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If students can solve a system of linear equations by row reduction, we
show how they can also find all the integer solutions to a system of linear
Diophantine equations, using “integer” row reduction. When this method
is applied to solve a single linear Diophantine equation in two variables, it
reduces to the Euclidean Algorithm.

The Euclidean Algorithm

Equations with integer variables and integer coefficients are usually called
Diophantine equations, after the Greek mathematician Diophantus of Alexan-
dria, who wrote a famous treatise on arithmetic in the third century A. D.

The simplest non-trivial linear Diophantine equation is one with two
variables of the form az + by = ¢. This is usually solved by the Euclidean
Algorithm. We will write the Euclidean Algorithm in terms of row reduction
in such a way that the method will generalize to solve any linear system
in any number of variables. Since we require integer solutions, the row
reductions must only involve integers; this type of row operation is called
unimodular. An elementary unimodular row operation on a matrix consists
one of the following three types of operations.

(i) Add an integer multiple of one row of the matrix to another row.
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(ii) Interchange two rows of the matrix.
(iii) Multiply one row of the matrix by —1.
EXTENDED EUCLIDEAN ALGORITHM. Given any integers a and b, it is
. ) 1 d
possible to unimodular row reduce [ (;) 0 (; ] to l 0 sf tf ]

Then ged(a,b) = +d and the general solution to the Diophantine equation
ax +by=d is

z = s+ks

v = t+kt forke Z.

The formal proof of the Extended Euclidean Algorithm will follow from
the general results we prove later. The validity of this algorithm can be
motivated by noting that the row reduction implies that

[ s t]fa] _ [d]
sy 1 b]  |0]"°
Hence, for any integer k,

(s+ksi)a+ (t+kt1)b=d

and z = s+ ks;, y = t + kt; certainly satisfies the equation az + by = d.
Note that [4] also describes the traditional back-substitution to find z
and y, in the Extended Euclidean Algorithm, in terms of row reduction.

EXAMPLE 1. Solve the Diophantine equation 91z + 21y = 7.

Solution. Using unimodular row reduction

otfr o] [ 7|1 —4]__[7] 1 —4
210 1 21{0 1 0[-3 13|

Hence the general solutionisz =1 -3k, y=—-4+ 13k, for k € Z. []

In this example, ged(91,21) is 7. The more general Diophantine equation
91z + 21y =c¢

will have a solution if and only if ¢ is divisible by 7 and, if ¢ = 7¢/, the

solution is
z=c -3k, y=-4c¢ +13k forkc Z.

This Extended Euclidean Algorithm can easily be entered on a pro-
grammable calculator that performs vector calculations.



Greatest Common Divisor

The greatest common divisor of any number of integers, ai, ag, ..., a,,, can
be found using the following algorithm.

PROPOSITION. It is always possible to unimodular row reduce the column

al d
. a2
matriz | . | to | .|, where d = gcd(ay, a,...,an).
m 0

Proof. Repeat the following process until there is only one non-zero entry.

(i) Let aj be an element of a1, a9,...,an that has the smallest non-zero
absolute value.

(ii) For each i # j, apply the Division Algorithm to obtain

a; = k,-aj =+ 7; where 0 < IT,’I < |ajl.

(iii) For each 7 # j, subtract k; times row j from row 1.

Each time this process is applied, the largest absolute value of all the entries
strictly decreases, unless all the non-zero entries have the same absolute
value. In this exceptional case, all the entries, except one, become non-zero.
Hence the algorithm terminates and, by interchanging rows and possibly
multiplying one row by —1, we can move the non-zero entry to the top and
make it positive.

Using any of the usual definitions of the greatest common divisor, it is
easy to show that

ged(a1,ag,...,am) = ged(ar — k1aj, a9, . .., am).
Hence

ged(ay, a2,...,am) = ged(ay — kiaj, a2 —kaeaj, ..., a4,...,0n — knaj)

= gcd(0,0,...,%d,...,0)
d.



Systems of Linear Diophantine Equations

A general system of linear Diophantine equations can be written in matrix
form as AX = B. We shall show how to determine whether this system has
an integer solution and, if it does, how to find all its solutions. We shall need
to use a weak definition of row-echelon form in which the leading entries (or
pivots) are allowed be any integer and are not required necessarily to be 1.
A matrix is said to be in row-echelon form if

(1) All the zero rows are at the bottom of the matrix.

(ii) The leading entry in each non-zero row is to the right of all the leading
entries in the rows above it.

THEOREM. To solve the system of linear Diophantine equations AX = B,
unimodular row reduce [A*|I] to [R|T), where R is in row-echelon form.
Then the system AX = B has integer solutions if and only if the system
R'K = B has integer solutions for K, and all the solutions of AX = B are
of the form X =T'K.

