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1 The structure of coalgebrasIn this section we lay the groundwork for the calculations of the next. The �rst main result is this:every coalgebra is the �ltered colimit of its �nite dimensional sub-coalgebras. The proof we giveis essentially that of Sweedler [7], modi�ed for the case of di�erential graded coalgebras. We thenuse this to give a formula for the cofree coalgebra on a di�erential graded vector space; this will beused in the proof of Theorem 2.1. The calculation of that result is the only part of the proof of theexistence of the model category structure which is not essentially formal.Let C�Mk denote the category of non-negatively graded chain complexes over a �eld k. Theboundary map has degree �1. This category has a symmetric monoidal structure with(C 
D)n = �p+q=nCp 
Dqand di�erential @(x
 y) = @(x)
 y + (�1)px
 @(y)with x
 y 2 Cp 
Dq. The switch map T : C 
D ! D 
 C must also have a sign:T (x
 y) = (�1)pq(y 
 x):It is this tensor product we use for coalgebras, comodules, and so on.Let CA denote the category of coassociative and counital coalgebras in C�Mk. We do notassume cocommutavity, although, in section 2, we will discuss a restricted category of coalgebraswhere we make some assumptions about degree zero. We also do not assume that the unit map� : C ! k is an isomorphism in degree zero; at this point C0 is simply a coassociative coalgebra.Given a �xed coalgebra C, there is a notion of right comodule over C; we will write M =  :M !M 
 Cfor the comodule structure map.There are also the auxiliary categories of graded vector spaces, coalgebras in graded vectorspaces, and comodules in graded vector spaces. There are forgetful functors from the above cate-gories which neglect the boundary map.The following observation is standard.�The authors were partially supported by the National Science Foundation.1



Lemma 1.1 Let C be a coalgebra in graded vector spaces and let M be a right comodule in gradedvector spaces over C. If x 2 M is a homogeneous element, then there is a �nite dimensionalsub-comodule N �M so that x 2 N .Proof. Compare [7], x2.2. Let fcig be a homogeneous basis for C. Then we may write (x) =Xi xi 
 ci:Note that xi = 0 except for �nitely many i. Let N be the span of the xi inM . Since x = (1
�) (x),one has x =Xi xi�(ci) 2 N:To show N is a sub-comodule one computesXi  (xi)
 ci = ( 
 1) (x)= (1
�C) (x)=Xj xj 
�(cj)=Xj;i xj 
 cij 
 cifor some cij 2 C. Then  (xi) =Xj xj 
 cij 2 N 
 C:This completes the proof.If C is any coalgebra in graded vector spaces, then C� = fHomk(Cn; k)g is a non-positivelygraded algebra, and if M is a right comodule over C in graded vector spaces, then M is also a leftC� module; indeed, if � 2 C� and x 2M , then� � x =X xih�; ciiwhere  (x) =Pxi 
 ci. Not every left C� module arises this way, because of Lemma 1.1.Lemma 1.2 Let C be a coalgebra in graded vector spaces and x 2 C a homogeneous element. Thenthere is a �nite dimensional sub-coalgebra D � C so that x 2 D. Furthermore, it can be assumedthat Dn = 0 for n larger than the degree of x.Proof. Again, compare [7], x2.2. The coalgebra C has an obvious structure as a right comoduleover itself. Thus Lemma 1.1 supplies a �nite-dimensional sub-comodule N � C with x 2 N . If Cis cocommutative, then N is in fact already a sub-coalgebra (see [2]); however, in the more generalcase, one must proceed as follows. 2



Let J � C� be the annihilator ideal of N ; note that J is the kernel of the map of ringsC� �! Endk(N)from C� to the endomorphism of N determined by the left module structure on N . Since N is�nite dimensional, C�=J is a �nite dimensional vector space. LetD = J? = fy 2 C : h�; yi = 0 for all � 2 Jg:Note that x 2 N � D. We now show that D is a �nite dimensional sub-coalgebra of C.Since C�=J is �nite dimensional, [C�=J ]� is a �nite dimensional coalgebra. Since D = C \[C�=J ]� � C��, we have that D is �nite dimensional; therefore, this result follows from Lemma 1.3below.If we want Dn = 0 for n greater than the degree of x, simply take the sub-vector space of theD constructed above generated by the homogeneous elements of degree less than or equal to thatof x. This is also a sub-coalgebra.Lemma 1.3 Let C be a coalgebra in graded vector spaces and I � C� a two-sided ideal. ThenI? � C is a sub-coalgebra.Proof. The argument is identical to that of Proposition 1.4.3 of [7].Lemma 1.3 has the following immediate consequences, which will be useful later. If V � C is asub-vector space, then we also have an orthogonal complement V ? � C�. Note that (V ?)? = V .If D � C is a sub-coalgebra, then D? � C� is a two-sided ideal.Lemma 1.4 Let C be a coalgebra either in graded vector spaces or in chain complexes, and letfCig be a set of sub-coalgebras of C, in the appropriate category. Then1. \i Ci is a sub-coalgebra of C in the appropriate category; and2. PiCi is a sub-coalgebra of C in the appropriate category.Proof. If C is a coalgebra in chain complexes, then \Ci and PCi are sub-chain complexes; thus,it is su�cient to argue the graded case. However,\Ci = \(C?i )? = (XC?i )?:and XCi = (\C?i )?:This brings us to the following result, crucial to all that follows.Proposition 1.5 Let C 2 CA be a coalgebra in chain complexes and let x 2 C be a homogeneouselement. Then there is a �nite dimensional di�erential graded coalgebra D � C so that x 2 C.3



