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Abstract

The symmetric groups Sn, consisting of all permutations on a set of n elements,
naturally contain each other like Matryoshka dolls. (Sn−1 simply fixes the nth element
permuted by Sn.) We will explore the hope that the representation theory of Sn is also
inductive. Along the way, we will develop a tool called the branching graph to help
us organize the way that the irreducible representations of Sn decompose into those of
lower Sk. This decomposition results in the canonical Gelfand-Tsetlin basis for each
irreducible representation of Sn. Finally, we will construct the Gelfand-Tsetlin algebra
and prove that its spectrum uniquely identifies elements from the Gelfand-Tsetlin basis.

Contents

1 Review of Representation Theory 2
1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Irreducible Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 The Branching Graph 3
2.1 An Inductive Chain of Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 The Graph and the GZ Basis . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 The Gelfand-Tsetlin Algebra 5
3.1 Group Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 The GZ Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 A Few Results 6

N.B. Throughout, all groups are finite and all vector spaces are finite-dimensional over C.

1



1 REVIEW OF REPRESENTATION THEORY

1 Review of Representation Theory

The basic idea of representation theory is to study groups by “representing” them concretely
as linear operators on vector spaces, thereby using methods from linear algebra to simplify
otherwise intractible questions.

1.1 Basic Definitions

Definition 1.1. A representation of a group G is a homomorphism ρ : G→ GL(V ).
Each g ∈ G is therefore represented by an invertible linear map ρ(g) : V → V .

Another way to say the same thing is that G acts linearly on V , with g · v = ρ(g)(v).
This gives V the structure of a G-module:

Definition 1.2. A G-module is an abelian group V , together with an action of G on V that
respects its linear structure: explicitly, for g, h ∈ G and v, v′ ∈ V ,

(a) 1G · v = v;
(b) g · (h · v) = (gh) · v;
(c) g · (v + v′) = g · v + g · v′.

The G-module structure of V packages together all of the information about the repre-
sentation ρ it carries, so we will henceforth write V ρ and speak of it indiscriminately as a
“G-module” or a “representation.” The G-module perspective is useful because it allows us
to speak of “G-linear” maps that respect extra action structure:

Definition 1.3. A G-morphism is a linear G-equivariant map of vector spaces φ : V ρ → V σ;
that is, for every scalar c ∈ C and vectors v, v′ ∈ V ρ,

(a) φ(cv) = cφ(v);
(b) φ(v + v′) = φ(v) + φ(v′);
(c) φ(g · v) = g · φ(v) ⇐⇒ φ

(
ρ(g)(v)

)
= σ(g)φ(v).

We will denote the set of all such maps by HomG(V ρ, V σ). Note that since we can add
and scale G-morphisms, HomG(V ρ, V σ) acquires the structure of a vector space.

1.2 Irreducible Representations

Definition 1.4. Let V be a representation of G. A subrepresentation of G is a subspace
W ⊂ V such that for all w ∈ W and g ∈ G, g ·w ∈ W . (“What happens in W stays in W .”)

Definition 1.5. An irreducible representation (sometimes “irrep”) V of G is one with no
nontrivial proper subrepresentations, i.e. no G-invariant subspaces. We denote the set of
irreducible representations of G by Ĝ, and write ρ ∈ Ĝ to say that ρ is an irrep of G.

One can show that V decomposes as a direct sum of subrepresentations: if W ⊂ V is
a subrepresentation, then so is W⊥, and moreover V = W ⊕ W⊥. (Here the orthogonal
complement W⊥ is defined using a G-equivariant inner product on V .) By continuing to
split off subrepresentations until we reach the irreducible ones, we obtain the following result:
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2 THE BRANCHING GRAPH

Theorem 1.6. Every representation ρ of a finite group G on a finite-dimensional complex
vector space V ρ decomposes as a direct sum of irreducible representations V σ.

Some of the irreps in the decomposition of V ρ may be isomorphic; that is, each irrep V σ

may appear more than once as a factor in V ρ. Denoting this multiplicity by mσ ∈ N,

V ρ =
⊕
σ∈Ĝ

(V σ)mσ . (1.1)

As it turns out, there’s a formula for mσ. To prove it, we’ll need the extremely useful

Lemma 1.7 (Schur). Let V σ, V ρ be irreducible representations of G, and let φ : V → W be
a G-morphism. Then φ is either 0 or an isomorphism acting by scalars, φ = λI. Thus,

HomG(V σ, V ρ) =

{
C, if V σ ∼= V ρ;

0, otherwise.
(1.2)

Proposition 1.8. The multiplicity of σ ∈ Ĝ in a G-module V ρ is mσ = dim HomG(V σ, V ρ).

