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1 The structure of coalgebras

In this section we lay the groundwork for the calculations of the next. The first main result is this:
every coalgebra is the filtered colimit of its finite dimensional sub-coalgebras. The proof we give
is essentially that of Sweedler [7], modified for the case of differential graded coalgebras. We then
use this to give a formula for the cofree coalgebra on a differential graded vector space; this will be
used in the proof of Theorem 2.1. The calculation of that result is the only part of the proof of the
existence of the model category structure which is not essentially formal.

Let C. M} denote the category of non-negatively graded chain complexes over a field k. The
boundary map has degree —1. This category has a symmetric monoidal structure with

(C®D)= © CoD,
p+g=n
and differential
drz@y)=0(x)y+ (—1)Pz ® I(y)

with z ® y € C) ® Dy. The switchmap T': C ® D — D ® C must also have a sign:
T(xoy) = (-1 ).

It is this tensor product we use for coalgebras, comodules, and so on.

Let CA denote the category of coassociative and counital coalgebras in CyMj. We do not
assume cocommutavity, although, in section 2, we will discuss a restricted category of coalgebras
where we make some assumptions about degree zero. We also do not assume that the unit map
€ : C — k is an isomorphism in degree zero; at this point Cj is simply a coassociative coalgebra.
Given a fixed coalgebra C, there is a notion of right comodule over C'; we will write

b= M—>MeC

for the comodule structure map.

There are also the auxiliary categories of graded vector spaces, coalgebras in graded vector
spaces, and comodules in graded vector spaces. There are forgetful functors from the above cate-
gories which neglect the boundary map.

The following observation is standard.
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Lemma 1.1 Let C be a coalgebra in graded vector spaces and let M be a right comodule in graded
vector spaces over C. If x € M 14s a homogeneous element, then there is a finite dimensional
sub-comodule N C M so that x € N.

Proof. Compare [7], §2.2. Let {¢;} be a homogeneous basis for C'. Then we may write
Plz) =z ®c;.
i

Note that 2; = 0 except for finitely many 7. Let N be the span of the z; in M. Since z = (1®¢)1(z),
one has

x = ine(ci) €N.
i
To show N is a sub-comodule one computes
D hla) ® i = (¢ @ ()
i

= (1® Ac)y(z)
= 3;®Alg)
j

= ij & Cij O ¢
Jst

for some ¢;; € C. Then

P(a) =) z;@c; € N@C.
J
This completes the proof.

If C is any coalgebra in graded vector spaces, then C* = {Homy(C,, k)} is a non-positively
graded algebra, and if M is a right comodule over C in graded vector spaces, then M is also a left
C* module; indeed, if ¢ € C* and z € M, then

¢z = zi(p,ci)
where ¢(z) =) z; ® ¢;. Not every left C* module arises this way, because of Lemma 1.1.

Lemma 1.2 Let C be a coalgebra in graded vector spaces and x € C' o homogeneous element. Then
there is a finite dimensional sub-coalgebra D C C' so that x € D. Furthermore, it can be assumed
that D, = 0 for n larger than the degree of x.

Proof. Again, compare [7], §2.2. The coalgebra C has an obvious structure as a right comodule
over itself. Thus Lemma 1.1 supplies a finite-dimensional sub-comodule N C C' with z € N. If C
is cocommutative, then N is in fact already a sub-coalgebra (see [2]); however, in the more general
case, one must proceed as follows.



Let J C C* be the annihilator ideal of IV; note that J is the kernel of the map of rings
c*r — Endy (N )

from C* to the endomorphism of N determined by the left module structure on N. Since N is
finite dimensional, C*/.J is a finite dimensional vector space. Let

D=Jt={yeC :{(¢y) =0forall ¢ € J}.

Note that € N C D. We now show that D is a finite dimensional sub-coalgebra of C.

Since C*/J is finite dimensional, [C*/J]* is a finite dimensional coalgebra. Since D = C'N
[C*/J]* € C**, we have that D is finite dimensional; therefore, this result follows from Lemma 1.3
below.

If we want D,, = 0 for n greater than the degree of x, simply take the sub-vector space of the
D counstructed above generated by the homogeneous elements of degree less than or equal to that
of z. This is also a sub-coalgebra.

Lemma 1.3 Let C be a coalgebra in graded vector spaces and I C C* a two-sided ideal. Then
It C C is a sub-coalgebra.

Proof. The argument is identical to that of Proposition 1.4.3 of [7].

Lemma 1.3 has the following immediate consequences, which will be useful later. If V C C'is a
sub-vector space, then we also have an orthogonal complement V+ C C*. Note that (V+)+ = V.
If D C C' is a sub-coalgebra, then D+ C C* is a two-sided ideal.

Lemma 1.4 Let C be a coalgebra either in graded vector spaces or in chain complezes, and let
{C;} be a set of sub-coalgebras of C, in the appropriate category. Then

1. N; C; is a sub-coalgebra of C in the appropriate category; and

2. >, C; is a sub-coalgebra of C in the appropriate category.

