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1 Introduction

⋆ The quantum circuit in the following figure will be central to our discussion.

• In Fig. 1(a) we have systems a and e, with Hilbert spaces Ha, He, of dimension da and de,
initially in states |ψ〉 and |ê〉, respectively, that interact, and the time development from t0 to t1 is
described by a unitary operator or “gate” T , resulting in a state |Ψ〉, see (3) below.

• We shall think of |Ψ〉 as a state on the combined system b and f , Hilbert space Hb ⊗Hf , at
a later time. Simplest situation: b as the same as a, and f is the same as e.
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|ê〉

a

e

b

f
T

(a)

|ψ〉 a

b

f
J

(b)

Figure 1: Quantum channel diagram as (a) unitary map T ; (b) isometry J .

◦ So why not use the same names? Because we want a formalism that allows the dimension db
of Hb to be different from the dimension da of Ha. This is consistent with a unitary T provided
dbdf = dade. If db = da and df = de one can identify Hb with Ha and Hf with He. The very
simplest situation of interest is the one in which T maps two qubits to two qubits.

⋆ We suppose that e is always in the same initial normalized state |ê〉, whereas there are various
possibilities for the initial normalized state |ψ〉 of a; think of |ê〉 as a constant and |ψ〉 as a variable.

• Because |ê〉 is held fixed we can take the alternative perspective indicated in Fig. 1(b) and
define the operator

J |ψ〉 = T
(

|ψ〉 ⊗ |ê〉
)

(1)

as a map from Ha to Hb ⊗ Hf . This map is an isometry in that if |Ψ〉 = J |ψ〉 and |Φ〉 = J |φ〉,
then 〈Φ|Ψ〉 = 〈φ|ψ〉, i.e., the J map preserves inner products, and therefore also the norm and the
metric based upon the norm. (Isometry = preserves the metric.)

2 Exercise. Check that J as defined in (1) preserves norms, provided T is unitary and |ê〉 is
normalized.

• The isometry J maps the whole Hilbert space Ha onto a subspace of dimension da of the
tensor product Hb ⊗Hf . Consequently, we must have

da ≤ dbdf . (2)

• While relating J to the unitary T is important and useful for various physical applications,
it is worth noting that much of what interests us depends only on the fact that J is an isometry
from Ha to Hb ⊗Hf .

2 Kraus Operators

⋆ Choose some orthonormal basis (orbasis) {|fk〉} for Hf , and expand

|Ψ〉 = J |ψ〉 = T
(

|ψ〉 ⊗ |ê〉
)

=
∑

k

|βk〉 ⊗ |fk〉 (3)

in this basis, assuming |ψ〉 is normalized, where the “expansion coefficients,” the kets |βk〉, are in
general neither normalized nor orthogonal.

◦ One can think of carrying out a simple measurement on f in the {|fk〉} basis, and if the
outcome (position of the pointer of the measuring apparatus) is k, then just before the measurement
f was in the state |fk〉. This measurement outcome, or the corresponding state itself just before
the measurement, occurs with a probability

pk = ‖βk‖2 = 〈βk|βk〉, (4)

2



and when it occurs we know that we should assign to Hb the normalized pre-probability

|β̂k〉 = |βk〉/‖βk‖ (5)

if we want to calculate probabilities of properties of b.

⋆ It is useful to write the relationship between |βk〉 and |ψ〉, assuming the isometry J is held
fixed (which will be true if |ê〉 and T remain the same), and the basis {|fk〉} is also held fixed, in
the form

|βk〉 = Kk|ψ〉 (6)

where the Kraus operator Kk is a linear map from Ha to Hb (hence from Ha to itself in the case
in which b is the same as a). Then (3) takes the form

J |ψ〉 = T
(

|ψ〉 ⊗ |ê〉
)

=
∑

k

(

Kk|ψ〉
)

⊗ |fk〉. (7)

◦ The operators Ek used in QCQI Sec. 8.2.3 and later (pp. 360ff) are what we call Kraus
operators; QCQI never uses the term “Kraus.” Also, QCQI focuses on the situation Hb = Ha, but
it is useful to also allow cases in which db is less than or larger than da.

◦ Likewise, the operators Mm introduced in QCQI Sec. 2.2.3, which they call “measurement
operators,” are Kraus operators.

• That there is a linear relationship (6) between |βk〉 and |ψ〉 may not be immediately evident.
It follows from (3), and the fact that the expansion coefficient |βk〉 is uniquely determined by |ψ〉
if everything else is held fixed. See the following exercise.

2 Exercise. Show that the relationship between |ψ〉 and |βk〉 for a fixed k given by (3) is linear
by looking at what happens when (i) |ψ〉 is multiplied by a complex number c, (ii)|ψ〉 is replaced
by a sum |χ〉 + |ω〉.

⋆ The fact that J is an isometry (implied by |ê〉 normalized and T unitary) means that

〈ψ|ψ〉 = 〈Ψ|Ψ〉 =
∑

k

〈βk|βk〉 =
∑

k

〈ψ|K†
kKk|ψ〉 = 〈ψ|

(

∑

k

K†
kKk

)

|ψ〉, (8)

will be true for every |ψ〉. This will be the case if and only if the closure condition

∑

k

K†
kKk = Ia (9)

is satisfied, where Ia is the identity on Ha. See the exercise.

2 Exercise. Show that if for a fixed operator A it is the case that for every normalized |ψ〉 in
Ha the quantity 〈ψ|A|ψ〉 is 1, then A = Ia. [Hint. Introduce an orbasis {|aj〉}, expand A|aj〉 in
this basis, and show that A|aj〉 = |aj〉.]

• Note that since Kk maps Ha to Hb, its adjoint K†
k maps Hb to Ha, and consequently the

product K†
kKk maps Ha to itself, which is why Ia appears on the right side of (9), and not Ib. This

distinction is important when Hb is different from Ha. When Hb = Ha (as in QCQI) one does not
need the subscript on I.