Proof. Suppose the degree of x is n. We de�ne an ascending sequence of sub-coalgebrasD(n) � D(n� 1) � � � � � D(0) � Cwith the properties that1. x 2 D(n);2. each D(k) is �nite-dimensional;3. D(n)m = 0 for m > n and D(k � 1)m = D(k)m for m � k; and4. @(D(k)k) � D(k � 1)k�1.Then D = D(0) is the desired coalgebra. Note that D(n) is supplied by Lemma 1.2. If D(k) hasbeen constructed, choose a basis for fyig forD(k)k and use Lemma 1.2 to produce �nite dimensionalsub-coalgebras D(yi) � C so that @yi 2 D(yi) and D(yi)m = 0 for m � k. Then setD(k � 1) = D(k) +Xi D(yi):This is a sub-coalgebra by the previous result, and the proposition follows.This last result immediately implies the next. Note that the forgetful functor from CA todi�erential graded vector spaces makes all colimits.Corollary 1.6 Every di�erential graded coalgebra over a �eld k is the (right) �ltered colimit of its�nite dimensional sub-coalgebras.Now let Algf be the category of pro�nite non-positively graded di�erential algebras over k,with unit. The objects of Algf can either be regarded as �ltered diagrams of non-positively graded�nite dimensional di�erential k-algebras or as complete topological di�erential k algebras with aneighborhood base of 0 consisting of two-sided ideals of �nite codimension and closed under thedi�erential. Then morphisms are either pro-morphisms of diagrams of �nite dimensional dgas orcontinuous dga morphisms. The following is now a formal consequence of Corollary 1.6 and thefact that the dual of a �nite dimensional algebra is a coalgebra. This implies that the continuousdual of a pro�nite algebra is a coalgebra. Compare [2].Proposition 1.7 Linear duality de�nes an anti-equivalence between the category CA of di�erentialgraded coalgebras and the category Algf of pro�nite di�erential graded algebras.The functor back takes the continuous dual of a pro�nite algebra.An implication of the previous result is the following.Proposition 1.8 The category CA has all small limits and colimits.Proof. Indeed, as mentioned above, the forgetful functor from CA to di�erential graded vectorspaces makes all colimits. To prove the existence of limits, it is su�cient, by the previous result,to show that the category Algf has all colimits. 4



