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Abstract

In 1986, Landweber, Ravenel, and Stong introduced a new family of generalized

cohomology theories. As these theories are in a sense defined by elliptic curves, they

were dubbed elliptic cohomology theories. In this thesis, we survey the mathematics

behind the construction of elliptic cohomology. Topics treated include the theory of

universal formal group laws and the Lazard ring, the formal group law of an elliptic

curve, the group law (up-to-homotopy) on CP∞, oriented and complex cobordism

theories, the universal elliptic genus, and Landweber’s exact functor theorem.
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Résumé

En 1986, Landweber, Ravenel, et Stong ont introduits une nouvelle famille de

théories cohomologique généralisés. Comme ces théories sont, d’une certaine manière,

définies par des courbes elliptiques, elles furent appelées théories de cohomologie ellip-

tique. Nous couvrons, dans cette thèse, les mathématiques soutenant la construction

de la cohomologie elliptique. Les sujets traités incluent la théorie des lois de groupe

formel universelles et l’anneau de Lazard, la loi de groupe formel d’une courbe el-

liptique, la loi de groupe (à homotopie près) sur CP∞, les théories de cobordisme

orienté et complexe, le genre elliptique universel, et le théorème du fonctor exact de

Landweber.
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Introduction

In 1986, Landweber, Ravenel, and Stong introduced a new family of generalized

cohomology theories called elliptic cohomology theories. This terminology is appro-

priate as these theories are in a sense defined by elliptic curves. In this thesis, we

seek to survey some of the mathematics invloved in the construction of these elliptic

cohomology theories.

At the moment, there is no intrinsic, geometric description of elliptic cohomol-

ogy. It is defined by as a specialization of another generalized cohomology theory

called complex cobordism theory. Both complex cobordism theory and the elliptic

cohomology theories are examples of complex-oriented cohomology theories. These

complex-oriented cohomology theories have formal group laws associated to them in

a natural way. That the specialization of complex cobordism theory to the elliptic

cohomology theories works relies heavily on properties of formal group laws of elliptic

curves, which turn out to be the formal group laws associated to elliptic cohomology

theories.

In Chapter 1, we discuss the basic theory of (1-dimensional, commutative) formal

group laws, including Lazard’s construction of a universal formal group law defined

over the polynomial ring Z[u2, u3, . . .].

In Chapter 2, we discuss how one may obtain a formal group law which represents

the addition law on a given elliptic curve in a neighbourhood of its neutral element.

We construct specific formal group laws corresponding to elliptic curves given by the

equations y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 and y2 = 1− 2δx2 + εx4.

xiii



xiv INTRODUCTION

Having discussed instances where formal group laws appear in algebraic geometry,

we turn our attention to formal group laws arising in topology. The appearance of

formal group laws in topology is a consequence of the fact that CP∞, the infinite-

dimensional complex projective space, is a group-up-to-homotopy. This fact is proved

in Chapter 3 using the theory of classifying spaces of vector bundles. Chapter 3 closes

with a discussion of characteristic (Stiefel-Whitney, Chern, and Pontryagin) classes

of vector bundles.

Chapter 4 begins with the definition of a generalized cohomology theory, and

continues with a brief discussion of complex-oriented cohomology theories. Loosely

speaking, these are generalized cohomology theories which behave well on the com-

plex projective spaces CPn. We then explain how the group law up-to-homotopy on

CP
∞ allows us to attach a formal group law to each complex-oriented cohomology

theory. Next, we treat in some detail several important complex-oriented cohomology

theories: oriented cobordism and complex cobordism theories. Our treatment of these

includes geometric descriptions of the oriented and complex bordism rings. Com-

plex cobordism theory is in a sense universal among complex-oriented cohomology

theories. Its formal group law is universal. It therefore seems feasible to attempt

the construction of other complex-oriented theories by somehow specializing complex

cobordism.

This specialization process is discussed in Chapter 5. The notions of oriented and

complex elliptic genera are introduced, and Landweber’s condition under which a

specialization of complex cobordism yields a generalized cohomology theory is stated.

This condition is phrased in terms of formal group laws. We then use special prop-

erties of formal group laws of elliptic curves to verify that the particular specializa-

tions of complex cobordism yielding the elliptic cohomology theories works. We then

proceed to discuss how the oriented and complex elliptic genera may be viewed as

functions assigning modular forms to manifolds. We are also able to interpret the

rings of coefficients of the elliptic cohomology theories as rings of modular forms.
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In Appendix A, we generalize Lazard’s construction of a 1-dimensional, universal

formal group law over Z[u2, u3, . . .] to the case of higher dimensions.





CHAPTER 1

One-dimensional formal group laws

1. Basic definitions

Let R be a commutative ring and let R[[x1, . . . , xn]] denote the ring of formal power

series in indeterminates x1 . . . xn with coefficients from R.

Definition 1.1. A one-dimensional, commutative formal group law with coeffi-

cients from R (or more briefly, a formal group law defined over R), is a formal power

series F (x, y) ∈ R[[x, y]] satisfying

(i) F (x, F (y, z)) = F (F (x, y), z)

(ii) F (x, y) = F (y, x)

(iii) F (x, 0) = x and F (0, y) = y

(iv) there exists a power series i(x) ∈ R[[x]] such that F (x, i(x)) = 0.

The power series i(x) of property (iv) is called the formal inverse.

Notice that if we write F (x, y) =
∑

m,n≥0 amnx
myn, then properties (ii) and (iii)

imply that F (x, y) has the form

(1.1) F (x, y) = x+ y +
∑
`≥1

a``x
`y` +

∑
n>m≥1

amn(xmyn + xnym).

Example 1.2. The formal additive group law is given by the power series Ga(x, y) =

x+ y. The formal inverse is given by i(x) = −x.

Example 1.3. The formal multiplicative group law is given by the power series

Gm(x, y) = x + y + xy. The formal inverse is given by i(x) = −x + x2 − x3 + · · · .

That Gm satisfies properties (i)-(iv) of Definition 1.1 is a routine verification.

1



2 1. ONE-DIMENSIONAL FORMAL GROUP LAWS

2. Manufacturing groups subordinate to formal group laws

Formal group laws resemble “group laws without any group elements”. Properties

(i)-(iv) of Definition 1.1 assert (formal) associativity, commutativity, existence of 0,

and existence of additive inverses, respectively.

Sometimes, it is possible to evaluate a formal group law on a collection of ele-

ments, turning that collection into a group. Let F (x, y) be a formal group law with

coefficients in R, and suppose A is a commutative, topological R-algebra such that

for every a, b ∈ A, F (a, b) and i(a) converge. If we define new addition and inversion

laws on A by

a+F b = F (a, b) and −F a = i(a),

the fact that (A,+F ,−F ) is an abelian group follows immediately from properties

(i)-(iv) of Definition 1.1.

Example 1.4. Let A be a commutative R-algebra and let N(A) denote the col-

lection of nilpotent elements of A. Then for any formal group law F (x, y) with

coefficients in R, and for any a, b ∈ N(A), F (a, b) and i(a) exist and are in N(A).

Thus, the above construction may be applied to define a new group law +F on N(A).

Example 1.5. Let R be a complete local ring (R = Zp, for instance) with maximal

ideal m, and let F (x, y) be a formal group law with coefficients in R. For any a, b ∈ m,

both F (a, b) and i(a) converge to an element of m, by the completeness of R. Thus,

F (x, y) induces a new group structure on m. This group will be denoted mF . Notice

that

mF
∼= lim←−

n

(m/mn)F , and m/mn = N(R/mn).

3. Homomorphisms and Logarithms

Definition 1.6. Let F (x, y) and G(x, y) be formal group laws with coefficients

in R, and let A be an R-algebra. A homomorphism ϕ : F → G defined over A is a

power series ϕ(x) ∈ A[[x]] such that ϕ(F (x, y)) = G(ϕ(x), ϕ(y)). We will say that ϕ
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is an isomorphism (defined over A) if there exists a homomorphism ψ : G→ F , also

defined over A, such that ψ(ϕ(x)) = ϕ(ψ(x)) = x. If ϕ : F → G and ψ : G→ H are

homomorphisms, then the composition of ϕ and ψ, ψϕ : F → H defined by ψϕ(x) =

ψ(ϕ(x)) is a homomorphism from F to H. We say ϕ is strict if ϕ(x) = x+ · · · .

This definition is natural in the following sense. Suppose A is an R-algebra on

which the formal group laws F (x, y) and G(x, y) can be imposed (in the sense of

Section 2), yielding abelian groups AF and AG. Let ϕ : F → G be a homorphism

defined over R with the property that for each a ∈ A, ϕ(a) converges to an element

of A. Then ϕ induces a homomorphism ϕ] : AF → AG of abelian groups by the rule

ϕ](a) = ϕ(a). If ψ : G→ H is another homomorphism of formal group laws, then we

have the identity (ψϕ)] = ψ]ϕ]. Thus, if F and G are isomorphic formal group laws,

then AF and AG are isomorphic abelian groups.

Let F and G be formal group laws defined over R and let Hom(F,G) be the

set of homomorphisms from F to G. One can verify directly that the addition law

(ϕ(x), ψ(x)) 7→ G(ϕ(x), ψ(x)) endows the set Hom(F,G) with the structure of an

abelian group. As usual, set EndF = Hom(F, F ). One can show that EndF has a

ring structure where the addition operation is as above, and multiplication is given

by composition of power series.

Example 1.7 (Continuation of Example 1.4). Now that we have the appropri-

ate notion of morphism, we observe that the correspondence A 7→ (N(A),+F ) of

Example 1.4 can be viewed as a functor F from the category of R-algebras to the

category of abelian groups. Suppose F and G are formal group laws defined over R,

and ϕ : F → G is a homomorphism, and let F and G be the corresponding abelian

group valued functors. Then ϕ induces a natural transformation Tϕ : F → G; for an

R-algebra A, the map a 7→ ϕ(a) is a well defined homomorphism from F(A) to G(A).

One can check that the transformation so defined is natural.

We can in fact show that all natural transformations between functors obtained

in the above manner are induced by homomorphisms of formal group laws. Let
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T : F → G be a natural transformation. We shall produce a homomorphism ϕ : F → G

such that T = Tϕ. Let f : A → B be a homomorphism of R-algebras. Then the

naturality of T gives us a commutative diagram of the form

(1.2)

F(A)
TA−−−→ G(A)

f

y yf
F(B) −−−→

TB
G(B).

We construct a power series ϕ(x) ∈ R[[x]] such that TA(a) = ϕ(a), for each a ∈ N(A).

Let An = R[x]/(xn), and for 1 ≤ k < n, define α
(n)
k ∈ R by the relations

TAn(x) ≡
n−1∑
k=1

α
(n)
k xk (mod xn).

Let π : An+1 → An be the unique R-algebra homomorphism sending x to x. Replacing

A, B, and f in (1.2) by An+1, An, and π, respectively, one sees that α
(n)
k = α

(n+1)
k when

1 ≤ k < n. Letting αk = α
(k+1)
k and ϕ(x) =

∑
k≥1 αkx

k, we have that TAn(x) = ϕ(x),

for all n.

Let B be an R-algebra, and let b ∈ N(B). We claim that TB(b) = ϕ(b). Let n ≥ 1

be such that bn = 0. Then there exists a unique f : An → B sending x to b. By the

naturality of T , we have

TB(b) = TB(f(x)) = f(TAn(x)) = f(ϕ(x)) = ϕ(f(x)) = ϕ(b).

Note that f(ϕ(x)) = ϕ(f(x)) since f is an R-algebra homomorphism and ϕ(x) is a

polynomial in the nilpotent element x of An.

It remains to show that ϕ is a homomorphism from F to G. For n ≥ 1, define

R− algebras Cn = R[x, y]/(xkyn−k | k = 0, . . . n). Computing in Cn, we see that

ϕ(F (x, y)) ≡ TCn(x+F y) = TCn(x) +G TCn(y) ≡ G(ϕ(x), ϕ(y)) (mod degree n).

Thus, the identity ϕ(F (x, y)) = G(ϕ(x), ϕ(y)) holds in R[[x, y]], and we have produced

a homomorphism ϕ such that T = Tϕ.
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Viewed slightly differently, we have essentially shown that the correspondence

F 7→ F embeds the category of formal group laws defined over R into the category of

abelian group valued functors of R-algebras.

Example 1.8. Let F (x, y) be a formal group law with coefficients in R. For each

integer m, we define a homomorphism [m] : F → F called the formal multiplication-

by-m map. We define [0](x) = 0, [m](x) = F (x, [m− 1](x)) for m ≥ 1, and [m](x) =

i([−m](x)) for m ≤ −1. It is easy to verify that [m] is in fact a homomorphism

of formal group laws defined over R and that the map from Z to EndF given by

m 7→ [m]F is a ring homomorphism.

If A is an R-algebra on which the formal group law F (x, y) can be imposed yielding

an abelian group AF , the the induced map [m]] is the usual multiplication-by-m map

on AF .

The following result, although trivial to prove, is important.

Lemma 1.9. For m ∈ Z, [m](x) = mx+ (higher order terms).

Example 1.10. If F (x, y) is a formal group law with coefficients in R, a ring of

characteristic p > 0, then the Frobenius map ϕ : F → F defined by ϕ(x) = xp is a

homomorphism of formal group laws defined over R.

Example 1.11. Let R be a ring of characteristic 0 containing Q as a subring.

Define log : Gm → Ga by x 7→ log(1 + x) where log(1 + x) is defined by the formal

Taylor series

log(1 + x) = x− x2

2
+
x3

3
− · · · .

This in fact defines a homomorphism, as

log(1 + Gm(x, y)) = log[(1 + x)(1 + y)]

= log(1 + x) + log(1 + y)

= Ga(log(1 + x), log(1 + y)).
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The log map is actually an isomorphism; one may similarly define an exponential

x 7→ expx− 1 map x 7→ expx− 1 which acts as the inverse to log.

Example 1.11 can actually be generalized.

Theorem 1.12. Let R be a Q-algebra, and let F (x, y) be a formal group law with

coefficients in R. Then there is a power series f(x) ∈ R[[x]] of the form f(x) = x+· · · ,

such that

f(F (x, y)) = f(x) + f(y).

Proof. Let

(1.3) f(x) =

∫ x

0

dt

F2(t, 0)

where F2(x, y) = ∂F/∂y. That f(x) has leading term x is immediate from equa-

tion (1.3). Let w(x, y) = f(F (x, y)) − f(x) − f(y). We want to show that w = 0.

Differentiating the identity F (F (x, y), z) = F (x, F (y, z)) with respect to z and eval-

uating the derivative at z = 0, we get

(1.4) F2(F (x, y), 0) = F2(x, F (y, 0))F2(y, 0).

On the other hand,

∂w

∂y
= f ′(F (x, y))F2(x, y)− f ′(y)

=
F2(x, y)

F2(F (x, y), 0)
− 1

F2(y, 0)
(by Equation 1.3)

= 0 (by Equation 1.4).

Symmetrically, ∂w/∂x = 0, so w is constant. Noting that w(0, 0) = 0, the proof is

complete. �

Notation 1.13. We will denote the power series f(x) of Theorem 1.12 by logF (x).

Corollary 1.14. Let F (x, y) be a formal group law with coefficients in R, a ring

of characteristic 0. Then F is strictly isomorphic to Ga over R⊗Q.
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Proof. By the previous theorem, logF : F → Ga is a strict isomorphism. �

4. Universal formal group laws

Let R and S be rings and ϕ : R→ S be a ring homomorphism. Then ϕ induces a

map ϕ∗ : R[[x, y]] → S[[x, y]] by applying ϕ to each coefficient of a given power series

in R[[x, y]].

Definition 1.15. Let R be a ring and A be an R-algebra. A universal formal

group law over A relative to the base ring R is a formal group law F u(x, y) with

coefficients in A such that for any R-algebra B and formal group law G(x, y) defined

over B, there is a unique R-algebra homomorphism ϕ : A→ B such that ϕ∗F
u(x, y) =

G(x, y).

Suppose that F u
1 (x, y) and F u

2 (x, y) formal group laws defined over R-algebras A1

and A2, respectively. Further, suppose that F u
1 (x, y) and F u

2 (x, y) are both universal

relative to the base ring R. By the universality of F u
1 and F u

2 , there exist unique

R-algebra homomorphisms ϕ : A1 → A2 and ψ : A2 → A1 such that ϕ∗F
u
1 = F u

2

and ψ∗F
u
2 = F u

1 . The standard argument shows that ϕ and ψ are mutually inverse

isomorphisms. That is, the pair (F u(x, y), A) is unique, up to unique isomorphism.

Proposition 1.16. Let R be a ring. Then there is an R-algebra LR and a uni-

versal formal group law over LR, relative to the base ring R.

Proof. We construct an R-algebra LR and a formal group law FR,u(x, y) over

LR, universal relative to the base ring R. Let L′R = R[αmn | m,n ≥ 0] where the

αmn are indeterminates. Let F (x, y) =
∑

m,n≥0 αmnx
myn ∈ L′R[[x, y]]. To say that

F (x, y) is a formal group law is to say that the coefficients αmn satisfy a collection

of polynomial identities Pβ({αmn}), β running over some index set, coming from the

associativity and commutativity axioms. Let I be the ideal of L′R generated by the

Pβ({αmn}), LR = L′R/I and π : L′R → LR be the canonical projection. We claim that

FR,u(x, y) = π∗F (x, y) is a universal formal group law over LR. Let A be an R-algebra
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and G(x, y) =
∑

m,n≥0 bmnx
myn be a formal group law with coefficients in A. Define

an R-algebra homomorphism ϕ′ : L′R → A by ϕ′(αmn) = bmn. As G(x, y) is a formal

group law, the bmn satisfy the identities Pβ({bmn}). Thus, I ⊆ Kerϕ′, and ϕ′ induces

an R-algebra homomorphism ϕ : LR → A which satisfies ϕ∗F
R,u(x, y) = G(x, y). The

uniqueness of the map ϕ is a consequence of the fact that the set {π(αmn)} generates

LR. �

The ring LR (unique up to R-algebra isomorphism) is called the Lazard ring for

R-algebras, after M. Lazard, one of the originators of the theory of formal group

laws. The Lazard ring for Z-algebras will be refered to simply as the Lazard ring and

denoted by L.

The following remarkable theorem, which we prove in the next section, determines

the isomorphism class of L. This theorem is due to Lazard, see [22].

Theorem 1.17. There exists a universal formal group law (relative to the base

ring Z) defined over the polynomial ring Z[u2, u3, . . . ].

Corollary 1.18. Let R be any ring. Then there exists a universal formal group

law, relative to the base ring R, defined over the ring R[u2, u3, . . .] ∼= L⊗Z R.

Proof. Let F u(x, y) a universal formal group law defined over Z[u2, u3, . . . ]. Let

h : Z[u2, u3, . . . ]→ R[u2, u3, . . . ] be the unique ring homomorphism fixing each ui and

define FR,u(x, y) = h∗F
u(x, y). We claim that FR,u(x, y) is universal formal group

law relative to the base ring R. Let G(x, y) be a formal group law defined over an

R-algebra A. By the universality of the formal group law F u(x, y), there exists a

unique ring homomorphism ϕ : Z[u2, u3, . . . ] → A such that G(x, y) = ϕ∗F
u(x, y).

Let ϕ be the unique R-algebra homomorphism from R[u2, u3, . . . ] into A such that

hϕ = ϕ. Then it is clear that ϕ∗F
R,u(x, y) = G(x, y). Suppose ψ : R[u2, u3, . . .]→ A

was another R-algebra homomorphism such that ψ∗F
R,u = G. Then (ψh)∗F

u =

ψ∗h∗F
u = ψ∗F

R,u = G. As ϕ is the unique ring homomorphism with that property,
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we have ψh = ϕ. It thus follows from the uniqueness property of ϕ that ψ = ϕ.

Therefore, ϕ is the unique R-algebra homomorphism such that ϕ∗F
R,u = G. �

Remark 1.19. Using logarithms, it is easy to show directly that LQ is isomorphic

toQ[u2, u3, . . . ]. Let F (x, y) be the formal group law overQ[u2, u3, . . . ] with logarithm

f(x) = x+ u2x
2 + u3x

3 + · · · . We claim that F (x, y) is universal with respect to the

base ring Q. To see this, let G(x, y) be a formal group law defined over a Q-algebra A.

Let g(x) = x+b2x
2 +b3x

3 +· · · be its logarithm and note that g(x) is also defined over

A (as A is a Q-algebra). Then the Q-algebra homomorphism ϕ : Q[u2, u3, . . . ] → A

defined by ϕ(ui) = bi, i ≥ 2, is clearly the unique map sending F (x, y) into G(x, y).

This observation may serve to motivate Theorem 1.17.

5. Structure of the Lazard Ring

Our ultimate goal in this section is to prove Theorem 1.17, that the Lazard ring,

L, is isomorphic to Z[u2, u3, . . . ]. We do this by constructing a universal formal group

law over Z[u2, u3, . . . ]. The material in this section is from [22]. Other treatments

are given in [23], [1, Chapter II, §7], and [34, Appendix 2]. A more explicit method

for constructing universal formal group laws over Z[u2, u3, . . . ] is given in [15, Ch. I]

To facilitate this construction, we introduce more primitive structures – formal

group law buds of order n (more briefly, n-buds). An n-bud is simply a formal power

series which satisfies the axioms of a formal group law, modulo degree n+ 1. We will

show that for each n ≥ 2, one may construct (inductively) a universal n-bud Fn(x, y)

over the ring Z[u2, . . . , un]. This construction can be carried out in such a way that

Fn+1(x, y) extends Fn(x, y), so that the limit F (x, y) = limn→∞ Fn(x, y) make sense.

F (x, y) is our universal group law defined over Z[u2, u3, . . . ].

The key tool in our arguments is a result known as the Lazard Comparison Lemma,

stated below as Theorem 1.25. This lemma regulates how the process of extending

an n-bud can proceed.
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5.1. Buds.

Definition 1.20. Let R be a ring and let F (x, y) ∈ R[[x, y]] and n ≥ 1. We say

that F (x, y) is a formal group law bud1 of order n defined over R (or briefly, an n-bud)

if F (x, y) satisfies the defining properties of a formal group law, mod degree n + 1.

That is,

(i) F (x, 0) = x and F (0, y) = y,

(ii) F (x, y) ≡ F (y, x) (mod degree n+ 1),

(iii) F (F (x, y), z) ≡ F (x, F (y, z)) (mod degree n+ 1).

A formal group law G(x, y) is an n-bud, for any n. We often think of an n-bud as

a polynomial of degree n by ignoring terms of higher degree. Let F (x, y) and G(x, y)

be m and n-buds, respectively, with m < n. We say that G(x, y) extends F (x, y) if

F (x, y) ≡ G(x, y) (mod degree m+ 1).

Most of the notions which we have discussed for formal group laws have natural

bud analogues. In particular, we have the notion of a universal n-bud. We say that

an n-bud F u
n (x, y) defined over a ring R is universal if for any n-bud G(x, y) defined

over a ring S, there is a unique ring homomorphism ϕ : R→ S such that

G(x, y) ≡ ϕ∗F
u
n (x, y) (mod degree n+ 1).

Our strategy for constructing a universal formal group law is as follows. We

construct inductively a sequence F u
n of universal n-buds, where F u

n is defined over a

ring An. This construction is performed in such a way that An ⊆ An+1 and F u
n+1

extends F u
n . Consequently, the limit F u(x, y) = limn→∞ F

u
n (x, y) exists and is a

universal formal group law defined over the ring A = lim−→An. For suppose G is a

formal group law defined over a ring B. Since G may be viewed as an n-bud for each

n, there exist unique maps ϕn : An → B such that (ϕn)∗F
u
n ≡ G (mod degree n+ 1).

The map ϕn+1 extends ϕn by the uniqueness of ϕn. Therefore, we may let ϕ =

limn→∞ ϕn : A→ B. If is clear from its construction that ϕ∗F
u = G.

1French: bourgeon
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To successfully execute this strategy, we must first describe the extension process.

To ease the notation, let

∆F (x, y, z) = F (F (x, y), z)− F (x, F (y, z)),

and ∆kF be the homogeneous component of ∆F of degree k.

Lemma 1.21. Let F (x, y) be an n-bud over R. Then F (x, y) can be extended to

an (n+ 1)-bud over R if and only if there exists a homogeneous polynomial H(x, y) ∈

R[x, y] of degree n+ 1 such that δH = ∆n+1F (x, y, z), where

δH = H(y, z)−H(x+ y, z) +H(x, y + z)−H(x, y).

Proof. We may assume that F (x, y) is a polynomial of degree n. F (x, y) can

be extended to an (n + 1)-bud if and only if we can find a symmetric polynomial

H(x, y), homogeneous of degree n + 1, such that ∆n+1(F + H) = 0. Set F ′(x, y) =

F (x, y) +H(x, y). A direct computation reveals that

∆n+1F
′(x, y, z) = ∆n+1F (x, y, z)− δH(x, y, z).

The lemma follows. �

Let Q be an (n− 1)-bud, and suppose F and G are n-buds extending Q. Must F

and G be related in any nice way? The following corollary to Lemma 1.21 answers this

question affirmatively; it describes the restrictions involved in the extension process.

This result will be refined later.

Corollary 1.22. Let F and G be n-buds defined over a ring R with F (x, y) ≡

G(x, y) (mod degree n). Then there exists a homogeneous polynomial H(x, y) ∈

R[x, y] of degree n satisfying

(i) δH(x, y, z) = H(y, z)−H(x+ y, z) +H(x, y + z)−H(x, y) = 0,

(ii) H(x, y) = H(y, x),
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such that

F (x, y) ≡ G(x, y) +H(x, y) (mod degree n+ 1).

Proof. View G(x, y) as an (n − 1)-bud. Since F (x, y) is an n-bud extending

G(x, y), Lemma 1.21 asserts the existence of a homogeneous polynomial H(x, y) ∈

R[x, y] of degree n with

F (x, y) ≡ G(x, y) +H(x, y) (mod degree n+ 1)

and δH = ∆nG. But since G(x, y) is an n-bud, ∆nG = 0. The above congruence also

shows that H(x, y) = H(y, x). This completes the proof. �

Definition 1.23. We say that a homogeneous polynomial H satisfies Lazard’s

conditions if H satisfies conditions (i) and (ii) in the statement of Corollary 1.22.

