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Abstract

We survey some recent advances in the homotopy theory of classifying spaces,
and homotopical group theory. We focus on the classification of p–compact
groups in terms of root data over the p–adic integers, and discuss some of its
consequences e.g., for finite loop spaces and polynomial cohomology rings.
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Groups are ubiquitous in real life, as symmetries of geometric objects. For
many purposes in mathematics, for instance in bundle theory, it is however
not the group itself but rather its classifying space, which takes center stage.
The classifying space encodes the group multiplication directly in a topological
space, to be studied and manipulated using the toolbox of homotopy theory.
This leads to the idea of homotopical group theory, that one should try to do
group theory in terms of classifying spaces.

The idea that there should be a homotopical version of group theory is an
old one. The seeds were sown already in the 40s and 50s with the work of Hopf
and Serre on finite H–spaces and loop spaces, and these objects were intensely
studied in the 60s using the techniques of Hopf algebras, Steenrod operations,
etc., in the hands of Browder, Thomas, and others. A bibliography containing
347 items was collected by James in 1970 [59]; see also [62] for a continuation.

In the same year, Sullivan, in his widely circulated MIT notes [95, 94],
laid out a theory of p–completions of topological spaces, which had a profound
influence on the subject. On the one hand it provided an infusion of new exotic
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examples, laying old hopes and conjectures to rest. On the other hand his theory
of p–completions seemed to indicate that the dream of doing group theory on
the level of classifying spaces could still be valid, if one is willing to replace real
life, at least temporarily, by a p–adic existence. However, the tools for seriously
digging into the world of p–complete spaces were at the time insufficient, a
stumbling block being the so-called Sullivan conjecture [95, p. 179] relating
fixed-points to homotopy fixed-points, at a prime p.

The impasse ended with the solution of the Sullivan conjecture by Miller
[69], and the work of Carlsson [25], reported on at this congress in 1986 [70, 26],
followed by the development of “Lannes theory” [63, 64] giving effective tools for
calculating homotopy fixed-points and maps between classifying spaces. This
led to a spate of progress. Dwyer and Wilkerson [42] defined the notion of a
p–compact group, a p–complete version of a finite loop space, and showed that
these objects posses much of the structure of compact Lie groups: maximal
tori, Weyl groups, etc. In parallel to this, Jackowski, McClure, and Oliver [55]
combined Lannes theory with space-level decomposition techniques and sophis-
ticated homological algebra calculations to get precise information about maps
between classifying spaces of compact Lie groups, that used to be out of reach.
These developments were described at this congress in 1998 [36, 82].

The aim here is to report on some recent progress, building on the above
mentioned achievements. In particular, a complete classification of p–compact
groups has recently been obtained in collaborations involving the author [9, 8].
It states that connected p–compact groups are classified by their root data over
the p–adic integers Zp (once defined!), completely analogously to the classifica-
tion of compact connected Lie groups by root data over Z. It has in turn allowed
for the solution of a number of problems and conjectures dating from the 60s
and 70s, such as the Steenrod problem of realizing polynomial cohomology rings
and the so-called maximal torus conjecture giving a completely homotopical de-
scription of compact Lie groups. By local-to-global principles the classification
of p–compact groups furthermore provides a quite complete understanding of
what finite loop spaces look like, integrally as well as rationally.

Homotopical group theory has branched out considerably over the last
decade. There is now an expanding theory of homotopical versions of finite
groups, the so-called p–local finite groups, showing signs of strong connections
to deep questions in finite group theory, such as the classification of finite sim-
ple groups. There has been progress on homotopical group actions, providing
in some sense a homotopical version of the “geometric representation theory”
of tom Dieck [97]. And there is even evidence that certain aspects of the theory
might extend to Kac–Moody groups and other classes of groups. We shall only
be able to provide very small appetizers to some of these last developments,
but we hope that they collectively serve as an inspiration to the reader to try
to take a more homotopical approach to his or her favorite class of groups.

This paper is structured as follows: Section 1 is an algebraic prelude, dis-
cussing the theory of Zp–root data—the impatient reader can skip it at first,
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referring back to it as needed. Section 2 gives the definition and basic properties
of p–compact groups, states the classification theorem, and outlines its proof. It
also presents various structural consequences for p–compact groups. Section 3
discusses applications to finite loop spaces such as an algebraic parametriza-
tion of finite loop spaces and the solution of the maximal torus conjecture.
Section 4 presents the solution of the Steenrod problem of realizing polynomial
cohomology rings, and finally Section 5 provides brief samples of other topics
in homotopical group theory.

Notation: Throughout this paper, the word “space” will mean “topological
space of the homotopy type of a CW–complex”.

Acknowledgments: I would like to thank Kasper Andersen, Bill Dwyer, Haynes
Miller, and Bob Oliver for providing helpful comments on a preliminary version
of this paper. I take the opportunity to thank my coauthors on the various work
reported on here, and in particular express my gratitude to Kasper Andersen
for our mathematical collaboration and sparring through the years.

1. Root Data over the p–Adic Integers

In standard Lie theory, root data classify compact connected Lie groups as well
as reductive algebraic groups over algebraically closed fields. A root datum is
usually packaged as a quadruple (M,Φ,M∨,Φ∨) of roots Φ and coroots Φ∨ in
a Z–lattice M and its dual M∨, satisfying some conditions [33]. For p–compact
groups the lattices that come up are lattices over the p–adic integers Zp, rather
than Z, so the concept of a root datum needs to be tweaked to make sense also
in this setting, and one must carry out a corresponding classification. In this
section we produce a short summary of this theory, based on [79, 45, 6, 8]. In
what follows R denotes a principal ideal domain of characteristic zero.

The starting point is the theory of reflection groups, surveyed e.g., in [47].
A finite R–reflection group is a pair (W,L) such that L is a finitely generated
free R–module and W ⊆ AutR(L) is a finite subgroup generated by reflections,
i.e., non-trivial elements σ that fix an R–submodule of corank one.

Reflection groups have been classified for several choices of R, the most well-
known cases being the classification of finite real and rational reflection groups
in terms of certain Coxeter diagrams [53]. Finite complex reflection groups were
classified by Shephard–Todd [89] in 1954. The main (irreducible) examples in
the complex case are the groups G(m, s, n) of n × n monomial matrices with
non-zero entries being mth roots of unity and determinant an (m/s)th root
of unity, where s|m; in addition to this there are 34 exceptional cases usually
named G4 to G37. From the classification over C one can obtain a classification
over Qp as the sublist whose character field Q(χ) is embeddable in Qp. This
was examined by Clark–Ewing [31], and we list their result in Table 1, using
the original notation.
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W Order Degrees Q(χ) Primes

Σn+1 (family 1) (n + 1)! 2, 3, . . . , n + 1 Q all p

G(m, s, n) (family 2a)
n!mn−1 m

s
m, 2m, . . . , (n − 1)m,nm

s Q(ζm)
p ≡ 1 (m);

m ≥ 2, n ≥ 2,m 6= s if n = 2 all p for m = 2

D2m = G(m,m, 2) (family 2b)
2m 2,m Q(ζm + ζ−1

m )
p ≡ ±1 (m);

m ≥ 3 all p for m = 3, 4, 6

Cm = G(m, 1, 1) (family 3)
m m Q(ζm)

p ≡ 1 (m);
m ≥ 2 all p for m = 2

G4 24 4, 6 Q(ζ3) p ≡ 1 (3)
G5 72 6, 12 Q(ζ3) p ≡ 1 (3)
G6 48 4, 12 Q(ζ12) p ≡ 1 (12)
G7 144 12, 12 Q(ζ12) p ≡ 1 (12)
G8 96 8, 12 Q(ζ4) p ≡ 1 (4)
G9 192 8, 24 Q(ζ8) p ≡ 1 (8)
G10 288 12, 24 Q(ζ12) p ≡ 1 (12)
G11 576 24, 24 Q(ζ24) p ≡ 1 (24)
G12 48 6, 8 Q(

