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Motivation

Looking for an approximation scheme for QCD ...

ow’ 4
4n

» coupling constant g not
good expansion parameter in
low energy regime p

AQCD

Suggestion by 't Hooft:
» generalize SU(3) with 3 colors to SU(N) with N colors
» hope that theory simplifies for large N

» obtain new expansion parameter: 1/N



Large N QCD

Consider QCD Lagrangian with SU(N) gauge group:

NF¢

L= —%tr FurF* +> (@) (i — me)i(d)s

f=1

v

D, =0,+igA,

Fu = 0uA, — 0,A, +ig[A., Al

NE flavor (anti-)quark fields ¢’ (g;) in fundamental
representation (i =1,...,N)

gluon field (A,); = A%(T?)i: hermitian traceless N x N
matrix (a =1,...,N? — 1)

v

v

v

But so far no explicit N dependence ...



Large N QCD

Hint: consider renormalization group flow of QCD:

dg 2 g

11
= = (—=N+:Np)=— +0(g°
= does not have a sensible large N limit
Solution
> replace: g
_,_ S
g \/N
Obtain: J N 3
dg _ (11 2Nr) g 5
“du< 373 N>167r2 (g”)



Large N QCD

Replace g — g/\/N in £, and for convenience, rescale the fields:
> A, — gA#
> g — VNg

SU(N) Lagrangian:

]. —_ . i H
L=N _?tr F,u,l/ij + qi(lm - m)Jq’

Note: g does not occur in D, and F,,, anymore

Counting rules:
Read off N-dependence of vertices and propagators:
» all vertices oc N

» all propagators x %



Double-Line Notation
Reorganize Feynman diagrams to visualize color flow

Propagators:
> quark: (7q'(x)3(y)) = 0} Se(x — y)
= =T
> gluon: (T A(x)A[(y)) = (T AL (DAY )>(T")’(Tb)

= (T AL ()AL () 0°°(TO)T®)f = (0]6f — =5 31) Dy (x — y)

N
——
()
(*) drops out for U(N)
Au

i /

_— group theoretically: A’ transforms as q' qJ

J k

for simplicity: from now on consider U(/N) instead of SU(N)! ‘




Double-Line Notation

Vertices

» quark-gluon: E];’Y“quuJ': }{

k
» 3-gluons: AHJ’:ij,;aﬂAuf-( ﬁ(

» 4-gluons: AMJ’:A,/,;AJA#



Double-Line Notation - Examples

Can now determine N-dependence of an arbitrary Feynman
diagram:

=

— Basic reason: N times more intermediate gluon states than quark states to sum
over



Diagram Rules
How does this nontrivial N dependence help simplifying QCD
analysis?
Given an arbitrary diagram, one can see...

1. additional internal gluon lines don't change N dependence

1
XN
1
XN
i Ne
2. internal quark loops are suppressed by
1/N
1/N 1/N 1/N NF

Tooo0T X 72

1/N



Diagram Rules

3. non-planar diagrams are suppressed by %

— fewer index loops compared to corresponding planar diagram!



Graph Topology

Consider first only vacuum-to-vacuum graphs

Denote:
L no. of index loops
P no. of quark and gluon propagators
V' no. of vertices

Then

O(Graph) ~ NE-PHV = pyx

Construct 2d orientable surface from a double-line graph:
1. loops — faces, propagators — edges, vertices — vertices
2. identify edges when on the same double-line propagator

3. give orientation according to arrows on perimeter

Thus x is the Euler characteristic



Graph Topology

Every 2d orientable surface is topologically equivalent to a 2-sphere
with holes and handles:

% % @
6 ©




Graph Topology
Therefore: y=2—-2H - B

H no. of handles stuck onto the sphere

with B no. of boundaries (holes) in the sphere

But also: B = no. of quark loops

Conclusion:

O(Graph) ~ N272H-B

» l.o. graphs: H =0 < planar, B =0 < no quark loops

» l.o. graphs with quark dependence: H = 0 < planar,
B =1 & one single quark loop on the outer edge

Why only on the outer edge?