We wish to prove a result, due to Lazard, which describes completely (and simply!)

all polynomials which satisfy Lazard’s conditions. This result gives us the control we

need to proceed with our construction of universal n-buds and formal group laws. We

treat the one-dimensional and N -dimensional cases separately.

5.2. The Lazard comparison lemma. In this section, we give a complete

description of all polynomials H(x, y) satisfying Lazard’s conditions. This will allow

us to deduce the Lazard Comparison Lemma.

Let ν(n) be p if n is a power of p, and 1 otherwise. For n ≥ 1, we define the

polynomials

Bn(x, y) = (x+ y)n − xn − yn,

Cn(x, y) =
1

ν(n)
Bn(x, y) =

1

ν(n)
[(x+ y)n − xn − yn].

Theorem 1.24. Let H(x, y) ∈ R[x, y] be a homogeneous polynomial of degree n

satisfying Lazard’s conditions. The there exists some α ∈ R such that

H(x, y) = αCn(x, y).
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Combining this result with Corollary 1.22, we obtain the following pleasing result.

Theorem 1.25 (1-Dimensional Lazard Comparison Lemma). Let F (x, y) and

G(x, y) be n-buds over R with F (x, y) ≡ G(x, y) (mod degree n). Then there exists

some a ∈ R with

F (x, y) ≡ G(x, y) + aCn(x, y) (mod degree n+ 1).

The proof of Theorem 1.24 which we give is due to Fröhlich, [12, Chapter 3, §1].

In this proof, most of the computations take place under the assumption that the

ring R is in fact a field. The characteristic zero case is easy; the case of a field of

positive characteristic requires a bit more analysis.

Let H be a homogeneous polynomial of degree n; write

H(x, y) =
n∑
`=0

a`x
`yn−`.

It is easy to check that H satisfies Lazard’s conditions if and only if a` = an−`,

a0 = an = 0, and for any i, j, k > 0 with i+ j + k = n, we have

(1.5) ai+j

(
i+ j

j

)
= aj+k

(
j + k

k

)
.

We derive a useful formula. Suppose H satisfies Lazard’s conditions. Then setting

i = 1 and k = n− 1− j in (1.5), we see that

(1.6) a1+j(1 + j) = a1

(
n− 1

j

)
,

for j = 1, . . . , n− 2.

5.2.1. Fields of characteristic zero. Theorem 1.24 can be deduced easily in the

case where R = F , a field of characteristic zero. Let H be as above. Equation (1.6)

(with ` = j + 1) implies that for ` = 0, . . . , n− 1,

(1.7) a` =
a1

`

(
n− 1

`− 1

)
=
a1

n

(
n

`

)
.

Thus, H = a1

n
Cn, so verifying the theorem for fields of characteristic zero.
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5.2.2. Fields of positive characteristic. Let R = F , a field of characteristic p > 0,

and let H be as above, satisfying Lazard’s conditions. The following observation

about the polynomial Cn, modulo p, is crucial.

Lemma 1.26. Let m ≥ 2. Then

Cpm(x, y) ≡ Cm(xp, yp) (mod p).

Proof. First, suppose m is not a power of p. Then Cmp = Bmp and Cm = Bm.

Therefore, working modulo p, we have

Bmp(x, y) = (x+ y)pm − xpm − ypm

≡ (xp + yp)m − (xp)m − (yp)m

= Bm(xp, yp).

It remains to show that for r ≥ 2, the congruence

Cpr(x, y) ≡ Cpr−1(xp, yp) (mod p)

holds. We have

Bpr−1(xp, yp) = [(x+ y)p −Bp(x, y)]p
r−1 − xpr − ypr

= Bpr(x, y) +

pr−1∑
k=1

(−1)k
(
pr−1

k

)
Bp(x, y)k(x+ y)p(p

r−1−k).

As r ≥ 2, the binomial coefficient
(
pr−1

k

)
is divisible by p, for k = 1, . . . , pr−1. Also,

each coefficient of Bp(x, y) is divisible by p. Therefore,

Bpr(x, y) ≡ Bpr−1(xp, yp) (mod p2).

Dividing by p = ν(pr) = ν(pr−1), we obtain the desired congruence. �

In light of the above lemma, the following lemma must hold if Theorem 1.24 does.
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Lemma 1.27. Let H be a homogeneous polynomial over F of degree pm which

satisfies Lazards conditions. Then there exists a homogeneous polynomial h over F

of degree m such that

H(x, y) = h(xp, yp).

Further, h satisfies Lazard’s conditions.

Proof. Write

H(x, y) =

pm∑
i=0

aix
iypm−i.

Suppose p - i; we will show that ai = 0. Write i = rp+ s where 1 ≤ s ≤ p− 1. Since

ai = apm−i, we may assume without loss of generality that r ≥ 1. The polynomial H

satisfies Lazard’s conditions, so setting i = rp, j = s, and k = p(m− r),

arp+s

(
rp+ s

s

)
= ap(m−r)

(
p(m− r)

s

)
.

As 1 ≤ s ≤ p − 1, the binomial coefficient
(
p(m−r)

s

)
is divisible by p. On the other

hand, (
rp+ s

s

)
=

(rp+ s)(rp+ s− 1) · · · (rp+ 1)

s(s− 1) · · · 1

is evidently not divisible by p. Therefore, we must have ai = arp+s = 0. Consequently,

h exists and is given by the formula

h(x, y) =
m∑
i=1

apix
iym−i.

To say that h satisfies Lazard’s conditions is to say that the coefficients api satisfy

various identities. That these identities are satisfied follows from the fact that the

coefficients of H satisfy those identities. �

We may now prove Theorem 1.24 for R = F , a field of characteristic p > 0. We will

initially consider several special cases. Assume first that p - n. Let ` ∈ {1, . . . , n−1}.
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If p - `, then equation (1.7) is still valid. If p | `, then as we assume p - n, we must

have p - n− `. Thus, by equation (1.7) with ` replaced by n− `, we have

a` = an−` =
a1

n

(
n

n− `

)
=
a1

n

(
n

`

)
.

Therefore, in the case p - n, we still have H = a1

n
Cn.

The final special case we consider is the case n = p. In this case, for each ` =

1, . . . , n− 1, we have p - i, so

a` =
a1

i

(
n− 1

i− 1

)
.

Therefore,

H(x, y) = a1

n−1∑
`=1

1

`

(
n− 1

`− 1

)
x`yn−` = a1C̃n(x, y),

where the polynomial C̃n is defined by the above equation. It is clear that C̃n satisfies

Lazard’s conditions.

It follows from our argument that any homogeneous polynomial of degree n defined

over F which satisfies Lazard’s conditions is a multiple of C̃n. Thus, in particular,

Cn = βC̃n for some β ∈ F . We conclude that H = a1β
−1Cn.

For the remaining case n = mp, with m ≥ 2, we proceed by induction. By

Lemma 1.27, there is a homogeneous polynomial h of degree m = n/p satisfying

Lazard’s conditions such that H(x, y) = h(xp, yp). But by induction, there is some

γ ∈ F such that h = αCm. An application of Lemma 1.26 gives Cn(x, y) = Cm(xp, yp)

in F . Thus, we have H = αCn, completing the argument.

5.2.3. Completion of the proof: General ring R. Let R be a ring and let H be

a homogeneous polynomial over R of degree n which satisfies Lazard’s conditions.

Notice that Lazard’s conditions involve the multiplicative structure of R only to the

extent of its Z-module structure. We thus treat H as a “polynomial over R+”, the

additive group of R, where by definition, a polynomial (in two variables) over an

abelian group A is an element of A⊗ Z[x, y].
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We translate Theorem 1.24 into the language of polynomials over abelian groups

so that we may invoke the structure theory of finitely generated abelian groups.

Theorem 1.28. Let H be a homogeneous polynomial of degree n over an abelian

group A which satisfies Lazard’s conditions. Then there is some α ∈ A such that

H = αCn.

Remark 1.29. Note that since Cn has integer coefficients, the expression αCn

makes sense in the abelian group A⊗ Z[x, y].

Proof. Since H is defined over the subgroup of A generated by its coefficients,

we may assume A is finitely generated.

Since the theorem holds for polynomials defined over Q, and the polynomials Cn

are primitive polynomials with coefficients in Z, the theorem holds for polynomials

defined over Z. That it also holds for polynomials defined over Z/prZ follows from

the following lemma.

Lemma 1.30. Let H be a homogeneous polynomial of degree n defined over the

abelian group Z/prZ. Suppose H satisfies Lazard’s conditions. Then there exists some

α ∈ Z/prZ such that H = αCn.

Proof. We proceed by induction on r. The r = 1 case holds by the above lemma,

as Z/pZ is a field. Suppose the conclusion of the lemma holds for r, that is,

H(x, y) ≡ αCn(x, y) + prK(x, y) (mod pr+1).

Writing this congruence as

prK(x, y) ≡ H(x, y)− αCn(x, y) (mod pr+1),

it is evident that K satisfies Lazard’s conditions, modulo p. Thus, we may find some

β such that

K(x, y) ≡ βCn(x, y) (mod p).
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Therefore,

H(x, y) ≡ (α + prβ)Cn(x, y) (mod pr+1),

completing the proof. �

It is obvious that if the theorem holds for abelian groups A and B, it also holds

for their direct sum. Therefore, by invoking the structure theory of finitely generated

abelian groups, we are done. �

5.3. Construction of a universal, one-dimensional formal group law.

The following lemma describes the inductive construction of universal formal group

law buds of order n, defined over Z[u2, . . . , un]. By a limiting process, this can be

extended to construction of a universal formal group law over the ring Z[u2, u3, . . .].

We introduce the shorthand

A = Z[u2, u3, . . .], An = Z[u2, . . . , un] for n ≥ 2.

Lemma 1.31. One may construct two sequences of power series, Fn(x, y) and

fn(x), satisfying the following conditions for all n ≥ 2:

(i) Fn(x, y) ∈ An[[x, y]], fn(x) ∈ (An ⊗Q)[[x]]

(ii) Fn(x, y) ≡ Fn+1(x, y) and fn(x) ≡ fn+1(x) (mod degree n+ 1)

(iii) fn(Fn(x, y)) ≡ fn(x) + fn(y) (mod degree n+ 1)

(iv) Fn(x, y)− unCn(x, y) ∈ An−1[[x, y]]

Remark 1.32. Conditions (ii) and (iii) say that Fn(x, y) is an increasing sequence

of formal group law buds with given by the increasing sequence of “logarithm buds”

fn(x) (by ‘increasing’, we mean that the (n + 1)-st series extends the n-th). The

purpose of condition (iv) is to ensure that F (x, y) is “free enough” to satisfy the

universality property.

Proof. We proceed by induction on n. Define

F2(x, y) = x+ y + u2xy, f2(x, y) = x− u2

2
x2.
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One may show directly that F2(x, y) and f2(x, y) satisfy (i)-(iv).

Now assume we have constructed F2(x, y), . . . , Fn(x, y) and f2(x), . . . , fn(x) satis-

fying (i)-(iv). We may assume that each Fr(x, y) and fr(x), 2 ≤ r ≤ n, is a polynomial

of (total) degree r.

Let Φn(x, y) be the formal group law with logarithm fn(x), that is,

(1.8) Φn(x, y) = f−1
n (fn(x) + fn(y)).

By (iii) and our assumption that Fn(x, y) is a polynomial of degree n,

(1.9) Φn(x, y) ≡ Fn(x, y) +H(x, y) (mod degree n+ 2),

whereH(x, y) is the homogeneous component Φn(x, y) of degree n+1. By Lemma 1.21,

δH(x, y, z) = ∆n+1F (x, y, z) ∈ An[x, y, z].

From the fact that Φn(x, y) is a formal group law, it follows that, that H(x, y) =

H(y, x). Although H(x, y) may not be defined over An (Φn is defined over An ⊗ Q,

not necessarily over An), we may find a positive integer k such that K(x, y) :=

kH(x, y) has coefficients in An. Let An = An/kAn, and let K(x, y) denote the image

of K(x, y) in An. From the above discussion, it follows that δK(x, y, z) = 0 and

K(x, y) = K(y, x). Thus, by Theorem 1.24, we may find some a ∈ An with

K(x, y) = aCn+1(x, y).

Let a ∈ An be a lift of a. Then the above relation says that there exists some

H ′(x, y) ∈ An[x, y] with

(1.10) kH(x, y) = aCn+1(x, y) + kH ′(x, y).

Define Fn+1(x, y) and fn+1(x) by

Fn+1(x, y) = Fn(x, y) +H ′(x, y) + un+1Cn+1(x, y),(1.11)

fn+1(x) = fn(x)− 1

ν(n+ 1)
(un+1 −

a

k
)xn+1.(1.12)
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It is clear that with the above definitions, Fn+1 and fn+1(x) satisfy conditions (i), (ii),

and (iv) of the lemma. It remains to verify (iv):

Let β = un+1 − a/k. Combining (1.9), (1.10), and (1.11) we see that

(1.13) Fn+1(x, y) ≡ Φn(x, y) + βCn+1(x, y) (mod degree n+ 2).

Replacing x by Fn+1(x, y) in (1.12), we get

(1.14) fn+1(Fn+1(x, y)) = fn(Fn+1(x, y))− β

ν(n+ 1)
Fn+1(x, y)n+1.

Computing (mod degree n+ 2), we see that

fn(Fn+1(x, y)) ≡ fn(Φn(x, y) + βCn+1(x, y)) by (1.13)

≡ fn(Φn(x, y)) + βCn+1(x, y)

≡ fn(x) + fn(y) + βCn+1(x, y)(1.15)

and Fn+1(x, y)n+1 ≡ (x+ y)n+1

= xn+1 + yn+1 +Bn+1(x, y).(1.16)

Combining (1.14), (1.15), and (1.16), we have, mod degree n+ 2,

fn+1(Fn+1(x, y)) ≡ fn(x)− β

ν(n+ 1)
xn+1 + fn(y)− β

ν(n+ 1)
yn+1

+ βCn+1(x, y)− βBn+1(x, y)

ν(n+ 1)

= fn+1(x) + fn+1(y).

So (iv) holds for Fn+1(x, y) and fn+1(x). This completes the proof of the lemma. �

We now verify that we have in fact constructed universal objects.

Theorem 1.33. Let n ≥ 2. Then the Fn(x, y) (as constructed above) is a universal

formal group law bud of order n. More precisely, if G(x, y) is a formal group law

bud of order n defined over a ring R, there is a unique ring homomorphism ϕn :

Z[u2, . . . , un]→ R such that G(x, y) ≡ (ϕn)∗Fn(x, y) (mod degree n+ 1).
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Proof. Again, we proceed by induction on n. Let G(x, y) be a 2-bud defined

over a ring R. Then

G(x, y) ≡ x+ y + bxy (mod degree 3),

for some b ∈ R. Defining ϕ2 by the rule ϕ2(u2) = b, we have G(x, y) ≡ (ϕ2)∗F2(x, y)

(mod degree 3).

Now suppose that the theorem holds for an arbitrary n ≥ 2. Let G(x, y) be an

(n + 1)-bud defined over R. Treating G(x, y) as an n-bud, our induction hypothesis

asserts the existence of a ring homomorphism ϕn : Z[u2, . . . , un] → R such that

G(x, y) ≡ (ϕn)∗Fn(x, y) (mod degree n+ 1).

Extend ϕn to a map ϕ′n : Z[u2, . . . un+1]→ R by defining ϕ′n(un+1) = 0. It is easy

to see that

(ϕ′n)∗Fn+1(x, y) ≡ G(x, y) (mod degree n+ 1).

Since both (ϕ′n)∗Fn+1(x, y) and G(x, y) are (n + 1)-buds, the Lazard Comparison

Lemma asserts the existence of some a ∈ R such that

(1.17) G(x, y) ≡ (ϕ′n)∗Fn+1(x, y) + aCn+1(x, y) (mod degree n+ 2).

By its construction (see (1.11)),

Fn+1(x, y) = Fn(x, y) +H ′(x, y) + un+1Cn+1(x, y),

where H ′(x, y) ∈ Z[u2, . . . , un] is homogeneous of degree n+ 1. Thus,

(1.18) (ϕ′n)∗Fn+1(x, y) = (ϕ′n)∗(Fn(x, y) +H ′(x, y)).

Let ϕn+1 extend ϕn to a map from Z[u2, . . . , un+1] to R by setting ϕn+1(un+1) = a.

Noting that ϕn+1 and ϕ′n agree on Z[u2, . . . , un], we see that

(ϕn+1)∗Fn+1(x, y) = (ϕn+1)∗(Fn(x, y) +H ′(x, y)) + ϕn+1(un+1)Cn+1(x, y)

= (ϕ′n)∗Fn+1(x, y) + aCn+1(x, y) by (1.18)

≡ G(x, y) (mod degree n+ 2) by (1.17).
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This completes the argument. �

Corollary 1.34. Let Fn(x, y) be as above and let F (x, y) = limn→∞ Fn(x, y).

Then F (x, y) is a universal formal group law defined over Z[u2, u3, . . .].

Proof. Let G(x, y) be a formal group law defined over a ring R. Treating G(x, y)

as an n-bud for each n ≥ 2, we obtain a sequence of mappings ϕn as in the above

theorem. Letting ϕ = limn→∞ ϕn (limit corresponding to the chain of inclusions

Z[u2, . . . , un] ⊆ Z[u2, . . . , un+1]), it is clear that ϕ∗F (x, y) = G(x, y). �

Since the universal n-bud extends to the universal (n + 1)-bud, the following

becomes clear.

Corollary 1.35. Let G be an n-bud defined over a ring R. Then G can be

extended to an (n+ 1)-bud, and in fact to a formal group law defined over R.

6. Formal group laws in characteristic p

In this section, we introduce an important invariant of formal group laws de-

fined over rings of characteristic p called height. We begin by making the following

observation.

Lemma 1.36. Let f : F → G be a homomorphism of formal group laws defined

over a ring R of characteristic p. Then there exists a unique integer h ≥ 0 and a

power series g(x) ∈ R[[x]] satisfying g′(0) 6= 0 such that f(x) = g(xp
h
).

Proof. Write f(x) = a1x + a2x
2 + · · · . If f ′(0) 6= 0, take h = 0 and g = f .

Suppose that f ′(0) = 0. Differentiating the relation f(F (x, y)) = G(f(x), f(y)) with

respect to y and setting y = 0, we obtain

f ′(x)
∂F

∂y
(x, 0) =

∂G

∂y
(f(x), 0)f ′(0) = 0.

Note that (∂F/∂y)(x, 0) = 1 + · · · , so it is a unit in R[[x]]. Therefore, f ′(x) is

identically zero, that is, nan = 0 for all n ≥ 1. As R has characteristic p, if p - n, we

must have an = 0. Letting f1(x) =
∑

n≥0 apnx
n, it follows that f(x) = f1(xp). We



6. FORMAL GROUP LAWS IN CHARACTERISTIC p 23

now interpret f1 as a homomorphism of formal group laws. Let ϕ : R → R be the

p-th power Frobenius endomorphism, and let F (ph) = ϕ∗F . Then the power series xp

defines a homomorphism from F to F (p). We claim that f1 is a homomorphism from

F (p) to G. Indeed,

f1(F (p)(xp, yp)) = f1(F (x, y)p) = f(F (x, y))

= G(f(x), f(y)) = G(f1(xp), f1(yp)).

If f ′1(0) 6= 0, then take h = 1 and g = f1. Otherwise, repeat the above argument

replacing f by f1 and F by F (p). �

Remark 1.37. Thus, a homomorphism f : F → G can be expressed as the com-

position F → F (ph) → G of a Frobenius map and a map g with g′(0) 6= 0.

Definition 1.38. Let f : F → G be a homomorphism of formal group laws

defined over a ring R of characteristic p. As in Lemma 1.36, write f(x) = g(xp
h
),

with g′(0) 6= 0. The integer h is called the height of f , and denoted ht f . We define

the height of a formal group law F to be the height ht[p]F of its multiplication-by-p

endomorphism. We denote the height of F by htF . If [p]F ≡ 0 (mod p), we define

htF to be ∞. Note that htF ≥ 1.

Example 1.39. Consider the additive group Ga(x, y) = x+y. Then [p]Ga = px, so

ht Ga =∞. Consider the multiplicative group, which we write in the form Gm(x, y) =

(1 + x)(1 + y) − 1. An easy induction verifies that [m]Gm(x) = (1 + x)m − 1, and

consequently, one has [p]Gm ≡ xp (mod p). Therefore, ht Gm = 1.

It is easy to see that htF is an isomorphism invariant of F . In fact, it a complete

isomorphism invariant for formal group laws defined over a separably closed field of

characteristic p.

Theorem 1.40. Let F and G be formal group laws defined over the separably

closed field k of characteristic p. Then F and G are isomorphic (over k) if and only

if htF = htG.
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For a proof of this theorem, see [12, Chapter III, §2].



CHAPTER 2

The formal group law of an elliptic curve

In this section, we investigate how the addition law on an elliptic curve may be

described locally by a formal group law.

1. Theoretical considerations

Let E be an elliptic curve defined over a field K, with additive structure given by

the rule α : E ×E → E and the neutral element O. Pick a uniformizer z for E at O.

Then by the Cohen Structure Theorem, the completed local ring ÔE,O is isomorphic

to the power series ring K[[z]]. Noting the isomorphism

(2.1) ÔE×E,(O,O)
∼= ÔE,O ⊗̂

K
ÔE,O

∼= K[[1 ⊗̂ z, z ⊗̂ 1]],

we may view α∗z as a power series F (1 ⊗̂ z, z ⊗̂ 1) in K[[1 ⊗̂ z, z ⊗̂ 1]]. We claim that

F is a formal group law. We show how F inherits the required associativity property

from the associativity of α. The verification of the other axioms proceeds similarly.

By associativity of addition on E, the diagram

E × E × E α×id−−−→ E × E

id×α
y yα

E × E −−−→
α

E

commutes.

25
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Passing to local rings at the neutral elements and using the isomorphism (2.1),

we obtain the following commutative diagram.

K[[1 ⊗̂ 1 ⊗̂ z, 1 ⊗̂ z ⊗̂ 1, z ⊗̂ 1 ⊗̂ 1]]
α∗⊗̂id←−−− K[[1 ⊗̂ z, z ⊗̂ 1]]

id⊗̂α∗
x xα∗

K[[1 ⊗̂ z, z ⊗̂ 1]] ←−−−
α∗

K[[z]].

Computing, we see that

(α∗ ⊗̂ id)(α∗z) = (α∗ ⊗̂ id)(F (1 ⊗̂ z, z ⊗̂ 1))

= F (1 ⊗̂ α∗z, z ⊗̂ 1 ⊗̂ 1)

= F (1 ⊗̂ F (1 ⊗̂ z, z ⊗̂ 1), z ⊗̂ 1 ⊗̂ 1)

= F (F (1 ⊗̂ 1 ⊗̂ z, 1 ⊗̂ z ⊗̂ 1), z ⊗̂ 1 ⊗̂ 1).

One verifies similarly that

(id ⊗̂ α∗)(α∗z) = F (1 ⊗̂ 1 ⊗̂ z, F (1 ⊗̂ z ⊗̂ 1, z ⊗̂ 1 ⊗̂ 1)).

It follows from the commutativity of the above diagram that

F (F (1 ⊗̂ 1 ⊗̂ z, 1 ⊗̂ z ⊗̂ 1), z ⊗̂ 1 ⊗̂ 1) = F (1 ⊗̂ 1 ⊗̂ z, F (1 ⊗̂ z ⊗̂ 1, z ⊗̂ 1 ⊗̂ 1)),

verifying the associativity condition for F .

Remark 2.1. Let G be an algebraic group of dimension n defined over a field

K. One can show by arguments analogous to those presented above, that the group

law on G can also be described locally by an n-dimensional formal group law over K.

This formal group law need not be commutative in general (cf. Example A.6).

The above correspondence from elliptic curves to formal group laws is actually

functorial. Let ϕ : E1 → E2 be an isogeny of elliptic curves defined over K. Let Fi

be the formal group law attached to Ei as above by choosing uniformizers zi ∈ OEi,O,

for i = 1, 2. We will show how ϕ induces a homomorphism f : F1 → F2. The map ϕ

is an isogeny, so ϕ(O) = O. Thus, we have an induced map ϕ∗ : ÔE2,O → ÔE1,O. Now
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ÔE1,O
∼= K[[z1]], so we may view ϕ∗z2 as a power series f(z1) ∈ K[[z1]]. We claim that

f is actually a homomorphism from F1 to F2.

Let α1 and α2 denote the addition laws on E1 and E2, respectively. As ϕ is an

isogeny, the diagram

E1 × E1
α1−−−→ E1

ϕ×ϕ
y yϕ

E2 × E2
α2−−−→ E2

commutes. Passing to the local rings, we obtain the commutative diagram

ÔE1,O ⊗̂
K

ÔE1,O

α∗1←−−− ÔE1,O

ϕ∗⊗̂ϕ∗
x xϕ∗

ÔE2,O ⊗̂
K

ÔE2,O ←−−−
α∗2

ÔE1,O.

Computing, we see that

α∗1(ϕ∗z2) = α∗1f(z1)

= f(α∗1z1)

= f(F1(1 ⊗̂ z1, z1 ⊗̂ 1)),

(ϕ∗ ⊗̂ ϕ∗)(α∗2z2) = (ϕ∗ ⊗̂ ϕ∗)(F2(1 ⊗̂ z2, z2 ⊗̂ 1))

= F2(1 ⊗̂ ϕ∗z2, ϕ
∗z2 ⊗̂ 1)

= F2(f(1 ⊗̂ z2), f(z2 ⊗̂ 1)).

