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Motivation

Looking for an approximation scheme for QCD . . .

I coupling constant g not
good expansion parameter in
low energy regime µ

Suggestion by ’t Hooft:

I generalize SU(3) with 3 colors to SU(N) with N colors

I hope that theory simplifies for large N

I obtain new expansion parameter: 1/N



Large N QCD

Consider QCD Lagrangian with SU(N) gauge group:

L = −1

2
trFµνF

µν +

NF∑
f =1

(q̄i )f (i /D −mf )
i
j(q

j)f

I Dµ = ∂µ + igAµ

I Fµν = ∂µAν − ∂νAµ + ig [Aµ,Aν ]

I NF flavor (anti-)quark fields qi (q̄i ) in fundamental
representation (i = 1, . . . ,N)

I gluon field (Aµ)ij = Aa
µ(T a)ij : hermitian traceless N × N

matrix (a = 1, . . . ,N2 − 1)

But so far no explicit N dependence . . .



Large N QCD

Hint: consider renormalization group flow of QCD:

µ
dg

dµ
= (−11

3
N +

2

3
NF )

g3

16π2
+O(g5)

⇒ does not have a sensible large N limit

Solution

I replace:
g −→ g√

N

Obtain:

µ
dg

dµ
=

(
−11

3
+

2

3

NF

N

)
g3

16π2
+O(g5)



Large N QCD

Replace g → g/
√

N in L, and for convenience, rescale the fields:

I Aµ −→
√

N
g Aµ

I q −→
√

Nq

SU(N) Lagrangian:

L = N

[
− 1

2g2
trFµνF

µν + q̄i (i /D −m)ijq
j

]
Note: g does not occur in Dµ and Fµν anymore

Counting rules:

Read off N-dependence of vertices and propagators:

I all vertices ∝ N

I all propagators ∝ 1
N



Double-Line Notation

Reorganize Feynman diagrams to visualize color flow

Propagators:

I quark: 〈T qi (x)q̄j(y)〉 = δi
j SF (x − y)

I gluon: 〈T Aµ
i
j(x)Aν

k
l (y)〉 = 〈T Aa

µ(x)Ab
ν(y)〉 (T a)ij(T

b)kl

= 〈T Aa
µ(x)Ab

ν(y)〉 δab(T a)ij(T
b)kl = (δi

l δ
k
j −

1

N
δi
jδ

k
l︸ ︷︷ ︸

(∗)

) Dµν(x − y)

(∗) drops out for U(N)

group theoretically: Aµ
i
j transforms as qi q̄j

for simplicity: from now on consider U(N) instead of SU(N)!



Double-Line Notation

Vertices

I quark-gluon: q̄iγ
µqjAµ

i
j

I 3-gluons: Aµ
i
jAν

j
k∂µAν

k
i

I 4-gluons: Aµ
i
jAν

j
kAµ

k
l Aν

l
i



Double-Line Notation - Examples

Can now determine N-dependence of an arbitrary Feynman
diagram:

∝ 1
N3

∝ 1
N

→ Basic reason: N times more intermediate gluon states than quark states to sum
over



Diagram Rules
How does this nontrivial N dependence help simplifying QCD
analysis?

Given an arbitrary diagram, one can see...

1. additional internal gluon lines don’t change N dependence

⇒ ∝ 1
N

⇒ ∝ 1
N

2. internal quark loops are suppressed by NF
N

⇒ ∝ NF
N2



Diagram Rules

3. non-planar diagrams are suppressed by 1
N2

=̂

→ fewer index loops compared to corresponding planar diagram!