⋆ It is obvious from (7) that the Kraus operators depend on the choice of orbasis {|fk〉} for f .
Do not misinterpret this as meaning that different types of measurements on f , corresponding to
different choices of orbasis, will somehow “influence” Hb. Instead, they reflect different frameworks
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for relating properties of b to those of f . Remember that the {|βk〉 = Kk|ψ〉} are conditional pre-

probabilities (up to normalization) used to calculate correlations; they are not physical properties
created by some mysterious action-at-a-distance.

• Put in other words, what Fred, who measures f , can learn about the system b in Bob’s
possession depends on what he learns about f , which in turn depends on the type of measurement
he carries out on f , say Sx as against Sz in the case of a qubit. Fred’s measurement has absolutely
no physical effect on b; to suppose otherwise is to fall prey to the nonlocality myth.

3 Quantum Channels

3.1 Introduction

⋆ A basic issue in both quantum computation and quantum cryptography is that one needs to
get information from one point to another in a reliable way. Even storing quantum information at
one particular point is a nontrivial issue, for it tends to decay or degrade.

• Hence the study of quantum channels, used to transmit or store quantum information, is a
very important topic.

• Think of a quantum channel as a pipe through which one transmits a spin-half particle, thus
(in its spin degree of freedom) a single qubit. Small magnetic fields inside the pipe may perturb
the information carrier, or it may bump into something else in the pipe. This will produce noise.

• An alternative picture, which is easier to realize in practice, is an optical fiber in which a
single photon “carries” one qubit in its polarization. Inhomogeneities in the fiber may disturb the
polarization. Or the photon may simply disappear through some absorption process. (This last
becomes a significant problem after a few kilometers.) Both of these produce undesired noise.

⋆ For classical channels (ordinary telephone lines) there are well-understood ways of overcoming
noise in a channel through error correction. This is also in principle possible in quantum channels,
though a lot more difficult.

3.2 Model quantum channel

⋆ A rather common model of a quantum channel as used in quantum information theory can
be represented schematically by Fig. 1, where a is the input to the channel, b is the channel output,
e is thought of as the environment which is initially in the state |ê〉, and f is again the environment

at the later time when information emerges in the channel output.

• One thinks of a as, typically, some small system, a photon or an atom or a small number
of such entities, and e as the “rest of the world,” or at least enough of the world so that for the
purposes of interest the two together can be treated as an isolated quantum system with time
development governed by Schrödinger’s equation, represented in Fig. 1(a) by the time transition
operator T .

• The question one asks is then: how is the output system b related to or correlated with the
channel input a if one ignores f , or knows nothing about f?

⋆ Imagine a spin-half particle which enters a pipe in the (spin) state |ψ〉. If the same |ψ〉
emerges at the other end, and this is true for every input |ψ〉, the channel is perfect. Anything else
constitutes a noisy quantum channel.

• One source of noise could be a static magnetic field somewhere in the pipe, which causes the
spin to precess. The result is that an input |ψ〉 emerges as U |ψ〉, where U is a unitary operator
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which depends on the magnetic field, but is independent of the input |ψ〉. I call this a unitary

channel. It corresponds to the following circuit:

|ψ〉 U |ψ〉U

Figure 2: Unitary channel

• One can also call a unitary channel an ideal channel because performing the inverse operation
U † at the output changes it into a perfect channel. Thus any errors produced by the channel can
be completely removed by this very simple form of error correction.

⋆ On the other hand, if the magnetic field varies randomly with time, so its value will be
different each time the channel is used, of if the particle bumps into another particle which causes
its spin to flip, one cannot describe the output of the channel in terms of a pure ket for a given
input |ψ〉, but instead one will need a density operator ρ which depends on the input state.

⋆ It is customary to model such a channel as (what I call) a linear channel, in the manner
indicated in Fig. 1, where a is the channel input, b, which may be the same as a, is the output,
and noise is produced by interaction with an environment e through a unitary time development
operator T .

• In this situation one is interested in how the output b is related to the input a if we know
nothing about the final environment f . Thus we will need to describe the output by means of an
ensemble, or more compactly (with less irrelevant information) by a density operator ρ:

|Ψ0〉 = |ψ〉 ⊗ |ê〉, |Ψ1〉 = T |Ψ0〉, ρ = Trf
(

[Ψ1]
)

, (10)

where, as usual, [Ψ1] is short for |Ψ1〉〈Ψ1|.
◦ What if the environment is not initially in a pure state but in some mixed state? We can

always take the corresponding environment density operator and purify it by introducing a fictitious
reference system R. Thinking of R as part of the environment, but as a part that interacts with
nothing else, allows us to employ a pure state in working out the formalism.

3.3 Single qubit channel

⋆ A simple example is provided by the case in which channel and environment are both single
qubits, and T is a controlled-not gate, as in Fig. 3

|ψ〉 ρ

|ê〉

a

e

b

f

Figure 3: Simple example of a noisy channel

• The nature of the |ψ〉-to-ρ channel depends upon the initial state |ê〉. For |ê〉 = |0〉 we have
a perfect channel. For |ê〉 = |1〉 the result is a unitary channel in which |ψ〉 = |0〉 is mapped to |1〉
and vice versa, thus a unitary bit flip or (in the notation of QCQI) X gate; i.e., |ψ〉 is mapped to
σx|ψ〉
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• Suppose we look at something in between,

|ê〉 =
√

1 − p |0〉 +
√
p |1〉. (11)

2 Exercise. Find ρ using (11) and an initial state |ψ〉 = α|0〉+ β|1〉 for qubit a by applying the
controlled-not gate to |Ψ0〉 = |ψ〉 ⊗ |ê〉 to get |Ψ1〉, and then a partial trace to [Ψ1].

⋆ The results can be worked out analytically, see the exercise. Here let us take an alternative
approach which provides a geometrical representation of the operation of the channel. Imagine that
instead of throwing away the environmental qubit we measure it in the standard basis after it has
interacted with a. The result will be D = 0 or D = 1, with probabilities 1 − p and p, respectively.
If D = 0 then we know that qubit a is unchanged, so described by the state |ψ〉. If D = 1 we know
that it has been “flipped”, and is described by the state σx|ψ〉.

• Thus we can describe qubit a using an ensemble of |ψ〉 with probability 1− p and σx|ψ〉 with
probability p, which is to say:

ρ = (1 − p)[ψ] + p[σxψ]. (12)

2 Exercise. Measuring f in the standard basis will give rise to a pair of Kraus operators, Sec. 3,
K0 and K1. Find out what these are, check that they satisfy the closure condition (9), and relate
them to the preceding discussion.