By the commutativity of the above diagram, we have

f(F1(1 ⊗̂ z1, z1 ⊗̂ 1)) = F2(f(1 ⊗̂ z2), f(z2 ⊗̂ 1)),

implying that f is a homomorphism, as claimed. Thus, given elliptic curves E1 and

E2 with corresponding formal group laws F1 and F2, one has a map from Hom(E1, E2)

into Hom(F1, F2), where Hom(E1, E2) is the group of isogenies from E1 to E2. By

applying the definition, one may show that this map is a group homomorphism.
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Further, one verifies easily that if E3 is a another elliptic curve with formal group law

F3, then the diagram

Hom(E1, E2)× Hom(E2, E3) −−−→ Hom(F1, F2)× Hom(F2, F3)y y
Hom(E1, E3) −−−→ Hom(F1, F3)

commutes, where the vertical arrows are given by composition. Thus, the map from

EndE1 to EndF1 is a ring homomorphism.

Example 2.2. Let E be an elliptic curve, and let F be the formal group law

obtained from E by choosing a uniformizer z ∈ OE,O. Let [m]E : E → E de-

note the multiplication-by-m endomorphism of E. Since the map from EndE to

EndF is a ring homomorphism, it follows that the isogeny [m]E induces the formal

multiplication-by-m map [m]F on F .

Example 2.3. Let E be an elliptic curve defined over a field K of characteristic

p, and let ϕ : E → E(pr) be the pr-th power Frobenius map (see [37, Chapter II, §2]).

Then one can show that the induced homomorphism of formal group laws is given by

the power series f(x) = xp
r
.

One can show that the height of the formal group law of an elliptic curve is 1 or

2. This will be discussed in more detail in §4.

2. More explicitly

Let E be an elliptic curve given by the Weierstrass equation

(2.2) E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

It is convenient to introduce the change of variables

(2.3) z = −x
y
, w = −1

y
,

under which the equation of E becomes

(2.4) w = z3 + a1zw + a2z
2w + a3w

2 + a4zw
2 + a6w

3 := f(z, w).
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We attempt to express w as a power series in z by substituting equation (2.4) into

itself again and again. The first substitution gives

w = f(z, w) = f(z, f(z, w))

= z3 + a1z
4 + a2z

5 + a3z
6 + a4z

7 + a6z
9 + (terms involving w).

We want this process to converge to a power series w(z) ∈ Z[a1, . . . , a6][[z]] such that

w(z) = f(z, w(z)). For the rest of this section, let R denote Z[a1, . . . , a6][[z]].

To prove this, we need to give a more precise description of our algorithm. Define

a sequence of polynomials inductively by

f1(z, w) = f(z, w), fn+1(z, w) = f(z, f(z, w)) for n ≥ 1.

The n-th approximation to our desired power series w(z) is fn(z, 0). It is clear that

each fn(z, 0) is a polynomial with coefficients in R. We claim that the sequence

fn(z, 0) converges to a limit w(z) ∈ R[[z]] in the obvious sense – that is, if we let α
(n)
k

be the coefficient of zk in fn(z, 0), then the sequence (α
(n)
k )n≥1 is eventually constant.

The convergence of the sequence fn(z, 0) is a consequence of a variant of Hensel’s

Lemma; see [37, Ch. IV, Lemma 1.2]. We obtain

Lemma 2.4. The sequence fn(z, 0) converges to a power series

w(z) = z3(1 + α1z + α2z
2 + · · · ) ∈ R[[z]]

satisfying w(z) = f(z, w(z)).

Thus, by Equations (2.3), x and y have formal Laurent expansions of the form

(2.5) x(z) =
z

w(z)
=

1

z2
+ · · · , y(z) = − 1

w(z)
= − 1

z3
+ · · · ,

yielding formal solutions (i.e., solutions in the ring of formal Laurent series) to Equa-

tion (2.2).

We now use Equations (2.5), together with the group law on E, to derive a power

series F (z1, z2) ∈ R[[z1, z2]] series describing this group law. In fact, it is convenient

to begin by developing a power series i(z) ∈ R[[z]] describing the inversion operation
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on E. Let z be an indeterminate and let P = (z, w(z)) represent a point on E.

If we represent P in the (x, y)-plane by (x(z), y(z)), then −P is given formally by

(x(z),−y(z)− a1x(z)− a3). Therefore, the value of z corresponding to −P is

(2.6) i(z) =
x(z)

y(z) + a1x(z) + a3

=
z−2 + · · ·
−z−3 + · · ·

∈ R[[z]],

yielding a formal power series describing inversion on E.

Let z1 and z2 be indeterminates, and let wi = wi(zi) and Pi = (zi, wi) for i = 1, 2.

The line joining P1 and P2 has slope

λ =
w1 − w2

z1 − z2

=
∑
n≥3

αn−3
zn1 − zn2
z1 − z2

(α0 := 1)

= (z2
1 + z1z2 + z2

2) + α1(z2
1 + z2

1z2 + z1z
2
2 + z3

1) + · · · ∈ R[[z1, z2]].

Letting ν = w1 − λz1, we have the line through P1 and P2 is given by w = λz +

ν. Substituting this expression into equation (2.4), we see that that the points of

intersection of w = λz + ν and E are given by solutions of

0 = z3 + a1z(λz + ν) + a2z
2(λz + ν) + +a3(λz + ν)2

+ a4z(λz + ν)2 + a6(λz + ν)3 − (λz + ν)

= (1 + a2λ+ a4λ
2 + a6λ

3)z3+

+ (a1λ+ a2ν + a3λ
2 + 2a4λν + 3a6λ

2ν)z2 + Az +B.

By construction, z1 and z2 are roots of this cubic; let z3 = z3(z1, z2) be the other one.

By examining the quadratic term, we get

−(z1 + z2 + z3) =
a1λ+ a2ν + a3λ

2 + 2a4λν + 3a6λ
2ν

1 + a2λ+ a4λ2 + a6λ3

⇐⇒ z3 = −z1 − z2 −
a1λ+ a2ν + a3λ

2 + 2a4λν + 3a6λ
2ν

1 + a2λ+ a4λ2 + a6λ3
∈ R[[z1, z2]].

So by the definition of addition on E, the value of z corresponding to P1 +P2 is given

by

(2.7) F (z1, z2) := i(z3(z1, z2)) ∈ R[[z1, z2]].
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One can compute that the first few terms of F (z1, z2) are given by

F (z1, z2) = z1 + z2 − a1z1z2 − a2(z2
1z2 + z1z

2
2)−

− 2a3(z3
1z2 + z1z

3
2)− (a1a2 − 3a3)z2

1z
2
2 + · · · .

It follows from the corresponding properties of the group law on E, that the power

series F (z1, z2) of equation (2) and i(z) of equation (2.6) satisfy all the properties

of Definition 1.1. Thus, F (z1, z2) is a formal group law with coefficients in R =

Z[a1, . . . , a6].

Remark 2.5. Suppose E be is an elliptic curve defined over a complete local

field K with ring of integers R and maximal ideal m. Let F (z1, z2) be the formal

group law obtained from E as described above and form the group mF as described

in Example 1.5. Then the map

ϕ : mF → E(K) defined by ϕ(a) = (x(a), y(a))

is clearly a homomorphism as the group law on mF is induced by the group law on

E(K). The map ϕ is actually one-to-one, its inverse being given by the correspondence

(x(a), y(a)) 7→ −x(a)/y(a). One can show that

Imϕ = { (x, y) ∈ E(K) | 1/x ∈ m },

see [37, p. 114]. These observations allow one to use the theory of formal group laws

to analyse elliptic curves defined over local fields.

3. Elliptic curves given by Jacobi quartics

3.1. Euler’s formal group law. For some applications to topology, it is often

more convenient to coordinatize elliptic curves in the form

(2.8) E : y2 = R(x) = 1− 2δx2 + εx4,

where the discriminant ∆ := ε(δ2 − ε)2 is nonzero. The polynomial R(x) is called a

Jacobi quartic. One may obtain a formal group law F (x, y) from this equation which
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represents the group law on E around its neutral element O = (0, 1). We will show

that this formal group law has the pleasing form

(2.9) F (x, y) =
x
√
R(y) + y

√
R(x)

1− εx2y2
.

This is actually for the addition formula for the elliptic integral
∫
dt/R(t)1/2. That

is, ∫ x

0

dt√
R(t)

+

∫ y

0

dt√
R(t)

=

∫ F (x,y)

0

dt√
R(t)

.

This formula is due to Euler, and thus the formal group law (2.9) is often called

Euler’s formal group law. The origins of these formulae lie in the classical problem of

doubling the arc of the lemniscate. For an elementary exposition of this issue, see [36,

Chapter 1]; for a higher powered account see [31, Chapter 2].

We prove that (2.9) is in fact a formal group law using complex analytic techniques.

We show that for complex number x1, x2, and x3 of small enough modulus, the

power series F (F (x1, x2), x3) and F (x1, F (x2, x3)) converge to the same value. Thus,

the corresponding coefficients of their power series expansions, given by the usual

formluas, are the same.

Of course, the elliptic curve E is isomorphic to one given by a Weierstrass cubic.

We will show that Euler’s formal group law is strictly isomorphic to an elliptic formal

group law of the form given in the previous section. This isomorphism is induced by

a change of variable converting quartics to cubics.

3.2. The Weierstrass ℘-function. We need to recall a few facts about the

Weierstrass ℘-function. For proofs of the assertions below and basic facts concerning

elliptic functions, see [31, Chapter 2] or [37, Chapter VI]. Let Λ = Zω1 + Zω2 be a

lattice in C, and let Λ′ = Λ − {0}. Defering to tradition, we define the Weierstrass

℘-function ℘(z,Λ) of the lattice Λ by the formula

℘(z) = ℘(z,Λ) =
1

z2
+
∑
ω∈Λ′

[
1

(z − ω)2
− 1

ω2

]
.
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The function ℘(z) defines an even, meromorphic function, elliptic (doubly periodic)

with respect to the lattice Λ, with a double pole at each lattice point. The derivative

℘′(z) is given by

℘′(z) = −2
∑
ω∈Λ

1

(z − ω)3
.

The function ℘′(z) is an odd, meromorphic function, also elliptic with respect to Λ,

with a pole of order three at each lattice point. One can show that in the set

{ r1ω1 + r2ω2 | 0 ≤ r1, r2 ≤ 1 },

the fundamental parallelogram of Λ, the function ℘′(z) has simple zeros at

λ1 :=
ω1

2
, λ2 :=

ω2

2
, and λ3 :=

ω1 + ω2

2
.

Let ei = ℘(λi), for i = 1, 2, 3.

Further, the ℘-function satisfies the differential equation

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3

= 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3),

where g2 and g3 are defined by the Eisenstein series

g2 = g2(Λ) = 60
∑
ω∈Λ′

1

ω4
, g3 = g3(Λ) = 140

∑
ω∈Λ′

1

ω6
.

Therefore, the correspondence z 7→ (℘(z), ℘′(z)) is parameterization of the elliptic

curve

y2 = 4x3 − g2x− g3.

In fact, the above correspondence is an analytic isomorphism of Lie groups between

the torus C/Λ and the above elliptic curve, see [37, Ch. VI, Proposition 3.6].

Conversely, given an elliptic curve in the form

(2.10) y2 = 4x3 − Ax−B,
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with A, B ∈ C and A3 − 27B2 6= 0, we can find a lattice Λ with g2(Λ) = A and

g3(Λ) = B. Thus, any elliptic curve in the form (2.10) can be parameterized using

the Weierstrass ℘-function. This is the content of the celebrated Uniformization

Theorem [37, Chapter VI, Theorem 5.1]. Above, we interpreted g2 and g3 as complex

value functions of lattices in C. One may also view g2 and g3 as complex valued

functions defined on the Poincaré upper half plane, H. For τ ∈ H, let Λτ = Z+ Zτ .

As noted above, the Weierstrass ℘-function ℘(z, τ) := ℘(z,Λτ ) satisfies the differential

equation, depending on the parameter τ ,

(℘′)2 = 4℘3 − g2(τ)℘− g3(τ),

where gi(τ) = gi(Λτ ). In Chapter 5, we will interpret g2(τ) and g3(τ) as modular

forms.

Using the group law on the elliptic curve which it parameterizes, one can show

that the Weierstrass ℘-function admits the algebraic addition formula

℘(z1 + z2) = −℘(z1)− ℘(z2) +
1

4

[
℘′(z1)− ℘′(z2)

℘(z1)− ℘(z2)

]2

.

3.3. Parameterization of Jacobi quartics. In order to understand elliptic

curves given in the form

(2.11) y2 = 1− 2δx2 + εx4, δ, ε ∈ C

we describe a parameterization analogous to the one given above for elliptic curves

in Weierstrass normal form. To ensure the curves given by 2.11 are nonsingular, we

insist that the discriminant ∆ := ε(δ2−ε)2 be nonzero. One can parameterize elliptic

curves defined by such Jacobi quartics as follows (see [21, §5] and [45] for details).

We shall use the notation of the previous section.

Theorem 2.6. Let Λ = Zω1 + Zω2 be the unique lattice with

g2(Λ) =
1

3
(δ2 + 3ε), g3(Λ) =

1

27
δ(δ2 − 9ε),
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and ℘(z) be its associated ℘-function. Define

(2.12) σ(z) = σ(z,Λ) = −2
℘(z,Λ)− e3

℘′(z,Λ)
,

where e3 is defined as in §3.2. Then σ satisfies the differential equation

(σ′(z))2 = 1− 2δσ(z)2 + εσ(z)4,

and therefore the correspondence z 7→ (σ(z), σ′(z)) is a complex parameterization of

the elliptic curve (2.11).

One may view the parameters δ and ε as complex valued functions on H. As

before, let τ ∈ H and define Λτ = Z + Zτ . Then σ(z, τ) := σ(z,Λτ ) satisfies a

differential equation, depending on the parameter τ , of the form

(σ′)2 = 1− 2δ(τ)σ2 + ε(τ)σ4.

In Chapter 5, we will interpret the functions δ(τ) and ε(τ) as modular forms.

We list a few properties of the function σ(z) and its derivative, σ′(z) which may

be deduced directly from (2.12) and properties of the Weierstrass ℘-function.

(i) σ(z) is an odd function with simple poles at λ1 and λ2, and simple zeros 0 and

λ3, that is,

div σ(z) = (0) + (λ3)− (λ1)− (λ2).

(ii) σ(z) satisfies the identities

σ(z + λ3) = −σ(z), σ(λ3 − z) = σ(z).

(iii) σ′(z) is an even elliptic function satisfying σ′(0) = 1. Letting θ = λ3/2, we have

div σ′(z) = (θ) + (−θ) + (θ + λ1) + (θ + λ2)− 2(λ1)− 2(λ2).

(iv) The function σ(z + λ1) has poles where σ(z) has zeros, and zeros where σ(z)

has poles. Therefore, div σ(z + λ1) = − div σ(z), or σ(z + λ1)σ(z) = c, for some

c ∈ C.
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(v) Replacing z by z + λ2 in (iv) and using (ii), we see that σ(z + λ2)σ(z) = −c.

We may actually identify the constant c appearing in (iv) and (v). By (iii), and the

differential equation for σ(z),

σ(θ), σ(−θ), σ(θ + λ1), σ(θ + λ2)

are zeros of the polynomial 1−2δx+εx4. Examining the constant term in the identity

1− 2δx2 + εx4 = ε(x− σ(θ))(x− σ(−θ))(x− σ(θ + λ1))(x− σ(θ + λ2))

and using the fact that σ(z) is odd, we conclude that ε = 1/c2.

As σ(z) parameterizes an elliptic curve, it is not surprising that it satisfies an

addition formula.

Theorem 2.7 ([21, Appendix]). The function σ(z) and its derivative σ′(z) satisfy

the addition formula

(2.13) σ(z + w) =
σ(z)σ′(w) + σ(w)σ′(z)

1− εσ(z)2σ(w)2
.

Proof. Fix a complex number w with σ(w) 6= 0. It suffices to verify (2.13) for

such w. Let

A(z) = σ(z + w)

(
1− 1

c2
σ(z)2σ(w)2

)
,

B(z) = σ(z)σ′(w) + σ(w)σ′(z).

Since A(0) = σ(w) = B(0), and A and B are elliptic, it suffices to show that A(z)

and B(z) have the same divisor.

To compute divA(z), we identify the zeros and poles of each factor in the expres-

sion

A(z) = σ(z + w)

(
1− 1

c
σ(z)σ(w)

)(
1 +

1

c
σ(z)σ(w)

)
.

It follows immediately from (i) that

div σ(z + w) = (−w) + (λ3 − w)− (λ1 − w)− (λ2 − w).
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To compute div(1 − σ(z)σ(w)/c), we first note that the function 1 − σ(z)σ(w)/c

has the same poles as σ(z), that is, simple poles at λ1 and λ2. From the formula

σ(z + λ1)σ(z) = c of (iv), it follows that λ1 +w is a zero of 1− σ(z)σ(w)/c. Also, by

the oddness of σ(z) and (v), we obtain

σ(w)σ(λ2 − w) = −σ(−w)σ(λ2 + (−w)) = c.

Therefore, λ2 − w is also a zero of 1 − σ(z)σ(w)/c. Since it has only two poles, we

conclude that

div

(
1− 1

c
σ(z)σ(w)

)
= (λ1 + w) + (λ2 − w)− (λ1)− (λ2).

In like manner, one shows that

div

(
1 +

1

c
σ(z)σ(w)

)
= (λ1 − w) + (λ2 + w)− (λ1)− (λ2).

Therefore,

divA(z) = (−w) + (λ3 − w) + (λ1 + w) + (λ2 + w)− 2(λ1)− 2(λ2).

To compute the divisor of B(z), we first note that its poles are precisely the poles

of σ′(z), that is, double poles at λ1 and λ2. We proceed to show the four zeros of

A(z) are also zeros of B(z). As σ(z) is odd and σ′(z) is even, we see that B(−w) = 0.

It follows easily from (ii) that λ3 − w is a zero of B(z). Differentiating the relations

σ(z + λ1)σ(z) = c and σ(z + λ2)σ(z) = −c of (iv) and (v), respectively, we see

that B(λ1 + w) = B(λ2 + w) = 0. This completes the verification that B(z) has

the same zeros and poles, and hence the same divisor, as A(z). This completes the

argument. �

3.4. Elliptic formal group laws, revisited. Using the addition formula proved

above, it is easy to deduce that Euler’s addition formula for the elliptic integral is in

fact a formal group law.
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Theorem 2.8. Let δ and ε be indeterminates, let R(x) = 1− 2δx2 + εx4, and let

F (x, y) =
x
√
R(y) + y

√
R(x)

1− εx2y2
.

The F (x, y) defines a formal group law with coefficients in the ring Z[1/2, δ, ε].

Proof. That the power series expansion of F (x, y) has coefficients in the ring

Z[1/2, δ, ε] follows from the binomial expansion. It is clear that as formal power

series, F (x, 0) = x, F (0, y) = y, and F (x, y) = F (y, x). It remains to verify the

formal power series identity

(2.14) F (F (x1, x2), x3) = F (x1, F (x2, x3)).

Suppose that (2.14) held for all complex numbers δ and ε with ε(δ2 − ε)2 6= 0.

This would say that the corresponding coefficients of the power series expansions of

each side of (2.14) define the same polynomial function of δ and ε. This implies that

the corresponding coefficients are equal as formal polynomials in δ and ε. Thus, it

suffices to verify (2.14) for all complex numbers δ and ε.

Let δ and ε be complex numbers with ε(δ2 − ε)2 6= 0. As mentioned on page 32

it suffices to show that the functions F (F (x1, x2), x3) and F (x1, F (x2, x3)) have the

same value for complex numbers x1, x2, and x3 with sufficiently small modulus. Now

σ(z) is analytic at 0, so we may find neighbourhoods U and V of 0 in C such that

σ(U) = V , and σ(z) has no poles in U + U + U . Let x1, x2, x3 ∈ V , and find u1, u2,

u3 ∈ U such that xi = σ(ui) for i = 1, 2, 3. Then

F (F (x1, x2), x3) = F (F (σ(u1), σ(u2)), σ(u3))

= F (σ(u1 + u2), σ(u3))

= σ(u1 + u2 + u3) <∞,

by two applications of Theorem 2.7. Symmetrically,

F (x1, F (x2, x3)) = σ(u1 + u2 + u3) <∞.
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Thus, F (F (x1, x2), x3) and F (x1, F (x2, x3)) agree on V , completing the proof. �

To relate the above discussion to that of §1, we point out explicitly how Euler’s

formal group law does indeed come from the expansion of the group law of an elliptic

curve around its neutral element with respect to an appropriate uniformizer. Let δ,

ε ∈ C with ∆ = ε(δ2 − ε)2 6= 0 and consider the elliptic curve given by E : y2 =

1− 2δx2 + εx4. Let Λ be a lattice which parameterizes E via

(x, y) = (x(z), y(z)) = (σ(z), σ′(z)).

Since σ has a simple zero at 0, the function x is a uniformizer for the local ring of E

at O = (0, 1). By Theorem 2.7, one has

x(z1 + z2) = σ(z1 + z2) = F (σ(z1), σ(z2)) = F (x(z1), x(z2)),

where F is Euler’s formal group law. Thus, F represents the expansion of the group

law on E around O = (0, 1) with respect to the uniformizer x ∈ OE,O.

Given an elliptic curve E, we have defined for it two different formal group laws –

one formal group law, FW (x, y), corresponding to its Weierstrass cubic representation,

and another, FJ(x, y), corresponding to its Jacobi quartic representation. Since they

both these formal group laws represent the group law on E locally at O, they should

certainly be isomorphic. We verify this fact.

Setting notation explicitly, let δ and ε be such that ∆ = ε(δ2 − ε)2 6= 0, and let

E be the curve given by the Jacobi quartic (2.8), and let FJ(x, y) (‘J ’ for Jacobi) be

Euler’s formal group law. Let E ′ be the curve

y2 = 4x3 − g2x− g3,

given in Weierstrass form, where g2 and g3 are given in terms of δ and ε as in the

statement of Theorem 2.6. The change of variable

(2.15) x =
z

w
, y =

−2

w
⇐⇒ z =

−2x

y
, w =

−2

y
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puts the above curve into the form

w = z3 − g2

4
zw2 − g3

4
w3.

Thus, we may use the methods of the previous section, we may express w as a

power series w(z) in z, and thereby construct a formal group law FW (x, y) (‘W ’

for Weierstrass) representing the group law on E ′ in a neighbourhood of O.

Theorem 2.9 ([21, Theorem 4]). The formal group laws FJ(x, y) and FW (x, y)

are strictly isomorphic over the ring Z[1/6, ε, δ].

Proof. Guided by (2.12) and (2.15), we define our perspective isomorphism of

FW (x, y) onto FJ(x, y) by the formula

f(z) = z − δ

3
w(z).

As w(z) has coefficients in Z[1/2, δ, ε], it is clear that f(z) has coefficients in Z[1/6, δ, ε].

By arguments similar to those presented in the proof of the previous theorem, to

show that the power series identity

f(FW (x, y)) = FJ(f(x), f(y)),

holds, it suffices to verify the above for complex variables δ and ε in C with ε(δ2−ε)2 6=

0. Still guided by (2.15), define elliptic functions

z(s) =
−2℘(s)

℘′(s)
, w(s) =

−2

℘′(s)
.

By the definition of σ(s), we have

σ(s) = z(s)− δ

3
w(s) = f(z(s)).

We also have

σ(s1 + s2) = FJ(σ(s1), σ(s2)), z(s1 + s2) = FW (z(s1), z(s2)).
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Therefore,

f(FW (z(s1), z(s2))) = f(z(s1 + s2))

= σ(s1 + s2)

= FJ(σ(s1), σ(s2)).

The desired conclusion follows. �

4. Heights of elliptic formal group laws

In this section we prove the following description of elliptic formal group laws.

Theorem 2.10. Let F be the formal group law of an elliptic curve E defined over

a field of characteristic p. Then htF = 1 or 2.

This theorem is a consequence of the following result.

Lemma 2.11 ([37, Chapter IV, Theorem 7.4]). Let k be a field of characteristic

p, and let ϕ : E1 → E2 be a nonzero isogeny of elliptic curves defined over k. Let f

denote the homomorphism of formal group laws induced by ϕ. Then

pht f = degi ϕ,

where degi ϕ denotes the degree of inseparability of ϕ.

Sketch of proof. We begin by considering two special cases. First, suppose

ϕ is the pr-th power Frobenius map. Then f(x) = xp
r

(see Example 2.3), and

pht f = pr = degi ϕ. Now suppose ϕ is separable. In this case, one can show that

the height of the corresponding homomorphism of formal group laws is zero. One

completes the proof using the following facts.

• A nonzero isogeny of elliptic curves can be written as the composition of a

Frobenius map and a separable isogeny (cf. Remark 1.37).

• The assignment of a formal group law to an elliptic curve is functorial (see

§1).
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• If f : F → G and g : G→ H are homomorphisms of formal group laws, then

ht f ◦ g = ht f + ht g.

�

Proof of Theorem 2.10. By definition, htF = ht[p]F . Now [p]F is the ho-

momorphism induced by the multiplication-by-p endomorphism [p]E of E (see Ex-

ample 2.2), which has degree p2 (see [37, Chapter III, Theorem 6.4(a)]). Therefore,

degi[p]E = 1, p, or p2. Now [p]F (x) is nonzero and has the form [p]F (x) = px + · · · ,

so ht[p]F 6= 0. The theorem follows. �

Definition 2.12. An elliptic curve E defined over a field k of characteristic p is

called supersingular if the height of its formal group law is 2. It is called ordinary

otherwise.

For a lengthy list of conditions equivalent to supersingularity, see [37, Chapter V,

Theorem 3.1].



CHAPTER 3

Vector bundles and CP∞

1. Projective spaces and Grassmann manifolds

1.1. Definitions and basic properties. We begin by discussing the ubiquitous

projective spaces and their generalizations, the Grassmann manifolds. Let V be a

vector space. We shall refer to a 1-dimensional subspace of V as a line in V , and

to an n-dimensional subspace of V as an n-plane in V . If a = (a0, . . . , an−1) ∈ Fn,

we let (a0 : · · · : an−1) denote the line through a. An n-frame in V is defined to be

an n-tuple of linearly independent vectors of V . Let F denote either of the fields R

or C. For positive integers n, we let FPn be the set of all lines in Fn+1. We give

FP
n the quotient topology induced by the map q : Fn+1 − {0} → FP

n defined by

q(u) = Fu. The space FPn is called n-dimensional (real or complex ) projective space.