Proof. If C is a coalgebra in chain complexes, then NC; and > C; are sub-chain complexes; thus,
it is sufficient to argue the graded case. However,

NC; =N(CH* = (D it
and
> Ci=(NCiH)*
This brings us to the following result, crucial to all that follows.

Proposition 1.5 Let C' € CA be a coalgebra in chain complexes and let x € C be a homogeneous
element. Then there is a finite dimensional differential graded coalgebra D C C so that x € C.



Proof. Suppose the degree of x is n. We define an ascending sequence of sub-coalgebras
D(n)C D(n—1)C - C D(0) C C
with the properties that
1. z € D(n);
2. each D(k) is finite-dimensional;
3. D(n)y =0 for m >n and D(k — 1), = D(k),, for m > k; and
4. O(D(k)r) € D(k — 1)1

Then D = D(0) is the desired coalgebra. Note that D(n) is supplied by Lemma 1.2. If D(k) has
been constructed, choose a basis for {y;} for D(k); and use Lemma 1.2 to produce finite dimensional
sub-coalgebras D(y;) C C so that dy; € D(y;) and D(y;),, = 0 for m > k. Then set

D(k—1) = D(k) + Z D(y;).

This is a sub-coalgebra by the previous result, and the proposition follows.

This last result immediately implies the next. Note that the forgetful functor from CA to
differential graded vector spaces makes all colimits.

Corollary 1.6 Every differential graded coalgebra over a field k is the (right) filtered colimit of its
finite dimensional sub-coalgebras.

Now let Algf be the category of profinite non-positively graded differential algebras over k,
with unit. The objects of Algf can either be regarded as filtered diagrams of non-positively graded
finite dimensional differential k-algebras or as complete topological differential k algebras with a
neighborhood base of 0 consisting of two-sided ideals of finite codimension and closed under the
differential. Then morphisms are either pro-morphisms of diagrams of finite dimensional dgas or
continuous dga morphisms. The following is now a formal consequence of Corollary 1.6 and the
fact that the dual of a finite dimensional algebra is a coalgebra. This implies that the continuous
dual of a profinite algebra is a coalgebra. Compare [2].

Proposition 1.7 Linear duality defines an anti-equivalence between the category CA of differential
graded coalgebras and the category Algf of profinite differential graded algebras.

The functor back takes the continuous dual of a profinite algebra.
An implication of the previous result is the following.

Proposition 1.8 The category CA has all small limits and colimits.

Proof. Indeed, as mentioned above, the forgetful functor from CA to differential graded vector
spaces makes all colimits. To prove the existence of limits, it is sufficient, by the previous result,
to show that the category Algf has all colimits.



Let A : I — Algf be diagram of profinite dg-algebras and let B be the colimit of this diagram
in the category of dg-algebras. This is not yet a profinite algebra. Define a neighborhood base of
0 in B to be the set of two-sided ideals J which can be realized as the kernel of map of algebras
B — C such that C is a finite dimensional dg-algebra and so that for each ¢ € I the composite
A; - B — (' is continuous. Then the colimit is the completion of B with respect to this topology.

In light of Corollary 1.6, the following technical result will have many applications:

Lemma 1.9 Let {Cy,} be a right filtered diagram of coalgebras in CA and let D € CA be finite
dimensional. Then the natural map

colim, Home4(D, C,) — Home 4 (D, colim,, Cy,)
18 an tsomorphism.

Proof. The forgetful functor to differential graded vector spaces makes colimits, so this map is an
injection. To prove it is a surjection, note that any coalgebra map f : D — colim, C, factors as
a morphism of D — C, of differential graded vector spaces, since D is finite dimensional. Since f
is a coalgebra map, there must be a morphism C, — Cj3 so that composite D — C, — Cp is a
coalgebra map, again since D is finite dimensional. This completes the proof.

For the next result we need the following observation. The forgetful functor from Algf to
the category of differential graded algebras has a left adjoint given by profinite completion: to a
differential graded algebra A one assigns the diagram A = {A/I,} where I, runs over all two-sided
ideals of A of finite codimension and closed under the differential.

We can now prove:

Proposition 1.10 The forgetful functor from CA to differential graded vector spaces has a right
adjoint S.

Proof. Let V be a differential graded vector space. If V is finite dimensional, let S(V) be the
continuous dual of the profinite completion of the tensor algebra on V*. Then

Home(C, S(V)) = Homags (Tens(V*), C*)
= Homgg(Tens(V"),C*)
= Homx (VF,C7)
= Homp, (C, V)

where M is the category of profinite k-vector spaces. Thus S(V') has the desired property. For
general V', define

(1.1) S(V) = colim, S(Vy)



where V,, runs over the finite dimensional sub-vector spaces of V. Then if C' = colimg Cj is a
coalgebra in CA written as the colimit of its finite dimensional sub-dg-coalgebras, one has, by
Lemma 1.9,

Home(C, S(V)) = lim Home(Cs, S(V))
= lién colimy, Home 4(Cp, S(Va))
= lién colimy, Homy, (Cj, Va)

= HOka (C, V)

This completes the proof.

