuous map of topological spaces

f : X → Y together with a map Of : OY → f∗OX of sheaves of E∞-ring spectra on Y .

Given a derived ringed space (X,OX) we have the category ModX := ModOX
of OX -modules. It is a

topological model category with objects the presheaves of OX -modules and morphisms natural transforma-

tions of presheaves of OX -modules, where a map is a weak equivalence or a fibration if it is a local weak

equivalence or local fibration. In particular, the fibrant objects are the local objects, i.e. the sheaves of

OX -modules. The homotopy category of ModX is called the derived category of X.
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3.2.2 The adjuction associated to a map of derived ringed spaces

Given a map (f,Of ) : (X,OX)→ (Y,OY ) of derived ringed spaces, we obtain a Quillen adjunction

ModX(f∗N,M)→ ModY (N, f∗M) (3.7)

of topological model categories. As usual, f∗M is the presheaf of OY -modules defined by

f∗M(V ) := M(f−1V ), (3.8)

while f∗N is the presheaf of OX -modules f∗N := f−1N ⊗f−1OY
OX , where f−1N is the presheaf on X

defined by

f−1N(U) := colimV⊃f(U)N(V ). (3.9)

Let us first check that this a topologically enriched adjunction. To see this, it suffices to show that

Modf−1OY
(f−1N,M) ∼= ModOY

(N, f∗M), (3.10)

naturally in M and N . But this is clear since f defines a continuous functor f−1 : Open(Y ) → Open(X)

and therefore the restriction functor

f∗ : Modf−1OY
→ ModOY

(3.11)

admits a continuous left Kan extension which is clearly

f−1 : ModOY
→ Modf−1OY

. (3.12)

Since f∗ evidently preserves local fibrations and local weak equivalences, we see that in fact f determines a

continuous Quillen adjunction.

Proposition 10 A map (f,Of ) : (X,OX)→ (Y,OY ) of derived ringed spaces determines an adjunction

Map(Lf∗N,M) ∼= Map(N,Rf∗M) (3.13)

on the level of derived categories.

It will also be convenient to have a theory of derived local-ringed spaces.

Definition 10 A derived local-ringed space is a topological space X equipped with a sheaf of E∞-ring spectra
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OX on X such that at each point x ∈ X the stalk Ox of OX at x is a local E∞-ring spectrum (i.e. π0Ox is

a local ring). A morphism of locally ringed spaces (X,OX)→ (Y,OY ) consists of map f : X → Y of spaces

together with a morphism Of : OY → f∗OX of sheaves of ring spectra on OY such that π0Of : π0OY →

π0f∗OX is a morphism of local rings.

There are two main examples to keep in mind. The first is the case of a derived elliptic curve A over

SpecKC ∼= SpecHPC. The underlying classical elliptic curve A0 is then a complex projective variety and

therefore admits the structure of a complex analytic manifold Ã0 together with a morphism of (classical)

locally ringed spaces (Ã0,O eA0
)→ (A0,OA0). The analytic topology on Ã0 induces an analytic topology on

the underlying space of A, and we denote the resulting derived locally ringed space by Ã. This gives rise to

the circle-equivariant theories originally defined by Grojnowski [11] and studied by a number of others.

The second example of interest is the case of a derived elliptic curve A over SpecKQ ∼= SpecHPQ. The

underlying classical elliptic curve A0 admits a coarser topology known as the torsion-point topology, which

has a basis of open sets consisting of the compliments of the torsion points. This is the site underlying

Greenlees’ construction of rational circle-equivariant elliptic cohomology [10].

3.2.3 S-schemes as locally affine local-ringed spaces

Recall that an ordinary scheme X is defined to be a local ringed space (SpcX,OX) that is locally of the

form (Spc SpecR,OSpec R) for some commutative Z-algebra R. S-schemes may be characterized similarly.

Proposition 11 The category SchS of S-schemes is the full topological subcategory of the category of spaces

equipped with sheaves of S-algebras that are locally affine. 2

In other words, an S-scheme X is a ringed space (SpcX,OX) that is locally equivalent to an affine S-scheme

(Spc SpecR,OSpec R) for some commutative S-slgebra R, and a morphism f : Y → X of S-schemes is just a

morphism (Spc f,Of ) : (SpcY,OY )→ (SpcX,OX) of ringed spaces.

Because of this close relationship between derived schemes and ordinary schemes, there are many prop-

erties of ordinary schemes which generalize nicely to the homotopical setting.

3.2.4 Fibered products of S-schemes

In this section we show that fibered products, defined by a suitable universal property, exist in the category

of S-schemes and are unique up to equivalence.

Definition 11 Let X be an S-scheme and Y → X, Z → X a pair of S-schemes over X. Then the fibered
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product of Y and Z over X is defined to be any S-scheme Y ×X Z such that the natural map

(Y ×X Z)(E)→ Y (E)×X(E) Z(E) (3.14)

is a homotopy equivalence for all S-algebras E.

Note that since X,Y, Z are S-schemes, they are in particular fibrant objects of the Zariski topos, while

SpecE, being representable, is cofibrant, so the mapping spaces have the correct homotopy type.

We construct a model for the fibered product Y ×X Z using atlases (i.e., coverings by affine S-schemes)

and a model for the fibered product of affine derived schemes.

Proposition 12 If X = SpecA, Y = SpecB and Z = SpecC are affine S-schemes, then SpecB ∧A C is a

model for the fibered product Y ×X Z.

Proof. Affine S-schemes are dual to commutative S-algebras, and

AlgS(B ∧A C,E) ∼= AlgS(B,E)×AlgS(A,E) AlgS(C,E) (3.15)

as required. 2

Next we consider the case where X is affine and Y , Z are arbitrary.

Proposition 13 If X = SpecA is an affine S-scheme, then for any pair of X-schemes Y and Z the fibered

product Y ×X Z exists.

Proof. Let V → Y and W → Z be atlases for Y and Z, respectively. By the previous proposition, the

fibered product V ×X W is a coproduct of affine X-schemes and it is easy to check that V ×X W is an atlas

for Y ×X Z. 2

Combining the two propositions we obtain the following theorem.

Theorem 10 In the category of S-schemes, fibered products exist and are unique up to homotopy.