One may easily show that RPn (respectively, CPn), can be given the structure of a

smooth n-dimensional (respectively, 2n-dimensional), compact manifold.

There is a chain of topological embeddings, FP1 ⊆ FP2 ⊆ · · · , induced by the

inclusion (x1, . . . , xn) 7→ (x1, . . . , xn, 0) of Fn into Fn+1. We may therefore define

the infinite dimensional (real or complex ) projective space, denoted FP∞, to be the

topological direct limit of the spaces FPn. A subset U of FP∞ of is open if and only

if U ∩ FPn is open for each positive integer n. Letting F∞ be the union of the spaces

F
n, one sees that FP∞ can be identified with the set of lines in F∞ =

⊕
i≥0 F.

Let V(n,Fn+k) denote the set of all n-frames in Fn+k. The collection V(n,Fn+k) is

an open subset of Fn(n+k) called the Stiefel manifold. We define the (real or complex )

Grassmann manifold G(n,Fn+k) to be the set of n-planes in Fn+k. Give G(n,Fn+k)

43
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the quotient topology induced by the map from V(n,Fn+k) to G(n,Fn+k) taking an

n-frame to the n-plane which it spans. By definition, we have

FP
n = G(1,Fn+1).

so the Grassmann manifolds are in fact a generalization of the projective spaces.

We briefly recall the definition of an oriented vector space. Let V be an n-

dimensional real vector space. We define an equivalence relation on the set bases

of V by declaring two bases equivalent if the determinant of the transition matrix

between them is positive. Evidently, this equivalence relation partitions the set of

bases of V into two parts. Each equivalence class is called an orientation of V ; thus

each real vector space has two distinct orientations. An oriented vector space V is

simply the space V , together with a choice of orientation for V . A basis of V contained

is called positively oriented if it is contained in the orientation of V , and negatively

oriented otherwise. One may modify the above construction by considering oriented

n-planes in Rn+k. Let G	(n,Rn+k) be the set of oriented n-planes in Rn+k. Define

q : V(n,Rn+k) → G	(n,Rn+k) by mapping a given n-tuple to the unique oriented

n-plane for which it is a positively oriented basis. Give G	(n,Rn+k) the quotient

topology induced by q. The space G	(n,Rn+k) is called an oriented Grassmann

manifold. It is a fact that if V is a complex vector space, then its underlying real

vector space has a preferred orientation. Therefore, we do not consider a complex

analogue of this construction.

As their name implies, the Grassmann manifolds may be given a manifold struc-

ture.

Lemma 3.1 ([25, Lemma 5.1]). The space G(n,Rn+k) (respectively, G(n,Cn+k))

can be given the structure of a smooth, compact manifold of dimension nk (respec-

tively, 2nk). The oriented Grassmann manifold G	(n,Rn+k) is a smooth, compact,

oriented manifold of dimension nk).



1. PROJECTIVE SPACES AND GRASSMANN MANIFOLDS 45

As before, the inclusion of Fn into Fn+1 induces a chain of inclusions G(n,Fn+1) ⊆

G(n,Fn+2) ⊆ G(n,Fn+3) · · · . Therefore, we may define the infinite (real or complex)

Grassmann manifold G(n,F∞) as the direct limit (with respect to k) of the spaces

G(n,Fn+k). In like manner, one constructs the infinite oriented Grassmann manifold

G	(n,R∞).

1.2. Cohomology of projective spaces and Grassmann manifolds. One

computes the cohomology of the projective spaces and Grassmann manifolds by rep-

resenting them as CW-complexes. For basic definitions of and theorems about CW-

complexes, consult [26, §38]. The complex projective spaces have a very simple cell

structure.

Theorem 3.2. The complex projective space CPn has the structure of a CW-

complex with exactly one 2k-cell, for each k = 0, . . . , n. The infinite dimensional

complex projective space CP∞ has the structure of a CW-complex with one 2k-cell for

each k ≥ 0.

Proof. We proceed by induction on n. The theorem holds trivially for n = 0, as

CP
0 is just a single point. Suppose the theorem holds for CPn−1. Let B2n denote the

closed, real, unit 2n-ball, and let e2n = CP
n − CPn−1. Define f : B2n → CP

n by the

rule

f(x0, y0, . . . , xn−1, yn−1) = (x0 + iy0 : · · · : xn−1 + iyn−1 :

[
1−

n−1∑
k=0

(x2
k + y2

k)

]1/2

)

Then f maps IntB2n homeomorphically onto e2n, and maps the boundary of B2n onto

CP
n−1, which by our induction hypothesis is a union of cells of lower dimension. The

assertion about the cell structure of CP∞ follows from the fact that it is the union of

the spaces CPn. �

Thus, the cellular cochain complex of CPn is

Z→ 0→ Z→ 0→ · · · → 0
(2n−1)

→ Z
(2n)
→ 0→ 0→ 0→ · · · .
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Therefore, H2k(CPn,Z) = Z, 0 ≤ k ≤ n, and all of its other cohomology groups

vanish. The cellular cochain complex of CP∞ is

Z→ 0→ Z→ 0→ · · · .

Therefore, H2k(CP∞,Z) = Z, k ≥ 0, and all of its other cohomology groups vanish.

To determine the ring structure of the complex projective spaces, one uses Poincaré

duality; see [26, §68].

For a description of a cell structure for Grassmann manifolds and a computation

of their cohomology, see [25, Chapter 6].

We summarize the results which we shall need. When discussing complex or

oriented Grassman manifolds, we shall consider cohomology with coefficients in Z.

When discussing real (unoriented) Grassmann manifolds, we shall use Z/2Z as our

coefficient ring.

• The i-th cohomology group Hi(RPn,Z/2Z) of real projective n-space is cyclic

of order two for 0 ≤ i ≤ n, and zero otherwise. If g denotes the non-zero

element of H1(RPn,Z/2Z), then Hi(RPn,Z/2Z) is generated by the i-fold

cup product gi. Further the cohomology ring H∗(RPn,Z/2Z) is generated as

a Z/2Z-algebra by g, that is,

H∗(RPn,Z/2Z) ∼= (Z/2Z)[g]/(gn+1),

where g has weight 1.

• The cohomology ring of H∗(RP∞,Z/2Z) = lim←−H∗(RPn,Z/2Z) is isomorphic

to the power series ring (Z/2Z)[[x]].

• The 2i-th cohomology group H2i(CPn,Z) is infinite cyclic if 0 ≤ i ≤ n;

all other cohomology groups of CPn vanish. In fact, if g is a generator of

H2(CPn,Z), then H2i(CPn,Z) is generated by the i-fold cup product gi. The

cohomology ring H∗(CPn,Z) is generated as a Z-algebra by g, that is,

H∗(CPn,Z) ∼= Z[g]/(gn+1),
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where g has weight 2.

• The cohomology ring H∗(CP∞,Z) = lim←−H∗(CPn,Z/2Z) is isomorphic to the

power series ring Z[[x]].

• The cohomology ring H∗(G(n,R∞),Z/2Z) is isomorphic to (Z/2Z)[[x1, . . . , xn]].

• The cohomology ring H∗(G(n,C∞),Z) is isomorphic to Z[[x1, . . . , xn]].

2. Vector bundles

2.1. Definition and examples.

Definition 3.3. Let E and B be topological spaces and π : E → B be a contin-

uous surjection. The triple ξ = (E, π,B) is called a vector bundle of dimension n, or

an Fn-bundle if the following conditions are satisfied:

(i) For each b ∈ B, the set π−1(b) has the structure of an n-dimensional F-vector

space.

(ii) There is an open cover U of B such that for each U ∈ U, there is homeomorphism

hU : U × Fn → π−1(U)

which restricts to a vector space isomorphism hU,b : {b}×Fn → π−1(b), for each

b ∈ U . This condition is called the local triviality condition.

A vector bundle of dimension one will be refered to as a line bundle.

We call B and E the base space and total space, respectively. To avoid ambiguity,

we will sometimes write B(ξ) and E(ξ) for the base and total spaces of a vector

bundle ξ. For b ∈ B, we call the set π−1(b) the fibre (of π) over b and denote it by

Fibb ξ.

Remark 3.4. There are standard ways to convert complex vector bundles into

real ones, and vice versa. It is clear that one may treat a Cn-bundle as a R2n-bundle

by simply forgetting about its complex structure. Conversely, if ξ is a real vector

bundle, one obtains its complexification ξ ⊗ C by tensoring each fibre with C.
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In order to turn the class of class vector bundles into a category, we must define

a notion of morphism.

Definition 3.5. Let ξ and η be complex vector bundles. A morphism or bundle

map from ξ to η is a continuous map f : E(ξ) → E(η) such that f maps each fibre

Fibb ξ isomorphically onto some fibre Fibb′ η. We write f : ξ → η.

We let VB denote the category of vector bundles and bundle maps. If B is a

topological space, we denote by VBB the subcategory of vector bundles over the base

space B.

Since points of the Grassmann manifolds are by definition vector spaces, it is not

surprising that there exist canonical constructions of vector bundles over these spaces.

To construct an n-dimensional vector bundle γn,k(F) over the Grassmann manifold

G(n,Fn+k), let

E(γn,k(F)) = { (H, x) ∈ G(n,Fn+k)× Fn+k | x ∈ H },

and define π : E(γn,k(F))→ G(n,Fn+k) by the rule π(H, x) = H. The bundle γn,k(F)

does indeed satisfy the local triviality condition; for details see [25, §6].

We may construct an n-dimensional bundle γn(F) over the infinite Grassmann

manifold G(n,F∞) by taking the direct limit (with respect to k) of the bundles γn,k(F).

The total space of γn(F) may be identified with the set

{ (H, x) ∈ G(n,F∞)× F∞ | x ∈ H },

with the projection map π defines as above.

Oriented vector bundles. Fix an orientation of Rn, and let ξ be a real n-bundle.

An orientation of ξ is a choice of orientation of each fibre of ξ such that the following

compatibility condition is satisfied:
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There exists a trivialization U of ξ with coordinate charts hU , U ∈

U such that the map x 7→ hU(b, x) is an orientation-preserving1

isomorphism of Rn with Fibb ξ whenever b ∈ U .

Using the fact that points of G	(n,Rn+k) are oriented n-planes, there exists a tauto-

logical construction of an oriented n-plane bundle over G	(n,Rn+k). This construc-

tion is completely analogous to that in the non-oriented case. We denote this bundle

by γ	n,k. Taking direct limits, we may also define a tautological oriented n-plane bun-

dle γ	n over the infinite oriented Grassmann manifold G	(n,R∞). Again, the details

of this construction are the same as in the non-oriented case.

There is another way of looking at vector bundles which is often illuminating.

Suppose ξ is an Fn-bundle, with open cover U and coordinate charts hU as in Defini-

tion 3.3(ii). Suppose elements U and V of U intersect nontrivially. Then the map

hUV : (U ∩ V )× Fn → (U ∩ V )× Fn

defined by hUV = hU ◦ h−1
V (suitably restricting domains) is a homeomorphism. Fur-

ther, for any b ∈ U ∩ V , the map hUV |{b}×Fn may be naturally identified with an

element of GL(n,F). It is easy to see that the map

gUV : U ∩ V → GL(n,F)

defined by gUV (b) = hUV |{b}×Fn is continuous. The maps gUV are called transition

maps.

In fact, the transition maps gUV determine ξ up to isomorphism. Let

E =
∐
U∈U

U × Fn
/
∼

where the equivalence relation ∼ identifies points (b, x) ∈ U ×Fn and (b, y) ∈ V ×Fn

if gUV (b)(x) = y. One may easily show that E is the total space of a vector bundle

1i.e., the map sends positively oriented bases of Rn to positively oriented bases of Fibb ξ
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isomorphic to ξ. One calls the group GL(n,F) the structural group of Fn-bundles, and

thinks of the maps gUV as specifying some sort of “glueing data”. For more details

on this point of view, see [17, Chapter 5].

One can show that a real n-plane bundle ξ is orientable (i.e. can be given an

orientation) if and only if one may find a trivialization U of ξ with coordinate charts

hU , U ∈ U, such that the corresponding transtition functions gUV take values in the

subgroup of GL(n,R) consisting of matrices with positive determinant.

2.2. Operations on vector bundles. There are many ways to make new vector

bundles out of old ones. For instance, if ξ is a vector bundle, and A ⊆ B(ξ), there

is an obvious way to restict ξ to a bundle ξ|A over A. Also, if η is another bundle,

then there is a canonical construction of a product bundle ξ × η over the base space

B(ξ)×B(η).

Somewhat more exotic is the construction of the pullback of a vector bundle.

Suppose η is a vector bundle with projection π : E(η)→ B(η), and f is a continuous

map from a space B into B(η). Then we may pull back the bundle η to construct a

bundle f ∗η over B with total space

E = { (b, e) ∈ B × E(η) | f(b) = π(e) },

and projection map p sending (b, e) ∈ E to b ∈ B. Again, one must verify the local

triviality condition. If we define f̂ : E → E(η) by f̂(b, e) = e, then it follows that f̂

is a bundle map and that the following diagram is cartesian:

E
f̂−−−→ E(η)

p

y yπ
B −−−→

f
B(η)

The vector bundle f ∗η constructed above is called the pullback of η by f .

Conversely, suppose g : ξ → η is a bundle map. Let g : B(ξ) → B(η) be defined

such that the formula g(Fibb ξ) = Fibg(b) η holds. Then one can show that ξ is
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isomorphic to g∗η. This illustrates the intimate relationship between pullbacks and

bundle maps.

One often thinks of a vector bundle as a continuous family of vector spaces lying

over a topological space. For this reason, it seems natural to attempt to define

analogues of popular vector space constructions (direct sum, tensor product, dual,

. . .) for vector bundles. Below, we indicate how this may be accomplished.

Let VS denote the category of vector spaces over F. To unify (and simplify) our

presentation, we make the following definition.

Definition 3.6. Let T be a functor from the product category VSn to VS. We

say that T is continuous if for any vector spaces V1, . . . , Vn, W1, . . . ,Wn in VS, the

map

Hom(V1,W1)× · · · × Hom(Vn,Wn)→ Hom(T (V1, . . . , Vn), T (W1, . . . ,Wn))

induced by T is continuous. In other words, the map T (f1, . . . , fn) depends continu-

ously on f1, . . . , fn.

The functors ⊕, ⊗, and ∨ (dual) are easily seen to be continuous.

Theorem 3.7 ([25, §3(f)]). Let ξ1, . . . , ξn be vector bundles over the common

base space B, and let T : VSn → VS be a continuous functor. Then there is a vector

bundle ξ = T (ξ1, . . . , ξn) over B such that for all b ∈ B, the fibre Fibb ξ is equal to

T (Fibb ξ1, . . . ,Fibb ξn).

Proof. Let

E =
∐
b∈B

T (Fibb ξ1, . . . ,Fibb ξn)

(we the symbol
∐

for disjoint union). Define π : E → B by the rule

π(T (Fibb ξ1, . . . ,Fibb ξn)) = b,

and set ξ = (E, π,B).
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For each i ≤ n, find a local coordinate system (U, hi) for ξi. Writing mi for the

dimension of (each fibre of) ξi and πi for the projection from E(ξi) to B, we have

that the map hi is a homeomorphism from U × Fmi onto π−1
i (U) mapping {b} × Fmi

isomorphically onto Fibb ξi. Let hi,b = hi|{b} × Fmi . By the functoriality of T , the

map

T (h1,b, . . . , hn,b) : T (Fm1 , . . . ,Fmn)→ T (Fibb ξ1, . . . ,Fibb ξn)

is an isomorphism. By the continuity of T , the map hU : U × T (Fm1 , . . . ,Fmn) →

π−1(U) defined by the rule

hU |{b}×T (Fm1 ,...,Fmn ) = T (h1,b, . . . , hn,b)

is a homeomorphism.

If U and U ′ are coordinate neighbourhoods for all the ξi, then it is clear that

the map h−1
U ′ ◦ hU is a homeomorphism of (U ∩ U ′) × T (Fm1 , . . . ,Fmn) onto itself.

Therefore, there is a unique topology on E such that each map hU constructed above

is continuous.

Letting U be the collection of all open U ⊆ B such that U is a coordinate neigh-

bourhood of each ξi, we have shown that U is a trivialization of ξ. This completes

the proof. �

It is easy to show that the correspondence

(ξ1, . . . , ξn) 7→ T (ξ1, . . . , ξn)

extends to a functor from (VBB)n to VB.

A continuous functor unique to the category of complex vector spaces is the com-

plex conjugation functor. Given a complex vector space V , we let V denote the

vector space whose underlying abelian group is V , and whose scalar multiplication

is defined by twisting that of V by complex conjugation. That is, if s : C × V → V

represents scalar multiplication in V , and c : C → C is complex conjugation, then

scalar multiplication in V is given by s ◦ (c× id).
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Let ω be a complex vector bundle. We denote by ω the vector bundle obtained

from ω by applying the complex conjugation functor. We call it the conjugate of ω.

A fibre Fibb ω of ω is naturally identified with the vector space Fibb ω.

Note that even though V ∼= V for any vector space V (they have the same dimen-

sion), it is not true in general that a complex vector bundle ω is isomorphic to its

conjugate ω. This is because there is generally no canonical C-vector space isomor-

phism between V and V (complex conjugation is not C-linear). One may construct

bundle isomorphisms ω|U ∼= ω|U for suitable sets U , but the lack of a natural choice

for these isomorphisms may prevent them from being mutually compatible.

We show, for example, that the tangent bundle τ of CP1 is not isomorphic to its

conjugate bundle, τ . Observe that if V is a 1-dimensional complex vector space, and

ϕ : V → V is a linear isomorphism, then ϕ is given by reflecting V across some line.

Suppose there was an isomorphism f from τ to τ . Let TPCP
1 denote the tangent space

to CP1 at the point P . Then f induces a linear isomorphism fP : TPCP
1 → TPCP1,

which must be given by reflection across a line `P . We may identify CP1 with the

2-sphere S2 and view `P as a line in R3 tangent to S2 at P . Since f is a bundle

morphism, it follows that the lines `P vary continuously, and cut out a 1-dimensional

subbundle of the tangent bundle of the 2-sphere, S2. Let

X = { (P, v) | P ∈ S2, v ∈ `P , and ‖v‖ = 1 }.

Since the lines `P vary continuously, the space X is naturally a double covering of the

2-sphere S2. But S2 is simply connected, so X must be the trivial double covering.

Each branch of the covering X represents a nonvanishing vector field on S2. It is well

known that such a vector field does exist; see for instance, [26, Corollary 21.6]. Thus,

the tangent bundle of CP1 is not isomorphic to its conjugate.

Continuous functors interact very nicely with pullbacks.

Lemma 3.8. Let B and B′ be topological spaces, ξ1, . . . , ξn be vector bundles over

B and f : B′ → B be continuous. Suppose that T : VSn → VS is a continuous
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functor. Then

T (f ∗ξ1, . . . , f
∗ξn) ∼= f ∗T (ξ1, . . . , ξn).

There is another way in which we may mutate continuous functors of vector spaces

into functors of vector bundles. Let B1, . . . , Bn be topological spaces and T : VSn →

VS be a continuous functor. Then one can show using arguments analogous to those

presented above that T induces a functor

T̃ : VBB1 × · · · ×VBBn → VBB1×···×Bn .

One proves this fact using the following theorem.

Theorem 3.9. Let ξ1, . . . , ξn be vector bundles over base spaces B1, . . . , Bn, respec-

tively, and let T : VSn → VS be a continuous functor. Then there is a vector bundle

ξ̃ = T̃ (ξ1, . . . , ξn) over B1×· · ·×Bn such that for all b = (b1, . . . , bn) ∈ B1×· · ·×Bn,

the fibre Fibb ξ is equal to T (Fibb ξ1, . . . ,Fibb ξn).

It is traditional to denote the functor ⊗̃ : VBB1 ×VBB2 → VBB1×B2 by �.

The above constructions are related in the following way.

Lemma 3.10. Let ξ1, . . . , ξn be vector bundles over the common base space B.

Let T : VSn → VS be a continuous functor, d : B → Bn be the diagonal map, and

pi : B
n → B be the i-th projection map. Then

(i) T (ξ1, . . . , ξn) ∼= d∗T̃ (ξ1, . . . , ξn),

(ii) T̃ (ξ1, . . . , ξn) ∼= T (p∗1ξ1, . . . , p
∗
nξn).

Both isomorphisms are canonical.

For vector spaces U , V , and W , we know that U ⊕ V ∼= V ⊕ U , U ⊗ V ∼= V ⊗ U ,

U ⊗ (V ⊗W ) ∼= (U ⊗V )⊗W , and U ⊗ (V ⊕W ) ∼= (U ⊗V )⊕ (U ⊗W ). The following

result shows that analogues of these identities hold for vector bundles ξ, η, and ζ.

The proof is a just diagram chase.

Lemma 3.11. Let B, B1, . . ., Bn be a topological spaces, and let S and T be

naturally equivalent continuous functors from the n-fold cartesian product VSn into
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VS. Then S and T remain naturally equivalent when viewed as functors from (VBB)n

into VBB. Also, the functors S̃ and T̃ from VBB1 × · · · ×VBBn to VBB1×···×Bn are

naturally equivalent.

2.3. Euclidean and Hermitian metrics on vector bundles. One may also

study vector bundles in which each fibre has the structure of an inner product space.

A Euclidean metric on a real vector bundle ξ is a continuous map

E(ξ ⊕ ξ)→ R, (e1, e2) 7→ 〈e1, e2〉 ∈ R

such that for each b ∈ B, its restriction to Fibb(ξ ⊕ ξ) defines a Euclidean inner

product on Fibb ξ. A Hermitian metric on a complex vector bundle ω is defined in

like manner, except one insists that the metric endows each fibre of ω with a Hermitian

inner product.

One shows that any vector bundle over a “reasonable” base space admits a metric.

Definition 3.12. A topological space X is said to be paracompact if any open

cover of X has an open, locally finite refinement. That is, if U is any open cover of

X, there exists another open cover V of X such that

(i) For each V ∈ V, there is some U ∈ U with V ⊆ U .

(ii) Each point of X has a neighbourhood that meets only finitely many elements

of V.

Most non-pathological spaces, including all metric spaces and all manifolds, are

paracompact. We will deduce the existence of metrics on vector bundles over para-

compact base spaces using the notion of a Gauss map. Let ξ be an n-dimensional

vector bundle. A continuous map of f : E(ξ) → F
n+k is called a Gauss map if f is

linear and injective on each fibre of ξ. One may prove the following result, which we

will use again later. For details, see [17, Chapter 3, §5] or [25, Lemma 5.3, Theorem

5.6].



56 3. VECTOR BUNDLES AND CP
∞

Theorem 3.13. Any vector bundle over a paracompact base space admits a Gauss

map.

Corollary 3.14. Any real (respectively, complex) vector bundle over a paracom-

pact base space admits a Euclidean (respectively, Hermitian) metric.

Proof. Let ξ be a real, n-dimensional vector bundle over the paracompact base

space B, and let f : E(ξ) → R
n+k be a Gauss map. Letting 〈−,−〉 denote the stan-

dard Euclidean inner product on Rn+k, one verifies easily that the correspondence

(e1, e2) 7→ 〈f(e1), f(e2)〉 defines a Euclidean metric on ξ. Hermitian metrics on com-

plex vector bundles are constructed similarly. �

Remark 3.15. One may also prove the above corollary using a standard partition

of unity argument.

The existence of metrics allows us to relate vector bundles with their duals.

Lemma 3.16.

(i) Let ξ be a finite dimensional, real vector bundle with Euclidean metric 〈−,−〉.

Then the correspondence e 7→ 〈−, e〉 defines an isomorphism between ξ and its

dual, ξ∨.

(ii) Let ω be a finite dimensional, complex vector bundle with Hermitian metric

〈−,−〉. Then the correspondence e 7→ 〈−, e〉 defines an isomorphism between its

conjugate bundle ω, and its dual bundle, ω∨.

The proof of this lemma is an easy generalization of the standard argument from linear

algebra. Using a vector bundle analogue of the Graham-Schmidt orthogonalization

algorithm, one may prove the following lemma, which asserts that one may always

find orthogonal gluing data. For details, see [17, Chapter 3, §9].

Lemma 3.17. Let ξ be a real (respectively, complex) vector bundle with a Euclidean

(respectively, Hermitian) metric. Then there exists an open cover U of B(ξ) with

coordinate charts hU , U ∈ U, such that the corresponding transition maps gUV (see
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§2.1) take values in the group O(n) of orthogonal matrices (respectively, the group

U(n) of unitary matrices).

Thus the existence of a Euclidean (respectively, Hermitian) metric facilitates a

reduction of the structural group of a real (respectively, complex) vector bundle from

GL(n,R) (respectively, GL(n,C)) to the group O(n) (respectively, U(n)). Similarly,

the existence of a Euclidean metric allows one to reduce the structural group of an

oriented Rn-bundle to the group SO(n) of orthogonal matrices with determinant 1.

2.4. Classification of vector bundles. In §2.1, we constructed canonical vec-

tor bundles over the Grassmann manifolds. As it turns out, these bundles classify

all finite dimensional vector bundles over paracompact spaces, in a sense to be made

precise below. One may prove the following:

Theorem 3.18 ([25, Theorem 5.6]). Any Fn-bundle ξ over a paracompact base

space admits a bundle map into the canonical n-plane bundle γn(F) over the infi-

nite Grassmann manifold, G(n,F∞). Thus, every such bundle ξ determines a map

f : B(ξ)→ G(n,F∞) such that ξ = f ∗γn(F).

Proof. Let ĝ : E(ξ) → F
n+k ⊆ F∞ be a Gauss map, the existence of which was

asserted in Theorem 3.13. Define g : E(ξ)→ E(γn(F)) by the rule

g(e) = (ĝ(fibre through e), ĝ(e)).

One may verify the continuity of g using the local triviality of ξ. It is clear that g is

fibre preserving. Therefore, g is a bundle map. �

This result may be strengthened:

Theorem 3.19 ([17, Chapter 3, Theorem 7.2]). Two Fn-bundles ξ and η over the

same base space B are isomorphic if and only if the determine homotopic maps from

B to G(n,F∞).

