Large N

Markus Gross

Universität Bonn

Seminar Relativistic Quantum Field Theory 05/11/2006

Contents

Large N QCD

Motivation

Double-Line Notation
Diagram Rules
Mesons
Baryons

The Master Field
Motivation
Matrix Model

Summary

Motivation

Looking for an approximation scheme for QCD ...

- coupling constant g not good expansion parameter in low energy regime μ

Suggestion by 't Hooft:

- generalize $\operatorname{SU}(3)$ with 3 colors to $\operatorname{SU}(N)$ with N colors
- hope that theory simplifies for large N
- obtain new expansion parameter: $1 / N$

Large N QCD

Consider QCD Lagrangian with $\operatorname{SU}(N)$ gauge group:

$$
\mathcal{L}=-\frac{1}{2} \operatorname{tr} F_{\mu \nu} F^{\mu \nu}+\sum_{f=1}^{N_{F}}\left(\bar{q}_{i}\right)_{f}\left(\mathrm{i} \not D-m_{f}\right)_{j}^{i}\left(q^{j}\right)_{f}
$$

- $D_{\mu}=\partial_{\mu}+\mathrm{ig} A_{\mu}$
- $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+\mathrm{i} g\left[A_{\mu}, A_{\nu}\right]$
- N_{F} flavor (anti-)quark fields $q^{i}\left(\bar{q}_{i}\right)$ in fundamental representation $(i=1, \ldots, N)$
- gluon field $\left(A_{\mu}\right)_{j}^{i}=A_{\mu}^{a}\left(T^{a}\right)_{j}^{i}$: hermitian traceless $N \times N$ matrix $\left(a=1, \ldots, N^{2}-1\right)$

But so far no explicit N dependence...

Large N QCD

Hint: consider renormalization group flow of QCD:

$$
\mu \frac{d g}{d \mu}=\left(-\frac{11}{3} N+\frac{2}{3} N_{F}\right) \frac{g^{3}}{16 \pi^{2}}+\mathcal{O}\left(g^{5}\right)
$$

\Rightarrow does not have a sensible large N limit

Solution

- replace:

$$
g \longrightarrow \frac{g}{\sqrt{N}}
$$

Obtain:

$$
\mu \frac{d g}{d \mu}=\left(-\frac{11}{3}+\frac{2}{3} \frac{N_{F}}{N}\right) \frac{g^{3}}{16 \pi^{2}}+\mathcal{O}\left(g^{5}\right)
$$

Large N QCD

Replace $g \rightarrow g / \sqrt{N}$ in \mathcal{L}, and for convenience, rescale the fields:

- $A_{\mu} \longrightarrow \frac{\sqrt{N}}{g} A_{\mu}$
$-q \longrightarrow \sqrt{N} q$
SU(N) Lagrangian:

$$
\mathcal{L}=N\left[-\frac{1}{2 g^{2}} \operatorname{tr} F_{\mu \nu} F^{\mu \nu}+\bar{q}_{i}(\mathrm{i} \not D-m)_{j}^{i} q^{j}\right]
$$

Note: g does not occur in D_{μ} and $F_{\mu \nu}$ anymore
Counting rules:
Read off N-dependence of vertices and propagators:

- all vertices $\propto N$
- all propagators $\propto \frac{1}{N}$

Double-Line Notation

Reorganize Feynman diagrams to visualize color flow
Propagators:

- quark: $\left\langle\mathcal{T} q^{i}(x) \bar{q}_{j}(y)\right\rangle=\delta_{j}^{i} S_{F}(x-y)$
- gluon: $\left\langle\mathcal{T} A_{\mu}^{j}{ }_{j}^{i}(x) A_{\nu}{ }_{l}^{k}(y)\right\rangle=\left\langle\mathcal{T} A_{\mu}^{a}(x) A_{\nu}^{b}(y)\right\rangle\left(T^{a}\right)_{j}^{i}\left(T^{b}\right)_{l}^{k}$
$=\left\langle\mathcal{T} A_{\mu}^{a}(x) A_{\nu}^{b}(y)\right\rangle \delta^{a b}\left(T^{a}\right)_{j}^{i}\left(T^{b}\right)_{l}^{k}=(\delta_{l}^{i} \delta_{j}^{k}-\underbrace{\frac{1}{N} \delta_{j}^{i} \delta_{l}^{k}}_{(*)}) D_{\mu \nu}(x-y)$
(*) drops out for $\mathrm{U}(N)$

