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GEOMETRICAL QUANTUM MECHANICS
Robert Geroch (University of Chicago, 1974)
TEXed for posterity by a grad student from an nth-generation
photocopy of the original set of lecture notes. (Aug 1994)

Part I.

Differential Geometry

1. Manifolds

The arena in which all the action takes place in differential geometry is an object
called a manifold. In this section, we define a manifold, and give a few examples.

Roughly speaking, a n-dimensional manifold is a space having the “local
smoothness structure” of Euclidean n-space, IRn. (Euclidean n-space is the
set consisting of n-tuples, (x1, . . . , xn), of real numbers). The idea, then, is to
isolate, from the very rich structure of IRn (e.g., its metric structure, vector-
space structure, topological structure, etc.), that one bit of structure we call
“smoothness”.

Let M be a set. An n-chart on M consists of a subset U of M and a mapping
ψ : U → IRn having the following two properties:

1. The mapping ψ is one-to-one.

(That is, distinct points of U are taken, by ψ, to distinct points of IRn.)

2. The image of U by ψ, i.e., the subset O = ψ[U ] of IRn, is open in IRn.

(Recall that a subset O of IRn is said to be open if, for any point x of O,
there is a number ǫ > 0 such that the ball with center x and radius ǫ lies
entirely within O.)

Let (U,ψ) be a chart. Then, for each point p of U , ψ(p) is an n-tuple of real
numbers. These numbers are called the coordinates of p (with respect to the
given chart). The range of coordinates (i.e., the possible values of ψ(p) for p

in U) is the open subset O of IRn. By (1), distinct points of U have distinct
coordinates. Thus, ψ represents n real-valued functions on U ; a chart defines a
labeling of certain points of M by real numbers.

These charts are the mechanism by which we intend to induce a “local
smoothness structure” on the set M . They are well-suited to the job. Since
a chart defines a correspondence between a certain set of points of M and a cer-
tain set of points of IRn, structure on IRn can be carried back to U . To obtain a
manifold, we must place on M a sufficient number of charts, and require that,
when two charts overlap, the corresponding smoothness structures agree.

Let (U,ψ) and (U ′, ψ′) be two n-charts on the set M . If U and U ′ intersect
in M , there is induced on their intersection, V = U ∩ U ′, two “smoothness
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structures”. We wish to compare them. To this end, we introduce the mapping
ψ′ ◦ ψ−1 from ψ[V ] to ψ′[V ] and its inverse ψ ◦ ψ′−1 from ψ′[V ] to ψ[V ]. But
ψ[V ] and ψ′[V ] are subsets of IRn, hence ψ′ ◦ ψ−1 represents n functions-of-
n-variables: x′1(x1, . . . , xn), . . . , x′n(x1, . . . , xn). Similarly, ψ ◦ ψ′−1 represents
the inverse functions: x1(x′1, . . . , x′n), . . . , xn(x′1, . . . , x′n). These functions
represent the interaction of (U,ψ) and (U ′, ψ′) as regards smoothness structure
on V = U ∩U ′. We are thus led to the following definition: the n-charts (U,ψ)
and (U ′, ψ′) on M are said to be compatible if

1. ψ[V ] and ψ′[V ] are open subsets of IRn

2. the mappings ψ′ ◦ψ−1 and ψ ◦ψ′−1 are C∞ (i.e., all partial derivatives of
these functions, of all orders, exist and are continuous).

Note that, for compatibility of charts, we require only that they agree in
one structure of interest: smoothness. It is in this way that a single structure is
isolated.

An n-dimensional manifold consists of a nonempty set M , along with a
collection of n-charts on M such that

1. Any two charts in the collection are compatible.

2. Any chart on M which is compatible with all charts in the collection is
also in the collection.

3. The charts in the collection cover M , i.e., every point of M is in at least
one of the charts.

4. The charts separate points of M , i.e., if p and q are distinct points of M ,
then there are charts (U, φ) and (U ′, φ′) in our collection such that p is in
U , q is in U ′; U and U ′ do not intersect.

These conditions—or at least the first three—are exactly what one might expect
intuitively. The first condition states that “whenever two charts induce compet-
ing smoothness structures on the same region of M , the structures agree”. The
second condition ensures that we have “enough” charts. The third condition
ensures that “smoothness structure is induced over all of M”. The fourth con-
dition eliminates pathological objects (called non-Hausdorff manifolds) which
are of little interest.

One quickly gets an intuitive feeling for manifolds, so it becomes unnecessary
constantly to return to these awkward definitions.

Example 1. Let M be the set IRn, i.e., the set of all n-tuples of real numbers.
This M comes equipped already with a chart: set U = M , and φ the identity
mapping (from M to IRn). Now consider all n-charts on M which are compatible
with this one. This set M , together with these charts, satisfies our four condi-
tions for a manifold. (Condition 1 follows from the fact that smooth functions
of smooth functions are smooth. The second and third conditions are obvious,
and the fourth nearly so.) This n-dimensional manifold is called the manifold
IRn.

Example 2. Let M be the set of (n + 1)-tuples of real numbers, (y1, . . . , yn+1),

satisfying (y1)2 + · · · + (yn)2 = 1. Denote by U the subset of M consisting of
(y1, . . . , yn+1) with y1 > 0. Let φ denote the mapping from U to IRn defined
by x1 = y2, . . . , xn = yn+1. This is a chart on M . Similarly, introduce charts
given by y1 < 0, y2 > 0, y2 < 0, . . . , yn+1 < 0. In this way, we obtain 2n + 2
charts on M which, as can be easily checked, are compatible with each other.
Now consider all charts on M which are compatible with these 2n + 2 charts.
As in Example 1, one can verify that this set M , with these charts, defines a
manifold. It is called the manifold Sn, (the n-sphere).
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Example 3. Let M be the set of all orthogonal 3×3 matrices (i.e., matrices whose
inverse is equal to their transpose). Let U consist of the subset M consisting of
matrices are within 1

10 of the corresponding entries in the unit-matrix. That is,

U consists of orthogonal matrices





a b c

d e f

g h i



 with |a−1|, |e−1|, |i−1|, |b|,

|c|, |d|, |f |, |g|, |h| all less than 1
10 . For such a matrix K, set φ(K) = (b, c, f).

This is a 3-chart on M . Fix any orthogonal matrix P . We define another chart,
with U ′ consisting of matrices Q with QP in U , and with ψ′(Q) = ψ(QP ).
Thus, for each P we obtain another chart. These charts are all compatible with
each other. The collection of all charts on M compatible with these makes our
set M into a 3-dimensional manifold. This is the manifold of the Lie-group
O(3). (Similarly, other matrix groups are manifolds).
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2. Tensor Algebras

The natural things to exist on a manifold—the things which will describe the
physics on a manifold—are objects called tensor fields. It is convenient to begin
by ignoring manifolds completely. We shall define an abstract tensor algebra—a
structure which makes no reference to a manifold. We shall then see, in the
following section, that these tensor algebras arise naturally on manifolds.

A tensor algebra consists, first of all, of a certain collection of sets. We
shall label these sets by a script “T” to which there is attached subscripts and
superscripts from the Latin alphabet. In fact, we introduce a set for every
arrangement of such subscripts and superscripts on T , provided only that the
arrangement is such that no index letter appears more than once. Thus, for ex-
ample, our collection includes sets denoted by T m

rs
b
a, Tc, T , etc. The collection

does not, however, include a set denoted by Tdc
ac

r.
The elements of these sets will be called tensors. To indicate the particular

set to which a tensor belongs, we shall write each tensor as a base letter with
appropriate subscripts and superscripts. Thus, for example, ξr

pa
sd represents a

tensor, namely, an element of Tr
pa

sd. Tensors with a single index (e.g., ηc, an
element of Tc) are called vectors; tensors with no indices (e.g., α, an element of
T ) scalars.

The next step in the definition of a tensor algebra is the introduction of four
operations on these tensors.

1. Addition. With any two tensors which are elements of the same set (i.e.,
which have precisely the same index structure), there is associated a third
tensor, again an element of that same set. This operation will be written
with a “+”. Thus, λc

ad + ωc
ad is an element of T c

ad.

2. Outer Product. With any two tensors having no index letter in common,
there is associated a third tensor, an element of the set denoted by “T ”
with first the indices of the first tensor, and then the indices of the sec-
ond tensor attached. This operation will be indicated by writing the two
tensors next to each other. Thus, for example, µwe

r
tν

yu
c is an element of

Twe
r
t
yu

c.

3. Contraction. Given any tensor, along with a choice of a particular subscript
and a particular superscript of that tensor, there is associated another
tensor, an element of the set denoted by “T ” with all the indices of the
original tensor, except the two chosen ones, attached. This operation is
indicated by writing the original tensor with the chosen subscript changed
so as to be the same letter as the chosen subscript. Thus, for example,
choosing the superscript “c” and the subscript “m” for ξr

d
mas

bc, we obtain
by contraction the element of Tr

d
as

b written ξr
d

mas
bm. (Note that the final

tensor is not an element of Tr
d
mas

bm. There is no such set.)

4. Index Substitution. Given any tensor, together with a choice of an index
of that tensor and a choice of a Latin letter which does not appear as an
index of that tensor, there is associated another tensor, an element of the
set denoted by “T ” with all the indices of the original tensor, except that
the chosen index letter is replaced by the chosen letter. This operation is
indicated by simply changing the appropriate index letter on the tensor.
Thus, for example, if we choose the subscript “c” of ηa

cbn and the Latin
letter “r”, the result of index substitution is ηa

rbn, an element of T a
rbn.

These four are the only (algebraic) operations available on tensors. What
remains is to write the list of properties these operations satisfy.

1. Conditions on addition. Addition is associative and commutative. Within
each set there is an additive identity (written “0”, with indices sup-
pressed), and each tensor has an additive inverse (written with a “−”). In
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short, each of our sets is an abelian group under addition.

(αa
b + βa

b) + γa
b = αa

b + (βa
b + γa

b)

αa
b + βa

b = βa
b + αa

b

αa
b + 0 = αa

b

αa
b + (−αa

b) = αa
b − αa

b = 0

2. Conditions on outer product. Outer product is associative and distributive
over addition.

µab(νc
mτr) = (µabνc

m)τr

µab(αn
r + βn

r) = µabαn
r + µabβn

r

(σn
r + τn

r)γab = σn
rγab + τn

rγab

3. Conditions on contraction. The operation of contraction commutes with
all the operations. Thus, if αa

b + βa
b = γa

b then αb
b + βb

b = γb
b. (On

the right is the sum of two elements of T ; on the left, contraction applied
to an element of T a

b.) If µab
crs = σab

cτ rs, then µab
ars = σab

aτ rs. If
αa

b = κa
b
d
d and βc

d = κb
b
c
d, then αb

b = βd
d. (This double contraction

would be written κb
b
d
d.) The result of substituting “r” for “b” in λc

bc is
the same as the result of contracting λa

rc over “a” and “c”.

4. Condition on index substitution. The operation of index substitution com-
mutes with all the operations. The result of substituting one index for
another, followed by substituting the other for the one, is the original
tensor.

These conditions are easy to remember because they are suggested by the
notation.

5. The set of scalars, T , is the set of real numbers, and addition and outer
product for scalars is addition and multiplication of real numbers.

It follows immediately that each of our sets is actually a vector space
(over the real numbers). Scalar multiplication is outer product by elements
of T . Furthermore, condition 4 implies that, e.g., T r

ac and T s
bn are iso-

morphic vector spaces (the isomorphism obtained by index substitution).
Furthermore, conditions 2 and 3 imply that the operation of contraction
and outer product are linear mappings on the appropriate vector spaces.

6. Every tensor can be written as a (never unique) sum of outer products of
vectors.

On the outer product µa
cdr

sαu
v, contract “s” with “u”, and “v” with

“r”, to obtain an element of T a
cd which may be written µa

cdr
sαs

r. Thus,
every element of T a

cdr
s defines a linear mapping from the vector space

Ts
r to the vector space T a

cd.

7. T a
cdr

s consists precisely of the set of linear mappings from Ts
r to T a

cd,
and similarly for other index combinations. Thus, for example, Ta is
the dual of T a (i.e., the set of linear mappings from T to the reals).
Further, T a

b is the set of linear mappings from T b to T a (which, since
T b is isomorphic to T a, is the same as the set of linear mappings from
T b to T b). From this point of view, αa

bβ
b
c is the composition of a linear-

mapping-from-T c-to-T b with a linear-mapping-from-T b-to-T a to obtain
a linear-mapping-from-T c-to-T a. Further, αa

a is the trace operation on
linear mappings.
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A tensor algebra is a collection of sets, on which four operations are defined,
subject to seven conditions, as described above. We remark that the conditions
are redundant. We have proceeded in this way in order to put the basic algebraic
facts about tensors together on an equal footing.

The following central result summarizes much of linear algebra:

Theorem. Given any finite dimensional vector space V , there exists a tensor
algebra with its T a isomorphic to V . Furthermore, an isomorphism between
the “T a’s” of two tensor algebras extends uniquely to an isomorphism of the
tensor algebras.

In intuitive terms, a tensor algebra produces a framework for describing
everything which can be obtained, starting from a single vector space, using
linear mappings and tensor products. It equates naturally isomorphic things.
It describes neatly the algebraic manipulations available on these objects.

Why didn’t we require that outer product be commutative? Because it
isn’t defined. For example, αabβc

d and βc
dαab lie in different vector spaces,

so equality is meaningless. We can, however, recover commutativity of outer
product by introducing an additional convention. Let, for example, τa

bc be a
tensor, and, by condition 6, write:

τa
bc = αaβbγc + · · · + µaνbκc.

Then we can associate with this τa
bc an element, γcα

aβb + · · ·+κcµ
aνb, of Tc

a
b.

Thus, we obtain an isomorphism between T a
bc and Tc

a
b. Similarly, we have an

isomorphism between any “T ” and any other obtained by changing the order
of the indices, preserving their subscript or superscript status. We make use of
these isomorphisms as follows. We permit ourselves to write equality of elements
of different vector spaces, isomorphic as above, if the elements correspond under
the isomorphism above. By this extended use of equality, for example, µaνb =
νbµ

a. Similarly, we allow ourselves to add elements of isomorphic (as above)
vector spaces by adding within one of the two spaces. Thus, γa

bc = δb
a

c + σcb
a

means “carry σcb
a to Tb

a
c via the isomorphism, and there add to δb

a
c”. The

result, carried to T a
bc via the isomorphism, is equal to γa

bc.
As a final example, let ξab be a tensor. Use index substitution to successively

obtain ξac, ξdc, ξda, and ξba. If it should happen that ξab = ξba, then our tensor
is called symmetric. If it should happen that ξab = −ξba, then our tensor is
called antisymmetric. In general, such a tensor will be neither symmetric nor
antisymmetric. It can always be written uniquely as the sum of a symmetric
and an antisymmetric tensor: ξab = 1

2 (ξab + ξba) + 1
2 (ξab − ξba). These facts are

familiar from matrix algebra.
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3. Tensor fields

Our next task is to combine our discussion of manifolds with that of tensor
analysis.

Let M be a manifold. A scalar field on M is simply a real-valued function on
M . That is, a scalar field assigns a real number to each point of M . It turns out,
however, that arbitrary scalar fields aren’t very interesting: what is interesting
are things we shall call smooth scalar fields. Let α be a scalar field on M . To
define smoothness of α, we must make use of the charts on M . Thus, let (U,ψ)
be a chart. Then the points of M in U are labeled, by this chart, by coordinates
(x1, . . . , xn). Since α is just a function on M (and hence, also a function on
U), we may represent α as one real function of the n variables (x1, . . . , xn).
Formally, this function is α ◦ ψ−1. We say that the scalar field is smooth if,
for every chart (in the definition of the manifold M), α ◦ ψ−1 (a function of n

variables) is C∞ (all partials of all orders exist and are continuous). We denote
by S the collection of smooth scalar fields on M . It is obvious that sums and
products of smooth scalar fields yield smooth scalar fields. It is also clear that
there are many nonconstant smooth scalar fields on M .

We wish next to define the notion of a vector on a manifold. It is convenient,
for motivation, to first recall some things about vectors in Euclidean space. A
vector in Euclidean space can be represented by its components, (ξ1, . . . , ξn).
This representation is not, however, very convenient for a discussion of vectors
on a manifold, because of the enormous freedom available on the choice of charts
(with respect to which components could be taken) on a manifold. We would
like, therefore, to think of some description of vectors in Euclidean space which
refers less explicitly to components. Let α(x1, . . . , xn) be a smooth function
of n variables, i.e., a smooth function on our Euclidean space. Then we can
consider the directional-derivative of this function in the direction of our vector,
evaluated at the origin:

ξ(α) =

(

ξ1 ∂α

∂x1
+ · · · + ξn ∂α

∂xn

∣

∣

∣

∣

x=0

(1)

Thus, given a vector in Euclidean space, ξ(α) is a number for each function α.
It is immediate from the properties of partial-derivatives that ξ(α), regarded

as a mapping from smooth functions on Euclidean space to the reals, satisfies
the following conditions:

1. ξ(α + β) = ξ(α) + ξ(β).

2. ξ(αβ) = α|x=0 ξ(β) + β|x=0 ξ(α).

3. If α = const, ξ(α) = 0.

Thus, a vector in Euclidean space defines a mapping (namely, the directional
derivative) from smooth functions on Euclidean space to the reals, satisfying
the three conditions above. We now establish a sort of converse, to the general
effect that these three conditions characterize vectors in Euclidean space. More
precisely, we claim that:

A mapping from smooth functions on Euclidean space to the reals satisfying the
three conditions above is of the form (1) for some (ξ1, . . . , ξn).

Proof: Suppose we have such a mapping. Define n numbers by ξ1 = ξ(x1),
. . . , ξn = ξ(xn). We shall show that, for this choice, (1) is valid for any smooth
function α. Write such an α in the form

α = α +
∑

i

αix
i +

∑

ij

αij(x)xixj (2)
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where α is a constant, the αi (i = 1, . . . , n) are constants, and αij (i, j =
1, . . . , n) are smooth. Then, using conditions 1 and 2 above,

ξ(α) = ξ(α)+
∑

i

[

ξ(αi)x
i + αiξ(x

i)
]

+
∑

ij

[

ξ(αij)x
ixj + αijξ(x

j)xi + αijξ(x
i)xj

]

.

Now use the condition 3 and evaluate at the origin:

ξ(α) =
∑

i

αiξ(x
i) =

∑

i

αiξ
i

This is the left side of Eqn. (1). But, from (2), this is also clearly the right side
of (1). Hence, (1) holds.

We have now completed our component-independent characterization of vec-
tors in Euclidean space. This characterization is the motivation for the defini-
tion, which follows, of vectors on a manifold.

Fix a point p of our manifold M . A (contravariant) vector in M at p is a
mapping ξ : S → IR from the smooth scalar fields on M to the reals satisfying:

• ξ(α + β) = ξ(α) + ξ(β).

• ξ(αβ) = α|p ξ(β) + β|p ξ(α).

• If α = const, then ξ(α) = 0.

It is clear from the discussion above that the contravariant vectors at a point p

of an n-dimensional manifold form an n-dimensional vector-space.

Intuitively, a contravariant vector at a point-of-a-manifold points in a “di-
rection”, just as do vectors in Euclidean space.

We now bring in the tensor algebras. At each point p of our manifold M ,
we have the n-dimensional vector-space of contravariant vectors at p. We now
identify this vector space with the vector space T a of a tensor algebra (“identify”
means “make isomorphic to”). Then, as we have seen, we acquire a unique tensor
algebra. These objects will be called tensors (in the manifold M) at the point p.
Thus, a “scalar at p” is just a real number; a “vector ξa at p” is a contravariant
vector, i.e., a mapping from smooth scalar fields on M to reals satisfying our
three conditions; a “vector ηa at p” is (among other things) a linear mapping
from T a at p to the reals. One repeats these remarks for each point of our
manifold M . Thus, we have a notion of “a tensor at a point of M”.

The next thing we must do is extend the notion of “a tensor at a point” to
that of a tensor field. A tensor field on M assigns, to each point of M , a tensor
at that point, where the tensors at the various points of M all have the same
index-structure. For example, let αac

b
d
q be a tensor field on M . Then we have

assigned, to each point of M , a tensor αac
b
d
q(p), at p. In particular, a scalar

field on M , by this definition, assigns a scalar (i.e., a real number) to each point
of M . That is to say, a scalar field on M is just a real-valued function on M ,
which coincides with our original definition.

8



We observe that the operations defined within a tensor algebra extend from
“tensors at a point” to tensor fields. Thus, let αa

b and βa
b be tensor fields on

M . Their sum, written as αa
b + βa

b, is a tensor field on M which assigns, to
the point p of M , the sum of the tensors assigned to p by αa

b and βa
b. That

is, (αa
b + βa

b)(p) = αa
b(p) + βa

b(p). Similarly, outer product, contraction, and
index-substitution are well-defined operations on tensor fields. Furthermore, the
various properties of tensors in a tensor algebra extend to properties of tensor
fields. Thus, addition of tensor fields is associative and commutative. The zero
tensor field (which assigns to each point the zero-tensor) is an additive identity.
Outer products for tensor fields is associative and distributive. Contraction and
index-substitution commute with everything in sight, and so on.

We saw a few pages ago that the notion of a scalar field is not very useful:
what is useful is that of a smooth scalar field. This is perhaps not surprising,
since the heart of a manifold is its smoothness structure, and one might expect
that compatibility with that smoothness structure should be crucial. Since
scalar fields were rejected in favor of smooth scalar fields, it is natural to ask
whether tensor fields can somehow be rejected in favor of smooth tensor fields.
This is indeed possible: we now do it.

Consider a contravariant vector field ξa. Let α be any smooth scalar field.
Then, for each point p of our manifold, ξa(p) is a contravariant vector at p.
Hence, it assigns, to the smooth scalar field α a number. Keeping ξa and α

fixed, and repeating at each point p, we assign a real number to each point of
M . In other words, we obtain a scalar field on M . (This scalar field is, of course,
just the directional derivative of α in the direction of the vector field ξa.) We
say that our contravariant vector field on M can be regarded as a mapping from
smooth scalar fields on M to scalar fields on M . We say that our contravariant
vector field ξa on M is smooth if it assigns, to each smooth scalar field on M

a smooth-scalar field. Thus, we have extended the notion of smoothness from
scalar fields to contravariant vector fields. A vector field ηa will be called smooth
if, for each smooth ξa (smoothness for these just defined above), ηaξa is smooth.
Finally, a tensor field, e.g., κac

r
s
q, will be called smooth if κac

r
s
qξaηcλrω

sρq is
a smooth scalar field for any smooth vector fields ξa, ηc, λr, ωs, ρq. Note the
way that the notion of smoothness permeates the tensor fields, starting from
the scalar fields. This sort of thing is common in differential-geometry. We
now notice that all the tensor operations, applied to smooth tensor fields, yield
smooth tensor fields.

By the last sentence of the previous paragraph, if one starts with only smooth
tensor fields, one never gets anything but smooth fields. It turns out in practice
that it is just the smooth fields which are useful in physics. It is convenient,
for this reason, not to have to always carry around the adjective “smooth”. We
shall henceforth omit it. When we say “tensor field”, we mean “smooth tensor
field” unless otherwise specified.