Proof. Let U → X be an atlas for X. It is easy to check that the restrictions Y ×X U and W = Z ×X U

of Y and Z to U are S-schemes, as they are disjoint unions of open subschemes. Hence there are atlases

V → Y ×X U → Y and W → Z ×X U → Z for Y and Z such that the maps Y → X and Z → X factor

through U . We know that the fibered product V ×U W exists as a scheme and gives an atlas for Y ×X Z,

so we see that Y ×X Z is an S-scheme. 2

Corollary 5 Fibered products exist in the category of S-schemes for any S-scheme S.
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Proof. By definition we have a fiber sequence

MapS(T, Y ×X Z)→ Map(T, Y ×X Z)→ Map(T, S); (3.16)

since homotopy limits commute with each other and Map(T, Y ×XZ) is equivalent to the homotopy pullback

Map(T, Y ) ×Map(T,X) Map(T,Z), it follows that MapS(T, Y ×X Z) is equivalent to the homotopy pullback

MapS(T, Y )×MapS(T,X)MapS(T,Z). Moreover, the universal property of homotopy limits shows that Y ×XZ

is unique up to homotopy. 2

3.3 Line Bundles, Divisors and Invertible Sheaves

3.3.1 The strict additive group

One of the first issues to arise when one tries to actually use derived algebraic geometry is the question of

what is the proper analogue of the affine line. In ordinary algebraic geometry, the affine line represents the

functor which associates to a scheme its ring of regular functions. Restricted to affine schemes, this is of

course the functor which associates to a ring its set of elements.

In the derived setting, the first nontrivial continuous functor from ring spectra to spaces that comes

to mind is the one which associates to a ring spectrum R its zero-space Ω∞R. This is represented by the

ring Sym S, the free E∞ ring on the sphere spectrum. The problem with this is that the homotopy ring

π∗Ω∞ Sym S is nowhere close to being the symmetric algebra on the ring π∗Ω∞S.

An obvious remedy for this is to use the ring Σ∞
+ N ∼=

∨
N S instead; it clearly has the feature that

π∗Σ∞
+ N ∼= π∗

∨
N

S ∼=
∨
N
π∗S ∼= π∗S[t], (3.17)

the polynomial algebra on the graded ring π∗S. The disadvantage here is that
∨

N S is not free, or even

necessarily cofibrant, as an E∞-ring spectrum. Hence the (derived) functor it represents is difficult to

compute. We can say the following, however.

Proposition 14 The functor

Map(Σ∞
+ N,−) ∼= E∞(N,Ω∞−) (3.18)

from E∞-ring spectra to E∞-ring spaces factors, up to homotopy, through the category of strictly commutative

topological rings.
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For this reason, we regard the derived scheme

A := A1 := Spec Σ∞
+ N (3.19)

as a strictly commutative derived analogue of the affine line, and refer to it as the strict affine line. The

associated additive group is therefore called the strict additive group.

3.3.2 The strict multiplicative group

The strict multiplicative group ought to be the group of linear automorphisms of the strict additive group.

If we regard the ring Σ∞
+ N representing the strict additive group as the group ring on the commutative

monoid N, the strict multiplicative group is analogously the group ring on the commutative monoid Z. As

in algebra, the coaction of Z on N induces a coaction of Σ∞
+ Z on Σ∞

+ N and therefore an action of Spec Σ∞
+ Z

on Spec Σ∞
+ N. In this we obtain the analogue

G := Gm := Spec Σ∞
+ Z (3.20)

of the multiplicative group.

3.3.3 Derived principal G-bundles and derived line bundles

Having defined the derived abelian group scheme G, we immediately obtain the notion of a principal G-

bundle.

Proposition 15 Let BG denote the geometric realization of the derived abelian group scheme G, regarded

as a derived Zariski sheaf. Then BG represents the functor which associates to a derived scheme X the

moduli space of principal G-bundles on X.

Similarly, we define a line bundle on a derived scheme X to be a scheme of the form

P ×G A→ X (3.21)

for some principal G-bundle P → X.
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3.4 Elliptic Spectra and Oriented Elliptic Curves

3.4.1 Abelian group S-schemes

Recent unpublished work of J. Lurie on topological modular forms seems to indicate that elliptic spectra E

are really just shadows of the much more general notion of a derived elliptic curve. In order to make this

precise we need the notion of an abelian group object in the category of S-schemes.

Let A be a derived scheme over a base scheme SpecE for some commutative S-algebra E. If T is another

derived E-scheme, let A(T ) denote the space of T -valued points of A.

Definition 12 An abelian group structure on the derived scheme A is a factorization of its functor of points

A(−) : Affop
E → S through the category Ab(S) of topological abelian groups.

Of course, such a factorization will in general only exist up to coherent homotopy.

There is a slight simplification of the definition of a derived abelian group scheme that is useful in practice.

It requires the following well-known result, for which the author is unable to find a suitable reference.

Proposition 16 The category of topological abelian groups is equivalent to the category of connective HZ-

module spectra as topological model categories. 2

Oftentimes it may be easier to factor the functor of points of a derived scheme through the category of HZ-

modules, which maps to the category of spaces via the zero-space functor Ω∞. This automatically factors

through the category of connective HZ-module spectra.

We shall be primarily concerned with the case of derived elliptic curves over a derived scheme S.

Definition 13 A derived elliptic curve over S is a flat abelian S-scheme A such that π0A is an elliptic

curve over π0S.

This definition, however, is a bit too general, for if S is the spectrum of an even-periodic R-algebra E we

must ensure that the formal group of A is equivalent to the formal group Spf ECP∞+ .

We shall also require formal analogues of our abelian group S-schemes. Fortunately we will not need

these concept in general, but only in the particular case of in which our formal group schemes are isomorphic

to the formal affine line. Let p : A → A be the pth-power map and let 0 : S → A = A1
S denote the zero

section. Define the S-scheme Nilp = NilpS to be the pullback

Nilp - S

A
? p+ 1- A

0

?

(3.22)
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in the category of S-schemes (if S = SpecR is affine then this corresponds to a homotopy pushout in the

category of R-algebras). Clearly Nilp has the universal property that Nilp(R) is the subspace of the space of

E∞-ring maps from Σ∞
+ N to R consisting of the p + 1-nilpotent points. Also define Nil−1 to be the empty

S-scheme and

Nil := Nil∞ = colimp Nilp . (3.23)

Note that NilS carries a number of important abelian structures, most notably the additive structure ÂS

and the multiplicative structure ĜS . We write NilS when we are referring to the underlying scheme without

a choice of abelian structure.

For our purposes we will only need strictly commutative, one-dimensional formal group schemes over a

derived scheme S.

Definition 14 A one-dimensional abelian formal S-scheme is an S-scheme Â, isomorphic to NilS, together

with a strictly commutative group structure on Â. A choice of isomorphism γ : Â → NilS is called a

coordinate on Â.

Hence, as a functor to spaces, the R-valued points of Â are identical to the R-valued points of Nil, namely the

subspace of E∞(Σ∞
+ N, R) consisting of the nilpotents. However, the group structure may be quite different.

3.4.2 Elliptic spectra

We begin with the definition of an elliptic spectrum.

Definition 15 An elliptic spectrum (E,A, ϕ) consists of an even periodic R-algebra E together with an

elliptic curve A0 over E0 and an isomorphism of formal groups

ϕ : Spf π0E
BT → Â0, (3.24)

where Â0 as usual denotes the formal completion of A0 along the identity section.