Let A : I ! Algf be diagram of pro�nite dg-algebras and let B be the colimit of this diagramin the category of dg-algebras. This is not yet a pro�nite algebra. De�ne a neighborhood base of0 in B to be the set of two-sided ideals J which can be realized as the kernel of map of algebrasB ! C such that C is a �nite dimensional dg-algebra and so that for each i 2 I the compositeAi ! B ! C is continuous. Then the colimit is the completion of B with respect to this topology.In light of Corollary 1.6, the following technical result will have many applications:Lemma 1.9 Let fC�g be a right �ltered diagram of coalgebras in CA and let D 2 CA be �nitedimensional. Then the natural mapcolim�HomCA(D;C�)! HomCA(D; colim�C�)is an isomorphism.Proof. The forgetful functor to di�erential graded vector spaces makes colimits, so this map is aninjection. To prove it is a surjection, note that any coalgebra map f : D ! colim�C� factors asa morphism of D ! C� of di�erential graded vector spaces, since D is �nite dimensional. Since fis a coalgebra map, there must be a morphism C� ! C� so that composite D ! C� ! C� is acoalgebra map, again since D is �nite dimensional. This completes the proof.For the next result we need the following observation. The forgetful functor from Algf tothe category of di�erential graded algebras has a left adjoint given by pro�nite completion: to adi�erential graded algebra A one assigns the diagram Â = fA=I�g where I� runs over all two-sidedideals of A of �nite codimension and closed under the di�erential.We can now prove:Proposition 1.10 The forgetful functor from CA to di�erential graded vector spaces has a rightadjoint S.Proof. Let V be a di�erential graded vector space. If V is �nite dimensional, let S(V ) be thecontinuous dual of the pro�nite completion of the tensor algebra on V �. ThenHomCA(C;S(V )) �= HomAlgf ( \Tens(V �); C�)�= Homalg(Tens(V �); C�)�= HomM�k(V �; C�)�= HomMk(C; V )where M�k is the category of pro�nite k-vector spaces. Thus S(V ) has the desired property. Forgeneral V , de�ne S(V ) = colim� S(V�)(1.1)
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where V� runs over the �nite dimensional sub-vector spaces of V . Then if C = colim� C� is acoalgebra in CA written as the colimit of its �nite dimensional sub-dg-coalgebras, one has, byLemma 1.9, HomCA(C;S(V )) �= lim� HomCA(C�; S(V ))�= lim� colim�HomCA(C� ; S(V�))�= lim� colim�HomMk(C� ; V�)�= HomMk(C; V ):This completes the proof.The preceding argument gives only moderate insight into the structure of S(V ) { we did obtainthe formula Equation 1.1 and the fact that if V is �nite dimensional, then the dual of S(V ) is thepro�nite completion of the tensor algebra on V �. We spend the rest of this section delving moredeeply into the structure of S(V ). For model category theoretic reasons, we're actually interestedin C � S(V ) for an arbitrary coalgebra C. Here is a preliminary reduction.Lemma 1.11 Suppose A and B are di�erential graded coalgebras and we have presentationscolim�A� �= A and colim� B� �= Bof A and B as �ltered colimits of sub-coalgebras. Then the natural mapcolim�;�(A� �B�)! A�Bis an isomorphism.Proof. If D = colimD
 is written as the colimit of its �nite dimensional sub-di�erential gradedcoalgebras, then by Lemma 1.9,HomCA(D; colim�;� A� �B�) �= lim
 colim�;� HomCA(D
 ; A� �B�)�= lim
 colim�;�[HomCA(D
 ; A�)�HomCA(D
 ; B�)]:Now, because we are working with sub-coalgebras, the mapsHomCA(D
 ; A�)! HomCA(D
 ; A�0)and HomCA(D
 ; B�)! HomCA(D
 ; B�0)
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are inclusions, so this last colimit is a union of sets and, hence, one can interchange the productand colimit and again use Lemma 1.9.HomCA(D; colim�;� A� �B�) �= lim
 [colim�HomCA(D
 ; A�)� colim� HomCA(D
 ; B�)]�= lim
 [HomCA(D
 ; colim�A�)�HomCA(D
 ; colim� B�))]�= lim
 HomCA(D
 ; A�B)�= HomCA(D;A�B):In particular, this last result implies that if C is any coalgebra in CA and V is a di�erentialgraded vector space, then there is an isomorphismcolim�;�(C� � S(V�)) �= C � S(V )(1.2)where C� runs over the �nite dimensional sub-dg-coalgebras of C and V� runs over the �nitedimensional sub-dg-vector spaces of V . Here we use Equation 1.1. We reduce further.Let S(n) denote the di�erential graded vector space which is of dimension 1 over k concentratedin degree n. Let D(n) be the di�erential graded vector space with D(n)p = 0 unless p = n or n+1,D(n)n = Dn+1 = k and the boundary map is the identity. Every �nite dimensional di�erentialvector space can be written (non-canonically) as a �nite product of di�erential vector spaces of theform S(n) or D(n). Since the functor S is a right adjoint, it preserves products; thus to understandC � S(V ) we are reduced, in some sense, to understanding C � S(S(n)) and C � S(D(n)). This isthe purpose of the next result.If V is a di�erential graded vector space concentrated in non-negative degrees, then Tens(V �)has a natural structure of a di�erential graded algebra in non-positive degrees. However, more istrue. If A is a di�erential graded algebra concentrated in non-positive degrees andM is a di�erentialgraded A bi-module, also in non-positive degrees, then we can form the tensor algebraTensA(M) = �n�0M 
AM 
A � � � 
AMwhere, in the nth summand, M appears n times. (If n = 0, we have only A.) This has an obviousstructure as a di�erential graded A-algebra. In particular, ifW is a di�erential graded vector spacein non-positive degrees, we can formTensA(A
W 
A) = �n�0A
W 
A � � �A
M 
Awhere, in the nth summand, W appears n times. The functorW 7�! TensA(A
W 
A)is left adjoint to the forgetful functor from A algebras of dg-vector spaces; hence, there is a naturalisomorphism TensA(A
W 
A) �= A t Tens(W )all in the category of dg-algebras.If A is an algebra, let (X) � A denote the two-sided ideal of A generated by a subset X of A.7