Graph Topology

Consider first only vacuum-to-vacuum graphs
Denote:

L no. of index loops
P no. of quark and gluon propagators
V no. of vertices

Then
O(Graph) ∼ NL−P+V ≡ Nχ

Construct 2d orientable surface from a double-line graph:

1. loops → faces, propagators → edges, vertices → vertices

2. identify edges when on the same double-line propagator

3. give orientation according to arrows on perimeter

Thus χ is the Euler characteristic



Graph Topology

Every 2d orientable surface is topologically equivalent to a 2-sphere
with holes and handles:



Graph Topology
Therefore: χ = 2− 2H − B

with
H no. of handles stuck onto the sphere
B no. of boundaries (holes) in the sphere

But also: B = no. of quark loops

Conclusion:
O(Graph) ∼ N2−2H−B

I l.o. graphs: H = 0 ⇔ planar, B = 0 ⇔ no quark loops

I l.o. graphs with quark dependence: H = 0 ⇔ planar,
B = 1 ⇔ one single quark loop on the outer edge

Why only on the outer edge?

Because: =̂ would be ”non-planar” too



Mesons

To create a meson: apply to the vacuum a quark bilinear B

B ∈ {qq̄, qγµq̄, qFµν q̄, . . .}

Interactions of n mesons → conn. Greens function 〈B1 . . .Bn〉

To use our previous counting rules...

I replace action: S → S + N
∑

i biBi

I then 〈B1 . . .Bn〉 = 1
(iN)n

∂nW
∂b1...∂bn

|bi=0

with W =
∑

(connected vacuum-to-vacuum graphs)

Example: 〈B1B2B3〉 ∼ =̂



Mesons - Diagram Rules

Conclude:

l.o. interaction graphs
=

l.o. vacuum graphs with bilinears inserted into quark loop

⇒ order of a graph now: 〈B1 . . .Bn〉 ∝ N(1−n)

Assumption:

QCD shows confinement for arbitrary large N

I all states made by the Bi ’s are SU(N) singlets

Transition amplitude 〈BB〉 should be ∼ O(1) for arbitrary N

⇒ use properly normalized operators B ′
i = N

1
2 Bi

Finally

〈B ′
1 . . .B ′

n〉 ∝ N1− n
2



Mesons - Diagram Rules

Claim:
To leading order in 1/N,

〈B ′
1 . . .B ′

n〉 =
∑

(meson tree diagrams)

⇒ a B ′
i creates only a single particle

Heuristical understanding:
Look at intermediate states in a planar diagram:

=̂
∼ q̄lA

l
kA

k
j A

j
iq

i

cannot be broken up to color
singlets



Mesons - Diagram Rules

Proof (by contradiction):
We know: ”a B ′

i creates only a single particle”
⇔ ”the only singularities of 〈B ′

1 . . .B ′
n〉 are simple poles”

Consider 2-point function 〈B ′
i B

′
j 〉:

1. assume B ′
1 creates two color-singlet particles

(a,b), amplitude ∼ O(1)

2. particles reflected (B ′
2, B ′

1) and finally
absorbed (B ′

4)
all amplitudes also ∼ O(1) by crossing
symmetry

3. thus get singularity of ∼ O(1) in 4-point
function

4. but 〈B ′
1 . . .B ′

4〉 ∼ N1− 4
2 = 1

N



Mesons - Interactions
By reduction formula: S{n particles} ∝ 〈B ′

1 . . .B ′
n〉 ∝ N1− n

2

I Leading order 2-point function: ∼ O(1)

= =

I Leading order 3-point function: ∼ O(1/
√

N)

= =

I Leading order 4-point function: ∼ O(1/N)

= =



Mesons - Phenomenology

It seems: we have rewritten QCD as a effective theory of weakly
interacting hadrons...