When the context is clear we will usually omit A and ϕ from the notation and simply refer to E as an elliptic

spectrum with elliptic curve A0 and formal group Â0. Actually this ambiguity is rather suggestive, since the

only thing missing seems to be a derived elliptic curve.

Given an elliptic spectrum E, one might ask whether or not there exists a derived elliptic curve A over

E such that A0 is isomorphic to the elliptic curve of E. If such an A does exist, one is naturally led to the

question of whether or not the classical formal group underlying the derived formal group Â is isomorphic

to the formal group of E, or better if perhaps Â is equivalent to Spf EBT as derived formal groups.
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3.4.3 Oriented S-schemes

In order to compare the two derived formal groups we require that the derived elliptic curve comes equipped

with an orientation.

Definition 16 An orientation of an abelian S-scheme A is a homomorphism of strictly commutative topo-

logical groups

θ : BT→ A(S), (3.25)

where A(S) denotes the space of sections of A over S, i.e. the group of S-valued points of A. An oriented

elliptic curve A over S is a derived elliptic curve A over S together with an orientation.

Suppose that S = SpecE for some even-periodic R-algebra E. It is easy to see that certain oriented elliptic

curves over S give rise to elliptic structures on E. Indeed, since BT is connected,

Hom(BT, A(S)) ∼= HomS(Spf EBT, A), (3.26)

and therefore any orientation adjoint to an equivalence η̂ : Spf EBT → Â will do. The much harder question

is determining the moduli space of oriented elliptic curves over a given elliptic spectrum.

There is a considerable amount of current research in this direction. The Goerss-Hopkins-Miller approach,

which has apparently succeeded although not all the details have yet appeared in print, covers a certain

compactification of the moduli space of elliptic curves (obtained by adding nodal curves at infinity) with

a sheaf of commutative S-algebras Otmf . Recently Lurie has announced that the moduli space of oriented

elliptic curves is representable by a Delign-Mumford S-stack MEll, and while the precise claim in not known

to the author, the suspicion is that the space of global sections of a suitable compactification of MEll is

equivalent to the space of global sections of Otmf .
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Chapter 4

Equivariant Elliptic Cohomology

4.1 Equivariant Cohomology Theories from Oriented Abelian

Schemes

4.1.1 A general construction

Fix a topological group G and let Orb(G) denote the category of G-orbits, by which we mean the full

topological subcategory of the topological category of G-spaces consisting of those objects of the form G/H

for some closed subgroup H of G. It is a consequence of Elmendorf’s theorem that the homotopy theory

of G-spaces is equivalent to the homotopy theory of Orb(G)-spaces, i.e. continuous presheaves of spaces on

Orb(G), equipped with the topological analogue of the Bousfield-Kan model structure.

Now the topological model category SOrb(G) of Orb(G)-spaces may be regarded as the free topological

model category generated by the small topological category Orb(G), in the sense that any continuous Orb(G)-

diagram Γ in an arbitrary topological model category T determines a topological Quillen adjunction

T(Γ∗X,Y ) ∼= SOrb(G)(X,Γ∗Y ) (4.1)

where

Γ∗X := Γ⊗Orb(G) X (4.2)

is the categorical tensor product of the Orb(G)-diagram Γ with the Orb(G)-space X, and

Γ∗Y := MapOrb(G)(Γ, Y ) (4.3)

is the Orb(G)-space obtained by mapping the Orb(G)-diagram Γ into Y .
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4.1.2 The derived scheme Hom(G◦, A)

Let A be a derived abelian group scheme over some base scheme S and let F be a finitely generated abelian

group. We wish to define a derived abelian group scheme Hom(F,A) of homomorphisms from F to A.

To specify a limit-preserving functor Abop → Ab(SchS) it suffices to specify the functor on a generator

Z of Ab. Thus we define

Hom(Z, A) := A. (4.4)

We formally extend this to a functor on all of Abop be requiring that Hom(−, A) preserves finite homotopy

limits. Any finitely-generated abelian group admits a cofibrant replacement in the derived category of

Z-modules by a cellular Z-module of the form

Z⊕p → Z⊕q (4.5)

for some nonnegative integers p and q. Hence we define Hom(F,A) to be the fiber of the induced map

Aq → Ap; this specifies Hom(F,A) up to natural equivalence.

Precomposing with the functor Hom(−,T) from compact abelian Lie groups to finitely generated abelian

groups gives us a continous covariant functor from the category of compact abelian Lie groups to the

category of abelian S-schemes. If G is a compact abelian Lie group then we write AG for the scheme

Hom(Hom(G,T), A).

4.1.3 A functor from G-orbits to AG-schemes

Let i : H → G be the inclusion of a closed subgroup and let K = G/H be the associated G-orbit. Then

corresponding to the quotient homomorphism q : G→ K we obtain a map of abelian S-schemes

Aq : AG → AK . (4.6)

We define the AG-scheme AG(K) to be the fiber of Aq, so that AG(K) fits into the fiber sequence

AG(K)→ AG → AK (4.7)

of abelian S-schemes.

If A is oriented, then taking S-valued points and gives a morphism of fiber sequences of topological
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abelian groups
BH - BG - BK

Map(S,AG(K))
?

- Map(S,AG)
?

- Map(S,AK)
?

(4.8)

and therefore induces a homomorphism

K → AutAG
AG(K) (4.9)

in which K acts on the AG-scheme AG(K) by translation. That is, the fiber of the homomorphism

Map(S,AG(K)) → Map(S,AG) is precisely the space of translation automorphisms of AG(K) which act

trivially on AG.

Proposition 17 Let A be an oriented abelian group scheme over a derived scheme S. Then A determines

a continuous functor AG : Orb(G)→ SchAG
by the rule AG(G/H) := AH on objects and, if K is a subgroup

of H, the natural map MapG(G/K,G/H) ∼= G/H → MapAG
(AK , AH) on morphisms.

4.2 From finite G-complexes to AG-schemes

4.2.1 A functor from G-spaces to affine AG-schemes

Recall that the category AffAG
of affine AG-schemes is topologically cocomplete and that the topological

model category of G-spaces is topologically equivalent to the topological model category of Orb(G)-spaces.

Hence, to specify and homotopy colimit preserving functor from G-spaces to AG-schemes, it is enough to

specify a continuous Orb(G)-diagram of AG-schemes.

Theorem 11 (Elmendorf [19]) Let X be a G-space. Then the natural map from the geometric realization

of the simplicial G-space

∐
K≤H≤G

G/K ×Map(G/K,G/H)×Map(G/H,X) -
-

∐
H≤G

G/H ×Map(G/H,X) (4.10)

to X is a weak equivalence of G-spaces.