√−2) p ≡ 1, 3 (8)
G13 96 8, 12 Q(ζ8) p ≡ 1 (8)
G14 144 6, 24 Q(ζ3,

√−2) p ≡ 1, 19 (24)
G15 288 12, 24 Q(ζ24) p ≡ 1 (24)
G16 600 20, 30 Q(ζ5) p ≡ 1 (5)
G17 1200 20, 60 Q(ζ20) p ≡ 1 (20)
G18 1800 30, 60 Q(ζ15) p ≡ 1 (15)
G19 3600 60, 60 Q(ζ60) p ≡ 1 (60)

G20 360 12, 30 Q(ζ3,
√

5) p ≡ 1, 4 (15)

G21 720 12, 60 Q(ζ12,
√

5) p ≡ 1, 49 (60)

G22 240 12, 20 Q(ζ4,
√

5) p ≡ 1, 9 (20)

G23 120 2, 6, 10 Q(
√

5) p ≡ 1, 4 (5)
G24 336 4, 6, 14 Q(

√−7) p ≡ 1, 2, 4 (7)
G25 648 6, 9, 12 Q(ζ3) p ≡ 1 (3)
G26 1296 6, 12, 18 Q(ζ3) p ≡ 1 (3)

G27 2160 6, 12, 30 Q(ζ3,
√

5) p ≡ 1, 4 (15)
G28 1152 2, 6, 8, 12 Q all p

G29 7680 4, 8, 12, 20 Q(ζ4) p ≡ 1 (4)

G30 14400 2, 12, 20, 30 Q(
√

5) p ≡ 1, 4 (5)
G31 64 · 6! 8, 12, 20, 24 Q(ζ4) p ≡ 1 (4)
G32 216 · 6! 12, 18, 24, 30 Q(ζ3) p ≡ 1 (3)
G33 72 · 6! 4, 6, 10, 12, 18 Q(ζ3) p ≡ 1 (3)
G34 108 · 9! 6, 12, 18, 24, 30, 42 Q(ζ3) p ≡ 1 (3)
G35 72 · 6! 2, 5, 6, 8, 9, 12 Q all p

G36 8 · 9! 2, 6, 8, 10, 12, 14, 18 Q all p

G37 192 · 10! 2, 8, 12, 14, 18, 20, 24, 30 Q all p

Table 1. The irreducible Qp-reflection groups

The ring Qp[L]W ofW–invariant polynomial functions on L is polynomial if
and only if W is a reflection group, by the Shephard–Todd–Chevalley theorem
[11, Thm. 7.2.1]; the column degrees in Table 1 lists the degrees of the genera-
tors, and the number of degrees equals the rank of (W,L). For manyW , none of
the primes listed in the last column divide |W |; in fact this can only happen in
the infinite families, and in the sporadic examples 12, 24, 28, 29, 31, and 34–37.
It is a good exercise to look for the Weyl groups of the various simple compact
Lie groups in the table, where they have character field Q. One may observe
that for p = 2 and 3 there is only one exotic reflection group (i.e., irreducible
with Q(χ) 6= Q), namely G24 and G12 respectively, whereas for p ≥ 5 there are
always infinitely many.

The classification overQp can be lifted to a classification over Zp, but instead
of stating this now, we proceed directly to root data.

Definition 1.1 (R–root datum). An R–root datum D is a triple (W,L, {Rbσ}),
where (W,L) is a finite R–reflection group, and {Rbσ} is a collection of rank
one submodules of L, indexed by the set of reflections σ in W , and satisfying
that im(1−σ) ⊆ Rbσ (coroot condition) and w(Rbσ) = Rbwσw−1 for all w ∈W
(conjugation invariance).
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An isomorphism of R–root data ϕ : D → D′ is defined to be an isomorphism
ϕ : L → L′ such that ϕWϕ−1 = W ′ as subgroups of Aut(L′) and ϕ(Rbσ) =
Rb′ϕσϕ−1 for every reflection σ ∈ W . The element bσ ∈ L, determined up to a
unit in R, is called the coroot corresponding to σ. The coroot condition ensures
that given (σ, bσ) we can define a root βσ : L→ R via the formula

σ(x) = x− βσ(x)bσ (1.1)

The classification of R–root data of course depends heavily on R. For R = Z
root data correspond bijectively to classically defined root data (M,Φ,M∨,Φ∨)
via the association (W,L, {Zbσ})  (L∗, {±βσ}, L, {±bσ}). One easily checks
that Rbσ ⊆ ker(N), where N = 1 + σ + . . . + σ|σ|−1 is the norm element, so
giving an R–root datum with underlying reflection group (W,L) corresponds to
choosing a cyclic R–submodule of H1(〈σ〉;L) for each conjugacy class of reflec-
tions σ. It is hence in practice not hard to parametrize all possible R–root data
supported by a given finite R–reflection group. For R = Zp, p odd, reflections
have order dividing p − 1, hence prime to p, so here Zp–root data coincides
with finite Zp–reflection groups. For R = Z or Z2 the difference between the
two notions only occur for the root data of Sp(n) and SO(2n+ 1), but due to
the ubiquity of SU(2) and SO(3) this distinction turns out to be an important
one. Note that since a root and a coroot (βσ, bσ) determine the reflection σ by
(1.1), one could indeed have defined a root datum as a set of pairs (βσ, bσ),
each determined up to a unit and subject to certain conditions; see also [76].

The relationship between Zp–root data and Z–root data is given as follows.

Theorem 1.2 (The classification of Zp–root data, splitting version).
1. Any Zp–root datum D can be written as a product D ∼= (D1⊗Z Zp)×D2,

where D1 is a Z–root datum and D2 is a product of exotic Zp–root data.

2. Exotic Zp–root data are in 1-1 correspondence with exotic Qp–reflection
groups via D = (W,L, {Zpbσ}) (W,L⊗Zp

Qp).

Define the fundamental group as π1(D) = L/L0, where L0 =
∑
σ Zpbσ is

the coroot lattice, and, with the p–discrete torus T̆ = L ⊗ Z/p∞, we define

the p–discrete center as Z̆(D) =
⋂
σ ker(β̆σ : T̆ → Z/p∞); compare e.g., [15].

It turns out that π1(D) = Z̆(D) = 0 for all exotic root data, and this plays
a role in the proof of the above statement. If A is a finite subgroup of Z̆(D),
we can define the quotient root datum D/A by taking T̆D/A = T̆ /A, and hence

LD/A = Hom(Z/p∞, T̆ /A), and defining the roots and coroots of D/A via the
induced maps.

Theorem 1.3 (The classification of Zp–root data, structure version).
1. Any Zp–root datum D = (W,L, {Zpbσ}) can be written as a quotient

D = (D1 × · · · ×Dn × (1, LW , ∅))/A

where π1(Di) = 0 for all i, for a finite central subgroup A.
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2. Irreducible Zp–root data D with π1(D) = 0 are in 1-1 or 2-1 correspon-
dence with non-trivial irreducible Qp–reflection groups via D (W,L⊗Zp

Qp), the sole identification being DSp(n) ⊗Z Z2 with DSpin(2n+1) ⊗Z Z2,
n ≥ 3.

A main ingredient used to derive the classification of root data from the
classification of Qp–reflection groups is the case-by-case observation that the
mod p reduction of all the exotic reflection groups remain irreducible, which
ensures that any lift to Zp is uniquely determined by the Qp–representation.

Remark 1.4. It seems that Zp–root data ought to parametrize some purely
algebraic objects, just as Z–root data parametrize both compact connected Lie
groups and reductive algebraic groups. Similar structures come up in Lusztig’s
approach to the representation theory of finite groups of Lie type, as examined
by Bessis, Broué, Malle, Michel, Rouquier, and others [23], involving mythical
objects from the Greek island of Spetses [68].

2. p–Compact Groups and their Classification

In this section we give a brief introduction to p–compact groups, followed by
the statement of the classification theorem, an outline of its proof, and some
of its consequences. Additional background information on p–compact groups
can be found in the surveys [36, 65, 72, 78].