group theoretically: $A_{\mu_{j}}^{i}$ transforms as $q^{i} \bar{q}_{j}$
for simplicity: from now on consider $\mathbf{U}(N)$ instead of $\mathrm{SU}(N)$!

Double-Line Notation

Vertices

- quark-gluon: $\bar{q}_{i} \gamma^{\mu} q^{j} A_{\mu_{j}}^{i}$

- 3-gluons: $A_{\mu}^{j}{ }_{j} A_{\nu}^{j}{ }_{k}^{j} \partial_{\mu} A_{\nu}{ }_{i}^{k}$

Double-Line Notation - Examples

Can now determine N-dependence of an arbitrary Feynman diagram:

\rightarrow Basic reason: N times more intermediate gluon states than quark states to sum over

Diagram Rules

How does this nontrivial N dependence help simplifying QCD analysis?

Given an arbitrary diagram, one can see...

1. additional internal gluon lines don't change N dependence

2. internal quark loops are suppressed by $\frac{N_{F}}{N}$

Diagram Rules

3. non-planar diagrams are suppressed by $\frac{1}{N^{2}}$

\rightarrow fewer index loops compared to corresponding planar diagram!

Graph Topology

Consider first only vacuum-to-vacuum graphs Denote:
L no. of index loops
P no. of quark and gluon propagators
V no. of vertices
Then

$$
\mathcal{O}(\text { Graph }) \sim N^{L-P+V} \equiv N^{\chi}
$$

Construct 2d orientable surface from a double-line graph:

1. loops \rightarrow faces, propagators \rightarrow edges, vertices \rightarrow vertices
2. identify edges when on the same double-line propagator
3. give orientation according to arrows on perimeter

Thus χ is the Euler characteristic

Graph Topology

Every 2d orientable surface is topologically equivalent to a 2 -sphere with holes and handles:

Graph Topology

Therefore: $\chi=2-2 H-B$

with H no. of handles stuck onto the sphere B no. of boundaries (holes) in the sphere

But also: $B=$ no. of quark loops
Conclusion:

$$
\mathcal{O}(\text { Graph }) \sim N^{2-2 H-B}
$$

- I.o. graphs: $H=0 \Leftrightarrow$ planar, $B=0 \Leftrightarrow$ no quark loops
- l.o. graphs with quark dependence: $H=0 \Leftrightarrow$ planar, $B=1 \Leftrightarrow$ one single quark loop on the outer edge

Why only on the outer edge?

Because:
 would be "non-planar" too

Mesons

To create a meson: apply to the vacuum a quark bilinear B

$$
B \in\left\{q \bar{q}, q \gamma^{\mu} \bar{q}, q F_{\mu \nu} \bar{q}, \ldots\right\}
$$

Interactions of n mesons \rightarrow conn. Greens function $\left\langle B_{1} \ldots B_{n}\right\rangle$
To use our previous counting rules...

- replace action: $S \rightarrow S+N \sum_{i} b_{i} B_{i}$
- then $\left\langle B_{1} \ldots B_{n}\right\rangle=\left.\frac{1}{(\mathrm{i} N)^{n}} \frac{\partial^{n} W}{\partial b_{1} \ldots \partial b_{n}}\right|_{b_{i}=0}$
with $W=\sum$ (connected vacuum-to-vacuum graphs)

Mesons - Diagram Rules

Conclude:

I.o. interaction graphs

I.o. vacuum graphs with bilinears inserted into quark loop
\Rightarrow order of a graph now: $\left\langle B_{1} \ldots B_{n}\right\rangle \propto N^{(1-n)}$
Assumption:
QCD shows confinement for arbitrary large N