As we shall see shortly, manifolds and tensor fields are remarkably well-suited
for the description of the arena in which physics takes place, and of the physics
itself, respectively.
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4. Derivative Operators

What is so great about smoothness? What was gained by our restricting consid-
eration to smooth tensor fields? In the case of scalar fields, what we gained by
requiring smoothness was the ability to take (directional) derivatives. This ob-
servation (together with the connotation of the word “smooth”) suggests that it
should be possible—and perhaps useful—to introduce the concept of the deriv-
ative of a (smooth) tensor field.

We can think of an n-dimensional manifold as similar to an n-dimensional
surface. Thus, there are n directions in which one can move from a given
point. That is, given a tensor field, there are n directions in which one can take
the derivative of that tensor field. These remarks suggest that the operation
“taking a derivative” should increase the number of indices of a tensor field
by one. There is a more explicit way of seeing this. Let α be a scalar field.
What should “the derivative of α” look like (as regards index-structure)? It
would be right, somehow, if the derivative of α had one lowered index, e.g., if it
looked something like ∇aα, for then ξa∇aα, for any contravariant vector field
ξa, would naturally represent the directional derivative of α by ξa. The index
on the “derivative operator” ∇a provides a place to park the index of ξa, i.e., it
reflects the freedom in the direction in which the derivative can be taken. Thus,
it seems reasonable, as a first try, to try define the “derivative operator” as an
operator, with one down index, which acts on tensor fields. Having made this
observation, it would be difficult to wind up with any definition for a derivative
operator other than that which follows.

A derivative operator, ∇a, is a mapping from (smooth) tensor fields to
(smooth) tensor fields, which adds one lowered index, and which satisfies the
following conditions:

1. The derivatives of the sum of two tensor fields is the sum of the derivatives.
For example,

∇a(αr
cq + βr

cq) = ∇a(αr
cq) + ∇a(βr

cq).

2. The derivative of the outer-product satisfies the Leibniz rule. For example,

∇a(µu
c
dνqv) = µu

c
d∇aνqv + νqv∇aµu

c
d.

3. The derivative operation commutes with contraction and index substitu-
tion. For example, if β = αa

a and γc
a

b = ∇cα
a

b, then ∇cβ = γc
a

a, and
similarly for index substitution.

4. For any scalar field α and contravariant vector field ξa the scalar field
ξa∇aα is just the directional derivative.

5. Two derivative operations, applied to a scalar field, commute. That is,
∇a∇bα = ∇b∇aα. (Derivatives will not commute, in general, applied to
tensor fields with more indices.)

Except possibly for the last, these are all natural-looking “derivative-like”
conditions. It is easy to define things. What is usually more difficult is to show
that these things exist, and to discover to what extent they are unique. We now
ask these questions for derivative operators.

Every manifold one is ever likely to meet possesses a derivative operator.
(Precisely, a manifold possesses at least one derivative operator if and only if
it is paracompact.) In fact, it is a nontrivial job just to construct an example
of a manifold which does not have any derivative operators. We shall hence-
forth deal only with manifolds which have at least one derivative operator. (In
fact, this restriction will not be needed in any formal sense, but only to make
discussions easier. We shall use the assumed existence of a derivative operator
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in three cases: to define Lie derivatives, exterior derivatives, and the derivative
operator defined by a metric. Lie and exterior derivatives exist whether or not
derivative operators exist. That the existence of a metric implies the existence
of a derivative operator follows by a comparatively simple argument.)

A more interesting question is this: how unique are derivative operators?
It turns out that derivative operators are never unique, but that the non-
uniqueness can be expressed in a very simple way. We now proceed to explain
this remark in more detail.

Suppose we had two derivative operators on the manifold M , ∇a and ∇′

a.
How are they related? We first consider the difference between their actions on a
scalar field: ∇′

aα−∇aα. To draw conclusions about this expression, we contract
it with an arbitrary contravariant vector field ξa, to obtain ξa∇′

aα−ξa∇aα. This
is the difference between two scalar fields. But, by condition 4, in the definition
of a derivative operator, these two scalar fields are the same. So, the difference is
zero. That is to say, ξa(∇′

aα−∇aα) vanishes for any ξa. Hence, ∇′

aα−∇aα = 0.
That is, ∇′

aα = ∇aα. In words, any two derivative operators have, by condition
4, the same action on scalar fields.

We next compare the actions of our two derivative operators on contravariant
vector fields. Consider ∇′

aξb − ∇aξb. We cannot conclude, as above, that this
vanishes. However, it is true that this expression is linear in ξb. This follows
from the following calculation

(∇′

a −∇a)(αξb + ηb)

= ∇′

a(αξb) −∇a(αξb) + ∇′

a(ηb) −∇a(ηb)

= ξb∇′

a(α) + α∇′

a(ξb) − ξb∇a(α) − α∇a(ξb) + (∇′

a −∇a)ηb

= α(∇′

a −∇a)ξb + (∇′

a −∇a)ηb

where, in the last step, we have used the fact that two derivative operators
coincide on scalar fields. Hence, there is some tensor field Cm

ab such that

∇′

aξb −∇aξb = −Cb
acξ

c (3)

for all ξa. In short, derivative operators needn’t be the same on contravariant
vector fields, but their difference is expressible simply in terms of a certain tensor
field.

Next, vector fields with one down index (covariant vector fields). Contract
∇′

aηb−∇aηb with an arbitrary ξb, and use the properties of derivative operators:

ξb(∇′

aηb −∇aηb) = ∇′

a(ηbξ
b) − ηb∇

′

aξb −∇aξbηb + ηb∇aξb

= −ηb(∇
′

aξb −∇aξb)

= −ηb(−Cb
acξ

c)

= +ηmCm
abξ

b.

Since ξb is arbitrary, we have

∇′

aξb −∇aξb = ηmCm
ab (4)

Thus, the actions of our derivative operators on covariant vector fields also differ
in a simple way, and, furthermore, the same tensor Cm

ab as for contravariant
vector fields comes into play.

We next derive, from the fifth property of derivative operators, a certain
property of this Cm

ab. Let α be any scalar field. Then

∇′

a∇
′

bα −∇a∇bα = ∇′

a∇bα −∇a∇bα

= (∇′

a −∇a)∇bα = Cm
ab∇mα

where, in the first step, we have used the fact that all derivative operators
coincide on scalars. Now, the left side of this equation remains invariant if “a”
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and “b” are switched. So, the right side must. But this holds for all scalar fields
α, and so

Cm
ab = Cm

ba (5)

What remains is to extend (3) and (4) to general tensor fields. This is
done as follows. We wish to evaluate, say, (∇′

a − ∇a)αcd
rs

u. We contract it
with vectors ξcηdµrνsλ

u. We now differentiate by parts, just as we did in the
calculation preceding Eqn. (4). The result is to shift the derivative operators
to the vectors. Now use (3) and (4) to get rid of the derivative operators in
favor of the Cm

ab. Finally, use the fact that the vectors are arbitrary—so they
can be removed. The result (which, with a little thought, can be seen without
actually doing the calculation) is

(∇′

a −∇a)αcd
rs

u = Cm
acαmd

rs
u + Cm

adαcm
rs

u

−Cr
amαcd

ms
u − Cs

amαcd
rm

u + Cm
auαcd

rs
m (6)

Note the form of the right hand of Eqn. (6). There appears a term corresponding
to each index of αcd

rs
u. Raised indices are treated just like ξb is in (3), while

lowered indices are treated just like ηb is in (4). Thus, Eqns. (3) and (4), which
are now special cases of (6), also make it easy to remember (6). Note also that
the fact that all derivative operators coincide on scalar fields is a special case of
Eqn. (6): no indices leads to no terms on the right.

We conclude that, given two derivative operators, ∇a and ∇′

a, there is a ten-
sor field Cm

ab satisfying (5) such that the actions of these derivative operators
are related by Eqn. (6). A converse is immediate. Suppose we have a derivative
operator ∇a, and suppose we choose any (smooth) tensor field Cm

ab satisfying
Eqn. (5). Then we can define a new operation, ∇′

a, on tensor fields by Eqn. (6).
(for (6) can be interpreted now as giving the action of ∇′

a on any tensor field).
It is immediate that this ∇′

a, so defined, satisfies the five conditions for a deriv-
ative operator. Thus, a derivative operator together with a Cm

ab satisfying (5)
defines another derivative operator.

In short, derivative operators are never unique, but we have good control
over the non-uniqueness.
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GEOMETRICAL QUANTUM MECHANICS
Robert Geroch (University of Chicago, 1974)
TEXed for posterity by a grad student from an nth-generation
photocopy of the original set of lecture notes. (Aug 1994)

Part II.

Mechanics

5. Configuration Space

The things in the physical world in which we shall be interested will be called
systems. It is difficult, and probably futile, to try to formulate with any precision
what a system is. Roughly speaking, a system is a collection of things (e.g.,
objects, particles, fields) under study which, in some sense, do not interact with
the rest of the universe. This splitting of the universe into separate systems one
singles out for individual study is certainly arbitrary to some extent—that is
to say, it is probably subject to what is fashionable in physics, and the mode
of splitting probably changes as physics evolves. Nonetheless, we have to study
something, and the things we study we call systems.

Examples of systems:

1. A free, point particle in Euclidean space.

2. A three-dimensional harmonic oscillator. That is, a point particle in
Euclidean space, subject to a force directed towards the origin, and having
strength proportional to the distance of the particle from the origin.

3. A point particle constrained to lie on a smooth two-dimensional surface S

in Euclidean space.

4. A point particle in Euclidean space for which, for some reason, is unable
to acquire any velocity component in the z-direction.

5. A ball free to roll (but not slide) over a horizontal plane in Euclidean
space.

6. Electric and magnetic fields (say, without sources) in Euclidean space.

The systems listed above are not very exotic, and not very complicated. Neither
are they described precisely.

The next step in the description of a system (after deciding what the system
is) is the assignment to our system of a configuration space. The configuration
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space, C, is supposed to be a manifold, the points of which represent “config-
urations” of the system. There appears to be no definite rule, given an actual
physical system (e.g., a Swiss watch), for deciding what its space of config-
urations, C, should be. Apparently, this is essentially an art. For a simple
mechanical system, the configurations are normally distinguished by what can
be seen in an instantaneous photograph. Thus, in examples (1) and (2) above,
one would normally choose for the set C the set of “locations of the particle”,
i.e., the set of points in Euclidean 3-space. In example (3), one could, I sup-
pose, also choose for C the set of points of Euclidean space. But that isn’t a
particularly good choice. One should instead, choose the “locations actually
available to the particle”, i.e., the set of points on the surface S. It is not
uncommon, in examples such as (3) above, to first make the “wrong” choice
for configuration space, i.e., to first choose Euclidean space. One then corrects
oneself: he realizes that only certain of these configurations, namely, those on S,
are actually available to the particle. This process—first choosing “too large”
a configuration space, and then imposing restrictions—is called that of intro-
ducing holonomic constraints. It is my view that much is gained—and nothing
lost—by being careful in the beginning. We shall be careful and, thus, we shall
be able to avoid what are called holonomic constraints.

Configuration space is, as stated above, to be more than just a set of points—
it is to be a manifold. That is to say, the set of configurations must be endowed
with a smoothness structure, i.e., with a collection of charts satisfying our four
conditions for a manifold. Here, again, there appears to be no prescription, given
a physical system and having decided what its set of configurations is to be, to
determine the manifold structure. There is genuine content in this choice of
smoothness structure: it, for example, tells us when two configuration are to be
regarded as “close”. In examples (1) and (2) above, one would naturally choose
for the manifold structure on C the natural structure on Euclidean space. That
is, in these examples, one would choose for C the manifold IR3. In example (3),
one would select charts appropriate to the embedding of S in Euclidean space.
That is, in this example, C would be a 2-dimensional manifold (e.g., a sphere,
torus, plane, etc., depending on what S is).

Note that the first two examples are essentially different physical systems,
although they have the same configuration space.

Example (4) provides an illustration of these issues. Let us first choose
for the set C the set of points in Euclidean space. What should we choose
for the manifold structure? On the one hand, we could just choose the natural
manifold structure on Euclidean space. Then C would be IR3. There is, however,
another reasonable option. A particle in this example remains in the same
z = constant plane all its life. Perhaps, then, we should regard each such plane
as a separate “piece” of configuration space. Thus, perhaps we should endow
C with the following manifold structure: C is the (disjoint) union of an infinite
stack of 2-planes (each labeled by its z value). For this choice, C would be
two-dimensional. For these two choices, we have the same set C, but different
smoothness structures. There is even a third point of view. One could claim
that the system hasn’t been specified with enough care: that one should also
be told the z-plane in which the particle beings. This additional information is
to be regarded as part of the statement of what the system is. Then, of course,
one would choose for C that one plane, i.e., C would be IR2 (since the only
configurations available to the particle need be included in C). Thus, one could
reasonably argue for any of the three configuration spaces for example (4): IR3,
the disjoint union of an uncountable collection of IR2’s, or a simple IR2. My
taste leans mildly toward the second of these three choices.

To specify the “configuration of the system” in example (5), one must state
where (on the plane) the sphere is, and the orientation of the sphere in space.
“Where the plane is” would be represented by a point on the manifold IR2, and
the orientation (which could be described by the rotation necessary to obtain
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the desired orientation from some fixed orientation) by a point on the manifold
O3 (pp 3). Thus, a natural choice for the configuration space in this example
would be the product of manifolds IR2 × O3. We shall shortly define precisely
the product of manifolds.)

Example (6) is a bit tricky. We are dealing, here, with vector fields ~E

and ~B in Euclidean space, both of which have vanishing divergence. Here, the
difficulty in giving a prescription for selecting configuration space becomes more
clear. Perhaps the best one can do is try various possibilities for configuration
space, and see which one works best. The one which has been found to work
best is this: choose for C the set of all vector fields ~B in Euclidean space which
have vanishing divergence. (Holonomic constraint types would say this: choose

first all vector fields ~B, and then restrict to the ones which have vanishing
divergence.) This is the set C; what is the smoothness structure? It turns out
that the only reasonable choice makes C what is called an infinite-dimensional
manifold. We will not deal here with infinite-dimensional manifolds (because
of technical complications). Hence, we shall not be able to deal in detail with
example (6).

We summarize: reasonable people could disagree, given a physical system, on
what configuration space is appropriate. For most systems, however, one choice
is particularly natural, and so we shall allow to speak of the configuration space
C of a system.

The dimension of the configuration space of a system is called the number

of degrees of freedom of the system.
As times marches on, our system evolves, i.e., it passes from one instant of

time to the next, through various configurations. The mathematical description
of this situation is via the notion of a curve. A curve on a manifold M is a
mapping γ : IR → M , where IR is the reals. That is, for each real number
t, γ(t) is a point of M . So, as t sweeps through IR, γ(t) describes our curve.
A notion more useful is that of smooth curves, where smoothness for curves
is defined in terms of smooth scalar fields. Let α be a smooth scalar field, so
α : M → R. Then α. Then α ◦ γ is a mapping from IR to IR, intuitively, “the
function α evaluated, in terms of t, along the curve”. We say that the curve
γ is smooth if, for every smooth scalar field α, α ◦ γ (one real function of one
variable) is C∞. Thus, the evolution of our system is described by a smooth
curve γ, with parameter T representing time, on the configuration space C.
Thus, whereas examples (1) and (2) have the same configuration space, the
actual curves giving the evolution are different in the two examples.

We now need some more mathematics: the notion of the tangent vector to
a curve. Let γ be a curve on M . Fix a number t0, and set p = γ(t0). Now let
α be a scalar field on M , and consider the number

d

dt
α(γ(t))

∣

∣

∣

∣

t0

.

Geometrically, this is the rate of change of the function α, with respect to t,
along the curve, evaluated at t0. It is immediate from the properties of the
derivative (of functions of one variable) that this mapping from scalar fields on
M to the reals satisfies the three conditions on page 8. Hence, this mapping
defines a contravariant vector γa at p. This vector is called the tangent vector

to the curve γ at the point γ(t0). Geometrically, the tangent vector is tangent
to the curve, and is large when the curve “covers a lot of M for each increment
of t”.
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We now return to our system, its configuration space C, and some curve γ

giving the evolution of the system. The tangent vector to this curve at γ(t0) is
called the velocity of the system at time t0, written va. This just generalizes
the notion of the velocity, e.g., of a particle moving in Euclidean space. Note
that an evolving system, by our description, defines, at each moment of time, a
configuration and a velocity.

As an illustration of the notion of velocity, we describe the set-up for La-
grangian mechanics. Let C be the configuration space for a system. The set of
all pairs (q, va), where q is a point of C and va is a contravariant vector at q

is called the tangent bundle of C. (This is technically not quite correct. The
tangent bundle of a manifold is actually another manifold, having the dimension
twice that of the original manifold. The set of pairs (q, va) above is actually
just the underlying point-set of the tangent bundle.) The starting point for
Lagrangian mechanics is the introduction of a certain function L(q, va) on the
tangent bundle of configuration space. This real-valued function is called the
Lagrangian of the system. One sometimes writes the Lagrangian as L(x, ∂x).

Are all points of the configuration space accessible to the system? In essen-
tially all cases the answer is yes. In fact, that the answer be yes is one good
criterion to use in selecting configuration space. Are all points of the tangent
bundle accessible to the system? (More precisely, is it true that, given any
point (q, va) of the tangent bundle, there exists a curve in configuration space,
describing a possible evolution of the system, such that the curve passes through
q and there has tangent vector va?) For many examples, the answer is yes, but
it could be no.

Consider example (5) on page 13. Consider any point of configuration space,
and a contravariant vector which represents a translation of the sphere, without
permitting it to roll. Here is a point of the tangent bundle which is not allowed
to the system, because the prescribed contravariant vector would represent a
velocity inconsistent with the requirement that the ball not slide on the plane.
When it is the case that not every point of the tangent bundle is accessible to
the system, one says that “the system exhibits a constraint”. (One sometimes
calls this a nonholonomic constraint. For us, the adjective is redundant, so we
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will not use it.) Thus, for example, for our three choices of the configuration
space for example (4), the first has a constraint and the other two do not.
There is certainly a sense in which the phrase “has a constraint” represents a
property of the system itself more than a property of our description of the
system. It appears to be difficult to make this remark precise. Does the point
of the tangent bundle occupied by the system at one instant of time determine
uniquely the future evolution of the system? (More precisely, do two curves,
describing a possible evolution of the system, which pass through the same
point of C for a given time t, and which there have the same tangent vector,
necessarily coincide?) Again, examples suggest an answer yes, and this might
be taken as a criterion for a good choice of configuration space. Again, this
property is a rather complicated mixture of an aspect of Nature and an aspect
we impose on Nature by our mode of description.

Suppose we have two systems, S1 and S2, and that we decide to regard them
as a single system? (Note that nothing has happened physically: we just look
at things differently.) If C1 and C2 are the configuration spaces of our systems,
what should we choose for the configuration space of the combined system? The
answer is C = C1 × C2, a product of manifolds. We now define this. As a set,
C consists of all pairs (p1, p2), where p1 is a point of C1 and p2 is a point of
C2. We introduce charts. Let (U1, ψ1) be a chart on C1, and (U2, ψ2) a chart
on C2. Consider the chart on C with U = U1 × U2, and, for (p1, p2) in U ,
ψ(p1, p2) = (ψ1(p1), ψ2(p2)). (This last expression is an (n1 + n2)-tuple, where
n1 and n2 are the dimensions of C1 and C2, respectively.) The collection of
all charts of C compatible with these makes C a manifold. The dimension of
C is, of course, n1 + n2. Thus, for example, the product of the manifold IR1

and the manifold IR1 is the manifold IR2; The product of IR1 and S1 is the
cylinder; The product of S1 and S1 is the torus. Thus, the combination of
systems is represented, within our description, by the product of configuration
space manifolds.
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6. The Cotangent Bundle

It is convenient to interrupt briefly our study of mechanics at this point to
introduce a little mathematics.

Let M be an n-dimensional manifold. We define, from M , a new 2n-
dimensional manifold ΓM called the cotangent bundle of M . As a point-set,
ΓM consists of all pairs (q, pa), where q is a point of M and pa is a covariant
vector in M at the point q. (It is not difficult to see, already at this point,
why ΓM will turn out to be 2n-dimensional. It takes n dimensions to “locate”
q in M , and, having chosen q, n more dimensions to locate pa. (Recall that
the vector space of covariant vectors at a point of an n-dimensional manifold
is n dimensional.)) What remains is to introduce a collection of charts on this
set ΓM , and to verify that this collection of charts satisfies our four conditions
for a manifold. Let (U,ψ) be any chart on M , so U is a subset of M and ψ, a
mapping from U to IRn. We associate, with this chart, a certain chart (U ′, ψ′)
(so U ′ will be a subset of ΓM and ψ′ a mapping from U ′ to IR2n) on the set ΓM .
For U ′ we choose the collection of all pairs (q, pa) with q in U . Then, for (q, pa)
in U ′, we set ψ′(q, pa) = (ψ(q), κ1, . . . , κn) where κ1, . . . , κn are the n numbers
such that

pa = κ1∇ax1 + · · · + κn∇axn

where the right hand side is evaluated at q.
We now observe that these charts on ΓM are all compatible with each other,

and that they cover ΓM . The collection of all charts on ΓM compatible with
these makes ΓM a manifold, of dimension 2n.

We repeat this construction in words. A chart on M labels points of M by
n-tuples of real numbers. A point of ΓM is a pair (q, pa), where pa is a covariant
vector at the point q of M . Half the information needed to specify a point of
ΓM , namely q, is already labeled by n numbers, namely, the n numbers ψ(q).
For the other half, namely pa, we observe that the gradients of the n coordinate
functions define, at each point of U (in M), n covariant vectors which span
the space of covariant vectors at that point. Hence, we can label pa by the n

numbers giving the expression for pa, as a linear combination of the gradients
of the coordinate functions. In this way, we obtain suitable charts on M .

There is a natural mapping, which we write π, from ΓM to M . It is defined
by π(q, pa) = q. In words, π is the mapping which “forgets” what the covariant
vector pa is, but remembers the point q of M . A picture of this mapping, is that
on the right. Each point q of M is located below a vertical line in ΓM which
represents all points of the form (q, pa). Thus, in terms of this picture, π is the
mapping which sends each point of ΓM straight down to a point of M . It is
immediate, for example, that π is always onto, and that it is one-to-one if and
only if M is zero-dimensional.

This π is our first example of a mapping from one manifold to another.
It turns out that some such mappings are more interesting than others. The
interesting ones are the ones we shall call smooth. Our next task is to define
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smoothness of a mapping from one manifold to another. Let τ : N → M be a
mapping from the manifold N to the manifold M . We say that this mapping is
smooth if, for any smooth scalar field α on M , α ◦ τ (necessarily a real-valued
function on N) is smooth. Note that α ◦ τ is the function on N whose value at
a point x of N is the number assigned by α to the point τ(x) of M . One always
defines smoothness of things on manifolds by asking that, when one does what
one can with those things on smooth scalar fields, the result is smooth.

