Homotopy Type Theory

Marc Bezem ${ }^{1}$
${ }^{1}$ Department of Informatics
Bergen University

Spring 2016

Practical Matters

- Lecturer: Marc Bezem (Baker Hall 152)
- Occasionally: guest lecturers?
- Place and time:
- Baker Hall 150
- Monday 13h30-16h30, exercises/lectures
- Wednesday 13h30-16h30, exercises/lectures
- Textbook (link): Homotopy Type Theory
- Lecture Notes: these slides HoTT.pdf + DTUA.pdf

Untyped Lambda Calculus

- A formalism for binding variables and substitution
- Binder Zoo: quantification, integrals, generalized products, functions, ...
- Terms: $M, N::=x|M N| \lambda x . M$
- Examples of terms: $y, \lambda x \cdot x, \lambda x \cdot(\lambda y \cdot x), \lambda x \cdot(\lambda y \cdot y(y x))$
- Binding x in M (lambda abstraction): $\lambda x . M$
- Intention to unbind (application): MN
- Actual unbinding (β-contraction): $(\lambda x . M) N \rightarrow M[x:=N]$
- Substitution:
- $x[x:=N] \equiv N$
- $y[x:=N] \equiv y(y \not \equiv x)$
- $\left(M M^{\prime}\right)[x:=N] \equiv(M[x:=N])\left(M^{\prime}[x:=N]\right)$
- $(\lambda y \cdot M)[x:=N] \equiv \lambda y .(M[x:=N])(y \not \equiv x$, avoiding caption $)$

Terminology and Notation

- Avoid caption by renaming bound variables
- Technically better, but hard to read (De Bruijn): f.e. $\lambda \lambda 1$
- Application left-associative: $M_{1} M_{2} \ldots M_{n} \equiv\left(\ldots\left(M_{1} M_{2}\right) \ldots M_{n}\right)$
- Abstraction right-associative : $\lambda x_{1} x_{2} \ldots x_{n} . M \equiv \lambda x_{1} .\left(\lambda x_{2} \ldots\left(\lambda x_{n} . M\right)\right)$
- Convenient combination: $\left(\lambda x_{1} x_{2} \ldots x_{n} . M\right) M_{1} M_{2} \ldots M_{n}$
- A free variable in a term is a variable that is not bound by a λ
- Reducible expression (redex): $(\lambda x . M) N$

Reduction

- Examples of contraction: $(\lambda x y . x) z \rightarrow \lambda y . z$, $(\lambda x y . x(x y)) f \rightarrow \lambda y . f(f y),(\lambda x . x x)(\lambda x . x x) \rightarrow \ldots$
- Reduction is contraction of a subterm (ind. def.): if $M \rightarrow M^{\prime}$, then $M N \rightarrow M^{\prime} N, N M \rightarrow N M^{\prime}, \lambda x . M \rightarrow \lambda x . M^{\prime}$
- Reductions may be iterated: $\xrightarrow{*}$ is the reflexive and transitive closure of \rightarrow (zero steps, one-step or many-step reduction)
- Convertibility: $=\beta$ is the transitive, symmetric and reflexive closure of \rightarrow
- Convertibility is a congruence wrt. application and abstraction
- THEOREM (confluence): if $M={ }_{\beta} N$, then M and N have a common reduct R, that is, $M \xrightarrow{*} R \stackrel{*}{\leftarrow} N$
- COR: lambda calculus is consistent, $\lambda x y . x \neq{ }_{\beta} \lambda x y . y$