Therefore we may define the AG-scheme AG(X) to be the geometric realization of the simplicial AG-scheme

∐
K≤H≤G

AK ⊗Map(G/K,G/H)⊗Map(G/H,X) --
∐

H≤G

AH ⊗Map(G/H,X). (4.11)
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In practice, however, one would use a cellular decomposition of a G-space X in order to obtain a cellular

decomposition of the AG-scheme AG(X).

We will also write X ⊗AG := X ⊗Orb(G) AG for the AG-scheme AG(X) since it is the categorical tensor

product of the Orb(G)op-diagram Map(G/H,X) with the Orb(G)-scheme AG(G/H).

4.2.2 A scheme-theoretic formulation of the axioms

In practice it is usually easier to regard equivariant elliptic cohomology as a covariant functor from finite

G-spaces to AG-schemes. The geometric nature of the category of AG-schemes reflects the geometry of

the category of finite G-spaces, or, better, compact G-manifolds. For example, principal fibrations of G-

manifolds go to principal fibrations of AG-schemes, etc. Moreover, we have seen that a covariant functor

from finite G-spaces to AG-schemes determines a contravariant functor from finite G-spectra to coherent

OAG
-modules, so the former construction is perhaps more fundamental.

Recall that a homomorphism of compact abelian Lie groups ϕ : H → G induces a homomorphism of

derived abelian group schemes ϕ : AH → AG. This in turn induces a geometric morphism

SAffAH (ϕ∗X,Y ) ' SAffAG (X,ϕ∗Y ) (4.12)

of homotopy topoi in which, if X → AG is an AG-scheme, then ϕ∗X is the base-change X ×AG
AH → AH ;

the right adjoint ϕ∗ is harder to describe. Note that ϕ∗ not only preserves schemes but affine schemes as

well.

It turns out that ϕ∗ has a left adjoint ϕ!, which as a functor on schemes takes an AH -scheme Y → AH to

the AG-scheme Y → AH → AG obtained by composition with ϕ. In other words, ϕ∗ is the inverse image of

an essential geometric morphism SAff(AG) → SAff(AH), totally analogous to the essential geometric morphism

SOrb(G) → SOrb(H). Note that ϕ! preserves affine schemes if and only if ϕ : AH → AG is an affine map. This

will be the case when ϕ : H → G is a finite map, such as a closed immersion.

More specifically, an equivariant elliptic cohomology theory in this sense should consist of a covariant

functor (−) ⊗G A from the topos SG of G-spaces to the topos SAff(AG) of Zariski sheaves on AG satisfying

the following change-of-group axioms:

(i) Induction: if ϕ : H → G is the inclusion of a closed subgroup then for any finite H-space Y there is

a natural equivalence ϕ!(Y ⊗H A)→ (ϕ!Y )⊗G A;

46



(ii) Restriction: if ϕ : H → G is any homomorphism then for any finite G-space X there is a natural

equivalence (ϕ∗X)⊗H A→ ϕ∗(X ⊗G A);

(iii) Completion: if i : ÂG → AG denotes the formal completion then for any finite G-space X there is a

natural equivalence i!i∗(X ⊗G A)→ (X × EG)⊗G A;

(iv) Kunneth: if X is a finite G-space and Y is a finite H-space then there is a natural equivalence

(X × Y )⊗G×H A→ π∗G(X ⊗G A)× π∗H(Y ⊗H A).

For infinite G-spaces we adopt the usual convention; that is, a general G-complex X is equivalent to the

(filtered) homotopy colimit of its finite G-subcomplexes, so we define

X ⊗G A = (colimλXλ)⊗G A := colimλXλ ⊗G A, (4.13)

to be the formal filtered homotopy colimit of AG-schemes, which is to say a formal AG-scheme.

4.2.3 Verification of the axioms

We start with the induction axiom. Let ϕ : H → G be the inclusion of a closed subgroup. Consider the

special case of an H-orbit H/K, so that H/K ⊗H A ' AK . On the other hand, the induced G-space

ϕ!(H/K) ' ∗ ×K H ×H G ' ∗ ×K G ' G/K has cohomology G/K ⊗G A ' AK , so the statement holds for

orbits. The general case follows from the fact that ϕ! is left-adjoint to ϕ∗ and therefore preserves continuous

homotopy colimits.

For the restriction axiom, let ϕ : H → G be any homomorphism of compact Lie groups, let K be a closed

subgroup of G, and let L := ϕ−1K be the inverse image of K in H. Since ϕ∗ has a right adjoint ϕ∗, it

necessarily preserves continuous homotopy colimits. It therefore suffices to check the restriction axiom on

orbits, which amounts to verifying that as AH -schemes, G/K ⊗H AL ' AK ×AG
AH , where G/K is acted

on by H via ϕ with stabilizer L.

This is immediate if ϕ : H → G is a fibration, which is to say, surjective onto the components of G

containing a point in the image of H. For then ϕ : AH → AG is also a fibration so the homotopy pullback

is equivalent to the ordinary pullback AL, and ϕ∗G/K ' H/L is the orbit which cohomology AL.

Since any homomorphism ϕ : H → G factors as the composite of a surjection followed by an injection,

we may reduce to the case in which ϕ : H → G is the inclusion of a closed subgroup. Then a G-orbit G/K
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corresponding to the inclusion i : K → G of a closed subgroup determines a short exact sequence of short

exact sequences of compact abelian Lie groups

∗ ∗ ∗

∗ - L
?

- K
?

- K/L
?

- ∗

∗ - H

j

? ϕ - G

i

?
- G/H

?
- ∗

∗ - H/L

q

? ψ- G/K

p

?
- (G/K)/(H/L)

?
- ∗

∗
?

∗
?

∗
?

(4.14)

such that L is the intersection of H with K in G.

Consider the very special case in which K = ∗.

Proposition 18 The natural map G⊗H SpecE → SpecE ×AG
AH is an equivalence.

Proof. Consider the commutative diagram

G⊗H SpecE - BH ⊗ SpecE - AH

SpecE
?

- BG⊗ SpecE
?

- AG

?

; (4.15)

since both squares are evidently homotopy cartesian it follows the the rectangle itself is homotopy cartesian.

2

The case of a general orbit G/K now follows. Indeed, since p : G → G/K and q : H → H/L are

surjective, we have that

(ϕ∗G/K)⊗H A ' (q∗ψ∗G/K)⊗H A (4.16)

' q∗((ψ∗G/K)⊗H/L A) ' q∗ψ∗(G/K ⊗G A)

' ϕ∗p∗(G/K ⊗G A) ' ϕ∗(G/K ⊗G A),
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as claimed.

The proof of the completion axiom follows along similar lines. The functor

i∗ : SchAG
→ Sch

bAG
(4.17)

is the pullback (−)×AG
ÂG, and similarly the cohomology of the functor

(−)× EG : SG → SG
EG (4.18)

is the pullback (−)×AG
EG⊗AG.

We claim that the cohomology of EG, as an AG-scheme, is precisely the formal completion i : ÂG → AG.