Proof. By Thm. 1.6, V ρ decomposes as a direct sum over Ĝ:

V ρ =
⊕
σ′∈Ĝ

V σ′ = (V σ)mσ ⊕
(⊕
σ′ 6=σ

(V σ′)mσ′
)
. (1.3)

Now Hom commutes with direct sums, so we have

HomG(V σ, V ρ) = HomG(V σ, V σ)mσ ⊕
(⊕
σ′ 6=σ

HomG(V σ, V σ′)
)
. (1.4)

By Schur’s lemma, HomG(V σ, V σ′) is C if σ = σ′ and {1} otherwise. Therefore we find that
HomG(V σ, V ρ) = Cmσ ⊕ {1} = Cmσ =⇒ mσ = dim HomG(V σ, V ρ), as desired. �

2 The Branching Graph

2.1 An Inductive Chain of Groups

Our eventual goal is to study the representation theory of Sn. We begin by noting that the
symmetric groups contain each other, S1 < S2 < S3 < · · · , and that the natural embedding
Sn−1 ↪→ Sn simply fixes the nth element permuted by Sn. The idea that the symmetric
groups form an inductive chain motivates the hope that their representation theory might
also be inductive, i.e. Ŝn should depend on Ŝn−1. Therefore to set the stage, consider a chain
of finite groups {1} = G0 < G1 < G2 < · · · . A natural question to ask is what happens to

the irreps Ĝn when we restrict them to Gn−1 and whether we can glean any new insight by
continuing to restrict all the way down to G0.
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2.2 The Graph and the GZ Basis 2 THE BRANCHING GRAPH

Definition 2.1. The restriction of a representation V ρ to a subgroup H < G is defined by
ResGHV

ρ = V ρ|H , i.e. the same representation ρ, but restricted to H.

Now let λ ∈ Ĝn, and note that while V λ is irreducible, its restriction ResGnGn−1
V λ may

not be. It therefore decomposes into a direct sum of irreps µ ∈ Ĝn−1 with multiplicities
mµ = dim HomG(V µ, V λ):

V λ =
⊕

µ∈Ĝn−1

(V µ)mµ . (2.1)

We can further decompose each V µ into irreps from Ĝn−2, and so on inductively until we
reach Ĝ0 = {•}, which yields 1-dimensional irreps V • ∼= C. As we are about to see, there is
an elegant way of organizing this decomposition.

2.2 The Graph and the GZ Basis

Definition 2.2. The branching graph or Bratteli diagram is the directed multigraph whose
vertices are elements of

⊔
k≥0 Ĝk, with Ĝn called the nth level. Two vertices µ ∈ Ĝn−1 and

λ ∈ Ĝn are connected by k dirrected edges if k = dim HomGn−1(V
µ, V λ).

We write µ ↗ λ if k ≥ 1; that is, if µ and λ are connected. What this really means is
that V µ is a factor in the decomposition (2.1) of V λ. If all of the multiplicities k are 0 or
1, then diagram becomes a graph and we say that the branching is simple. This turns out
to be the case for Sn, but we will not be able to prove this just yet. In the case of simple
branching, (2.1) reduces to a direct sum over connected irreps on the (n− 1)th level:

V λ =
⊕

µ∈Ĝn−1
µ↗λ

V µ (2.2)

We further decompose each V µ into spaces V ρ for irreps ρ ∈ Ĝn−2 with ρ ↗ µ, and so
on until we finally break V λ down into one-dimensional irreps V • = C =: VT , one for each
increasing path, i.e. a chain T = {• = λ0 ↗ λ1 ↗ · · · ↗ λn = λ}, where each λi ∈ Ĝi. Thus:

Theorem 2.3. In the case of simple branching, we have the canonical decomposition

V λ =
⊕
T

VT (2.3)

into G0-modules VT ∼= C, indexed by all possible increasing paths T from • to λ.

Next, recall that like every representation, V λ has a Gn-equivariant inner product 〈·, ·〉.
With respect to this inner product, we may choose a unit vector vT ∈ VT in every factor of
V λ in (2.3). This defines, up to a complex multiple of unit norm, a basis {vT} for V λ called
the Gelfand-Tsetlin basis or GZ basis.
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3 THE GELFAND-TSETLIN ALGEBRA

3 The Gelfand-Tsetlin Algebra

3.1 Group Algebras

We now step back to introduce one more algebraic structure—the eponymous one:

Definition 3.1. An algebra is a vector space A equipped with a bilinear product. Specifi-
cally, for all v1, v2, w ∈ A and c1, c2 ∈ C, there is a “multiplication” operation satisfying

(a) w(v1 + v2) = wv1 + wv2;
(b) (v1 + v2)w = v1w + v2w;
(c) (c1v1)(c2v2) = (c1c2)v1v2.

For example, for any vector space V , the space Hom(V, V ) is an algebra. Addition and
scalar multiplication of linear maps are defined as usual, and multiplication is given by the
commutator, A ·B := [A,B] = AB −BA, whose bilinearity is easy to verify.

Definition 3.2. The group algebra C[G] is the algebra over C generated by the group G
(the elements g ∈ G comprise a basis). Addition is given by formal linear combinations of
the group elements, while multiplication is defined by extending the given group law (defined
on the basis) by linearity to the rest of C[G], e.g. (c1g1 + c2g2)h = c1(g1h) + c2(g2h).

