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Up to 2000 : Locus Solum : A pure waste of paper , | believed
that foundations were dead.

» The sole dead are the fundamentalists , the Jurassic Park .
» Quantum coherent spaces (2003) helped me to reposition the

dichotomy subject/object.

Moving to von Neumann algebra induced a  divine surprise .
e For instance many isomorphic (standard!) versions of N.
e Non internally isomorphic.

e Possibility of subjective truth.

Got beyond the essential(ist) circularity of logic, the blind
spot.
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Jurassic foundations speak of  Platonism .

e But there are things beyond our experience.

e Real question is that of morphology : laws etc.

e 2001 : intelligence preexists to its support. Religious ...
The real reference is Thomas Aquinus (Aristotle), not Platon

e God is perfect in its perfect perfection.

e The universe is infinite in its infinite infinity.

To go against that is to go against set-theory, category-the ory
(morphisms ), one century of foundations, ...

The eternal golden braid : infinity, modalities, integers.
Everything is true or false, including meaningless formulas.

« God created integers, everything else is the deed of man »,
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Linear logic split connectives into :
Perfect: ®,%¥,®,&,V, d.
Imperfect : !, 7, the exponentials .

The perfect part is not essentialist : no  « meta-intelligence ».
e Satisfactory explanations , e.g., ludics .

The imperfect part is the finger of Thomism.

e Put enough exponentials to perennialise .

e Long ago : double negations (Gddel).
Schizophrenia between :

e Perfect world unsufficiently expressive.

e Imperfect world allowing towers of exponentials.
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The peak of scientism , 1900.

e Various final solutions : societal, musical, logical. ..
e None of them very... subtle.

What remains of foundations is  set theory .

e Not taken seriously , i.e., for itself.

e But very convenient , « hygienic ».

To be compared with equal temperament : 2NV/12,

e Very convenient, compare with natural scale :
9/8,10/9,16/15,9/8,10/9,9/8,16/15.

e But slightly out of tune .

e Problematic when pushed to extremities ( dodecaphonism ).

Set theory problematic in extreme situations (foundations).
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Destruction of (mental) images.
» Another finitist paradigm.
e GOdel’s theorem : finitism is not finitistic.
e Complexity : mathematical (logical) functions too fast.
« For no real reason, but logical maintenance.

Foundations internalise everything.

e But eventually ends with transfinite  metaturtles .

The meta is the impossibility of internalising everything.

e But too late ; happens at meaningless stages.

Since systematic internalisation is eventually wrong, it mu st
be refused from the start .

Accept foundations with most of operations external .
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» Finite from inside , infinite from ouside .
» Accept infinity, but not infinite infinity

e Impossibility to create fresh objects forever.
Reduces to search for light exponentials ( BLL, LLL, ELL, ...).
e Alternative definition producing complexity effects.

e Cannot be semantically grounded : the  blind spot .

The Murray-von Neumann factor R.

e Finite and hyperfinite , both notions of finiteness having
noting to do with Hilbertian finitism.

Forget the idea of creation in 7 days, from simple to

complicated (sets, algebra, reals, function spaces) since i

does not work anyway ( Incompleteness theorem ).
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» Foundations can be operated at three layers (undergrounds) :

-1 . Truth : consistency, models : bleak.
-2 . Functions : categories, formulas as objects, proofs as

morphisms.
e Scott domains.

e Coherent spaces.

e Quantum coherent spaces.
-3 : Actions : Geometry of interaction, but also ludics,

games...
» Level —2 not fit to go beyond the blind spot.
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A Scott domain X is a set | X | equipped with a consistent
system of intuitionistic sequents T'HA, T', A C | X]|.

» Saturated subsets of X are the consistent extensions of X.

» Can be made into a topological space ; but weird topology
(never Hausdorff).

Continuity : preservation of directed sups.

F(TU a;) = UF(az)

Category theoretic analogue

Objects : Saturated sets.