I>

Because: would be "non-planar” too



Mesons

To create a meson: apply to the vacuum a quark bilinear B
B e {lela CI’YMEL unyE], . }
Interactions of n mesons — conn. Greens function (By ... Bp)

To use our previous counting rules...
> replace action: S — S+ N>, b;B;

> then (B ... By) = s gbs |0

with W = (connected vacuum-to-vacuum graphs)

B3

>

Example: (B1B;B3) ~

B1 B2




Mesons - Diagram Rules

Conclude:

l.o. interaction graphs

[.o. vacuum graphs with bilinears inserted into quark loop

= order of a graph now: (Bj...B,) o NA=")

Assumption:
QCD shows confinement for arbitrary large N
» all states made by the B;'s are SU(N) singlets

Transition amplitude (BB) should be ~ O(1) for arbitrary N
= use properly normalized operators B! = N%B;

Finally

(B)...Bl) « N'72




Mesons - Diagram Rules

Claim:
To leading order in 1/N,

(By...B)) = Z(meson tree diagrams)

p : :
= a B; creates only a single particle

Heuristical understanding:
Look at intermediate states in a planar diagram:

’ i
i e
e i,
cannot be broken up to color
Q} singlets
o7

g




Mesons - Diagram Rules

Proof (by contradiction):
We know: "a B/ creates only a single particle”
< "the only singularities of (B; ... B) are simple poles”
Consider 2-point function (B;B;):
1. assume Bj creates two color-singlet particles
(a,b), amplitude ~ O(1)

2. particles reflected (B5, By) and finally
absorbed (Bj)
all amplitudes also ~ O(1) by crossing
symmetry

3. thus get singularity of ~ O(1) in 4-point
function

4

4. but (B]...Bj) ~ N'72 =%



Mesons - Interactions
By reduction formula: S, particles} < (Bj - - - Bp) o N1z

» Leading order 2-point function: ~ O(1)

o (Ovg

» Leading order 3-point function: ~ O(1/v/N)

(- 4

> Leadlng order 4-point function: ~ O( 1/N

1NN
Z IAN 1AN AN




Mesons - Phenomenology

It seems: we have rewritten QCD as a effective theory of weakly
interacting hadrons...

» effective coupling constant ~ [1/v/N

» l.o. in 1/N is tree approximation to this theory

Behavior for large N

» Mesons stable and noninteracting for N — oo

» infinite number of mesons

Why? — Can expand 2-point function as sum over 1-particle
resonances:

[ e Eieo) =3 2

qs —m;

Now: |.h.s. is known ~ log(q?) = r.h.s. must be infinite sum



Mesons - Phenomenology

Predictions for reality (N=3)

» leading order scattering amplitudes = >_ tree diagrams with
physical hadrons exchanged
— similarity to successful "Regge phenomenology”

» multiparticle decays of unstable mesons preferably through
two body states

» suppression of the gg sea in mesons

> suppression of ggqg exotics



Mesons - Phenomenology

Justification for OZI (Zweig) rule:

"flavor disconnected processes are suppressed”

=

suppressed

Looks in double line notation:

Lu(d)
“\.5(@

AL
Tu(d) o0

. T
Count color loops = expect branching ratio: —pAsueeres=d
OZI allowed

X

1
N2



Glue states

Same analysis can be applied to glueballs:
Let
Gi € {tr Fu, F* tr Fu (xF)*'}

Facts:

» pure glue states: l.o. graphs = planar, no quark loops
= <G1 C Gn> ~ NZ=n (already properly normalized)

» mixed glueball-meson states: |.0. graphs = planar, one quark
loop at boundary
=(B,...B,,Gy...G)) ~ N*"2°"

Conclusions:

» glueball interaction constant ~ % = weakly interacting
1

» meson-glueball coupling (GB’) ~ TN

= mixing suppressed



Baryons - Counting Rules
Baryon = N quark color singlet state ~ €i1-~~imqi1 . gin

Have well-defined large N limit although no. of quarks diverges!

Propagator:

Any connected k-body interaction subgraph
= O(N) meson graph:
» cut k fermion lines

» but you loose k color index sums

Therefore: | k-particle interactions ~ N~




Baryon Masses

O(NK) ways of choosing k quarks from an N baryon
= net effect k particle interaction ~ O(N)

In general: diagram with / disconnected pieces is ~ O(N')

Baryon mass:

1 1
Mg = Nmg + NT, + 5/v2 <N qu)

~ O(N)

Now baryon propagator
. 1
e Mt — 1 _iMpt — 5Mfgt2 +...

Ith term represents /| disconnected subdiagrams
= disconnected graph ~ O(M5%)



Baryons as Solitons
We have seen:

» QCD coupling constant: gs ~ ﬁ

» Baryon mass: | Mg ~ 1/g2 — oo| for gz — 0

Compare with 't Hooft-Polyakov monopole: | Mmonopole ~ O(1/cx)

More analogs:
for large N respectively small o ..