Useful encodings

- Booleans: true $\equiv \lambda x y . x$, false $\equiv \lambda x y . y$
- Negation: $\neg \equiv \lambda b . b$ (false)(true)
- Conjunction: $\wedge \equiv \lambda b . b(\lambda x . x)(\lambda x$.false)
- Remarkable: \wedge false $x={ }_{\beta}$ false, but NOT $\wedge x$ fal $={ }_{\beta}$ false
- Natural numbers (Church): $\underline{0} \equiv \lambda f x . x, \underline{1} \equiv \lambda f x . f x$, $\underline{2} \equiv \lambda f x . f(f x) \ldots$, in general $\underline{n} \equiv \lambda f x . f^{n} x$
- Successor: $S \equiv \lambda n f x . n f(f x)$ (indeed $S \underline{0}={ }_{\beta} \underline{1}, S \underline{1}={ }_{\beta} \underline{2}, \ldots$)
- Addition: $+\equiv \lambda n m . n S m\left(+\underline{0} x={ }_{\beta} x\right.$, NOT $\left.+x \underline{0}={ }_{\beta} x\right)$
- Multiplication: $* \equiv \lambda n m . n(+m) \underline{0}$
- Exponentiation: $e \equiv \lambda n m . m(* n) \underline{1}$
- Fixpoint operator: $Y \equiv \lambda f .((\lambda x . f(x x))(\lambda x . f(x x)))$
- COR: lambda calculus is Turing complete
- COR: lambda calculus is 'inconsistent', $Y(\neg)={ }_{\beta} \neg(Y(\neg))$

Chapter 1 - Type Theory

- Judgment: $t: T$ (logical stuff inside t, T)
- Assumption: judgment of the form $x: T$ (x a variable)
- Context: list of assumptions Γ (with different variables)
- Typing: a judgment in a context, notation $\Gamma \vdash t: T$
- Example: $f: A \rightarrow A, x: A \vdash f(f x): A$
- Type theory: system of rules to derive typings
- Two notions of equality:
- definitional (or judgmental) equality: $a \equiv b(\beta, \eta, \iota, \delta, \ldots)$
- propositional equality (logical operations): a type $a={ }_{A} b$

Function types

- If A and B are types, then so is their function type $A \rightarrow B$
- Introduction rule:

$$
\frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x: A \cdot t: A \rightarrow B}
$$

- Elimination rule:

$$
\frac{\Gamma \vdash f: A \rightarrow B \quad \Gamma \vdash a: A}{\Gamma \vdash f a: B}
$$

- No product types needed (but they will come nevertheless):

$$
\frac{\Gamma, x: A, y: B \vdash t: C}{\Gamma, x: A \vdash \lambda y: B \cdot t: B \rightarrow C}
$$

Universes and families of types

- Universe of types: $\mathcal{U}, ' A$ is a type' becomes judgment $A: \mathcal{U}$
- Rather not $\mathcal{U}: \mathcal{U}$, but $\mathcal{U}_{0}: \mathcal{U}_{1}, \ldots$
- Formation rule for \rightarrow :

$$
\frac{\Gamma \vdash A: \mathcal{U} \quad \Gamma \vdash B: \mathcal{U}}{\Gamma \vdash A \rightarrow B: \mathcal{U}}
$$

- Introduction rule for functions:

$$
\frac{\Gamma \vdash A: \mathcal{U} \quad \Gamma \vdash B: \mathcal{U} \quad \Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x: A \cdot t: A \rightarrow B}
$$

- This includes:

$$
\frac{\Gamma \vdash U: \mathcal{U}_{1} \quad \Gamma \vdash U^{\prime}: \mathcal{U}_{1}}{\Gamma \vdash\left(U \rightarrow U^{\prime}\right): \mathcal{U}_{1}} \quad \frac{\vdash \mathcal{U}_{0}: \mathcal{U}_{1} \quad A: \mathcal{U}_{0} \vdash(A \rightarrow A): \mathcal{U}_{0}}{\vdash\left(\lambda A: \mathcal{U}_{0} . A \rightarrow A\right): \mathcal{U}_{0} \rightarrow \mathcal{U}_{0}}
$$

- Type family: $B: A \rightarrow \mathcal{U}$ with $A: \mathcal{U}$, example $B \equiv \lambda n: N a t . \mathbb{R}^{n}$

Dependent product types, aka П-types

- Given $A: \mathcal{U}, B: A \rightarrow \mathcal{U}$ and $a: A$, we have $B a: \mathcal{U}$
- Dependent product type: Пx:A. $B x$ (or ПAB)
- Formation rule for П-type:

$$
\frac{\Gamma \vdash A: \mathcal{U} \quad \Gamma \vdash B: A \rightarrow \mathcal{U}}{\Gamma \vdash \Pi x: A \cdot B x: \mathcal{U}}
$$

- Introduction rule for П-type:

$$
\frac{\Gamma \vdash A: \mathcal{U} \quad \Gamma \vdash B: A \rightarrow \mathcal{U} \quad \Gamma, x: A \vdash t: B x}{\Gamma \vdash \lambda x: A \cdot t: \Pi x: A . B x}
$$