Morphisms : Inclusion maps (hence : degenerated category).
Directed unions :  Direct limits.

Continuous map : Functor preserving direct limits.
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F(anb) = F(a) N F(b) (aU b consistent)

Induce simplification : reduce to axiomatics made of
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» No saturation, only consistency.
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» Pull-backs are the natural companion of direct limits.
» Correspondto a N b provided a U b is consistent.
» Preservation of pull-backs a.k.a. stability (Berry) :

F(anb) = F(a) N F(b) (aU b consistent) (2)

Induce simplification : reduce to axiomatics made of

sequents =,y + <«x,y incoherent », notation x — y.

No saturation, only consistency.

Coherent space : (|X|, cx), web, coherence ; ©c=—=°.
Clique aC X i xz,y €a = x C v.

Stable map : F from X to Y monotonous , preserves directed
sups and compatible meets .

Form a CCC.
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Additional requirement :

F(aub) =F(a)UF(b) FO) =0 (3)
The basis of perfect linear logic.
Skeleton of a linear map :

Sq(F) :={z,y;z € | X|,y€|Y|andy € F({z}} (4)

F' can be recovered from its skeleton :
F(a) ={y;3z € a (z,y) € Sq(F)} (5)
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» Remove the laws.

» Linear negation ~ X := (|X|, ).

» Cliques of X, ~X related by duality between subsets of | X|:
flanb) <1 (6)

Alternative definition : a coherent space is a subset of (| X])

equal to its bipolar w.r.t. (6).
Functions defined trough adjunction :

#(F(a)Nb) =4§(FNaxb) (aC X,bC~Y) (7)
This definition can be generalised to various vector spaces :
Stability : handles negative coeffs: F'(a + b) = F(a) + F(b).
Multiplicities :  Takes care of cardinal when greater than 1.
Cardinal : Replaced by bilinear form, or better, trace.
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12-FINITE DIMENSIONAL HERMITIAN GEOMETRY

Hilbert space C™ equipped with sesquilinear form
(i) | (90)) := ) @i+ W

Operators on C™ (matrices in Mn(é)) equipped with

adjunction
(u™(Z) | ) := (T | u(¥)) (9)

» Adjunction corresponds to  transconjugation of matrices.
» Hermitians are self adjoint operators (matrices).
» The trace tr(w) defined as the sum of diagonal coefficients :

tr(u) = Z (u(es) | es) (10)

Cyclicity : tr(u - v) = tr(v - u) (11)
If h, k hermitian, then tr(h-k) € R.
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13-QUANTUM COHERENT SPACES

The desessentialised version adapts  mutatis mutandis

Web : Finite dimensional Hilbert space X.
Subsets : Hermitians operating on X.
Duality: 0 < tr(h-k) < 1.

Coherent spaces :

Web : Space C!XI.

Subsets : Subspace C%;induces projection .

Duality : If h, k are commuting projections tr(h - k) is the
dimension of the intersection, i.e., a cardinal :

tr(mg - ™) = (@ N b) (12)
Functional application (involves X & Y):

tr(F(a) - b)) = tr(Sq(F) - (a ® b)) (13)
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14-SUBJECT AND OBJECT

Hidden assumption : commutativity (diagonal).

The points of the diagonal correspond to atoms.

But this is indeed base-dependent .

Tilt the gyroscopes and everything looks different.
Base = Subject = Commutativity

Subject becomes part of the theory.

Difference between twist (identity) and its etaspansion :

1 0 0 1 0 O

O O 0
0 1 0
0 O 1

O 0 O
O 0 O
O 0 O
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z
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true :=

false :=

» Tilting the gyros : quantum booleans :

1
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z

z
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2_>< 2 r_natrices :
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» Spin, a two-state system, represented by 2 X 2 matrices :

1 O 0O O
true := false := (15)
0O O 0O 1
» Tilting the gyros : quantum booleans : ) )
1 =z
1/(1 + 2%2) z € CU{+o0} (16)
z zZz
» Measurement is operated by n-expansion :
a 0