◦ Comment. Measuring or not measuring the environment qubit (f) after it has interacted with
a cannot possibly have any influence on a (unless we were to use the result of the measurement to
carry out some additional operation on a); avoid the idea that it produces a “collapse of the wave
function” in some physical sense. Instead, we are using a hypothetical measurement as a means
of calculating the density operator ρ, which will be exactly the same when computed in this way
or by calculating the unitary time evolution of the initial ket and then taking a partial trace (see
preceding exercise). Remember, ρ functions as a pre-probability.

2 Exercise. Suppose that instead of measuring f in the standard basis we measure it in the Sx
or |+〉, |−〉 basis. Once again find the Kraus operators K+ and K−. Show that using them leads
to the same result as in (12). Write the operators K+ and K− as linear combinations of the K0

and K1 found earlier; the relationship should be unitary. (See QCQI Sec. 8.2.4.)

3.4 Geometrical interpretation

⋆ One can give the following geometrical interpretation to (12). The σx or X transformation
is a rotation of the Bloch sphere by 180◦ around the x axis. Therefore, if we start with a particular
|ψ〉, represented by a point on the Bloch sphere, (12) is telling us that the final density operator
is a convex combination of this original point with another point obtained by rotating the original
point by 180◦ around the x axis, with weights 1 − p and p, respectively.

• Density operators (not just of qubits) form a convex set. A convex combination of two points
of a convex set, as in (12), can be thought of as a point on the straight line connecting them. This
point is located at the center of mass when a mass of (1 − p) is placed at [ψ] and a mass of p at
[σxψ].

• Consequently, in the map which produces ρ from |ψ〉, every point on the (surface of the) Bloch
sphere is mapped to a point lying inside the Bloch sphere (or possibly on the surface) in the same
y, z plane, since the rotation takes place around the x axis.

◦ The net result is to shrink the original Bloch sphere into an ellipsoid which for 0 < p < 1/2
touches the original sphere at only two points: where the original sphere intersects the x axis. See
Fig. 8.8 in QCQI, p. 376.
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2 Exercise. What happens for 1/2 < p < 1, and in what way does this channel differ from
0 < p < 1/2? Is there some analogy with a symmetrical (ǫ0 = ǫ1 = p) classical 1-bit channel?

2 Exercise. Suppose in place of (11) we use |ê〉 =
√

1 − p |0〉 + i
√
p |1〉. How does this change

the |ψ〉-to-ρ channel? What channel is produced by a general |ê〉 = ζ|0〉 + η|1〉 with ζ and η two
complex numbers with |ζ|2 + |η|2 = 1?

3.5 Quantitative measures of noise

⋆ The simplest measure of noise in a classical or quantum channel of the sort we are considering
is the error rate, which will be denoted by ǫ. It depends upon what enters the channel.

• For a classical channel with conditional probabilities Pr(b | a) of output in terms of input of

Pr(0 | 0) = 1 − ǫ0, Pr(1 | 0) = ǫ0, Pr(0 | 0) = 1 − ǫ1, Pr(1 | 0) = ǫ1. (13)

the error rate is ǫ0 for input 0 and ǫ1 for input 1. That is, every time a 0 is sent into the channel
there is a probability ǫ0 that it will be flipped to 1, thus making an error.

◦ The error rate can be measured experimentally using the usual methods for estimating prob-
abilities. If 0 is sent into the channel N times, and 1 emerges M times, while 0 emerges N −M
times, then M/N is an estimate for ǫ0, one which should improve as N increases. Error rates
obviously cannot be determined by using a channel just once.

⋆ The definition of error rate for a quantum channel is as follows, assuming the input and
output Hilbert spaces are identical: Ha = Hb in the notation of Fig. 1. Suppose one repeatedly
sends in the state |ψ〉, and measures the output to determine whether it is in the same state |ψ〉
or in a state orthogonal to |ψ〉. That is, do a measurement corresponding to the decomposition of
the identity

I =
(

[ψ]
)

+
(

I − [ψ]
)

. (14)

◦ Note that it generally doesn’t make sense to ask whether a quantum system is in a physical
state |ψ〉 or in a state |φ〉 when these states are not orthogonal to each other. Suppose, for example,
that a qubit is sent into a unitary channel in the state |0〉 and emerges in the state

(

0.99|0〉+0.1|1〉
)

.
The output state as a mathematical object (or a pre-probability) is obviously not identical to the
input state. So was there an error? Not necessarily, according to the above definition. Instead,
there is a nonzero probability of an error. Whether or not an error occurs on some particular
occasion when the channel is used is not something quantum mechanics can predict, since quantum
dynamics is inherently random or stochastic.

2 Exercise. Compute this nonzero probability.

⋆ Rather than the error rate ǫ one can use the fidelity F defined by

F = 1 − ǫ. (15)

• Warning! For reasons best known to them, Nielsen and Chuang define the fidelity to be
√

(1− ǫ). They then go on to change their definition in midstream, when they get to entanglement
fidelity. replacing their earlier definition by the one used here. I shall always use the definition in
(15).

⋆ For a general linear quantum channel and supposing that the input is a state |ψ〉, the error
rate ǫ is the probability of the second projector on the right side of (14), and the fidelity is the
probability of the first, thus

F (ψ) = Tr(ρ[ψ]) = 〈ψ|ρ|ψ〉, ǫ = 1 − F = 1 − 〈ψ|ρ|ψ〉. (16)
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where ρ is the pre-probability for what emerges from the channel when |ψ〉 is fed in. Thus ρ depends
on the initial |ψ〉, though that is not indicated explicitly in (16).

• The fidelity, just like the error rate, depends on which state one puts into the channel. In the
classical case of a 1 bit channel this isn’t too bad, for there are only two possibilities. For a one
qubit quantum channel, things are a lot more complicated, as we shall see, but not infinitely so,
at least not for the linear model introduced in Sec. 3.2 (and which underlies all the discussions in
QCQI).