- all states made by the B_{i} 's are $\mathbf{S U (N)}$ singlets

Transition amplitude $\langle B B\rangle$ should be $\sim \mathcal{O}(1)$ for arbitrary N
\Rightarrow use properly normalized operators $B_{i}^{\prime}=N^{\frac{1}{2}} B_{i}$
Finally

$$
\left\langle B_{1}^{\prime} \ldots B_{n}^{\prime}\right\rangle \propto N^{1-\frac{n}{2}}
$$

Mesons - Diagram Rules

Claim:
To leading order in $1 / N$,

$$
\left\langle B_{1}^{\prime} \ldots B_{n}^{\prime}\right\rangle=\sum \text { (meson tree diagrams) }
$$

$\Rightarrow \mathrm{a} B_{i}^{\prime}$ creates only a single particle
Heuristical understanding:
Look at intermediate states in a planar diagram:

$$
\sim \bar{q}_{I} A_{k}^{\prime} A_{j}^{k} A_{i}^{j} q^{i}
$$

cannot be broken up to color singlets

Mesons - Diagram Rules

Proof (by contradiction):
We know: "a B_{i}^{\prime} creates only a single particle"
\Leftrightarrow "the only singularities of $\left\langle B_{1}^{\prime} \ldots B_{n}^{\prime}\right\rangle$ are simple poles"
Consider 2-point function $\left\langle B_{i}^{\prime} B_{j}^{\prime}\right\rangle$:

1. assume B_{1}^{\prime} creates two color-singlet particles (a, b), amplitude $\sim \mathcal{O}(1)$
2. particles reflected ($B_{2}^{\prime}, B_{1}^{\prime}$) and finally absorbed (B_{4}^{\prime}) all amplitudes also $\sim \mathcal{O}(1)$ by crossing symmetry
3. thus get singularity of $\sim \mathcal{O}(1)$ in 4-point function
4. but $\left\langle B_{1}^{\prime} \ldots B_{4}^{\prime}\right\rangle \sim N^{1-\frac{4}{2}}=\frac{1}{N}$

Mesons - Interactions

By reduction formula: $\mathcal{S}_{\{\mathrm{n} \text { particles }\}} \propto\left\langle B_{1}^{\prime} \ldots B_{n}^{\prime}\right\rangle \propto N^{1-\frac{n}{2}}$

- Leading order 2-point function: $\sim \mathcal{O}(1)$

- Leading order 3-point function: $\sim \mathcal{O}(1 / \sqrt{N})$

- Leading order 4-point function: $\sim \mathcal{O}(1 / N)$

Mesons - Phenomenology

It seems: we have rewritten QCD as a effective theory of weakly interacting hadrons...

- effective coupling constant $\sim 1 / \sqrt{N}$
- I.o. in $1 / N$ is tree approximation to this theory

Behavior for large \mathbf{N}

- Mesons stable and noninteracting for $N \rightarrow \infty$
- infinite number of mesons

Why? \rightarrow Can expand 2-point function as sum over 1-particle resonances:

$$
\int d^{x} e^{i q x}\left\langle B_{1}^{\prime}(x) B_{2}^{\prime}(0)\right\rangle=\sum_{i} \frac{Z_{i}}{q^{2}-m_{i}^{2}}
$$

Now: I.h.s. is known $\sim \log \left(q^{2}\right) \Rightarrow$ r.h.s. must be infinite sum

Mesons - Phenomenology

Predictions for reality ($\mathrm{N}=3$)

- leading order scattering amplitudes $=\sum$ tree diagrams with physical hadrons exchanged
\rightarrow similarity to successful "Regge phenomenology"
- multiparticle decays of unstable mesons preferably through two body states
- suppression of the $q \bar{q}$ sea in mesons
- suppression of $q \bar{q} q \bar{q}$ exotics

Mesons - Phenomenology

Justification for OZI (Zweig) rule:
"flavor disconnected processes are suppressed"

suppressed

allowed

Looks in double line notation:

Count color loops \Rightarrow expect branching ratio: $\frac{\Gamma_{\text {ozl suppressed }}}{\Gamma_{\text {ozl allowed }}} \propto \frac{1}{N^{2}}$

Glue states

Same analysis can be applied to glueballs:
Let

$$
G_{i} \in\left\{\operatorname{tr} F_{\mu \nu} F^{\mu \nu}, \operatorname{tr} F_{\mu \nu}(* F)^{\mu \nu}\right\}
$$

Facts:

- pure glue states: I.o. graphs = planar, no quark loops $\Rightarrow\left\langle G_{1} \ldots G_{n}\right\rangle \sim N^{2-n}$ (already properly normalized)
- mixed glueball-meson states: I.o. graphs = planar, one quark loop at boundary
$\Rightarrow\left\langle B_{1}^{\prime} \ldots B_{m}^{\prime} G_{1} \ldots G_{n}\right\rangle \sim N^{1-\frac{m}{2}-n}$
Conclusions:
- glueball interaction constant $\sim \frac{1}{N} \Rightarrow$ weakly interacting
- meson-glueball coupling $\left\langle G B^{\prime}\right\rangle \sim \frac{1}{\sqrt{N}} \Rightarrow$ mixing suppressed

Baryons - Counting Rules

Baryon $=N$ quark color singlet state $\sim \epsilon_{i_{1} \cdots i_{N}} q^{i_{1}} \cdots q^{i_{N}}$
Have well-defined large N limit although no. of quarks diverges!
Propagator:

Any connected k-body interaction subgraph $\hat{=} \mathcal{O}(N)$ meson graph:

- cut k fermion lines
- but you loose k color index sums

Therefore: k-particle interactions $\sim N^{1-k}$

Baryon Masses

$\mathcal{O}\left(N^{k}\right)$ ways of choosing k quarks from an N baryon \Rightarrow net effect k particle interaction $\sim \mathcal{O}(N)$

In general: diagram with I disconnected pieces is $\sim \mathcal{O}\left(N^{\prime}\right)$
Baryon mass:

$$
\begin{aligned}
M_{B} & =N m_{q}+N T_{q}+\frac{1}{2} N^{2}\left(\frac{1}{N} V_{q q}\right) \\
& \sim \mathcal{O}(N)
\end{aligned}
$$

Now baryon propagator

$$
e^{-\mathrm{i} M_{B} t}=1-\mathrm{i} M_{B} t-\frac{1}{2} M_{B}^{2} t^{2}+\ldots
$$

/th term represents / disconnected subdiagrams
\Rightarrow disconnected graph $\sim \mathcal{O}\left(M_{B}^{\prime}\right)$

Baryons as Solitons

We have seen:

- QCD coupling constant: $g_{s} \sim \frac{1}{\sqrt{N}}$
- Baryon mass: $M_{B} \sim 1 / g_{s}^{2} \rightarrow \infty$ for $g_{s} \rightarrow 0$

Compare with 't Hooft-Polyakov monopole: $M_{\text {monopole }} \sim \mathcal{O}(1 / \alpha)$
More analogs:
for large N respectively small $\alpha \ldots$

- baryon size and shape independent of N
\Leftrightarrow size and shape of the monopole independent of α
- mesons become non-interacting, baryons still interact $\Leftrightarrow \mathrm{e}^{+}, \mathrm{e}^{-}$non-interacting, but m.-m. and m.- $\mathrm{e}^{ \pm}$interaction still possible

Baryons \sim solitons in weakly coupled theory of strong interactions

Justification for $1 / N$ expansion

Why consider at all large N ?

- understand tree approximation (= large N) of QCD first before study loop corrections ($=$ finite N)

How good is $1 / N$ expansion for $N=3$?