0 c

ull ) =

a
b
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15-QUANTUM BOOLEANS

Spin, a two-state system, represented by 2 X 2 matrices :

1 0 0O O
true := false := (15)

0O O 0O 1
Tilting the gyros : quantum booleans : ) )

1 =
1/(1 4 27) N 2 € CU {+o0} (16)
z zz
Measurement is operated by ﬁ-expansion :

a b a 0
n( ) = (17)
b c 0 c

Chops off the antidiagonal coefficients ; yields probabilistic
boolean : A - true 4+ (1 — ) - false, with A :=1/(1 + 22).
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16-THE UNFINISHED

» Infinite = perennial = duplicable = imperfect (unfinished).
» Dedekind integers (system F version) :

nat := VX (!(X —o0 X) o (X —0 X))
Heavily rely on exponentials . Four laws :
Weakening : !'AF1.

Contraction: 'AH!'AR!A.
Dereliction: !'AFA.
Promotion: From !I'HA, get !T'H!A.

These rules express our vision of infinity. Strongly influenc ed
by Western theology (Thomas Aquinus).

» Just as opaque as integers. At least this is logic.

» Lightlogics ( LLL, ELL...); not grounded. But some hope'!
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Can we use infinite dimensional Hilbert spaces ?
» Typical example : space ¢2 of square-summable sequences :
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17-QUANTUM COHERENT SPACES

» Can we use infinite dimensional Hilbert spaces ?
» Typical example : space ¢2 of square-summable sequences :

(@) | (Yn)) = Tn - Yn (19)

Trace defined for positive hermitiang(value N RU{4+o0}):

tr(uu™) = tr(u™u) (20)
More generally, for trace-class operators (valuein C):
tr(vuu*) < +oo (21)
Not suited for logic : the twist IS not trace-class.
This generalisation corresponds to type I algebras.
Type 11, algebras have a trace. But the twist gets a null trace.
Something wrong with the  methodology .
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18-IMMANENT JUSTICE

When God created the universe, he first defined the actual,
then the potential .

Reflected in Kripke models : parallel universes like butterflies.
Obviously, the potential should remain potential.

The same Is true of categories : composition costs nothing .

Because operations have been performed in advance .

This actualisation of potentialities is possible In finite

dimension; in infinite dimension, it  diverges , yielding useless
values, zero or infinite.

Gol : a potential interpretation which remains potential.
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19-THE DETERMINANT

Other invariant (after f#(a Nbd) and tr(h - k)):
e The determinant det(I — h - k).

The invariant of Geometry of Interaction

e Equalities, up to scalars.

e Reflects the introspection .

e Memory of computation, usually obtained by cheating.

In finite dimension, use exterior algebra ( Fock space ), and
observe that : det(I + u) = tr(Au) (22)
Actualisation is the functor Azh : it lists all cycles, all
possibilites :  get(I — hk) = tr((Aih)(Aik)) (23)
Equation (22) does not pass infinite limits. Remains the
determinant, i.e., Gol. One should remain potential.
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20-THE FLUSH

» Infinity is based upon the idea of  flushing .

» The hypothesis about the word of ideas is that the ideal space
IS unlimited , and that one can always make room by flushing.
Ecology :we cannot flush things forever. Is the word of ideas
free of ecological problems ?

The traditional flush is the Hilbert hotel : make new rooms. In
Gol it is expressed by the equations :

pPp=q -q=p-prtq-qg =1 (24)
Wrong in finite (e.g., II,) algebras.

tr(p® -p) =1 # tr(p- p*) (25)
» No Hilbert Hotel, since rooms have a size (trace, dimension).

» Responsible for dereliction .
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21-THE FLUSH (CONTINUED)

» Another flush : fresh variables.
» Has something to do with renaming of bound variables,

which form the private dialect .

Typical flush obtained by internalising the isometry :
XQXRX)~(XR®X)R X (26)

Startingwith v I =u® (I ® I),onegets (u®I) R 1.

u has been flushed to the left.