The first ingredient we need is the theory of p–completions. The p–
completion construction of Sullivan [95] produces for each space X a map
X → X p̂, which, when X is simply connected and of finite type, has the
property that πi(X p̂) ∼= πi(X) ⊗ Zp for all i. A space is called p–complete
if this map is a homotopy equivalence. In fact, when X is simply connected and
H∗(X;Fp) is of finite type, then X is p–complete if and only if the homotopy
groups of X are finitely generated Zp–modules. We remark that Bousfield–Kan
[16] produced a variant on Sullivan’s p–completion functor, and for the spaces
that occur in this paper these two constructions agree up to homotopy, so the
words p–complete and p–completion can be taken in either sense.

A finite loop space is a triple (X,BX, e), where BX is a pointed connected
space,X is a finite CW–complex, and e : X → ΩBX is a homotopy equivalence,
where Ω denotes based loops. We will return to finite loop spaces in Section 3,
but now move straight to their p–complete analogs.

Definition 2.1 (p–compact group [42]). A p–compact group is a triple
(X,BX, e), where BX is a pointed, connected, p–complete space, H∗(X;Fp)
is finite, and e : X

'
−→ ΩBX is a homotopy equivalence.

The loop multiplication on ΩBX is here the homotopical analog of a group
structure; while standard loop multiplication does not define a group, it is
equivalent in a strong sense (as an A∞–space) to a topological group, whose
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classifying space is homotopy equivalent to BX. We therefore baptise BX the
classifying space, and note that, since all structure can be derived from BX,
one could equivalently have defined a p–compact group to be a space BX,
subject to the above conditions. The finiteness of H∗(X;Fp) is to be thought
of as a homotopical version of compactness, and replaces the condition that
the underlying loop space be homotopy equivalent to a finite complex. We
will usually refer to a p–compact group just by X or BX when there is little
possibility for confusion.

Examples of p–compact groups include of course the p–completed classifying
space BGp̂ of a compact Lie group G with π0(G) a p–group. However, non-
isomorphic compact Lie groups may give rise to equivalent p–compact groups
if they have the same p–local structure, perhaps the most interesting example
being BSO(2n+1)p̂ ' BSp(n)p̂ for p odd [46]. Exotic examples (i.e., examples
with exotic root data) are discussed in Section 2.1.

A morphism between p–compact groups is a pointed map BX → BY ; it
is called a monomorphism if the homotopy fiber, denoted Y/X, has finite Fp–
homology. Two morphisms are called conjugate if they are freely homotopic,
and two p–compact groups are called isomorphic if their classifying spaces are
homotopy equivalent. A p–compact group is called connected if X is connected.
By a standard argument H∗(BX;Zp) ⊗ Q is seen to be a polynomial algebra
over Qp, and we define the rank r = rank(X) to be number of generators. The
following is the main structural result of Dwyer–Wilkerson [42].

Theorem 2.2 (Maximal tori and Weyl groups of p–compact groups [42]).
1. Any p–compact group X has a maximal torus: a monomorphism i : BT =

(BS1
p̂)
r → BX with r the rank of X. Any other monomorphism

i′ : BT ′ = (BS1
p̂)
s → BX factors as i′ ' i ◦ ϕ for some ϕ : BT ′ → BT .

In particular i is unique up to conjugacy.

2. The Weyl space WX(T ), defined as the topological monoid of self-
equivalences BT → BT over i (with i made into a fibration), has con-
tractible components.

3. If X is connected, the natural action of the Weyl group WX(T ) =
π0(WX(T )) on LX = π2(BT ) gives a faithful representation of WX as
a finite Zp–reflection group.

A short outline of the proof can be found in [65]. The maximal torus
normalizer is defined as the homotopy orbit space, or Borel construction,
BNX(T ) = BThWX(T ) and hence sits in a fibration sequence

BT → BNX(T ) → BWX(T ).

The normalizer is said to be split if the above fibration has a section. It is worth
mentioning that one sees that (WX , LX) is a Zp–reflection group indirectly, by
proving that

H∗(BX;Zp)⊗Q ∼= (H∗(BT ;Zp)⊗Q)WX
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and applying the Shephard–Todd–Chevalley theorem.
To define the Zp–root datum, one therefore needs to proceed in a non-

standard way [45, 6, 8]. For p odd, the Zp–root datum DX can be defined from

the Zp–reflection group (WX , LX), by setting Zpbσ = im(LX
1−σ
−−−→ LX). The

definition for p = 2 is more complicated, and in order to give meaning to the
words we first need a few extra definitions for p–compact groups. The centralizer
of a morphism ν : BA → BX is defined as BCX(ν) = map(BA,BX)ν , where
the subscript denotes the component corresponding to ν. While this may look
odd at first sight, it does in fact generalize the Lie group notion [35]. For a con-
nected p–compact group X, define the derived p–compact group DX to be the
covering space of X corresponding to the torsion subgroup of π1(X). Consider

the p–discrete singular torus T̆
〈σ〉
0 for σ, i.e., the largest divisible subgroup of

the fixed-points T̆ 〈σ〉, with T̆ = LX ⊗Z/p∞, and set Xσ = D(CX(T̆
〈σ〉
0 )). Then

Xσ is a connected p–compact group of rank one with p–discrete maximal torus
(1−σ)T̆ ; denote the corresponding maximal torus normalizer by Nσ, called the
root subgroup of σ. Define the coroots in DX via the formula

Zpbσ =

{
im(LX

1−σ
−−−→ LX) if Nσ is split,

ker(LX
1+σ
−−−→ LX) if Nσ is not split.

For p odd, only the first case occurs, and for p = 2 the split case corresponds
to BXσ ' BSO(3)2̂ and the non-split corresponds to BXσ ' BSU(2)2̂. For
comparison we note that when X = Gp̂, for a reductive complex algebraic
group G, BXσ ' B〈Uα, U−α〉p̂, where Uα is what is ordinarily called the root
subgroup of the root α = βσ, and the above formula can be read off from e.g.,
[90, Pf. of Lem. 7.3.5]. We can now state the classification theorem.

Theorem 2.3 (Classification of p–compact groups [9, 8]). The assignment
which to a connected p–compact group X associates its Zp–root datum DX

gives a one-to-one correspondence between connected p–compact groups, up to
isomorphism, and Zp–root data, up to isomorphism.

Furthermore the map Φ: Out(BX) → Out(DX), given by lifting a self-
homotopy equivalence of BX to BT , is an isomorphism.

Here Out(BX) denotes the group of free homotopy classes of self-homotopy
equivalences BX → BX, and Out(DX) = Aut(DX)/WX . A stronger space-
level statement about self-maps is in fact true, namely

BAut(BX)
'
−→ ((B2Z̆(DX))p̂)hOut(DX) (2.1)

where Aut(BX) is the space of self-homotopy equivalences, Z̆(DX) the p–
discrete center of DX as introduced in Section 1, and the action of Out(DX)
on (B2Z̆(DX))p̂ is the canonical one. Having control of the whole space of
self-equivalences turns out to be important in the proof.

Theorem 2.3 implies, by Theorem 1.2, that any connected p–compact group
splits as a product of the p–completion of a compact connected Lie group and
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a product of known exotic p–compact groups. For p = 2 it shows that there is
only one exotic 2–compact group, the one corresponding to the Q2–reflection
group G24, and this 2–compact group was constructed in [41]. We will return
to the construction of the exotic p–compact groups in the next subsection.

Since we understand the whole space of self–equivalences, one can derive a
classification also of non-connected p–compact groups. The set of isomorphism
classes of non-connected p–compact groups with root datum of the identity
component D and group of components π, is parametrized by the components
of the moduli space

map(Bπ, ((B2Z̆(D))p̂)hOut(D))hAut(Bπ) (2.2)

As with the classification of compact Lie groups, the classification state-
ment can naturally be broken up into two parts, existence and uniqueness of
p–compact groups. The uniqueness statement can be formulated as an isomor-
phism theorem saying that there is a 1-1–correspondence between conjugacy
classes of isomorphisms of connected p–compact groups BX → BX ′ and iso-
morphisms of root data DX → DX′ , up to WX′–conjugation. This last state-
ment can in fact be strengthened to an isogeny theorem classifying maps that
are rational isomorphisms [5].