The matrix equation R®!K = B can be easily solved for K by back-
substitution. A typical equation looks like

d b
k

*  dg k; 22
k| = |3

*  x d3 by

Proof. The previous proposition shows how to unimodular row reduce the
matrix A! into row-echelon form. First row reduce A! so that its first column
begins with the greatest common divisor and has all zeros below. Then leave
the first row alone and row reduce the other rows so as to maneuver the
second column to the required form. Continue in this manner.

The row reduction of [A?|I] to [R|T] corresponds to premultiplication by
an invertible matrix F; that is

E[A!|1] = [RIT).

Hence T = E, which is invertible, and TA* = R. Therefore AT* = R? and
A= RYT")~ L



Now the matrix T' is a product of elementary matrices corresponding to
the unimodular row operations that were performed. Each of these elemen-
tary matrices has determinant +1 so detT = +1. Hence

(T%)™! = adj(T*)/ det T* = Fadj(T?)

and has all its entries integers.

The equation AX = B is equivalent to R*(T?)"1X = B. Write K =
(TH 71X, s0 X = T'K and X has integer entries if and only if K does. The
system AX = B now has integer solutions for X if and only if the system
R'K = B has integer solutions for K. []

EXAMPLE 2. Find all the integer solutions to the following system of equa-
tions.

5z1 + 6z2 + 8z3
6z) — 1lza+ 723 = 9

Solution. Using unimodular row reduction

5 6|1 0 0 5 6] 1 00 1 —-17|-1 1
6 -11/0 1 0| — |1 ~-17|-1 1 O| — [0 91| 6 -5
8 710 0 1 3 1]-1 01 0 82| 2 -3

1 -17{-1 1 O
— |0 =13} 2 1 -2| —
0 52} 2 -3 1 0 010 1 -7

The equation R'K = B is
1 00 ’;1 _[11.
-17 13 o | | 2| o)’
k3
hence k; = 1 and —17k; 4+ 13ke = 9. Therefore 13k9 = 26 and, since the

right side is divisible by 13, the equation has an integer solution, namely
ko = 2. The variable k3 can be any integer value, say k3 = k € Z. Therefore
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1 T1 -1 -2 10 1 —5+ 10k
K=1|2| and |z2| =T'K = 1 -1 1 2| = —~1+k
k z3 0 2 -7 k 47k




The complete integer solution is therefore

1 = -5+ 10k
9 = =14k forke Z.
r3 = 4-Tk

EXERCISE. Find all the integer solutions to 6x1 — 14z + 21z3 = 11.

In general, the question of whether the system has any integer solutions
at all depends on whether certain combinations of the right side are zero or
are divisible by the pivots of R. In Example 2 above, the pivots (leading
entries) are 1 and 13. If the entries on the right side were b; and b, the
system would have a solution if and only if the equations k; = b; and
—17k1 + 13k2 = by would have integer solutions. This would happen if and
only if 17b; + by were divisible by 13.

In solving a large system, you can check each row of the system R'K = B
as you go along to determine whether the system still has a solution. If there
is no solution, you might not have to complete the row reduction.

Further Reading

You might expect the solution to a system of linear Diophantine equations
to be part of a subject called “Integer Linear Algebra.” However there is no
such subject; it is a part of Integer Linear Programming. In order to find
all integer solutions to the equation

a1z1+ -+ apxT, =b

we essentially have to determine ged(ay, ..., a,), which is the minimum pos-
itive value of the left side of the equation as the variables run over all the
integers; this is a Linear Programming problem. Hence you will find fur-
ther information on systems of linear equations and congruences in books
on Integer Programming such as [2, Ch.6] and (3, Chs. 4 and 5].

We have expressed the algorithm in terms of row reductions, since stu-
dents are accustomed to these operations. However, it is more natural to

use column operations on the matrix [é} If A is of full row rank then A

I



can be unimodular column reduced to its Hermite normal form. This is the
column-echelon form in which all entries are non-negative and each pivot
is the maximum entry in its row [3, §4.1]. Therefore the algorithm in the
theorem of this paper essentially involves the reduction of A to its Hermite
normal form.

An issue that we have not addressed, but which becomes vital when
solving a large system on a computer, is the efficiency of the algorithm.
While the algorithm only performs a polynomial number of row operations,
relative to the size of the input, it appears that the matrix entries grow
exponentially with the size of the system. Polynomial time algorithms for
reducing an integer matrix to its Hermite normal form are given in [3, §5.3]
and [1]. These techniques can be translated into polynomial running time
algorithms to solve a system of linear Diophantine equations.
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