⋆ It is sometimes helpful to have a single number rather than a function of the initial |ψ〉 to
characterize a quantum channel. One possibility is the minimum fidelity

Fmin := min
|ψ〉

F (ψ) (17)

over all possible inputs. While this is a relatively crude measure of what is going on, one can
see how it would be useful to an engineer trying to design a quantum computer and producing
specifications for the manufacture of some channel. If Fmin is close to 1, then the probability of
any error is small, no matter what is sent into the channel.

• The engineer building a quantum computer might actually want to use something else: the
entanglement fidelity defined in the following way. Imagine that the input to the channel is part of
an entangled state |Ψ0〉 on the tensor product Ha ⊗Hr of the Hilbert space of the channel input a
and that of another system r. Then imagine that the time development of a plus its environment
e (which defines the channel, see Fig. 1) along with r is given by T ⊗ I, where T acts on Ha ⊗He,
see (10) and I on Hr. The entanglement fidelity is then defined by using the density operator R:

Fent = 〈Ψ0|R|Ψ0〉, R := Trf
[

T ([Ψ0] ⊗ [ê])T †
]

. (18)

◦ Note that Fent is nothing but the (ordinary) fidelity associated with a bigger channel whose
input and output is Ha ⊗Hr, and which interacts with the environment only through the a part;
the r part is a perfect channel.

• Once again the fidelity Fent depends upon the initial |Ψ0〉, though one can show (see QCQI)
that it only depends upon |Ψ0〉 through the initial reduced density operator on a defined by

ρ0 := Trr([Ψ0]). (19)

◦ The entanglement fidelity in QCQI, p. 420, is written as F (ρ, E), where ρ means the same
thing as ρ0 in (19)), and E is the superoperator for the channel, see below.

• The minimum entanglement fidelity, let us denote it by the somewhat awkward Fminent, is
the minimum of Fent over all possible |Ψ0〉 (the same as all possible ρ0). It is always less than or
equal to Fmin; this is the significance of (9.137) in QCQI, which would look a little less odd had
the authors not changed their definition of “fidelity”.

◦ The reason the minimum entanglement fidelity could be useful to the quantum engineer is
that he does not know in advance what will actually be going on inside the quantum computer,
and some unitary operation could require that the channel in question be in an entangled state.
Then Fminent limits how bad things can be in the worst-case scenario.

3.6 Types of quantum information

⋆ Associated with an orthonormal basis {|aj〉} of the channel input Hilbert space Ha is what we
shall term a particular type or species of quantum information. More generally, a type is associated
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with a decomposition of the identity

Ia =
∑

j

P j . (20)

• In the case of a qubit the Z or Sz type of information is associated with the orthonormal
basis {|0〉, |1〉} or the decomposition {[0], [1]}; the X or Sx type of information corresponds to the
basis {|+〉, |−〉}, and so forth.

• Two types of information are compatible if and only if the projectors from one decomposition
commute with those from the other; if some pairs fail to commute the types are incompatible.

⋆ A perfect quantum channel is one for which all types of information are transmitted to the
output with zero error rate or a fidelity of 1. An ideal quantum channel becomes a perfect quantum
channel if a single unitary gate applied to the output changes it into a perfect channel.

⋆ A noisy quantum channel will typically transmit different types of information with different
fidelities. By applying a unitary correction at the end of the channel, or perhaps doing something
more complicated, one may be able to improve the fidelity or reduce the error rate for one type of
information, but this will, in general, increase the error rate for other types of information.

⋆ An ideal classical channel is a quantum channel which can, with suitable error correction if
needed, transmit one particular type of quantum information without error.

• The geometrical interpretation of Sec. 3.4 is helpful in understanding this. Suppose that the
original Bloch sphere is mapped into an ellipsoid that touches the original sphere at the points
which intersect the x axis but nowhere else: |+〉 or [+] is mapped to [+], |−〉 or [−] is mapped
to [−], but all other pure states on the surface of the Bloch sphere are mapped into points in the
interior. Then so far as the X (Sx) type of information is concerned one has an ideal, or in fact
a perfect classical channel since no corrections are needed. But any other type of information is
transmitted with a certain amount of noise, so the channel will not be ideal for these other types.

• The extreme case is that in which the ellipsoid just discussed shrinks down to nothing but
a line joining the [+] and [−] points on the Bloch sphere. One then has an example of what
might be called a “classical” channel or a “perfectly decohered” quantum channel for this type of
information.

◦ These names are not standard. In fact there is some confusion in the literature associated
with various uses of the term “classical” in the context of quantum information.

2 Exercise. Can such a perfectly decohered, ideal quantum channel be produced using the
circuit in Fig. 3 with a suitable choice of |ê〉?

4 Quantum Operations and Superoperators

4.1 Introduction

⋆ The case of a quantum channel corresponds to the situation in Fig. 1 in which we are
interested in how the properties of system b are related to the initial state |ψ〉 without regard
to any correlations it may have with system f . Quantum mechanics provides several alternative
mathematical tools for describing a situation of this sort.

• We may compute the “big” wave function |Ψ〉 generated from |ψ〉 by the unitary time evolution
T of the isometry J , and use it to calculate probabilities of projectors {P j} acting on Hb. Or we
may form the reduced density operator

ρb = Trf

(

|Ψ〉〈Ψ|
)

(21)
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and calculate the same probabilities using the formula Tra(P
jρb). Or imagine an ensemble {pk, |β̂k〉},

see (4) and (5), and calculate averages with respect to each element. Thus if P j is a projector—or,
for that matter, any operator whatsoever—on Hb, the following all give the same result for what
is often written in the form 〈P j〉:

〈Ψ|P j|Ψ〉 = 〈Ψ|P j ⊗ If |Ψ〉 = Trb(P
jρb) =

∑

k

pk〈β̂k|P j|β̂k〉. (22)

◦ Note that one very often writes P j in place of P j ⊗ If when its meaning is clear from the
context.

2 Exercise. Check the last two equalities in (22)

• In many ways the “cleanest” of the expressions in (22) is the one involving ρb, since this
reduced density operator contains no information at all about the correlations between b and f . It
is relatively compact in comparison with the big wave function |Ψ〉, and it does not depend upon
the choice of a basis for f , unlike the ensemble {pk, |β̂k〉}.