While the existence and uniqueness are separate statements, they are cur-
rently most succinctly proved simultaneously by an induction on the size of D,
since the proof of existence requires knowledge of certain facts about self-maps,
and the proof of uniqueness at the last step is aided by specific facts about
concrete models. We will discuss the proof of existence in Section 2.1 and of
uniqueness in Section 2.2, along with some information about the history.

2.1. Construction of p–compact groups. Compact connected Lie
groups can be constructed in different ways. They can be exhibited as symme-
tries of geometric objects, or can be systematically constructed via generators-
and-relations type constructions that involve first constructing a finite dimen-
sional Lie algebra from the root system, and then passing to the group [61, 90].

An adaptation of the above tools to p–compact groups is still largely missing,
so one currently has to proceed by more ad hoc means, with the limited aim
of constructing only the exotic p–compact groups. These were in fact already
constructed some years ago, but we take the opportunity here to retell the tale,
and outline the closest we currently get to a streamlined construction.

The first exotic p–compact groups were constructed by Sullivan [95] as the
homotopy orbit space of the action of the would-be Weyl group on the would-
be torus. The most basic case he observed is the following: If Cm is a cyclic
group of order m, and p an odd prime such that m|p− 1, then Cm ≤ Z×

p , and
hence Cm acts on the Eilenberg–MacLane space K(Zp, 2). The Serre spectral
sequence for the fibration

K(Zp, 2) → K(Zp, 2)hCm
→ BCm
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reveals that the Fp–cohomology of K(Zp, 2)hCm
is a polynomial algebra on a

class in degree 2m, using that m is prime to p. Therefore the cohomology of its
loop space is an exterior algebra in degree 2m − 1 and BX = (K(Zp, 2)hCm

)p̂
is a p–compact group, with ΩBX ' (S2m−1)p̂. We have just realized all exotic
groups in family 3 of Table 1!

Exactly the same argument carries over to the general case of a root datum
D where p - |W |, just replacing Cn by W and Zp by L, since Fp[L⊗ Fp]W is a
polynomial algebra exactly when W is a reflection group, when p - |W |, by the
Shephard–Todd–Chevalley theorem used earlier. This observation was made by
Clark–Ewing [31], and realizes a large number of groups in Table 1. However,
the method as it stands cannot be pushed further, since the assumption that
p - |W | is crucial for the collapse of the Serre spectral sequence.

Additional exotic p–compact groups were constructed in the 1970s by other
methods. Quillen realized G(m, 1, n) at all possible primes by constructing an
approximation via classifying spaces of discrete groups [84, §10], and Zabrodsky
[102, 4.3] realized G12 and G31 at p = 3 and 5 respectively, by taking homotopy
fixed-points of a p′–group acting on the classifying space of a compact Lie group.

To build the remaining exotic p–compact groups one needs a far-reaching
generalization of Sullivan’s technique, obtained by replacing the homotopy or-
bit space with a more sophisticated homotopy colimit, that ensures that we
still get a collapsing spectral sequence even when p divides the order of W .
The technique was introduced by Jackowski–McClure [54], as a decomposition
technique in terms of centralizers of elementary abelian subgroups, and was
subsequently used by Aguadé [2] (G12, G29, G31, G34), Dwyer–Wilkerson [41]
(G24), and Notbohm–Oliver [80] (G(m, s, n)) to finish the construction of the
exotic p–compact groups.

The following is an extension of Aguadé’s argument, and can be used in-
ductively to realize all exotic p–compact groups for p odd—that this works in
all cases relies on the stroke of luck, checked case-by-case, that all exotic finite
Zp–reflection groups for p odd have Zp[L]W a polynomial algebra; cf. also [81].

Theorem 2.4 (Inductive construction of p–compact groups, p odd [9]). Con-
sider a finite Zp–reflection group (W,L), p odd, with Zp[L]W a polynomial al-
gebra.

Then (WV , L) is a again a Zp–reflection group and Zp[L]WV a polynomial
algebra, for WV the pointwise stabilizer in W of V ≤ L⊗ Fp.

Assume that, for all non-trivial V , (WV , L) is realized by a connected
p–compact group YV satisfying the isomorphism part of Theorem 2.3 and
H∗(YV ;Zp) ∼= Zp[L]WV (with L in degree 2). Then V 7→ YV extends to a
functor Y : Aop → Spaces, where A has objects non-trivial V ≤ L ⊗ Fp and
morphisms given by conjugation in W , and

BX = (hocolimAop Y )p̂

is a p–compact group with Weyl group (W,L) and H∗(BX;Zp) ∼= Zp[L]W .
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Idea of proof. The statement that Zp[L]WV is a polynomial algebra is an exten-
sion of Steinberg’s fixed-point theorem in the version of Nakajima [75, Lem. 1.4].
The proof uses Lannes’ T–functor, together with case-by-case considerations.

The inductive construction is straightforward, given current technology, and
uses only general arguments: Since we assume we know YV and its automor-
phisms for all V 6= 1, one easily sets up a functor Aop → Ho(Spaces), the
homotopy category of spaces, and the task is to rigidify this to a functor in the
category of spaces. The diagram can be show to be “centric”, so one can use the
obstruction theory developed by Dwyer–Kan in [37]. The relevant obstruction
groups identify with the higher limits of a functor obtained by taking fixed-
points, and in particular this is a Mackey functor whose higher limits vanish
by a theorem of Jackowski–McClure [54]. We can therefore rigidify the diagram
to a diagram in spaces, and the resulting homotopy colimit is easily shown to
have the desired cohomology.

We now turn to the prime 2. Here the sole exotic Z2–reflection group is G24,
and the corresponding 2–compact group was realized by Dwyer–Wilkerson [41]
and dubbed DI(4), due to the fact that, for E = (Z/2)4,

H∗(BDI(4);F2) ∼= F2[E]GL(E)

the rank four Dickson invariants. At first glance this might look like the setup
of Theorem 2.4, but note that G24 is a rank three Z2–reflection group, not
four, so E is not just the elements of order 2 in the maximal torus. However
by taking A to be the category with objects the non-trivial subgroups of E,
and morphisms induced by conjugation in GL(E), and correctly guessing the
centralizers of elementary abelian subgroups, the argument can still be pushed
through; the starting point is declaring the centralizer of any element of order
two to be Spin(7)2̂.

We again stress the apparent luck in being able to guess the rather un-
complicated structure of A and the centralizers. If one hypothetically had to
construct an exotic p–compact group with a seriously complicated cohomology
ring, say one would try to construct E8 at the prime 2 by these methods, it
would not be clear how to start. As a first step one would need a way to de-
scribe the p–fusion in the group, just from the root datum D. This relates to
old questions in Lie theory, which have occupied Borel, Serre, and many others
[88]. . .

2.2. Uniqueness of p–compact groups. In this subsection, we out-
line the proof of the uniqueness part of the classification theorem for p–compact
groups, Theorem 2.3, following [8] by Andersen and the author; it extends [9]
also with Møller and Viruel. We mention that the quest for uniqueness was ini-
tiated by Dwyer–Miller–Wilkerson [38] in the 80s and in particular Notbohm
[77] obtained strong partial results; a different approach for p = 2 using com-
puter algebra was independently given by Møller [73, 74]. See [9, 8] for more
details on the history of the proof.
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From now on we consider two connected p–compact groups X and X ′ with
the same root datumD, and want to build a homotopy equivalence BX → BX ′.
The proof goes by an induction on the size of (W,L).