- depends on coefficients of the suppressed terms:
- quark loops $\mathcal{O}(1 / N)$ often unimportant in phenomenology
\Rightarrow expansion really in terms of $1 / N^{2}=1 / 9$ (!)
- explains a lot of observations

Compare to QED:

- electric charge actually is $e=\sqrt{4 \pi \alpha} \approx 0.3$
- correct expansion parameter found to be $\frac{e^{2}}{4 \pi}$

Lastly: $1 / N$ is the only known expansion parameter of QCD in low energy regime

Master Field

As far, only studied overall N dependence of the theory

- want to calculate at least leading term in $1 / \mathrm{N}$
- sum all planar diagrams? \rightarrow hopeless

Hint:
consider large N behavior of

$$
G=\text { gauge invariant operator made up of gauge fields }
$$

- remember: $\left\langle G_{1} \ldots G_{n}\right\rangle_{C} \propto N^{2-n}$
- $G^{\prime} \equiv G / N$ has well defined v.e.v. for $N \rightarrow \infty:\left\langle G^{\prime}\right\rangle_{C} \propto 1$

Compute variance of G^{\prime} :

$$
\begin{aligned}
\left\langle\left(G^{\prime}-\left\langle G^{\prime}\right\rangle\right)^{2}\right\rangle & =\left\langle G^{\prime} G^{\prime}\right\rangle-\left\langle G^{\prime}\right\rangle\left\langle G^{\prime}\right\rangle \\
& =\left\langle G^{\prime} G^{\prime}\right\rangle C \\
& =\mathcal{O}\left(1 / N^{2}\right) \xrightarrow{N \rightarrow \infty} 0
\end{aligned}
$$

Master Field

What does this imply?
Path integral for pure $\mathrm{U}(N)$ gauge theory:

$$
\left\langle G_{1}^{\prime} \ldots G_{n}^{\prime}\right\rangle=\frac{1}{Z} \int \mathcal{D} A_{\mu} e^{-N \int d^{4} \times\left[\frac{1}{4 g^{2}} \operatorname{tr} F_{\mu \nu} F^{\mu \nu}\right]} G_{1}^{\prime} \ldots G_{n}^{\prime}
$$

Compare:
If $f(x)$ has minimum at $a: f(x)=f(a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}+\mathcal{O}\left((x-a)^{3}\right)$
Then for large N :

$$
\int d x e^{-N f(x)}=e^{-N f(a)}\left(\frac{2 \pi}{N f^{\prime \prime}(a)}\right)^{1 / 2} e^{-\mathcal{O}(1 / \sqrt{N})}
$$

Master field $\overline{A_{\mu}}$:
For $N \rightarrow \infty$: path integral determined by extremal field configuration $\bar{A}_{\mu} \in\left\{U A_{\mu} U^{-1}-i U \partial_{\mu} U^{-1} \mid U \in U(N)\right\}$

$$
\Rightarrow\left\langle G_{1}^{\prime}\left(A_{\mu}\left(x_{1}\right)\right) \ldots G_{n}^{\prime}\left(A_{\mu}\left(x_{n}\right)\right)\right\rangle=G_{1}^{\prime}\left(\overline{A_{\mu}}\left(x_{1}\right)\right) \ldots G_{n}^{\prime}\left(\overline{A_{\mu}}\left(x_{n}\right)\right)
$$

Master Field

Properties of \bar{A}_{μ} :

- Four hermitian ' $\infty \times \infty$ 'matrices
- Expected to be spacetime independent! Reason: action and measure are translationally invariant.

$$
\overline{A_{\mu}}(x)=e^{i P \cdot x} \overline{A_{\mu}}(0) e^{-i P \cdot x}
$$

Perform gauge transformation $U=e^{i P \cdot x}$:

$$
\Rightarrow \bar{A}_{\mu}(x)=\overline{A_{\mu}}(0)+P_{\mu}
$$

Also: $\overline{F_{\mu \nu}}=\left[\overline{A_{\mu}}, \bar{A}_{\nu}\right]$

Solution of large N QCD by finding four ' $\infty \times \infty$ ' matrices!