• A disadvantage of ρb is that it does not depend in a linear fashion on the original |ψ〉, and
calculations are usually simpler if we employ linear relationships. This defect can be remedied by
using

ρa := |ψ〉〈ψ| (23)

in place of |ψ〉, and introducing the superoperator S that provides a linear relationship

ρb = S(ρa) (24)

between the output and the input.

⋆ A superoperator S is any linear map from the space Ĥa of operators on Ha to the space Ĥb

of operators on Hb.

◦ The dimension of Hb can be different from the dimension of Ha.

• Ĥa is a complex linear vector space since the sum A+A′ of any two operators is an operator,
as is cA when c is a complex number. In the finite-dimensional case we can introduce an operator
inner product, known as the Frobenius or Hilbert-Schmidt inner product, by writing

〈A,A′〉 := Tra(A
†A′). (25)

2 Exercise. Check that (25) defines a proper inner product satisfying the usual conditions:
linear in the second argument, antilinear in the first, and greater than 0 when A′ = A (unless
A = 0).

• Since Ĥa and Ĥb are Hilbert spaces, the superoperator S is in this sense nothing more than
a linear map from one Hilbert space to another Hilbert space.

⋆ A superoperator can be characterized by its matrix elements relative to bases of operators
for the spaces Ĥa and Ĥb.

• Let {Aj} be a collection of linearly-independent operators spanning Ĥa and {Bk} another
collection spanning Ĥb. We define the matrix Skj of the superoperator S in the standard fashion

S(Aj) =
∑

k

SkjBk, (26)

where note the order of the subscripts on the right side: kj and not jk. This is the standard
definition for a matrix in linear algebra. Given S and the two bases, the matrix Skj is unique;
conversely, Skj along with the two bases defines a unique superoperator.
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◦ The operator bases are often chosen to be orthogonal using the inner product (25), and
sometimes normalized, but don’t have to be.

◦ Some authors reserve the term “superoperator” for the situation where it corresponds to a
quantum operation as defined below.

4.2 Quantum operations

⋆ Superoperators which can be written in the form

S(A) = Trf

(

T
(

A⊗ |ê〉〈ê|
)

T †
)

, (27)

where T is a unitary operator and |ê〉 is normalized have some rather special properties:
i) They map Hermitian operators to Hermitian operators.
ii) They map positive operators to positive operators.
iii) They preserve the trace:

Trb

(

S(A)
)

= Tra(A) (28)

iv) They are completely positive, a stronger condition than (ii) which will be defined in Sec. 4.5.

◦ Note that properties (ii) and (iii) guarantee than when S is applied to a density operator, the
result is a density operator.

⋆ We shall use the term quantum operation for a superoperator which satisfies these four
properties. Or in slightly different terms, such a superoperator represents (the effects of) a quantum
operation.

• The term “completely positive trace preserving map” is often used in the literature.

◦ This is approximately the same terminology used in QCQI where, however, b is the same as
a. Also QCQI ties the quantum operation to a collection of Kraus operators, see Sec. 4.4.

• It can be shown that any quantum operation is of the form (27); i.e., one can find additional
Hilbert spaces He and Hf , with the former initially in a normalized state |ê〉, and a unitary T , such
that the superoperator representing the quantum operation has the form (27).

4.3 One qubit

⋆ In the case of a single qubit the four operators

σ0 = I, σ1 = σx = X, σ2 = σy = Y, σ3 = σz = Z, (29)

indicated using a variety of notations, are a basis for the operator Hilbert space Ĥ. Each of these
operators is Hermitian, and consequently a general Hermitian operator on the space of 1 qubit can
be written as a linear combination of these four operators with real coefficients.

2 Exercise. Show that (29) is actually an orthonormal basis of the operator space if one
redefines the inner product (25) with a factor of 1/2 on the right side.

2 Exercise. Starting with (29) construct an orthonormal (when (25) has been suitably modified)
basis for the operator space of the tensor product of 2 qubits. Is it obvious how to proceed to the
general case of n qubits?

⋆ If we use the basis (29) for both Ĥa and Ĥb, and write (26) in the form

S(σaj) =
∑

k

Skjσbk (30)
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the 4 × 4 matrix Sjk with 0 ≤ j, k ≤ 3 representing a quantum operation has the form

S =









1 0 0 0
b′1 c′11 c′12 c′13
b′2 c′21 c′22 c′23
b′3 c′31 c′32 c′33









, (31)

where the {b′j} can be thought of as a real three-dimensional vector, and the {c′jk} form a real 3×3
matrix.

2 Exercise. Explain why the elements of the matrix S are real. [Hint. Property (i) of Sec. 4.2.]

2 Exercise. Show that the top row of (31) is a consequence of condition (iii).

2 Exercise. Show that S(ρ) maps a point r = (r1, r2, r3) in the Bloch sphere to r′, where

r′j = b′j +

3
∑

k=1

c′jkrk. (32)

• The twelve parameters in (31) are in some sense the 1 qubit channel counterparts of the two
parameters ǫ0 and ǫ1 for the 1 bit classical channel of (13). In this sense the quantum channel is
much more complicated than its classical counterpart. However, one can make it a bit simpler, as
we shall now show.

⋆ Consider the unitary channel, Fig. 2. For any U except the identity this channel will be
noisy for most input states. But there is a simple way, at least in principle, to get rid of this noise.
By making lots of measurements one can determine U (up to an uninteresting overall phase), and
if one’s laboratory is well-equipped, the noise can be effectively removed by passing the carrier of
information through the inverse transformation U † = U−1 when it emerges from the channel. Or
one can apply U † at the sending end, before the carrier enters the channel.

◦ The classical counterpart: interchanging the inputs, or the outputs, of a 1 bit channel in
which every bit is flipped.

• A similar simplification is possible for a general noisy channel if one imagines that unitary
operations (in general different from each other) can be applied both at the beginning and at
the end of the channel. Doing so helps us reduce the number of free parameters characterizing
the channel if we suppose that two channels which become identical by applying unitaries at the
beginning and end of one of them are in some sense interchangeable.