Thus, the isomorphism classes of Fn bundles over a paracompact base space B

are in one-to-one correspondence with the set [B,G(n,F∞)] of homotopy classes of



58 3. VECTOR BUNDLES AND CP
∞

maps from B into the infinite Grassmann manifold G(n,F∞). For this reason, the

space G(n,F∞) is often called the classifying space, or universal base space for Fn-

bundles. Topologists denote the classifying spaces G(n,R∞) and G(n,C∞) by BO(n)

and BU(n), respectively. The ‘B’ stands for ‘base space’; the ‘O’ and ‘U’ stand for

‘orthogonal’ and ‘unitary’, respectively. The notation BO(n) is appropriate since it

is the universal base space for vector bundles with O(n) as structural group (see

Lemma 3.17). A similar remark holds for BU(n). We make special note of the fact

that BU(1) = CP∞.

Analogously, one may show that the infinite oriented Grassmann manifold G	(n,R∞)

is the classifying space for oriented Rn-bundles. This space is often denote BSO(n)

because it is the universal base space for bundles with structural group SO(n).

3. A group law on CP∞ (almost)

We briefly digress from our general discussion of vector bundles to discuss an

important application of the notions discussed above. Borrowing notation from al-

gebraic geometry, we let PicB be the set of isomorphism classes of line bundles over

the paracompact topological space B. The following theorem is fundamental to un-

derstanding the structure of PicB.

Theorem 3.20. The function (ξ, η) 7→ ξ ⊗ η is an abelian group law on the set

PicB. The neutral element for this group law is the trivial line bundle, ε (with total

space B × F), and the inverse of a bundle ξ is given by its dual bundle, ξ∨.

Proof. The tensor product operation on vector bundles is associative and com-

mutative by Lemma 3.11, and it is easy to check that ξ ⊗ ε ∼= ξ. That ξ∨ serves as

an inverse of ξ follows easily from the fact that for a one dimensional vector space V ,

the tensor product V ⊗ V ∨ is canonically isomorphic to the field of scalars F. �

Remark 3.21. By Lemma 3.16(i), the group of real line bundles over a given para-

compact base space B has exponent two. By Lemma 3.16(ii), the bundle conjugation
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acts as inversion on the group of complex line bundles over a given paracompact base

space B.

Using the universal property of the space CP∞ in conjunction with the above the-

orem, we can show that CP∞ actually has the structure of a “group up to homotopy”.

Let the symbol ∼ denote the homotopy relation.

Definition 3.22. Let X be a topological space and m : X → X be a continuous

map. We say that m is an abelian group law up to homotopy if there exist continuous

maps e : X → X and i : X → X such that

(i) (Associativity) m ◦ (m, idX) ∼ m ◦ (idX ,m),

(ii) (Commutativity) m ◦ s ∼ m where s : X ×X → X ×X be given by s(x, y) =

(y, x),

(iii) (Identity) m ◦ (idX , e) ∼ idX ,

(iv) (Inverse) m ◦ (idX , i) ∼ e.

Let γ = γ1(C) and ε be the universal and trivial line bundles over CP∞, respec-

tively, and consider the line bundle γ � γ (in the sense of Theorem 3.9) over the

product CP∞ × CP∞. By Theorem 3.19, applicable as CP∞ × CP∞ is paracompact,

there exists a continuous map m : CP∞×CP∞ → CP
∞, unique up to homotopy, such

that γ � γ ∼= m∗γ. Let e and i be the continuous maps from CP
∞ to CP∞, unique

up to homotopy, such that ε ∼= e∗γ and γ∨ ∼= i∗γ.

Theorem 3.23. The map m gives CP∞ the structure of an abelian group, up to

homotopy, with identity map e and inverse map i.
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Proof. We must verify (i)-(iv) of Definition 3.22. We will verify (iv), the rest

being similar. Let p1, p2 : CP∞ × CP∞ → CP
∞ be the projection maps. Then

(m ◦ (id, i))∗γ ∼= (id, i)∗m∗γ

= (id, i)∗γ � γ by the above,

= (id, i)∗(p∗1γ ⊗ p∗2γ) by Lemma 3.10,

= ((id, i)∗p∗1γ)⊗ ((id, i)∗p∗2γ) by Lemma 3.8,

= (p1 ◦ (id, i))∗γ ⊗ (p2 ◦ (id, i))∗γ

= id∗γ ⊗ i∗γ

∼= γ ⊗ γ∨

∼= ε by Theorem 3.20.

We have shown that the map m◦(id, i) pulls back γ to ε. Therefore, by the uniqueness

of e up to homotopy, we must have m ◦ (id, i) ∼ e. �

We can actually give explicit formulas for the maps e, i, andm. Let a = (a0, a1, . . .)

and b = (b0, b1, . . .) be elements of C∞. We let A and B denote the lines through a

and b, respectively. View A and B as elements of CP∞. Define a bilinear composition

law ∗ on C∞ by the rule

a ∗ b = (c0, c1, . . .), where cn =
n∑
i=0

aibn−i.

Notice that if we identify C∞ with the polynomial ring C[x] by identifying a with

the polynomial a0 +a1x+ · · · , then the composition law ∗ corresponds to polynomial

multiplication. Therefore, if a and b are nonzero, then a ∗ b is also nonzero. It is

also clear that (λa) ∗ (κb) = λκ(a ∗ b) for all complex numbers λ and κ. Therefore, ∗

descends to a map from CP
∞×CP∞ → CP

∞. With this point of view, we have that

a ∗ b ∈ A ∗B
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Theorem 3.24. Let e : CP∞ → CP
∞ be any constant map, i : CP∞ → CP

∞

be induced by complex conjugation, and m : CP∞ × CP∞ → CP
∞ be defined by the

formula m(A,B) = A ∗B. Then e∗γ ∼= ε, i∗γ ∼= γ∨, and m∗γ ∼= γ � γ.

Proof. It is clear that e∗γ ∼= ε. By Lemma 3.16(ii), we may show instead that

i∗γ ∼= γ. To demonstrate this, it suffices to produce a bundle map I : E(γ) → E(γ)

such that the diagram

E(γ)
I−−−→ E(γ)y y

CP
∞ −−−→

i
CP
∞

commutes (see §2.2). Define I : E(γ) → E(γ) by the rule I(A, a) = (A, a), where

a = (a0, a1, . . .), and A is the line through a. One verifies directly that I is a bundle

map which completes the above diagram.

Let A, B ∈ CP∞, and consider the mapping from (FibA γ)× (FibB γ) to FibA∗B γ

given by

((A, a), (B, b)) 7→ (A ∗B, a ∗ b).

This is a well defined, bilinear map. Therefore, it induces a bundle map M : E(γ �

γ)→ E(γ) defined by

M((A, a)⊗ (B, b)) = (A ∗B, a ∗ b).

It is clear that the diagram,

E(γ � γ)
M−−−→ E(γ)y y

CP
∞ × CP∞ −−−→

m
CP
∞

commutes, so we may conclude that m∗γ ∼= γ � γ. �
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4. Characteristic classes of vector bundles

We continue our discussion of vector bundles by introducing a family invariants of

known as characteristic classes. These characteristic classes are special cohomology

classes of the base space of a bundle which contain much useful information. For

details on the constructions of these characteristic classes, see [25].

We first introduce the Stiefel-Whitney classes. One may show that for any real vec-

tor bundle ξ, there exists a unique sequence of cohomology classes wi(ξ) ∈ Hi(B(ξ),Z/2Z),

i ≥ 0, with the following properties:

(i) The class w0(ξ) is the unit element of H0(B(ξ),Z/2Z), and wi(ξ) is zero for

i > dimR ξ.

(ii) If f : ξ → η is a bundle map, then wi(ξ) = f ∗wi(η).

(iii) If ξ and η are vector bundles over the same base space, then

wk(ξ ⊕ η) =
k∑
i=0

wi(ξ) ∪ wk−i(η).

(iv) Letting γ1,1(R) denote the canonical (Hopf) line bundle over RP1 (see page 48),

the class w1(γ1,1(R)) is nonzero.

The cohomology class wi(ξ) is called the i-th Stiefel-Whitney class of the vector bundle

ξ. Letting

w(ξ) = w0(ξ) + w1(ξ) + · · · ∈ H∗(B(ξ),Z/2Z),

we express property (iii) in the form w(ξ ⊕ η) = w(ξ) ∪ w(η). We call w(ξ) the total

Stiefel-Whitney class of ξ.

One may compute the Stiefel-Whitney classes of a cartesian product of vector

bundles in terms of the Stiefel-Whitney classes of the factors.

Lemma 3.25. Let ξ and η be vector bundles. Then

wk(ξ × η) =
k∑
i=0

wi(ξ)× wk−i(η).
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Here, wi(ξ) × wk−i(η) denotes the cohomology cross product wi(ξ) and wk−i(η). For

its definition and properties, see [26, p. 355ff].

Proof. Let π1 and π2 be the projection maps from B(ξ)× B(η) onto B(ξ) and

B(η), respectively. Then ξ × η ∼= (π∗1ξ) ⊕ (π∗2η). Computing, using the natural-

ity of characteristic classes and a standard fact relating cup and cross products in

cohomology, we see that

wk(ξ × η) = wk((π
∗
1ξ)⊕ (π∗2η))

=
k∑
i=0

wi(π
∗
1ξ) ∪ wk−i(π∗2η)

=
k∑
i=0

(π∗1wi(ξ)) ∪ (π∗2wk−i(η))

=
k∑
i=0

wi(ξ)× wk−i(η).

�

One may use the Stiefel-Whitney classes to derive interesting non-embedding re-

sults for manifolds (see, for instance, [25, Theorem 4.8]), and important theorems

concerning the existence of real division algebras (see, for instance, [25, Theorem

4.7]). The fact we have chosen our coefficient ring to be Z/2Z makes Stiefel-Whitney

classes ideally suited to studying non-oriented manifolds. They will come up again

later when we discuss non-oriented cobordism.

We now introduce the Chern classes, characteristic classes of complex vector bun-

dles. For every complex vector bundle ω, there is a unique sequence of cohomology

classes ci(ω) ∈ H2i(B(ω),Z) satisfying properties completely analogous to properties

(i)-(iv) of the Stiefel-Whitney classes.

(i) The class c0(ω) is the unit element of H0(B(ω),Z), and ci(ω) is zero for i >

dimC ω.

(ii) If f : ω → ζ is a bundle map, then ci(ω) = f ∗ci(ζ).
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(iii) If ω and ζ are vector bundles over the same base space, then

ck(ω ⊕ ζ) =
k∑
i=0

ci(ω) ∪ ck−i(ζ).

(iv) Letting γ1,1(C) denote the canonical (Hopf) line bundle over CP1 (see page 48),

the class c1(γ1,1(C)) is nonzero.

The class wi(ω) is called the i-th Chern class of ω. We define the total Chern class

of ω to be the sum

c(ω) = c0(ω) + c1(ω) + c2(ω) + · · · ∈ H∗(B(ω),Z).

One can prove the following relationship between a complex bundle and its conjugate.

Lemma 3.26 ([25, Lemma 14.9]). Let ω be a complex n-bundle. Then the total

Chern class of ω is given by

c(ω) = 1− c1(ω) + c2(ω)− · · ·+ (−1)ncn(ω).

For what shall follow, we will require one more family of characteristic classes, the

Pontryagin classes. These classes are actually defined in terms of the Chern classes.

Let ξ be a real, n-dimensional vector bundle. Then the complexification ξ ⊗ C of ξ

is an n-dimensional complex vector bundle. The i-th Pontryagin class of ξ, denoted

pi(ξ), is defined in terms of the 2i-th Chern class of its complexification by the formula

pi(ξ) = (−1)ic2i(ξ ⊗ C) ∈ H4i(B(ξ),Z).

We define the total Pontryagin class of ξ to be the sum

p(ξ) = p0(ξ) + p1(ξ) + p2(ξ) + · · · ∈ H∗(B(ξ),Z).

The Pontryagin classes satisfy properties formally similar to those satisfied by the

Stiefel-Whitney and Chern classes. These properties may derived from the corre-

sponding properties of the Chern classes. The following relationship between Chern

and Pontryagin classes is useful.
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Lemma 3.27 ([25, Corollary 15.5]). Let ω be a complex n-plane bundle and ωR

the real vector bundle obtained by ignoring its complex structure. Then

1−p1(ωR)+· · ·+(−1)npn(ωR) = (1−c1(ω)+· · ·+(−1)ncn(ω))(1+c1(ω)+· · ·+cn(ω)).

Proof. By the definition of Pontryagin classes, we have

1− p1(ω) + p2(ω)− · · ·+ (−1)npn(ω) = 1 + c2(ωR ⊗ C) + · · ·+ c2n(ωR ⊗ C).

But ωR ⊗ C ∼= ω ⊕ ω, so by Lemma 3.26,

c(ωR ⊗ C) = 1 + c1(ωR ⊗ C) + · · ·+ c2n(ωR ⊗ C)

= c(ω ⊕ ω) = c(ω)c(ω)

= (1 + c1(ω) + · · ·+ cn(ω))(1− c1(ω) + · · ·+ (−1)ncn(ω)).

It follows that if k is odd, then

ck(ωR ⊗ C) =
k∑
i=0

((−1)k−i + (−1)i)ci(ω)ck−i(ω) = 0,

since (−1)k−i + (−1)i = 0 for each i = 0, . . . , k. Therefore,

1− p1(ω) + p2(ω)− · · ·+ (−1)npn(ω) = c(ωR ⊗ C)

= (1 + c1(ω) + · · ·+ cn(ω))(1− c1(ω) + · · ·+ (−1)ncn(ω)).

�

One has an analogue of Lemma 3.25 for Chern and Pontryagin classes. Since

the arguments in the proof of Lemma 3.25 were purely formal, the proof remains

unchanged.

Lemma 3.28.

(i) Let ω and ζ be complex vector bundles. Then

ck(ω × ζ) =
k∑
i=0

ci(ω)× ck−i(ζ).
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(ii) Let ξ and η be real vector bundles. Then

pk(ξ × η) =
k∑
i=0

pi(ξ)× pk−i(η).

Let X be an n-dimensional, smooth manifold. One defines its Stiefel-Whitney

classes wi(X) (respectively, its Pontryagin classes, pi(X)) to be the Stiefel-Whitney

classes (respectively, Pontryagin classes) of its tangent bundle. To make a similar

definition for Chern classes, we introduce a piece of terminology. We call a com-

plex structure on the tangent bundle of X an almost-complex structure on X. An

almost-complex manifold is defined to be a manifold together with an almost-complex

structure. Consequently, the tangent bundle of an almost-complex manifold can be

viewed as a complex vector bundle. We may therefore define the Chern classes ci(X)

of the almost-complex manifold X to be the Chern classes of its tangent bundle.

One may use these characteristic classes to define numerical invariants of mani-

folds. LetX be a smooth, compact, n-dimensional manifold, and let µX ∈ Hn(X,Z/2Z)

denote the fundamental homology class of X. Then for any cohomology class u ∈

Hn(X,Z/2Z), the Kronecker product 〈u, µX〉 is a well defined element of Z/2Z. Let

I = (i1, . . . , ir) be a partition of the integer n (i.e. i1 ≤ · · · ≤ ir and i1 + · · ·+ ir = n).

Then the cohomology class wi1(X) ∪ · · · ∪ wir(X) is in Hn(X,Z/2Z). Therefore, we

may define

wI [X] = 〈wi1(X) ∪ · · · ∪ wir(ξ), µB(X)〉 ∈ Z/2Z.

The integer wI [X] is called the I-th Stiefel-Whitney number of X. If X is an ori-

ented manifold, then X has a fundamental homology class µX ∈ Hn(X,Z), and the

Pontryagin numbers pI [X] may be defined in an analogous manner. In addition,

Chern numbers cI [X] may be constructed under the assumption that X is almost

complex (which implies that X has a preferred orientation). If X is an n-dimensional

complex manifold, one can show that the Chern number cn[X] is equal to the Euler

characteristic χ(X) of X; see [25, Corollary 11.2].
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Example 3.29. To illustrate the above points, we discuss the characteristic classes

and numbers of the projective spaces. We begin with the Stiefel-Whitney classes of

real projective space. There is an obvious bundle map f from the canonical line

bundle γ1,1(R) over RP1 to γ1,n(R) over RPn. By properties (ii) and (iv) of Stiefel

Whitney classes, we have

0 6= w1(γ1,1(R)) = f ∗w1(γ1,n(R)).

Therefore, w1(γ1,n(R)) = g, where g is the unique nonzero element of H1(RPn,Z/2Z).

Applying property (i) of Stiefel-Whitney classes, it follows that w(γ1,n) = 1 + g.

Let τRPn be the tangent bundle of RPn, and let ε be the trivial line bundle over

RP
n. One may show (see [25, Proof of Theorem 4.5]) that

τRPn ⊕ ε ∼= γ1,n(R)⊕ · · · ⊕ γ1,n(R)︸ ︷︷ ︸
n+ 1 summands

.

This is an example of the splitting principle for vector bundles. Therefore, by property

(iii) of Stiefel-Whitney classes,

w(RPn) = w(τRPn) = w(τRPn ⊕ ε) = (1 + g)n+1

= 1 +

(
n+ 1

1

)
g +

(
n+ 1

2

)
g2 + · · ·+

(
n+ 1

n

)
gn.

This formula can be used to show that all of the Stiefel-Whitney numbers of RPn

vanish if and only if n is odd. If n is even, then it follows from the above formula

that wn(RPn) = (n + 1)gn, implying that wn[RPn] ≡ 1 (mod 2). Now suppose n is

odd, and write n = 2k − 1. Then

w(RPn) = (1 + g)2k ≡ (1 + g2)k =
k∑
i=0

(
k

i

)
g2k (mod 2).

Since the above sum contains no terms of even weight, it follows that wj(RP
n) = 0 if

j is odd. Consequently, all the Stiefel-Whitney numbers of RPn vanish.
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One may use similar ideas to compute the Chern classes of complex projective

n-space, CPn. In this case, one begins by showing that

τCPn ∼= Hom(γ1,n(C), ε⊕ · · · ⊕ ε)

∼= γ1,n(C)⊕ · · · ⊕ γ1,n(C)︸ ︷︷ ︸
n+ 1 summands

;

for details, see [25, Proof of Theorem 14.10]. Therefore,

c(CPn) = c(γ1,n(C))n+1 = (1− c1(γ1,n(C)))n+1.

Letting g = −c1(γ1,n(C)), it follows that

c(CPn) = 1 +

(
n+ 1

1

)
g +

(
n+ 1

2

)
g2 + · · ·+

(
n+ 1

n

)
gn.

It can be shown that g is the generator of H2(CPn,Z) such that gn ∈ H2n(CPn,Z)

is compatible with the preferred orientation of CPn, (i.e., 〈µCPn , gn〉 = 1). It follows

that for any partition I = (i1, . . . , ir) of the integer n, we have

(3.1) cI [CP
n] =

(
n+ 1

i1

)
· · ·
(
n+ 1

ir

)
.

For example,

(3.2) c1[CP1] = 2, c2
1[CP2] = 9, c2[CP2] = 3.

From Lemma 3.27, it follows that the total Pontryagin class p(CPn) is given by

(1 + g2)n+1. Its Pontryagin nmbers are given by

pI [CP
n] =

(
2n+ 1

i1

)
· · ·
(

2n+ 1

ir

)
,

where I is a partition of n. Therefore,

(3.3) p1[CP2] = 3, p2
1[CP4] = 25, p2[CP4] = 10

Example 3.30. Let C1 and C2 be complex curves, and define the surface S =

C1 × C2. Computing using Lemma 3.28, one obtains

c2(S) = c1(C1)× c1(C2), c2
1(S) = 2c1(C1)× c1(C2).
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Let µS be the homology class which determines the preferred orientation of S. One

can show that µS = µC1 × µC2 . Therefore,

c2[S] = 〈c2(S), µC1 × µC2〉 = 〈c1(C1), µC1〉〈c1(C2), µC2〉 = c2[C1]c2[C2],

c2
1[S] = 2c1[C1]c1[C2].

Since, by (3.2), c1(CP1) = 2, we have

(3.4) c2[CP1 × CP1] = 4, c2
1[CP1 × CP1] = 8.

Using the above style of argument, one may prove results relating the Pontryagin

numbers of a product of manifolds to the Pontryagin numbers of the factors. In

particular, one may show that if M and N are 4-dimensional oriented manifolds,

then

p2[M ×N ] = p1[M ]p1[N ], p2
1[M ×N ] = 2p1[M ]p1[N ].

Consequently,

(3.5) p2[CP2 × CP2] = 9, p2
1[CP2 × CP2] = 18.

We summarize in tabular form some manifolds and their characteristic numbers:

c2
1 c2

CP
1 × CP1 8 4

CP
2 9 3

p2
1 p2

CP
2 × CP2 18 9

CP
4 25 10

Example 3.31. Let X be a complex surface, and let X̃ be the blow-up of X at

a point P . There is a nice relationship between the Chern numbers of X and X̃. It

is a fact (see for instance [14, Appendix A, Example 4.1.2]) that for any surface Y ,

we have c1(Y ) = −KY , where KY is the canonical divisor on Y . Further, by [14,

Chapter V, Proposition 3.3], one has the relationship K2
X̃

= K2
X − 1. Therefore,

c2
1[X̃] = c2

1[X]− 1.
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Let E denote the special fibre of the blow-up X̃ → X. It can be shown (see [13,

p.473-474]) that

Hi(X̃) = Hi(X)⊕ Hi(E), i > 0.

Since E ∼= CP
1, it follows that dim Hi(X̃) = dim Hi(X), if i > 0 and i 6= 2, and

dim H2(X̃) = dim H2(X) + 1. Since the top Chern number of a manifold is equal to

its Euler characteristic (this was mentioned on page 66), we have c2[X̃] = c2[X] + 1.

Example 3.32. In this example, we describe the Pontryagin classes of the quater-

nionic projective spaces HPn. For proofs of the assertions made below, see [16,

§1.3]. Using an appropriate cell decomposition, one can show that H∗(HPn,Z) =

Z[u]/(un+1), where u is a generator of H4(HPn,Z).

Let u be the generator of H4(HPn,Z) which is compatible with the orientation an

HP
n. Then the Pontryagin classes of HPn are given by

p(HPn) = (1 + u)2n+2(1 + 4u)−1

= (1 + u)2n+2(1− 4u+ 16u2 − 64u3 + · · · ).

As an illustration, we compute the Pontryagin numbers of HP2. Let u ∈ H4(HP2,Z)

be as above. Then since u3 = 0, the above formula reduces to

p(HP2) = (1 + u)6(1− 4u+ 16u2) = 1 + 2u+ 7u2.

That is, p1(HP2) = 2u and p2(HP2) = 7u2. As 〈u, µHP2〉 = 1, we have

(3.6) p2
1[HP2] = 4, p2[HP2] = 7.



CHAPTER 4

Bordism and cobordism

1. Generalized cohomology theories

1.1. The Eilenberg-Steenrod axioms. We begin by recalling the Eilenberg-

Steenrod axioms defining generalized cohomology theories; see [10]. If (X,A) and

(Y,B) are pairs of topological spaces withA ⊆ X andB ⊆ Y , then a map f : (X,A)→

(Y,B) is a continuous map f : X → Y with f(A) ⊆ B. Let A be a category of pairs

(X,A) of topological spaces with A ⊆ X such that:

• If the pair (X,A) is in A, then so are the pairs (X,X), (X,∅), (A,A), and

(A,∅).

• If (X,A) is in A, then so is (X × I, A× I).

• There is a one-point space ? with (?,∅) in A.

Such a category is called admissable. We shall often identify the pair (X,∅) with the

set X. A generalized cohomology theory on A consists of the following data:

• A sequence hn, n ≥ 0, of contravariant functors from A to the category of

abelian groups. If f : (X,A)→ (Y,B) is a continuous map between admiss-

able pairs, we let f ∗ denote the induced map hn(f) : hn(Y,B)→ hn(X,A).

• A coboundary map δ : hn−1(A) → hn(X,A) for each admissable pair (X,A)

and each n.

Further, we require that the following axioms be satisfied.

71
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(1) If f : (X,A)→ (Y,B), then the diagram

hn−1(B)
δ−−−→ hn(Y,B)

(f |A)∗
y f∗

y
hn−1(A) −−−→

δ
hn(X,A)

commutes.

(2) (Exactness) If i : A → X and j : X → (X,A) are inclusion maps, then the

sequence of homomorphisms

· · · i
∗
→ hn−1(A)

δ→ hn(X,A)
j∗→ hn(X)

i∗→ hn(A)
δ→ · · ·

is exact.

(3) (Homotopy) If f and g are homotopic maps from (X,A) to (Y,B), then

f ∗ = g∗.

(4) (Excision) Let (X,A) be in A, and let U be an open subset of X such that

U ⊆ IntA. If (X −U,A−U) is in A, then inclusion induces an isomorphism

hn(X − U,A− U) ∼= hn(X,A).

In addition to satisfying the above, ordinary cohomology theory Hn also satisfies

the following dimension axiom.

If ? is a one point space then Hn(?) = 0 for n ≥ 1, and H0(?) = Z.

One can show that on a sufficiently nice admissable category (for example, the cate-

gory of simplicial complexes and simplicial maps), Axioms (1)-(4) together with the

dimension axiom characterize ordinary cohomology theory [10]. Later, we shall come

across generalized cohomology theories, the cobordism theories, for instance, which

do not satisfy the dimension axiom.

A generalized cohomology theory hn is said to have products if for each admissable

pair (X,A) and integers m and n, there is a pairing

hm(X,A)× hn(X,A)→ hm+n(X,A)
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which endows the direct sum h∗(X,A) :=
⊕

n≥0 h
n(X,A) with a ring structure. We

note that h∗(X,A) is always a graded module over h∗(?).

1.2. Complex-oriented cohomology theories. For our purposes, one of the

crucial properties of the space CP∞ is that its cohomology ring is a power series

ring in one variable. We thus define a class of generalized cohomology theories, the

complex-oriented cohomology theories (see [40, §2.2], or [15, §31.1.1]), which share

that property.