- $\Pi_{\text {-type }}$ is the type of dependent functions (co-domain varies), examples: element of infinite product, $\lambda n: N a t . \overrightarrow{0}(n): \Pi$ Nat B
- Elimination rule for Π-types:

$$
\frac{\Gamma \vdash f: \Pi x: A \cdot B x: \mathcal{U} \quad \Gamma \vdash a: A}{\Gamma \vdash f a: B a} \text { so, e.g., } \overrightarrow{0}(3): \mathbb{R}^{3}
$$

Type constructors

- Type Zoo is ever extending (social process!)
- Type constructors, so far: \rightarrow, П
- Actually, $A \rightarrow B$ is a special case: $\Pi A(\lambda x: A . B)$
- How to systematically manage the Type Zoo
- Name a new type constructor
- Formation: how to construct types with the new constructor
- Introduction: how to construct elements of the new type
- Elimination: how to destruct (work with) these elements
- Computation: how to simplify desconstruction (β, ι)
- Optional: uniqueness principle for condestruction (η)
- Example: \rightarrow, abstraction, application, β-, η-reduction $(\lambda x . t) a \rightarrow_{\beta} t[x:=a], \lambda x . f x \rightarrow_{\eta} f$

Products (1)

- Type constructor: \times, idea: cartesian product
- Formation rule for (non-dependent) product:

$$
\frac{A: \mathcal{U} B: \mathcal{U}}{A \times B: \mathcal{U}}
$$

- Introduction rule for product:

$$
\frac{a: A: \mathcal{U} \quad b: B: \mathcal{U}}{(a, b): A \times B}
$$

- Elimination rules for product:

$$
\frac{p: A \times B}{p r_{1} p: A} \quad \frac{p: A \times B}{p r_{2} p: B}
$$

- Computation rules for pairs and projections:
- $p r_{1}(a, b) \rightarrow_{\iota} a, p r_{2}(a, b) \rightarrow_{\iota} b$
- Optional: $\left(p r_{1} p, p r_{2} p\right) \rightarrow_{\eta} p$

Products (2)

- We can infer the following jugment:

$$
\lambda f: A \rightarrow B \rightarrow C \cdot \lambda p: A \times B \cdot f\left(p r_{1} p\right)\left(p r_{2} p\right):(A \rightarrow B \rightarrow C) \rightarrow(A \times B \rightarrow C)
$$

- As an alternative to the $p r_{i}$'s, we can postulate:

$$
\operatorname{rec}_{A \times B}: \Pi C: \mathcal{U} .(A \rightarrow B \rightarrow C) \rightarrow(A \times B \rightarrow C)
$$

- ... and recover the projections:
- $p r_{1} \equiv \operatorname{rec}_{A \times B} A(\lambda a: A . \lambda b: B . a): A \times B \rightarrow A$
- $p r_{2} \equiv \operatorname{rec}_{A \times B} B(\lambda a: A . \lambda b: B . b): A \times B \rightarrow B$
- Computation rule for the recursor:

$$
\operatorname{rec}_{A \times B} C g(a, b) \rightarrow_{\iota} g a b
$$

- This works well in general, we like recursors

Products (3)

- Syntactic sugar can impair understanding: pair $:=g$

$$
\operatorname{rec}_{A \times B} C g(\text { pair } a b) \rightarrow_{\iota} g a b
$$

- Keep in mind: recursor replaces constructor by other term
- Still possible: $A=\{a\}, B=\{b\}, A \times B=\{(a, b), p\}, p r_{1} p=a, p r_{2} p=b$
- Will be solved (propositionally) by an induction principle (dependent version of $\operatorname{rec}_{A \times B}$)
- This also helps: $\left(p r_{1} p, p r_{2} p\right) \rightarrow_{\eta} p$
- Q: how does this relate to cartesian products in category theory?

Products (0)

- Formation: $\mathbf{1}: \mathcal{U}$, idea: empty product
- Introduction: \star : $\mathbf{1}$
- Elimination: rec $_{\mathbf{1}}$: ПС: $\mathcal{U} . C \rightarrow \mathbf{1} \rightarrow C$
- Computation: $\left(r e c_{1} C c \star\right) \rightarrow_{\iota} c$
- $\mathrm{Q}: \star \rightarrow_{\eta}$?