⋆ Thus we define two quantum channels characterized by superoperators S1 and S2 as equivalent

up to local unitaries when it is the case that there are unitaries U and V such that

S2(A) = V S1(UAU
†)V † (33)

for any operator A (thus, in particular, for any density operator ρ).

2 Exercise. Rewrite (33) in the form S1(A
′) = . . .S2(. . . A

′ . . .) . . ..

◦ Note that this definition is not limited to qubit channels, but applies quite generally pro-
vided both channels have input spaces of the same dimension, and also output spaces of the same
dimension. The dimensions of the input and output spaces can be different.

◦ The term “local” in “local unitaries” reflects the fact that one often imagines the input of
the channel to be located in one place (Alice’s laboratory), where U is applied, and the output in
another (Bob’s laboratory), where V is applied.
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• Notice that error rates and fidelities, as we have defined them, are not invariant under local
unitaries. In particular a unitary channel with very bad fidelity for at least some |ψ〉 can be turned
into a perfect channel by employing a local unitary.

⋆ In the case of a single qubit, any unitary operation is equivalent to rotating the Bloch sphere
in some manner; we noted this earlier in connection with σx. (Reflections and other improper
rotations of the Bloch sphere, for which the determinant of the rotation matrix is −1, do not

correspond to unitary transformations.)

• As a consequence it is always possible by means of local unitaries to transform the S matrix
in (31) into the form

S =









1 0 0 0
b1 c1 0 0
b2 0 c2 0
b3 0 0 c3









. (34)

The 3×3 c′ matrix in (31) can be diagonalized by applying distinct rotation matrices Rl and Rr on
the left and right, so that c = Rlc

′Rr, and b = Rlb
′ is the change in the 3 component vector in the

first column of S. The rotations Rl and Rr correspond to unitary operators U and V , as in (33),
applied before the qubit enters and after it emerges from the channel. The geometrical significance
of these rotations in terms of the Bloch sphere can be worked out using (32).

◦ One can think of the action of S in (34) on the Bloch sphere in the following way, see (32).
The cj act to shrink each axis of the sphere by a corresponding factor, with cj < 0 inverting the
axis at the same time as shrinking it by a factor of |cj |. This results in all the points originally
inside the unit sphere being mapped to an ellipsoid centered at the origin with principal axes are
along x, y, and z. Next, the action of the bj is to shift the center of this ellipsoid from the origin

to the point ~b = (b1, b2, b3).

• We are now down to 6 parameters in (34). To make further progress, let us arbitrarily set all
the bj equal to zero, and call the result a Pauli 1 qubit channel. It is not unlike the symmetric 1
bit classical channel in which ǫ1 = ǫ0. It is characterized by three parameters c1, c2, c3.

• This channel maps the identity operator at the input to the identity operator at the output.
Such a channel is often referred to as a unital channel.

2 Exercise. Find a set of Kraus operators, each Kj proportional to the Pauli σj , that corre-
sponds to a Pauli channel.

◦ Each cj falls in the interval
−1 ≤ cj ≤ 1. (35)

In addition there are restrictions imposed by the complete positivity condition (iv) on various sums
of the cj . Let us ignore these for the moment, and ask what interpretation we can give to (34) with
bj = 0.

• Suppose that we start with a pure input state [z+] = [0], or x0 = y0 = 0, z0 = 1 in the
Bloch sphere. Multiplying the corresponding column vector by S, one finds the output state ρ1

corresponds to x1 = y1 = 0, z1 = c3 when the particle emerges from the channel. This corresponds
to an ensemble of

ρ1 =

(

1 + c3
2

)

[0] +

(

1 − c3
2

)

[1], (36)

so it is like the classical 1 bit channel in (13), with ǫ0 = 1

2
(1 − c3). Similarly, if we start with an

input state [z−] = [1], the result will be (36) with the coefficients of [0] and [1] interchanged, thus
like a 1 bit channel with ǫ1 = 1

2
(1 − c3).
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• Of course the same considerations apply to starting states of [x+] and [x−], with [0] and [1]
in (36) replaced with [x+] and [x−], and c3 with c1. And similarly for [y+] and [y−].

◦ The situation with other starting states, say [w+] and [w−] with w a direction other than x,
y or z is, in general, more complicated: one cannot express the output density operators in terms
of [w+] and [w−] alone. The exceptions to “in general” arise when two, or perhaps three, of the cj
are identical.

• Now that we understand (to some extent) the situation with bj = 0, let us remove that
restriction. The conclusion is left as an exercise.

2 Exercise. Consider the case b3 6= 0 (its value must like between −1 and +1), and find ρ1

for initial states [0] and [1]. Show that one can again use (36) with modified coefficients, and the
result resembles a classical biased (ǫ1 6= ǫ0) channel. Do all possible combinations of values for b3
and c3 in the interval −1 to +1 make sense in terms of probabilities? (There are restrictions on
these quantities due to the requirement that the superoperator be completely positive.)

⋆ By setting two of the cj along with the corresponding bj equal to 0, say c1 = 0 = b1
and c2 = 0 = b2, one arrives at a one-qubit representation of a “classical” channel. To be sure,
“classical” is not a precisely defined term in a quantum context, but a channel of this type comes
close to exemplifying a situation in which “quantum” effects of nonorthogonal states play no role.

2 Exercise. Show that a “classical” channel of this type is produced by a circuit in which the a
qubit representing the channel interacts with a one qubit environment, with initial state |ê〉 = |0〉,
through a controlled-not gate, with the a qubit the control. Show that S is of the form (34), and
work out the b’s and the c’s.

4.4 Kraus representation of quantum operations

⋆ In QCQI the superoperator representing a quantum operation—i.e., satisfying conditions (i)
to (iv) in Sec. 4.2— is discussed using Kraus operators {Ej}, denoted here by {Kk}, and takes the
form

S(A) =
∑

j

KkAK
†
k. (37)

• That (37) agrees with (27) can be seen by working out the latter using (7).

2 Exercise. Do it.

• The main advantage of using Kraus operators is that they ensure that S is completely positive,
a condition which is hard to check in terms of the matrix Sjk of (26).