The preceding argument gives only moderate insight into the structure of S(V') — we did obtain
the formula Equation 1.1 and the fact that if V' is finite dimensional, then the dual of S(V) is the
profinite completion of the tensor algebra on V*. We spend the rest of this section delving more
deeply into the structure of S(V'). For model category theoretic reasons, we're actually interested
in C x S(V) for an arbitrary coalgebra C. Here is a preliminary reduction.

Lemma 1.11 Suppose A and B are differential graded coalgebras and we have presentations
colim, A, = A and colimg Bg = B
of A and B as filtered colimits of sub-coalgebras. Then the natural map
colimy g(An x Bg) - AX B

s an tsomorphism.

Proof. If D = colim D, is written as the colimit of its finite dimensional sub-differential graded
coalgebras, then by Lemma 1.9,

Home 4(D, colim, g Aq X Bg) = lim colim, g Home 4 (D, Aq X Bg)
v

= lim colim,, g[Home 4 (D, Aq) x Home 4(D,, Bg)].
v

Now, because we are working with sub-coalgebras, the maps
HOHICA(DV, AOé) - HomCA(D’Ya Aa’)

and
HOmCA(ny, B/g) — HOmCA(D,y, Bﬂl)



are inclusions, so this last colimit is a union of sets and, hence, one can interchange the product
and colimit and again use Lemma 1.9.

Home 4 (D, colimy g Aq X Bg) = lim[colim, Home 4(D~, Aa) X colimg Home 4(D-, Bg)]
gl
= lim[Home 4(D~, colim, Ay) X Home 4(D~, colimg Bg))]
gl
= lim Home 4(D~, A X B)
v

= Home4(D, A x B).

In particular, this last result implies that if C' is any coalgebra in CA and V is a differential
graded vector space, then there is an isomorphism

(1.2) colimy g(Co x S(Vg)) = C x S(V)

where C, runs over the finite dimensional sub-dg-coalgebras of C' and V3 runs over the finite
dimensional sub-dg-vector spaces of V. Here we use Equation 1.1. We reduce further.

Let S(n) denote the differential graded vector space which is of dimension 1 over k concentrated
in degree n. Let D(n) be the differential graded vector space with D(n), = 0 unless p =n or n+1,
D(n), = Dp41 = k and the boundary map is the identity. Every finite dimensional differential
vector space can be written (non-canonically) as a finite product of differential vector spaces of the
form S(n) or D(n). Since the functor S is a right adjoint, it preserves products; thus to understand
C x 8(V) we are reduced, in some sense, to understanding C' x S(S(n)) and C x S(D(n)). This is
the purpose of the next result.

If V is a differential graded vector space concentrated in non-negative degrees, then Tens(V*)
has a natural structure of a differential graded algebra in non-positive degrees. However, more is
true. If A is a differential graded algebra concentrated in non-positive degrees and M is a differential
graded A bi-module, also in non-positive degrees, then we can form the tensor algebra

Tenss(M) = 6>90M®AM®A---®AM
n_

where, in the nth summand, M appears n times. (If n = 0, we have only A.) This has an obvious
structure as a differential graded A-algebra. In particular, if W is a differential graded vector space
in non-positive degrees, we can form

Tensa(A@W ® A) = 6>90A®W®A---A®M®A
n_

where, in the nth summand, W appears n times. The functor
Wi— Tensa(AQ W @ A)

is left adjoint to the forgetful functor from A algebras of dg-vector spaces; hence, there is a natural
isomorphism
Tenss(AQW ® A) 2 AU Tens(W)

all in the category of dg-algebras.
If A is an algebra, let (X) C A denote the two-sided ideal of A generated by a subset X of A.



Lemma 1.12 Let C be a finite dimensional coalgebra and V a differential graded wvector space
which s in non-negative degrees and finite dimensional in each degree.

1. If Vo =0, then [C x S(V)]* = Tensc-(C* @ V* @ C*).
2. If Vo = k with generator x, then

[CxSV)" = tl}i(;r;Tensc*(C* RV*®C*)/(¢q(x), 0q(x)).

where q(z) € k[x] runs over all monic polynomials and there is a projection
Tensc-(C* @ V* @ C*)/(q(z),dq(x)) = Tensc«(C* @ V* @ C*)/(p(x), dp(x))

if and only if p(x) divides q(z).

Proof. In either case, [C' x S(V)]* is the profinite completion of the dg-algebra
C*UTens(V*) 2 Tensc-(C* @ V* @ C*).