Not possible in the hyperfinite factor.

The Murray-von Neumann factor ( finite and hyperfinite )

seems the appropriate space for true  finitism .
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22-DEFINITION AND EXAMPLES

» Complex involutive Banach algebra such that :
luw™|| = [[u]® (27)
» Space C(X) of complex continuous functions on compact X.
e Indeed the generic commutative example.
If C commutative, take for X the space of characters .

B.t.w., character = pure (extremal) state.
State : linear form p such that p(uu*) > 0, p(I) = 1.
States of C(X) = probability measures on X.
» Space B(H) of bounded operators on Hilbert space  H.
e Involution defined by (u*(x) | y) := (= | u(y)).
e Subalgebras of B(H) are generic C *-algebras.
e Non equivalent faithful representations on H.
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23-SIMPLICITY

Morphisms of C *-algebras defined algebraically .

» Indeed bounded, ||p(u)|| < ||u]:

e Use ||luu*|| = ||u||? to reduce to positive hermitians  uwu*.
e Use ||luu*|| = »(Sp(uu*)) to define the norm algebraically :

|luu™|| = sup {\; uu™ — AI not invertible} (28)

Injective morphisms are isometric, || (u)|| = [|u]| :

e Norm shrinks =- spectrum shrinks.

e Norm shrinks =- ¢ not injective.

A simple algebra (= no closed two-sided ideal) admits only
one « C*semi-norm » (i.e., s.t. (27)); all states faithful .
Typical example : matrix algebras M, (C).

» B(H) not simple (infinite dimension) :  compact operators.
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» Canonical anticommutation relations, between creators k(a)
and their adjoints, the annihilators {(b) :
k(a)C(b) + K(b)C(a)= dap - I (29)
k(a)k(b) + k(b)k(a)= 0 (30)
» a,brange over aset A (or aHilbert space 4.5 ~> (a | b)).
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k(a)C(b) + K(b)C(a)= dap - I (29)
k(a)k(b) + k(b)k(a)= 0 (30)
» a,brange over aset A (or aHilbert space 4.5 ~> (a | b)).

e If Aisfinite, Car(A) algebraically isomorphic to matrices
n X n, with n := 28(4)
e By simplicity, unique C *-norm on Car(A) for A finite.
e The same holds in general : use inductive limits.
» Related topics :
e The Clifford algebra : use «x(a) 4+ ((a).
e The (exterior) Fock space : represent k(a)(x) :=a A x.
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» Positive hermitians induce order:  (h(x) | ) < (k(x) | x).
» Require completeness w.r.t. bounded (directed) suprema.
» The solution works only for represented C*algebras :

e No way to decide equality between suprema.
e Commutative case : no way to tell null sets.

o As C*-algebras, dual Banach spaces :e.g. £ = (£')%,
« Intrinsic approach (W *-algebras) not quite successful.

Subalgebra of B(H) closed under :

Strong limits :  w; — 0 iff ||u;(x)|| — O (x € H).

Weak limits :  u; — 0 iff (u;(x) | ) — 0 (xz € H).

» Equivalently : subalgebra equal to its  bicommutant .

» Also : the commutant of a self-adjoint subset of B(H).
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» As a C*-algebra, Ais of the form C(X).
» X extremely disconnected :

e The closure of an open set is still open.
Clopen sets form a o-algebra

Commutative VN : space L*>°(X, u).

e Measure p IS up to absolute continuity

» C([0,1]) extends into a VN modulo a diffuse measure on [0, 1].
In general : C *-algebra + faithful state p (i.e., p(uu™) = 0
Implies v = 0.) yields a vN completion.

The CAR-algebra admits completions of all  types I,II, III.
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27-THE GNS CONSTRUCTION

» From a C *-algebra C and a state p construct a representation .
» Define (u | v) := p(v*u); induces a pre-Hilbert space.

» C acts by left multiplication on the separation/completion of

the latter.