• The main disadvantage of Kraus operators is that they are not unique. A given superoperator
can, in general, be represented by many different collections of Kraus operators. As pointed out in
QCQI, any two such collections are related to each other by a unitary matrix, but this fact does
not make it easy to check equivalence.

⋆ The reason the Kraus representation is not unique is that the choice of orthonormal basis
{|fk〉} in (7) is not unique. Different bases give rise to different collections of Kraus operators.
Since the choice of the basis of f has no influence on b, and we are only interested in how b is
related to a in Fig. 1, the Kraus operators provide information on correlations between the channel
output and the environment, information that is superfluous from the point of view of a quantum
operation.
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4.5 Transition operator and dynamical operator

⋆ A superoperator S mapping Ĥa to Ĥb can be represented in the form

S(A) = Tra

(

(A⊗ Ib)Q
)

. (38)

where the operator Q on Ha ⊗Hb is known as the transition operator.

◦ There is a one-to-one correspondence between the transition operator Q and the superoperator
S, unlike the many-to-one correspondence between collections {Kk} of Kraus operators and S.

• If S maps Hermitian operators to Hermitian operators, Q is Hermitian. If S is trace preserving
then

Trb(Q) = Ia. (39)

⋆ Complete positivity of S is equivalent to simple positivity for the operator R which is the
partial transpose of Q relative to some orthonormal basis {|aj〉} of Ha, in the sense that

〈ajbp|R|akbq〉 = 〈akbp|Q|ajbq〉, (40)

where {|bp〉} is an arbitrary orthonormal basis of Hb.

• The operator R obtained in this way depends upon the choice of the basis {|aj〉} (but not the
choice of {|bp〉}), which is a bit of an annoyance. However, whether or not the partial transpose is
positive, for a given transition operator Q, does not depend upon the choice of {|aj〉}. R is known
as the dynamical operator.

• Transition operators have the advantage that the complete positivity of S is (fairly) easily
checked, and there is a unique transition operator associated with any particular superoperator.
The main disadvantage is that the transition operator does not provide as simple an intuitive
picture as the matrix Sjk of (26) or (30). Also, transition and dynamical operators are not at
present widely employed in the research literature.

2 Exercise. If Ha and Hb are both two-dimensional spaces, any operator on Ha ⊗ Hb can be
written in the form

Q =

3
∑

j=0

3
∑

k=0

Cjkσaj ⊗ σbk (41)

with suitable (in general complex) coefficients Cjk. Find these coefficients in the case where Q is
the transition operator corresponding to S with matrix S given by (34).

5 POVMs

5.1 Definition

• Refer to Fig. 1, where |ê〉 and T , or J , are considered fixed, whereas |ψ〉 is variable, and
ask the question: “what can we learn about |ψ〉 from a simple measurement on f if we ignore,
or know nothing about b?” The answer is provided through the concept of a POVM, a “positive
operator-valued measure.” (The origin of this term in the study of infinite-dimensional Hilbert
spaces need not concern us.)

⋆ We define a POVM as a collection {Gk} of positive operators on a Hilbert space that sum
to the identity:

∑

k

Gk = I. (42)
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◦ This definition is satisfactory for a finite-dimensional Hilbert space, and we shall not need to
consider more complicated situations appropriate to infinite-dimensional Hilbert spaces.

◦ Recall that Gk positive, Gk ≥ 0, means that Gk is Hermitian with no negative eigenvalues,
or, equivalently, that 〈ψ|Gk |ψ〉 ≥ 0 for all |ψ〉.

◦ It is convenient to exclude the trivial case in which Gk = 0 for some k.

• If each Gk is a projector and (42) is satisfied, then one can show that the {Gk} form a de-
composition of the identity, i.e., they are mutually orthogonal to each other. Such a decomposition
is thus an example of a POVM. But in general the POVM operators are not projectors.

◦ Because the operators in a POVM sum to the identity one can also refer to the collection
as a “decomposition of the identity.” To avoid confusion the term “projective decomposition” is
sometimes used for the case in which all the Gk are projectors.

⋆ POVMs are used to generate probabilities using the formula

pk = Tr(ρGk) = Tr(Gkρ), (43)

where ρ is the density operator (thought of as a pre-probability) for the system of interest to us.
Note that if ρ = |ψ〉〈ψ|, the right side of (43) is 〈ψ|Gk|ψ〉.

• In standard textbook quantum mechanics carried out by people who have thought carefully
about the subject, pk is always considered to be the probability for some macroscopic state of affairs
(e.g., “the pointer indicates k = 3”) at the end of an experiment which began with a “preparation”
resulting in |ψ〉 or ρ. While a POVM is often referred to as a “measurement,” it is, at least
within this framework, difficult to justify that term, since it is not clear that any property of the
microscopic system is actually being measured. We shall come back to the problem of physical
interpretation later.

⋆ Returning to Fig. 1. The probability that f is in the state |fk〉 (as revealed by a simple
measurement) is, by combining (4) and (6),

pk = 〈ψ|K†
kKk|ψ〉. (44)

2 Exercise. Show that any operator of the form K†K is positive; i.e., for any |ψ〉 in the Hilbert
space on which K acts it is the case that 〈ψ|K†K|ψ〉 ≥ 0.

• Consequently, in light of (9) the collection {Gk = K†
kKk} constitutes a POVM, and this

POVM can be used to address the question of what a measurement of f after the interaction
represented by T in Fig. 1 tells us about the state of the system a before the interaction. But what
does it tell us? In particular, what do we learn if the outcome of our simple measurement is k,
which is to say f was in the state |fk〉 at the end of the interaction?

⋆ In the particular case in which Gk is a rank-one operator, which means (because it is positive)
that it is proportional to some |ω〉〈ω| for some |ω〉, the following interpretation can be justified by a
more detailed analysis (using consistent histories). In the particular experiment in which the final
outcome was k, the system a was in the physical state |ω〉 just before it interacted with e.

• But does this make sense? Suppose that G1 = |ω1〉〈ω1| and G2 = |ω2〉〈ω2|, and that |ω1〉 and
|ω2〉 are incompatible. Then surely it does not make sense to ask if the system was in one state or
the other?