As an example of this notion of smoothness of mappings, we show that π :
ΓM → M is smooth. Let α be a smooth scalar field on M . Then β = α◦π is the
following function on ΓM : β(q, pa) = α(q). We must show that this function β is
smooth. Let (U,ψ) be a chart on M , and let (U ′, ψ′) be the corresponding chart
on ΓM . Then, in terms of the coordinates given by this chart, β is the following
real function of 2n variables: β(x1, . . . , xn, κ1, . . . , κn) = α(x1, . . . , xn). Since
α is smooth, the function (of n variables) on the right is smooth. Hence, the
function (of 2n variables) representing β is smooth. Hence, β is a smooth scalar
field on ΓM . Hence, π is a smooth mapping.

The beautiful thing about the cotangent bundle of any manifold is that it
possesses a natural covariant vector field. Since we are using Latin indices to
label tensors on M , we shall, to avoid confusion, use Greek indices for tensors
on ΓM . This covariant vector field will be denoted Aα. Our next task is to
define it.

Let (q, pa) be a point of ΓM (so, recall, q is a point of M and pa is a covariant
vector in M at q). Choose a scalar field α on M such that ∇aα (a covariant
vector field on M) is, at this point q, just pa. There are, of course, many such
scalar fields on M ; pick one. Then α ◦ π is a scalar field on ΓM . The gradient
of this scalar field ∇β(α ◦π) is a covariant vector field on the manifold ΓM . We
evaluate this covariant vector field (on ΓM ) at the point (q, pa) on ΓM : this is
Aβ at the point (q, pa) of ΓM . Repeating for each point (q, pa) of ΓM , we obtain
the desired vector field Aβ on ΓM . This Aβ is the thing, in our formulation,
which replaces “p dx” is classical mechanics.

To summarize, an n-dimensional manifold M gives rise, automatically, to a
2n-dimensional manifold ΓM , which is mapped smoothly to M , and on which
there is a natural covariant vector field Aβ .
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7. Symplectic Manifolds

As in the previous section, let M be a manifold, and let ΓM be the cotangent
bundle of M . Then, as we have seen, there appears on ΓM a certain vector field
Aβ . The curl of this vector field

Ωαβ = ∇αAβ −∇βAα (7)

is called the symplectic tensor field of ΓM . Which derivative operator should we
use in (7)? Fortunately, this is not a decision we have to face, for the right hand
side of (7) is independent of the derivative operator used. This is immediate
from (6):

∇′

αAβ −∇′

βAα = Cµ
αβAµ

where, in the last step we have used (5). The right hand side of (7) (except for
the factor of two) is called the exterior derivative in differential-geometry.

The symplectic field will play a central role in our study of mechanics. The
purpose of this section is to discuss its properties.

The most direct way of getting a quick feeling for the symplectic field is to
express it in terms of chart. We first do this. Consider a chart on M , writing
the coordinates (x1, . . . , xn). Then, as we saw in the previous section, we obtain
a chart on ΓM , with coordinates (x1, . . . , xn, κ1, . . . , κn). Now fix a point (q, pa)
of ΓM , and let the coordinates of this point, with respect to our chart above,
be (x1, . . . , xn, κ1, . . . , κn). We first express Aβ , at the point (q, pa), in terms
of this chart on ΓM . To do this, we just use the definition of Aβ . Consider a
scalar field α on M which, expressed in terms of our chart on M takes the form

κ1(x
1 − x1) + . . . + κn(xn − xn). (8)

It is immediate from the definition of the κ’s (pp 18), that ∇aα, evaluated
at q, is just pa. Furthermore, because of what π does, the scalar field α ◦ π,
expressed in terms of our chart on ΓM , is also given by (8). Hence, Aβ |(q,p) =
∇β(α ◦ π)|(q,p) = (κ1∇βx1 + . . . + κn∇βxn)|(q,p). Since the point (q, pa) was
arbitrary (except that it had to be in our chart on ΓM ), we have

Aβ = κ1∇βx1 + . . . + κn∇βxn. (9)

It is eqn. (9) which suggests we interpret Aβ as “p dx”.
We now wish, similarly, to write the symplectic field in terms of these co-

ordinates. This is easy: substitute (9) into (7). Doing this (and using the fact
that derivative operators commute when applied to a scalar field), we obtain
immediately

Ωαβ = (∇ακ1)(∇βx1)− (∇αx1)(∇βκ1)+ . . .+(∇ακn)(∇βxn)− (∇αxn)(∇βκn)
(10)

This is the desired formula. In intuitive terms, (10) states that Ωαβ has “q-p”
components, and “p-q” components, of opposite sign, and that all “q-q” and
“p-p” components of Ωαβ vanish.

Finally, we introduce three fundamental properties of the symplectic field:

1. Ωαβ is antisymmetric, i.e., Ωαβ = −Ωβα. This is immediate from the
definition (7).

2. Ωαβ is invertible, i.e., there exists a (unique) antisymmetric tensor field
Ωαβ such that ΩαγΩβγ = δα

β , where δα
β , the unit tensor, is defined by

the property δα
βξα = ξβ for all ξα. (Invertibility for tensors is the tensor

analog of invertibility for matrices.) This property follows, for example,
from the explicit expression (10).

3. The curl of Ωβγ vanishes, i.e.,

∇[αΩβγ] = 0 (11)
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Here, and hereafter, square brackets, surrounding tensor indices, mean “write
the expression with the enclosed indices in all possible orders, affixing a plus
sign to those that are an even permutation of the original order, and a minus
sign to those an odd permutation, and, finally, divide by the number of terms”.
Thus, in detail, the left hand side of (11) means 1

6 (∇αΩβγ +∇βΩγα +∇γΩαβ −
∇αΩγβ −∇βΩαγ −∇γΩβα). The left hand side of (11) is in fact independent of
the choice of derivative operator, an assertion proven exactly, as we proved the
same assertion for (7). Finally, that (11) is indeed true can be seen, for example,
by substituting (10). (Actually, (11) is a consequence of (7). ∇[α∇βAγ] = 0 for
any Aγ . To prove this, note that it is true that when Aγ = µ∇γV , and that
any Aγ can be expressed as a sum of such terms of this form.)

More generally, a symplectic manifold is a manifold (necessarily even dimen-
sional) on which there is specified a tensor field Ωαβ having the three properties
above.
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8. Phase Space

We return to mechanics. Let C be the configuration space of a system. The
cotangent bundle of C, ΓC , is called the phase space of the system. It was a
consequence of our manner of introducing configuration space that our system,
at any instant of time, occupies a particular point of configuration space. It
will emerge shortly that our system may also be considered to occupy, at each
instant, a point of phase space. That is to say, our system will “possess”, at each
instant, a pair (q, pa), where pa is a vector at point q of C. We shall continue
to call q the configuration of the system. The covariant vector pa at q will be
called the momentum of the system.

Why does one proceed in this way? At first glance, one might think that
the most natural thing to do would be to stay in configuration space. Points of
configuration space have “concrete physical significance—they represent actual
physical configurations of the actual physical system”. Thus, the physics would
somehow be closer to the surface in the mathematics if one could carry out
the entire description directly in terms of the configuration space. However,
a technical difficulty arises. As we pointed out in Sect. 5, knowing only the
present configuration of a system does not suffice to determine what the system
will do in the future. Roughly speaking, the configuration is half the necessary
information. One might, therefore, think of going to the tangent bundle, of
describing a system in terms of its configuration q and velocity va. Velocity is
also, in a sense, “concrete”, for one can look at a system (for a short span of
time) and determine its velocity. Thus, by going to the tangent bundle, we could
work with objects having direct physical significance, and, at the same time, deal
with the 2n variables (q, va) necessary to determine the future behavior of the
system.

In short, the tangent bundle seems ideal. Why, then, does one choose the
cotangent bundle, the phase space, for the description of our system? The
answer is not very satisfactory: because one has, on the cotangent bundle, the
symplectic field. This field—this additional structure—seems to be necessary to
write the equations which describe mechanics. We shall see that the symplectic
field appears in almost every equation. There is nothing on the tangent bundle
analogous to the symplectic field. The price one pays for the use of this field
is a more tenuous connection between the mathematics and the actual physics.
Suppose, for example, that we have an actual physical system, and that we have
assigned to it some configuration space C. The system is set into action, and
we are permitted to watch the system. We thus obtain a curve in configuration
space. What is the momentum of this system at some instant of time? There
is no definite way to tell (and, in fact, as we shall see later, there is some
ambiguity in this assignment). In a sentence, the momentum of a system is
a pure kinematical quantity. On the other hand, the cotangent bundle (phase
space) has the same dimension as the tangent bundle. We replace a concrete
thing, velocity, by a more abstract thing, momentum, in order to acquire the
symplectic field for use in equations. What is unsatisfying is that it is not clear
why Nature prefers additional structure over a direct physical interpretation.

Points of phase space will be called states of the system. Thus, to give the
state of a system, one must specify its configuration and momentum.
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9. The Hamiltonian

The configuration space concerns kinematics—what can happen. The phase
space is an introduction to the present section, in which we discuss dynamics—
what actually does happen.

At each instant of time, the system is to possess a state, i.e., a point of
phase space, i.e., a configuration and momentum. The evolution of the system
is thus described by a curve, γ : IR → ΓC , in phase space. Thus, for example,
π ◦ γ is a curve in configuration space, a curve which describes the sequence
of configurations through which the system passes. Thus, dynamics is to be
described by giving a bunch of curves in phase space. Since phase space is
2n-dimensional, one would expect that precisely one of these curves will pass
through each point of phase space. The required statement is this: there is a
(smooth) scalar field H on phase space, called the Hamiltonian, such that the
evolution is described by curves in phase space with tangent vector

Hα = Ωβα∇βH (12)

This vector field Hα on phase space is called the Hamiltonian vector field.
(There is a theorem in differential-geometry to the effect that, given a con-
travariant vector field on a manifold, there passes, through each point of that
manifold, precisely one curve everywhere tangent to that vector field.)

That the statement above has, essentially, the content of Hamilton’s equa-

tions (q̇ = ∂H
∂p

, ṗ = −∂H
∂q

) is clear from the explicit expression (10) for the
symplectic tensor field.

The curves in phase space everywhere tangent to the Hamiltonian vector
field in phase space will be called the dynamical trajectories. The fundamental
statement of dynamics can now be formulated as follows: physical systems in
Nature seem often to have the property that, when an appropriate configuration
space is selected, there exists a Hamiltonian H, a scalar field on phase space,
such that the corresponding dynamical trajectories, when projected down to
configuration space, give the actual sequence of configurations through which
the system passes with time.

Example: Suppose that our physical system is a free particle (say, to keep
things simple, in one dimension) of mass m. One could choose for the Hamil-

tonian H = p2

2m
, and obtain the equations of motion ẋ = p

m
, ṗ = 0. However,

one could as well choose for the Hamiltonian H = (p+x2)2. Then the equations
of motion would be ẋ = 2(p+x2), ṗ = −4x(p+x2). All one actually sees about
the physical system is ẍ = 0. But this is the case for either Hamiltonian. In
particular, if one is given x and ẋ for the system at one instant of time, the
momentum (and hence the point of phase space) one assigns to the system at
that time depends on which Hamiltonian one has chosen. The momentum, in
short, is “partially a kinematic and partially a dynamic quantity”.
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Finally, we show that the scalar field H is constant along the dynamical tra-
jectories. The rate of change of the Hamiltonian along a dynamical trajectory
is the directional derivative of H in the direction of the tangent vector to the
curve, i.e., the directional derivative of H along the Hamiltonian vector field.
But, from (12), Hα∇αH = (Ωβα∇βH)(∇αH) = 0, where the last step is a
consequence of the antisymmetry of Ωβα. We can represent this fact geometri-
cally. Draw, in phase space, the (2n − 1)-dimensional surfaces H = constant.
These surfaces fill phase space. The remark above states that each dynamical
trajectory remains forever within a single H = constant surface.
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10. Observables; Poisson Bracket

By an observable of a system, we mean a scalar field on its phase space. Roughly
speaking, observables are the things instruments measure. We think of an ob-
servable as a box having a dial and a little probe which sticks into the system.
The probe is sensitive to what the system is doing, and thus causes the needle to
move to some point on the dial. It should be noted, however, that since, given
the actual system sitting there, the momentum one assigns to it may depend
on the choice (possibly arbitrary to some extent) of a Hamiltonian, one must
think of a scalar field on phase space as being associated, not only with the ac-
tual instrument which probes the system, but also with our mode of description
of the system. Nevertheless, one supposes that the configuration space—phase
space—Hamiltonian assignments have been made, somehow, and calls a scalar
field on phase space an observable.

Two particular types of observables are of particular interest. Let α be a
scalar field on configuration space. Then α ◦ π is a scalar field on phase space
(which ignores momentum, and looks only at configuration). Any observable of
this form, α ◦π, will be called a configuration observable. In elementary treat-
ments of particle mechanics, “x”, “y”, and “z” are configuration observables.
Now consider a contravariant vector field ξa on configuration space. We intro-
duce the following scalar field on phase space: it assigns, to the point (q, pa)
of phase space, the number obtained by contracting ξa at q (a contravariant
vector at q) with pa (a covariant vector at q). We write this scalar field ξapa.
An observable expressible in this form will be called a momentum observable.
In elementary particle mechanics, “px”, “py”, and “pz” are examples of mo-
mentum observables (i.e., those defined by unit vectors pointing in the x, y,
and z directions). Clearly, some observables (i.e., configuration observables)
are “more observable” than others (e.g., momentum observables).

What operations are available on observables? One can certainly add them
(addition of scalar fields) and multiply them (outer product of scalar fields).
However, there is another, equally important, operation called Poisson bracket.
If A and B are observables, the Poisson bracket of A and B (a third observable)
is defined by

{A,B} = Ωαβ(∇αA)(∇βB) (13)

Note how the symplectic field serves to “mix configuration and momentum
components”, so that this expression is the same as the familiar one.

There are five basic properties of Poisson brackets:

1. Additive: {A + B,C} = {A,C} + {B,C}. This is immediate from (13)
and from the fact that the derivatives of (scalar) fields are additive.

2. Leibniz rule: {AB,C} = A{B,C}+{A,C}B. This is immediate from the
Leibniz rule for derivatives of (scalar) fields.

3. Vanish for constants: If A = constant, then {A,B} = 0. This is immediate
from the fact that the derivative of a constant scalar field is zero.
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4. Antisymmetry: {A,B} = −{B,A}. This is immediate from (13) and the

fact that Ωαβ is antisymmetric.

5. Jacobi identity: {A, {B,C}}+{B, {C,A}}+{C, {A,B}} = 0. This is not
so immediate. We have

{A, {B,C}} = Ωαβ(∇αA)(∇β [Ωγδ(∇γB)(∇δC) ] )

= Ωαβ [∇βΩγδ](∇αA)(∇γB)(∇δC)

+ΩαβΩγδ∇αA([∇β∇γB]∇δC + ∇γB[∇β∇δC])(14)

where, in the first step, we have substituted (13), and, in the second,
we have expanded using the Leibniz rule for a derivative operator. Now
suppose we add the right side of (14) to itself three times, switching, each
time, the order of A, B, and C as described by the Jacobi identity. Then
the second term on the far right in (14) will cancel with itself. Hence, the
Jacobi identity will be proven if we can show

Ωβ[α∇βΩγδ] = 0 (15)

because this fact would suffice to kill off the first term on the far right in
(14). Since Ωαβ is invertible, (15) is equivalent to

ΩµαΩνγΩσδΩ
β[α∇βΩγδ] = 0 (16)

Now differentiate by parts (i.e., use the Leibniz rule for derivative opera-
tors):

ΩµαΩνγΩσδΩ
βα∇βΩγδ

= ΩµαΩνγΩβα∇β(ΩσδΩ
γδ) − ΩµαΩνγΩβαΩγδ∇βΩσδ

= +∇µΩσν

Finally, using the fact that ∇[αΩβγ] = 0, we obtain (15), and hence the
Jacobi identity.

The five properties of the Poisson bracket are easy to remember: the first
three are properties of the derivative of scalar fields, the last two are properties
of the symplectic field.

Finally, we derive the well-known equation for the rate of change with time
of an observable. Let A be an observable. Then the time rate of change of A

(along a dynamical trajectory) is (by definition of tangent vector) the directional
derivative of A in the direction of the tangent vector to this dynamical trajectory.
But this tangent vector is the Hamiltonian vector field. Hence,

Ȧ = Hα∇αA = Ωβα(∇βH)(∇αA) = {H,A} (17)

Note, in particular, that, if we replace “A” by “H” in (17), we obtain, by
antisymmetry of the Poisson bracket, Ḣ = 0. We have already seen this.

26



11. Canonical Transformations

We begin with a little mathematics. Let M and N be manifolds and let ψ :
M → N be a mapping. We say that this ψ is a diffeomorphism if

1. ψ is a smooth mapping,

2. ψ−1, a mapping from N to M , exists (i.e., ψ is one-to-one and onto) and
is also a smooth mapping.

Intuitively, a diffeomorphism between M and N makes “M and N identical
manifolds”. Diffeomorphisms are to manifolds as isomorphisms are to vector
spaces, or homeomorphisms are to topological spaces.

The remark above suggests that a diffeomorphism from M to N should be
prepared to carry tensor fields from M to N and back. This in fact is the case.
Let α be a scalar field on M . Then α ◦ ψ−1 is a scalar field on N . It is sort of
the “image” on N of α on M ; we write this scalar field ψ(α). We now know
how to carry scalar fields from M to N . Since tensor fields are built up in terms
of scalar fields, it should now be possible to carry tensor fields from M to N .
Indeed, consider the following equations:

ψ(ξa∇aα) = ψ(ξa)∇aψ(α) (18)

ψ(ξaηa) = ψ(ξa)ψ(ηa) (19)

ψ(T a
c
rs

dξaηcλrωsκ
d) = ψ(T a

c
rs

d)ψ(ξa)ψ(ηc)ψ(λr)ψ(ωs)ψ(κd) (20)

Eqns. (18), (19), and (20) are trying to say that tensor operations commute
with the action of ψ. But we wish to use them as the definition of ψ. Eqn. (18)
defines ψ(ξa), i.e., it defines a mapping from contravariant vector fields on M

to contravariant vector fields on N . In words, the definition (18) is this: if ξa

is a contravariant vector field on M , ψ(ξa) is that contravariant vector on N

which, applied (via directional derivative) to a scalar field ψ(α) on N , yields the
same result as that of applying ξa to α (on M), and carrying the result over (via
ψ) to N . In short, (18) requires that the operation “directional derivative” be
invariant under the pushing of fields from M to N . Similarly, (19) defines ψ(ηa),
i.e., (19) defines a mapping from covariant vector fields on M to covariant vector
fields on N . This definition amounts to requiring that contraction be invariant
under the “pushing action” of ψ. Finally, (20) defines a mapping from arbitrary
tensor fields on M to fields on N .

In short, a diffeomorphism from one manifold to another provides a mech-
anism for carrying tensor fields from the first manifold to the second. This
mechanism is completely and uniquely determined by the following properties:
on scalar fields, it is the obvious thing, and it commutes with all tensor opera-
tions.

Now consider a system, with configuration space C, phase space ΓC , sym-
plectic structure Ωαβ , and Hamiltonian H. A diffeomorphism ψ : ΓC → ΓC

from phase space to itself which leaves invariant the symplectic field,

ψ(Ωαβ) = Ωαβ (21)

is called a canonical transformation. That is to say, canonical transformations
are mappings from phase space to itself which preserve all of the structure of
interest there (smoothness, symplectic). Note that canonical transformations
need not leave the Hamiltonian invariant. When this is the case, i.e., when

ψ(H) = H (22)

the canonical transformation will be called a symmetry. For a moment, re-
gard the phase space, and symplectic field as representing “kinematics”, and
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these things, together with the Hamiltonian, as representing “dynamics”. Then
the following sentence is both a motivation for, and a summary of, the defini-
tions above: canonical transformations are to kinematics as symmetries are to
dynamics as isomorphisms are to vector spaces.

Because they are difficult to manipulate, one seldom uses canonical trans-
formations in practice. Instead, one introduces what are called infinitesimal
canonical transformations. In order to define infinitesimal canonical transfor-
mations, we must, again, introduce a few properties of manifolds.

Let M be a manifold. Consider the identity diffeomorphism on M , the one
that takes each point of M to itself. Then, roughly speaking, an infinitesimal
diffeomorphism on M should be the one which is near the identity, i.e., one
that takes each point of M to a nearby point. But a contravariant vector field
on M defines a “direction of motion in M” at each point. These remarks sug-
gest that a contravariant vector field on M is the precise geometrical object
appropriate to replace the intuitive notion of an “infinitesimal diffeomorphism”.
A diffeomorphism from M to M carries tensor fields on M to tensor fields on
M . One would expect, therefore, that an infinitesimal diffeomorphism on M

carries tensor fields on M to nearby tensor fields on M . The appropriate thing
to consider, therefore, is the “infinitesimal change in the tensor fields under
infinitesimal diffeomorphism”. The precise representation of an “infinitesimal
diffeomorphism” on M is a contravariant vector field on M . This remark sug-
gests that the precise representation of “the infinitesimal change in a tensor field
under an infinitesimal diffeomorphism on M” should be something like “the di-
rectional derivative of a tensor field in the direction of ξa”. The remarks above
are merely motivation for the definitions which follow.

Fix a contravariant vector field ξa on the manifold M . The symbol £ξ will
be called the Lie derivative (in the direction of ξa). For α, a scalar field on M ,
set

£ξα = ξa∇aα. (23)

Thus, the Lie derivative of a scalar field is the directional derivative. As before,
we now wish to extend the notion of the Lie derivative from scalar fields to
tensor fields. Consider the following equations:

£ξ(η
a∇aα) = (£ξη

a)∇aα + ηa∇a(£ξα) (24)

£ξ(η
aλa) = (£ξη

a)λa + ηa£ξλa (25)

£ξ(T
ac

dηaλcκ
d) = £ξ(T

ac
d)ηaλcκ

d + T ac
d£ξ(ηa)λcκ

d

+T ac
dηa£ξ(λc)κ

d + T ac
dηaλc£ξ(κ

d) (26)

These equations are trying to say that the Lie derivative satisfies the “Leibniz
rule, as any good directional derivative type operator should do”. But we use
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them as definitions. Eqn. (24) is the definition of the Lie derivative of a con-
travariant vector field (ηa) on M ; Eqn. (25) the definition of the Lie derivative of
a covariant vector field on M ; Eqn. (26) the definition of the Lie derivative of an
arbitrary tensor field on M . To summarize, the Lie derivative, “the directional
derivative generalized to tensor fields”, is completely and uniquely character-
ized by the following properties: on scalar fields, it is the obvious thing, and it
satisfies Leibniz-type rules.