To see this, note that since EG is a free G-space, its cohomology is calculated as the realization of the

simplicial AG-scheme

· · ·
-
-- EG⊗G⊗AG(G) -- EG⊗AG(G), (4.19)

which is clearly the same as EG⊗G AG(G).

Proposition 19 The natural map

EG⊗G AG(G)→ BG⊗ S (4.20)

is an equivalence.

Proof. Since G acts trivially on S, the natural equivalence AG(G) → S is G-equivariant and therefore

induces an equivalence of coequalizer diagrams

EG⊗G⊗AG(G) - EG⊗G⊗ S

EG⊗AG(G)
??

- EG⊗ S.
??

(4.21)

The desired equivalence EG⊗G AG(G)→ EG⊗G S ' BG⊗ S follows by passing to coequalizers. 2

Hence we are reduced to giving equivalences BG ⊗ S → ÂG, natural in compact abelian Lie groups G.

Recall that the natural map

ZCP1 ⊗ S → Â (4.22)

adjoint to the inclusion

CP1 ⊗ S ' Spec OA/I
2 → colimp Spec OA/I

p ' Â (4.23)
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is an equivalence of derived formal group schemes, and that, just as AG is defined to be the scheme

Hom(G◦, A) of G◦-order points of A, ÂG may also be taken to be the formal scheme Hom(G◦, Â) of G◦-order

points of Â. Since BG may be regarded as the space Hom(G◦, BT) of G◦-order points of BT and the map

ZCP1 → BT is an equivalence, it follows that BG ⊗ S and ÂG are naturally equivalent as derived formal

group schemes.

It remains only to verify the Kunneth formula, which proceeds along the same lines. It boils down to

the fact that the natural map

AG×H → AG ×AH (4.24)

is an equivalence for any pair of abelian compact Lie groups G and H.

4.3 Equivariant Elliptic Cohomology and Homotopy Topoi

4.3.1 Suitable sites of definition

It is well known how different sites can give rise to equivalent topoi. For example, the topos of a topological

space X, i.e. the category of sheaves on the site Open(X) of open subsets of X, with the usual notion of

covering, is equivalent to the category of sheaves on the site determined by any basis for the topology of X.

This is just another way of saying that sheaves are determined locally.

For us, it will be convenient to model the derived Zariski topos of an S-scheme X as the topological model

category SSch(X) of sheaves of spaces on a small, full subcategory of the Zariski site Sch(X) of X-schemes.

This is equivalent to the topos SAff(X) via the inclusion of the full topological subcategory Aff(X)→ Sch(X),

since a general X-scheme is necessarily patched together from affine X-schemes.

Nevertheless, this point of view has a distinct advantage when considering geometric morphisms induced

by maps of S-schemes f : T → S. Although the essential geometric morphism associated to the S-scheme

structure map p : T → S is always induced by a morphism of sites p∗Aff : Aff(S)→ Aff(T ), unless p itself is

affine, p∗Aff will not admit a left adjoint until we extend p∗Aff to the functor p∗Sch : Sch(S) → Sch(T ). Then

the left adjoint p! is simply the functor which takes an T -scheme and regards it as an S-scheme via p.

The example of interest to us is the morphism of SpecE-schemes associated to an oriented elliptic curve

A → SpecE and a homomorphism of compact abelian Lie groups ϕ : H → G. Since the associated

homomorphism of abelian group schemes AH → AG is affine if and only if ϕ is finite (which is to say that

the fibers are finite discrete spaces), the pushforward p! of an affine AH -schemes is not in general an affine

AG-scheme.
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The ideal situation is one in which all morphisms of homotopy topoi of interest to us are induced by

morphisms of sites. We have already considered the algebro-geometric side of the story, so it remains to

consider the topological side. Given a homomorphism of compact Lie groups ϕ : H → G, it is not in general

the case (unless ϕ is surjective) that the restriction of a G-orbit is an H-orbit. However, it is always the case

that the induced G-space of an H-orbit is a G-orbit. The is precisely opposite the case of schemes, and in

particular we see that p∗ does not restrict to a morphism of sites Orb(G) → Orb(H). The solution to this

is to enlarge the orbit category.

Let G be a compact Lie group, and define a generalized G-orbit to be the total G-space of the fibre

bundle P ×GG/H →M associated to a principal G-bundle P on a compact manifold M . This is the natural

generalization to manifolds of the notion of a finite G-set with stabilizer H for a finite group G and subgroup

H. We write Orb(G) for the category of generalized G-orbits, since the particular site of definition can be

chosen as a matter of convenience. The advantage of considering generalized G-orbits is that the restriction

of a generalized G-orbit P to H via a homomorphism H → G is a generalized H-orbit.

Proposition 20 If ϕ : H → G is a homomorphism of compact Lie groups then the restriction functor

ϕ∗ : Orb(G)→ Orb(H) admits a left adjoint ϕ! : Orb(H)→ Orb(G).

Proof. By definition, ϕ!, if it exists, would satisfy the formula

MapG(ϕ!Q×H H/L,P ×G G/K) ∼= MapH(Q×H H/L,ϕ∗P ×G G/K) (4.25)

∼= MapG(Q×H H/L×H G,P ) ∼= MapG(Q×H G×G G/ϕ(L), P ×G G/K);

since Q×H G×G G/ϕ(L) is a fiber bundle with structure group G and fiber G/ϕ(L), we see that ϕ!Q is a

generalized G-orbit. 2

The next thing to do is define the cohomology of generalized orbits. To this end, let A→ SpecE be an

oriented elliptic curve and let G be a compact abelian Lie group. Define a functor p∗ : Orb(G)→ Sch(AG)

by the rule

(P ⊗G G/H)⊗G A := P ⊗G (G/H ⊗G A) ∼= P ⊗G AH , (4.26)

where G acts on the AG-scheme AH via the translation action of G/H on AH . Note that this is homotopy

invariant since G acts freely on P .

Recall that the terminal object ∗T of a homotopy topos T determines a canonical geometric morphism

T → S defined by the adjunction

T(X ⊗ ∗T, Y ) ∼= S(X,Map(∗T, Y )) (4.27)
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in which the space of points Map(∗, Y ) of a T-object Y should be regarded as a T-externalization functor,

right adjoint to the T-internalization functor XT := X⊗∗T. Note that since (−)T preserves finite homotopy

limits, structured objects such as S-categories internalize to T-categories.

Now we already know that in order to specify a continuous colimit-preserving functor T → SOrb(G) it is

enough to give a continuous Orb(G)-diagram F(G) in T. The question arises, then, as to when this functor

will be left exact. As might be expected, this has to do with when the T-category F(G)T associated to the

Orb(G)-diagram F(G) is filtered.

Note that the T-internalization Orb(G)T of the orbit category is filtered since Orb(G) has a terminal

object, the trivial orbit.