Step 1: (The maximal torus normalizer and its automorphisms, [45, 6]). A first
step is to show that X and X ′ have isomorphic maximal torus normalizers.
Working with the maximal torus normalizer has a number of technical advan-
tages over the maximal torus, related to the fact that the fiber of the map
BN → BX has Euler characteristic prime to p (one, actually).

One shows that the maximal torus normalizers are isomorphic, by giving
a construction from the root datum. For p odd the construction is simple,
since the maximal torus normalizer turns out always to be split, and hence
isomorphic to (B2L)hW with the canonical action. This was established in [3],
by showing that the relevant extension group is zero except in one case, which
can be handled by other means; cf. also [9, Rem. 2.5]. For p = 2, the problem is
more difficult. The corresponding problem for compact Lie groups, or reductive
algebraic groups, was solved by Tits [96] many years ago. A thorough reading of
Tits’ paper, with a cohomological rephrasing of some of his key constructions,
allows his construction to be pushed through also for p–compact groups [45].
One thus algebraically constructs a maximal torus normalizer ND and show it
to be isomorphic to the topologically defined one. A problem is however that
N in general has too large automorphism group. To correct this, it was shown
in [6] that the root subgroups Nσ, introduced before Theorem 2.3, can also be
built algebraically, and adding this extra data give the correct automorphism
group. Concretely, one has a canonical factorization

Φ: Out(BX) → Out(BN , {BNσ})
∼=
−→ Out(DX)

and one can furthermore build a candidate model for the whole space
BAut(BX), by a slight modification of BAut(BN , {BNσ}), the space of self-
homotopy equivalences of BN preserving the root subgroups.

Step 2: (Reduction to simple, center-free groups, [8, §2]). This next step involves
relating the p–compact group and its factors and center-free quotient via certain
fibration sequences, and studying automorphisms via these fibrations. Several
of the necessary tools, such as the understanding of the center of a p–compact
group [43], the product splitting theorem [44], etc., were already available in
the 90s. But, in particular for p = 2, one needs to incorporate the machinery
of root data and root subgroups; we refer the reader to [8, §2] for the details.

Step 3: (Defining a map on centralizers of elements of order p, [8, §4]). We now
assume that X and X ′ are simple, center-free p–compact groups. The next tool
needed is a homology decomposition theorem, more precisely the centralizer
decomposition, of Jackowski–McClure [54] and Dwyer–Wilkerson [40], already
mentioned in the previous subsection. Let A(X) be the Quillen category of X
with objects monomorphisms ν : BE → BX, where E = (Z/p)s is a non-trivial
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elementary abelian p–group, and morphisms (ν : BE → BX) → (ν′ : BE′ →
BX) are group monomorphisms ϕ : E → E′ such that ν′ ◦ Bϕ is conjugate
to ν. The centralizer decomposition theorem now says that for any p–compact
group X, the evaluation map

hocolimν∈A(X)op BCX(ν) → BX

is an isomorphism on Fp–cohomology.
This opens the possibility for a proof by induction, since the centralizers

will be smaller p–compact groups if X is center-free. As explained above we
can assume that X and X ′ have common maximal torus normalizer and root
subgroups (N , {Nσ}), so that we are in the situation of following diagram

(BN , {BNσ})
j

xxqqqqqqqqqqq
j′

&&NNNNNNNNNN

BX // BX ′

where the dotted arrow is the one we want to construct.
If ν : BZ/p → BX is a monomorphism, then it can be conjugated into T ,

uniquely up to conjugation in N . This gives a well defined way of viewing ν as
a map ν : BZ/p→ BT → BN . Taking centralizers of this map produces a new
diagram

(BCN (ν), {BCN (ν)σ})

((RRRRRRRRRRRRR

vvlllllllllllll

BCX(ν) // BCX′(ν)

One now argues that the induction hypothesis guarantees that we can con-
struct the dotted arrow. There is the slight twist that the centralizer will be
disconnected in general, so we have to use that we inductively know the whole
space of self-equivalences of the identity component.

Step 4: (Compatibility of maps on all centralizers, [8, §5]). The next step is
to define the map on centralizers of arbitrary elementary abelian p–subgroups
ν : BE → BX. This is done by restricting to a rank one subgroup E′ ≤ E and
considering the composition

BCX(ν) → BCX(ν|E′) → BCX′(ν|E′) → BX ′.

One now has to show that these maps do not depend on the choice of E′, and
that they fit together to define an element in

lim
ν∈A(X)

0[BCX(ν), BX ′]
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By the induction hypothesis it turns out that one can reduce to the case where
E has rank two and CX(ν) is discrete. An inspection of the classification of
Zp–root data shows that this case only occurs for D ∼= DPU(p)p̂ , which can

then be handled by direct arguments, producing the element in lim0.
In fact one can prove something slightly stronger, which will be needed in

the next step: A close inspection of the whole preceeding argument reveals that
all maps can be constructed over B2π1(D), which allows one to produce an
element in

lim
ν∈A(X)

0[BC̃X(ν), BX̃ ′]

where the tilde denotes covers with respect to the kernel of the map to π1(D).
With this step complete one can see that BX and BX ′ have the same p–

fusion, i.e., that p–subgroups are conjugate in the same way, but we are left
with a rigidification issue.

Step 5: (Rigidifying the map, [8, §6]). One now wants to define a map on the
whole homotopy colimit, which can then easily be checked to have the correct
properties, finishing the proof of the classification. Constructing such a map
directly from an element in lim0 requires knowing that the higher limits of the
functors Fi : A(X) → Zp-mod given by E 7→ πi(ZCX(E)), vanish, where Z
denotes the center. In turn, this calculation requires knowing the structure of
A(X), and for this we use that X is a known p–compact group, where we can
examine the structure. For the part of the functor corresponding to elementary
abelian subgroups that can be conjugated into T , the higher limits can be show
to vanish via a Mackey functor argument, going back to [54] and [40]. This in
fact equals the whole functor for all exotic groups for p odd, and DI(4) also
works via a variant on this argument, which finish off those cases.

We can hence assume that X is the p–completion of a compact Lie group
G. Here the obstruction groups were computed to identically vanish in [9], for p
odd, relying on detailed information about the elementary abelian p–subgroups
of G, partially tabulated by Griess [48]. This is easy when there is little torsion
in the cohomology, but harder for the small torsion primes, and the exceptional
groups. In [8], however, we use a different argument to cover all primes, inspired
by [99]. Using the above element in lim0 it turns out that one can produce an
element in

lim
G̃/P̃∈Or

p(G̃)op

0 [BP̃ ,BX̃ ′]

where Or
p(G̃) is the subcategory of the orbit category of G̃ with objects the

so-called p–radical subgroups. Here one again wants to show vanishing of the
higher limits, in order to get a map on the homotopy colimit. Calculating higher
limits over this orbit category is in many ways similar to calculating it over the
Quillen category [49]. In this case, however, the relevant higher limits were in
fact shown to identically vanish in earlier work of Jackowski–McClure–Oliver
[55], also building on substantial case-by-case calculations. This again produces

a map BG̃
'
−→ BX̃ ′, and passing to a quotient provides the sought homotopy



Homotopical Group Theory 15

equivalence BG
'
−→ BX ′. The statements about self-maps also fall out of this

approach.

2.3. Lie theory for p–compact groups. We have already seen many
Lie-type results for p–compact groups. Quite a few more can be proved by ob-
serving that the classical Lie result only depends on the p–completion of the
compact Lie group, and verifying case-by-case that it holds for the exotic p–
compact groups. We collect some theorems of this type in this section, encour-
aging the reader to look for more conceptual proofs, and include also a brief
discussion of homotopical representation theory. Throughout this section X is
a connected p–compact group with maximal torus T .

The first theorem on the list is the analog of theorems of Bott [14] from
1954.

Theorem 2.5. H∗(X/T ;Zp) and H∗(ΩX;Zp) are both torsion free and con-
centrated in even degrees, and H∗(X/T ;Zp) has rank |WX | as a Zp–module.