Matrix Model

How to deal with ' $\infty \times \infty$ ' matrices?
Solvable model:

$$
\text { QCD in } 0+0 \text { dimensional spacetime }
$$

\rightarrow Evaluate in large N limit:

$$
\langle\operatorname{tr} g(A)\rangle=\frac{1}{Z} \int d A e^{-N \operatorname{tr} V(A)} \operatorname{tr} g(A)
$$

where

- A: hermitian $N \times N$ matrix
- $g(A)$ gauge invariant function of A
- $d A=\prod d A_{a b}, \quad a, b=1 \ldots N$
- $d A_{a b} d A_{b a}=d\left(\operatorname{Re} A_{a b}\right) d\left(\operatorname{Im} A_{b a}\right)$
- $V(A)$ gauge inv. function of A (e.g. $V(A)=\frac{1}{2} M^{2} A^{2}+A^{4}$)

Matrix Model

Procedure:

1. write $A=U^{\dagger} \wedge U$, with $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$
2. use $d A=d U\left(\prod_{k} d \lambda_{k}\right) \prod_{i \neq j}\left(\lambda_{i}-\lambda_{j}\right)$

Arrive at:

$$
\langle\operatorname{tr} g(A)\rangle=\frac{1}{Z} \int\left(\prod_{i} d \lambda_{i}\right)\left(\sum_{j} g\left(\lambda_{j}\right)\right) e^{-N \sum_{k} v\left(\lambda_{k}\right)+\sum_{m \neq n} \log \left|\lambda_{m}-\lambda_{n}\right|}
$$

Remark (Dyson): $Z=$ partition function of classical 1-dimensional gas with particle positions λ_{i}
Consider further:

$$
S_{\text {eff }}=N \sum_{k} V\left(\lambda_{k}\right)-\sum_{m \neq n} \log \left|\lambda_{m}-\lambda_{n}\right|
$$

Matrix Model

Density of eigenvalues: $\rho(\lambda) \equiv \frac{1}{N} \sum_{i} \delta\left(\lambda-\lambda_{i}\right), \quad \int d \lambda \rho(\lambda)=1$
Rewrite $S_{\text {eff }}$:

$$
S_{\mathrm{eff}}=N^{2}\left[\int d \lambda \rho(\lambda) V(\lambda)-\int d \lambda d \lambda^{\prime} \rho(\lambda) \rho\left(\lambda^{\prime}\right) \log \left|\lambda-\lambda^{\prime}\right|\right]
$$

For $N \rightarrow \infty:\langle\operatorname{tr} g(A)\rangle$ is dominated by the minimal ρ :

$$
V^{\prime}(\lambda)=2 \mathrm{P} \int d \lambda^{\prime} \frac{\rho\left(\lambda^{\prime}\right)}{\lambda-\lambda^{\prime}}
$$

- solve for ρ to get d.o.e. for the master matrix
- to first order then $\langle\operatorname{tr} g(A)\rangle=N \int d \lambda \rho(\lambda) g(\lambda) \bar{A}$
E.g. for $V(A)=\frac{1}{2} m^{2} A^{2} \rightarrow$ Wigner Semi-Circle distribution:

$$
\rho(\lambda)=\frac{2}{\pi\left(4 / m^{2}\right)^{2}} \sqrt{(4 / m)^{2}-\lambda^{2}}
$$

Summary

- Right QCD expansion parameter is $1 / N$
- Large N QCD gets simple (tree graphs)
- Mesons appear as particles, Baryons as solitons
- Explains many of strong interaction phenomena (often the only known general explanation)
- For $N=3$ it might be not such a bad approximation
- Summation of planar diagrams seems not feasible
- Master field is hopeful solution candidate

Literature

- S. Coleman: Aspects of Symmetry Cambridge University Press, 1985
- E. Witten: Baryons in the $1 / \mathbf{N}$ Expansion Nucl.Phys.B160:57, 1979
- A.V. Manohar: Large N QCD hep-ph/9802419, Lecture course 1997
Many new applications
- R. Gopakumar, D.J. Gross: Mastering the Master Field hep-th/9411021, 1994