The functor Orb(G)→ SAff(AG) has the property that it factors through the Yoneda embedding Aff(AG)→

SAff(AG). In other words, it is determined by a morphism of sites f∗ : Orb(G) → Aff(AG). It follows that

the restriction functor f∗ : SAff(AG) → SOrb(G) has both left and right adjoints f! and f∗, respectively, given

by the usual formulas for left and right Kan extension. Hence f∗ : SAff(AG) → SOrb(G) is the inverse image

of an essential geometric morphism f : SOrb(G) → SAff(AG).

4.3.2 S-algebras from sheaves on the Zariski topos of S

We need a general method, analogous to taking rings of regular functions, of recovering S-algebras from

S-schemes or, more generally, sheaves on the Zariski site associated to S.

Proposition 21 The Yondea embedding y∗ : AffS → SAffS has a left adjoint y∗. 2

Proof. Any sheaf X may be canonically presented as a colimit of representable sheaves SpecE for some

commutative S-algebras E. That is, X is the coequalizer of the pair of maps

∐
E,F

SpecF ⊗Map(SpecF,SpecE)⊗X(E) --
∐
E

SpecE ⊗X(E), (4.28)

where the objects E range over some essentially small full subcategory of commutative S-algebras. But the

category AffS itself is topologically bicomplete, so we may define y∗X to be the colimit of the same diagram

in the category of affine S-schemes. 2

Composed with the contravariant opposite-category functor AffS → AlgS, we obtain a contravariant

functor Γ : SAffS → AlgS which takes homotopy colimits to homotopy limits. In other words, Γ(X) is the

commutative S-algebra obtained as the equalizer of the pair of maps

∏
E

EX(E) --
∏
E,F

EX(E)×Map(E,F ). (4.29)
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In practice, of course, we require that X is both cofibrant and fibrant in order to ensure that Γ(X) has

the correct homotopy type. The notation is meant to be suggestive, since Γ∗ (restricted to the category of

S-schemes) can also be regarded as the pushforward to Spec S of the structure sheaf, i.e. the derived functor

of global sections.

4.3.3 The equivariant elliptic cohomology groups E∗
G

Replacing the sphere spectrum by an elliptic spectrum E, we apply the procedure of the last section to an

oriented elliptic curve A → SpecE in order to obtain, for each G-space X, actual E-algebras Γ(X ⊗G A).

We write Γ∗(X ⊗G A) for the graded ring π∗Γ(X ⊗G A).

If ∗ → X is a pointed G-space, define the E-module EX
G to be the fibre of the map of E-algebras

Γ(X ⊗G A)→ Γ(∗ ⊗G A) ∼= Γ(AG). (4.30)

We shall write E−∗
G (X) for the graded π∗E-module π∗EX

G . The abbreviation E∗
G(X) is somewhat of an

abuse of notation, since the G-equivariant theories E∗
G(−) depend on the particular oriented elliptic curve

A→ SpecE. On the other hand, this notation is suggestive of the fact that the EG are equivariant extensions

of E-theory. It remains to show that E∗
G(−) is actually a cohomology theory, although this is formal. We

sketch the argument.

A cohomology theory on G-spaces is a (weak) homotopy-invariant contravariant functor from the category

of pointed G-spaces to Z-graded abelian groups that satisfies the suspension and cofibre axioms. In other

words, if X is a pointed G-space then for each n ∈ Z there is an isomorphism

En+1
G (S1 ∧X) ∼= En

G(X), (4.31)

and if X → Y is a G-equivariant map of pointed G-spaces with cofibre Z, then for each n the induced

sequence of abelian groups

En
G(Z)→ En

G(Y )→ En
G(X) (4.32)

is exact.

Now for G a compact abelian Lie group and A an oriented elliptic curve over an S-algebra E, we claim

that the functor E∗
G(−) is a G-equivariant cohomology theory. The homotopy invariance is immediate, since
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π∗Γ((−)⊗G A) is a homotopy-invariant functor. To verify the suspension axiom, it suffices to observe that

ES1∧X
G

∼= ΩEX
G (4.33)

and that for any spectrum F , π∗ΩF ∼= π∗−1F .

Lastly, for the cofibre axiom, it suffices to observe that the functor Γ((−)⊗GA) takes homotopy colimits

to homotopy limits. Thus if X → Y is a map of G-spaces with cofibre Z, then

Γ(Y ⊗G A)→ Γ(X ⊗G A) (4.34)

is a fibre sequence of E-algebras, so that

EZ
G → EY

G → EX
G (4.35)

is a fibre sequence of E-modules. Applying πn, it follows that the sequence

E−n
G (Z)→ E−n

G (Y )→ E−n
G (X) (4.36)

is exact.
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Chapter 5

Equivariant Elliptic Cohomology of
Complex Representation Sphere
Spectra

5.1 Equivariant Thom Spaces

5.1.1 Borel-equivariant Chern classes

We shall see that the obstruction to equivariant elliptic orientability lies in the Borel-equivariant Chern

classes. Throughout this section G will denote a fixed compact abelian Lie group and

U := colimn U(n) (5.1)

will denote the infinite unitary group.

Recall that the monoid Rep(G) of (isomorphism classes of) complex representations of G is naturally

isomorphic to NG◦, the free monoid on the group G◦ := Hom(G,T) of irreducible complex representations

of G. Let U := UG be the complete complex G-universe

U := C⊕NG◦ . (5.2)

Note that the classifying space BGU(n) of principal G-equivariant U(n)-bundles is modeled by the Grass-

mannian G(U, n) of n-dimensional subspaces of U.

We record the following well-known fact concerning the moduli G-space BGK of principal G-equivariant

K-bundles.

Proposition 22 Let G/H be a G-orbit. Then there is a natural map of G/H-spaces

MapG(G/H,BGK)→ Map(EG×G G/H,BK), (5.3)

55



where G/H acts on EG×G G/H via the map

G/H ∼= AutG(G/H)→ AutBG(EG×G G/H)→ Aut(EG×G G/H) (5.4)

which translates by gH.

Proof. A convenient model for BGK is the G-space Map(EG,EK)/K. Since BK has a trivial K-action,

the map of K-spaces

Map(EG,EK)→ Map(EG,BK) (5.5)

induced by the projection EK → BK factors through the quotient

Map(EG,EK)→ Map(EG,EK)/K. (5.6)

Taking H-fixed points gives the result. 2

Define the Borel-equivariant Eilenberg-Mac Lane space KG(Z, n) to be the G-space

KG(Z, n) := Map(EG,K(Z, n)). (5.7)

Note that the non-equivariant Chern classes cn : BU → K(Z, 2n) induce G-maps Map(EG,BU) →

Map(EG,K(Z, 2n)).