Induction

- We can infer the following jugment (short):

$$
f: \Pi x: A . \Pi y: B . C(x, y) \vdash \lambda p . f\left(p r_{1} p\right)\left(p r_{2} p\right): \Pi p: A \times B . C\left(p r_{1} p, p r_{2} p\right)
$$

- ... but NOT the following jugment:

$$
f: \Pi x: A . \Pi_{y}: B \cdot C(x, y) \vdash \lambda p . f\left(p r_{1} p\right)\left(p r_{2} p\right): \Pi p: A \times B \cdot C p
$$

- \ldots unless we have $\left(p r_{1} p, p r_{2} p\right) \rightarrow_{\eta} p$, or postulate:

$$
\operatorname{ind}_{A \times B}: \Pi C: A \times B \rightarrow \mathcal{U} .((\Pi x: A . П y: B . C(x, y)) \rightarrow \Pi p: A \times B . C p)
$$

- Computation rule for the dependent eliminator (induction):

$$
\operatorname{ind}_{A \times B} C f(a, b) \rightarrow_{\iota} f a b
$$

- We like induction (but it does not give us $\left.\left(p r_{1} p, p r_{2} p\right) \rightarrow_{\eta} p\right)$

Induction on \star and more

- Formation: $\mathbf{1}: \mathcal{U}$, idea as a set: $\{\star\}$
- Introduction: \star : $\mathbf{1}$
- Dependent elimination: ind $_{1}: \Pi С: \mathbf{1} \rightarrow \mathcal{U} . C_{\star} \rightarrow \Pi x: \mathbf{1} . C_{x}$
- Computation: (ind ${ }_{1} C \subset \star$) $\rightarrow_{\iota} c$
- Provable (short): $r e f I_{\star}:\left(\star={ }_{1} \star\right) \vdash \operatorname{ind}_{1}(\lambda x: 1 .(x=1 \star)) r e f l_{\star}: \Pi x: 1 .\left(x={ }_{1 \star}\right)$
- Computation: $\operatorname{ind}_{1}(\lambda x: 1 .(x=1 \star))$ refl $_{\star} \star \rightarrow_{\iota}$ refl $_{\star}$
- Define: $C \equiv \lambda p: A \times B .\left(p r_{1} p, p r_{2} p\right)={ }_{A \times B} p$
- On the blackboard: inhabitant of $\Pi p: A \times B . C p$
- More on equality types and refl later

Dependent pairs and Σ-types

- Dependent pair (a, b) : type of b depends on $a, b: B a$
- Σ-type, type of dependent pairs: $\Sigma x: A$. $B x$ (or $\Sigma A B$)
- $\Sigma x: A$. $B x$ where $B: A \rightarrow U$ can be seen as an indexed sum
- Formation rule for \sum-type:

$$
\frac{A: \mathcal{U} \quad B: A \rightarrow \mathcal{U}}{\sum x: A \cdot B x: \mathcal{U}}
$$

- Introduction rule for \sum-type:

$$
\frac{A: \mathcal{U} \quad B: A \rightarrow \mathcal{U} \quad a: A \quad b: B a}{(a, b): \Sigma x: A \cdot B x}
$$

- Elimination rules for Σ-types:

$$
\frac{d: \sum x: A \cdot B x: \mathcal{U}}{p r_{1} d: A} \quad \frac{d: \sum x: A \cdot B x: \mathcal{U}}{p r_{2} d: B\left(p r_{1} d\right)}
$$

Recursion and induction for \sum-types

- Define the recursor:

$$
\operatorname{rec}_{\Sigma A B}: \Pi C: \mathcal{U} .(\Pi x: A \cdot(B x \rightarrow C)) \rightarrow(\Sigma A B \rightarrow C)
$$

- ... and recover the first projection:
- $\operatorname{pr}_{1} \equiv \operatorname{rec}_{\Sigma A B} A(\lambda a b . a): \Sigma A B \rightarrow A$
- Define the dependent eliminator:

$$
\operatorname{ind}_{\Sigma A B}: \Pi C:(\Sigma A B \rightarrow \mathcal{U}) .\left(\Pi x: A . \Pi_{y}: B x . C(x, y)\right) \rightarrow\left(\Pi_{p: \Sigma} A B . C p\right)
$$