The result about ΩX was known as the loop space conjecture, and in fact
proved by Lin and Kane in a series of papers in the more general setting of finite
mod p H–spaces, using complicated calculations with Steenrod operations [67].

Bott’s proof used Morse theory and the result may be viewed in the con-
text of Schubert cell decompositions [71]. Rationally H∗(X/T ;Zp) ⊗ Q =
Qp[L]⊗Qp[L]WX Qp, so calculating the Betti numbers, given the theorem, is re-
duced to a question about complex reflection groups—an interpretation of these
numbers in terms of length functions on the root system has been obtained for
certain classes of complex reflection groups, cf. [17, 98], but the complete pic-
ture is still not clear. In general the theory of homogeneous and symmetric
spaces for p–compact groups is rather unexplored, and warrants attention.

Theorem 2.5 implies that π3(X) is torsion free, and proving that in a con-
ceptual way might be a good starting point. For Lie groups, Bott in fact stated
the, now classical, fact that π3(G) ∼= Z for G simple. The analogous statement
is not true for most of the exotic p–compact groups; for instance it obviously fail
for the Sullivan spheres other than S3. However, it is true that π3 is non-zero
for finite loop spaces, as a consequence of a celebrated theorem of Clark [30]
from 1963 giving strong restrictions on the degrees of finite loop spaces. These
results helped fuel the speculation that finite loop spaces should look a lot like
compact Lie groups, a point we will return to in the next section.

Most of the general results about torsion in the cohomology of BX and X
due to Borel, Steinberg, and others, also carry through to p–compact groups,
but here again with many results relying on the classification. This fault is
partly inherited from Lie groups; see Borel [13, p. 775] for a summary of the
status there. In particular we mention that X has torsion free Zp–cohomology if
and only if BX has torsion free Zp–cohomology if and only if every elementary
abelian p–subgroup factors through a maximal torus. Likewise π1(X) is torsion
free if and only if every elementary abelian group of rank two factors through
a maximal torus; see [9, 8].
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The (complex linear) homotopy representation theory of X is encoded in
the semi-ring

RepC(BX) =

[
BX,

∐

n

BU(n)p̂

]

It is non-trivial since for any connected p–compact group X there exists a
monomorphism BX → BU(n)p̂, for some n; the exotic groups were checked in
[27, 28, 103]—indeed, as already alluded to, several exotic p–compact groups
can conveniently be constructed as homotopy fixed-points inside a p–completed
compact Lie group. The general structure of the semi-ring is however still far
from understood. The classification allows one to focus on p–completed classi-
fying spaces of compact Lie groups, but even in this case the semi-ring appears
very complicated [56]; there are higher limits obstructions, related to interesting
problems in group theory [49].

Weights can be constructed as usual: By the existence of a maximal torus, we
can lift a homotopy representation to a map BTX → BTU(n)p̂ , well defined up to
an action of Σn, and produce a collection of n weights in L∗

X = HomZp
(LX ,Zp),

invariant under the action of the Weyl group WX . When p - |WX |, homotopy
representations just correspond to finite WX–invariant subsets of L∗

X , and any
homotopy representation decomposes up to conjugation uniquely into inde-
composable representations given by transitive WX–sets. When p | |WX | the
situation is much more complicated.

Let us describe what happens in the basic case of X = SU(2)2̂. Denote by
ρi the irreducible complex representation of SU(2) with highest weight i, and
use the same letter for the induced map BSU(2)2̂ → BU(i+1)2̂. Precomposing
with the self-homotopy equivalence ψk of BSU(2)2̂, k ∈ Z×

2 , corresponding to
multiplication by k on the root datum, gives a new representation k ? ρi of the
same dimension, but with weights multiplied by k.

Theorem 2.6. RepC(BSU(2)2̂) has an additive generating set given by ρ0,
k ? ρ1, k ? ρ2 and ((k+2k′) ? ρ1)⊗ ((k− 2k′) ? ρ1), k ∈ Z×

2 , 0 6= k′ ∈ Z2. These
generators are indecomposable, and two representations agree if they have the
same weights.

The reader may verify that the decomposition into indecomposables is not
unique, e.g., for ρ6. It is at present not clear how to use SU(2)2̂ to describe the
general structure, as one could have hoped—the thing to note is that homo-
topy representations are governed by questions of p–fusion of elements, rather
than more global structure. Already for SU(2)2̂ × SU(2)2̂ there is no upper
bound on the dimension of the indecomposables, and in particular they are
not always a tensor product of indecomposable SU(2)2̂ representations. More
severely, representations need not be uniquely determined by their weights, e.g.,
for Sp(2)2̂ × Sp(2)2̂.

By using case-by-case arguments, there might be hope to establish a version

of Weyl’s theorem R(BX)
∼=
−→ R(BT )WX , where R(BX) = Gr(RepC(BX)) is
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the Grothendieck group. The result is not proved even for p–completions of
compact Lie groups, but the integral version is the main result in [58]. The

weaker K–theoretic result K∗(BX;Zp)
∼=
−→ K∗(BT ;Zp)W was established in

[60] (using that H∗(ΩX;Zp) is torsion free). The ring structure of R(BT )W

is also not clear, and in particular it would be interesting to exhibit some
fundamental representations.

3. Finite Loop Spaces

In the 1960s and early 1970s, finite loop spaces, not p–compact groups, were
the primary objects of study, and there were many conjectures about them [91].
The theory of p–compact groups enables the resolution of most of them, either
in the positive or the negative, and gives what is essentially a parametrization
of all connected finite loop spaces.

We already defined finite loop spaces in Section 2; let us now briefly re-
call their history in broad strokes. Hopf proved in 1941 [52] that the rational
cohomology of any connected, finite loop space is a graded exterior algebra
H∗(X;Q) ∼=

∧
Q(x1, ..., xr), where |xi| = 2di−1, and r is called the rank. Serre,

ten years later [87], showed that the list of degrees d1, . . . , dr uniquely deter-
mines the rational homotopy type of (X,BX, e). In those days, there were not
many examples of finite loop spaces. Indeed, in the early 1960s it was speculated
that perhaps every finite loop space was homotopy equivalent to a compact Lie
group, a would-be variant of Hilbert’s 5th problem. This was soon shown to be
wrong in several different ways: Hilton–Roitberg, in 1968, exhibited a ’crimi-
nal’ [51], a finite loop space (X,BX, e), of the rational homotopy type of Sp(2),
such that the underlying space X is not homotopy equivalent to any Lie group;
and Rector [85] in 1971 observed that there exists uncountable many finite loop
spaces (X,BX, e) such thatX is homotopy equivalent to SU(2). The first exam-
ple may superficially look more benign than the second; indeed in general there
are only finitely many possibilities for the homotopy type of the underlying
space X, given the rational homotopy type of BX [32]. But the exact number
depends on homotopy groups of finite complexes, and does not appear closely
related to Lie theory, so shifting focus from loop space structures (X,BX, e) to
that of homotopy types of X, does not appear desirable.

An apparently better option is, as the reader has probably sensed, to pass to
p–completions, defined in Section 2. Sullivan made precise how one can recover
a (simply connected) space integrally if one knows the space “at all primes and
rationally, as well as how they are glued together”. Along with his p–completion,
he constructed a rationalization functor X → XQ, with analogous properties,
and proved that these functors fit together in the following arithmetic square.

Proposition 3.1 (Sullivan’s arithmetic square [94, 34]). Let Y be a simply
connected space of finite type. Then the following diagram, with obvious maps,
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is a homotopy pull-back square.