The group algebra C[G] can be thought of as a generalization of G that gives each
group element a “weighting factor” in C. There are two main reasons for introducing group
algebras. The first is that every representation V ρ is not only a G-module, but in fact
more naturally a C[G]-module: indeed, V ρ is acted on not only by G, but also by linear
combinations of group elements, which means that the entire group algebra is represented
on V ρ. The second reason is the following formula, which says that C[G] should be identified
with the sum of spaces of linear operators on the irreducibles V ρ.

Proposition 3.3. C[G] =
⊕
ρ∈Ĝ

End(V ρ).

Proof. Omitted; see Serre, §6.2 for an elegant proof. �

3.2 The GZ Algebra

We are almost ready to construct the Gelfand-Tsetlin algebra. We need one more definition:

Definition 3.4. The center of an algebra A, denoted Z(A), is the set of α ∈ A that commute
with all of A: Z(A) := {α ∈ A | ∀β ∈ A, αβ = βα}.

Returning now to our inductive situation, consider the chain C[G1] ⊂ C[G2] ⊂ · · · , and
let Zi denote the center Z(C[Gi]) of each group algebra for 1 ≤ i ≤ n.

Definition 3.5. The Gelfand-Tsetlin algebra GZn is the algebra generated by the centers
Z1, Z2, ..., Zn ⊂ C[Gn]; that is, GZn = span{Zi}ni=1.
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4 A FEW RESULTS

4 A Few Results

Theorem 4.1 (Prop. 1.1). GZn is the algebra of all operators on V λ diagonal in the GZ
basis {vT}. Moreover, it is a maximal commutative subalgebra of C[Gn].

Proof. Let V ρ be a C[G]-module. Any element α ∈ C[G] determines a map α : V ρ → V ρ by
α(v) = αv. If α ∈ Z(C[G]), then the map α respects the C[G]-module structure: therefore
central elements of C[G] are C[G]-morphisms of V ρ. If in addition such a map P ∈ Z(C[G])
satisfies P 2 = P , then it is a projection, and we call such elements central idempotents.

Now let Pλi ∈ Zi be the central idempotents projecting onto the irrep λi ∈ Ĝi. For
each increasing path T , denote by PT ∈ GZn the product Pλ1Pλ2 · · ·Pλ. By construction,
this operator is a projection onto VT ; running over all increasing paths T , we see that GZn
contains projections onto all of the VT . Using these, we can build all operators diagonalizable
with eigenbasis {vT}. Thus GZn contains the set D all operators diagonal in the GZ basis.

It remains to show that D also contains GZn. But D is a maximal commutative subal-
gebra of C[Gn]: if A ∈ D and AB = BA, then B ∈ D as well. (Any matrix commuting
with a diagonal matrix must also be diagonal.) Since GZn is commutative (it’s generated by
central elements) and D is maximal, we must have GZ ⊂ D. �

Corollary 4.2. Any v ∈ {vT} is uniquely determined, up to a scalar factor, by the eigen-
values of the elements of GZn.

Proof. Any operator A ∈ GZn is diagonal in the basis {vT} by Thm. 4.1; along the diagonal
lie its eigenvalues. Acting by A on v therefore scales it by an eigenvalue that selects which
v was acted upon. So up to a scalar multiple, the eigenvalues of A identify v uniquely. �

We conclude with a criterion for the simple branching that obtains (as we claimed) when
Gn = Sn. To make life easier, we will state it for semisimple (“nice”) algebras, which our V ρ

are. Therefore let M be a semisimple finite-dimensional C-algebra, and N ⊂M a subalgebra.

Definition 4.3. The centralizer ZN(M) of N in M is the set of elements of M that commute
with N . That is, ZN(M) := {α ∈M | ∀β ∈ N,αβ = βα}. Note that ZM(M) = Z(M).

Theorem 4.4 (Prop. 1.4). The centralizer ZN(M) is commutative if and only if, for any

ρ ∈ M̂ , the restriction ResMN V
ρ of an irrep of M to N has simple multiplicities.

Proof. We prove both implications, the second one by showing the contrapositive.

( =⇒ ) Assume that ZN(M) is commutative, and let V µ and V λ be irreps of M and N , re-
spectively. Consider the M -module HomN(V µ, V λ); it is also an irreducible ZN(M)-module.
Because ZN(M) is commutative, HomN(V µ, V λ) becomes an irreducible representation of
the abelian ZN(M), and must therefore be one-dimensional (or zero) by Schur’s lemma. By
Prop. 1.8, the multiplicity of µ in ResMN V

λ must be simple.

( ⇐= ) Conversely, suppose that ZN(M) is not commutative. Then there exists an irrep
of ZN(M) of dimension more than one, which is to say HomN(V µ, V λ) has dimension more
than one as well. Hence the multiplicity of µ in ResMN V

ρ is not simple. �
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