- ... and recover also the second (dependent) projection:

$$
p r_{2} \equiv \operatorname{ind}_{\Sigma A B}\left(\lambda p: \Sigma A B . B\left(p r_{1} p\right)\right)(\lambda a b . b): \Pi p: \Sigma A B \cdot B\left(p r_{1} p\right)
$$

- Computation rules: rec/ind ${ }_{\Sigma A B} C g(a, b) \rightarrow_{\iota} g a b$

The Axiom of Choice

- For $A: \mathcal{U}, B: \mathcal{U}, R: A \rightarrow B \rightarrow \mathcal{U}$, find ac with ac : $(\Pi x: A . \Sigma y: B . R x y) \rightarrow \Sigma f: A \rightarrow B . \Pi x: A . R x(f x)$
- we discuss this on the blackboard (see 1.6 of the book)

Use of \sum-types (and other types)

- A group is a set with operations satisfying axioms
- A \sum-type: $\sum A: \mathcal{U}$. $(A \rightarrow A \rightarrow A) \times((A \rightarrow A) \times A)$
- This captures only the signature
- We let products and pairs associate to the right
- We assume sensible precedence rules
- Taking one group axiom into account:

$$
\Sigma A: \mathcal{U} . \Sigma m: A \rightarrow A \rightarrow A . \Sigma i: A \rightarrow A . \Sigma u: A .\left(\Pi x: A . m u x={ }_{A} x\right)
$$

- More axioms:

$$
\Sigma A: \mathcal{U} . \Sigma m: A \rightarrow A \rightarrow A . \Sigma i: A \rightarrow A . \Sigma u: A .(A \times 1 \times A \times 2 \times \ldots)
$$

- This can be considered to be the type of groups

Coproducts

- Type constructor: +, idea: disjoint union
- Formation rule for coproduct:

$$
\frac{A: \mathcal{U} B: \mathcal{U}}{A+B: \mathcal{U}}
$$

- Introduction rules for coproduct:

$$
\frac{a: A: \mathcal{U}}{i n l a: A+B} \quad \frac{b: B: \mathcal{U}}{\operatorname{inr} b: A+B}
$$

- Elimination rule for coproduct:

$$
\frac{s: A+B \quad f: A \rightarrow C \quad g: B \rightarrow C}{\text { case sf } g: C}
$$

- Computation rules for coproducts and injections:
- case (inl a) $f g \rightarrow_{\iota}$ fa, case (inr b) $f g \rightarrow_{\iota} g b$
- Optional: case s inl inr $\rightarrow_{\eta} s$

Recursion and induction for +

- We prefer a recursor:

$$
\operatorname{rec}_{A+B}: \Pi C: \mathcal{U} .(A \rightarrow C) \rightarrow(B \rightarrow C) \rightarrow A+B \rightarrow C
$$

- ... and define: case $\quad f g \equiv \operatorname{rec}_{A+B} f g$
- We define a dependent eliminator ind $_{A+B}$ of type:
$\Pi С: A+B \rightarrow \mathcal{U} .(\Pi x: A . C($ inl $x)) \rightarrow(\Pi y: B . C(i n r y)) \rightarrow \Pi s: A+B . C s$
- Computation rules:
- rec/ind ${ }_{A+B} C f g(i n l a) \rightarrow_{\iota} f a$
- rec/ind $A_{A+B} C f g($ inr $b) \rightarrow_{\iota} g b$

The empty coproduct

- Formation: $\mathbf{0}: \mathcal{U}$, set analogue: \emptyset
- Introduction: nope
- Elimination:
- rec $\mathbf{0}_{0}:$ ПС: $\mathcal{U} . \mathbf{0} \rightarrow$ C
- ind $: \Pi С: \mathbf{0} \rightarrow \mathcal{U} . П x: \mathbf{0} . C x$
- Computation rules: none ($\mathrm{rec}_{0} C s \rightarrow$?)
- Induction principle known as ex falso [[sequitur] quodlibet] (C)
- $\left(r e c_{0} \mathbf{0}\right)$ and $(\lambda x: \mathbf{0} \cdot x)$ are only extensionally equal