Lemma 1.12 Let C be a �nite dimensional coalgebra and V a di�erential graded vector spacewhich is in non-negative degrees and �nite dimensional in each degree.1. If V0 = 0, then [C � S(V )]� �= TensC�(C� 
 V � 
 C�).2. If V0 = k with generator x, then[C � S(V )]� �= limq(x) TensC�(C� 
 V � 
 C�)=(q(x); @q(x)):where q(x) 2 k[x] runs over all monic polynomials and there is a projectionTensC�(C� 
 V � 
 C�)=(q(x); @q(x)) ! TensC�(C� 
 V � 
 C�)=(p(x); @p(x))if and only if p(x) divides q(x).Proof. In either case, [C � S(V )]� is the pro�nite completion of the dg-algebraC� t Tens(V �) �= TensC�(C� 
 V � 
 C�):In the �rst case, let In � TensC�(C� 
 V � 
 C�)be the ideal of elements of degrees less than �n. Then the systemTensC�(C� 
 V � 
 C�)=Inis co�nal among quotients of TensC�(C� 
 V � 
 C�) of �nite dimension; therefore, this algebra isits own pro�nite completion.In the second case, the system of algebrasTensC�(C� 
 V � 
 C�)=(In; q(x); @q(x))is again co�nal among quotients of of �nite dimension; henceS(V )� = limTensC�(C� 
 V � 
 C�)=(In; q(x); @q(x)) = limq(x)TensC�(C� 
 V � 
 C�)=(q(x); @q(x)):Example 1.13 One can use Lemma 1.12 to calculate S(S(0)) = S(k) where k is in degree zero, atleast in the case where k is perfect. Let �k be the algebraic closure of k and G the Galois group of�k over k. Then write [a] for the orbit of a 2 �k and k(a) for k adjoin a. Then, as pro�nite algebras,S(k)� �=Y[a] k(a)[[z]]where [a] runs over the distinct orbits of the action of G on �k.8



2 The model category structureThe purpose of this section is to prove that the category CA of non-negatively graded di�erentialcoalgebras over a �eld k has the structure of a closed model category where the weak equivalencesare quasi-isomorphisms and the co�brations are simply inclusions. This is, in fact, a co�brantlygenerated model category, and we end the section by specifying the generating co�brations.We begin with the key algebraic result. Let S be the cofree coalgebra functor of section 1,and let D(n) be the non-negatively graded chain complex with D(n)p = 0 unless p = n or n + 1,D(n)n = Dn+1 = k and the boundary map is the identity. This is the same object that was labelledD(n) in section 1.Theorem 2.1 For all coalgebras C and all non-negative integers n, the natural projectionC � S(D(n))! Cis a quasi-isomorphism.Proof. Let fC�g be the �ltered system of �nite dimensional sub-coalgebras of C. Then Lemma1.11 supplies an isomorphism colim�[C� � S(D(n))] �= C � S(D(n)):Since the colimit is �ltered and made in di�erential graded vector spaces, it is su�cient to discussthe case where C is �nite dimensional. If n > 0, Lemma 1.12.1 supplies the answer. Thus we arereduced to the case n = 0. Then Lemma 1.12.2 writes C � S(D(0)) as a �ltered colimit:C � S(D(0)) �= colimq(x)[TensC�(C� 
D(0)� 
 C�)=(q(x); @q(x))]�:The algebras in this diagram for which q(x) is divisible by x form a co�nal sub-diagram, so can beused to compute this colimit. We will show that each of these algebras is quasi-isomorphic to C�.To simplify notation, let A = C� and M = A
D(0)� 
 A. Let x 2 D(0)�0 be a generator andy = @x be the generator in degree 1. To begin, D(0)� has a chain contraction h given by h(y) = xand h(x) = 0. This gives a chain contraction for M by the formulah(a
 z 
 b) = (�1)jaj(a
 h(z) 
 b):This extends to a chain homotopy H : TensA(M)! TensA(M) from the identity to the compositeTensA(M) ��!TensA(0) = A ��!TensA(M)where � is the unit map and � is the augmentation induced by the zero map M ! 0. To de�ne H,write TensA(M) = �n�0M 
A � � � 
AM:Then H restricted to A (the summand n = 0) is the zero map, and on the nth summand withn > 0, H(x1 
 � � � xn) = h(x1)
 x2 
 � � � 
 xn:9



Let I be the augmentation ideal in TensA(M); that is, I is the kernel of � Note that we have theformula, for a; b 2 TensA(M): H(ab) = � H(a)b; a 2 I;aH(b); a 2 A:Since every element a 2 TensA(M) can be written uniquely asa = (a� ��(a)) + ��(a);with a� ��(a) 2 I and ��(a) 2 A, we can can combine this observation into a single formula:H(ab) = H(a� ��(a))b + ��(a)H(b)(2.1)Now suppose J � I � TensA(M) is two-sided ideal contained in the augmentation ideal sothat H restricts to a chain homotopy on J . Then the induced map on TensA(M)=J is a chainhomotopy between the identity andTensA(M)=J ��!TensA(0) = A ��!TensA(M)=J:So let q(x) be a polynomial in x divisible by x. Then q(x) is in the augmentation ideal, so thetwo-sided ideal J = (q(x); @q(x)) is in augmentation ideal. Thus we need only show that H restrictsto J .Every element of J can be written as a sumaq(x)b+ c@q(x)d:Applying H to this sum and using Equation 2.1, we see that H restricts to J if and only if H(q(x))and H(@q(x)) are in J . However, q(x) = xq0(x), since q(x) is divisible by x. Because x is in theaugmentation ideal, Equation 2.1 impliesH(q(x)) = H(x)q0(x) = h(x)q0(x) = 0:Similarly, y is in the augmentation ideal, soH(@q(x)) = H(yq0(x) + x@q0(x)) = h(y)q0(x) + h(x)@q0(x) = xq0(x) = q(x):This completes the argument.Theorem 2.1 has the following corollary:Proposition 2.2 Let V be a non-negatively graded di�erential vector space with H�V = 0. Thenfor all C 2 CA, the projection C � S(V )! Cis a quasi-isomorphism.
10