One actually uses in practice, not the definitions above for the Lie derivative,
but more explicit expressions we now derive. We have

ξb∇b(η
a∇aα) = £ξη

a(∇aα) + ηa∇a(ξb∇bα)

(ξb∇bη
a)∇aα + ξbηa∇b∇aα = (£ξη

a)∇aα + (ηa∇aξb)∇bα + ηaξb∇a∇bα

(ξb∇bη
a)∇aα = (£ξη

a)∇aα + (ηa∇aξb)∇bα

where the first equation results from using (23) in (21), the second equation
results from expanding using the Leibniz rule (for a derivative operator), and
the third equation results from the fact that derivatives commute on scalar
fields. Thus, since α is arbitrary in the last equation above, we have

£ξη
a = ξb∇bη

a − ηb∇bξ
a (27)

We now, similarly, use (23) and (27) in (25)

ξb∇b(η
aλa) = (ξb∇bη

a − ηb∇bξ
a)λa + ηa£ξλa

(ξb∇bη
a)∇cα + ξbηa∇b∇aα = (£ξη

a)∇aα + (ηa∇aξb)∇bα + ηaξb∇a∇bα

(ξb∇bη
a)∇aα = (£ξη

a)∇aα + (ηa∇aξb)∇bα

Since ηa is arbitrary,
£ξλa = ξb∇bλa + λb∇aξb (28)

Finally, using (27) and (28) in (26), we obtain, in precisely the same way
above,

£ξT
ab

cd = ξm∇mT ab
cd − Tmb

cd∇mξa − T am
cd∇mξb

+T ab
md∇cξ

m + T ab
cm∇dξ

m (29)

We could just as well have defined the Lie derivative operation by (29). (Note
that (23), (27), and (28) are just special cases, and that (24), (25), and (26)
follow immediately from (29).) Eqn. (29) is easily the most useful expression
for the Lie derivative. Finally, we note that the right hand side of (29) is in
fact independent of the choice of derivative operator. This is obvious from our
definition, but can also be checked directly from (6).

We now again return to our system, with its configuration space, phase space,
symplectic structure, and Hamiltonian. An infinitesimal canonical transforma-

tion on the system is a contravariant vector field ξa on phase space, ΓC , such
that

£ξΩαβ = 0 (30)

An infinitesimal symmetry is an infinitesimal canonical transformation ξa which,
in addition, satisfies

£ξH = 0 (31)

Everything in this section so far, except for (29) and these two definitions, can
be regarded as motivation.

There is a crucial formula, which simplifies the discussion of infinitesimal
canonical transformations, namely,

3ξγ∇[αΩβγ] − £ξΩαβ − 2∇[α(Ωβ]γξγ) = 0 (32)
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To prove (32), we simply expand it

ξγ∇αΩβγ + ξγ∇βΩγα + ξγ∇γΩαβ

−ξγ∇γΩαβ − Ωγβ∇αξγ − Ωαγ∇βξγ

−∇α(Ωβγξγ) + ∇β(Ωαγξγ) = 0

The first term of (32) gives the first three terms above, the second term of
(32) the next three terms, and the last term of (32) the last two terms. But the
expansion above holds (the third term cancels the fourth, the first, fifth, and
seventh cancel, and the second, sixth, and eighth cancel). Hence (32) is true.

Since the curl of the symplectic field vanishes (Eqn. 11), (32) becomes

£ξΩαβ + 2∇[α(Ωβ]γξγ) = 0 (33)

Thus, ξα is an infinitesimal canonical transformation if and only if the curl of
Ωβγξγ vanishes. But (at least, locally) the curl of a covariant vector field on
a manifold vanishes if and only if it is a gradient. Thus, ξα is an infinitesimal
canonical transformation if and only if Ωβγξγ = ∇βA for some scalar field A on
phase space. Contracting this equation with Ωβα, we find: ξα is an infinitesimal
canonical transformation if and only if ξα = Ωβα∇βA for some A. This A

is called the generator (or generating function) of the infinitesimal canonical
transformation.

Thus, observables generate infinitesimal canonical transformations. It should
also be clear why one often says that “the evolution of the system is the unfolding
of a sequence of infinitesimal canonical transformations”. (We would say: “The
Hamiltonian vector field is an infinitesimal canonical transformation.”)

Thus, infinitesimal canonical transformations can be described in terms of
scalar fields on phase space rather than vector fields (an enormous simplifica-
tion). What condition must an observable A satisfy in order that the infinitesi-
mal canonical transformation it generates be an infinitesimal symmetry? This is
easy to answer. We ask that the Lie derivative of H in the direction of Ωβα∇βA

vanish. That is to say, we ask that (Ωβα∇βA)(∇αH) = 0. That is to say, we
ask that the Poisson bracket, {A,H} = 0. But, from (17), this is precisely the
statement that A be constant along each dynamical trajectory, i.e., that A be
a constant of the motion. To summarize, we have shown that every constant
of the motion generates an infinitesimal symmetry, and that, conversely, every
symmetry is generated by a constant of the motion.
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12. Algebraic Observables

Recall that the first step in the description of the system was the assignment to
that system of a configuration space. This configuration space then led to phase
space with its symplectic structure. Note, however, that essentially all of the
notions of mechanics relate directly to phase space rather than configuration
space. That is to say, the primary purpose in introducing configuration space
has been to obtain phase space. In fact, one could just as well have treated
mechanics as follows:

A system is described by a certain symplectic manifold, called phase space,
on which there is a certain scalar field, called the Hamiltonian. One then has
dynamical trajectories, Poisson brackets, canonical transformations, etc.

The present section is devoted to certain constructions which use, in an essential
way, the presence of configuration space.

In sect. 10, we introduced configuration and momentum observables. We
wish to generalize this notion. Consider a tensor field Ra1···ar , with r indices,
on configuration space, and suppose that this tensor field is symmetric. (That
is, suppose Ra1···ar = R(a1···ar), where round brackets, surrounding a collection
of tensor indices, mean “add the expression to all expressions obtained by chang-
ing the order of the surrounded indices, and divide by the number of terms”.)
We associate, with this tensor field, an observable. Let (q, pa) be a point of
phase space. Then, Ra1···ar (q)pa1

· · · par
is a number. Thus, we have assigned

a number to each point of phase space, i.e., we have defined an observable. We
shall write this observable Ra1···arpa1

· · · par
or sometimes as O(R). For r = 0

(i.e., when Ra1···ar has no indices), we obtain a configuration variable; for r = 1,
a momentum observable. Note, however, that we also obtain observables which
are quadratic, cubic, etc., in the momenta.

Our goal is to express, in terms of the tensor fields, the results on various
operations on these observables.

Evidently, one can add these totally symmetric tensor fields (i.e., Ra1···ar

and Sa1···as) when they have the same number of indices (i.e., when r = s).
There is also a product. If Ra1···ar and Sa1···as are two such fields, we define
their product, written R∩S (indices suppressed), by R(a1···arSar+1···ar+s). Note
that the number of indices in the product is r + s. Obviously, the product is
also associative and commutative, and distributive over addition. Finally, we
define a bracket relation on such tensor fields. Let [R,S] (indices suppressed)
be the tensor field

rRma1···ar−1∇mSar···ar+s−1 − sSma1···as−1∇mRas···ar+s−1 (34)

First note, from (6), that this expression is independent of the choice of
derivative operator. Next, note that the bracket is antisymmetric, additive,
and satisfies the Leibniz rule: [R,S] = −[S,R], [R + S, T ] = [R, T ] + [S, T ],
[R∩S, T ] = R∩ [S, T ]+ [R, T ]∩S. It is also true (and it can be verified directly
from (34)) that this bracket relation satisfies the Jacobi identity: [[R,S], T ] +
[[S, T ], R] + [[T,R], S] = 0. Finally, note that, when r = 1, (i.e., when R is a
vector), our bracket is just the Lie derivative [R,S] = £RS.

We now claim: the three operations (sum, product, bracket) introduced
above on symmetric tensor fields on configuration space correspond precisely
to the three operations (sum, product, Poisson bracket) on the corresponding
observables. That is to say,

O(R + S) = O(R) + O(S) (35)

O(R ∩ S) = O(R)O(S) (36)

O([R,S]) = {O(R), O(S)} (37)
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We first note that (35) and (36) are obvious. To prove (37), one first checks,
from (10), that it is valid when only configuration and momentum observables
are permitted. But any tensor field can be written as a sum of outer products
of vectors. Inserting such sums in (37), using the Leibniz rule (on the left, for
the bracket; on the right, for the Poisson bracket) and the fact that (37) holds
for vectors, we obtain (37) in general. This proves our assertion.

Thus, all the operations on observables yields algebraic observables (i.e.,
those obtained from tensor fields on configuration space) when applied to alge-
braic observables. In fact, nearly every observable one normally deals with in
mechanics is algebraic. An example follows.

Consider the Hamiltonian H = gabpapb+Aapa+V , where gab, Aa, and V are
fields on configuration space (with, of course, gab symmetric). The first term, for
example, could be the Hamiltonian of a free particle in Euclidean space, where
gab is the usual metric of Euclidean space. The first and third terms could be
the Hamiltonian of a particle in a potential (V ). The first and second terms
could be the Hamiltonian of a charged particle (where Aa is a vector potential
for the magnetic field). There appear, in fact, to be very few, if any, systems
whose Hamiltonian cannot be put into this form. Let us ask when a momentum
observable, ξapa, is a constant of motion for this Hamiltonian. The condition is
that the Poisson bracket of the Hamiltonian and the observable vanish. Thus,
we require that {ξ, g} = 0, {ξ,A} = 0, {ξ, V } = 0. That is to say, we require

£ξg
ab = 0, £ξA

b = 0, £ξV = 0.

But this is just the statement that the “infinitesimal diffeomorphism” on con-
figuration space generated by ξa leave invariant the various tensor fields (on
configuration space) which go into the Hamiltonian.

Suppose our system is a free particle, so Aa = 0 and V = 0. Then, ξapa is a
constant of the motion whenever £ξg

ab = 0, where gab is the metric of Euclidean
space. There are six such vector fields on Euclidean space, representing trans-
lations and rotations. The constants of motion associated with translations are
what are usually called momenta. The constants of motion associated with the
rotations are what are usually called angular momenta. Now suppose we intro-
duce a potential V , and ask which of our constants of motion remain constants
of the motion. It is precisely those which also satisfy £ξV = ξa∇aV = 0. In
other words, it is the symmetries of Euclidean space which also leave invariant
the potential. If, for example, V is spherically symmetric, there will be three
such vector fields, ξa

1 , ξa
2 , and ξa

3 (namely, those which represent rotations about
the origin of spherical symmetry of V ). Set J = ξa

1 ∩ ξa
1 + ξa

2 ∩ ξa
2 + ξa

3 ∩ ξa
3 ,

a symmetric, second-rank tensor field on configuration space. By the Jacobi
identity, O(J) is also a constant of the motion (a quadratic one). This constant
of the motion is called the squared angular momentum (for a spherically sym-
metric system). The introduction of an Aa destroys, in general, these constants
of the motion—unless, of course, the Aa happens to also be invariant under the
corresponding infinitesimal diffeomorphism on configuration space.

Finally, note that constants of the motion remain constants of the motion
under addition, product, and Poisson brackets. This is true, in particular, of
algebraic constants of the motion.
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Part III.

Quantum Mechanics

13. Introduction

Mechanics is pretty, tidy, and natural looking. It suffers, however, from one
serious flaw: Nature does not seem to behave that way. Specifically, quantum
mechanics has been found to represent a more accurate description of Nature
than classical mechanics. Roughly speaking, quantum mechanics is a “smeared
out version of classical mechanics, where the amount of smearing is governed
by a certain constant, Planck’s constant h̄.” This last statement is, even as a
“roughly speaking”, somewhat unsatisfactory. It suggests that the principles of
quantum mechanics are somehow to be imposed on a classically defined system,
that quantum mechanics is some sort of thin veneer over classical mechanics.
Thus, one often speaks of “quantizing” a classical system. (The situation is
perhaps analogous to that in which one first treats matter as a continuum,
and then “atomizes” it.) Systems, apparently, “really are” quantum systems—
classical mechanics is merely a simplified approximation for the limit in which
one is insensitive to the “smearing”. Nonetheless, it is common, presumably
because classical mechanics makes good contact with everyday life, to regard
quantum mechanics as some sort of correction to classical mechanics.

Our goal is to quantize the system discussed in part II, i.e., to write down
the quantum description of various systems, and check that this description
reduces, in an appropriate limit, to the classical description. It would perhaps
be more logical, as the above remark suggests, to do part III before part II.
We have artificially reversed the order to provide motivation: part II can be
motivated from everyday life, and part III can be motivated from part II.

There are at least three essentially equivalent formulations of quantum me-
chanics: Schrodinger, Heisenberg, and algebraic. Essentially equivalent formu-
lations, however, need not necessarily be of equal value: one may give better
insight, be more readily adapted to other contexts, or suggest exotic general-
izations, than another. The view is not uncommon that the Schrodinger for-
mulation of quantum mechanics is less natural than the others. The reason is
that the Schrodinger formulation seems to fit badly with the principle of rela-
tivity. Nonetheless, the Schrodinger formulation does tie in nicely with classical
mechanics, and so we shall begin with this point of view.

Let us, for the moment, regard classical mechanics as consisting of states, ob-
servables, and dynamics. The states, of course, are the points of phase space, the
observables scalar fields on phase space. We can regard the states and observ-
ables as the kinematics. The dynamics consists of the Hamiltonian dynamical
trajectories, etc.

Each of these three classical notions has an analog in quantum mechanics.
The space of states in classical mechanics is to be replaced by a corresponding
(although different) space of states in quantum mechanics. In either case, the
system is to be regarded as possessing, at each instant of time, one of its pos-
sible states. Dynamics plays essentially the same role in quantum mechanics
as in classical mechanics: it is the means by which one describes the successive
states through which a system passes with time. It is with the observables,
however, that a significant departure between classical and quantum mechan-
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ics, apparently, takes place. Classically, an observable assigns a number to each
state—a feature one might expect to be characteristic of what one means by a
“measuring instrument”. It might seem reasonable, therefore, to suppose that
observables also in quantum mechanics will have this same characteristic prop-
erty. However, observables emerge initially in quantum mechanics as mappings
from states to states. This mathematical feature is presumably a reflection of
the following physical fact: observations on a classical system can be performed
with negligible effect on the system observed, while this is not the case for a
quantum system. In other words, the mere assignment of a number to each
state is not enough information to define a quantum observable; one must also
give information regarding the state into which the system will be thrown by this
act of observation. This “extra information” is carried by having observables
map states to states rather than to real numbers.
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14. Densities. Integrals.

The things which can be integrated over a manifold, it turns out, are, not scalar
fields, but things called scalar densities. Scalar densities, in turn, represent a
special case of tensor densities. We introduce here the appropriate definitions
and properties.

Let M be an n-dimensional manifold. An alternating tensor, ǫa1···an , at a
point of M is an n-index contravariant tensor at that point which is antisym-
metric, i.e., which reverses sign under interchange of any two of its indices, i.e.,
which satisfies ǫ[a1···an] = ǫa1···an . If ǫ and ǫ′ are two alternating tensors at the
same point, with the second nonzero, then there exists a number α such that
ǫa1···an = αǫ′

a1···an . (Proof: Choose a basis v1a, . . . , vna, for the covariant vectors
at the point, and note that, by antisymmetry, an alternating tensor is completely
and uniquely determined by the value of the number ǫa1···anv1a1

· · · vnan
.) Thus,

the alternating tensors at a point of a manifold form a one-dimensional vector
space. An alternating tensor field is an n-index, contravariant, antisymmetric
tensor field on M , i.e., an assignment (smoothly) of an alternating tensor to
each point of M .

Fix a real number s. A tensor density, e.g., T p
bc

w, at a point of M is a
mapping from alternating tensors ǫa1···an at that point to tensors T p

bc
w(ǫ) at

that point such that
T p

bc
w(αǫ) = (α)sT p

bc
w(ǫ) (38)

for any real number α. The number s is called the weight of the tensor density.
Since any two alternating tensors are proportional, (38) implies that a knowledge
of T p

bc
w(ǫ) for one nonzero alternating tensor ǫa1···an determines T p

bc
w(ǫ) for all

ǫ, and hence, determines the tensor density T p
bc

w. Thus, a choice of alternating
tensor at a point defines a one-to-one correspondence between tensor densities
at that point and tensors at that point. Roughly speaking, a tensor density
is a tensor having certain “scaling behavior” with alternating tensors. Note,
from (38), that a tensor density of weight zero is independent of the alternating
tensor. That is to say, tensor densities of weight zero are just ordinary tensors.

Example: Let κa1···an
be a tensor at a point of M . For any alternating

tensor ǫa1···an at this point, set φ(ǫ) = κa1···an
ǫa1···an . Thus, we have defined a

mapping from alternating tensors at a point to scalars at that point (i.e., to real
numbers). It is immediate that this mapping satisfies (38) with s = 1. Hence,
φ(ǫ) is a scalar density of weight +1. More generally, since tensor densities of
weight +1 define, via (38), linear mappings from alternating tensors to tensors,
every tensor density of weight +1 can be represented, as above, by a tensor.
Similarly, λa1···anb1···bn

ǫa1···anǫb1···bn is a scalar density of weight +2. It is now
clear that every tensor density of positive integral weight can be represented
as a tensor. Now let ηa1···an be a nonzero alternating tensor at a point of M .
Then, for ǫa1···an another alternating tensor at that point, set χ(ǫ) = α, where α

is the number such that ηa1···an = αǫa1···an . Clearly, this χ(ǫ) (a mapping from
alternating tensors to scalars) is a scalar density of weight −1. Thus, a nonzero
alternating tensor defines a scalar density of weight −1. Similarly, every tensor
density of negative integral weight can be represented by a tensor. The purpose
of introducing tensor densities is to enable us to deal with non-integral weights.

A tensor density field on M is a (smooth) assignment of a tensor density
to each point of M , where the weight is the same for each point of M . (Here,
of course, “smooth” means that a smooth tensor field results from a smooth
alternating tensor field.)

Which of our tensor operations are applicable to tensor density fields? Let
T a

cd and T ′a
cd be tensor density fields, and, for any alternating tensor ǫ, set

(T a
cd + T ′a

cd)(ǫ) = T a
cd(ǫ) + T ′a

cd(ǫ). Now let T and T ′ have weights s and
s′, respectively. Then, clearly, the right hand side of this equation is a tensor
density (i.e., the right hand side satisfies (38)) only when s = s′. Thus, the
sum of two tensor density fields is defined precisely when they have the same
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weight (and, of course, the same index structure). The weight of the sum is
the weight of each addend. Similarly, (e.g., (T a

cdWpq)(ǫ) = T a
cd(ǫ)Wpq(ǫ)),

the outer product of any two tensor density fields is defined. The weight of
the product is the sum of the weights of the factors. (Note that, for weight
zero, i.e., for ordinary tensor fields, these operations reduce to ordinary sum
and outer product.) Finally, index substitution and contraction are defined in
the obvious way for tensor densities, and, when applied, yield a density of the
same weight. In short, except for the provision that addition is defined only
between densities having the same weight, all operations on tensors extend to
operations on tensor densities.

Fix a derivative operator ∇a on M , so this ∇a acts on tensor fields. We
wish to extend this action to tensor densities. Let ǫa1···an be an alternating
tensor field on M . Then ∇aǫa1···an = λaǫa1···an for some covariant vector field
λa. (Proof: the left hand side of this equation is antisymmetric in a1, · · · , an.
But two alternating tensors are proportional.) We now define the derivative of
a tensor density, e.g., T b

cd, by

(∇aT b
cd)(ǫ) = ∇a(T b

cd(ǫ)) − sλaT b
cd(ǫ) (39)

where s is the weight of T b
cd. That is to say, ∇aT b

cd is to be the tensor
density field whose action on any alternating tensor field ǫ is given by the
right hand side of (39). We must check that the right hand side of (39) in-
deed satisfies (38). To this end, let ǫ′a1···an = αǫa1···an . Then ∇a(ǫ′a1···an) =
∇a(αǫa1···an) = α∇a(ǫa1···an) + (∇aα)ǫa1···an . Hence, λ′

a = λa + α−1(∇aα). We
then have, for the right side of (39),

∇a(T b
cd(ǫ

′)) − sλ′

aT b
cd(ǫ

′) = ∇a(T b
cd(αǫ)) − s(λa + α−1(∇aα))T b

cd(αǫ)

= ∇a(αsT b
cd(ǫ)) − s(λa + α−1(∇aα))αsT b

cd(ǫ)

= [αs∇a(T b
cd(ǫ)) + (sαs−1(∇aα))T b

cd(ǫ)]

−sλaαsT b
cd(ǫ) − sαs−1(∇aα)T b

cd(ǫ)

= αs∇a(T b
cd(ǫ)) − sλa(αs)T b

cd(ǫ)

= αs[∇a(T b
cd(ǫ)) − sλaT b

cd(ǫ)]

Thus, (39) indeed defines a tensor density field of weight s. To summarize, a
derivative operator on tensor fields extends, via (39), to an operator on tensor
density fields, where taking the derivative does not change the weight. Note,
from (39), that a derivative operator on tensor density fields is additive and
satisfies the Leibniz rule.

My nth-generation copy
of this page had unread-
able sections. So, this
page is my attempt to re-
construct the content. I
hope that I have main-
tained the style of the pre-
sentation and that I did
not introduce any errors.
(Please check!)

Now suppose that we have two derivative operators, ∇a and ∇′

a, on M ,
related via (6). We wish to find the expression, analogous to (6), relating the
actions of these operators on tensor densities. Let ǫa1···an be an alternating
tensor field on M . Then, from (6), ∇′

a(ǫa1···an) = ∇a(ǫa1···an) − Cm
amǫa1···an .

That is to say, λ′

a = λa − Cm
am. Then, (39) implies (∇′

aT b
cd − ∇aT b

cd)(ǫ) =
(∇′

a −∇a)T b
cd(ǫ) + sCm

amT b
cd(ǫ). Since, using (6), we know how (∇′

a −∇a)
acts on a tensor T b

cd(ǫ), we can expand the first term on the right hand side to
obtain (∇′

aT b
cd−∇aT b

cd)(ǫ) = −Cb
amTm

cd(ǫ)+Cm
acT

b
md(ǫ)+Cm

adT
b
cm(ǫ)+

sCm
amT b

cd(ǫ). Thus, the generalization of (6) is

(∇′

aT b
cd −∇aT b

cd) = −Cb
amTm

cd + Cm
acT

b
md + Cm

adT
b
cm

+sCm
amT b

cd (40)

In short, things about tensor fields carry over with appropriate (and minor)
modifications to things about tensor density fields.
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Our final task is to introduce integrals. At a point of the n-dimensional
manifold M , choose N contravariant vectors, ξa

1 , . . . , ξa
n . Since a contravariant

vector can be regarded as defining an“infinitesimal motion at a point”, these n

vectors can be regarded as defining an infinitesimal parallelepiped. We would
like to associate with this figure a “volume”. If we were to multiply any of the
vectors ξa

1 , . . . , ξa
n by a factor, the volume should be multiplied by that factor.

If we add to any of these vectors a multiple of another vector, the volume
should remain the same. Thus, the volume of this infinitesimal figure should be

proportional to the alternating tensor ξ
[a1

1 · · · ξ
an]
n . We can think of a volume

element as assigning to each infinitesimal parallelepiped, i.e., to each alternating
tensor, a number, linearly in the alternating tensor. In other words, a volume
element should be a scalar density of weight +1. It is a scalar density of weight
+1 which can be integrated over a manifold to obtain a number.