I effective coupling constant ∼ 1/
√

N

I l.o. in 1/N is tree approximation to this theory

Behavior for large N

I Mesons stable and noninteracting for N →∞
I infinite number of mesons

Why? → Can expand 2-point function as sum over 1-particle
resonances: ∫

dxe iqx〈B ′
1(x)B ′

2(0)〉 =
∑

i

Zi

q2 −m2
i

Now: l.h.s. is known ∼ log(q2) ⇒ r.h.s. must be infinite sum



Mesons - Phenomenology

Predictions for reality (N=3)

I leading order scattering amplitudes =
∑

tree diagrams with
physical hadrons exchanged
→ similarity to successful ”Regge phenomenology”

I multiparticle decays of unstable mesons preferably through
two body states

I suppression of the qq̄ sea in mesons

I suppression of qq̄qq̄ exotics



Mesons - Phenomenology

Justification for OZI (Zweig) rule:
”flavor disconnected processes are suppressed”

suppressed allowed

Looks in double line notation:

Count color loops ⇒ expect branching ratio:
ΓOZI suppressed

ΓOZI allowed
∝ 1

N2



Glue states

Same analysis can be applied to glueballs:
Let

Gi ∈ {trFµνF
µν , trFµν(∗F )µν}

Facts:

I pure glue states: l.o. graphs = planar, no quark loops
⇒〈G1 . . .Gn〉 ∼ N2−n (already properly normalized)

I mixed glueball-meson states: l.o. graphs = planar, one quark
loop at boundary
⇒〈B ′

1 . . .B ′
m G1 . . .Gn〉 ∼ N1−m

2
−n

Conclusions:

I glueball interaction constant ∼ 1
N ⇒weakly interacting

I meson-glueball coupling 〈GB ′〉 ∼ 1√
N
⇒mixing suppressed



Baryons - Counting Rules

Baryon = N quark color singlet state ∼ εi1···iN qi1 · · · qiN

Have well-defined large N limit although no. of quarks diverges!

Propagator:

Any connected k-body interaction subgraph
=̂ O(N) meson graph:

I cut k fermion lines

I but you loose k color index sums

=̂

Therefore: k-particle interactions ∼ N1−k



Baryon Masses

O(Nk) ways of choosing k quarks from an N baryon
⇒ net effect k particle interaction ∼ O(N)

In general: diagram with l disconnected pieces is ∼ O(N l)

Baryon mass:

MB = Nmq + NTq +
1

2
N2

(
1

N
Vqq

)
∼ O(N)

Now baryon propagator

e−iMB t = 1− iMBt − 1

2
M2

Bt2 + . . .

lth term represents l disconnected subdiagrams
⇒ disconnected graph ∼ O(M l

B)



Baryons as Solitons

We have seen:

I QCD coupling constant: gs ∼ 1√
N

I Baryon mass: MB ∼ 1/g2
s →∞ for gs → 0

Compare with ’t Hooft-Polyakov monopole: Mmonopole ∼ O(1/α)

More analogs:

for large N respectively small α . . .

I baryon size and shape independent of N
⇔ size and shape of the monopole independent of α

I mesons become non-interacting, baryons still interact
⇔ e+, e− non-interacting, but m.-m. and m.-e± interaction
still possible

Baryons ∼ solitons in weakly coupled theory of strong interactions



Justification for 1/N expansion

Why consider at all large N?

I understand tree approximation (= large N) of QCD first
before study loop corrections (= finite N)

How good is 1/N expansion for N = 3?
I depends on coefficients of the suppressed terms:

I quark loops O(1/N) often unimportant in phenomenology

⇒ expansion really in terms of 1/N2 = 1/9 (!)

I explains a lot of observations

Compare to QED:

I electric charge actually is e =
√

4πα ≈ 0.3

I correct expansion parameter found to be e2

4π

Lastly: 1/N is the only known expansion parameter of QCD in
low energy regime



Master Field
As far, only studied overall N dependence of the theory

I want to calculate at least leading term in 1/N
I sum all planar diagrams? → hopeless

Hint:
consider large N behavior of

G = gauge invariant operator made up of gauge fields

I remember: 〈G1 . . .Gn〉C ∝ N2−n

I G ′ ≡ G/N has well defined v.e.v. for N →∞: 〈G ′〉C ∝ 1

Compute variance of G ′:

〈(G ′ − 〈G ′〉)2〉 = 〈G ′G ′〉 − 〈G ′〉〈G ′〉
= 〈G ′G ′〉C

= O(1/N2)
N→∞−→ 0



Master Field
What does this imply?
Path integral for pure U(N) gauge theory:

〈G ′
1 . . .G ′

n〉 =
1

Z

∫
DAµe

−N
R

d4x
h

1
4g2 trFµνFµν

i
G ′

1 . . .G ′
n

Compare:
If f (x) has minimum at a: f (x) = f (a) + 1

2
f ′′(a)(x − a)2 +O

�
(x − a)3

�
Then for large N:Z

dx e−N f (x) = e−N f (a)

�
2π

N f ′′(a)

�1/2

e−O(1/
√

N)

Master field Āµ:

For N →∞: path integral determined by extremal field
configuration Āµ ∈

{
UAµU−1 − iU∂µU−1|U ∈ U(N)

}
⇒ 〈G ′

1(Aµ(x1)) . . .G ′
n(Aµ(xn))〉 = G ′

1(Āµ(x1)) . . .G ′
n(Āµ(xn))



Master Field

Properties of Āµ:

I Four hermitian ’∞×∞’matrices

I Expected to be spacetime independent!
Reason: action and measure are translationally invariant.

Āµ(x) = e iP·x Āµ(0)e−iP·x

Perform gauge transformation U = e iP·x :

⇒ Āµ(x) = Āµ(0) + Pµ

Also: ¯Fµν = [Āµ, Āν ]

Solution of large N QCD by finding four ’∞×∞’ matrices!



Matrix Model

How to deal with ’∞×∞’ matrices?

Solvable model:

QCD in 0 + 0 dimensional spacetime

→ Evaluate in large N limit:

〈tr g(A)〉 =
1

Z

∫
dA e−N trV (A) tr g(A)

where

I A: hermitian N × N matrix

I g(A) gauge invariant function of A

I dA =
∏

dAab, a, b = 1 . . .N

I dAabdAba = d(ReAab)d(ImAba)

I V (A) gauge inv. function of A (e.g. V (A) = 1
2M2A2 + A4)



Matrix Model

Procedure:

1. write A = U†ΛU, with Λ = diag(λ1, . . . , λN)

2. use dA = dU(
∏

k dλk)
∏

i 6=j(λi − λj)

Arrive at:

〈tr g(A)〉 =
1

Z

∫
(
∏
i

dλi )(
∑

j

g(λj))e
−N

P
k V (λk )+

P
m 6=n log |λm−λn|

Remark (Dyson): Z = partition function of classical 1-dimensional gas

with particle positions λi

Consider further:

Seff = N
∑
k

V (λk)−
∑
m 6=n

log |λm − λn|



Matrix Model
Density of eigenvalues: ρ(λ) ≡ 1

N

∑
i δ(λ− λi ),

∫
dλρ(λ) = 1

Rewrite Seff:

Seff = N2

[∫
dλρ(λ)V (λ)−

∫
dλdλ′ρ(λ)ρ(λ′) log |λ− λ′|

]
For N →∞: 〈tr g(A)〉 is dominated by the minimal ρ:

V ′(λ) = 2 P
∫

dλ′
ρ(λ′)

λ− λ′

I solve for ρ to get d.o.e. for the master matrix

I to first order then 〈tr g(A)〉 = N
∫

dλρ(λ)g(λ) Ā

E.g. for V (A) = 1
2m2A2 → Wigner Semi-Circle distribution:

ρ(λ) =
2

π(4/m2)2

√
(4/m)2 − λ2



Summary

I Right QCD expansion parameter is 1/N

I Large N QCD gets simple (tree graphs)

I Mesons appear as particles, Baryons as solitons

I Explains many of strong interaction phenomena (often the
only known general explanation)

I For N = 3 it might be not such a bad approximation

I Summation of planar diagrams seems not feasible

I Master field is hopeful solution candidate
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