Let h∗ be a generalized cohomology theory with products such that 2 is invertible

in the ring of coefficients h∗(?). We call h∗ complex-oriented if there is a cohomology

class t ∈ h2(CP∞) (called an orientation) such that:

• t maps to −t under the endomorphism of h2(CP∞) induced by complex

conjugation,

• t restricts to the canonical generator of h2(S2).

Suppose h∗ is a complex-oriented cohomology theory. Then one may deduce using

only the above properties and the Eilenberg-Steenrod axioms that

h∗(CP∞) ∼= h∗(?)[[x]].

Ordinary cohomology is a complex-oriented theory. Representing the 2-sphere S2 as

C ∪ {∞}, one observes that complex conjugation induces a reflection of S2 about an

equator. Such a reflection induces multiplication by −1 on H2(S2,Z).

Now suppose h∗ is a complex-oriented cohomology theory. Let R = h∗(?) be

its ring of coefficients. For each space X, h∗(X) is a module over h∗(?). As h∗ is

contravariant, the map m : CP∞ → CP
∞ induces a co-multiplication map

µ : h∗(CP∞)→ h∗(CP∞ × CP∞) ∼= h∗(CP∞) ⊗̂
R
h∗(CP∞),

where the isomorphism in the above formula is a consequence of the Künneth theo-

rem. Note that since h∗ is well defined modulo homotopy equivalence, the map µ is
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independent of our choice of m. As h∗ is complex-oriented,

h∗(CP∞) ∼= R[[z]], and h∗(CP∞) ⊗̂
R
h∗(CP∞) ∼= R[[z]]⊗R[[z]] ∼= R[[x, y]].

Therefore, we may view µ as a map from R[[z]] into R[[x, y]]. A purely formal argu-

ment, essentially identical to the one presented in Chapter 2, §1, proves the following

consequence of the group law property of the map m.

Theorem 4.1. Let F (x, y) = µ(z) ∈ R[[x, y]]. Then F (x, y) is a formal group law

with coefficients in the ring R = h∗(point).

In summary, using the group property of the classifying space CP∞ = BU(1), we

may attach a formal group law to each complex-oriented cohomology theory.

2. Bordism

Bordism theory, initiated by L. Pontryagin and V. A. Rohlin and brought to

maturity by J. Milnor and R. Thom, was developed to answer questions like the

following:

Given a manifold, how may we determine if it is the boundary of

another manifold?

Considering the central role played by the notion of boundary in homology theory, it

comes as no surprise that homological tools have been vital in investigations related

to the above question. In fact, our answer is phrased in terms of characteristic

cohomology classes.

Assume all manifolds appearing in this section are smooth and compact. By

a closed manifold, we mean a manifold without boundary. Let M be the set of

diffeomorphism classes of closed (smooth, compact) manifolds. For manifolds X1 and

X2, we let X1 + X2 denote their disjoint union. The empty manifold ∅ serves as a

neutral element for +. The cartesian product operation on M distributes over disjoint

union. In fact, (M,+,×) has satisfies all axioms of a commutative ring except for the

existence of additive inverse.
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2.1. Non-oriented bordism. We define an equivalence relation on M by declar-

ing X1 and X2 equivalent if and only if there is a manifold Y such that ∂Y is diffeomor-

phic to X1 + X2. This is an equivalence relation: Symmetry is obvious; reflexitivity

follows from the fact that for any closed manifold X, the disjoint union X +X is the

boundary of the cartesian product X × [0, 1]. Transitivity follows from the following

theorem, which allows us to glue two manifolds together along a common boundary.

Theorem 4.2 (Collar neighbourhood theorem). Let X be a smooth, compact

manifold with boundary ∂X. Then there exists a neighbourhood of ∂X in X which is

diffeomorphic to ∂X × [0, 1).

We call this relation non-oriented bordism, and say that two related manifolds are

bordant. Let Ω∗ be the set of equivalence classes of M, modulo the non-oriented

bordism relation.

We claim that Ω∗ is a ring under + and ×. That addition is well defined follows

from the identity ∂(Y1 + Y2) = ∂Y1 + ∂Y2. A closed manifold X is its own additive

inverse in Ω∗, as X + X = ∂X × [0, 1] is a boundary. That × is well defined on

Ω∗ follows from the fact that if X is closed and ∂Y is a boundary, then X × ∂Y =

∂(X × Y ). We call Ω∗ the non-oriented bordism ring. The ring Ω∗ is graded by

dimension. The set Ωn of equivalence classes of closed, n-dimensional manifolds

under the non-oriented bordism relation is an abelian group, and

Ω∗ =
⊕
n≥0

Ωn.

It is clear that the cartesian product induces a bilinear map × : Ωm × Ωn → Ωm+n.

The structure of Ω∗ is given by the following theorem.

Theorem 4.3 (Thom [39]). The non-oriented cobordism ring Ω∗ is isomorphic

to a polynomial ring

(Z/2Z)[X2, X4, X5, X6, X8, X9, . . .],
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with one generator Xn ∈ Ωn for all n 6= 2m − 1. If n is even, then we may take Xn

to be the bordism class of real, n-dimensional projective space.

A proof is also given in [38].

The Stiefel-Whitney numbers, discussed earlier, are complete invariants of non-

oriented bordism.

Theorem 4.4 (Pontryagin [30], Thom [39]). Let X be a smooth, compact, closed

manifold. Then X is the boundary of a smooth, compact manifold Y if and only if

all of its Stiefel-Whitney numbers wI [X] are zero.

These issues are treated in detail in [38]. From the discussion of Example 3.29,

we see that RPn bounds if and only if n is odd. Observing that

Hn(X1 +X2,Z/2Z) ∼= Hn(X1,Z/2Z)⊕ Hn(X1,Z/2Z),

it follows that for any partition I of the integer n, we have wI [X1 + X2] = wI [X1] +

wI [X2] in Z/2Z. We therefore obtain the following corollary.

Corollary 4.5. Two smooth, compact, closed, n-dimensional manifolds X1 and

X2 are cobordant if and only if X1 and X2 have the same Stiefel-Whitney numbers.

2.2. Oriented bordism. We also wish to determine necessary and sufficient con-

ditions for an oriented manifold to be an oriented boundary. For an oriented manifold

X, we let −X denote the manifold X with the opposite orientation. Let M	 denote

the set of isomorphism (i.e. orientation preserving1 diffeomorphism) classes of closed,

oriented manifolds. The set M	 satisfies all the axioms of a ring except for the

existence of additive inverse. Unlike in the non-oriented case though, the cartesian

product operation on M	 is not commutative in usual sense. It is, however, commuta-

tive in the following graded sense. If we view M	 as being graded by dimension, and

let X and Y be oriented manifolds of dimension m and n, respectively, then X×Y is

1Let ϕ : X → Y be a diffeomorphism between oriented manifolds X and Y . We say that ϕ is

orientation preserving if the induced map dϕ on tangent spaces sends positively oriented bases to

positively oriented bases.
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isomorphic to (−1)mnY ×X. The reason for this is as follows. Let ϕ : X×Y → Y ×X

be defined by ϕ(x, y) = (y, x) Let e = (e1, . . . , em) and f = (f1, . . . , fn) be bases for

the tangent spaces of X and Y at points x and y, respectively. Then

e× f := ((e1, 0), . . . , (em, 0), (0, f1), . . . , (0, fn)) and

f × e := ((f1, 0), . . . , (fn, 0), (0, e1), . . . , (0, em))

are positively oriented bases for the tangent spaces of X × Y and Y × X at (x, y)

and (y, x), respectively. Let dϕ denote the map on tangent spaces induced by ϕ. As

dϕ(ei, 0) = (0, ei) and dϕ(0, fi) = (fi, 0), it follows that dϕ sends the basis e × f to

the basis

dϕ(e× f) = ((0, e1), . . . , (0, em), (f1, 0), . . . , (fn, 0)).

One sees directly that the determinant of the change of basis from f × e to dϕ(e× f)

is (−1)mn. Therefore, the assertion that X × Y ∼= (−1)mnY ×X follows.

We define a relation on the class of oriented manifolds by declaring X1 and X2

equivalent if X1 + (−X2) is the boundary of another oriented manifold. The proof

that this defines an equivalence relation proceeds essentially as in the non-oriented

case. Note that as oriented manifolds, ∂X × [0, 1] ∼= X + (−X). This relation is

called the oriented bordism relation, and again, two related manifolds are said to be

(oriented) bordant. Let Ω	∗ be the corresponding set of equivalence classes. Then

as in the non-oriented case, Ω	∗ is a ring, with the additive inverse of and oriented

manifold X being −X. Letting Ω	n denote the set of equivalence classes of oriented

n-dimensional manifolds under the oriented bordism relation, it follows easily from

the above that

Ω	∗ =
⊕
n≥0

Ω	n

is a graded ring, commutative in the graded sense.

The structure of this oriented bordism ring, modulo 2-torsion, is given by the

following theorem:
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Theorem 4.6 (Thom [39], Milnor [24]).

(i) The tensor product Ω	∗ ⊗ Z[1/2] is isomorphic to a polynomial ring

Z[1/2][X4, X8, . . .]

with one generator in each positive dimension divisible by 4.

(ii) Let [CPn] denote the oriented bordism class of CPn. Then killing all torsion, we

may take X4n = [CP2n]. That is,

Ω∗ ⊗Q ∼= Q[ [CP 2], [CP 4], . . . ].

Note that since all the generators of Ω	∗ ⊗ Z[1/2] have even weight, the graded com-

mutativity inherited from Ω	∗ is just commutativity. For a description of the 2-torsion

in Ω	∗ , see [41].

Together, the Pontryagin and Stiefel-Whitney numbers constitute complete in-

variants of oriented bordism.

Theorem 4.7 (Pontryagin [30], Milnor [24], Wall [41]). Two oriented manifolds

X and Y are oriented bordant if and only if all of their corresponding Pontryagin

and Stiefel-Whitney numbers coincide. Consequently, a compact, oriented manifold

X is a the boundary of another compact, oriented manifold if and only if all of its

Pontryagin numbers and Stiefel-Whitney numbers are zero.

The Pontryagin numbers of an oriented manifold completely determine the image

of an oriented manifold in Ω	∗ ⊗Q.

Theorem 4.8 (Thom [39]). Two oriented manifolds have the same image in

Ω	∗ ⊗Q if and only if all of their Pontryagin numbers coincide.

Example 4.9. Let X = 3(CP2×CP2)−2CP4. We claim that X and HP2 have the

same image in Ω	∗ ⊗Q. We must show that their have the same Pontryagin numbers.
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Consulting (3.6) and the tables on page 69, we see that

p2
1[X] = 3p2

1[CP2 × CP2]− 2p2
1[CP4]

= 3 · 18− 2 · 25 = 4

= p2
1[HP2],

p2[X] = 3p2[CP2 × CP2]− 2p2[CP4]

= 3 · 9− 2 · 10 = 7

= p2[HP2].

So our claim holds.

Thom determined the structure of the oriented bordism groups by interpreting

them as certain stable homotopy groups. To each vector bundle ξ, Thom attached a

space T (ξ), called the Thom space of ξ, with the following property:

• If n < k − 1, then the homotopy group πn+k(T (γ	n )) is isomorphic to the

n-th oriented bordism group Ω	n , where γ	n is the universal oriented n-plane

bundle over the oriented Grassmann manifold G	(n,R∞).

For an accessible discussion of Thom spaces, see [25, §18]. We shall refer to these

Thom spaces again when discussing the construction of cobordism theories.

2.3. Complex bordism. Somewhat less intuitive, although essential for our

purposes, is the notion of complex bordism. Before we give the definition, we must

introduce some terminology.

Let ξ and η be vector bundles over the common base space B, and let ε be the

trivial line bundle over B. We say that ξ and η are stably equivalent if there exist

integers m and n such that ξ ⊕ εm ∼= η ⊕ εn. For example, by the discussion in

Example 3.29, the tangent bundle τRPn of RPn is stably equivalent to γ1,n⊕ · · · ⊕ γ1,n

(n+ 1 summands). If ξ is stably equivalent to a trivial bundle (that is, ξ ⊕ εm ∼= εn,

for some integers m and n), we say that ξ is stably trivial. It is clear that stable
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equivalence is an equivalence relation on the class of vector bundles over B. In fact,

the set of stable equivalence classes of vector bundles over B form an abelian group

under the operation of ⊕. The existence of additive inverses is a consequence of the

following result.

Lemma 4.10. Let ξ be an F-vector bundle over the paracompact base space B.

Then there exists another F-vector bundle η over B such that the direct sum ξ ⊕ η is

(stably) trivial.

Proof. Let g : E(ξ)→ F
N be a Gauss map. Since B is paracompact, such a map

exists by Theorem 3.13. Define ĝ : E(ξ)→ B × FN by e ∈ Fibb ξ 7→ (b, g(e)). Then ĝ

embeds ξ as a subbundle of the trivial N -bundle εN . Choosing a metric on εN (here,

we need the paracompactness of B), we may find a complementary subbundle η for

ξ. �

The notions of oriented and non-oriented bordism discussed above do not gener-

alize readily to the case of complex or even almost-complex manifolds (see page 66).

This is because complex or almost-complex manifolds have even real dimension, and

thus the boundary of a complex or almost-manifold cannot be complex or almost-

complex. The notion of stable equivalence allows us to circumvent this difficulty.

Let X be a manifold, and let τ be its tangent bundle. Let ω be a complex vector

bundle whose underlying real vector bundle is stably equivalent to τ . The stable

equivalence class [ω] of the complex vector bundle ω is called a complex structure on

the stable tangent bundle of X. A stably almost-complex manifold is defined to be

a pair (X, [ω]), where X is a manifold and [ω] is a complex structure on its stable

tangent bundle.

We define the complex bordism relation for stably almost-complex manifolds. We

first note that if [ω1] and [ω2] are complex structures on the stable tangent bundles

of manifolds X1 and X2, respectively, there is an obvious way to define a complex

structure on X1 +X2 induced by [ω1] and [ω2]. For a stably almost-complex manifold
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(X, [ω]), we define its boundary, ∂(X, [ω]), by the formula

∂(X, [ω]) = (∂X, [ω|∂X ]).

Let (X, [ω]) be a stably almost-complex manifold. We wish to define −(X, [ω]). Let

εR and εC be the trivial real and complex line bundles over X, and let εC be the

conjugate bundle. Note that the underlying real bundles of εC and εC are both

isomorphic to εR⊕εR. We define −(X, [ω]) to be the stably almost-complex manifold

(X, [ω ⊕ εC]). It now makes sense to declare two stably almost-complex manifolds

(X1, [ω1]) and (X2, [ω2]) complex-bordant if there exists another stably almost-complex

manifold (Y, [ζ]) such that

(X1, [ω1]) + (X2, [ω2]) = ∂(Y, [ζ]).

As before, one can check that this does in fact define an equivalence relation on the

class of stably almost-complex manifolds. We denote the quotient by ΩU
∗ . One defines

the cartesian product of (X, [ω]) and (Y, [ζ]) to be (X×Y, [ω× ζ]). To show that this

makes sense, we verify that the underlying real bundle (ω × ζ)R is stably equivalent

to τX × τY . Suppose ωR ∼= τX ⊕ εm and ζR ∼= τY ⊕ εn, and let π1 and π2 denote the

projection maps from X × Y . Then

(ω × ζ)R ∼= ωR × ζR

∼= π∗1(τX ⊕ εm)⊕ π∗2(τY ⊕ εn)

∼= (π∗1τX)⊕ (π∗1ε
m)⊕ (π∗2τY )⊕ (π∗2ε

n)

∼= (π∗1τX)⊕ (π∗2τY )⊕ εn+m

∼= (τX × τY )⊕ εn+m.

As before, the operations + and × give ΩU
∗ the structure of a graded ring. That

+ is well defined, modulo bordism, follows from the additivity of +. To check that

multiplication in ΩU
∗ makes sense, we must verify that the set of boundaries is closed
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under multiplication by arbitrary closed manifolds. Computing, we see that,

(∂M, [ζ|∂M ])× (X, [ω]) = (∂M ×X, [ζ|∂M × ω])

∼= (∂(M ×X), [(ζ × ω)∂(M×X)])

= ∂(M ×X, [ζ × ω]).

Thus, ΩU
∗ is a ring. The structure of this complex bordism ring was determined by

Milnor, and independently by Novikov.

Theorem 4.11 ([24], [28]). The complex bordism ring ΩU
∗ has the structure of a

polynomial ring Z[X2, X4, . . .], with one generator in each real dimension divisible by

4.

A system of generators for ΩU
∗ can be described as follows. Let Hij ⊆ CPi × CPj

be the smooth hypersurface defined by the relation x0y0 + · · ·xkyk = 0, where k =

min{i, j}. The manifold Hij has real dimension 2(i+ j − 1). One can show (see [16,

§4.1]) that the manifolds Hij are polynomial generators of ΩU
∗ .

We note that two stably equivalent vector bundles have the same characteristic

classes, since the characteristic classes of the trivial bundle are trivial. Therefore,

the Chern classes and numbers of a stably almost-complex manifold are well defined.

These Chern numbers are complete invariants for complex bordism theory.

Theorem 4.12 (Milnor [24], Novikov [28]). Two stably, almost complex manifolds

are complex-bordant if and only if all of their corresponding Chern numbers coincide.

Example 4.13. Let X be a smooth, projective, complex, algebraic surface, and

let X̃ be the blow-up of X at a point P . We claim that X̃ −X and CP1×CP1−CP2

are complex-bordant. We compute their Chern numbers, referring to Example 3.31
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and the tables on page 69.

c2
1[CP1 × CP1 − CP2] = c2

1[CP1 × CP1]− c2
1[CP2]

= 8− 9 = −1

= c2
1[X̃]− c2

1[X] = c2
1[X̃ −X]

c2[CP1 × CP1 − CP2] = 4− 3 = 1

= c2[X̃ −X]

As their Chern numbers coincide, they are complex-cobordant.

We have remarked before that every almost-complex manifold is oriented. There-

fore, there is a natural ‘forgetful’ homomorphism ϕ : ΩU
∗ → Ω	∗ . This follows from the

fact that an orientation of a vector bundle stably equivalent to the tangent bundle

τ of X induces an orientation of the n-dimensional manifold X. For let ξ = τ ⊕ εk
R
,

and e1, . . ., ek be the standard basis of Rk. Let x ∈ X. We say that an ordered basis

(v1, . . . , vn) is a positively oriented basis for Fibx τ if and only if (v1, . . . , vn, e1, . . . , ek)

is a positively oriented basis if Fibx ξ ∼= (Fibx τ) ⊕ Rk. One can easily verify that

this is well defined. Thus, a complex structure on the stable tangent bundle of X

induces an orientation of X. One can check directly that the complex structures [ω]

and [ω ⊕ εC] induce opposite orientations on the underlying manifold. It is known,

see [38, Chapter IX], that ϕ is onto, modulo torsion.

3. Bordism theories as homology theories

Our construction of the bordism groups may be generalized. We describe this

generalization for oriented bordism, since it will be important for us later. Fix an

oriented manifold, X. We shall consider pairs (M, f), where M is a manifold and

f : M → X is an orientation preserving (see footnote, page 76), smooth map. Declare

two such pairs (M1, f1) and (M2, f2) equivalent if there exists a pair (N, g) such that

• ∂N is diffeomorphic to M1 + (−M2),
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• f1 = g|M1 and f2 = g|M2 .

Let MSOn(X) be the set of equivalence classes of such pairs (M, f), where M has

dimension n. Let ? be a one point space. One observes immediately that MSOn(?) is

just the n-th oriented bordism ring, Ω	n . It is clear that the disjoint union operation

endows the set MSOn(X) with an abelian group structure. Let

MSO∗(X) =
⊕
n≥0

MSOn(X).

The cartesian product does not induce a ring structure in a natural way on MSO∗(X).

However, MSO∗(X) does have the structure of a MSO∗(?)-module. For oriented

manifolds X and Y , there is an obvious pairing

MSO∗(X)×MSO∗(Y )→ MSO∗(X × Y )

defined by the correspondence ((M1, f1), (M2, f2)) 7→ (M1 ×M2, f1 × f2). We obtain

our module structure by taking Y = {?}, and noticing that X×{?} can be naturally

identified with X.

The correspondence X 7→ MSOn(X) is covariantly functorial. If θ : X → Y is an

orientation preserving diffeomorphism, then there is an induced map θ∗ : MSOn(X)→

MSOn(Y ) defined by θ∗(M, f) = (M, θ◦f). In fact, one can show that the correspon-

dence X 7→ MSOn(X) defines a generalized homology theory in the sense of [10]. We

verify invariance under homotopy; for other details, see [2].

Lemma 4.14. Two homotopic maps from X to Y induce the same homomorphism

from MSOn(X) to MSOn(Y ).

Proof. Let H : X × [0, 1] → Y be a smooth map, and let Ht(x) = H(x, t), for

t ∈ [0, 1]. We must show that H0∗ = H1∗. By definition,

H0∗(M, f) = (M,H0 ◦ f), H1∗(M, f) = (M,H1 ◦ f).
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Let g = F ◦ (f × id), and consider the pair (M × [0, 1], g). Then we have

∂(M × I) = M × {1}+ (−M)× {0} ∼= M + (−M),

g|M×{0} = H0 ◦ f,

g|M×{1} = H1 ◦ f.

Therefore, (M,H0 ◦ f) and (M,H1 ◦ f) represent the same element of MSOn(X). �

One may make analogous definitions for complex bordism. One defines functors

X 7→ MUn(X) and X 7→ MU∗(X) such that MU∗(?) = ΩU
∗ , and that these functors

actually define a generalized homology theory. Considering the intimate relationship

between the oriented and complex bordism rings, it is not surprising that the ho-

mology theories MSO∗ and MU∗ are related. It is known that the forgetful natural

transformation from MU∗ to MSO∗ induces an isomorphism

MU∗(−) ⊗
ΩU
∗

Ω	∗ [1/2]
∼→ MSO∗(−)[1/2].

For details, see [18].

4. Cobordism

4.1. Spectra. Before we indicate how one may construct cobordism theory, the

generalized cohomology theory dual to the bordism theory introduced above, we

introduce some terminology. Let X be a pointed topological space with base point

x0, and let I denote the unit interval. We denote by ΣX the quotient space of X × I

obtained by identifying the subset (X ×{0})∪ ({x0}× I)∪ (X ×{1}) to a point. We

call the space ΣX the reduced suspension of X.

Remark 4.15. The suspension operator Σ is a natural object to consider. Let

ΩX denote the set of loops based at x0 with the compact-open topology, the so-called

loop space. One may show that Σ and Ω are actually adjoint functors in the sense

that [ΣX, Y ] ∼= [X,ΩY ].
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We define a spectrum E to be a sequence of pointed spaces E(n), n ≥ 0, together

with pointed maps αn : ΣE(n) → E(n + 1). Let E = (E(n), αn) be a spectrum and

let X be any space. Then for any i and j, there is a natural map from [ΣiX,E(j)]

to [Σi+1X,E(j + 1)], which one constructs as follows. Let f : ΣiX → E(j), and let

f∗ : Σi+1X → ΣE(j) be the map induced by the functoriality of Σ. Let f 7→ αj ◦ f∗.

According to a theorem of G. W. Whitehead, given a spectrum E = (E(n), αn),

one may construct from it a generalized cohomology theory X 7→ En(X),

(4.1) En(X) = lim−→
k

[ΣkX,E(n+ k)],

where the transition maps are as above.

4.2. Oriented and complex cobordism. Earlier, we mentioned the Thom

spaces T (γ	n ), where γ	n is the universal oriented n-plane bundle over the oriented

Grassmann manifold G	(n,R∞) = BSO(n), and the crucial role they play in the de-

termination of the structure of the bordism groups. Defering to topological tradition,

we shall begin using the notation MSO(n) for the space T (γ	n ). One may define the

Thom space MSO(n) as the quotient E(γ	n )/A, where E(γ	n ) is the total space of the

bundle γ	n and A is the collection of all vectors in E(γ	n ) of length greater than or

equal to 1. Thus, MSO(n) comes equipped with a natural choice of base point, the

image of A. By the universal property of γ	n+1, the Whitney sum γ	n ⊕ ε1 admits a

bundle map into γ	n+1, where ε1 denotes the trivial line bundle over BSO(n). This

map, in turn, induces a pointed map αn : ΣMSO(n)→ MSO(n+ 1). Thus, the Thom

spaces MSO(n), together with the transition maps αn, form a spectrum which we

call the Thom spectrum and denote by MSO. We define the n-th oriented cobordism

group of X by

MSOn(X) = lim−→
k

[ΣkX,MSO(n+ k)],

and by Whitehead’s theorem, the correspondence X 7→ MSOn(X) defines a general-

ized cohomology theory which we call oriented cobordism.
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We construct complex cobordism via its spectrum. One defines spaces MU(n) as

we defined MSO(n) above, but with complex Grassmannians and the corresponding

complex bundles in place of their oriented counterparts. Essentially due to the fact

that dimRC = 2, the universal property of the canonical bundle over G(n,C∞) =

BU(n) induces a natural map from Σ2MU(n) to MU(n + 1) (not from ΣMU(n) to

ΣMU(n+ 1)). Thus, we define a spectrum MU whose constituent spaces are

0, 0, MU(1), MU(1), MU(2), MU(2), MU(3), MU(3), . . . .

From Whitehead’s theorem, we obtain the generalized cohomology theory of complex

cobordism, MU∗ defined by formula 4.1. For a nice geometric description of complex

cobordism theory, see [33, §1].

4.3. Quillen’s theorem. One can show that complex cobordism is in fact a

canonically complex-oriented cohomology theory; see [1, Part II, §2]. Therefore, we

can attach to complex cobordism theory a formal group law FMU defined over the

ring MU∗(?) = ΩU
∗ . By a remarkable theorem of Quillen [32], this formal group law

is actually universal. We state this important result as a theorem.

Theorem 4.16. Let FMU be the formal group law of complex cobordism, defined

over the complex bordism ring ΩU
∗ . Then FMU is a universal, one-dimensional formal

group law.