To actually define an integral over a manifold, we must go back to charts. Let
φ be a scalar density of weight +1. Choose a chart, with coordinates x1, . . . , xn.
Consider the unique alternating tensor satisfying ǫa1···an(∇a1

x1) · · · (∇an
xn) =

1. Then the integral of φ over the region covered by this chart is, by definition,
the integral

∫

φ(ǫ)dx1 · · · dx1. It is because our original density was of weight
+1 that this integral is independent of the choice of chart.
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15. States

In classical mechanics, the states are points of phase space. In quantum me-
chanics, the states are complex-valued densities ψ on configuration space C, of
weight + 1

2 , for which the integral
∫

C

ψ̄ψ = ‖ψ‖2 (41)

converges (i.e., is finite), where a bar denotes the complex conjugate. There is
a sense in which a quantum state can be regarded as a “smeared out” classical
state. The “configuration half”, q, of a classical state (q, pa), is represented
by ψ̄ψ, a density of weight +1. The density could, for example, be “peaked”
near a point q of configuration space. The “lack of peaking” corresponds to
the “amount of smearing out”. The momentum information in a classical state
is represented, within a quantum state, by the phase of the density ψ. The
“direction in which the phase is changing fastest” replaces the “direction of pa”,
while the rate of change of the phase represents the “magnitude of pa”. Thus,
the two “point pieces of information”, q and pa, which go into a classical state
are reflected, in a smeared out way, by the real and imaginary parts of the
density ψ.

There is one remarkable thing that has happened in the transition from
classical to quantum states. Recall that, in classical mechanics, the introduction
of configuration space was essentially for motivational reasons. One could as well
have carried out classical mechanics on phase space (a symplectic manifold)
on which a scalar field, the Hamiltonian, was specified. On the other hand,
right at the beginning in quantum mechanics—already in the specification of
the states—configuration space plays an essential role. Suppose, for example,
that we produced two manifolds whose cotangent bundles were identical as
symplectic manifolds. Let this symplectic manifold be the phase space for some
system. Then either of our two original manifolds could be regarded as the
configuration space of the system. In classical mechanics, this choice makes no
difference, for classical mechanics takes place on phase space. But, in quantum
mechanics, the difference is crucial, for the space of states already depends
essentially on the choice of configuration space. Stated more carefully, one might
say that the physical world apparently attaches significance to configuration
space itself, but that this significance seems to get lost in the passage to the
classical limit.

Essentially, the only structure available on the space of classical states are
the smoothness and symplectic structures. What structure is available on the
space of quantum states? As it turns out, a great deal more. Firstly, we can add
states, if ψ and ψ′ are complex-valued densities on C of weight + 1

2 for which the
integral (41) converges, then ψ+ψ′ (sum of densities) is another. Furthermore, if
ψ is a quantum state, and κ a complex number, then κψ is another state. Thus,
we can add states and multiply them with complex numbers. It is obvious that
the space of quantum states thus becomes a complex vector space. Still more
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structure comes from (40). Given two states, ψ and ψ′, we define their inner

product, a complex number, by

〈ψ′ |ψ 〉 =

∫

C

ψ̄′ψ (42)

It is clear that the inner product satisfies the following properties:

1. 〈ψ |ψ′ + κψ′′ 〉 = 〈ψ |ψ′ 〉 + κ〈ψ |ψ′′ 〉

2. 〈ψ |ψ′ 〉 = 〈ψ′ |ψ 〉

3. 〈ψ |ψ 〉 ≥ 0, equality holding when and only when ψ = 0

More generally, an inner product space is a complex vector space on which
an inner product is defined, satisfying conditions (1), (2) and (3) above. Thus,
the space of quantum states is an inner product space. An inner product space
which is complete (in an appropriate sense) is called a Hilbert space. The inner
product spaces which occur in quantum mechanics are almost never complete.
However, there exists a procedure for “completing” an inner product space to
obtain a Hilbert space. Thus, one sometimes regards the states of a quantum
system as residing in a Hilbert space (i.e., by suitably completing our space of
states above). It makes essentially no difference in practice whether one choose
to work in the inner product or the Hilbert space. Primarily to avoid having to
introduce the technical construction of completing, we shall remain in the inner
product space.

It is natural to ask why the very rich structure of the states of an actual
system (i.e., the quantum states) become lost in the passage to the classical
limit. This is not at all clear (to me) except for the remark that, for some
reason, superposition is lost in the classical limit.
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16. Observables

We now introduce observables in quantum mechanics. It is convenient to begin
summarizing some mathematics.

Let H be an inner product space. A mapping O : H → H which is linear
(i.e., which satisfies O(ψ + κψ′) = O(ψ) + κO(ψ′) for all elements ψ, ψ′ of H
and complex numbers κ) is called an operator on H. Actually, it is convenient
to slightly broaden this definition. A subspace D of H will be said to be dense

if, given any element ψ of H and any number ǫ > 0, there is an element ψ′

of D such that ‖ψ − ψ′‖ ≤ ǫ. (Intuitively, a dense subset possesses elements
arbitrarily close to any element of H.) We shall also call linear mappings from a
dense subspace D of H to H operators. (This is a technical point, necessitated
by the fact that most of the operators we shall need are only defined, in any
reasonable way, on a dense subspace of an inner product space.) An operator
will be called self-adjoint if, whenever both ψ and ψ′ are in the dense subspace
on which the operator is defined, 〈ψ′ |Oψ 〉 = 〈Oψ′ |ψ 〉.

An observable in quantum mechanics is a self-adjoint operator on the inner
product space of states.

Of particular interest are observables which have a direct connection with
classical observables. Ideally, one would like to formulate a rule for passing
from any classical observable (a scalar field on phase space) to a corresponding
quantum observable. One has, however, no reason to expect that such a rule
will exist—and, apparently, none does. In fact, it is difficult to think, offhand,
of any way whatever to pass from a scalar field on phase space to an operator
on the space of certain densities on configuration space. From a purely math-
ematical point of view, it is perhaps surprising that any classical observables
have quantum analogues. Perhaps one should ask for less—ask only that the
algebraic observables go over to quantum mechanics. But, at this stage, even
this appears to be impossible. It turns out that the classical observables which
do have simple and unambiguous quantum versions are the configuration and
momentum observables.

Let α be a scalar field on configuration space. Then, as we have seen,
α may also be regarded as a scalar field on phase space, i.e., as a classical
observable. We now define a corresponding quantum observable: Q(α)ψ =
αψ. That is to say, Q(α) is the operator on the inner product space of states
which, acting on a typical state ψ yields the state obtained by multiplying ψ

(a density on C of weight + 1
2 ) by α (a density on C of weight 0). The result

is another state, so Q(α) is a mapping from states to states. These operators
Q(α) will be called configuration observables: they are directly analogous to
configuration observables in classical mechanics. Note that each Q(α) is self-
adjoint: 〈ψ′ |Q(α)ψ 〉 =

∫

ψ̄′(αψ) =
∫ ¯(αψ′)ψ = 〈Q(α)ψ′ |ψ 〉.

The momentum observables are slightly more subtle. Let ξa by a vector
field on configuration space, so ξapa is a classical momentum observable. We
wish to write down a corresponding quantum observable. The standard rule
for this transition is that of “replacing the classical momentum pa by ( h̄

i
)∇a”.

Thus, one might expect that the appropriate quantum operator is that whose
action on a state ψ yields ( h̄

i
)ξa∇aψ. However, there are two difficulties with

this choice. Firstly, the operator is not self-adjoint. Indeed,

∫

ψ̄′(( h̄
i
)ξa∇aψ) −

∫

¯(

( h̄
i
)ξa∇aψ′

)

ψ = ( h̄
i
)

∫

(

ψ̄′ξa∇aψ + (ξa∇aψ̄′)ψ
)

= ( h̄
i
)

∫

(

∇a(ψ̄′ψξa) − ψ̄′ψ∇aξa
)

= −( h̄
i
)

∫

ψ̄′ψ∇aξa

But the right hand side is not in general zero. Even more serious is the fact that
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the expression ( h̄
i
)ξa∇aψ is not independent of the choice of derivative operator.

In fact, we have from (40)

ξa∇′

aψ − ξa∇aψ =
1

2
ξaCm

amψ 6= 0.

It is a remarkable fact that a single change in our operator suffices to correct
both of these difficulties. For ξa, a vector field on configuration space, we define
an operator, P (ξ), with the following action on a typical state ψ:

P (ξ)ψ = ( h̄
i
)(ξa∇aψ + 1

2ψ∇aξa) (43)

It is immediate from the above that the second term on the right in (43) makes
this operator self-adjoint, and, at the same time, produces an operator inde-
pendent of the choice of derivative operator. (This last property is vital, for we
have, on configuration space, no preferred derivative operator.) The quantum
observables P (ξ) will be called momentum observables. (Note that the usual
angular momentum operators in quantum mechanics are also, by our definition,
momentum observables.) The quantum momentum observables are, of course,
analogous to the classical momentum observables.

There are three fundamental sets of equations satisfied by these configuration
and momentum observables. The first, and easiest, are linearity in the argument:

Q(α + β) = Q(α) + Q(β) (44)

P (ξ + η) = P (ξ) + P (η) (45)

These properties are immediate from the definitions. The second set of equations
are two anti-commutator relations. For A and B operators, we define the anti-

commutator by {A,B} = AB+BA. We have, immediately from the definition,
that Q(α)Q(β) = Q(αβ). Hence,

{Q(α), Q(β)} = 2Q(αβ) (46)

The anti-commutator between configuration and momentum observables also
takes a simple form. For ψ a state, we have

{P (ξ), Q(α)}ψ = P (ξ) (Q(α)ψ) + Q(α) (P (ξ)ψ)

= P (ξ)(αψ) + α( h̄
i
)(ξa∇aψ + 1

2ψ∇aξa)

= ( h̄
i
)
(

(ξa∇a(αψ) + 1
2 (αψ)∇aξa) + α(ξa∇aψ + 1

2ψ∇aξa)
)

= ( h̄
i
) (ξa(∇aα)ψ + 2αξa∇aψ + αψ∇aξa)

= ( h̄
i
) (2αξa∇aψ + ψ∇a(αξa))

= 2( h̄
i
)
(

αξa∇aψ + 1
2ψ∇a(αξa)

)

= 2P (αξ)ψ

Hence, since ψ is arbitrary,

{P (ξ), Q(α)} = 2P (αξ) (47)

Finally, we derive the three (canonical) commutation relations. For A and
B operators, we set [A,B] = AB−BA. It is immediate from the definition that

[Q(α), Q(β)] = 0 (48)

Furthermore, we have

[P (ξ), Q(α)]ψ = P (ξ) (Q(α)ψ) − Q(α) (P (ξ)ψ)

= P (ξ)(αψ) − α( h̄
i
)(ξa∇aψ + 1

2ψ∇aξa)

= ( h̄
i
)
(

(ξa∇a(αψ) + 1
2 (αψ)∇aξa) − α(ξa∇aψ + 1

2ψ∇aξa)
)

= ( h̄
i
) (ξa(∇aα)ψ)

= ( h̄
i
)Q(ξa∇aα)ψ

whence
[P (ξ), Q(α)] = ( h̄

i
)Q(ξa∇aα) (49)
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Finally, we obtain the commutation relations for the momentum observables:

[P (ξ), P (η)]ψ

= P (ξ) [P (η)ψ] − P (η) [P (ξ)ψ]

= P (ξ)( h̄
i
)[ηb∇bψ + 1

2ψ∇bη
b] − P (η)( h̄

i
)[ξb∇bψ + 1

2ψ∇bξ
b]

= ( h̄
i
)
[

ξa∇a(( h̄
i
)[ηb∇bψ + 1

2ψ∇bη
b]) + 1

2 ( h̄
i
)[ηb∇bψ + 1

2ψ∇bη
b](∇aξa)

]

−( h̄
i
)
[

ηa∇a(( h̄
i
)[ξb∇bψ + 1

2ψ∇bξ
b]) + 1

2 ( h̄
i
)[ξb∇bψ + 1

2ψ∇bξ
b](∇aηa)

]

= ( h̄
i
)2

[

ξa∇a(ηb∇bψ) + 1
2ξa∇a(ψ∇bη

b) + 1
2 (ηb∇bψ)∇aξa + 1

2 ( 1
2ψ∇bη

b)∇aξa

− ηa∇a(ξb∇bψ) − 1
2ηa∇a(ψ∇bξ

b) − 1
2 (ξb∇bψ)∇aηa − 1

2 ( 1
2ψ∇bξ

b)∇aηa
]

= ( h̄
i
)2

[

(ξa∇aηb − ηa∇aξb)∇bψ + (ξaηb − ηaξb)∇a∇bψ

+[12ψξa∇a(∇bη
b) + 1

2ξa(∇aψ)∇bη
b] + 1

2 (ηb∇bψ)∇aξa

−[ 12ψηa∇a(∇bξ
b) + 1

2ηa(∇aψ)∇bξ
b] − 1

2 (ξb∇bψ)∇aηa
]

= ( h̄
i
)2

[

(ξa∇aηb − ηa∇aξb)∇bψ + (ξaηb − ηaξb)∇a∇bψ

+ 1
2ψ[ξa∇a∇bη

b − ηa∇a∇bξ
b]

]

= ( h̄
i
)2

[

(ξa∇aηb − ηa∇aξb)∇bψ + (ξaηb − ηaξb)∇a∇bψ

+ 1
2ψ[ξa∇a∇bη

b − ηa∇a∇bξ
b] − 1

2ψ[ξa∇b∇aηb − ηa∇b∇aξb]

+ 1
2ψ[ξa∇b∇aηb − ηa∇b∇aξb]

]

= ( h̄
i
)2

[

(ξa∇aηb − ηa∇aξb)∇bψ + (ξaηb − ηaξb)∇a∇bψ

+ψ[ξa∇[a∇b]η
b − ηa∇[a∇b]ξ

b]

+ 1
2ψ[∇b(ξ

a∇aηb) − (∇bξ
a)(∇aηb) −∇b(η

a∇aξb) + (∇bη
a)(∇aξb)]

]

= ( h̄
i
)2

[

(ξa∇aηb − ηa∇aξb)∇bψ + 1
2ψ∇b(ξ

a∇aηb − ηa∇aξb)

+(ξaηb − ηaξb)∇a∇bψ + ψ[ξa∇[a∇b]η
b − ηa∇[a∇b]ξ

b]
]

= ( h̄
i
)2

[

( h̄
i
)−1P (£ξη)ψ

+(ξaηb − ηaξb)∇a∇bψ + ψ[ξa∇[a∇b]η
b − ηa∇[a∇b]ξ

b]
]

= ( h̄
i
)P (£ξη)ψ + ( h̄

i
)2ψ−1∇a∇b(ψ

2ξ[aηb])

where we have used the identity that

ψ−1∇a∇b(ψ
2ξ[aηb]) = ψ−1[∇[a∇b](ψ

2ξaηb)]

= ψ−1[ψ2∇[a∇b](ξ
aηb) + ξaηb∇[a∇b](ψ

2)]

= ψ−1[ψ2(ξa∇[a∇b]η
b + ηb∇[a∇b]ξ

a) + ξaηb(2ψ∇[a∇b]ψ)]

= ψ−1[ψ2(ξa∇[a∇b]η
b − ηa∇[a∇b]ξ

b) + ξaηb(2ψ∇[a∇b]ψ)]

= ψ(ξa∇[a∇b]η
b − ηa∇[a∇b]ξ

b) + 2ξ[aηb]∇a∇bψ

= ψ(ξa∇[a∇b]η
b − ηa∇[a∇b]ξ

b) + (ξaηb − ηaξb)∇a∇bψ

The final result
[P (ξ), P (η)] = ( h̄

i
)P (£ξη) (50)

will follow from the calculation above if we show that the last term on the
far right side [i.e., ( h̄

i
)2ψ−1∇a∇b(ψ

2ξ[aηb])] vanishes. Setting F ab = F [ab] =

ψ2ξ[aηb], we have, for an arbitrary scalar field α

∫

α∇a∇bF
ab = −

∫

(∇aα)∇bF
ab =

∫

F ab∇a∇bα =

∫

F ab∇[a∇b]α = 0

where we have integrated twice by parts. Hence, ∇a∇bF
ab = 0, and our result,

(50), follows.
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Eqns. (48), (49), (50) are called the canonical commutation relations. Note
that, in each case, the commutator of the observables is ( h̄

i
) times the Poisson

bracket of the corresponding classical observables. It is interesting that the
quantum observables manage to encompass, in the commutation relations, two
features of the classical observables. Firstly, the commutators all contain a
factor of h̄ on the right. Thus, in the classical limit (h̄ → 0), the observables
commute, just as do classical observables (where product is outer product). On
the other hand, the Poisson bracket of classical observables is also reflected in
the commutators.

The fundamental properties of the configuration and momentum observables
are given by Eqns. (44)-(50). These operators and properties are incorporated,
in a somewhat peculiar way, into the standard formulation of Schrodinger quan-
tum mechanics. Consider, for example, a free particle. One introduces config-
uration observables Qx, Qy, and Qz, obtained from the scalar fields x, y, and
z on Euclidean space (configuration space). These commute with each other.
From (44) and (46), configuration observables associated with any scalar field
which is a polynomial in x, y, z can be constructed as combinations of the
observables Qx, Qy, and Qz. One introduces momentum observables Px, Py,
and Pz, defined by unit vector fields in the x, y, and z directions, respectively.
Using (45) and (47), the momentum observable associated with any vector field
in Euclidean space whose Euclidean components are polynomials in x, y, and
z can be constructed from Qx, Qy, Qz, Px, Py, Pz. Thus, using (44)-(47), one
recovers essentially (i.e., insofar as polynomials are “essentially all functions”)
all of the configuration and momentum observables in terms of just six. On
these six observables, the canonical commutation relations are imposed. These,
of course, are just (48)-(50) in the special cases. Since all other observables are
expressed in terms of these six, the commutation relations on the six suffice to
obtain all commutation relations. Our formulae (48)-(50) are just these “gen-
eral commutation relations for all configuration and momentum observables”.
In short, instead of many observables, subject to (44)-(50), one uses (44)-(47)
to reduce to six observables, on which (48)-(50) are imposed. The advantage
of our formulation, in my view, is that one avoids making special choices (of
which six observables are to be given special status), and treats everything on a
simple, one-shot basis. For examples, the angular momentum commutators for
the free particle are special cases of (50).
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17. Higher Order Observables

The introduction of configuration and momentum observables works out remark-
ably well. The definitions are simple and natural, and the resulting operators
satisfy every condition one could reasonably ask for. One is led by this success
to try to carry over into quantum mechanics classical observables which are
quadratic, cubic, etc. in momentum. This we attempt, unsuccessfully, in the
present section.

First note that it is easy to construct observables which involve second, third,
etc. derivatives of ψ. For example, let ξa be a vector field on configuration space.
Then P (ξ)P (ξ) is an observable whose explicit action, from (43), is

P (ξ)P (ξ)ψ = ( h̄
i
)2

[

ξaξb∇a∇bψ + (ξa∇bξ
b + ξb∇bξ

a)∇aψ

+(1
2ξa∇a(∇bξ

b) + 1
4 (∇bξ

b)2)ψ
]

More generally, any anti-commutator of observables is an observable. It would
be natural to regard {P (ξ), P (η)} as the quantum observable T abpapb, where
T ab = ξ(aηb). (That is to say, we suitably generalize (46) and (47).) Unfortu-
nately, a problem arises. Let λ be any scalar field on configuration space C which
vanishes nowhere (so λ−1 exists). Then it is also true that T ab = (λ−1ξ(a)(ληb)).
However, using (46)-(50), it is easily checked in general {P (λ−1ξ), P (λη)} 6=
{P (ξ), P (η)}. More generally, suppose we are given a quadratic classical ob-
servable, T abpapb. One can always write T ab as a sum of symmetrized outer
products of vector fields. One would like to call the corresponding sum of anti-
commutators of momentum observables the quantum version of the classical
observable T abpapb. However, as illustrated above, the resulting quantum ob-
servable will in general depend on the decomposition chosen for T ab. In short,
we fail, in this way, to associate with classical observables which are quadratic,
cubic, etc. in momentum corresponding (unique) quantum observables.

Let T abpapb be a classical observable. We proceed, in a more direct way,
to try to associate with this a quantum observable. Clearly, the most general
candidate is

α(T ab)∇a∇bψ + β(∇aT ab)∇bψ + γ(∇a∇bT
ab)ψ (51)

where α, β, and γ are real numbers. In order to be acceptable, this candidate
must, at least, satisfy two conditions: it must be self-adjoint, and it must be
independent of the choice of derivative operator.
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We ask what α, β, and γ must be in order that each of these conditions, in
turn, be satisfied. Evidently, we have

∫

ψ̄′[α(T ab)∇a∇bψ + β(∇aT ab)∇bψ + γ(∇a∇bT
ab)ψ]

=

∫

[−α∇a(ψ̄′T ab)∇bψ + βψ̄′(∇aT ab)∇bψ + γψ̄′(∇a∇bT
ab)ψ]

=

∫

[−α(T ab(∇aψ̄′)∇bψ + ψ̄′(∇aT ab)∇bψ)

+βψ̄′(∇aT ab)∇bψ + γψ̄′ψ(∇a∇bT
ab)]

=

∫

[−αT ab(∇aψ̄′)∇bψ + (β − α)ψ̄′(∇aT ab)∇bψ + γψ̄′ψ(∇a∇bT
ab)]

where, in the first step, we have integrated by parts, and, in the third step, we
used the symmetry of T ab. Hence, a necessary and sufficient condition that T

be self-adjoint is that α = β. To investigate behavior under change in the choice
of derivative operator, we use (40):
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α(T ab)∇′

a∇
′

bψ + β(∇′

aT ab)∇′

bψ + γ(∇′

a∇
′

bT
ab)ψ

= αT ab∇′

a(∇bψ + 1
2Cm

bmψ)

+β(∇aT ab − Ca
amTmb − Cb

amT am)(∇bψ + 1
2Cp

bpψ)

+γ(∇′

a(∇bT
ab − Ca

bmTmb − Cb
bmT am))ψ

= αT ab(∇a∇bψ + Cm
ab∇mψ)

+ 1
2αT ab(Cm

bm(∇aψ + 1
2Cn

anψ) + (∇′

aCm
bm)ψ)

+β(∇aT ab − Ca
amTmb − Cb

amT am)∇bψ

+ 1
2β(∇aT ab − Ca

amTmb − Cb
amT am)Cp

bpψ

+γ(∇a∇bT
ab − Ca

am∇bT
mb)ψ + γ(−∇′

a(Ca
bmTmb + Cb

bmT am))ψ

= αT ab∇a∇bψ + β(∇aT ab)∇bψ + γ(∇a∇bT
ab)ψ

+αT abCm
ab∇mψ + 1

2αT abCm
bm∇aψ

+(1
2 )2αT abCm

bmCn
anψ + 1

2αT ab(∇′

aCm
bm)ψ

−βCa
amTmb∇bψ − βCb

amT am∇bψ

+ 1
2β(∇aT ab − Ca

amTmb − Cb
amT am)Cp

bpψ

−γ(Ca
am∇bT

mb + ∇′

a(Ca
bmTmb + Cb

bmT am))ψ

= αT ab∇a∇bψ + β(∇aT ab)∇bψ + γ(∇a∇bT
ab)ψ

+(∇aψ)((1
2α − β)T abCm

bm + (α − β)TmbCa
mb)

+(ψ)
(

1
2αT ab( 1

2Cm
bmCn

an + ∇′

aCm
bm)

+ 1
2β(∇aT ab − Ca

amTmb − Cb
amT am)Cp

bp

−γ(Ca
am∇bT

mb + ∇′

a(Ca
bmTmb + Cb

bmT am))
)
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It is immediate from this expression that our operator is independent of the
choice of derivative operator precisely when α = β = γ = 0, i.e., when and
only when we have the zero operator. This failure is, of course, just a more
sophisticated version of our earlier failure.