Booleans

- $\mathbf{2}=\mathbf{1}+\mathbf{1}$ (p. 45), beating Principia Mathematica (p. 362!)
- Formation: $\mathbf{2 : U}$
- Introduction: $0_{2}: \mathbf{2}, 12: 2$
- Elimination:
- rec $2:$ ПС:U.C $\rightarrow \mathrm{C} \rightarrow \mathbf{2} \rightarrow \mathrm{C}$
- ind $2: \Pi C: 2 \rightarrow \mathcal{U} . C\left(0_{2}\right) \rightarrow C\left(1_{2}\right) \rightarrow \Pi x: 2 . C x$
- Computation:
- ind $/ r^{2} c_{2} C c_{0} c_{1} 0_{2} \rightarrow c_{0}$, ind $/ \operatorname{rec}_{2} C c_{0} c_{1} 1_{2} \rightarrow c_{1}$
- Exercise:
$-\operatorname{refl}_{0}:\left(0_{2}={ }_{2} 0_{2}\right)$, reff $1:\left(1_{2}={ }_{2} 1_{2}\right) \vdash$? : $\Pi x: 2 .\left(x={ }_{2} 0_{2}\right)+\left(x={ }_{2} 1_{2}\right)$
- Discussion:
- ($\left.\quad 2\left(\operatorname{Rec}_{2} \mathcal{U} A B\right)\right),\left(\Sigma 2\left(\operatorname{Rec}_{2} \mathcal{U} A B\right)\right)$
- $A \rightarrow \mathbf{2}$: 'decidable subsets' of $A: \mathcal{U}$

Natural numbers

- Formation: $\mathbb{N}: \mathcal{U}$
- Introduction: $0: \mathbb{N}$ and $S_{x}: \mathbb{N}$ if $x: \mathbb{N}$
- Elimination:
- $i_{\mathbb{N}}: \Pi С: \mathcal{U} . C \rightarrow(C \rightarrow C) \rightarrow \mathbb{N} \rightarrow C$
- $\operatorname{rec}_{\mathbb{N}}: \Pi C: \mathcal{U} . C \rightarrow(\mathbb{N} \rightarrow C \rightarrow C) \rightarrow \mathbb{N} \rightarrow C$
$\operatorname{ind}_{\mathbb{N}}: \Pi C: \mathbb{N} \rightarrow \mathcal{U} . C 0 \rightarrow(\Pi x: \mathbb{N} . C x \rightarrow C(S x)) \rightarrow \Pi x: \mathbb{N} . C x$
- Computation:
- $i t_{\mathbb{N}} C c f 0 \rightarrow_{\iota} c, i t_{\mathbb{N}} C c f(S x) \rightarrow_{\iota} f\left(i t_{\mathbb{N}} C c f x\right)$
- $\operatorname{rec}_{\mathbb{N}} C c f 0 \rightarrow{ }_{\iota} c, r e c_{\mathbb{N}} C c f(S x) \rightarrow_{\iota} f x\left(r e c_{\mathbb{N}} C c f x\right)$
- induction ind \mathbb{N} has the same rules as $r c_{\mathbb{N}}$
- Interdefinable: $i t_{\mathbb{N}}$ (iterator) and $\operatorname{rec}_{\mathbb{N}}$ (primitive recursion)

Useful encodings

- Example: double $\equiv i t_{\mathbb{N}} \mathbb{N} 0(\lambda x: \mathbb{N} . S(S x))$
- double $0 \rightarrow$ っ 0
- double $(S n) \rightarrow_{\iota}(\lambda x: \mathbb{N}$. $S(S x))($ double $n) \rightarrow_{\beta} S(S($ double $n))$
- Right-recursive addition: add $\equiv \lambda x: \mathbb{N} . i t_{\mathbb{N}} \mathbb{N} \times S$
- Left-recursive addition:

$$
\begin{aligned}
\operatorname{adl} \equiv & \equiv i t_{\mathbb{N}}(\mathbb{N} \rightarrow \mathbb{N})(\lambda x: \mathbb{N} . x)(\lambda f: \mathbb{N} \rightarrow \mathbb{N} . S \circ f) \\
\text { - } & \operatorname{adl} 0 \rightarrow_{\iota} \lambda x: \mathbb{N} . x \text {, so adl } 0 m \rightarrow_{\iota} m \\
- & \operatorname{adl}(S n) \rightarrow_{\iota} S \circ(\text { adl } n) \text {, so } \\
& \operatorname{adl}(S n) m \rightarrow_{\iota}(S \circ(\text { adl } n)) m \rightarrow_{\beta} S(\text { adl } n m)
\end{aligned}
$$