Note that this result is consistent with Milnor’s determination of the structure of

the complex bordism ring ΩU
∗ ; see Theorem 4.11. We can also give a very pleasing

formula for the logarithm of FMU.

Theorem 4.17 (Mischenko, Appendix 1 in [28]). The logarithm of the formal

group law of complex cobordism is given by

logFMU(x) =
∑
n≥0

[CPn]

n+ 1
xn+1.

Not only is the formal group law universal, but complex cobordism theory is

actually a universal object in the category of complex oriented cobordism theories.



88 4. BORDISM AND COBORDISM

It is known that if h∗ is another complex oriented cobordism theory, then there is a

natural transformation from MU∗ to h∗ sending the complex orientation of MU∗ to

that of h∗; for details, see [33].



CHAPTER 5

Elliptic genera and elliptic cohomology theories

We have seen in Chapter 4, §1.2 that complex-oriented cohomology theories have

associated formal group laws. It is natural to ponder the converse of this observation:

Do all formal group laws arise from complex-oriented cohomology

theories?

Since the universal formal group law is the formal group law of complex cobordism

theory, this seems to be a reasonable thing to ask.

Although this question is still very much open, some special cases are known. The

additive and multiplicative group laws arise from ordinary cohomology and K-theory,

respectively. We shall show that Euler’s formal group law,

(5.1) F (x, y) =
x
√
R(y) + y

√
R(x)

1− εx2y2
, R(x) = 1− 2δx2 + εx4,

defined over the ring Z[1/2, δ, ε], arises from a complex oriented cohomology theory,

a so-called “elliptic cohomology theory”. The proof of this fact uses in an essential

way the theory of elliptic curves.

1. Genera

Let G be a formal group law, defined over a ring A of characteristic zero. Since the

formal group law, FMU, of complex cobordism is universal, one is tempted to attempt

the construction of a cohomolgy theory yielding G by somehow “specializing” complex

cobordism theory. One could proceed as follows.

Let ΩU
∗ denote the complex cobordism ring, which we recall is isomorphic to the

Lazard ring. By universality, there exists a unique ring homomorphism ϕ : ΩU
∗ → A

89
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such that ϕ∗F
MU = G. The map ϕ induces a ΩU

∗ -module structure on A in the

standard way. Define a ring valued functor on topological spaces by the rule

(5.2) X 7→ MU∗(X) ⊗
ΩU
∗

A.

One proves the following lemma by tracing through the construction of the formal

group law of a complex-oriented cohomology theory.

Lemma 5.1. Suppose (5.2) defines a generalized cohomology theory. Then its

formal group law is G.

Proof. Let h∗ denote the generalized cohomology theory given by (5.2). Note

that

h∗(?) = MU∗(?) ⊗
ΩU
∗

A = ΩU
∗ ⊗

ΩU
∗

A ∼= A.

Also, we have

h∗(CP∞) = h∗(lim−→CP
n) = lim←−h

∗(CPn)

= lim←−(ΩU
∗ (?)[x]/(xn+1)) ⊗

ΩU
∗

A

∼= lim←−(ΩU
∗ (?) ⊗

ΩU
∗

A)[x]/(xn+1)

∼= A[[x]],

from which follows,

h∗(CP∞ × CP∞) ∼= A[[x1, x2]].

Let m : CP∞×CP∞ → CP
∞ be the multiplication map of Chapter 3, §3. Arguing

as in Chapter 4, §1.2, m induces a comultiplication map,

µ : A[[x]]→ A[[x1, x2]]
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which can be described as follows. Let FMU(x1, x2) =
∑

i,j aijx
i
1x

j
2 be the formal

group law of complex cobordism. Then the map µ is given by

µ(x) =
∑
i,j

(aij ⊗ 1)xi1x
j
2 =

∑
i,j

(1⊗ ϕ(aij))x
i
1x

j
2.

Note that µ(x) is the formal group law of h∗. Under the natural isomorphism of

ΩU
∗ ⊗

ΩU
∗

A with A, the formal group law
∑

i,j(1⊗ ϕ(aij))x
i
1x

j
2 is identified with G. �

One would certainly like to know when (5.2) defines a generalized cohomology

theory. We shall discuss this issue in the next section. First, though, we introduce

some useful terminology. Let A be a Q-algebra, and let B be a ring.

Definition 5.2. An oriented genus with values in A is a Q-algebra homomor-

phism from Ω	⊗Q into A. A complex genus with values in B is a ring homomorphism

from the complex bordism ring ΩU
∗ into B.

Remark 5.3. In the literature, an oriented genus is usually referred to simply as

a genus.

Let FMU and FMSO be the formal group laws of the complex and oriented cobor-

dism theories, respectively, constructed as in Chapter 4, §1.2. By Quillen’s Theo-

rem 4.16, the formal group law FMU is universal. As all formal group laws over B can

be obtained from FMU via base change, complex genera with values in B are in one-to-

one correspondence with formal group laws defined over B. If ϕ : ΩU
∗ → Ω	∗ ⊗Q is the

forgetful homomorphism, then one has FMSO = ϕ∗F
MU. Therefore, by Theorems 4.17

and 4.6, the logarithm of FMSO is given by

logFMSO(x) =
∑
n≥0

[CP2n]

2n+ 1
x2n+1.

Since every formal group law over a Q-algebra admits a logarithm, and Ω	∗ ⊗Q is free

on the [CP2n] by Theorem 4.6, it follows that oriented genera with values in A are in

one-to-one correspondence with formal group laws over A whose logarithms are odd

power series of the form x+ · · · .
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We define the logarithm of an oriented or complex genus ϕ with values in a ring

A of characteristic 0 to be the power series

logϕ(x) =
∑
n≥0

ϕ([CPn])

n+ 1
xn+1 ∈ (A⊗Q)[[x]].

If Fϕ is the formal group law corresponding to ϕ, then by Theorems 4.16 and 4.17,

the logarithms of ϕ and Fϕ coincide.

Definition 5.4. An oriented or complex genus ϕ with values a Z[1/2]-algebra A

is said to be elliptic if its logarithm is given by an elliptic integral of the form

(5.3) logϕ(x) =

∫ x

0

1√
1− 2δt2 + εt4

dt, δ, ε ∈ A.

Its formal group law Fϕ is given by Euler’s formula (5.1), and is defined over

Z[1/2, δ, ε]. Let ψ	 (respectively, ψU) be the elliptic oriented (respectively, complex)

genus with values in the ring free polynomial ring Q[δ, ε] whose logarithm is given by

(5.3). We call ψ	 (respectively, ψU) the universal elliptic oriented (respectively, com-

plex) genus. This terminology is justified since every elliptic oriented (respectively,

complex) genus can be obtained from ψ	 (respectively, ψU) by specializing δ and ε.

Remark 5.5. Let X be a stably, almost-complex manifold. We know that in

this case, X has a preferred orientation and thus may also be viewed as an oriented

manifold. In such a situation, one has ψ	([X]) = ψU([X]).

Let ψ denote either ψ	 or ψU. Using the binomial expansion, we may write logψ

in the form

logψ(x) =
∑
n≥0

Pn(δ, ε)

2n+ 1
x2n+1,

where the polynomials Pn(δ, ε) lie in Z[1/2, δ, ε]. These polynomials are related to

the classical Legendre polynomials Pn(δ) defined by the generating series

1√
1− 2δx+ εx2

=
∑
n≥0

Pn(δ)xn.
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One can verify that Pn(δ, 1) = Pn(δ) and Pn(δ, ε) = Pn(δ/
√
ε)εn/2. For example,

P0(δ, ε) = 1, P1(δ, ε) = δ, P2(δ, ε) =
1

2
(3δ2 − ε).

We can actually be more precise about the images ψ	 and ψU.

Lemma 5.6.

(i) The universal elliptic complex genus ψU maps ΩU
∗ into the subring Z[1/2, δ, ε] of

Q[δ, ε].

(ii) The image of the composite Ω	∗ → Ω	∗ ⊗Q
ψ	→ Q[δ, ε] is contained in the subring

Z[1/2, δ, ε] of Q[δ, ε].

Proof. (i) Since ΩU
∗ is generated as a ring by the coefficients of FMU, the image

of ψU is contained in the subring of Q[δ, ε] generated by the coefficients of Euler’s

formal group law, ψU
∗ F

MU. We noticed earlier, however, that Euler’s formal group

law is defined over Z[1/2, δ, ε].

(ii) By (i), the image of the composite

ΩU
∗ → Ω	∗ → Ω	∗ ⊗Q

ψ	→ Q[δ, ε]

is contained in Z[1/2, δ, ε], where ΩU
∗ → Ω	∗ is the forgetful homomorphism. We

remarked on page 83 that this forgetful homomorphism is onto, modulo torsion. Since

Q[δ, ε] has no torsion, the images of Ω	∗ and ΩU
∗ in Q[δ, ε] are equal. �

For geometric characterizations of elliptic genera, see [29] or [16, Chapter 4].

Let us compute the images under ψ	 and ψU of various manifolds.

Example 5.7. Let ψ denote either ψ	 or ψU We have two expressions for the

logarithm of ψ:

logψ(x) =
∑
n≥0

ψ([CP2n])

n+ 1
xn+1 =

∑
n≥0

Pn(δ, ε)

2n+ 1
x2n+1.

Comparing coefficients, we see that

ψ([CP2n]) = Pn(δ, ε), ψ([CP2n+1]) = 0.
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In particular, ψ([CP1]) = 0 and ψ([CP2]) = δ.

Example 5.8. Let us compute the image of HP2 under ψ	. In Example 4.9, we

showed that 3(CP2×CP2)−2CP4 and HP2 have the same image in Ω	∗ ⊗Q. Therefore,

ψ	([HP2]) = 3ψ	([CP2 × CP2])− 2ψ	([CP4])

= 3P1(δ, ε)− 2P2(δ, ε)

= 3δ2 − 2 · 1

2
(3δ2 − ε)

= ε.

Example 5.9. Let X be a smooth, projective, complex, algebraic surface, and let

X̃ be the blow-up of X at a point P . We compute the difference between ψU([X])

and ψU([X̃]). In Example 4.13, we showed that X̃ − X and CP1 × CP1 − CP2 are

complex-bordant. Therefore,

ψU([X̃])− ψU([X]) = ψU([X̃ −X]) = ψU([CP1 × CP1])− ψU([CP2]) = 02 − δ = −δ,

or alternatively, ψU([X̃]) = ψU([X])− δ.

2. Landweber’s exact functor theorem

Let A be a ring and let ϕ : ΩU
∗ → A be a complex genus with values in A. We

wish to specialize complex cobordism via ϕ in order to obtain a new generalized

cohomology theory given by the rule

X 7→ MU∗(X) ⊗
ΩU
∗

A.

A condition under which this construction works was formulated by Landweber

in [18]. Before we formulate this condition we introduce a piece of terminology.

A sequence a1, a2, . . . of elements of a ring A is called regular if multiplication by

a1 is injective on A, and multiplication by an is injective on A/(a1, . . . , an−1), for

n ≥ 2. Suppose a1, . . . , an−1 is a regular sequence, and an is a unit in A/(a1, . . . , an−1).
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Then a1, . . . , an−1, an, an+1, . . . is regular for any choice of elements an+1, an+2 . . ., as

A/(a1, . . . , an) = 0.

Let F be the formal group law over A specified by the genus ϕ. For each prime

p, we consider the formal multiplication-by-p endomorphism of F . Let un be the

coefficient of xp
n

in [p]F .

(5.4) [p]F (x) = px+ · · ·+ u1x
p + · · ·+ unx

pn + · · · .

Theorem 5.10 (Landweber [18]). Suppose that for each prime p, the sequence

p, u1, u2, . . . is regular in A. Then the functor X 7→ MU∗(X)⊗ΩU
∗
A defines a gener-

alized homology theory.

For our purposes, we require a version of this theorem for cohomology.

Corollary 5.11. For finite CW-complexes, the associated cohomology is given

by

X 7→ MU∗(X) ⊗
ΩU
∗

A.

For details on the derivation of this corollary from Theorem 5.10, see the paragraph

following the statement of Theorem 2 in [11]. Since the complex projective spaces

CP
n are finite CW-complexes, it follows from the above corollary that the cohomology

theories arising from genera satisfying Landweber’s condition are complex-oriented.

3. Elliptic cohomology theories

Let R = Z[1/2, δ, ε], and let ψU : ΩU
∗ → R be the universal elliptic genus. The

corresponding formal group law F is given by Euler’s formula (5.1). We claim that

if we invert ∆ = ε(δ2 − ε)2, Landweber’s conditions will be satisfied. We must verify

that for each prime p, the sequence p, u1, u2, . . . (as in (5.4)) is regular in R[∆−1]. The

verification relies heavily on the theory of elliptic curves.

Since 2 is invertible in R[∆−1], the case p = 2 is trivial. Therefore, suppose p 6= 2.

It is clear that multiplication by p is injective on R[∆−1]. To show that multiplication
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by u1 is injective on R[∆−1] ∼= Fp[δ, ε,∆
−1], it suffices to show that u1 is nonzero,

modulo p. Find δ0, ε0 ∈ Fp such that the elliptic curve

E0 : y2 = 1− 2δ0x
2 + ε0x

4

defined over Fp is ordinary (i.e., not supersingular). Why do such parameters ex-

ist? There is a one-to-one correspondence between isomorphism classes of elliptic

curves defined over Fp and elements of Fp given by associating to an elliptic curve its

j-invariant (see [37, Chapter III, Proposition 1.4(b)(c)]). The set of j-invariants cor-

responding to supersingular elliptic curves over Fp is finite (see [37, Theorem 4.1(b),

Proof of (c)]). But the j-invariant of an elliptic curve of the form y2 = 1− 2δx2 + εx4

is a rational function of δ and ε (see (5.7) on page 101). Therefore, there are infinitely

many j-invariants corresponding to curves of that form, and the desired parameters

δ0 and ε0 can be found.

Let F0 be the formal group law of the curve E0 obtained by choosing x as a

uniformizer at O = (0, 1). By the discussion following Theorem 2.8, F0 is given by

Euler’s formula,

F0(x, y) =
x
√
R(y) + y

√
R(x)

1− εx2y2
∈ Fp[δ0, ε0][[x, y]], R(x) = 1− 2δ0x

2 + ε0x
4.

The map θ : Z[1/2, δ, ε] → Fp[δ0, ε0] specializes F to F0. Let v1 be the coefficient

of xp in the multiplication-by-p endomorphism of F0. Since the elliptic curve E0 is

ordinary, it follows that v1 6= 0. As θ∗F = F0, we have θ(u1) = v1 6= 0. Therefore, u1

is nonzero, modulo p.

We now claim that u2 is a unit in R1 := R[∆−1]/(p, u1). If we can verify this

claim, we are done, for all subsequent quotients will be trivial. Suppose u2 is not a

unit in R1. Then we may find a maximal ideal m ⊆ R1 with u2 ∈ m. Let δ and ε be

the images of δ and ε, respectively, in the field R1/m, and consider the curve

E : y2 = 1− 2δx2 + εx4.
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Since ∆ is invertible in R1, it follows that ∆ is nonzero, modulo m. Therefore,

E is an elliptic curve. Letting wn be the coefficient of xp
n

in the multiplication-by-p

endomorphism of the formal group law of E. If follows immediately that w1 = w2 = 0,

implying that the height of the formal group law of E is greater than two. But this

contradicts the fact that the height of the formal group law of an elliptic curve is 1

or 2 (cf. Chapter 2, §4). Therefore, u2 is a unit in R1. We have proved the following

theorem:

Theorem 5.12. Let ψU : ΩU
∗ → Z[1/2, δ, ε] be the universal elliptic genus. Then

the functor

X 7→ MU∗(X) ⊗
ΩU
∗

Z[1/2, δ, ε,∆−1]

defines a generalized homology theory. The formal group law associated to its (complex-

oriented) cohomology theory is given by Euler’s formula,

F (x, y) =
x
√
R(y) + y

√
R(x)

1− εx2y2
, R(x) = 1− 2δx2 + εx4.
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Remarks 5.13.

(i) One can show that for p odd, we have

u1 ≡ P(p−1)/2(δ, ε) (mod p),

where Pn(δ, ε) is as in §1. That u1 is nonzero modulo p follows from the fact

that Pn(1, 1) = 1 for all n. For details, see [21, §2].

(ii) That u2 is a unit in R[∆−1] follows from the congruence

u2 ≡
(
−1

p

)
∆(p2−1)/4 (mod p, u1).

This is proved in [21, §3]. Landweber attributes this result to B.H. Gross.

(iii) It is proved in [11] that Landweber’s condition is still satisfied if instead of

inverting ∆, one inverts another element ρ ∈ Z[1/2, δ, ε] of positive degree.

This approach yields cohomology theories whose values on a one point space

is Z[1/2, δ, ε, ρ−1]. These cohomology theories are known as elliptic cohomology

theories.

(iv) One can construct an elliptic cohomology theory with coefficient ring Z[1/2, δ, ε]

using a construction of “bordism with singularities”. For more details on this

approach, see [19, §3.5].

4. Elliptic genera and modular forms

In this section, we show that one may view the universal elliptic genus as taking

its values in a ring on modular forms. We begin by setting ideas, notation, and

terminology relating to modular forms. For more details, consult [35, Chapter VII],

[16, Appendix I], or [8, Chapter 1].

Let H denote the Poincaré upper half-plane. The group SL(2,Z) will be referred

to as the modular group. Let Γ0(2) denote the subgroup of SL(2,Z) consisting of all

2×2 matrices which are upper-triangular, modulo 2. The subgroup Γ0(2) of SL(2,Z)
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is non-normal of index 3. The subgroups of the modular group act on H by fractional-

linear transformations. View H as a subset of CP1 = C ∪ {∞}. Then subgroups of

the modular group also act on the extended upper half-plane H∗ = H ∪ QP1 by

fractional-linear transformations.

Let Γ be a subgroup of the modular group. An open subset FΓ of H is called a

fundamental domain for Γ if F Γ contains a representative of each orbit of Γ, and FΓ

contains at most one representative of each orbit. Fundamental domains of SL(2,Z)

and Γ0(2) are given by

FSL(2,Z) = { z ∈ H | −1

2
< <z < 1

2
, |z| > 1 },(5.5)

FΓ = { z ∈ H | −1

2
< <z < 1

2
, |z − 1| > 1, |z + 1| > 1 }.(5.6)

For proofs, see [8, Proposition 1.2.2] and [16, p. 79].

The cusps of Γ are defined to be the orbits of Γ in QP1. The points where a

fundamental domain of FΓ meets the boundary of H in CP1 constitutes a set of

representatives for the cusps of Γ. Abusing terminology, these points will also be

referred to as the cusps of Γ. From (5.5) and (5.6), it is evident that SL(2,Z) has a

single cusp at ∞, while Γ0(2) has cusps at 0 and ∞.

Let Γ denote either SL(2,Z) or Γ0(2). We say that a function f : H → C is a

modular function of weight k for Γ if

(i) f is meromorphic on H,

(ii) for all ( a bc d ) ∈ Γ and all τ ∈ H, we have

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ),

(iii) f is meromorphic at the cusps of Γ.

Since ( 1 1
0 1 ) ∈ Γ, we have f(τ+1) = f(τ) for all modular functions f for Γ. Therefore,

any such f can be expanded in a Fourier series of the form
∑
anq

n, where q = e2πiτ .
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That f must be meromorphic at∞ says that this Fourier series actually has the form

f(τ) =
∑
n≥n0

anq
n

for some n0 ∈ Z.

A function f : H → C is said to be a modular form of weight k for Γ if f is a

modular function of weight k for Γ, and f is holomorphic at the cusps of Γ. Such

a function f has a Fourier expansion of the form f(τ) =
∑

n≥0 anq
n. We let Mk(Γ)

denote the complex vector space of modular forms of weight k, and let M∗(Γ) :=⊕
k Mk(Γ) be be the corresponding graded ring.

We proceed by giving some examples of modular forms. Let Λ be a lattice in C.

The Eisenstein series of weight 2k is the series

G2k(Λ) =
∑
ω∈Λ
ω 6=0

1

ω2k
.

For τ ∈ H, we let Λτ = Z+Zτ , and set G2k(τ) = G2k(Λτ ). One can show that G2k(τ)

is a modular form of weight 2k for SL(2,Z). Its Fourier expansion is given by

G2k(τ) = 2ζ(2k) + 2
(2πi)2k

(2k − 1)!
+
∑
n≥1

(∑
d|n

d2k−1
)
qn,

where ζ is the Riemann zeta function and q = e2πiτ (see [37, Appendix C, Proposi-

tion 12.4]). One can show that G4 and G6 are algebraically independent generators

of the ring M∗(SL(2,Z)), that is, M∗(SL(2,Z)) = C[G4, G6]. For proofs of the above

assertions, refer to [35, Chapter VII].

One may construct other popular modular functions from these Eisenstein series.

Define

∆ =
1

1728
(G3

4 −G2
6), j = G3

4/∆.

The function ∆ is a modular form of weight 12 for SL(2,Z), while j is a modular

function of weight 0 for SL(2,Z) (j has a simple pole at∞). Their Fourier expansions
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have the form

∆(τ) = q − 24q2 + 252q3 − 1427q4 + 4830q5 + · · · ,

j(τ) =
1

q
+ 744 + 196884q + 21493760q2 + 864299970q3 + · · · .

The j-function gives a complex embedding of SL(2,Z)\H into CP1 which extends to

an isomorphism of extended quotient SL(2,Z)\H∗ with CP1. For details, see [37,

Chapter VII, Proposition 5 and remarks following].

Elliptic curves and modular forms are intimately connected. We first consider

elliptic curves given in the standard cubic form y2 = 4x3 − g2x − g3. Recall from

Chapter 2, §3.2 that the Weierstrass ℘-function ℘(z, τ) of the lattice Λτ = Z + Zτ

parameterizes the elliptic curve

y2 = 4x3 − g2(τ)x− g3(τ),

where g2(τ) = 60G4(τ) and g3(τ) = 60G6(τ). Thus, the coefficients g2 and g3 are

modular forms of weight 4 and 6, respectively, for SL(2,Z).

Similarly, the function σ(z, τ), introduced in Chapter 2, §3.3, parameterizes the

elliptic curve

y2 = 1− 2δ(τ)x2 + ε(τ)x4.

It can be shown (see [45]) that δ(τ) and ε(τ) are modular forms of weight 2 and 4,

respectively, for the group Γ0(2), and that

g2(τ) =
1

3
(δ(τ)2 + 3ε(τ)) and g3(τ) =

δ

27
(δ(τ 2)− 9ε(τ)).

Using these identities, one deduces that

(5.7) j =
g3

2

603∆
=

1

33 · 603

(δ2 − 3ε)3

ε(δ2 − ε)
.

The modular forms δ and ε are algebraically independent generators of the polynomial

ring M∗(Γ0(2)), that is, M∗(Γ0(2)) = C[δ, ε]. The Fouier expansions of δ and ε are
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given by

δ(τ) = −1

8
− 3

∑
n≥0

( ∑
d|n
d odd

d
)
qn,(5.8)

ε(τ) =
∑
n≥1

( ∑
d|n

n/d odd

d3
)
qn,(5.9)

where q = e2πiτ . These issues are treated in detail in [16, Appendix I] and in [45].

One can use the modular forms δ and ε to construct a complex embedding of the

Riemann surface Γ0(2)\H∗. We claim that the map θ : Γ0(2)\H∗ → CP
1 given by

θ(τ) = (δ(τ)2 : ε(τ)) is an embedding. To see this, define γ : CP1 → CP
1 by the rule

γ(x : y) = ((x− 3y)3 : 33 · 603ε(δ2 − ε)2),

and consider the diagram

Γ0(2)\H∗ θ−−−→ CP
1

τ 7→τ
y yγ

SL(2,Z)\H∗ −−−→
j

CP
1.

By (5.7), this diagram commutes. Since Γ0(2) has index 3 in SL(2,Z), the map

θ : Γ0(2)\H∗ → SL(2,Z)\H is a triple covering. The map γ is also a triple covering,

as it is described by polynomials of degree 3. As we mentioned before, j is an

isomorphism. Therefore, the composite γ ◦ θ is a triple covering. It follows that

θ is one-to-one, and being a morphism of compact Riemann surfaces, must be an

isomorphism.

From Lemma 5.6, we know that ψU and ψ	 map ΩU
∗ and Ω	∗ , respectively, into

Z[1/2, δ, ε]. Since these elliptic genera are in fact graded homomorphisms, ψU (re-

spectively, ψ	) assigns to each stably almost-complex manifold (respectively, oriented

manifold) of real dimension 2n a modular form of weight n in Z[1/2, δ, ε]. These mod-

ular forms can be described as follows.

Theorem 5.14.
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(i) The ring Z[1/2, δ, ε] consists of all modular forms for Γ0(2) whose Fourier coef-

ficients lie in the ring Z[1/2].

(ii) The localization Z[1/2, δ, ε][∆−1] can be identified with the ring of modular func-

tions for Γ0(2) which are holomorphic on H.

Proof. (i) View Z[1/2, δ, ε] as a subring of M∗(Γ0(2)). For any ring R with

Z ⊆ R ⊆ Q, let MR
∗ (Γ0(2)) denote the set of modular forms for Γ0(2) whose Fourier

coefficients lie in R. The proof of (i) will follow from the following claim.

For any ring R with Z ⊆ R ⊆ Q, we have

MR
∗ (Γ0(2)) = R[8δ, ε].

The inclusion “⊇” follows from the above (5.8) and (5.9). Conversely, suppose

f ∈ MR
2k(Γ0(2)). Let cn ∈ R denote its n-th Fourier coefficient. Since δ and ε generate

M∗(Γ0(2)), we may write

f =
∑
`≤k/2

a`(−8δ)k−2`ε`,

where a` ∈ C. It follows again from (5.8) and (5.9) that

a`(−8δ)2k−`ε` = a`q
` +
∑
n>`

a`b
(`)
n q

n,

where b
(`)
n ∈ Z. Collecting terms, we obtain∑

`≤k/2

a`(−8δ)k−2`ε` =
∑
n≥0

(∑
`<n

a`b
(`)
n + an

)
qn.

Comparing terms, see that

an = cn −
∑
`<n

a`b
(`)
n .