In the first case, let
I, CTensc-(C*@V*® C*)

be the ideal of elements of degrees less than —n. Then the system
Tensc-(C* @ V*® C*) /I,

is cofinal among quotients of T'ensc«(C* ® V* ® C*) of finite dimension; therefore, this algebra is
its own profinite completion.
In the second case, the system of algebras

Tensc+(C* @ V* ® C*)/(Iy,q(x), 0q(x))
is again cofinal among quotients of of finite dimension; hence

S(V)* =limTensc-(C* @ V*® C*)/(1,,q(x),0q(x)) = (l}i(lg;Tensc*(C* RV*®C*)/(q(z),dq(x)).

Example 1.13 One can use Lemma 1.12 to calculate S(S(0)) = S(k) where k is in degree zero, at
least in the case where k is perfect. Let k be the algebraic closure of k and G the Galois group of
k over k. Then write [a] for the orbit of ¢ € k and k(a) for k adjoin a. Then, as profinite algebras,

S(k)* = [ k@I]]
[a]

where [a] Tuns over the distinct orbits of the action of G on k.



2 The model category structure

The purpose of this section is to prove that the category C.A of non-negatively graded differential
coalgebras over a field k£ has the structure of a closed model category where the weak equivalences
are quasi-isomorphisms and the cofibrations are simply inclusions. This is, in fact, a cofibrantly
generated model category, and we end the section by specifying the generating cofibrations.

We begin with the key algebraic result. Let S be the cofree coalgebra functor of section 1,
and let D(n) be the non-negatively graded chain complex with D(n), = 0 unless p = n or n + 1,
D(n),, = Dy+1 = k and the boundary map is the identity. This is the same object that was labelled
D(n) in section 1.

Theorem 2.1 For all coalgebras C and all non-negative integers n, the natural projection
C xS8(D(n)) »C
1S 6 quasi-isomorphism.

Proof. Let {C,} be the filtered system of finite dimensional sub-coalgebras of C. Then Lemma
1.11 supplies an isomorphism

colimg [C x S(D(n))] 22 C x S(D(n)).

Since the colimit is filtered and made in differential graded vector spaces, it is sufficient to discuss
the case where C' is finite dimensional. If n > 0, Lemma 1.12.1 supplies the answer. Thus we are
reduced to the case n = 0. Then Lemma 1.12.2 writes C x S(D(0)) as a filtered colimit:

C x S(D(0)) = colimy(,)[Tensc+(C* @ D(0)* @ C*)/(q(x), dq(x))]"

The algebras in this diagram for which ¢(x) is divisible by x form a cofinal sub-diagram, so can be
used to compute this colimit. We will show that each of these algebras is quasi-isomorphic to C*.

To simplify notation, let A = C* and M = A® D(0)* ® A. Let z € D(0)§ be a generator and
y = Oz be the generator in degree 1. To begin, D(0)* has a chain contraction h given by h(y) = =
and h(z) = 0. This gives a chain contraction for M by the formula

ha®z®b) = (—1)%a @ h(z) @ b).
This extends to a chain homotopy H : T'ens(M) — Tens (M) from the identity to the composite
Tens (M) —= Tens(0) = A—Tens (M)

where 7 is the unit map and € is the augmentation induced by the zero map M — 0. To define H,

write
Tensp(M)= & M ®y---®4 M.
n>0
Then H restricted to A (the summand n = 0) is the zero map, and on the nth summand with
n >0,
Hzi ® 2p) =h(z1) @22 @ - ® .



Let I be the augmentation ideal in Tens4(M); that is, I is the kernel of € Note that we have the
formula, for a,b € Tens(M):

| H(a)b, a€l,
H(“b)_{ aH(b), a€ A.

Since every element a € T'ens (M) can be written uniquely as

a = (a —ne(a)) +ne(a),
with ¢ — ne(a) € I and ne(a) € A, we can can combine this observation into a single formula:
(2.1) H(ab) = H(a — ne(a))b + ne(a) H(b)

Now suppose J C I C Tensy(M) is two-sided ideal contained in the augmentation ideal so
that H restricts to a chain homotopy on J. Then the induced map on Tensa(M)/J is a chain
homotopy between the identity and

Tens (M)/]J - Tens(0) = A—5 Tens o (M)/ J.

So let ¢(z) be a polynomial in z divisible by . Then ¢(z) is in the augmentation ideal, so the
two-sided ideal J = (¢(z), dgq(z)) is in augmentation ideal. Thus we need only show that H restricts
to J.

Every element of J can be written as a sum

aq(z)b + cdq(x)d.

Applying H to this sum and using Equation 2.1, we see that H restricts to J if and only if H(q(z))
and H(0q(z)) are in J. However, ¢(x) = zqo(x), since ¢(z) is divisible by z. Because z is in the
augmentation ideal, Equation 2.1 implies

H(q(z)) = H(z)qo(x) = h(z)go(z) = 0.

Similarly, y is in the augmentation ideal, so

H(0q(x)) = H(yqo(x) + x9q0(2)) = h(y)qo(x) + h(z)qo(x) = zqo(x) = q(x).
This completes the argument.