Proof. The dg-vector space V can be written as a sum of objects isomorphic to some D(n). ThusV can be written as a �ltered colimit of V �= colim� V� so that H�V� = 0. Then Equation 1.1 andLemma 1.11 imply that colim�[C � S(V�)] �= C � S(V ):Since the colimit is �ltered and made in vector spaces we are reduced to the case where V is �nitedimensional. In that case, write down an isomorphismV �= D(n1)�D(n2)� � � �D(nk):Since S is a right adjoint we haveC � S(V ) �= C � S(D(n1))� � � � � S(D(nk))and the result follows by induction from Theorem 2.1.We now formally specify the classes of maps of our model category structure:De�nition 2.3 A morphism f : C ! D of di�erential graded coalgebras is1. a weak equivalence if it is a quasi-isomorphism; that is, if H�f : H�C �= H�D;2. a co�bration if it is a degree-wise injection of graded vector spaces;3. a �bration if it has the right lifting property with respect to acyclic co�brations.As is customary, we use the shorthand acyclic co�bration for a morphism which is at once aweak equivalence and a co�bration. There is also a notion of acyclic �bration. A morphism X ! Yhas the right lifting property with respect to a morphism A! B if every lifting problemA //i
��

X
��B >>

}

}

}

}

// Yhas a solution so that both triangles commute.The following result is why went to such di�culty with Theorem 2.1.Lemma 2.4 1.) Let V be a non-negatively graded di�erential vector space so that H�V = 0. Thenfor all coalgebras C 2 CA the projection C � S(V )! Cis an acyclic �bration with the right lifting property with respect to all co�brations.2.) Any morphism f : D ! C is CA can be factoredD j�!X q�!Cwhere j is a co�bration and q is an acyclic �bration with the right lifting property with respect toall �brations. 11



Proof. We begin with part 1. By Proposition 2.2, the projection is a weak equivalence; therefore,we need only show it is a �bration. This will follow if we show that the map has the right liftingproperty with respect to all co�brations. Consider a lifting problem in CAA //i
��

C � S(V )
��B ::

u

u

u

u

u

// Cwhere the morphism i is a co�bration. By an adjointness argument, this is equivalent to a liftingproblem in di�erential graded vector spaces A //i
��

V
��B >>

~

~

~

~

// 0:Since i is a co�bration and V ! 0 is an acyclic �bration in the standard model category structureon di�erential graded vector spaces (see [5]), a solution to the lifting problem exists.For part 2, regard D as a di�erential graded vector space and choose an inclusion of dg-vectorspaces i : D ! V with H�V = 0. De�ne X = C � S(V ), q : X ! C to be the projection andj : D ! X to be j = (f; i�) : D ! C � S(V )where i� is adjoint to i : D ! V . By part 1, q is an acyclic �bration of the required sort; thus weneed only show that j is an inclusion. Consider the compositionD j�!C � S(V ) �2�!S(V ) ��!Vwhere �2 is projection onto the second factor and � is the counit of the adjunction. This compositionis i, hence an injection; therefore, j is an injection, as required.There is another factorization required by the model category structure { the \acylic co�bration{�bration" factorization. This is more formal, using the now-standard technique pioneered by Bous-�eld [1]. The crucial input is supplied by Lemmas 2.5 and 2.6 to follow; the factorization is doneby the small object argument in Lemma 2.7.Lemma 2.5 Let j : C ! D be an acylic co�bration and x 2 D a homogeneous element. Then theis a sub-coalgebra B � D so that1. x 2 B;2. B has a countable homogeneous basis; and3. C \B ! B is an acyclic co�bration in CA.Proof. We recursively de�ne sub-dg-coalgebrasB(1) � B(2) � � � � � D12



so that x 2 B(1), each B(n) is �nite dimensional, and the induced map of dg-vector spacesB(n� 1)=[C \B(n� 1)]! B(n)=[C \B(n)]is zero in homology. Then we may set B to be the union of the B(n).The sub-dg-coalgebra B(1) is supplied by Proposition 1.5. Suppose that B(n � 1) has beenconstructed. Since B(n� 1) is �nite dimensional we may choose a �nite setzi + (C \B(n� 1)) 2 B(n� 1)=[C \B(n� 1)]of homogeneous cycles so that the resulting homology classes span H�(B(n � 1)=[C \ B(n� 1)]).For each index i, use Proposition 1.5 to select a �nite dimensional sub-coalgebra of A(zi) � D sothat zi 2 A(zi). Then set B(n) = B(n� 1) +Xi A(zi):This is again �nite dimensional and has the requisite properties.Lemma 2.6 A morphism q : X ! Y in CA is a �bration if and only if q has the right liftingproperty with respect to all acyclic co�brations A ! B so that B has a countable homogeneousbasis.Proof. The necessity of this lifting property is a consequence of De�nition 2.3. For su�ciency,suppose we have a lifting problem C f
//i