Y //

��

∏
pY p̂

��

YQ // (
∏
p Y p̂)Q

This parallels the usual fact that the integers Z is a pullback of Ẑ =
∏
p Zp

and Q over the finite adeles Af = Ẑ ⊗ Q. If BX is the classifying space of
a connected finite loop space then, by the classification of p–compact groups,
all spaces in the diagram are now understood: Each BX p̂ is the classifying
space of a p–compact group, and the spaces at the bottom of the diagram
are determined by numerical data, namely the degrees: BXQ ' K(Q, 2d1) ×
· · ·×K(Q, 2dr) and (

∏
pBX p̂)Q ' K(Af , 2d1)×· · ·×K(Af , 2dr), by the result

of Serre quoted earlier. Hence to classify connected finite loop spaces with a
given list of degrees, we first have to enumerate all collections of p–compact
groups with those degrees; there are a finite number of these, and they can be
enumerated given the classification [8, Prop. 8.18]. The question of how many
finite loop spaces with a given set of p–completions is then a question of genus,
determined by an explicit set of double cosets.

Theorem 3.2 (Classification of finite loop spaces). The assignment which to
a finite loop space Y associates the collection of Zp–root data {DY p̂

}p is a
surjection from connected finite loop spaces to collections of Zp–root data, all
p, with the same degrees d1, . . . , dr. The pre-image of {Dp}p is parametrized by
the set of double cosets

Out(KQ)\Outc(KAf
)/

∏

p

Out(Dp)

where KR = K(R, 2d1)× · · · ×K(R, 2dr), R = Q or Af .

Here Out(KQ) denotes the group of free homotopy classes of self-homotopy
equivalences, and Outc(KAf

) denotes those homotopy classes of homotopy
equivalences that induce Af–linear maps on homotopy groups. Since KR is an
Eilenberg–MacLane space, the set of double cosets can be completely described
algebraically; see [9, §13] for a calculation of Out(Dp).

The set of double cosets will, except for the degenerate case of tori, be
uncountable. Allowing for only a single prime p everywhere above would
parametrize the number of Z(p)–local finite loop spaces corresponding to a
given p–compact group Yp, and also this set is usually uncountable, with a few
more exceptions, such as groups of rank one. A similar result holds when one
inverts some collection of primes P; see [7, Rem. 3.3] for more information.

Sketch of proof of Theorem 3.2. There is a natural inclusion KQ → KAf
in-

duced by the unit map Q → Af , and one easily proves that the pull-back
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provides a space Y such that H∗(ΩY ;Z) is finite over Z. That Y is actually ho-
motopy equivalent to a finite complex follows by the vanishing of the finiteness
obstruction, as proved by Notbohm [81] (see [4, Lemma 1.2] for more details).
Twisting the pullback by an element in Outc(KAf

) provides a new finite loop
space, and after passing to double cosets, this assignment is easily seen to be
surjective and injective on homotopy types (see [94] and [101, Thm. 3.8]).

If one assumes that the finite loop space X has a maximal torus, as defined
by Rector [86], i.e., a map (BS1)r → BX with homotopy fiber homotopy
equivalent to a finite complex, for r = rank(X), the above picture changes
completely. The inclusion of an ‘integral’ maximal torus prohibits the twisting
in the earlier theorem, and one obtains a proof of the classical maximal torus
conjecture stated by Wilkerson [100] in 1974, giving a homotopy theoretical
description of compact Lie groups as exactly the finite loop spaces admitting a
maximal torus.

Theorem 3.3 (Maximal torus conjecture [8]). The classifying space functor,

which to a compact Lie group G associates the finite loop space (G,BG, e : G
'
−→

ΩBG) gives a one-to-one correspondence between isomorphism classes of com-
pact Lie groups and finite loop spaces with a maximal torus. Furthermore, for
G connected, Out(BG) ∼= Out(G) ∼= Out(DG).

The statement about automorphisms, which was not part of the original
conjecture, follows from work of Jackowski–McClure–Oliver [57, Cor. 3.7].

In light of the above structural statement it is natural to further enquire how
exotic finite loop spaces can be. Whether they are all manifolds was recently
settled in the affirmative by Bauer–Kitchloo–Notbohm–Pedersen, answering an
old question of Browder [24].

Theorem 3.4 ([10]). For any finite loop space (Y,BY, e), Y is homotopy equiv-
alent to a closed, smooth, parallelizable manifold.

The result is proved using the theory of p–compact groups, combined with
classical surgery techniques, as set up by Pedersen. It shows the subtle failure of
a näıve homotopical version of Hilbert’s fifth problem: Every finite loop space is,
by classical results, homotopy equivalent to a topological group, and homotopy
equivalent to a compact smooth manifold by the above. But one cannot always
achieve both properties at once. This would otherwise imply that every finite
loop space was homotopy equivalent to a compact Lie group, by the solution to
Hilbert’s fifth problem, contradicting that many exotic finite loop spaces exist.

One can still ask if every finite loop space is rationally equivalent to some
compact Lie group? Indeed this was conjectured in the 70s to be the case, and
was verified up to rank 5. However, the answer to this question turns out to be
negative as well, although counterexamples only start appearing in high rank.
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Theorem 3.5 (A ‘rational criminal’ [4]). There exists a connected finite loop
space X of rank 66, dimension 1254, and degrees

{28, 32, 48, 52, 67, 7, 87, 9, 105, 11, 125, 13, 145, 163, 182, 202, 22, 242, 26, 28, 30}

(where nk means that n is repeated k times) such that H∗(X;Q) does not agree
with H∗(G;Q) for any compact Lie group G, as graded vector spaces.

This example is minimal, in the sense that any connected, finite loop space
of rank less than 66 is rationally equivalent to some compact Lie group G.

In [4] there is a list of which p–compact group to choose at each prime. By
the preceeding discussion, the problem of finding such a space is a combinato-
rial problem, and one can show that in high enough rank there will be many
examples.

4. Steenrod’s Problem of Realizing Polynomial

Rings

The 1960 “Steenrod problem” [92, 93], asks, for a given ring R, which graded
polynomial algebras are realized as H∗(Y ;R) of some space Y , i.e., in which
degrees can the generators occur? In this section we give some background on
this classical problem and describe its solution in [7, 8].

Steenrod, in his original paper [92], addressed the case of polynomial rings
in a single variable: For R = Z the only polynomial rings that occur are
H∗(CP∞;Z) ∼= Z[x2] and H∗(HP∞;Z) ∼= Z[x4], as he showed by a short
argument using his cohomology operations. Similarly, for R = Fp he showed
that the generator has to sit in degree 1,2, or 4 for p = 2 and in degree 2n with
n|p− 1 for p odd, but now as a consequence of Hopf invariant one and its odd
primary version (though it was not known at the time whether the p odd cases
were realized when n 6= 1, 2).

There were attempts to use the above techniques to handle polynomial rings
in several variables, but they gave only very partial results. In the 70s, however,
Sullivan’s method, as generalized by Clark–Ewing, realized many polynomial
rings, as explained in Section 2.1. Conversely, in the 80s Adams–Wilkerson [1]
and others put restrictions on the potential degrees, using categorical properties
of the category of unstable algebras over the Steenrod algebra. This eventually
led to the result of Dwyer–Miller–Wilkerson [39] that for p large enough the
Clark–Ewing examples are exactly the possible polynomial cohomology rings
over Fp.

In order to tackle all primes, it turns out to be useful to have a space-
level theory, and that is what p–compact groups provide. Namely, if Y is a
space such that H∗(Y ;Fp) is a polynomial algebra, then the Eilenberg–Moore
spectral sequence shows that H∗(ΩY ;Fp) is finite, and hence Y p̂ is a p–compact
group.
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Theorem 4.1 (Steenrod’s problem, char(R) 6= 2 [7]). Let R be a commutative
Noetherian ring of finite Krull dimension and let P ∗ be a graded polynomial
R–algebra in finitely many variables, all in positive even degrees.

Then there exists a space Y such that P ∗ ∼= H∗(Y ;R) as graded algebras
if and only if for each prime p not a unit in R, the degrees of P ∗ halved is a
multiset union of the degrees lists occurring in Table 1 at that prime p, and
the degree one, with the following exclusions (due to torsion): (G(2, 2, n), p =
2;n ≥ 4), (G(6, 6, 2), p = 2), (G24, p = 2), (G28, p = 2, 3), (G35, p = 2, 3),
(G36, p = 2, 3), and (G37, p = 2, 3, 5).