Definition 17 The Borel-equivariant Chern classes

cnG : BGU → KG(Z, 2n) (5.8)

are defined as the composite of the natural G-map BGU → Map(EG,BU) with the G-map Map(EG,BU)→

Map(EG,K(Z, 2n)) induced by the non-equivariant Chern classes.

The inclusions BGU(k)→ BGU give Borel-equivariant Chern classes ciG for i ≤ k.

5.1.2 The Thom spaces MGU(n)〈2k〉

We can now generalize to the equivariant world the definition of the connective covers BU(n)〈2k〉 of BU(n).

Recall that the BU(n)〈2k + 2〉 are defined inductively as the fibers of the Chern classes

ck : BU(n)〈2k〉 → K(Z, 2k). (5.9)

56



Following this recipe, we define spaces BGU(n) in precisely the same way. That is, we set

BGU(n)〈2〉 := BGU(n) (5.10)

and inductively define BGU(n)〈2k + 2〉 to be the fiber of the Borel-equivariant Chern class

ckG : BGU(n)〈2k〉 → KG(Z, 2k). (5.11)

In particular, we obtain a tower of fibrations

BGU(n)〈2n〉 → · · · → BGU(n)〈2k〉 → · · · → BGU(n). (5.12)

Now the tautological G-equivariant complex n-plane bundle

V (n)→ BGU(n) (5.13)

pulls back to give canonical bundles

V (n)〈2k〉 → BGU(n)〈2k〉 (5.14)

for each k ≤ n (we needn’t worry about the BGU(n)〈2k〉 for k > n since they are equivariantly contractible).

Definition 18 The G-equivariant Thom space MGU(n)〈2k〉 is the Thom space of the G-equivariant complex

vector bundle V (n)〈2k〉; i.e., it fits into the cofiber sequence of pointed G-spaces

S(V (n)〈2k〉)+ → BGU(n)〈2k〉+ →MGU(n)〈2k〉 (5.15)

where S(V (n)〈2k〉) denotes the sphere bundle of V (n)〈2k〉.

5.1.3 The string group and its complex analogue

We review the usual homotopy theoretic construction of the string group. Since for n sufficiently large

π1SO(n) ∼= Z/2Z, (5.16)
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SO(n) has a double cover Spin(n), a connected and simply connected compact Lie group. Now

H3(Spin(n)) ∼= Z, (5.17)

and it can be shown that the K(Z, 2)-bundle over Spin(n) corresponding to the choice of a generator γ :

Spin(n)→ K(Z, 3) has the structure of an infinite-dimensional Lie group called String(n). In particular, we

obtain a short exact sequence of topological groups

K(Z, 2)→ String(n)→ Spin(n) (5.18)

which is also a fibration sequence. Taking the colimit over all n, the resulting sequence

K(Z, 2)→ String→ Spin (5.19)

shows that String is an extension of Spin by K(Z, 2).

The analogue for complex Lie groups is slightly simpler. Again, for n sufficiently large,

H3(SU(n)) ∼= Z (5.20)

and the choice of a generator γ : SU(n)→ K(Z, 3) gives a fibration

K(Z, 2)→ StringC → SU(n). (5.21)

Taking the colimit over all n, we obtain a fibration

K(Z, 2)→ StringC → SU (5.22)

which gives StringC the structure of an extension of SU by K(Z, 2). In particular, we see that B StringC is

homotopy equivalent to the space BU〈6〉.

5.1.4 The fixed point spaces BGU〈2k〉H

In order to calculate the equivariant elliptic cohomology of the BGU〈2k〉 we must first analyze the associated

Orb(G)-space of fixed points BGU〈2k〉H .
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Proposition 23 The realization of the Orb(G)-space

ZH◦ ×BU (5.23)

is a model for BGU〈0〉.

Proof. Since U ∼= colimn∈N U(n), we have that BU ∼= colimnBU(n). Since G is abelian, we know from the

discussion of equivariant classifying spaces in [19] that for any compact Lie group L, there is an equivalence

of G/H-spaces

BGL
H '

∐
ρ∈Rep(H,L)

BZ(ρ), (5.24)

where Rep(H,L) is the set of conjugacy classes of homomorphisms ρ : H → L and Z(ρ) is the centralizer of

ρ in L, i.e. the group of l ∈ L such that

ρ(h) = lρ(h)l−1 (5.25)

for all h ∈ H. Taking the colimit over n ∈ N and forming the group completion ZHo × BU of the monoid

NHo ×BU , it follows that

BGU〈0〉H ' ZHo ×BU (5.26)

as G/H-spaces. 2

Let IHo denote the augmentation ideal in the group ring ZHo.

Proposition 24 For each n ∈ N there is a short exact sequence of abelian groups

∗ → In+1H◦ → InH◦ → Symn
Z H

◦ → ∗ (5.27)

where InH◦ is the image of the natural map

Symn
ZHo IH◦ → In−1H◦ (5.28)

from the nth symmetric power of the augmentation ideal IHo over ZHo to In−1H◦.

Proof. This is an easy consequence of the universal properties of the functors Symn, I, Z, and the image. 2

Proposition 25 For k ≤ 2, the realization of the Orb(G)-space

IkHo ×BU〈2k〉 (5.29)
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is a model for BGU〈2k〉.

Proof. We have already taken care of the case k = 0. For k = 1, it suffices to observe that KG(Z, 0) ∼= Z ∼=

K(Z, 0) and Sym0
Z H

◦ ∼= Z. For k = 2, we have

KG(Z, 2)H ' Map(BH,BT) ' Hom(H,T)×BT ' H◦ ×K(Z, 2), (5.30)

and therefore a map of fiber sequences

BGU〈4〉H - BGU〈2〉H - KG(Z, 2)

I2H◦ ×BU〈4〉
?

- IH◦ ×BU〈2〉
?

- H◦ ×K(Z, 2)
?

(5.31)

such that the maps on the total spaces and base spaces are equivalences. Hence the fibers are equivalences

as well. 2

For k = 3, however, we get an extra factor of K(H◦, 1) from the fibration

I3H◦ ×K(H◦, 1)×BU〈6〉 → I2H◦ ×BU〈4〉 → Sym2
Z H

o ×K(H◦, 2)×K(Z, 4), (5.32)

where of course the base space is really KG(Z, 4)H . But the map

K(Ho, 1)× I3H◦ ×BU〈6〉 → I2Ho ×BU〈4〉 (5.33)

clearly factors through the map

I3H◦ ×BU〈6〉 → I2Ho ×BU〈4〉, (5.34)

and this induces a similar factorization on Thom spaces.

It is useful to consider the group ring ZA and the powers IkA of the augmentation ideal for an arbitrary

abelian group object in a homotopy topos. Ideally, we wish to define objects JnA representing the groups

Hom(JnA,B) ' Cn(A,B) (5.35)

of B-valued n-cocycles on A. We state some facts regarding these objects without proof.