» In case p is faithful , this representation is isometric.

» The double commutant of the representation is thus a vN

completion of C.
Typical case : simple algebras .
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28-THE CAR ALGEBRA

» Indeed inductive limit of matrices 2™ x 2™,

» Each of them equipped with normalised trace :
tr(u) := 27 "Tr(u).

The trace on the inductive limitisa  tracial state :

p(uv) = p(vu)

The vN algebra thus obtained is :

Factor : Trivial center.

Finite . It has a trace.

Hyperfinite :  Finite matrices are weakly dense.

Up to isomorphism, only one such vN algebra, the
Murray-von Neumann factor R.
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29-FACTORS

Connected vN algebras.

Z(A) = (AU A’ isavVN algebra.

A= [A(x)du(x).

Each A(x) is a factor , i.e., a vN algebra with trivial center.
Classification of vN algebras thus reduces to classification of

factors.
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30-COMPARISON OF PROJECTIONS

Equivalence of projections
mn~7n' < 3FJu (u*u=mwand uu* = x’) (33)

Ordering of projections (inclusion + equivalence) :
rsn < 3In’ (r=nn"and 7" ~ ') (34)

A is finite when I 5 I is wrong.

wvu* =1 =>u"u=1 (35)
For factors , S is total :
Type | : Order type {0,...,n} (I,)or {0,...,n,..., 00} (Iso).
Type Il . Order type [0, 1] (ITy) or [0, +o00] (I1).
Type lll . Order type {0, +oo}.
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31-TRACES

Finiteness is the same as the existence ofa  normal (weakly

continuous on the unit ball) trace.

Can be seen as a dimension .

e F, F have same dimension iff thereisa partial isometry wu
s.t. Dom(u) = E,Im(u) = F.

e E has dimension 1/2when dim(E) = dim(E1).
The completion of the CAR-algebra is finite and
infinite-dimensional :

e Factor of type II;.

On a finite factor, the trace is unique.
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32-DISCRETE GROUPS

G denumerable induces a convolution algebra, obtained by
linearisation.
The convolution :

(zg) * (yg) = (Z Tg - Yg'r) (36)

g=g’-g”’

is a bilinear map £%(G) x £2(G) ~ £°(G).

» Define A(G) := {(xg); (z4)* : £2(G) ~ 2(G)}.

» A(G) is the commutant of the right convolutions x(y,).
» If G has infinite conjugacy classes (i.c.c.), then  A(G)is a
factor.

B.tw., tr((zy)) = 1.
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33-HYPERFINITISM

» If G C G’,then A(G) — A(G").

» If G is locally finite , the union (J , A(G»,) is weakly dense.
e Every finite subset of G generates a finite subgroup.

e Any operator can be weakly approximated by matrices.
Hyperfinite algebra : an increasing union U,, Anr of finite

dimensional algebras is weakly dense in  A.

There are hyperfinite algebras of any type (close the CAR
algebra w.r.t. appropriate state).

But only one hyperfinite factor of type  1I;. Murray-von
Neumann factor R.




Keio 16/17 Mars 2006

34-THE HYPERFINITE FACTOR

» The factor R is remarkably stable :




Keio 16/17 Mars 2006

34-THE HYPERFINITE FACTOR

» The factor R is remarkably stable :
e Matrices with entriesin @ R : M3(R) ~ R.




Keio 16/17 Mars 2006

34-THE HYPERFINITE FACTOR

» The factor R is remarkably stable :
e Matrices with entriesin @ R : M3(R) ~ R.
e Tensor with himself R Q R ~ R.




Keio 16/17 Mars 2006

34-THE HYPERFINITE FACTOR

» The factor R is remarkably stable :
e Matrices with entriesin R : M2(R) ~ R.
e Tensor with himself R ® R ~ R.
e Crossed product with a locally finite group of external
automorphisms.