When char(R) 6= 2, all generators are in even degrees by anti-commutativity,
so the assumptions of the theorem are satisfied. The proof in [7] only relies on
the general theory of p–compact groups, not on the classification. The case
R = Fp, p odd, was solved earlier by Notbohm [81], also using p–compact
group theory. Taking R = Z gives the old conjecture that if H∗(Y ;Z) is
a polynomial ring, then it is isomorphic to a tensor product of copies of
Z[x2], Z[x4, x6, . . . , x2n], and Z[x4, x8, . . . , x4n], the cohomology rings of CP∞,
BSU(n) and BSp(n).

Theorem 4.2 (Steenrod’s problem, char(R) = 2 [8]). Suppose that P ∗ is a
graded polynomial algebra in finitely many variables over a commutative ring
R of characteristic 2. Then P ∗ ∼= H∗(Y ;R) for a space Y if and only if

P ∗ ∼= H∗(BG;R)⊗H∗(BDI(4);R)⊗r ⊗H∗(RP∞;R)⊗s ⊗H∗(CP∞;R)⊗t

as a graded algebra, for some r, s, t ≥ 0, where G is a compact connected Lie
group with finite center. In particular, if all generators of P ∗ are in degree ≥ 3
then P ∗ is a tensor product of the cohomology rings of the classifying spaces of
SU(n), Sp(n), Spin(7), Spin(8), Spin(9), G2, F4, and DI(4).

The proof reduces to R = F2, and then uses the classification of 2–compact
groups. It would be interesting to try to list all polynomial rings which occur
as H∗(BG;F2) for G a compact connected Lie group with finite center.

One can also determine to which extent the space is unique. The following
result was proved by Notbohm [81] for p odd and in [8] for p = 2, as the cul-
mination of a long series of partial results, started by Dwyer–Miller–Wilkerson
[38, 39].

Theorem 4.3 (Uniqueness of spaces with polynomial Fp–cohomology). Sup-
pose A∗ is a finitely generated polynomial Fp–algebra over the Steenrod algebra
Ap, with generators in degree ≥ 3. Then there exists, up to p–completion, at
most one homotopy type Y with H∗(Y ;Fp) ∼= A∗, as graded algebras over the
Steenrod algebra.

If P ∗ is a finitely generated polynomial Fp–algebra, then there exists at most
finitely many homotopy types Y , up to p–completion, such that H∗(Y ;Fp) ∼= P ∗

as graded Fp–algebras.

The assumption ≥ 3 above cannot be dropped, as easy examples show, and
integrally uniqueness rarely hold, as discussed in Section 3; see also [7, 8].
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5. Homotopical Finite Groups, Group Actions,..

This survey is rapidly coming to an end, but we nevertheless want to briefly
mention some other recent developments in homotopical group theory.

In connection with the determination of the algebraic K-theory of finite
fields, Quillen and Friedlander proved the following: If G is a reductive group
scheme, and q is a prime power, p - q, then

BG(Fq)p̂ ' (BG(C)p̂)h〈ψ
q〉

where the superscript means taking homotopy fixed-points of the self-map ψq

corresponding to multiplication by q on the root datum—it says that, at p,
fixed-points and homotopy fixed-points of the Frobenius map raising to the qth
power agree.

The right-hand side of the equation makes sense with BG(C)p̂ replaced by
a p–compact group. Benson speculated in the mid 90s that the resulting object
should be the classifying space of a “p–local finite group”, and be determined
by a conjugacy or fusion pattern on a finite p–group S, as axiomatized by Puig
[83] (motivated by block theory), together with a certain rigidifying 2–cocycle.
He even gave a candidate fusion pattern corresponding to DI(4), namely a
fusion pattern constructed by Solomon years earlier in connection with the
classification of finite simple groups, but shown not to exist inside any finite
group [12].

All this turns out to be true and more! A theory of p–local finite groups
was founded and developed by Broto–Levi–Oliver in [20], and has seen rapid
development by both homotopy theorists and group theorists since then. The
Solomon 2–local finite groups Sol(q) were shown to exist in [66], and a study of
Chevalley p–local finite groups, p odd, was initiated in [22]. A number of exotic
p–local finite groups have been found for p odd, but the family Sol(q) remains
the only known examples at p = 2, prompting the speculation that perhaps
they are the only exotic simple 2–local finite groups! Even partial results in
this direction could have implications for the proof of the classification of finite
simple groups. A modest starting point is the result in [18] that any so-called
constrained fusion pattern comes from a (unique constrained) finite group—
the result is purely group theoretic, and, while not terribly difficult, the only
known proof uses techniques of a kind hitherto foreign to the classification of
finite simple groups.

One can ask for a theory more general than p–local finite groups, broad
enough to encompass both p–completions of arbitrary compact Lie groups and
p–compact groups, and one such theory was indeed developed in [21], the so-
called p–local compact groups. One would like to identify connected p–compact
groups inside p–local compact groups in some group theoretic manner. This
relates to the question of describing the relationship between the classical Lie
theoretic structure and the p–fusion structure, mentioned several times before
in this paper; the proof of the classification of p–compact groups may offer some
hints on how to proceed.
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In a related direction, one may attempt to relax the condition of compact-
ness in p–compact groups to include more general types of groups; the paper
[29] shows that replacing cohomologically finite by noetherian gives few new
examples. An important class of groups to understand is Kac–Moody groups,
and the paper [19] shows, amongst other things, that homomorphisms from
finite p–groups to Kac–Moody groups still correspond to maps between classi-
fying spaces. This gives hope that some of the homotopical theory of maximal
tori, Weyl groups, etc., may also be brought to work in this setting, but the
correct general definition of a homotopy Kac–Moody group is still elusive, the
Lie theoretic definition being via generators-and-relations rather than intrinsic.
A good understanding of the restricted case of affine Kac–Moody groups and
loop groups would already be very interesting.

Groups were historically born to act, a group action being a homomorphism
from G to the group of homeomorphisms of a space X. In homotopy theory,
one is however often only given X up to an equivariant map which is a ho-
motopy equivalence. Here the appropriate notion of an action is an element in
the mapping space map(BG,BAut(X)), where as before Aut(X) denotes the
space of self-homotopy equivalences of X (itself an interesting group!). Homo-
topical group actions can also be studied one prime at a time, and assembled to
global results afterwards. Of particular interest is the case where X is a sphere.
Spheres are non-equivariantly determined by their dimension, and self-maps by
their degree. It turns out that something similar is true for homotopical group
actions of finite groups on p–complete spheres [50]. But, one has to interpret
dimension as meaning dimension function, assigning to each p–subgroup of G
the homological dimension of the corresponding homotopy fixed-point set, and
correspondingly the degree is a degree function, viewed as an element in a
certain p–adic Burnside ring. Furthermore there is hope to determine exactly
which dimension functions are realizable. Understanding groups is homotopi-
cally open-ended. . .
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[52] H. Hopf. Über die Topologie der Gruppen-Mannigfaltigkeiten und ihre Verall-
gemeinerungen. Ann. of Math. (2), 42:22–52, 1941.

[53] J. E. Humphreys. Reflection groups and Coxeter groups. Cambridge Univ.
Press, 1990.

[54] S. Jackowski and J. McClure. Homotopy decomposition of classifying spaces
via elementary abelian subgroups. Topology, 31(1):113–132, 1992.

[55] S. Jackowski, J. McClure, and B. Oliver. Homotopy classification of self-maps
of BG via G-actions. I+II. Ann. of Math. (2), 135(2):183–226,227–270, 1992.

[56] S. Jackowski, J. McClure, and B. Oliver. Maps between classifying spaces re-
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groupe abélien élémentaire. Inst. Hautes Études Sci. Publ. Math., (75):135–244,
1992.

[64] J. Lannes. Applications dont la source est un classifiant. In Proc. Intl. Congress
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[65] J. Lannes. Théorie homotopique des groupes de Lie (d’après W. G. Dwyer et
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