• The solution to this problem is to stress the qualification, “In the particular experiment in
which the final outcome was k.” Think of the final experimental outcome as a label on the earlier
state, somewhat analogous to the labels introduced earlier for the states of an ensemble.

16



◦ But doesn’t this mean that somehow the future (outcome of the experiment) is mysteriously
influencing the past (state of the quantum system)? No. See the comments in CQT towards the
bottom of p. 200.

⋆ When Gk has rank greater than one but is not a projector it is not so clear what one learns
from the POVM when the outcome is k. One can assert that in this instance the system a at the
time of interest had the property given by the support of Gk: the smallest projector P such that
PGk = Gk, see CQT, p. 44. This, however, need not be very informative. In particular there are
cases in which the support of Gk is Ia, in which case the fact that a had this (always true) property
tells us nothing.

• Given the generality allowed in the definition of a POVM, this lack of clarity is not too
surprising. Think of a situation in which two vehicles collide and a wheel spins off of one of them.
What does this tell one about the state of affairs before the collision? Probably it says something,
but it might be rather difficult to say just what it is.

◦ For this reason it is a bit odd to refer to a general POVM as a “measurement.” However,
this terminology is by now embedded in the literature, and the concept of a POVM turns out to
be extremely useful in many circumstances. Let us refer to it as a “complex measurement”, or
“POVM measurement,” in contrast to the simple measurement introduced earlier, which detects a
specific quantum property the system had just before the measurement took place.

⋆ In the special case in which the Gk are projectors, one refers to the POVM as a projective

measurement. In this situation the term “measurement” is justified by the fact that when the
outcome is k, the system of interest had the property represented by the projector Gk just before
the measurement took place.

5.2 Example of a POVM

⋆ Consider the following quantum game. Alice prepares a qubit randomly in one of the three
states |ψj〉, where

|ψ1〉 =
(

|0〉 + |1〉
)

/
√

2, |ψ2〉 =
(

|0〉 + ei2π/3|1〉
)
√

2, |ψ3〉 =
(

|0〉 + e−i2π/3|1〉
)

/
√

2, (45)

and sends it to Carol, who on the basis of whatever measurements she wants to carry out is to
specify a number k = 1 or 2 or 3 in such a way that k is not equal to j. Let us say that Carol wins
$1 every time k is unequal to j, but loses $10 every time k = j.

• It is hard to think of a simple measurement strategy which will work. For example, suppose
Carol measures the qubit in the Sx basis. If the outcome is −1/2, meaning the state orthogonal to
|ψ1〉, she is sure that Alice did not send |ψ1〉, so it is safe to set k = 1. But suppose the measurement
outcome is Sx = +1/2. This could mean that Alice sent |ψ1〉, in which case k = 2 or k = 3 would
be appropriate choices, but if Alice had sent |ψ2〉 or |ψ3〉, there is a finite (positive) probability
that Carol will obtain Sx = +1/2, and so she could possibly lose by specifying k = 2 or k = 3.

2 Exercise. Work out the probabilities assuming a measurement of the sort just mentioned.
Will Carol win or lose money in the long run if she makes optimum use of the information she
obtains?

⋆ A POVM provides a better strategy. Choose |ωk〉 with k = 1, 2, 3 to be orthogonal to |ψk〉,
and Gk = |ωk〉〈ωk| up to a constant of proportionality. In this case if Carol’s measurement outcome
is k, she knows that Alice did not send |ψk〉, so specifying the POVM output will win the game
every time.
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◦ To check that this strategy really works, a certain number of details need to be worked out,
see the following exercise.

2 Exercise. Assuming that the kets |ωk〉 are normalized, find the appropriate constant of
proportionality relating Gk to |ωk〉〈ωk|, and show that

∑

kGk = I.

2 Exercise. The states in (45) lie on the equator of the Bloch sphere. If, instead, they all lie
somewhere in the northern hemisphere, say at the same latitude and separate by 120◦ in longitude,
the POVM strategy will no longer work, or at least it won’t work perfectly. Can you explain why?
[Hint. If you think of the Bloch ball as filled with density operators, projectors of rank 1 reside on
the surface, and I/2 is at the origin. Give a geometrical interpretation to

∑

kGk = I.]

⋆ How does Carol actually carry out the POVM? She has a well-equipped quantum laboratory,
and when she receives the qubit a from Alice, she prepares a system e, known in this context as an
ancillary system or ancilla, in a known state |ê〉 and lets it interact in a suitable way, represented
by T in Fig. 1 with a. Then she carries out a simple measurement on f corresponding either to an
orthonormal basis or some other decomposition of the identity.

• In fact f may be nothing but the combined system a and e after the interaction. (This
corresponds to a one-dimensional b in Fig. 1, meaning the complex numbers; one-dimensional
subsystems entering a tensor product are always trivial.)

5.3 Naimark extension

⋆ The Naimark extension (or dilation) theorem says that any POVM measurement can be
realized as a projective measurement on a space of higher dimension, where “realized” means that
the probabilities of the measurement outcomes are the same.

• Probably the simplest way to think about it is that used for the example in Sec. 5.2. In
addition to the system to be measured with Hilbert space Hs there is an ancillary system Hr which
starts of in a known pure state |r0〉. Let Ht = Hs ⊗ Hr be Hilbert space for the two systems
together. Then there is a projective decomposition {Pk} of the identity It on Ht such that for any
density operator ρs on Hs it is the case that

Trs

(

Gkρs

)

= Trt

(

Pk(ρs ⊗ [r0])
)

(46)

◦ That is to say, the Pk are chosen so that the partial trace

Trr

(

Pk

)

= Gk (47)

gives the desired answer.

• An alternative way to think about the Naimark extension is to suppose that the original Hilbert
space Hs is a subspace of a suitably-chosen larger Hilbert space Ht, and that E is a projector on
Ht that projects onto Hs. Then if Ht is large enough, there is a projective decomposition {Pk} of
its identity such that

Gk = EPkE (48)

for every k. As defined in (48) this Gk acts on the entire space Ht, but since it gives zero when
applied to any ket in the orthogonal complement of the subspace Hs, it can just as well be thought
of as acting on Hs.

• Proofs of these results are not altogether straightforward. See Sec. 9-6 of Peres for a derivation
of the Naimark result.
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