Theorem 2.1 has the following corollary:

Proposition 2.2 Let V be o non-negatively graded differential vector space with H,V = 0. Then
for all C' € CA, the projection
CxSV)y—=<C

1S 6 quasi-isomorphism.
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Proof. The dg-vector space V can be written as a sum of objects isomorphic to some D(n). Thus
V' can be written as a filtered colimit of V = colim,, V,, so that H,V, = 0. Then Equation 1.1 and
Lemma 1.11 imply that

colimy[C x S(Vy)]| = C x S(V).

Since the colimit is filtered and made in vector spaces we are reduced to the case where V is finite
dimensional. In that case, write down an isomorphism

V =2 D(ny1) x D(ng) X --- D(ng).
Since S is a right adjoint we have
CxS(V)=CxS(D(ny)) x---xS(D(ng))

and the result follows by induction from Theorem 2.1.

We now formally specify the classes of maps of our model category structure:
Definition 2.3 A morphism f : C — D of differential graded coalgebras is

1. a weak equivalence if it is a quasi-isomorphism; that is, if H,f : H,C = H,D;

2. a cofibration if it is a degree-wise injection of graded vector spaces;

3. a fibration if it has the right lifting property with respect to acyclic cofibrations.

As is customary, we use the shorthand acyclic cofibration for a morphism which is at once a
weak equivalence and a cofibration. There is also a notion of acyclic fibration. A morphism X — Y
has the right lifting property with respect to a morphism A — B if every lifting problem

A =X

7
. 7/
v v
P ,

B——Y

has a solution so that both triangles commute.
The following result is why went to such difficulty with Theorem 2.1.

Lemma 2.4 1.) Let V be a non-negatively graded differential vector space so that H,V = 0. Then
for all coalgebras C € CA the projection

CxS(V)=>C

is an acyclic fibration with the right lifting property with respect to all cofibrations.
2.) Any morphism f: D — C is CA can be factored

p-Lix-%e

where j is a cofibration and q is an acyclic fibration with the right lifting property with respect to
all fibrations.

11



Proof. We begin with part 1. By Proposition 2.2, the projection is a weak equivalence; therefore,
we need only show it is a fibration. This will follow if we show that the map has the right lifting
property with respect to all cofibrations. Consider a lifting problem in C.A

A——=C x S(V)

7
7 -
-
-

B

i

C

where the morphism i is a cofibration. By an adjointness argument, this is equivalent to a lifting
problem in differential graded vector spaces

Since 7 is a cofibration and V' — 0 is an acyclic fibration in the standard model category structure
on differential graded vector spaces (see [5]), a solution to the lifting problem exists.

For part 2, regard D as a differential graded vector space and choose an inclusion of dg-vector
spaces i : D — V with H,V = 0. Define X = C x S(V), ¢ : X — C to be the projection and
j: D — X to be

j=(f,i"): D= CxS(V)

where ¢* is adjoint to ¢ : D — V. By part 1, ¢ is an acyclic fibration of the required sort; thus we
need only show that j is an inclusion. Consider the composition

DL0x8(V)BS(V) -V

where 75 is projection onto the second factor and € is the counit of the adjunction. This composition
is 7, hence an injection; therefore, j is an injection, as required.

There is another factorization required by the model category structure — the “acylic cofibration—
fibration” factorization. This is more formal, using the now-standard technique pioneered by Bous-
field [1]. The crucial input is supplied by Lemmas 2.5 and 2.6 to follow; the factorization is done
by the small object argument in Lemma 2.7.

Lemma 2.5 Let j: C — D be an acylic cofibration and © € D a homogeneous element. Then the
s a sub-coalgebra B C D so that

1. z € By
2. B has a countable homogeneous basis; and

3. CNB — B is an acyclic cofibration in CA.

Proof. We recursively define sub-dg-coalgebras

B(1)CB(@2)C---CD

12



so that x € B(1), each B(n) is finite dimensional, and the induced map of dg-vector spaces
B(n—-1)/[CNB(n—1)] = B(n)/[C N B(n)]

is zero in homology. Then we may set B to be the union of the B(n).
The sub-dg-coalgebra B(1) is supplied by Proposition 1.5. Suppose that B(n — 1) has been
constructed. Since B(n — 1) is finite dimensional we may choose a finite set

zi+(CNB(n—-1)) € B(n—1)/[CNB(n—1)]

of homogeneous cycles so that the resulting homology classes span H.(B(n —1)/[C N B(n — 1)]).
For each index %, use Proposition 1.5 to select a finite dimensional sub-coalgebra of A(z;) C D so
that z; € A(z;). Then set

B(n)=B(n—1) + Z A(z).

This is again finite dimensional and has the requisite properties.

Lemma 2.6 A morphism q : X — Y in CA is a fibration if and only if q has the right lifting
property with respect to all acyclic cofibrations A — B so that B has a countable homogeneous
basis.