Thus, we reach the conclusion that it is only the configuration and momen-
tum observables which go over naturally from classical to quantum mechanics.
But, as we remarked earlier, what is perhaps surprising is, not that some classi-
cal observables have no quantum analogs, but that any at all do. Nevertheless,
one is led to ask why the cut-off occurs between linearity and quadratic-ness in
momentum. (Mathematically, it is because different derivative operators only
start to become really different after the second derivative.) There is, however,
a more direct reason.

Recall that every classical observable generates an infinitesimal canonical
transformation. Let us call a canonical transformation “configuration space
preserving” if it has the following property: two points of phase space asso-
ciated with the same point of configuration space (e.g., (q, pa) and (q, p′a)) are
taken, by the canonical transformation, to points of phase space which again have
this property. Note that a classical observable is a configuration observable if
and only if it assumes the same value on two points of phase space associated
with the same point of configuration space. Thus, a canonical transformation
is configuration space preserving if and only if it takes configuration observ-
ables to configuration observables. The infinitesimal version of this statement is
this: the infinitesimal canonical transformation generated by an observable is to
be regarded as configuration space preserving when and only when the Poisson
bracket of that observable with any configuration observable is a configuration
observable. But now (37) implies (immediately) that the only observables which
generate infinitesimal canonical transformations which are configuration space
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preserving are the configuration and momentum observables. Thus, these clas-
sical observables play a special role.

What is so special about things which are configuration space preserving?
Recall that quantum mechanics, as opposed to classical mechanics, requires, not
just phase space, but also configuration space itself. Classical observables which
“disrupt” configuration space (i.e., whose infinitesimal canonical transforma-
tions are not configuration space preserving) might be expected to be awkward
in quantum mechanics. Indeed, as we have found, they are awkward; they do
not seem to carry over from classical to quantum mechanics.
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18. The Hamiltonian. Dynamics

We now wish to describe the passage of our quantum system, with time, from
one state to another. In classical mechanics, this description is carried out by
introducing a certain observable H, the Hamiltonian. This H then defines the
dynamical trajectories, which describe the dynamics. Thus, the most obvious
way to proceed is to first to try to replace the classical observable H by some
sort of analogous quantum observable.

We are confronted immediately by a serious problem. We have seen in
Sect. 17 that it is only the configuration and momentum observables which
go over directly from classical to quantum mechanics. However, the classical
Hamiltonian is almost never a configuration or momentum observable. In fact,
it is almost always the case that the Hamiltonian contains quadratic terms in
the momenta, i.e., that H takes the form

H = gabpapb + Aapa + V (52)

Such a classical observable, by Sect. 17, does not go over in the obvious way to
a quantum observable.

Fortunately, a remarkably simple result intervenes to save the situation. It
is this: On a manifold M , let gab be a symmetric (i.e., gab = g(ab)) tensor field
which is invertible (i.e., for which there exists a field gab such that gamgbm =
δa

b). Then, there exists one and only one derivative operator ∇a on M such
that ∇agbc = 0. Proof: Let ∇′

a be any derivative operator on M . We then have,
from (6),

∇agbc = ∇′

agbc + Cb
amgmc + Cc

amgbm (53)

We must first show that there is one and only one tensor field Ca
bc on M such

that the right hand side of (53) vanishes. Indeed, there is one, namely,

Ca
bc = −gbm∇cg

am − gcm∇bg
am + gamgbpgcq∇mgpq (54)

as can be checked by substituting (54) into the right hand side of (53). Suppose
both Ca

bc and C̃a
bc caused the right side of (53) to vanish. Then, setting

Kabc = gam(Cm
bc − C̃m

bc) we have Kabc = Ka(bc), and, from the vanishing of
the right side of (53), Kabc = −Kbac. Using alternatively the first and second
of these facts, we have

Kabc = Kacb = −Kcab = −Kcba = Kbca = Kbac = −Kabc

whence Kabc = 0, whence Ca
bc = C̃a

bc. This completes the proof.
The idea is to use this result to convert the classical Hamiltonian (52) into

a quantum observable. In order to do this, we must assume that the gab in (52)
is invertible. (This condition is certainly satisfied for all the usual systems one
treats in quantum mechanics.) Thus, if the classical Hamiltonian contains a term
quadratic in momentum (together, possibly, with terms linear in momentum and
independent of momentum), and if the coefficient of that term, gab, is invertible,
we can introduce the corresponding quantum operator

Hψ = ( h̄
i
)2gab∇a∇bψ + ( h̄

i
)(Aa∇aψ + 1

2ψ∇aAa) + V ψ (55)

where ∇a in (55) is the unique derivative operator defined by gab (i.e., such that
∇cg

ab = 0). We needn’t be concerned with whether or not the right side of (55)
is independent of derivative operator (it isn’t), because the classical Hamiltonian
prefers one derivative operator. Note that since ∇agbc = 0, the first term on the
right in (55) is the same as ( h̄

i
)2∇a(gab∇bψ), and the same as ( h̄

i
)2∇a∇b(g

abψ).
(In more conventional language, with this choice of derivative operator, there is
no factor ordering problem.) That is to say, if T ab in (51) is replaced by gab, the
last two terms on the right vanish. It is now immediate that from the discussion
following (51) that the operator (55) is self-adjoint.
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Thus, if the classical Hamiltonian is of the form (52), with gab invertible,
we can introduce a unique corresponding quantum Hamiltonian (55). As far as
I am aware, it is only when the classical Hamiltonian satisfies these conditions
that one can “quantize” a classical system. Perhaps one should take the point of
view that systems (i.e., quantum theory) operate only within this regime. What
is then somewhat mysterious is why it should be that, when one passes to the
classical limit, the description has a very natural generalization (i.e., to Hamil-
tonians other than (52)) which is completely lost within quantum mechanics
itself. Alternatively, one could take the following view. In quantum mechanics,
there is a Hamiltonian observable, which is of finite differential order. A system
described by such a Hamiltonian can, in the classical limit, be described by a
classical Hamiltonian algebraic in the momenta. It just happens that it is only
when the original quantum Hamiltonian was of second differential order that
one can pass uniquely back from classical to the quantum description. But, a
priori, one might not have expected to be able to pass from the classical descrip-
tion, uniquely, to the quantum description in any case. It just happens that,
in the quadratic case, no essential information gets lost in the classical limit.
(Nature, however, tries to confuse use by making most quantum Hamiltonians
of second differentiable order, so we get used to the idea that we should be able
to recover the quantum description from its classical limit.)

A useful simplification becomes available in the presence of the Hamil-
tonian (55). We claim: there are just two alternating tensors (differing only
in sign) satisfying:

ga1b1 · · · ganbn
ǫa1...anǫb1...bn = n!

That the left side of this equation is nonzero for any nonzero alternating tensor
follows from the fact that gab is invertible. (This is the tensor statement of the
fact from matrix algebra that an invertible matrix has nonzero determinant.)
But any multiple of an alternating tensor is an alternating tensor: hence, there
exists an alternating tensor satisfying the above. That there are just two, differ-
ing in sign, follows from the fact that, if ǫ and αǫ satisfy the above, then α2 = 1,
whence α = ±1. Thus, our claim is proved. We can use this preferred alter-
nating tensor (pick one) to reduce density fields to tensor fields. Thus, instead
of a density ψ (a mapping from alternating tensors to scalars), we can evaluate
this ψ on our preferred alternating tensor ǫa1...an , to obtain a complex scalar
field ψ(ǫ). Similarly, all tensor densities can be “evaluated on ǫ” to yield tensor
fields. Note, furthermore, that, taking the derivative of the equation above,
using the derivative operator defined by gab, we obtain ∇aǫa1...an = 0. Hence,
λa = 0 in (39). That is to say, if we use the derivative operator defined by
gab, and evaluate tensor densities on the preferred alternating tensor to obtain
tensor fields, we can replace derivatives of such densities by derivatives of the
corresponding tensor fields. (In other words, the operations “evaluate on the
preferred alternating tensor” and “take the derivative by the preferred derivative
operator” commute.)

Our final task is to write down the equation describing the dynamics of our
system. At each time t, the system is to be in some state, ψ(t), where ψ(t) is
(by the previous paragraph) a complex scalar field on configuration space C, for
each t. The dynamical equation, called Schrodinger’s equation, is

− ( h̄
i
)

d

dt
ψ = Hψ (56)

This gives the time rate of change of ψ in terms of ψ at one instant of time.
Hence, (56) determines ψ(t) for all t, given ψ(t0) at one fixed time, t0.
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19. Higher Order Observables—Revisited

We have seen in Sect. 17 that classical observables which are of order quadratic
or higher in momentum do not lead to quantum observables. The difficulty
was this: no expression could be found for the quantum observable which was
independent of the choice of derivative operator. But, in Sect. 18, we observed
that the presence of a (classical) Hamiltonian quadratic in momentum leads,
among other things, to a natural, unique derivative operator. Thus released
from what was the primary difficulty in Sect. 17, we return to the question of
that section.

We begin with the quadratic case. Let T abpapb be a classical observable.
Then, using the unique derivative operator defined by the Hamiltonian, we
have the following corresponding quantum observable

1
2 ( h̄

i
)2[T ab∇a∇b + (∇a∇bT

ab) + γ(∇bT
ab)∇a] (57)

where γ is any real number. This operator is self-adjoint for all γ, but, of course,
is independent of the choice of ∇a for no γ. In short, one has, in the presence
of a preferred derivative operator, a one-parameter family of candidates for the
quantum version of the observable T abpapb. It is clear that this situation contin-
ues into higher-order observables. A classical observable of quadratic or higher
order in momentum leads, in the presence of a preferred derivative operator, to
a family of “corresponding” quantum observables depending on some arbitrary
constant parameters.

Thus, one before had no quantum versions of higher-order classical observ-
ables —one now has many. It is natural, in such a situation, to attempt to
impose some additional conditions on our quantum observables in order to ob-
tain uniqueness. There is a natural such condition: one could require that
( h̄

i
) times Poisson bracket of classical observables correspond to the commu-

tator of the corresponding quantum observables. Consider, for example, the
classical observables T abpapb and ξapa, with Poisson bracket (2Tm(a∇mξb) −
ξm∇mT ab)papb (Sect. 12). The corresponding quantum observables are to
be (57) and ( h̄

i
)(ξa∇a + 1

2∇aξa). We ask that the commutator of these two

observables be ( h̄
i
) times the operator obtained by replacing T ab in (57) by

(2Tm(a∇mξb) − ξm∇mT ab). The problem is to choose the constant γ in (57)
so that this will be the case. The result of this straightforward and tedious
calculation is that no choice of γ does the job. There is, apparently, no way
to assign quantum versions to algebraic classical observables, in the presence
of a preferred derivative operator, so that commutators correspond to Poisson
brackets.

Having made this observation, we next observe that it is the answer to what
is perhaps a somewhat artificial question. This question of the relation between
classical and quantum observables can be reformulated as follows. On a manifold
C, a differential operator consists of (∇a, T a1...as , T a1...as−1 , . . . , T a, T ), where
∇a is a derivative operator on C, and the T ’s are symmetric tensor fields on C.
The integer s (if T a1...as is nonzero) is the order of the differential operator. We
can regard differential operators as acting on scalar densities ψ of weight + 1

2 as
follows:

( h̄
i
)s[T a1...as∇a1

. . .∇as
+ · · · + T a∇a + T ]ψ (58)

Now suppose, in (58), that we rewrite this expression in terms of some other
derivative operator ∇′

a, related to ∇a via Ca
bc (Eqn. 40). Then (58) becomes

( h̄
i
)s[T ′a1...as∇′

a1
. . .∇′

as
+ · · · + T ′a∇′

a + T ′]ψ (59)

where each T ′a...c is expressed in terms of the T ’s, Ca
bc, and ∇a. But (59) is to

be regarded as the action of the differential operator (∇′

a, T ′a1...as , T ′a1...as−1 , . . . ,

T ′a, T ′) on ψ. We regard these two differential operators as equivalent. (More
precisely, a differential operator is an equivalence class of objects (∇a, T a1...as ,
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T a1...as−1 , . . . , T a, T ), where two such objects are equivalent if their actions,
(58), on any density ψ of weight + 1

2 , are identical.)
The quantum observables include self-adjoint differential operators. The

classical limit of the quantum observable (58) is, of course, T a1...aspa1
· · · pas

.
Thus, the quantum theory itself has no difficulty in any case with observables.
There are many of them lying around, including, presumably, a Hamiltonian
observable (possibly quadratic, but also possibly some other order in momen-
tum). We, however, insist on asking about the possibilities for recovering vari-
ous quantum observables from their classical limit. The situation then becomes
quite complicated. Nature, however, doesn’t care whether or not quantum ob-
servables are recoverable from classical limits.
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20. Heisenberg Formulation

What we have been discussing so far is called the Schrodinger formulation of
quantum mechanics. There is a second, more natural but essentially equiva-
lent mathematically, formulation called the Heisenberg formulation of quantum
mechanics. We now introduce it.

It is convenient, in order to illustrate what is involved here, to first return
to classical mechanics. Recall that the states in classical mechanics were the
points of phase space ΓC , while the observables were scalar fields on phase
space. That is to say, the observables were real-valued functions on the space
of states. We may call this the Schrodinger formulation of classical mechanics.
By contrast, the Heisenberg formulation of classical mechanics would be this.
The states would be the dynamical trajectories on phase space, i.e., the curves
γ(t) on phase space, labeled by the time t, whose tangent at each point is
the Hamiltonian vector field evaluated at that point. Thus, in the Schrodinger
formulation of classical mechanics, the system possesses a state (a point of phase
space) at each instant of time: as time marches on, the state changes. In the
Heisenberg formulation, a system has one state (a dynamical trajectory), not
at each instant of time, but once and for all. Although the system evolves, it
always retains the same state, in the Heisenberg formulation. One summarizes
the state of affairs by saying that, in the Schrodinger formulation, the state of
the system depends on time, while in the Heisenberg formulation, the state is
independent of time.

In the Schrodinger formulation of classical mechanics, an observable is a
real-valued function on the space of (Schrodinger) states. Similarly, in the
Heisenberg formulation, an observable is a real-valued function on the space
of (Heisenberg) states. One could, of course, make the space of Heisenberg
states into a manifold, so the Heisenberg observables would functions on this
manifold. It is convenient, however, to proceed in a slightly different way. Let A

be a Schrodinger observable, so A is a scalar field on phase space. We introduce
a Heisenberg observable, O(A, t0), which depends both on A and a choice of
time, t0. This observable is defined as follows: it assigns to the Heisenberg state
γ(t) (a dynamical trajectory) the number A(γ(t0)). That is to say, O(A, t0)
assigns to the Heisenberg state γ(t) the number assigned by the Schrodinger
observable A to the Schrodinger state γ(t0). Thus, a single Schrodinger observ-
able leads to a one-parameter family O(A, t) (labeled by the parameter t) of
Heisenberg observables.

To summarize, a Heisenberg state is a certain one-parameter (labeled by t)
family of Schrodinger states. Whereas the Schrodinger state of a system changes
with time (as the system evolves), the Heisenberg state does not change with
time. In either case, the observables are real-valued functions on the space of
states. Each Schrodinger observable leads to a one-parameter family (labeled
by t) of Heisenberg observables.

Since the Heisenberg observables which arise from Schrodinger observables
depend on the parameter t, it is natural to ask for their rate of change with
respect to t. Intuitively, the difference between O(A, t0 + ∆t0) and O(A, t0),
acting on a state γ(t), is the difference between A evaluated at the point γ(t0 +
∆t0) and the point γ(t0) of phase space. But the Hamiltonian vector field is the
tangent vector to a dynamical trajectory. It is immediate, therefore, from (17)
that

d

dt
O(A, t) = O([H,A], t) (60)

This equation describes the time-dependence of Heisenberg observables which
arise from Schrodinger observables. It also shows, for example, that O(H, t) is
independent of t.

Of course, the “reformulation” of classical mechanics above adds practically
nothing to the content if classical mechanics. It is of interest because it provides
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an almost perfect analogy for the Heisenberg reformulation of Schrodinger quan-
tum mechanics (which, again, adds practically nothing to quantum mechanics.)

In the Schrodinger formulation of quantum mechanics, a state is a density
ψ on configuration space C, of weight + 1

2 , which is square-integrable. In the
Heisenberg formulation, a state is a solution, ψ(t), of Schrodinger’s equation,
(56). That is to say, a Heisenberg state is a certain one-parameter family (labeled
by t) of Schrodinger states. In the Schrodinger formulation, a system possesses
a state at each instant of time, the change in that state with time describing the
evolution of the system with time. In the Heisenberg formulation, the system
possesses just one state once and for all, the “time evolution” of the system
being inherent in the state. Thus, the Schrodinger state describing a system is
time-dependent, while the Heisenberg state is time-independent.

In the Schrodinger formulation, an observable is a self-adjoint operator on
the space of (Schrodinger) states. In the Heisenberg formulation, an observable
is a self-adjoint operator on the space of (Heisenberg) states.

Let A be a Schrodinger observable, so A is a self-adjoint operator on the
space of Schrodinger states. We associate with this A a one-parameter family,
O(A, t0), (labeled by time t0) of Heisenberg observables. The definition is this:
if ψ(t) is a Heisenberg state, O(A, t0), acting on this ψ(t), is that Heisenberg
state ψ′(t) such that ψ′(t0) = Aψ(t0). In other words, the action of O(A, t0)
is this. Given a Heisenberg state ψ(t), we “freeze” this state at t0 to obtain
a Schrodinger state, ψ(t0). We then act on this Schrodinger state with A to
obtain another Schrodinger state. We then evolve this Schrodinger state to
other times (i.e., other than t0) using the Schrodinger equation. The result
is another Heisenberg state. Note that we are forced to a definition of this
type. We could not simply take the Heisenberg state ψ(t), and consider Aψ(t)
(i.e., the one-parameter family of states obtained by acting on each of the one-
parameter family of states ψ(t) with A), for Aψ(t) would not in general satisfy
the Schrodinger equation, i.e., would not in general be a Heisenberg state.

To summarize, a Heisenberg state is a certain one-parameter family (labeled
by t) of Schrodinger states. An evolving system is described, in the Schrodinger
formulation, by a time-dependent Schrodinger state, and, in the Heisenberg
formulation, by a single (time-independent) Heisenberg state. Observables, in
either case, are self-adjoint operators on the space of states. Every Schrodinger
observable defines a one-parameter family of Heisenberg observables.

Finally, we wish to derive the quantum equation analogous to (60). Fix a
Schrodinger observable A, and a Heisenberg state ψ(t) (a one-parameter family
of Schrodinger states). For each real number w, O(A,w), acting on the Heisen-
berg state ψ(t), yields another Heisenberg state φw(t). We can just as well write
this as φ(w, t), a two-parameter family of Schrodinger states. Since φw(t) is a
Heisenberg state for each w, we have

− ( h̄
i
)

∂

∂t
φ(w, t) = Hφ(w, t) (61)

for each w. By definition of O(A,w), we have

φ(t, t) = Aψ(t) (62)

for each t. Clearly, (61) and (62) define the two-parameter family of Schrodinger
states uniquely in terms of the one-parameter family ψ(t). But, from the dia-
gram below,
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where, in the last step, we have used (61), (62), and Schrodinger’s equation on
ψ(t). It is immediate from this equation that

d

dt
O(A, t) = ( h̄

i
)−1O([H,A], t) (63)

This is the desired formula. It gives the rate of change with time of the time-
dependent Heisenberg observable arising from any Schrodinger observable A.
Note that it implies, in particular, that the Heisenberg observable O(H, t) is
independent of t.