Keio 16/17 Mars 2006

34-THE HYPERFINITE FACTOR

» The factor R is remarkably stable :
e Matrices with entriesin @ R : M3(R) ~ R.
e Tensor with himself R Q R ~ R.

e Crossed product with a locally finite group of external
automorphisms.

» Which means that it has many automorphisms .




Keio 16/17 Mars 2006

34-THE HYPERFINITE FACTOR

» The factor R is remarkably stable :
e Matrices with entriesin R : M2(R) ~ R.
e Tensor with himself R ® R ~ R.
e Crossed product with a locally finite group of external
automorphisms.

» Which means that it has many automorphisms .
» Most of them are external .




Keio 16/17 Mars 2006

34-THE HYPERFINITE FACTOR

» The factor R is remarkably stable :
e Matrices with entriesin R : M2(R) ~ R.
e Tensor with himself R ® R ~ R.
e Crossed product with a locally finite group of external
automorphisms.

» Which means that it has many automorphisms .
» Most of them are external .
e Some of them can be internalised : crossed products.




Keio 16/17 Mars 2006

34-THE HYPERFINITE FACTOR

» The factor R is remarkably stable :
e Matrices with entriesin R : M2(R) ~ R.
e Tensor with himself R ® R ~ R.
e Crossed product with a locally finite group of external
automorphisms.

» Which means that it has many automorphisms .

» Most of them are external .
e Some of them can be internalised : crossed products.
e Typically, the twist o of R ® R can be added.




Keio 16/17 Mars 2006

34-THE HYPERFINITE FACTOR

» The factor R is remarkably stable :
e Matrices with entriesin R : M2(R) ~ R.
e Tensor with himself R ® R ~ R.
e Crossed product with a locally finite group of external
automorphisms.

» Which means that it has many automorphisms .

» Most of them are external .
e Some of them can be internalised : crossed products.
e Typically, the twist o of R ® R can be added.
e Since o? = I, the result still isomorphicto  R.




Keio 16/17 Mars 2006
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» The factor R is remarkably stable :
e Matrices with entriesin R : M2(R) ~ R.
e Tensor with himself R ® R ~ R.
e Crossed product with a locally finite group of external
automorphisms.

» Which means that it has many automorphisms .
» Most of them are external .
e Some of them can be internalised : crossed products.
e Typically, the twist o of R ® R can be added.
e Since o? = I, the result still isomorphicto  R.
e But adding My (R) ~ R leads to a type III factor.
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35-THE FEEDBACK EQUATION

Basic paradigm :
h(z®y) =z @ o(y) (37)
Usually the partial symmetry o swaps I/O of two operators :

h(z®y) =2 @Y (38)

k(y @z)=y®2 (39)
_ . u_

u* 0|

e Feedback between x., and X yi_elds Xwo-

The feedback equation (37) « solved » in full generality :

e Sole hypothesis : ||h|| < 1.
e Associativity : (o + 7)[h] = o[7T|h]].

Chiasmi : matrices x, :=
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C
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= det(I — a)-det(I — (c+ b*(I — a)™'b))

(40)
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T—a b
det P = det(I — a)- det(I — (¢ + b*(I — a)~'b))
b* c

(40)

» Inlogical situations, nilpotency : det(I —a) = 1.

In type II, factor, nilpotency will be replaced by weaker
condition r(u) < 1.

Then determinant accessible through a power series
expansion : det(I — u) := etr(loe(I—w))




» Inlogical situations, nilpotency : det(I —a) = 1.

In type II, factor, nilpotency will be replaced by weaker
condition r(u) < 1.