Proof. The necessity of this lifting property is a consequence of Definition 2.3. For sufficiency,
suppose we have a lifting problem

7

. v/

7 . q
v/

D——Y

i

where j is an arbitrary acyclic cofibration. We solve this problem by a Zorn’s Lemma argument.
Define €2 to be the set of pairs (D, g) where D fits into a sequence of acyclic cofibrations in C.A

C=D-=D

and g : D — X is a solution to the restricted lifting argument. Order Q by setting (D,g1) <
(Dg, g2) if D; C D5 and g restricts to g;. Since (C, f) € Q the set is non-empty and any chain has
an upper bound given by the union. Let (E,g) € © be a maximal element. We show £ = D. Note
that £ — D is an acyclic cofibration.

Let « € D. By the previous lemma, there is a sub-dg-coalgebra B C D so that « € B, B has a
countable basis, and £ N B — B is an acyclic cofibration. Then the induced lifting problem

- g

13



has a solution, by hypothesis. Hence g can be extended over EF + B. Furthermore, the Meyer-
Vietoris sequence

.- > H(ENB) - Hy(E) ® Hy(B) — Hy(E + B) —» Hy_1(ENB) — ---

shows that £ — F + B is an acylic cofibration. By the maximality of (F,g) we must then have
E=F+ B and z € E, as required.

For the following result, the class of morphisms generated by a stipulated list of morphisms A
is the smallest class containing A and closed under coproducts, cobase change, directed colimits,
retracts, and isomorphisms.

Lemma 2.7 Any morphism C — D in CA can be factored
cLx-p

where @ is an acyclic cofibration and p is a fibration. Furthermore i is in the class or morphisms
generated by the acyclic cofibrations A — B so that B has a countable homogeneous bastis.

Proof. Since colimits in CA are made in differential graded vector spaces, the class of acyclic
cofibrations is closed under cobase change and directed colimits. In light of Lemma 2.6 the small
object argument, over an ordinal whose cardinality larger than that of the first infinite cardinal,
now applies. See [1], where such arguments first appeared, and [4], among many references.

We can now prove the main result.

Theorem 2.8 With the definitions of weak equivalence, fibration, and cofibration given in Defini-
tion 2.3, the category CA becomes a model category.

Proof. The category CA has all small limits and colimits, by Proposition 1.8. Weak equivalences
satisfy the two-out-of-three axiom by inspection; similarly, the classes of weak equivalences, cofibra-
tions, and fibration are closed under retracts. The factorization axiom follows from Lemmas 2.4.2
and 2.7. The “acyclic cofibration — fibration” half of the lifting axiom is the definition of fibration.
Thus we need only show that any acyclic fibration has the right lifting property with respect to all
cofibrations. Let p : C' = D be an acyclic fibration. By Lemma 2.4.2 we may factor p as

clsx- LD

where j is a cofibration and ¢ is an acyclic fibration with the right lifting property with respect
to all cofibrations. Note that j is also a weak equivalence. Thus there is a solution to the lifting
problem
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7
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X D
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as p has the right lifting property with respect to all acyclic cofibrations. This solution shows that
p is a retract of ¢ and, since g has the right lifting property with respect to all cofibrations, so does

p.

We are also going to prove that CA is a cofibrantly generated model category. See §2.1 of [4]
for the definitions and implications. We have

Lemma 2.9 1.) A morphism p: C — D in CA is an acylic fibration if and only if it has the right
lifting property with respect to all cofibrations A — B with B finite dimensional.
2.) The cofibrations A — B with B finite dimensional generate the class of cofibrations in CA.

Proof. Part 1 is proved by the evident variation of the Zorn’s Lemma argument given in Lemma,
2.6. Proposition 1.5 substitutes from Lemma 2.5 in the argument.
To prove part 2, let i : C'— D be any cofibration CA. Use part 1 and the small object argument
to factor ¢ as ,
c-Lx-%D
where j is generated by the cofibrations A — B with B finite dimensional and ¢ is an acyclic
fibration. Then the solution to the lifting problem

c—1-x
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shows ¢ is a retract of 7 and, hence, in the class of morphisms generated by inclusions of finite
dimensional coalgebras.

We can now state:
Proposition 2.10 The class of cofibrations in CA is generated by all cofibrations A — B with

B finite dimensional, and the class of acyclic cofibrations is generated by all acyclic cofibrations
C — D so that D has a countable homogeneous basis. The category CA is cofibrantly generated.

Proof. The statements about generating cofibrations and acyclic cofibrations follow from Lemma,
2.9 and Lemma 2.7, respectively. Since both types of morphisms have targets which are small with
respect to long enough directed colimits, the result follows.