Since C0(A,B) = Map(A,B), we have that J0A ' ZA, the free abelian group object on A. Similarly,

C1(A,B) = Map+(A,B), so J1A ' IA, the augmentation ideal in the group ring ZA.
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More generally, we have that

JnA ' Symn
ZA IA, (5.36)

the nth symmetric power of the ZA-module IA. This naturally maps to InA, the nth power of the augmen-

tation ideal IA. We define KnA to be the kernel of this map, giving a short exact sequence of functors

∗ → Kn → Jn → In → ∗ (5.37)

of abelian group objects in T.

Now if Â → SpecE is the derived formal group of an even-periodic S-algebra E, the results of Ando-

Hopkins-Strickland [4] imply that the derived formal group scheme Spf EBU〈2n〉 (at least for n ≤ 3) can be

identified with the derived formal group scheme JnÂ. In particular, the cohomology of BU〈2n〉 represents

the functor Cn(Â, (−)), and they use this to show that the set of ring spectrum maps σ : MU〈2n〉E is

naturally isomorphic to the set of Θn-structures on the invertible O
bA-module Î(e) (again for n ≤ 3).

5.2 Orientable Complex Representations

5.2.1 Cohomology of representation spheres

Let ρ : G → T be a one-dimensional complex representation of the compact abelian Lie group G. The

representation sphere Sρ is defined to be the cofiber of the sequence of pointed G-spaces

S(ρ)+ → ∗+ → Sρ, (5.38)

where the sphere S(ρ) of ρ is just the circle T with G acting via ρ. Clearly this cofiber sequence is equivalent

to the restriction to G of the cofiber sequence of T-spaces

T+ → ∗+ → ST (5.39)

where ST is the representation sphere associated to the identity representation T → T. Since each of these

T-spaces are finite T-cell complexes, it follows from the change-of-groups formula that

ρ∗OT
A(ST) ' OG

A(ρ∗ST) ∼= OG
A(Sρ). (5.40)
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On the other hand, the cohomology of the cofiber sequence gives a fiber sequence of OT
A-modules

OT
A(ST)→ OT

A(∗+)→ OT
A(T+); (5.41)

since OT
A(∗+) ' OA and OT

A(T+) ' e∗OSpec E , we see that OT
A(ST) is equivalent to the ideal sheaf IA(e) of

the identity section e : SpecE → A.

Proposition 26 Let ρ : G → T be an irreducible complex representation of the compact abelian Lie group

G. Then

OG
A(Sρ) ' ρ∗IA(e) (5.42)

as coherent OG
A-modules. 2

Since OG
A is a tensor-triangulated functor, this determines the cohomology of Sρ for any virtual complex

representation ρ of G.

Corollary 6 Let ρ ∈ ZG◦ be a virtual complex representation of G, say

ρ =
∑

α∈G◦

nα · α. (5.43)

Then

OG
A(Sρ) '

⊗
α

α∗IA(e)⊗nα (5.44)

as coherent OG
A-modules.

Proof. The natural map
∧

α S
nα·α → Sρ is an equivalence of finite G-spectra. 2

5.2.2 The Thom space of a trivial bundle

The representation spheres are the simplest case of equivariant Thom spaces. Slightly more complicated are

those arising from equivariant bundles over G-orbits.

Let i : H → G be the inclusion of a closed subgroup. We know that isomorphism classes of G-equivariant

vector bundles on G/H correspond to representations of H. Thus if

ρ : H → T (5.45)
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is a one-dimensional complex representation of H, the cofiber sequence

S(ρ)+ → ∗+ → Sρ (5.46)

of H-spaces induces a cofiber sequence

i!S(ρ)+ → i!∗+ → i!S
ρ (5.47)

of G-spaces such that i!Sρ ∼= Sρ∧H G+ is the Thom space of the trivial bundle C×H G over ∗×H G = G/H.

By the induction axiom for the inclusion of H into G it follows that OG
A(i!Sρ) is equivalent to the fiber

in the fiber sequence

i∗O
H
A (Sρ)→ i∗O

H
A (∗+)→ i∗O

H
A (S(ρ)+). (5.48)

But OH
A (Sρ) ' ρ∗IA(e), so we obtain the formula

OG
A(i!Sρ) ' i∗ρ∗IA(e). (5.49)

Let j : T→ T×HG be the cobase change of i along ρ and let σ : G→ T×HG be the induced homomorphism.

Proposition 27 There is a natural equivalence

σ∗j∗IA(e)→ i∗ρ
∗IA(e) (5.50)

of coherent OG
A-modules.

Proof. This is a formal consequence of the fact that the natural transformation

j! ◦ ρ∗ =⇒ σ∗ ◦ i! (5.51)

of functors ST
+ → SG

+ is an equivalence. Certainly they agree on underlying spaces, as they are both given

by the formula (−)∧H G+, so it suffices to check that the G-actions agree. But this is clear since the action

of G on the T×H G-space j!X is induced via i from the action of H. 2

It follows that the cohomology of the Thom space of a G-equivariant virtual vector bundle over an orbit

G/H is an invertible OG
A(G/H)-module.
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5.2.3 The local Thom isomorphism

In this section we show that the cohomology of any G-equivariant complex vector bundle is an invertible

module over the cohomology of the base. In other words, there is always a local Thom isomorphism in a

suitable sense.

Theorem 12 Let p : V → X be a G-equivariant complex vector bundle over a G-space X. Then OG
A(XV )

is an invertible OG
A(X+)-module.

Proof. Let Y → X be a trivializing cover for V ; in other words, X is the realization of the simplicial G-space

Yn := Y ×X × · · · ×X Y (5.52)

and for each n, the pullback

Wn := V ×X Yn (5.53)

is a trivial G-equivariant vector bundle.

Similarly, for each n, we have Thom spaces Y Wn
n , and the Thom space XV is the realization of the

simplicial Thom space Y Wn
n . Likewise, in cohomology, X⊗GA is the realization of the simplicial AG-scheme

Yn ⊗G A ' Y ⊗G A×X⊗GA × · · · ×X⊗GA Y ⊗G A, (5.54)

the equivalence following from the fact that (−)⊗GA, as a functor from G-spaces to AG-schemes, commutes

with homotopy pullbacks.

Since Y → X is a covering map and the functor (−)⊗G A preserves covers, the map Y ⊗G A→ X ⊗G A

is a covering map and is therefore faithfully flat. It follows from the theory of faithfully flat descent that the

simplicial line bundle over the simplicial scheme Yn⊗GA associated to the cohomology of the simplicial Thom

space Y Wn
n descends to a line bundle on X ⊗G A. By exactness, this line bundle is necessarily equivalent

to the scheme corresponding to the coherent OG
A(X+)-module SymOG

A(X+) OG
A(XV ). Hence OG

A(XV ) is an

invertible OG
A(X+)-module. 2
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