Then determinant accessible through a power series
expansion : det(I — u) := etr(loe(I—w))

Familiar manipulations on determinants accessible through
(converging) power series.
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36-THE DETERMINANT

In finite dimension :

I —a b_ 1
det : =det(I —a)-det( — (c+b"(I —a)™ b))
* &

(40)
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» Old style : interprets proofs by  operators .
e Are galaxies made of stars or is it the other way around ?
+ Foundations always proceed in seven days .
« This eventually leads to the FOM discussion list.
e Old Gol (papers 1,2,3) indeed use type 1.« The stable form

of commutativity » (dixit Connes).
e Type I: minimal projections ~ points (sets, graphs).
» New style : takes place in the Murray-vN factor R :
e Finiteness forbids the primitives  p, q, d.
« In a finite algebra, pp* = I = p*p = I.
e Hyperfiniteness forbids t(u ® (v @ w))t* = (u YV v) ® w.
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» A base is the pair (&,&’) of two orthogonal projections of the
same dimension # 0 (default 1/2).
» Design of base (&£,¢&): (6,h) € RXR®R such that :
e h hermitian of support C £&I of norm < 1.
e Second tensor component ‘R is the dialect.
o € Rsit. 0 < § < 2t—dim& g the daimon .
» Duality on the same base : given h,k:

e Tensorise h,k with I, swap thetwo R,toget h', k" :
k Reoo R - RI
Qoo QIR -
e (8,h), (€, k) are polar, notation (d,h) 1 (e, k) iff :
r(h'k”) <1  6-edet(I — k") #1 (41)
e Behaviour :set B of designs of given base s.t. B =~~B.
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39-SEQUENTS

Heavy use of the cobase £’.
» Binary example (&,&¢)F(n, 1) :
e 2 X 2 matrix with entriesin R K RQR.

e Supports £ R@n'®I,n R 'R
e All supports have same dimension : no need for P, q.

Let (v, k) and (9, k) of respective bases (&,&’) replace :
e INh, ® with -®n'® - I :yields h’
e Nk, - ® -®- with -® -QI ® -:yields k"
Apply Gol, which yields .
» Output: (y4im) . §.det(I — h'-E"),1)
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A40-MULTIPLICATIVES

The fax (identity axiom) :

0 el
c@eeI 0

e Maps - ®-10 -RE R - R T

e Not an etaspansion .

e If dim(¢&) rational, finite matrix with entries = 0, 1.
Tensor (cotensor) product replaces  (&,&7), (n,n’) with
RN+ Q@n,ER@n+£ 7).

Basically use an isometry ¢ between ¢’  nand n ® &’.

» (IS part of the data.

A —o Abasedon ((ERE+EREEREFE R®E).
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41-THE ADDITIVE MIRACLE

Additive situation : £, &', n, ' pairwise orthogonal.

Replace (&, &), (n, ') with (& +n,¢& +1').

» The with rule (how to share contexts) :

e Premises are 2 x 2 matrices :
e Their supportsare ¢ @ v'RI,v ® £'RI and

nRURXI,vRNRI.
e Just sum them : disjoint supports.
Violently anti- 7, like Quantum coherent spaces
» Summing up, perfect logic (in the linguistic sense) can be
interpreted in the hyperfinite factor.
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» AFB nolonger maps A into B.
» Maps A ®n’into BR &’.
» A®n = {(v¥"™M h®n);(v,h) € A} (modulo some

twisting). Basic fact :
(~A)®n =~ (A®n")

Which relies upon :

det(I — h®n') = det(I — h)3m)
The daimon , i.e., the scalar component.
Corresponds to failure, i.e., falsity, when #£ 1.
In ludics (commutative), daimon cannot be created.
Professional losers, so to speak.
Here the daimon is created by the determinant.

Truth (winning) not preserved by logical consequence.
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43-SUBJECTIVE TRUTH

Let us fix a subject , i.e., a maximal commutative subalgebra
(= boolean algebra) B C R.
A subjective winner is a pair (1,h), with h® = h (h is a partial
symmetry), such that :
VreBIn' € B hm=x'h (45)

Subjectivity is the closest approximation to « h is graph-like ».
Subjective winners are closed under logical consequence;

iIndeed the feedback equation is of the  nilpotent type and no
daimon can be created.




| X-AN ICONOCLAST LOGIC




Keio 16/17 Mars 2006

A44-THE ICONOCLAST PROGRAMME

» Finite from inside , infinite from ouside .