It is of interest to work out the right side of (61) for our (Schrodinger)
configuration and momentum observables. We take, for our Hamiltonian, (55).
Let α be a scalar field on configuration space, and Q(α) the corresponding
(Schrodinger) observable. Then

(HQ(α) − Q(α)H)ψ

= [( h̄
i
)2gab∇a∇b + ( h̄

i
)(Aa∇a + 1

2∇aAa) + V ](αψ)

−α[( h̄
i
)2gab∇a∇b + ( h̄

i
)(Aa∇a + 1

2∇aAa) + V ]ψ

= ( h̄
i
)2[ψgab∇a∇bα + 2gab∇aα∇bψ] + ( h̄

i
)[ψAa∇aα]

= ( h̄
i
)[( h̄

i
)2(gab∇aα∇bψ + 1

2gab∇a∇bα)ψ] + ( h̄
i
)[Aa∇aα]ψ

= ( h̄
i
)[2( h̄

i
)
(

(gab∇aα)∇bψ + 1
2gab∇b∇aα

)

ψ] + ( h̄
i
)[Aa∇aα]ψ

= ( h̄
i
)[2( h̄

i
)
(

(gab∇aα)∇bψ + 1
2∇b(g

ab∇aα)
)

ψ] + ( h̄
i
)[Aa∇aα]ψ

= ( h̄
i
)[2( h̄

i
)
(

(gab∇aα)∇bψ + 1
2ψ∇b(g

ab∇aα)
)

] + ( h̄
i
)[Aa∇aα]ψ

= ( h̄
i
)[P (2gab∇aα)ψ] + ( h̄

i
)[Q(Aa∇aα)]ψ

= ( h̄
i
)[P (2gab∇aα) + Q(Aa∇aα)]ψ

Note that this reduces, for the case of a particle in Euclidean space, to the usual
Heisenberg equation of motion.
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The corresponding equation for the momentum operator, P (ξ), is more com-
plicated:

(HP (ξ) − P (ξ)H)ψ

= [( h̄
i
)2gab∇a∇b + ( h̄

i
)(Aa∇a + 1

2∇aAa) + V ]([( h̄
i
)ξc∇c + 1

2∇cξ
c]ψ)

−[( h̄
i
)ξc∇c + 1

2∇cξ
c][( h̄

i
)2gab∇a∇b + ( h̄

i
)(Aa∇a + 1

2∇aAa) + V ]ψ

= ( h̄
i
)3

[

gab∇a∇b(ξ
c∇cψ + 1

2 (∇cξ
c)ψ)

−ξc∇c(g
ab∇a∇bψ) − 1

2 (∇cξ
c)(gab∇a∇bψ)

]

+( h̄
i
)2

[

(Aa∇a + 1
2 (∇aAa))(ξc∇cψ + 1

2 (∇cξ
c)ψ)

− (ξc∇c + 1
2 (∇cξ

c))(Aa∇aψ + 1
2 (∇aAa)ψ)

]

+( h̄
i
)
[

V (ξc∇cψ + 1
2 (∇cξ

c)ψ) − (ξc∇c + 1
2 (∇cξ

c))(V ψ)
]

= ( h̄
i
)3

[

[gab∇a∇bξ
c]∇cψ + [2gab∇(aξc]∇b)∇cψ + [ξcgab]∇a∇b∇cψ

+ 1
2 [gab∇a∇b(∇cξ

c)]ψ + 1
2 [2gab∇(a(∇cξ

c)]∇b)ψ

+ 1
2 [gab∇a∇b(∇cξ

c)]ψ + 1
2 [(∇cξ

c)gab]∇a∇bψ

−ξc∇c(g
ab∇a∇bψ) − 1

2 (∇cξ
c)(gab∇a∇bψ)

]

+( h̄
i
)2

[

( h̄
i
)−2(P (A)P (ξ) − P (ξ)P (A))ψ

]

+( h̄
i
)
[

( h̄
i
)−1(Q(V )P (ξ) − P (ξ)Q(V ))ψ

]

= ( h̄
i
)3

[

[gab∇a∇bξ
c]∇cψ + [2gab∇(aξc]∇b)∇cψ + [ξcgab]∇a∇b∇cψ

+2 1
2 [gab∇a∇b(∇cξ

c)]ψ + 1
2 [2gab∇(a(∇cξ

c)]∇b)ψ − ξc∇c(g
ab∇a∇bψ)

]

+( h̄
i
)2

[

( h̄
i
)−2[P (A), P (ξ)]ψ

]

+ ( h̄
i
)
[

( h̄
i
)−1[Q(V ), P (ξ)]ψ

]

= ( h̄
i
)3

[

[ξcgab](∇a∇b∇cψ −∇c∇a∇bψ) + [2gab∇(aξc]∇b)∇cψ

+[gab∇a∇bξ
c]∇cψ + [gab∇a∇b(∇cξ

c)]ψ + [gab∇(a(∇cξ
c)]∇b)ψ

]

+( h̄
i
)2

[

( h̄
i
)−2(−( h̄

i
)P (£ξA)ψ)

]

+ ( h̄
i
)
[

( h̄
i
)−1(−( h̄

i
)Q(ξa∇aV )ψ)

]

= ( h̄
i
)3

[

[ξcgab](∇a∇c∇bψ −∇c∇a∇bψ) + [2gab∇(aξc]∇b)∇cψ

+[gab∇a∇bξ
c]∇cψ + [gab∇(a(∇cξ

c)]∇b)ψ + [gab∇a∇b(∇cξ
c)]ψ

]

−( h̄
i
) [P (£ξA) + Q(ξa∇aV )] ψ

= ( h̄
i
)3

[

[ξcgab](2∇[a∇c]∇bψ) + [2gab∇aξc]∇b∇cψ

+[gab∇a∇bξ
c]∇cψ + [gab∇(a(∇cξ

c)]∇b)ψ + [gab∇a∇b(∇cξ
c)]ψ

]

−( h̄
i
) [P (£ξA) + Q(ξa∇aV )] ψ

= ( h̄
i
)3

[

[ξcgab](Racb
d∇dψ) + [2gab∇aξc]∇(b∇c)ψ

+[gab∇a∇bξ
c]∇cψ + [gab∇(a(∇cξ

c)]∇b)ψ + [gab∇a∇b(∇cξ
c)]ψ

]

−( h̄
i
) [P (£ξA) + Q(ξa∇aV )] ψ

where we have introduced the Riemann
tensor Rabc

d for convenience

= ( h̄
i
)3

[

[2ga(b∇aξc)]∇b∇cψ + [ξcgabRacb
d + gab∇a∇bξ

d]∇dψ

+[gab∇(a(∇cξ
c)]∇b)ψ + [gab∇a∇b(∇cξ

c)]ψ
]

−( h̄
i
) [P (£ξA) + Q(ξa∇aV )] ψ

= ( h̄
i
)3

[

[2ga(b∇aξc)]∇b∇cψ

+[gab(Racb
dξc + ∇a∇bξ

d)]∇dψ + [gab∇(a(∇cξ
c)]∇b)ψ

+[gab∇a∇b(∇cξ
c)]ψ

]

−( h̄
i
) [P (£ξA) + Q(ξa∇aV )] ψ
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metry of the geometry of configuration space, i.e., when £ξg
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[ In other words, ξa is a Killing vector since

0 = 2gm(a∇mξb) = 2∇(aξb) (Killing’s equation).

Furthermore, if ξc is a Killing vector, then ∇cξ
c(= gab∇

(aξb)) vanishes.

Lastly, if ξa is a Killing vector, then Racb
dξc + ∇a∇bξ

d = 0. To see
this, begin with the definition of the Riemann tensor

Rabc
dηd = ∇a∇bηc −∇b∇aηc.

If ηc is a Killing vector, then, using Killing’s equation ∇(aηc) = 0, we have

Rabc
dηd = ∇a∇bηc + ∇b∇cηa.

By index-substitution,

Rbca
dηd = ∇b∇cηa + ∇c∇aηb,

Rcab
dηd = ∇c∇aηb + ∇a∇bηc.

Forming the sum “abc”+“bca”−“cab”, we obtain

(Rabc
d + Rbca

d − Rcab
d)ηd = 2∇b∇cηa.

Since R[abc]
d = 0 and Rabc

d = −Rbac
d implies that Rabc

d +Rbca
d +Rcab

d =
0, we find that

(−2Rcab
d)ηd = 2∇b∇cηa.

Hence,
(−Rcab

d)ηd = ∇b∇cηa.

Playing with positions of the contracted-indices on the left-hand side,

−Rcabdη
d = ∇b∇cηa.

Since Rabcd = Rcdab,
−Rbdcaηd = ∇b∇cηa.

Raising the a-index,
−Rbdc

aηd = ∇b∇cη
a.

Hence, for a Killing vector ξa,

Racb
dξc + ∇a∇bξ

d = 0. ]

In this case, the highest order term [i.e. the ( h̄
i
)3 term] on the right above

vanishes, and the formula reduces to

(HP (ξ) − P (ξ)H)ψ = −( h̄
i
) [P (£ξA) + Q(ξa∇aV )] ψ

which, of course, reduces to the familiar formula in standard examples (e.g., par-
ticle in Euclidean space). These calculations are merely intended to illustrate,
for special cases, the general formula (63).
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21. The Role of Observables. (Classical Me-
chanics)

Our approach heretofore has been to introduce the states before the observ-
ables. Thus, in classical mechanics, observables were functions on the space of
states; in quantum mechanics, operators on the space of states—in both cases,
observables were defined in terms of their relationship with states. It is natural
to proceed in this way, for one thinks of a system as possessing a state (indepen-
dently of any observations which might be made on it), with the observations
representing things which are applied to these states to give us information
about the state. One could, however, imagine an alternative point of view. One
could regard states, not as attributes of a system somehow handed down from
above, but rather as something which must be determined by means of observa-
tions. In other words, one could take a more observer-oriented point of view, in
which the things which involve us observers directly—the observables—play the
fundamental role. This point of view would be reflected within the mathemat-
ical formulation by a formalism in which the observables are introduced as the
fundamental objects, and the states only as subsidiary objects defined in terms
of the observables. As an example, we first carry out such a reformulation for
classical mechanics.

We suppose that we are given some system to study. We have some mech-
anism (e.g., hitting with a stick) by which we can cause our system to change
state, so we can experiment with various states. We are to be furnished, fur-
thermore, with an enormous basket full of observables, where we think of an
observable as a box from which there protrudes a probe (which can be brought
in contact with the system), and which has a meter (which reads some value
when the system is in interaction with the observable). Our job is to introduce a
description of what is going on in terms of the meter readings of the observables.

One first, by trial and error, makes the following basic observation: if, to the
system, observable A, then B, and then A are applied in quick succession (so
the system does not evolve appreciably between observables), then the readings
obtained for the two A observations coincide. We interpret this to mean that
the application of our observables does not disturb the state of the system (i.e.,
the application of B leaves invariant the A-reading, for all As, and hence leaves
the state alone). It follows that the application of several observables in quick
succession is independent of the order in which the observables are applied.

Two observables, A and A′, will be said to be equivalent if they always give
the same result, applied to our system (more precisely, if the application of A

and A′ in quick succession yields the same reading on the two meters). We write
equivalence of observables with an equals sign.

We lose nothing in generality, yet simplify the discussion, by assuming that
our basket of observables has three properties. A constant observable is one
whose meter reading is always the same number (no matter what the system
is doing). We assume that, for each real number, there is in our collection of
observables a constant observable which always yields that number. (If some
constant observable were missing from our collection, it would be easy to con-
struct one to add to the collection. Just take an empty box, and paint on it
a dial and needle always reading, for example, “3”.) Now let A and B be two
observables. We define a new observable, obtained by applying A and B to the
system in quick succession, and adding the readings on the two meters. This
new observable, called the sum of observables A and B, will be written A + B.
Similarly, the product of two observables, AB, is another observable. We now
assume that our collection of observables contains, along with any two observ-
ables, both their sum and their product. (If some sum, e.g., A+B, were missing
from the collection, we could always construct, from A and B, A + B and add
it to our collection). Note that addition and multiplication of observables sat-
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isfy the same commutative, associative, and distributive laws that addition and
multiplication of real numbers do.

An algebra A is a vector space on which one or more bilinear products is
defined. (Thus, let A be a vector space on which products AB, A × B, and
[A,B] are defined, satisfying (A+ cB)C = AC + cBC, A(B + cC) = AB + cAC,
for c a number, and A, B, C in A, and similarly for the other two products.
Then A is an algebra.)

The discussion above can now be summarized by the statement that we
might as well assume that our collection A of observables forms an algebra
(with just one product, which is also associative and commutative).

A state is to be characterized in terms of what the observables have to say
about it. That is to say, a state is a mapping σ : A → IR, from our algebra of
observables to the reals, satisfying the following conditions:

1. If C is the constant observable with value c, then σ(C) = c.

2. If A and B are observables, then σ(A + B) = σ(A) + σ(B).

3. If A and B are observables, then σ(AB) = σ(A)σ(B).

These three conditions, of course, reflect the operational meaning of constant
observables, addition of observables, and multiplication of observables.

This is nearly the end of the story. From the algebra of observables, one
introduces the states. We have still to ask, however, whether or not we obtain,
in this way, the “correct” collection of states. The answer depends on whether
or not we have enough observables in our original collection A. For example,
if A consisted of just the constant observables, then we would obtain, by the
construction above, just one state. Suppose, however, that all observables were
included in our collection. Since we “really know” that our system has a phase
space, and the observables are scalar fields on phase space, this amounts to the
assumption that for every scalar field on phase space there is an instrument
which measures that scalar field. We can then ask: does our construction above
yield the correct collection of states? First note that every point of phase space
does indeed define a mapping from observables to the reals (namely, evaluation
of the scalar field at the point). Hence, every point of phase space does define
a state according to our construction. What needs to be shown is that no
additional states—no points of phase space—have been introduced. This is a
consequence of the following:

Theorem. Let M be a manifold, and let A be the algebra of scalar fields on
M . Let σ : A → IR satisfy the three conditions above for a state. Then there
exists a point p of M such that σ(A) = A(p) for every A in A.

“proof”: the only proof I know requires the Whitney embedding theorem, a
standard but rather technical result in differential geometry. Since a proof in
the special case M = IRn illustrates the essential idea, and since a proof in
this special case, together with the embedding theorem, yields easily a proof in
general, we shall assume M = IRn.

Let σ be a mapping as above, and consider the scalar fields x1, . . . , xn on M .
Set x1 = σ(x1), . . . , xn = σ(xn). Let p the point with coordinates (x1, . . . , xn).
Then, for f any scalar field on M , we can write f = f + f1(x

1 − x1) + · · · +

fn(xn − xn), where f is a constant scalar field, and f1, . . . , fn are scalar fields.

Then σ(f) = σ(f) + σ(f1)(σ(x1)− σ(x1)) + · · ·+ σ(fn)(σ(xn)− σ(xn)) = σ(f),

where, in the last step, we have used that σ(xi) = xi = σ(xi). Thus, σ(f) =
σ(f) = f = f(p), completing the proof.

Thus, if we have all the observables in our original collection, we can con-
struct the space of states as above, and indeed obtain precisely the correct space
of states. A similar conclusion holds even if original algebra includes fewer ob-
servables. For example, it easy to check, using the same methods above, that,
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if A is the algebra of algebraic observables, then we obtain the correct space of
states. Note, furthermore, that, if A includes all the configuration and momen-
tum observables, then, since A is an algebra, A necessarily includes all algebraic
observables. Then, so long as A includes all configuration and momentum ob-
servables, precisely the correct space of states emerges from the construction
above.
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22. The Role of Observables. (Quantum Me-
chanics)

Ideally, one would now like to repeat, for quantum mechanics, what we did
in the previous section for classical mechanics. That is to say, one would like
to introduce a collection of observables (measuring instruments) on a quantum
system, subject to some physically reasonably conditions regarding the action of
the instruments on the system, and then define the states in terms of the observ-
ables. In this way, one might expect both to obtain a more operational setting
for quantum mechanics, and to provide more direct physical interpretations for
certain objects which appear in the mathematical formalism of quantum me-
chanics. It appears, however, that certain difficulties intervene to prevent a
simple and direct treatment of quantum mechanics along these lines. In this
section, we discuss these difficulties.

We must first consider the mechanism by which observables act on states.
Within the formalism of quantum mechanics, an observable is a self-adjoint
operator on the space of states. What we must do is relate the mathematical
action of this operator to the physical action of the observing instrument on the
state. There are, apparently, two possible such relationships.

1. Active observables. One wishes to apply to the state the observable as-
sociated with the self-adjoint operator A. The meter on the instrument
reads an eigenvalue of A, i.e., a number such that Aψ = aψ for some
nonzero state ψ. During the observation, the system suddenly changes its
state so that, after an observation yielding the value a, the system is in
the corresponding eigenstate (i.e., the ψ above). Even though the initial
state ψ, as well as the self-adjoint operator A, are known, the final state
into which the system passes is not uniquely determined. Rather, what is
determined is the probabilities for the various eigenvalue-eigenstate pairs.

2. Passive observables. The application, to the state ψ, of the observable
associated with the self-adjoint operator A yields (as the reading of the
instrument) the expectation value of A in our state, i.e., the real number
〈ψ |Aψ 〉. The effect of this measurement on the state of the system can
be made arbitrarily small.

I believe that it is true to say that, given A, one can construct measuring
instruments, of either the active or the passive type, corresponding to A. The
measuring instruments we introduced in classical mechanics were passive, al-
though one could, of course, have introduced also active instruments (which
would change the state of the system). Of course, one could, if it should turn
out to be convenient, simply require that the instrument he uses be of one or
the other type. In particular, one often treats quantum mechanics using only
active instruments. The possibilities for defining states in terms of observables
depend on which type of observing instruments one chooses to use. We shall
consider the results of using both types.

The disadvantage of using active instruments is that they interfere, in a
significant and uncontrollable way, with the state being observed. In fact, the
original state is for all practical purposes destroyed by the making of a single
active observation. However, a vestige of the original does survive in that the
original state determines the probability distribution for the various possible
eigenvalues which could emerge from the observation. Unfortunately, a single
observation on a single system yields, not a probability distribution, but a single
eigenvalue. It is clearly impossible to describe a state in terms of observations on
that state in the presence of this strong interference of the observing instrument
with state itself.

There is, however, a method for avoiding at least certain of these difficulties.
Let us imagine that we have been given a method for preparing the system so
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as to be in a given state. We then make up an infinite collection of copies of our
original of copies of our original system, all in the same state. This collection
is called an ensemble. One now imagines applying observing instruments, not
to a single system (in the single state), but to an ensemble. This is done by
making the observation on some infinite sub-collection of the systems forming
the ensemble, leaving, at the same time, an infinite collection of systems in the
ensemble unobserved. (For example, one could observe every other system in
the ensemble.) For each system observed, one records the number (eigenvalue)
determined by the observing instrument. The observed systems can then be
discarded (their states having been ruined). There remains, however, an infi-
nite collection of systems which have not been disturbed, i.e., an ensemble for
further study. Thus, by introducing ensembles rather than states, one avoids
the difficulties associated with the interference of observations with the state of
the system. One must pay for this device, however, in that one must, in a sense,
already know what the states are, for, to prepare an ensemble, one must have
in hand a repeatable prescription for putting the system in a given state.

In any case, the information we obtain by applying an observable to an
ensemble is a probability measure on the real line (i.e., a positive measure such
that the total measure of the line is one).

Thus, one would attempt to proceed as follows. One would introduce an
algebra of (active) observables. States would be defined as mappings from this
algebra to probability measures on the real line, such that the mapping satisfy
certain conditions. One would then have to show that the correct space of
states is obtained in this way. Unfortunately, it appears to be very difficult to
make such a program work, in the sense that one finds suitable structure on
the observables and suitable additional conditions for the definition of a state,
such that the structure and conditions can be motivated physically, and such
that the resulting collection of states agrees with the space of states of quantum
mechanics.

It is perhaps not too surprising that the use of active observables should
lead to difficulties. The program of defining states in terms of observables works
extremely well in classical mechanics, and in that case the observables are in
every sense passive. One would naturally expect that the passive observables
would be the most natural to use also in quantum mechanics.

Let us attempt, then, to describe states in terms of expectation values for
self-adjoint operators, i.e., in terms of passive observables. It is perhaps not
unreasonable to ask that included in our collection of observables be all config-
uration and momentum observables. We begin with a mathematical question:
does knowledge of the numbers 〈ψ |Q(α)ψ 〉 and 〈ψ |P (ξ)ψ 〉 for all α and ξa

determine ψ? If not, our goal is hopeless; if so, we can ask how this determi-
nation comes about. Set ψ = φeiλ, where φ and λ are real scalar fields. (For
simplicity, we take ψ as a scalar field.) Then

〈ψ |Q(α)ψ 〉 =

∫

(φeiλ)αφeiλ =

∫

φ2α (64)

〈ψ |P (ξ)ψ 〉 =

∫

(φeiλ)( h̄
i
)(ξa∇a + 1

2∇aξa)φeiλ

=

∫

( h̄
i
)φe−iλ(eiλξa∇aφ + iφeiλξa∇aλ + 1

2φeiλ∇aξa)

=

∫

( h̄
i
)φξa∇aφ +

∫

h̄φ2ξa∇aλ +

∫

1
2 ( h̄

i
)φ2∇aξa

=

∫

1
2 ( h̄

i
)(2φξa∇aφ + φ2∇aξa) +

∫

h̄φ2ξa∇aλ

=

∫

1
2 ( h̄

i
)∇a(φ2ξa) +

∫

h̄φ2ξa∇aλ
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=

∫

h̄φ2ξa∇aλ

= h̄〈ψ |Q(ξa∇aλ)ψ 〉 (65)

Knowledge of the expectation value of Q(α) for all α determines, by (64), φ.
Then the expectation value of P (ξ) for all ξa determines, by (65), ∇aλ, and
hence λ up to a constant. Thus, ψ = φeiλ is determined up to an overall phase
(which is all the wave function is ever determined up to, anyway). Our program
should, in principle, succeed.

Denote by Q the collection of all (passive) configuration observables, and
by P the collection of all (passive) momentum observables. One knows, opera-
tionally, how to multiply an element of Q or an element of P by a real number,
and how to add two elements of Q or two elements of P. Thus, each of Q, P
has the structure of a vector space. A state is to consist of linear mappings
σ : Q → IR and σ : P → IR. We wish to impose additional conditions on these
mappings in order that σ(α) = 〈ψ |Q(α)ψ 〉 and σ(ξ) = 〈ψ |P (ξ)ψ 〉 for some
state ψ. It follows from the linearity of σ that there exist scalar and vector fields
µ and µa on configuration space such that

σ(α) =

∫

αµ (66)

σ(ξ) =

∫

ξaµa (67)

for all α and ξa. (We should, more precisely, allow µ and µa to be distributions
on configuration space. Thus, for example, a scalar distribution is normally
defined as a linear mapping from scalar fields on a manifold to reals. In order
to avoid technical complications, however, we shall restrict consideration to the
case when µ and µa are ordinary tensor fields.) We wish to define φ by φ2 = µ,
and for this we need µ ≥ 0. We can state this condition in terms of our operators
as follows: if α ≥ 0, then σ(α) ≥ 0. We wish to define λ by h̄φ2∇aλ = µa,
which requires that φ−2µa be a gradient. This condition is equivalent to the
requirement that, whenever ξa is such that ∇a(φ2ξa) = 0, σ(ξ) = 0, i.e., to the
requirement that whenever ξa is such that σ(ξa∇aα) = 0 for all α, σ(ξ) = 0.
With these two conditions, we can recover φ and λ, and hence the state ψ = φeiλ,
from the mappings σ.

To summarize, we introduce two vector spaces, Q and P, of observables. A
state is then defined as a pair of linear mappings, σ : Q → IR and σ : P → IR,
satisfying two conditions:

1. If α ≥ 0, then σ(α) ≥ 0.

2. If σ(ξa∇aα) = 0 for all α, then σ(ξ) = 0.

Then, roughly speaking, for every such state there is a unique wave function
ψ on configuration space such that σ(α) =

∫

ψ̄αψ and σ(ξ) =
∫

ψ̄( h̄
i
)(ξa∇a +

1
2∇aξa)ψ.

Note that our two conditions in the definition of a state are indeed satisfied
in the classical case. (Classically, the second condition amounts essentially to
the statement that vector fields are defined as derivations on scalar fields, so the
zero derivation defines the zero vector field). Why were we able to avoid explicit
mention of such conditions in the classical case? The reason is that we were able
there to introduce a far stronger condition in the definition of states, namely,
the product condition: σ(AB) = σ(A)σ(B). One might imagine, therefore,
that matters could be simplified in the quantum case by the introduction of
a similar product condition. Of course, it is easy, operationally, to introduce
the product of two (passive, quantum) observables. Given instruments which
measure A and B, one constructs an instrument which measures first A and
then B, and multiplies. (Since passive observables do not affect the states, this
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construction is independent of order.) The difficulty, however, is this: if A and
B are self-adjoint operators, then, in general,

〈ψ |Aψ 〉〈ψ |Bψ 〉 6= ψABψ (68)

The left hand side is the number associated with the “product observable” con-
structed above. The right side is the expectation value associated with the
product of operators. In short, the operational procedure of taking products of
observables does not correspond to the mathematical procedure of taking prod-
ucts of operators. The incorporation of operational products into our quantum
observables thus adds essentially nothing new.

Thus, we indeed obtain a formulation of quantum mechanics in which states
are described in terms of (passive) observables. Although the two conditions we
require in the definition of a state (that σ(α) ≥ 0 if α ≥ 0, and that σ(ξ) = 0
if σ(ξa∇aα) = 0 for all α) are perhaps not terribly unnatural physically, the
second certainly seems rather artificial. One could easily invent other conditions
of the same general type which are not imposed. There is, however, another—
perhaps even more unpleasant—feature of this formulation. In the classical case,
we could think of our observables as measuring instruments, instruments which
we knew how to apply to our system, but about which no further information
was required. This is not at all the case for our quantum observables. Firstly, we
need to know which instruments measure configuration and which momentum
observables. That is to say, each instrument must have, inscribed on its side,
either “Q” or “P”. In fact, we need, for the construction of states above, much
more than this. We also need to know, for each instrument which measures
a configuration observable, which scalar field α on configuration space this in-
strument measures (the expectation value of), and, for each instrument which
measures a momentum observable, which vector field ξa is observed. This ad-
ditional information is necessary in order that the construction of states can be
carried out. On the other hand, no operational procedure is given for obtaining
this additional information, e.g., no procedure for discovering what an instru-
ment measures by taking it apart. In fact, the introduction of such observables
requires already a knowledge of what configuration space is—but configuration
space determines already the quantum states.