��

Xq
��D >>

}

}

}

}

// Ywhere j is an arbitrary acyclic co�bration. We solve this problem by a Zorn's Lemma argument.De�ne 
 to be the set of pairs ( �D; g) where �D �ts into a sequence of acyclic co�brations in CAC ��! �D ��!Dand g : �D ! X is a solution to the restricted lifting argument. Order 
 by setting ( �D1; g1) �( �D2; g2) if �D1 � �D2 and g2 restricts to g1. Since (C; f) 2 
 the set is non-empty and any chain hasan upper bound given by the union. Let (E; g) 2 
 be a maximal element. We show E = D. Notethat E ! D is an acyclic co�bration.Let x 2 D. By the previous lemma, there is a sub-dg-coalgebra B � D so that x 2 B, B has acountable basis, and E \B ! B is an acyclic co�bration. Then the induced lifting problemE \B �
//

��

E g
// Xq
��B 66

l
l

l
l

l
l

l
l // D // Y13



has a solution, by hypothesis. Hence g can be extended over E + B. Furthermore, the Meyer-Vietoris sequence� � � ! Hq(E \B)! Hq(E)�Hq(B)! Hq(E +B)! Hq�1(E \B)! � � �shows that E ! E + B is an acylic co�bration. By the maximality of (E; g) we must then haveE = E +B and x 2 E, as required.For the following result, the class of morphisms generated by a stipulated list of morphisms Ais the smallest class containing A and closed under coproducts, cobase change, directed colimits,retracts, and isomorphisms.Lemma 2.7 Any morphism C ! D in CA can be factoredC i�!X p�!Dwhere i is an acyclic co�bration and p is a �bration. Furthermore i is in the class or morphismsgenerated by the acyclic co�brations A! B so that B has a countable homogeneous basis.Proof. Since colimits in CA are made in di�erential graded vector spaces, the class of acyclicco�brations is closed under cobase change and directed colimits. In light of Lemma 2.6 the smallobject argument, over an ordinal whose cardinality larger than that of the �rst in�nite cardinal,now applies. See [1], where such arguments �rst appeared, and [4], among many references.We can now prove the main result.Theorem 2.8 With the de�nitions of weak equivalence, �bration, and co�bration given in De�ni-tion 2.3, the category CA becomes a model category.Proof. The category CA has all small limits and colimits, by Proposition 1.8. Weak equivalencessatisfy the two-out-of-three axiom by inspection; similarly, the classes of weak equivalences, co�bra-tions, and �bration are closed under retracts. The factorization axiom follows from Lemmas 2.4.2and 2.7. The \acyclic co�bration { �bration" half of the lifting axiom is the de�nition of �bration.Thus we need only show that any acyclic �bration has the right lifting property with respect to allco�brations. Let p : C ! D be an acyclic �bration. By Lemma 2.4.2 we may factor p asC j�!X q�!Dwhere j is a co�bration and q is an acyclic �bration with the right lifting property with respectto all co�brations. Note that j is also a weak equivalence. Thus there is a solution to the liftingproblem C = //j
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Cp
��X >>

}

}

}

} q
// D14



as p has the right lifting property with respect to all acyclic co�brations. This solution shows thatp is a retract of q and, since q has the right lifting property with respect to all co�brations, so doesp. We are also going to prove that CA is a co�brantly generated model category. See x2.1 of [4]for the de�nitions and implications. We haveLemma 2.9 1.) A morphism p : C ! D in CA is an acylic �bration if and only if it has the rightlifting property with respect to all co�brations A! B with B �nite dimensional.2.) The co�brations A! B with B �nite dimensional generate the class of co�brations in CA.Proof. Part 1 is proved by the evident variation of the Zorn's Lemma argument given in Lemma2.6. Proposition 1.5 substitutes from Lemma 2.5 in the argument.To prove part 2, let i : C ! D be any co�bration CA. Use part 1 and the small object argumentto factor i as C j�!X q�!Dwhere j is generated by the co�brations A ! B with B �nite dimensional and q is an acyclic�bration. Then the solution to the lifting problemC j
//i