We also have the following result, which is technically convenient:

Proposition 2.11 The cofree coalgebra functor S preserves fibrations and weak equivalences.
Proof. The forgetful functor from CA to dg-vector spaces preserves weak equivalences and cofi-

brations; hence, S preserves fibrations and weak equivalences between fibrant objects. However,
every dg-vector space is fibrant.
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3 Space-like coalgebras

The normalized chains on a topological space form a coassociative differential graded coalgebra,
using the Alexander-Whitney diagonal; however, the degree zero part of such a coalgebra supports
a very special structure. We isolate and study this structure.

In the category CA of differential graded coalgebras, the one dimensional coalgebra k concen-
trated in degree zero is the terminal object. If C' € CA, we define the set X (C) of points in C by
the equation

(3.1) X (C) = Home(k,C).

This is the set of elements z € Cj so that A¢(z) = x ® x. Note that if X is a set, then the vector
space k[X] generated by X is a coalgebra with diagonal

E[Ax] : k[ X] — k[X x X]| = k[X] ® k[X]
and there is a natural isomorphism X = X (k[X]).
Definition 3.1 A differential graded coalgebra C € CA is space-like if the natural map of coalge-

bras
k[X(C)] = Co

is an isomorphism. Let CA, denote the full sub-category of CA of space-like coalgebras.

For example, the chains on a space are space-like — hence the name.

Note that any sub-coalgebra of a space-like coalgebra is space-like. Hence the fundamental
structure result of coalgebras — that any coalgebra is the filtered colimit of its finite dimensional
sub-coalgebras — applies equally well to CA+.

Lemma 3.2 The inclusion functor CAy — CA has a right adjoint ®. Furthermore, ® commutes
with filtered colimits.

Proof. In fact one can give a formula for ®:
(C)=> Ca
«

where Cy runs over the space-like sub-dg-coalgebras of C'. Then, since the image of a space-like
coalgebra is a space-like coalgebra, ®(C') has the requisite adjointness properties.
To see that ® commutes with filtered colimits, let {C,} be a filtered diagram of coalgebras and
D a finite dimensional space-like coalgebra. Then we have, using Lemma 1.9,
Homc 4, (D, colim, ®(Cy)) = colim, Home 4, (D, ®(Cy))
= colimy, Home 4(D, Cy)
= Homge 4(D, colim,, Cy)
= Homc 4, (D, ®(colim, Cy)).

This immediately implies the following result.
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Lemma 3.3 1.) The category CAL has all small limits and colimits.

2.) The forgetful functor from CA; to differential graded vector spaces has a right adjoint S .
Also, if V. = colim, V,, is written as a filtered colimit of finite dimensional sub-dg-vector spaces,
then

colimy S4 (V) = S+ (V)

Proof. The forgetful functor to differential graded vector spaces makes all colimits. For limits, if
{C;} is a diagram in CA, then the limit in that category is ® applied to the limit in C.A. The right
adjoint is given by the formula S; = ® o S, where S is the right adjoint to the forgetful functor
from CA to dg-vector spaces.

We would now like to give the analog of Lemma 1.12 in the category of space-like coalgebras.
Part 1 of that Lemma remains unchanged. Thus we need only worry about part 2. Suppose that
C is a finite dimensional space-like coalgebra and V is a differential graded vector space, finite
dimensional in each degree and Vy = k with generator . We define certain ideals

Iy S Tensc-(C*@V* @ CY)
by
Iy(w) = (q(z), 9q(2), [a, 2], Ola, 7])
where ¢(z) € k[z] is a monic polynomial, a € (Cp)* and [b, z] = bz — zb is the commutator. There
is an inclusion
Ty@) € Ty(w)
if and only if p(z) divides ¢(z).

Lemma 3.4 If C is o finite dimensional space-like coalgebra and V is a differential graded vector
space, finite dimensional in each degree and Vy = k with generator x, then in CAL,

Cx54(V) = li(n§ Tensc+(C* @ V* @ C*) /Iy
q(x

where q(z) runs over the monic polynomials in k[x] that split completely into distinct factors over
k.

Proof. Define a profinite algebra A = lim, A, where A, runs over the finite dimensional algebra
quotients of

Tensc-(C*@V* @ C*) = C* UTens(V™)
so that A}, is a space-like coalgebra. Then the claim is that the continuous dual of A is C' x S, (V).
This follows from the following calculation, where D is a finite dimensional space-like coalgebra
and A' is the continuous dual of A. We use Lemma 1.9 for the first isomorphism.

Howgc 4, (D, A¥)

I

colim, Home 4, (D, A,)

1

colim, Homy,_ 414 (An, D)

Homy,_44(C* UTens(V*),D")

=~ Homy,_(C*, D*) x Homg, aq, (V*, D¥)
=~ Homc 4, (D,C) x Homg, pm, (D, V)

=~ Homc g, (D,C x S¢(V)).