To summarize, because the measurement process in quantum mechanics is
apparently more subtle than that in classical mechanics, the simple formulation
of classical mechanics in terms of observables apparently does not carry over in
a natural and equally simple way into quantum mechanics.
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23. The Interpretations of Quantum Mechanics

It is conventional to attempt to formulate what are called interpretations of
quantum mechanics. It is natural to ask, firstly, why such an interpretation is
needed. Apparently, it is because the objects which appear in the mathematical
formulation of quantum mechanics (wave functions, self-adjoint operators, etc.)
are related in a rather tenuous way to the things (e.g., dial readings) which
human observers actually see. Consider an example. An atom in some excited
state is to decay, emitting a photon. The photon is to ionize an atom in a geiger
counter, so the resulting electron will, because of an applied electric field, set
up a cascade of electrons in the counter. The resulting electric signal will, after
being sent through an amplifier, activate the needle of a meter. We can begin
this system with the original atom in an excited state, and ask how the system
will evolve. This is a question with which we can, at least in principle, deal,
within the context of quantum mechanics. We are to introduce the configuration
space of this entire system (consisting of the atom, the geiger counter, the
amplifier, and the meter). On this configuration space, we are to introduce an
appropriate differential operator, the Hamiltonian. We are then to introduce a
certain wave function ψ describing the initial state of the system. Schrodinger’s
equation will then determine ψ at later times.

Clearly, the program above is so formidable that one is not likely to carry it
out in practice. One can, however, gain insight into what a solution would look
like by considering a simpler problem having roughly similar features. Consider
a system with 2-dimensional configuration space, the xy-plane. Let the classical
Hamiltonian be

H = px
2 + x2 + py

2 + y2 + f(x − y)

where f is some function of one variable. Thus, when f is zero, we have two
independent one-dimensional harmonic oscillators, f represents a coupling be-
tween two such oscillators. We write down the quantum description of this
system, and begin in the state ψ(x, y) = ψg(x)ψe(y), where ψg(x) is the ground
state, and ψe(y) some excited state, of a one-dimensional harmonic oscillator.
We now allow this state to evolve, by Schrodinger’s equation, and see what
happens. What happens is exactly what one expects to happen: the energy
“leaks” slowly, because of the coupling, from one oscillator to the other. That
is to say, after a short time, the first oscillator is nearly in its ground state, but
with a small admixture of excited states. As time goes on, the amount of this
admixture slowly increases.

We can think of this simple system as analogous to the more complicated
system which preceded it. Initially, the system was described by a wave func-
tion such that the atom was in an excited state, and the needle on the meter
reads zero. As time goes on, the component of the wave function of the atom
corresponding to the ground state increases, while the component of the wave
function of the needle corresponding to a nonzero meter reading also increases.
That is to say, one would expect that the state of our system will evolve, slowly
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and continuously, from one in which the atom is excited and the meter reads
zero, to one in which the atom has decayed and the meter reads nonzero.

On the other hand, one can actually buy, e.g., from Sears, a geiger counter,
amplifier, meter, and excited atom. One sets up the experiment, and watches
the needle as the system evolves. What one actually sees, of course, is that the
needle remains at zero for a while, then jumps to some value. One often says
that, at the instant the needle jumped, the atom decayed, and the photon was
received by the geiger counter, amplified, and recorded by the meter.

We now have two descriptions of this experiment. In one, via the formalism
of quantum mechanics, the wave function of the needle continuously evolves from
that corresponding to a zero reading to that corresponding to a finite reading.
In the other, via direct observation, the needle is seen, not in some “smeared out
state”, half reading zero and half something else, but is rather seen to remain at
zero for a while then jump suddenly. The problem of interpretation, as it bears
on this example, is to somehow bring together these two descriptions. That
is to say, the problem of interpretation is to make more sharp the relationship
between the objects which appear in the formalism of quantum mechanics and
the things observers actually see.

It is not at all uncommon in physics (perhaps it is even characteristic!)
that the objects at the center of the mathematical description are not the
first and most obvious things observers see. Special relativity is a good ex-
ample. Fundamental in the mathematical description of special relativity are
the events (instantaneous occurrences at a point), which are assembled into the
four-dimensional space-time manifold. Yet, although each of us lives (ignoring
gravity) in the four-dimensional space-time manifold of special relativity, we do
not experience any four-dimensional manifold stretching out before us. Instead,
we experience three-dimensional space, and the passage of time. Why, then,
does one not feel a need to acquire an “interpretation” of special relativity?

It is my impression that an interpretation is as necessary in special relativity
as in quantum mechanics, but that, in the case of the former, an interpretation
is available and widely accepted, so that its role as an interpretation normally
goes unemphasized. This interpretation is that each of us (our past, present, and
future) is represented by a world-line in space-time, that what we experience is
light rays reaching our world-line from distant events, objects whose world-lines
meet ours, etc. Within this framework—a framework in which the observer is
incorporated directly—one can, in some sense, account for what we as observers
actually see.

It is perhaps not the whole truth to say that those experiences for which
special relativity might give account are in fact accounted for by special rela-
tivity. It is, for example, not so easy to account, within special relativity, for
the fact that one cannot go back and actively experience his past. However,
one perhaps takes the point of view that these finer details are somehow to be
described in terms of the detailed physics of what goes on in the brain. One
might also say, based on this discussion of special relativity, that the purpose
of an interpretation is, not really to explain anything, but rather to put one at
ease while he works within the mathematical formalism.

We return to quantum mechanics. As discussed above, there is a sense in
which quantum mechanics is inadequate. On the other hand, there is certainly
a sense in which quantum mechanics is far more than adequate: it makes beau-
tiful and accurate predictions in remarkable agreement with Nature. One would
therefore not like to change in a substantive way the structure of quantum me-
chanics, e.g., change its mathematical formalism. What one would like to do is
to look at quantum mechanics from a different point of view, or at least utter
some reassuring words about it, so that the apparent inadequacy seems less
serious. That is to say, what one would like to do is formulate an interpretation
of quantum mechanics.
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24. The Copenhagen Interpretation

The most widely accepted interpretation of quantum mechanics is what is called
the Copenhagen interpretation.

The idea of the Copenhagen interpretation, as I understand it, is that quan-
tum mechanics is fine as far as it goes, but that it does not go far enough. What
is missing is the relationship between the wave function and what observers see.
The Copenhagen interpretation attempts to provide this additional link.

One first notices that, if you ask an observer what it was that he actually saw,
he will say “I saw the meter read 3.5.”, or “I saw the light go on.”, but never “The
wave function of the needle on the meter was the following superposition...”.
Thus, this additional link is to somehow tie together quantum phenomena (i.e.,
wave functions) and classical phenomena (i.e., points of configuration space).

Consider again the experiment on page 63. We wish to regard the meter
classically, and the original atom quantum mechanically. We therefore intro-
duce a break at some point between the chain of instruments linking the atom
to the meter, e.g., between the atom and the geiger counter. Everything up
to the break (in the case, just the atom itself) will be treated quantum me-
chanically, and everything beyond the break (in this case, the geiger counter,
amplifier, and meter) will be treated classically. Put more formally, we intro-
duce a classical phase space to describe the states of the meter-amplifier-geiger
counter system, and a space of quantum states (i.e., complex functions on an
appropriate configuration space) to describe the original atom.

The next step is to introduce a coupling of these two systems, across the
break. This is done by assigning a self-adjoint operator A to the quantum
system, and, at the same time, assigning a state of the classical system to
each eigenvalue of A. The prescription for making these assignments is not
specified by the interpretation, but the assignments are to be so made that, in
the end, one obtains an appropriate description of this measurement process.
The essential assumption is that one can introduce a break in this chain of
instruments, and describe the information flow across the break in terms of
a self-adjoint operator A on the quantum system, and states of the classical
system labeled by eigenvalues of A.

The break comes into play during what is called process of measurement.
The following then takes place. The Schrodinger equation for the quantum
system, and the Hamilton equation for the classical system are, for a moment,
suspended. During this suspension the quantum system is thrown into an eigen-
state of A, and, simultaneously, the classical system is thrown into the state
associated with the corresponding eigenvalue of A. The process of measurement
is thus a process of sudden change in state. In this way, the formalism of quan-
tum mechanics is to be brought into contact with the (classical) things people,
as observers, see.

The particular eigenstate of A into which the quantum state is thrown during
the process of measurement is not specified precisely. Rather, what can be
determined is the probability distribution for various of the probabilities. Thus,
there is, in a sense, a loss of determinism in the Copenhagen interpretation,
associated with the process of measurement. It is essentially at this point that
probability is brought into quantum mechanics.

One might object to the interpretation above on, among others, the follow-
ing grounds. No prescription has been given for where to introduce the break
between the quantum and classical systems. Thus, in our example, one could as
well have drawn the break between the geiger counter and amplifier, or between
the amplifier and meter. It is, so I understand, part of the lore of the Copen-
hagen interpretation that the result (i.e., the resulting probability distribution
for the meter readings) is independent of this choice. It is not completely clear
how one formulates a precise statement along these lines, although indications
are (e.g., from simple examples) that something of this general type is true.
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Thus, one is apparently free to introduce the break at any point of the chain
with the same result, i.e., with the same probability distribution for (classical)
meter readings.

One might now object on somewhat different grounds. Since one is free to
introduce the break wherever one wishes, it is prescribed, within the interpre-
tation, whether or not a given link in the chain of measurement instruments is
quantum. Thus, for example, the geiger counter could be regarded either as a
classical or as a quantum system, depending on where the (arbitrary) break was
introduced. The Copenhagen answer would be this. If you are concerned about
the geiger counter, make a measurement on it. Thus, one would introduce a
tributary in the chain of measurements, with additional instruments looking in
particular at the geiger counter.

Now one has a new system of linked instruments. One is supposed to ap-
ply to it the Copenhagen prescription, i.e., one is to introduce a break in the
chain, with the two sides linked by a self-adjoint operator, etc. The result will
be a probability distribution for classical results (at the end of the chain), a
distribution independent of where the break was drawn. In any case, one will
obtain an unambiguous result. Whether one chooses to interpret this result
as some statement about whether the geiger counter is quantum or classical is
certainly one’s option. But, in any case, no difficulty arises from the failure of
the Copenhagen interpretation, in the first experiment, to specify whether the
geiger counter was “classical” or “quantum”.

The claim of the interpretation is just that

if you specify to it with sufficient precision what you will do in making a mea-
surement, it will tell you the probability distribution for the results of the mea-
surement.

It does precisely this in every case. It does not have to deal with what “really
happens”. It is, in some sense, “consistent”.

One could, equally well, have expressed this interpretation in a somewhat
different way. One could as well have asserted, at some point, that the entire
system is in fact subject to the laws of quantum mechanics. That is to say,
one could have asserted that, in fact, there is no break in the system. Then
the Copenhagen prescription could have been regarded merely as the rules for
carrying out the calculation giving the probability distribution for the results of
the measurement. That is to say, one could have presented matters so that the
break business was presented as a computational tool rather than a statement
about what “really happens”. Clearly, nothing of any real substance (e.g.,
numerical conclusions) depend on this mode of formulation. This “modified
Copenhagen interpretation” is, however, perhaps more natural sounding, for it
requires only that we in our calculations do strange things (e.g., introduce a
break), rather than that Nature do them.
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25. The Everett Interpretation

There is an alternative interpretation of quantum mechanics, called the Everett

interpretation, which we now describe.
It is convenient to begin with some remarks about classical mechanics. The

formalism of quantum mechanics was introduced originally, in order to describe
rather implicitly defined things called systems. Let us, just to see what will
result, attempt to push this formalism into a context broader than that for
which it was originally intended. What we wish to do is to treat the entire
Universe as a single system within the formulation of classical mechanics. Thus,
we suppose that there is some configuration space C for our Universe. Let ΓC

be the corresponding cotangent bundle. We suppose that there is some scalar
field H on this ΓC , the Hamiltonian. In the beginning (i.e., at time t = 0),
the Universe occupied some point of phase space. The future evolution of the
Universe is then determined by Hamilton’s equation, i.e., by the condition that
the dynamical trajectory describing the evolution of the Universe be an integral
curve of the Hamiltonian vector field. We emphasize that within this description
is to be included the entire Universe—you and I, all observers, all observing
instruments, everything.

One might feel uncomfortable about the above for the following reason. In
our original formulation of classical mechanics, one imagined an external ob-
server who, by manipulation and examination of the system under study, was
able to assign it a configuration space and Hamiltonian. But the present context
excludes such external observers. Thus, for example, consider a point of phase
space through which the dynamical trajectory of our universe does not pass.
What does it mean to speak of this “possible state of the Universe” when the
Universe never, in fact, occupies that state?

It seems to me that the extrapolation involved here is, essentially, no better
and no worse than the extrapolations one always makes in physics. Suppose, for
example, that an external observer wishes to study a classical system. He has
some means to manipulate the system, in order to study its states. Nonetheless,
the system will, even with external manipulation, follow some path in its phase
space, a path which will not reach every point of phase space. Thus, even in
this case, one is introducing fictitious states which the system will never in fact
possess. As a second example, in special relativity one begins by considering all
possible events (occurrences having extension in neither space nor time), which
are then to be assembled into a four-dimensional space-time manifold. But
certainly there are events in space-time which no observer has witnessed. In
each case, the mathematical description involves an extrapolation well beyond
what is directly observed. Apparently, it is just the what we do physics to
introduce, at the beginning, a framework which, if examined too closely, is
unjustified.

The description of all that happens in the Universe is now in terms of the
phase space of the Universe, and its dynamical trajectory. Thus, “possible
occurrence” is another way of speaking of a certain region of phase space ΓC .
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For example, “the White Sox win the pennant” defines a certain region of ΓC ,
namely, those states of the Universe in which the White Sox win the pennant.
The question of whether this actually occurs is the question of whether or not
the dynamical trajectory of our Universe actually passes through this region. In
short, we are reduced to characterizing certain regions of ΓC and asking whether
or not the dynamical trajectory of the Universe actually passes through such
regions. In short, we are reduced to characterizing certain regions of ΓC and
asking whether or not the dynamical trajectory of the Universe actually passes
through such regions. We emphasize that you and I (who usually think of
ourselves as the external observers) are now part of the system, so our “obser-
vations” are also described, within the framework above. For example, “I make
a position measurement on a free particle, and obtain x = 2, y = −3, z = 7”
simply describes a certain region of ΓC , through which the dynamical trajectory
of the Universe may or may not pass.

One might now object that we have not, through the discussion above, ac-
quired any additional predictive power, since we will not, presumably, succeed
in finding the phase space and Hamiltonian for the Universe, much less succeed
in finding our dynamical trajectory. The first point is that neither have we lost
any predictive power. Our decision to regard the entire Universe as a classical
system does not negate the classical mechanics which has already been done.
The second point is that our goal is not to eventually discover the phase space
and Hamiltonian of the Universe and predict. Rather, we are trying to push
classical mechanics to an extreme to see what sort of picture emerges. The
resulting picture is relatively straightforward and not particularly unpleasant.
(Perhaps one might be tempted to add to this last sentence “and unjustified”.
One could have done the same in special relativity.)

We restate the viewpoint above in different words. Let us imagine, for a mo-
ment, an external observer O of the Universe. He has described this system by a
phase space and Hamiltonian, and complacently watches it follow its dynamical
trajectory in phase space. We construct a sub-system and make observations
on it. O notes with satisfaction that the dynamical trajectory of the Universe
indeed enters that region of phase space. We formulate some sort of objection
about predictive power. O notes with satisfaction that the dynamical trajectory
of the Universe enters that region of phase space. In fact, all O ever does is
note with satisfaction that the dynamical trajectory enters various regions. We
might as well dispense with O.

The Everett interpretation of quantum mechanics amounts essentially to the
discussion above, applied to quantum mechanics rather than classical mechanics.
Thus, we imagine a configuration space C for the Universe, and a differential
operator H, the Hamiltonian, on C. At time t = 0, the Universe begins in a
certain state, i.e., one has a certain density ψ on C. The future evolution of ψ

is then determined by Schrodinger’s equation. Included within this system are
all observers, their instruments, etc. This is the picture which emerges if one
tries to apply quantum mechanics to the system consisting of the Universe as a
whole. The idea of the interpretation is simply to take this picture seriously.
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When referring to a system, one speaks of something happening in that
system, one normally means that some classical possibility has been realized.
Suppose we watch a quantum system consisting of a geiger counter and atom,
such that the photon resulting from the decay of the atom would be registered by
the geiger counter. Our description of this system would be by a wave function
which evolves by Schrodinger’s equation. The wave function may, as it evolves,
become large or small for certain classical possibilities (i.e., in certain regions
of configuration space), but nothing ever “happens” in the classical sense. The
scheme above requires that we regard the Universe as a quantum system. Thus,
from this viewpoint, nothing “happens” in the Universe (in the sense that no
classical possibilities are actually realized). In other words, since implicit in
quantum mechanics is a wave function rather than the occurrence of classical
possibilities, we are forced, if we are to regard the Universe as a quantum system,
to deny the occurrence, in the Universe, of classical possibilities.

One might object, at this point, that this denial is in disagreement with our
everyday observations. We, apparently, do see classical possibilities “occur”. If
we watch the meter attached to the geiger counter, we do see, at some point,
the needle jump. The response to this objection, from the present point of
view, is that this impression of ours is simply another manifestation of the
wave function of the Universe. Suppose that we, as observers, were watching
a quantum system consisting of some rabbits, who have geiger counters and
atoms, and who do various experiments. The rabbits may indeed formulate
some sort of quantum theory in which classical possibilities seem to actually
occur. We, however, would describe this system quite differently. We would
say that there is an evolving wave function on the configuration space of the
system. Whatever impressions the rabbits get would simply be a manifestation
of that wave function. Thus, from the present viewpoint, we regard our everyday
impression that classical possibilities actually occur as being a manifestation of
the wave function of the Universe.

One could now formulate a second objection, that our impression that clas-
sical possibilities actually occur is not being explained by this framework, in the
sense that we are not shown in detail how this impression is represented by the
wave function of the Universe. The point is that this is something we will not be
able to explain without a great deal more information about how Humans are
constructed. But this is perhaps not so unpleasant, for there are many everyday
human impressions which are not adequately described by physics, presumably
because of a lack of information about the workings of people.

For example, we all observe that we cannot go back and actively re-live
our pasts. This observation presumably falls under special relativity. Yet it
is difficult to construct some theorem in special relativity which reflects this
observation. Our understanding of this everyday observation would presumably
improve if we understood better the internal workings of people. Yet, one can
get along quite well in special relativity without such an understanding. A
similar point is to be made within the Everett interpretation. That people
feel that classical possibilities are actually realized simply reflects their internal
construction (that, after all, is what we would say about the rabbits). It would
be nice to understand this matter better, but we have too little information,
and no particular need, to do so at present.

In the Everett interpretation, no classical possibilities ever actually “occur”.
Classical possibilities are reflected only in the wave function is a function on the
space of such possibilities (i.e., on configuration space).

In fact, this link between the formalism and what people actually experience
can be made slightly stronger. Consider a region of the configuration space of
the Universe in which the wave function is small. We can regard this region
as representing classical possibilities which “for all practical purposes, do not
occur”. Consider now the experiment pictured on page 63. Because of the
Hamiltonian, in the region of configuration space corresponding to the atom’s
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having decayed and the needle on the meter reading zero, the wave function is
small. Thus, this classical possibility “for all practical purposes, does not occur”.
Similarly, if we think of the region of the configuration space of the Universe
corresponding to the White Sox winning the pennant, and my impression that
they did not, then one could expect that the Hamiltonian of the Universe is
such that, in this region, the wave function is small. In short, one eliminates
“a classical possibility occurs” as the link between the formalism and human
experience. What replaces it is “in this region of configuration space, the wave
function is small”. In other words, one must learn to make statements about
the Universe, not in the form “The following classical possibility ... occurs”, but
rather in the form “In the following region of configuration space ... the wave
function is small”. With a little practice, one can express himself equally well
in this way.

We consider an example. Suppose we have some ordinary quantum system
which contains a meter which, classically, can read either “A” or “B”. By, e.g.,
the Copenhagen interpretation, we determine that “the probability of reading A
is 25%, while that of B is 75%”. We wish to express this idea within the Everett
language. The Copenhagen statement is to mean that, if this experiment were
repeated many times, A would occur 25% of the time. This would not do as an
Everett statement, however, because it refers to classical possibilities actually
occurring.

We can, however, formulate this as follows: “In the region of configuration
space corresponding to 1,000,000 of these instruments side by side, with the
number reading ‘A’ either less than 240,000 or greater than 260,000, the wave
function is small.” Indeed, one would expect this to be the case. Suppose we
construct a classical system which flips 1,000,000 pairs of coins, and records the
number of times that both coins read heads. We quantize it, and ask what the
wave function looks like after evolution through this process. One would, of
course, find that the wave function will be small in the region of configuration
space corresponding to “both heads” occurring less than 240,000 or more than
260,000 times. In a similar way, one formulates other statements about the
Universe in terms of regions of configuration space in which the wave function
is asserted to be small. Note that, whereas probability enters the Copenhagen
interpretation “externally”, it here enters though the internal structure of quan-
tum mechanics itself.

In short, the Everett interpretation asks that one take quantum mechanics,
as is, very seriously, and learns to live with the resulting picture. One gives up
the notion of certain classical possibilities being realized in favor of the introduc-
tion of certain regions of configuration space in which the wave function is small.
One carries out the same calculations, and transmits the same information, but
in slightly different language. One obtains precisely the same description of the
Universe that would be obtained by some external observer O. This O, how-
ever, would do nothing except look on with satisfaction as the wave function
of Universe evolves. We might as well dispense with him. One does not need
a classical framework in which to anchor quantum mechanics: one can just let
quantum mechanics drift on its own.

Finally, one might object: “All this seems awfully philosophical and rather
pointless.” Imagine yourself in the following situation. You wake up one morn-
ing to discover that people always talk to each other by saying “In the region
of configuration space corresponding to ... the wave function is small.” That’s
just the way they always talk. You put up with this very confusing situation
for a few days, and finally can’t stand it anymore. You ask a friend to come
in to see you. You say to him: “I want to reformulate quantum mechanics in
such a way that classical possibilities actually occur in the Universe. I want to
introduce smaller quantum systems, and observables, and breaks in the chain
of instruments, on one side of which classical possibilities are actually realized.
I want to modify, along these lines, the interface between quantum mechanics
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and what human beings actually observe. It is true that, in this program, I
cannot provide details of the internal workings of people, but this feature is also
common in other areas of physics.” After a pause, your friend replies: “All this
seems awfully philosophical and rather pointless.”
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