��

Xq
��D >>

}

}

}

} = // Dshows i is a retract of j and, hence, in the class of morphisms generated by inclusions of �nitedimensional coalgebras.We can now state:Proposition 2.10 The class of co�brations in CA is generated by all co�brations A ! B withB �nite dimensional, and the class of acyclic co�brations is generated by all acyclic co�brationsC ! D so that D has a countable homogeneous basis. The category CA is co�brantly generated.Proof. The statements about generating co�brations and acyclic co�brations follow from Lemma2.9 and Lemma 2.7, respectively. Since both types of morphisms have targets which are small withrespect to long enough directed colimits, the result follows.We also have the following result, which is technically convenient:Proposition 2.11 The cofree coalgebra functor S preserves �brations and weak equivalences.Proof. The forgetful functor from CA to dg-vector spaces preserves weak equivalences and co�-brations; hence, S preserves �brations and weak equivalences between �brant objects. However,every dg-vector space is �brant.
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3 Space-like coalgebrasThe normalized chains on a topological space form a coassociative di�erential graded coalgebra,using the Alexander-Whitney diagonal; however, the degree zero part of such a coalgebra supportsa very special structure. We isolate and study this structure.In the category CA of di�erential graded coalgebras, the one dimensional coalgebra k concen-trated in degree zero is the terminal object. If C 2 CA, we de�ne the set X(C) of points in C bythe equation X(C) = HomCA(k;C):(3.1)This is the set of elements x 2 C0 so that �C(x) = x
 x. Note that if X is a set, then the vectorspace k[X] generated by X is a coalgebra with diagonalk[�X ] : k[X]! k[X �X] �= k[X]
 k[X]and there is a natural isomorphism X �= X(k[X]).De�nition 3.1 A di�erential graded coalgebra C 2 CA is space-like if the natural map of coalge-bras k[X(C)]! C0is an isomorphism. Let CA+ denote the full sub-category of CA of space-like coalgebras.For example, the chains on a space are space-like { hence the name.Note that any sub-coalgebra of a space-like coalgebra is space-like. Hence the fundamentalstructure result of coalgebras { that any coalgebra is the �ltered colimit of its �nite dimensionalsub-coalgebras { applies equally well to CA+.Lemma 3.2 The inclusion functor CA+ ! CA has a right adjoint �. Furthermore, � commuteswith �ltered colimits.Proof. In fact one can give a formula for �:�(C) =X� C�where C� runs over the space-like sub-dg-coalgebras of C. Then, since the image of a space-likecoalgebra is a space-like coalgebra, �(C) has the requisite adjointness properties.To see that � commutes with �ltered colimits, let fC�g be a �ltered diagram of coalgebras andD a �nite dimensional space-like coalgebra. Then we have, using Lemma 1.9,HomCA+(D; colim� �(C�)) �= colim�HomCA+(D;�(C�))�= colim�HomCA(D;C�)�= HomCA(D; colim�C�)�= HomCA+(D;�(colim�C�)):This immediately implies the following result.16



Lemma 3.3 1.) The category CA+ has all small limits and colimits.2.) The forgetful functor from CA+ to di�erential graded vector spaces has a right adjoint S+.Also, if V = colim� V� is written as a �ltered colimit of �nite dimensional sub-dg-vector spaces,then colim� S+(V�) �= S+(V )Proof. The forgetful functor to di�erential graded vector spaces makes all colimits. For limits, iffCig is a diagram in CA+, then the limit in that category is � applied to the limit in CA. The rightadjoint is given by the formula S+ = � � S, where S is the right adjoint to the forgetful functorfrom CA to dg-vector spaces.We would now like to give the analog of Lemma 1.12 in the category of space-like coalgebras.Part 1 of that Lemma remains unchanged. Thus we need only worry about part 2. Suppose thatC is a �nite dimensional space-like coalgebra and V is a di�erential graded vector space, �nitedimensional in each degree and V0 �= k with generator x. We de�ne certain idealsIq(x) � TensC�(C� 
 V � 
 C�)by Iq(x) = (q(x); @q(x); [a; x]; @[a; x])where q(x) 2 k[x] is a monic polynomial, a 2 (C0)� and [b; z] = bz � zb is the commutator. Thereis an inclusion Iq(x) � Ip(x)if and only if p(x) divides q(x).Lemma 3.4 If C is a �nite dimensional space-like coalgebra and V is a di�erential graded vectorspace, �nite dimensional in each degree and V0 �= k with generator x, then in CA+,C � S+(V ) �= limq(x)TensC�(C� 
 V � 
 C�)=Iq(x)where q(x) runs over the monic polynomials in k[x] that split completely into distinct factors overk.Proof. De�ne a pro�nite algebra A = lim�A� where A� runs over the �nite dimensional algebraquotients of TensC�(C� 
 V � 
 C�) �= C� t Tens(V �)so that A�� is a space-like coalgebra. Then the claim is that the continuous dual of A is C�S+(V ).This follows from the following calculation, where D is a �nite dimensional space-like coalgebraand A] is the continuous dual of A. We use Lemma 1.9 for the �rst isomorphism.HomCA+(D;A]) �= colim�HomCA+(D;A��)�= colim�Homk�alg(A�;D�)�= Homk�alg(C� t Tens(V �);D�)�= Homk�alg(C�;D�)�HomC�Mk(V �;D�)�= HomCA+(D;C)�HomC�Mk(D;V )�= HomCA+(D;C � S+(V )):17