» baryon size and shape independent of N
& size and shape of the monopole independent of «

» mesons become non-interacting, baryons still interact
& eT, e non-interacting, but m.-m. and m.-eT interaction
still possible

Baryons ~ solitons in weakly coupled theory of strong interactions



Justification for 1/N expansion

Why consider at all large N7

» understand tree approximation (= large N) of QCD first
before study loop corrections (= finite N)

How good is 1/N expansion for N = 37
» depends on coefficients of the suppressed terms:
» quark loops O(1/N) often unimportant in phenomenology

= expansion really in terms of 1/N? = 1/9 (1)
» explains a lot of observations
Compare to QED:
» electric charge actually is e = V4ra =~ 0.3

. 2
> correct expansion parameter found to be 7~

Lastly: 1/N is the only known expansion parameter of QCD in
low energy regime



Master Field

As far, only studied overall N dependence of the theory
» want to calculate at least leading term in 1/N
» sum all planar diagrams? — hopeless

Hint:

consider large N behavior of

’ G = gauge invariant operator made up of gauge fields‘

> remember: (Gj ... G,)c oc N>7"

» | G' = G/N| has well defined v.e.v. for N — oco: (G')¢ x 1

Compute variance of G':
(6" = (6" 'G') = (G')(G)
IG/>C

=
=
= 0(1/N?) =% 0



Master Field

What does this imply?
Path integral for pure U(N) gauge theory:

1 _ Ayl L otr L FHv
wﬂlm:Z/D@edegaw]ﬁmQ

Compare:
If f(x) has minimum at a: f(x) = f(a) + %f“(a)(x —a)2+0((x—a)?)
Then for large N:

o 1/2
/dxe_N F) _ o= NF(a) ( ) o~ O/ V)
NF7(a)

Master field A_#:

For N — oo: path integral determined by extremal field
configuration A, € {UA, U™ — iUD, U~ U € U(N)}

= | (G1(Au(x1)) - - G(Au(xn))) = Gi(Au(xa)) - - - Go(Au(xn))




Master Field

Properties of Aﬂ:

» Four hermitian 'oo X oco'matrices

» Expected to be spacetime independent!
Reason: action and measure are translationally invariant.

A_M(X) _ eiP~xA_u(0)e—iP~x
Perform gauge transformation U = e”:

= Au(x) = Au(0) + P,

Also: Fp, = [Au, Al

Solution of large N QCD by finding four 'co X 0o’ matrices!



Matrix Model

How to deal with 'co X oo’ matrices?

Solvable model:

’ QCD in 0 4 0 dimensional spacetime‘

— Evaluate in large N limit:

(tr g(A)) / dAe NV ¢ g(A)

where
» A: hermitian N x N matrix
» g(A) gauge invariant function of A
» dA=]]dAsm, ab=1...N
> dAsbdAps = d(ReAup)d(ImAp,)
» V/(A) gauge inv. function of A (e.g. V(A) = 1 M2A? + A%)



Matrix Model

Procedure:
1. write A= UTAU, with A = diag(\1,. .., An)
2. use dA = dU(] ], dX«) H,#( —\j)

Arrive at:

(tre(A /(H di) (Zg Yo N Zk VOO s 108 A=l

Remark (Dyson): Z = partition function of classical 1-dimensional gas
with particle positions \;

Consider further:

Seff = NZ V(i) — Z log |Am —
K

m##n



Matrix Model
Density of eigenvalues: p(A) = 1 >_; (A — \)), [ dXp(\) =

Rewrite Seff:

Sef = N [ / dAp(\)V / dAdN p(\)p(N) log |A — V|

For N — oo: (tr g(A)) is dominated by the minimal p:

V/(\) = 2P/d)\’)f)(/\/>)\,

» solve for p to get d.o.e. for the master matrix
» to first order then (trg(A)) = N [ dAp(A)g(A) A

E.g. for V(A) = 1m?A? — Wigner Semi-Circle distribution:
2
=% __Ja/m2 = )2
PN = s /@ fm =3



Summary

Right QCD expansion parameter is 1/N
Large N QCD gets simple (tree graphs)

Mesons appear as particles, Baryons as solitons

vV v vy

Explains many of strong interaction phenomena (often the
only known general explanation)

» For N = 3 it might be not such a bad approximation
» Summation of planar diagrams seems not feasible

» Master field is hopeful solution candidate
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