1
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So let D be a finite-dimensional space-like coalgebra and B = D*. Then the degree-zero sub-
algebra of By C B is isomorphic to the semi-simple commutative algebra kX(P); in particular, By
is commutative and and algebra map k[z] — By must factor

k[z] — k[z]/(q(x)) = By

where g(x) is monic and generates the kernel. Since every sub-k-algebra of By is of the form kY
for some quotient set of X (D), we must have that g(x) splits completely into distinct factors over
k. Conversely, if q(z) so splits k[z]/(q(z)) = k¥ for some set Y.
Let I, € Tensc+(C* ® V* @ C*) /1) denote the elements of degree less than —n. Then the
algebras
Tensc+(C* @ V™ ® C*)/(In, Iy(x))

are cofinal among all finite dimensional dg-algebra quotients which map to duals of space-like
coalgebras. The result follows.

Example 3.5 Let k be the one-dimensional differential vector space concentrated in degree zero.
Then
Sy (k)* = kF.

Compare Example 1.13. Note this implies that Sy (k) = k[k].

To produce a model category structure on the category CA4 we follow the rubric of the pre-
vious section. The only part argument of that section which was not a formal consequence of the
properties of coalgebras that are inherited by space-like coalgebras is the analog of Theorem 2.1.
This we now prove.

Theorem 3.6 For all space-like coalgebras C' and all non-negative integers n, the natural projection
C xSy(D(n)) —C

18 o quasi-tsomorphism.

Proof. The strategy of the proof is the same. Ounly the case n = 0 requires thought, and we may
reduce to the case where C' is finite dimensional. Then we again, set A=C*, M = A D(0)*® A
and z € D(0)) the generator in degree 0. Then we must show that the chain contraction H
on Tensy(M) to the inclusion of the unit A — Tenss(M) descends to a chain contraction on
Tensa(M)/I,,) where q(z) is as in Lemma 3.4. Again we may assume that z divides ¢(z). In the
end we must show that H sends the generators of /(,) back into /). However, using Equation
2.1 we have
H(g@) =0 and  H(9q(2) = qx)

as before, and
H([a,z]) = [a, H(z)] = 0

and
H(0la,z]) = H([0a,z] + [a,y]) = [a, H(y)] = [a, z].

We would now like to propose the following result.
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Theorem 3.7 The category CAy of space-like coalgebras has a closed model category structure
where a morphism f:C — D is

1. a weak equivalence if it is o quasi-isomorphism;
2. a cofibration if it is a level-wise inclusion; and

3. a fibration if it has the right lifting property with respect to all acyclic cofibrations.

Proof. In outline, the proof is the same as that of Theorem 2.8. We touch on the highlights.
The analog of Proposition 2.2 is a formal consequence of Theorem 3.6 and Lemma 1.11, which
applies equally well to CA,. The analog of Lemma 2.4 is now formal. Lemma 2.5 for CA, is a
consequence of Proposition 1.5 and the fact that every sub-coalgebra of a space-like coalgebra is
space-like; from this one deduces the analogs of Lemmas 2.6, and 2.7. This completes the existence
of the factorizations, and the proof of Theorem 2.8 goes through verbatim.

This model category is also cofibrantly generated. Indeed, we have, exactly as in Proposition
2.10:

Proposition 3.8 The class of cofibrations in CA4 is generated by all cofibrations A — B with
B finite dimensional, and the class of acyclic cofibrations is generated by all acyclic cofibrations
C' — D so that D has a countable homogeneous basis. The category CA4 is cofibrantly generated.

One also has, exactly as in Proposition 2.11

Proposition 3.9 The cofree coalgebra functor Sy from differential graded vector spaces to C A4
preserves weak equivalences.

Remark 3.10 There are other varieties of coalgebras one might consider. The standard example
(see [6] and also [3], although the later is graded over the integers) is that of connected coalgebras.
A coalgebra C' is connected if it has a unique simple sub-coalgebra D. (See [7] for definitions). The
dual of graded coalgebra is a complete local k-algebra with residue field a finite extension of k.
A differential graded coalgebra is connected if Cy is connected. It is relatively straightforward to
produce a model category structure on connected differential coalgebras; the methods of [6] apply.
If one wants to use the ideas proposed here, we note that the forgetful functor from connected dg-
coalgebras to dg-vector spaces has a right adjoint S.o, and if D(0)* has generators z and y = Oz,
then
Seon(D(0))" = lim Tensy (. )/ (a", 0(a")).

From this one easily deduces the analogs of Lemma 1.12 and Theorem 2.1.

Another variety of coalgebras that arises naturally are the “étale” ones. Let k be a perfect field
and k its algebraic closure, a coalgebra C is étale if k ®; C is space-like. For example, if F is a
finite field extension of k, then E* is étale, but space-like if and only of k = E. Again, there is a
category of differential graded étale coalgebras: we require Cy be étale. The right adjoint Se; now
has

Set(D(0)) = }]i(g;TenSk(w, y)/(q(z), 0q(z))

where g(z) is a monic polynomial which splits into distinct factors over k. The analog of Theorem
2.1 in this case can be deduced from Theorem 3.6 by tensoring up over k, or by direct calculation.
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