In particular, a0 = c0. Suppose, for the purposes of induction, that a1, . . . , an are in

R. Then since cn+1 is also in R and each b
(`)
n+1 is an integer, it follows from the above

identity that an+1 ∈ R. Therefore, by induction, the proof of (i) is complete.



104 5. ELLIPTIC GENERA AND ELLIPTIC COHOMOLOGY THEORIES

(ii) Recall that ∆ = ε(δ2 − ε)2. From the fact that δ and ε are holomorphic on

H ∪ {∞} and nonvanishing on H, it follows that ∆ is a modular function for Γ0(2)

which is holomorphic on H. Conversely, we note that ∆ has a zero at ∞, as ε does.

Therefore, if f is a modular function for Γ0(2) which is holomorphic on H, then f∆N

is a modular form for sufficiently large N . If, in addition, the Fourier coefficients of

f lie in Z[1/2], it follows from (i) and the fact that the Fourier coefficients of ∆ lie

in Z[1/2] that f∆N ∈ Z[1/2, δ, ε]. Thus, f ∈ Z[1/2, δ, ε][∆−1], and (ii) is proved. �

Thus, the universal elliptic genus assigns a modular form to each manifold! Two

cobordant manifolds are assigned the same modular form. Also, the rings of coeffi-

cients of the elliptic cohomology theories can be viewed as rings of modular forms.

5. Conclusion

In this text, we have barely scratched the surface of the theories of elliptic coho-

mology and elliptic genera; much research has been done on these topics and many

tantilizing questions remain.

There is a body of work by A. Baker [3, 4] establishing precisely the relation-

ship between operations in elliptic cohomology and isogenies of supersingular elliptic

curves. In particular, Baker proves in [3] the “supersingular congruence”

(Ep+1)p−1 ≡ −
(
−1

p

)
∆(p2−1)/12 (mod p, Ep−1)

between the Eisenstein functions Ep+1 and Ep−1, and the modular form ∆. This con-

gruence is intimately related to the congruence of Gross mentioned in Remark 5.13(ii).

Much research is also being done in the field of elliptic genera. In [16], Hirzebruch

develops generalized elliptic genera which take values in rings of modular forms of

higher level. We observed earlier that the universal elliptic genus assigns to each

manifold a modular form. There are many papers devoted to investigating this cor-

respondence in various specific cases. A striking result of [9] computes the elliptic

genus on a symmetric power of a manifold X in terms of its value on X itself. Elliptic
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genera of Calabi-Yau manifolds have also been computed, and relations with mirror

symmetry have been noted. In [7], it is shown that the elliptic genus of a Calabi-Yau

manifold is a Jacobi form and that the elliptic genera of Calabi-Yau hypersurfaces in

toric varieties and their mirrors coincide up to sign.

Properties of families of modular forms attached to families of manifolds have

also been studied. In [5], Borisov and Gunnels investigate a subring of the ring of

modular forms for Γ1(`) which is naturally associated to the family of toric varieties.

They show that this family of “toric modular forms” has many nice properties – it is

a finitely generated ring over C, and it is stable under the Hecke operators and the

Fricke involution. In [6], they characterize the space of weight two toric forms as a

vector space generated by cusp eigenforms whose L-functions satisfy a nonvanishing

condition.

Elliptic genera are also of interest to mathematical physicists. In [43, 44], E.

Witten discusses how one may view the elliptic genus as the index of a certain Dirac-

like operator on loop space. He also presents connections between elliptic genera and

quantum field theory.

Perhaps the most fundamental outstanding issue in the theory of elliptic coho-

mology at present is the lack of an intrinsic, geometric description of this cohomology

theory in general. There are specific instances of elliptic cohomology, though, in

which one does have a geometric description to work with. Moonshine phenomena

allow one to describe geometrically the elliptic cohomology groups of the classifying

spaces of finite groups; see [40]. It is perceived that it is the lack of an intrinsic

description of elliptic cohomology that is currently limiting its application. In words

of Thomas [40, p. v], “With more geometric input, elliptic cohomology may resolve

some of the open questions which seem just beyond the reach of K-theory”.





APPENDIX A

N-dimensional formal group laws

1. Definition and examples

Definition A.1. An N -dimensional, commutative formal group law with coeffi-

cients from R (or more briefly, a formal group law over R) is an N -tuple of power

series

F1(x1, . . . , xN , y1, . . . , yN), . . . , FN(x1, . . . , xN , y1, . . . , yN)

in R[[x1, . . . , xN , y1, . . . , yN ]] satisfying:

(i) For i = 1, . . . , N , we have the identity

Fi(x1, . . . , xN , F1(y1, . . . , yN , z1, . . . , zN), . . . , FN(y1, . . . , yN , z1, . . . , zN))

=Fi(F1(x1, . . . , xN , y1, . . . , yN), . . . , FN(x1, . . . , xN , y1, . . . , yN), z1, . . . , zN)

in the power series ring R[[x1, . . . , xN , y1, . . . , yN , z1, . . . , zN ]].

(ii) For i = 1, . . . , N , we have

Fi(x1, . . . , xN , y1, . . . , yN) = Fi(y1, . . . , yN , x1, . . . , xN).

(iii) For i = 1, . . . , N , we have Fi(x1, . . . , xN , 0, . . . , 0) = xi and Fi(0, . . . , 0, y1, . . . , yN) =

yi.

(iv) There exists an N -tuple of power series ι1(x1, . . . , xN), . . . , ιN(x1, . . . xN) such

that for each i = 1, . . . , N ,

Fi(x1, . . . , xN , ι1(x1, . . . , xN), . . . , ιN(x1, . . . xN)) = 0.

107
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Remark A.2. By using the formal implicit function theorem, one may actually

deduce (iv) from (i)-(iii). Thus, any N -tuple of power series satisfying (i)-(iii) is a

formal group law.

The above notation is quite cumbersome; we introduce the following shorthand.

We will often write x (respectively, y) for the list x1, . . . , xN (respectively, y1, . . . , yN).

Also, we may write F for the list F1, . . . , Fn. With these conventions, conditions (i)-

(iv) take on a more pleasing form.

(i) F (x, F (y, z)) = F (F (x, y), z),

(ii) F (x, y) = F (y, x),

(iii) F (x, 0) = x and F (0, y) = y,

(iv) There exists an N -tuple of power series ι = (ι1, . . . , ιN) in R[[x]] such that

F (x, ι(x)) = F (ι(y), y) = 0.

The N -tuple ι is known as the formal inverse.

Notation A.3 (Multi-index notation). We introduce a convenient notational de-

vice. An infinite sequence of nonnegative integers j = (j1, j2, . . .) with only finitely

many nonzero terms will be called a multi-index. We let 0 = (0, 0, . . .). Partially

order the collection of all multi-indices by saying j ≤ k if ji ≤ ki for all i. We write

j < k if j ≤ k but j 6= k, that is, there is strict inequality in at least one component.

We let ei be the multi-index with 1 in the i-th component and zero in every other

component. We add multi-indices componentwise. If x1, . . . , xN are indeterminates

and j is a multi-index, we let xj denote the monomial xj11 x
j2
2 · · ·x

jN
N .

Using this notation, we see that a formal group law F must have the form

(A.1) Fi(x, y) = xi + yi +
∑

j>k>0

ajk(xjyk + xkyj) +
∑
l>0

allx
lyl.

For completeness, we mention a few standard examples.
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Example A.4. The N-dimensional formal additive group law is given by the

N -tuple of power series GNa where

GNa,i(x, y) = xi + yi.

The formal inverse is given by ι(x) = −x.

Example A.5. The N-dimensional formal multiplicative group law is given by N

power series

GNm(x, y) = xi + yi + xiyi.

Its formal inverse is given by ι(x) = −x+ x2 − x3 + · · · .

Example A.6. Let K be a field and let A/K be an abelian variety of dimension

n with neutral element O. We obtain an n-dimensional formal group law from A

by expanding the group law on A around O. We will only sketch the details of the

construction, as they are quite similar to the one-dimensional (elliptic curve) case.

Let α : A×A→ A be the group law on A. Then α induces a map between the local

rings,

α∗ : ÔA,O → ÔA,O ⊗̂
K

ÔA,O.

By the Cohen structure theorem, ÔA,O
∼= K[[x1, . . . , xn]]. Noting that

K[[x1, . . . , xn]] ⊗̂
K
K[[x1, . . . , xn]] ∼= K[[x1 ⊗̂ 1, . . . , xn ⊗̂ 1, 1 ⊗̂ x1, . . . , 1 ⊗̂ xn]],

we may view α∗ as a map from K[[x1, . . . , xn]] into K[[x1 ⊗̂1, . . . , xn ⊗̂1, 1⊗̂x1, . . . , 1⊗̂

xn]]. For i = 1, . . . , n, let

Fi(x1 ⊗̂ 1, . . . , xn ⊗̂ 1, 1 ⊗̂ x1, . . . , 1 ⊗̂ xn) = α∗xi.

Then F = (F1, . . . , Fn) is an n-dimensional formal group law defined over K.
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2. Logarithms

One can produce many formal group laws using the following construction. Let

f = (f1, . . . , fn) be an N -tuple of power series from R[[x1, . . . , xN ]] with no constant

terms. Let Df = (∂fi/∂xj) be the N × N Jacobian matrix of f , and suppose that

Df(0) is the identity matrix. Then by the formal inverse function theorem, f is

invertible (with respect to composition), and the rule

(A.2) F (x, y) = f−1(f(x) + f(y))

defines a formal group law. The N -tuple f is called the logarithm of F , and is often

denoted logF . It will follow from our construction of an N -dimensional formal group

law that each formal group law F (x, y) defined over a ring R of characteristic zero

admits a logarithm defined over R⊗Q.

3. The N-dimensional comparison lemma

The relevant definitions and results about buds carry over, mutatis mutandis, to

the N -dimensional case.

Theorem 1.24 and the Lazard Comparison Lemma 1.25 were our main tools

in the construction of a universal one-dimensional formal group law over the ring

Z[u2, u3, . . .]. In order to generalize our arguments to N dimensions, we must first

appropriately generalize these results.

Let n and k be multi-indices (see Notation A.3). We define

|n| = n1 + n2 + · · ·+ nN ,(
n

k

)
=

(
n1

k1

)
· · ·
(
nN
kN

)
,

ν(n) = gcd{
(

n

k

)
| 0 < k < n }.
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Our first task is to define the family of polynomials which will play the role of the

(one-dimensional) polynomials Cn(x, y). We define the polynomial

Cn(x, y) =
1

ν(n)
[(x1 + y1)n1 · · · (xN + yN)nN − xn1

1 · · ·x
nN
N − y

n1
1 · · · y

nN
N ]

=
1

ν(n)
[(x+ y)n − xn − yn].

It is clear that Cn satisfies Lazard’s conditions (see Definition 1.23). It is these

polynomials which will play the role of the Cn (in fact, they are a generalization of

the Cn). Note that Cn is a primitive polynomial in Z[x, y].

We wish to prove the following theorem characterizing N -dimensional Lazard

polynomials.

Theorem A.7. Let B be an abelian group and H(x, y) ∈ A[x, y] be a polynomial

satisfying Lazard’s conditions. Then H(x, y) can be written as a B-linear combination

of polynomials Cn, |n| = degH(x, y).

This theorem combined with Corollary 1.22 give the N -dimensional analogue of

the one-dimensional Lazard Comparison Lemma. We define an N -dimensional n-bud

to be an N -tuple of power series F which satisfies the axioms of an N -dimensional

formal group law, mod degree n+ 1.

Theorem A.8 (N -dimensional Lazard Comparison Lemma). Let F and G be two

N-dimensional n-buds defined over a ring R with F (x, y) ≡ G(x, y) (mod degree n).

Then for i = 1, . . . , N and multi-indices j with |j| = n there exist elements a(i, j) ∈ R

such that

Fi(x, y) ≡ Gi(x, y) +
∑
|j|=n

a(i, j)Cj(x, y) (mod degree n+ 1).

We will prove Theorem A.7 essentially by reduction to the 1-dimensional case.
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Let B be an abelian group and H(x, y) ∈ B[x, y] be a symmetric polynomial of

degree m with H(x, 0) = H(0, y) = 0. Then H(x, y) may be written in the form

H(x, y) =
∑
|n|=m

∑
0<k<n

c(n,k)xkyn−k.

One checks that H(x, y) satisfies Lazard’s conditions if and only if c(n,k) = c(n,n−k)

for all n,k, and

(A.3)

(
i + j

j

)
c(n, i + j) =

(
j + k

k

)
c(n, j + k) for i, j,k > 0 with i + j + k = n

(cf. Equation (1.5)). To prove Theorem A.7, we show that for each n with |n| = m,

we can find some bn ∈ B with∑
0<k<n

c(n,k)xkyn−k = bnCn(x, y).

The above relations, combined with the fact that we can work ‘one n at a time’, leads

us naturally to consider the following object.

Fix a multi-index n with |n| = m, and let An be the abelian group generated

freely by the set {u(n,k) | 0 < k < n } subject to the relations u(n,k) = u(n,n−k)

and (
i + j

j

)
u(n, i + j) =

(
j + k

k

)
u(n, j + k) for i, j,k > 0 with i + j + k = n.

With notation as above, it is clear that there is a unique homomorphism ψ : An → B

with ψu(n,k) = c(n,k) for all k with 0 < k < n, or equivalently,

ψ∗
∑

0<k<n

u(n,k)xkyn−k =
∑

0<k<n

c(n,k)xkyn−k.

The following lemma describes the structure of An is some cases.

Lemma A.9. Let n be a multi-index, and suppose n has more than one nonzero

component. Let i be the smallest index such that ni is nonzero. Then An is generated

by the single element u(n, niei).
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Proof. We show how to express each generator u(n,k) as an integer multiple of

the element u(n, niei). We consider two cases.

Case 1. Let j = jei. Define k = (ni − j)ei and l = n− j− k. Then

u(n, j) = u(n,n− j) = u(n, l + k),

(
l + k

l

)
= 1, u(n, j + k) = u(n, niei).

Therefore,

u(n, j) =

(
l + k

l

)
u(n, l + k) =

(
j + k

k

)
u(n, j + k) =

(
j + k

k

)
u(n, niei).

Case 2. Suppose r is not of the form jei. We may without loss of generality

assume that 0 < ri ≤ ni, for otherwise replace r with n − r and use the fact that

u(n, r) = u(n,n− r). Let j = riei, k = r− j, and l = n− j− k. Then

u(n, r) = u(n, j + k),

(
j + k

k

)
= 1, u(n,k + l) = u(n, j) = u(n, riei).

Therefore,

u(n, r) =

(
j + k

k

)
u(n, j + k) =

(
l + k

l

)
u(n, l + k) =

(
l + k

l

)
u(n, riei).

By Case 1, u(n, riei) is in the subgroup generated by u(n, niei), so we are done. �

We are now in a position to complete the proof of Theorem A.7.

Proof of Theorem A.7. Let

Gn(x, y) =
∑

0<k<n

u(n,k)xkyn−k ∈ An[x, y].

It suffices to show that Gn(x, y) = bnCn(x, y) for some n ∈ An. If n has only one

nonzero component, then this is just the one dimensional case. Thus assume n has

more that one nonzero component and i is the smallest index with ni nonzero.

Since Cn is a Lazard polynomial over Z and ν(n) = 1, the map ψ : An → Z

defined by the rule

ψu(n,k) =

(
n

k

)
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is a well defined homomorphism (this is the unique homomorphism satisfying ψ∗Gn =

Cn). By the above lemma, we may find, for each k, some ak ∈ Z with

u(n,k) = aku(n, niei).

Applying ψ to this equation, we obtain(
n

k

)
= ak

(
n

niei

)
= ak.

Substituting, we have

Gn(x, y) = u(n, niei)
∑

0<k<n

(
n

k

)
xkyn−k = u(n, niei)Cn(x, y).

�

4. Construction of a universal, N-dimensional formal group law

The logical structure of our construction of an N -dimensional formal group law

is the same as that in the one-dimensional case. Due to the increased volume of

notation, we recapitulate much of the argument.

For each i = 1, . . . , N and each multi-index j of length N , we introduce an inde-

terminate u(i, j). We introduce the shorthand

A = Z[u(i, j) | i = 1, . . . , N and |j| ≥ 2],

A(n) = Z[u(i, j) | i = 1, . . . , N and 2 ≤ |j| ≤ n], n ≥ 2.

We also let A(1) = Z.

Lemma A.10. One may inductively construct two sequences of N-tuples of power

series, F (n)(x1, . . . , xN , y1, . . . , yN) and f (n)(x1, . . . , xN),

F (n)(x, y) = (F
(n)
1 (x, y), . . . , F

(n)
N (x, y))

f (n)(x) = (f
(n)
1 (x), . . . , f

(n)
N (x)),

satisfying the following conditions for all n ≥ 1.

(i) F
(n)
i (x, y) ∈ A(n)[[x, y]], f

(n)
i (x) ∈ (A(n) ⊗Q)[[x]],



4. CONSTRUCTION OF A UNIVERSAL, N -DIMENSIONAL FORMAL GROUP LAW 115

(ii) F (n+1)(x, y) ≡ F (n)(x, y) and f (n+1)(x) ≡ f (n)(x) (mod degree n+ 1),

(iii) f (n)(F (n)(x, y)) ≡ f (n)(x) + f (n)(y) (mod degree n+ 1),

(iv) If n ≥ 2, then for each i = 1, . . . , N ,

F
(n)
i (x, y)−

∑
|j|=n

u(i, j)Cj(x, y) ∈ A(n−1)[[x, y]].

Proof. We proceed by induction on n. For n = 1, we define F
(1)
i (x, y) = xi + yi

and f
(1)
i (x) = xi for i = 1, . . . , N . Defined in this way, F (1) and f (1) clearly satisfy

the required conditions.

Now suppose we have have constructed F (1), . . . , F (n) and f (1), . . . , f (n) satisfying

conditions (i)-(iv) of the lemma. We wish to construct F (n+1) and f (n+1).

Let Φ(n) be the formal group law with logarithm f (n). By an argument analo-

gous to that presented in the one-dimensional case, we may find an N -tuple H =

(H1, . . . , Hn) of homogeneous polynomials of degree n + 1 in (A(n) ⊗ Q)[x, y], such

that

(A.4) Φ(n)(x, y) ≡ F (n)(x, y) +H(x, y) (mod degree n+ 2)

Essentially by clearing denominators, we may find a positive integer k such that

kHi(x, y) ∈ A(n)[x, y] for i = 1, . . . , N , and each kHi satisfies Lazard’s conditions,

modulo k. More precisely, H(x, y) = H(x, y) and δ(kH) ≡ 0 (mod k). Therefore, by

Theorem A.7, for i = 1, . . . , N and each multi-index j with |j| = n + 1, we may find

some a(i, j) ∈ A(n) such that

kHi(x, y) ≡
∑
|j|=n+1

a(i, j)Cj(x, y) (mod k).

Thus, we may find polynomials H ′1(x, y),. . . ,H ′N(x, y) ∈ A(n)[x, y] such that

(A.5) kHi(x, y) =
∑
|j|=n+1

a(i, j)Cj(x, y) + kH ′i(x, y),

for i = 1, . . . , N .
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We may now define, for i = 1, . . . , N ,

F
(n+1)
i (x, y) = F

(n)
i (x, y) +H ′i(x, y) +

∑
|j|=n+1

u(i, j)Cj(x, y),(A.6)

f
(n+1)
i = f

(n+1)
i (x)−

∑
|j|=n+1

1

ν(j)

[
u(i, j)− a(i, j)

k

]
xj.(A.7)

It is clear that F (n+1) and f (n+1) satisfy conditions (i), (ii), and (iv) of the lemma;

it remains to verify (iii).

Let β(i, j) = u(i, j)−a(i, j)/ν(j). If follows from Equations A.4, A.5, and A.6 that

for i = 1, . . . , N ,

(A.8) F
(n+1)
i (x, y) ≡ Φ

(n)
i +

∑
|j|=n+1

β(i, j)Cj(x, y) (mod degree n+ 2).

By Equation A.7, for i = 1, . . . , N ,

f
(n+1)
i (F (n+1)(x, y)) = f

(n)
i (F (n+1)(x, y))

−
∑
|j|=n+1

β(i, j)

ν(j)
F

(n+1)
1 (x, y)j1 · · ·F (n+1)

N (x, y)jN .(A.9)

We wish to approximate each term on the right hand side of the above equation

modulo degree n+ 2. We accomplish this using the following easy lemma.

Lemma A.11. Let f be a polynomial of the form

f(x1, . . . , xN) = xi + higher order terms.

Let g1, . . . , gN be polynomials with no constant term, and let h1, . . . , hN be homoge-

neous polynomials of degree m. Then

f(g1 + h1, . . . , gN + hN) ≡ f(g1, . . . , gN) + hi (mod degree m+ 1).
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Working modulo degree n+ 2, we have for i = 1, . . . , N ,

f
(n)
i (F (n+1)(x, y)) ≡ f

(n)
i (Φ

(n)
1 (x, y) +

∑
|j|=n+1

β(1, j)Cj(x, y), · · ·

· · · ,Φ(n)
N (x, y) +

∑
|j|=n+1

β(N, j)Cj(x, y))

≡ f
(n)
i (Φ

(n)
1 (x, y), . . . ,Φ

(n)
N (x, y))+

+
∑
|j|=n+1

β(i, j)Cj(x, y),(A.10)

by the above lemma with f = f
(n)
i , gr = Φ

(n)
r , and hr =

∑
|j|=n+1 β(r, j)Cj(x, y).

But by its definition, f (n) is the logarithm of Φ(n). It therefore follows that working

modulo degree n+ 2,

(A.11) f
(n)
i (F (n+1)(x, y)) ≡ f

(n)
i (x) + f

(n)
i (y) +

∑
|j|=n+1

β(i, j)Cj(x, y).

Since F
(n+1)
i = xi+yi+higher order terms, it is easy to see that for any multi-index

j with |j| = n+ 1,

F
(n+1)
1 (x, y)j1 · · ·F (n+1)

N (x, y)jN ≡ (x1 + y1)j1 · · · (xN + yN)jN ,

= ν(j)Cj(x, y) + xj + yj (mod degree n+ 2).(A.12)
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Plugging (A.11) and (A.12) into Equation A.9, we obtain for each i = 1, . . . , N ,

f
(n+1)
i (F (n+1)(x, y)) ≡ f

(n)
i (x) + f

(n)
i (y) +

∑
|j|=n+1

β(i, j)Cj(x, y)−

−
∑
|j|=n+1

β(i, j)

ν(j)
(ν(j)Cj(x, y) + xj + yj)

= f
(n)
i (x)−

∑
|j|=n+1

β(i, j)

ν(j)
xj+

+ f
(n)
i (y)−

∑
|j|=n+1

β(i, j)

ν(j)
yj

= f
(n+1)
i (x) + f

(n+1)
i (y) (mod degree n+ 2).

This completes the proof of property (iv) and the lemma. �

As in the one-dimensional case, we verify that we have in fact constructed universal

objects. The proof is a straight generalization of the proof of the corresponding one-

dimensional theorem.

Theorem A.12. Let n be a positive integer. Then F (n) (as constructed above) is

a universal, N-dimensional n-bud.

Proof. We proceed by induction on n. The n = 1 case is trivial. Suppose the

theorem holds for some n, and let G be an N -dimensional (n+ 1)-bud defined over a

ring R.

Treating G as an n-bud, our inductive hypothesis our inductive hypothesis asserts

the existence of a unique ring homomorphism ϕ(n) : A(n) → R such that ϕ
(n)
∗ F (n)(x, y) ≡

G(x, y) (mod degree n + 1). Extend ϕ(n) to a map ϕ̃(n) : A(n+1) → R by setting

ϕ̃(n)u(i, j) = 0 for all i = 1, . . . , N and all multi-indices j with |j| = n + 1. It is easy

to see that

ϕ̃(n)
∗ F (n+1)(x, y) ≡ G(x, y) (mod degree n+ 1).

Since ϕ̃
(n)
∗ F (n+1) and G are both (n + 1)-buds over R which agree, modulo degree

n+1, the N -dimensional Lazard Comparison Lemma asserts the existence of elements
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a(i, j) ∈ R, i = 1, . . . , N , |j| = n+ 1, such that

Gi(x, y) ≡ ϕ̃(n)
∗ Fi(x, y) +

∑
|j|=n+1

a(i, j)Cj(x, y).

Recalling Equation A.6, we have

F
(n+1)
i (x, y) = F

(n)
i (x, y) +H ′i(x, y) +

∑
|j|=n+1

u(i, j)Cj(x, y),

where Hi ∈ A(n)[x, y] is a homogeneous polynomial of degree n+ 1. Thus,

ϕ̃(n+1)
∗ F

(n+1)
i (x, y) = ϕ̃(n)

∗ (F
(n)
i (x, y) +H ′i(x, y)).

Let ϕ(n) extend ϕ(n) to a map from A(n+1) to R by setting ϕ(n+1)u(i, j) = a(i, j)

for all i = 1, . . . , N and all multi-indices j with |j| = n + 1. Noting that ϕ̃(n) and

ϕ(n+1) agree on A(n), we see that

ϕ(n+1)
∗ F (n+1)(x, y) = ϕ(n+1)

∗ (F
(n)
i (x, y) +H ′i(x, y)) +

∑
|j|=n+1

ϕ(n+1)u(i, j)Cj(x, y)

= ϕ̃(n)
∗ F n+1

i (x, y) +
∑
|j|=n+1

a(i, j)Cj(x, y)

≡ Gi(x, y) (mod degree n+ 2).

�

We obtain the following the following corollaries just like in the one-dimensional

case.

Corollary A.13. Let F (n) be as above and let F (x, y) = limn→∞ F
(n)(x, y). The

F is a universal, N-dimensional formal group law defined over the ring A.

Corollary A.14. Let G be an N-dimensional n-bud defined over a ring R. Then

G can be extended to an N-dimensional (n+1)-bud, and in fact to an N-dimensional

formal group law defined over R.

Corollary A.15. Let F be an N-dimensional formal group law defined over a

ring R of characteristic zero. Then F admits a logarithm defined over the ring R⊗Q.
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