So let D be a �nite-dimensional space-like coalgebra and B = D�. Then the degree-zero sub-algebra of B0 � B is isomorphic to the semi-simple commutative algebra kX(D); in particular, B0is commutative and and algebra map k[x]! B0 must factork[x]! k[x]=(q(x)) ��!B0where q(x) is monic and generates the kernel. Since every sub-k-algebra of B0 is of the form kYfor some quotient set of X(D), we must have that q(x) splits completely into distinct factors overk. Conversely, if q(x) so splits k[x]=(q(x)) �= kY for some set Y .Let In � TensC�(C� 
 V � 
 C�)=Iq(x) denote the elements of degree less than �n. Then thealgebras TensC�(C� 
 V � 
 C�)=(In; Iq(x))are co�nal among all �nite dimensional dg-algebra quotients which map to duals of space-likecoalgebras. The result follows.Example 3.5 Let k be the one-dimensional di�erential vector space concentrated in degree zero.Then S+(k)� �= kk:Compare Example 1.13. Note this implies that S+(k) �= k[k].To produce a model category structure on the category CA+ we follow the rubric of the pre-vious section. The only part argument of that section which was not a formal consequence of theproperties of coalgebras that are inherited by space-like coalgebras is the analog of Theorem 2.1.This we now prove.Theorem 3.6 For all space-like coalgebras C and all non-negative integers n, the natural projectionC � S+(D(n))! Cis a quasi-isomorphism.Proof. The strategy of the proof is the same. Only the case n = 0 requires thought, and we mayreduce to the case where C is �nite dimensional. Then we again, set A = C�, M = A
D(0)� 
Aand x 2 D(0)�0 the generator in degree 0. Then we must show that the chain contraction Hon TensA(M) to the inclusion of the unit A ! TensA(M) descends to a chain contraction onTensA(M)=Iq(x) where q(x) is as in Lemma 3.4. Again we may assume that x divides q(x). In theend we must show that H sends the generators of Iq(x) back into Iq(x). However, using Equation2.1 we have H(q(x)) = 0 and H(@q(x)) = q(x)as before, and H([a; x]) = [a;H(x)] = 0and H(@[a; x]) = H([@a; x] + [a; y]) = [a;H(y)] = [a; x]:We would now like to propose the following result.18



Theorem 3.7 The category CA+ of space-like coalgebras has a closed model category structurewhere a morphism f : C ! D is1. a weak equivalence if it is a quasi-isomorphism;2. a co�bration if it is a level-wise inclusion; and3. a �bration if it has the right lifting property with respect to all acyclic co�brations.Proof. In outline, the proof is the same as that of Theorem 2.8. We touch on the highlights.The analog of Proposition 2.2 is a formal consequence of Theorem 3.6 and Lemma 1.11, whichapplies equally well to CA+. The analog of Lemma 2.4 is now formal. Lemma 2.5 for CA+ is aconsequence of Proposition 1.5 and the fact that every sub-coalgebra of a space-like coalgebra isspace-like; from this one deduces the analogs of Lemmas 2.6, and 2.7. This completes the existenceof the factorizations, and the proof of Theorem 2.8 goes through verbatim.This model category is also co�brantly generated. Indeed, we have, exactly as in Proposition2.10:Proposition 3.8 The class of co�brations in CA+ is generated by all co�brations A ! B withB �nite dimensional, and the class of acyclic co�brations is generated by all acyclic co�brationsC ! D so that D has a countable homogeneous basis. The category CA+ is co�brantly generated.One also has, exactly as in Proposition 2.11Proposition 3.9 The cofree coalgebra functor S+ from di�erential graded vector spaces to CA+preserves weak equivalences.Remark 3.10 There are other varieties of coalgebras one might consider. The standard example(see [6] and also [3], although the later is graded over the integers) is that of connected coalgebras.A coalgebra C is connected if it has a unique simple sub-coalgebra D. (See [7] for de�nitions). Thedual of graded coalgebra is a complete local k-algebra with residue �eld a �nite extension of k.A di�erential graded coalgebra is connected if C0 is connected. It is relatively straightforward toproduce a model category structure on connected di�erential coalgebras; the methods of [6] apply.If one wants to use the ideas proposed here, we note that the forgetful functor from connected dg-coalgebras to dg-vector spaces has a right adjoint Scon and if D(0)� has generators x and y = @x,then Scon(D(0))� = limn Tensk(x; y)=(xn; @(xn)):From this one easily deduces the analogs of Lemma 1.12 and Theorem 2.1.Another variety of coalgebras that arises naturally are the \�etale" ones. Let k be a perfect �eldand �k its algebraic closure, a coalgebra C is �etale if �k 
k C is space-like. For example, if E is a�nite �eld extension of k, then E� is �etale, but space-like if and only of k = E. Again, there is acategory of di�erential graded �etale coalgebras: we require C0 be �etale. The right adjoint Set nowhas Set(D(0)) = limq(x)Tensk(x; y)=(q(x); @q(x))where q(x) is a monic polynomial which splits into distinct factors over �k. The analog of Theorem2.1 in this case can be deduced from Theorem 3.6 by tensoring up over �k, or by direct calculation.19
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