Keio 16/17 Mars 2006

A44-THE ICONOCLAST PROGRAMME

» Finite from inside , infinite from ouside .
» Accept infinity, but not infinite infinity




Keio 16/17 Mars 2006

A44-THE ICONOCLAST PROGRAMME

» Finite from inside , infinite from ouside .
» Accept infinity, but not infinite infinity
e Impossibility to create fresh objects forever.




Keio 16/17 Mars 2006

A44-THE ICONOCLAST PROGRAMME

» Finite from inside , infinite from ouside .
» Accept infinity, but not infinite infinity
e Impossibility to create fresh objects forever.
» Reduces to search for light exponentials ( BLL, LLL, ELL, ...).




Keio 16/17 Mars 2006

A44-THE ICONOCLAST PROGRAMME

» Finite from inside , infinite from ouside .

» Accept infinity, but not infinite infinity
e Impossibility to create fresh objects forever.

» Reduces to search for light exponentials ( BLL, LLL, ELL, ...).
e Alternative definition producing complexity effects.




Keio 16/17 Mars 2006

A44-THE ICONOCLAST PROGRAMME

» Finite from inside , infinite from ouside .

» Accept infinity, but not infinite infinity
e Impossibility to create fresh objects forever.

» Reduces to search for light exponentials ( BLL, LLL, ELL, ...).
e Alternative definition producing complexity effects.

e Cannot be semantically grounded : the  blind spot .




Keio 16/17 Mars 2006

A44-THE ICONOCLAST PROGRAMME

» Finite from inside , infinite from ouside .

» Accept infinity, but not infinite infinity
e Impossibility to create fresh objects forever.

» Reduces to search for light exponentials ( BLL, LLL, ELL, ...).
e Alternative definition producing complexity effects.

e Cannot be semantically grounded : the  blind spot .
e Use the geometrical constraints of factor R.




Keio 16/17 Mars 2006

A44-THE ICONOCLAST PROGRAMME

Finite from inside , infinite from ouside .

Accept infinity, but not  infinite infinity

e Impossibility to create fresh objects forever.

Reduces to search for light exponentials ( BLL, LLL, ELL, ...).
e Alternative definition producing complexity effects.

e Cannot be semantically grounded : the  blind spot .
e Use the geometrical constraints of factor R.
B.t.w., logic in a factor of type  II; should correspondto ELL.
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45-PERENNIAL BEHAVIOURS

» Bis perennial when B = ~~({1}xCQI).
» Perennial behaviours are duplicable .
e B+ B ® B inhabited by a sort of fax :
e Bases £ER(ERXRE+E RE)RI R I,
(EQRE+ERERER/I QI

e Works because there is no dialectal component -
» EXxponentials perennialise :
e Replace ‘:®- with -:® - RIRI.
e Takesplacein RY((R... ®...R) x G)QR.
e Denumerable tensor product R...® ... 7R crossed by a
locally finite group G.
G acts on integers by swapping bits in hereditary base
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A46-EXPONENTIALS

X C Ninfinite and co-infinite; !xB stronger when X smaller .

» !x perennialises with ®I on components of indices notin  2%.
» Multipromotion available with output : !'xI'H!x,,vB.

e Need to internalise the swappings of dialects - RQI/TR -
Various definitions of integers, all  externally isomorphic.

naty := (| (!x(B — B)—o!x,y (B —o B)) (46)
X,B
e Some are internally isomorphic, e.g. natsy and natsy 4.

e In which case, logical equivalence.
Basic functions :

Sum : Type naty @ naty —o naty y-.
Product : Type naty @ naty, —o natyy-.

Square : Type !xnatsy —o!x x/natsy 2y +1.
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Observe that there is no need for syntax/semantics.
» Don’t bother with a sequent calculus :

e Finite combinations in G will do everything.
Dynamics of G : a tower of exponentials.

e Height = depth of hereditary bits.

Which complexity classes can be expressed ?
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