- Right-recursive multiplication:

$$
m u l t \equiv \lambda x, y: \mathbb{N} . i t_{\mathbb{N}} \mathbb{N} 0(a d d x) y
$$

Proofs by induction

- We prove in the context ...
- $\operatorname{refl}_{\mathbb{N}}: \Pi x: \mathbb{N} .\left(x={ }_{\mathbb{N}} x\right)$ (later: axiom)
- funcS: $\Pi x, y: \mathbb{N} .\left(x={ }_{\mathbb{N}} y\right) \rightarrow\left(S x={ }_{\mathbb{N}} S y\right)$ (later: provable)
- ... on the blackboard:
- + ? : $\Pi x: \mathbb{N}$. $(\operatorname{add} 0 x=\mathbb{N} x))$
$-\vdash ?: \Pi x: \mathbb{N}$. (double $($ add $x(S 0))={ }_{\mathbb{N}} S(S($ double $\left.x))\right)$
$-\vdash ?: \Pi x: \mathbb{N} .\left(a d d x 0={ }_{\mathbb{N}} x\right)$ (no induction needed!)
- Discussion

Pattern Matching

- Instead of $f \equiv \operatorname{rec}_{A+B} \subset g_{0} g_{1}$:

$$
\left\{\begin{array}{l}
f(\text { inl } a)=g_{0} a \\
f(i n r b)=g_{1} b
\end{array}\right.
$$

- Instead of

$$
f \equiv r e c_{A \times B} C \lambda a: A . \lambda b: B .(\text { a term of type } C \text { in } a \text { and } b):
$$

$$
f(a, b)=(\text { a term of type } C \text { in } a \text { and } b)
$$

- Instead of double $\equiv i t_{\mathbb{N}} \mathbb{N} 0(\lambda x: \mathbb{N} . S(S x))$:

$$
\begin{cases}\text { double } 0 & =0 \\ \text { double }(S x) & =S(S(\text { double } x))\end{cases}
$$

- ... and of course not

$$
\begin{cases}f 0 & =0 \\ f(S x) & =f(S(S(x)))\end{cases}
$$

Propositions as Types

- Correspondence:

true	false	if then $_{-}$	not $_{-}$	and	or	for all ...	exists ...
$\mathbf{1}$	$\mathbf{0}$	$-\rightarrow-$	$-\rightarrow \mathbf{0}$	\times	+	$\Pi x: A . P_{x}$	$\sum x: A . P x$

- We prove some constructive tautologies on the blackboard
- E.g., (Пx:A. Пy:A. $(P x \rightarrow Q x y)) \rightarrow \Pi x: A .(P x \rightarrow \Pi y: A . Q x y)$

Identity Types

- Formation: $\operatorname{ld}_{A} a b: \mathcal{U}$ if $A: \mathcal{U}$ and $a, b: A$
- Notation: $I d_{A} a b$ or $a={ }_{A} b$ or even just $a=b$
- Introduction: refl : Пx: $A . I_{A} \times x$, notation refla for (refl a)
- Elimination: ind ${ }_{l d_{A}}$ has type 'for every unary predicate C on the path space of A, and every function mapping points x to a proof of $C\left(x, x, r e f I_{x}\right)$, there exists a function mapping paths (x, y, p) with $p: x=A y$ to a proof of $C(x, y, p)^{\prime}$ (book!)
- Computation: ind ${ }_{l d_{A}} C c x \times r e f l_{x} \rightarrow_{\iota} c x$
- Example: with $C \equiv \lambda x, y: A \cdot \lambda p:\left(x={ }_{A} y\right) .\left(y={ }_{A} x\right)$ we get

$$
\operatorname{ind}_{I_{A}} C \text { refl : } \Pi x, y: A \cdot\left(x==_{A} y \rightarrow y=A x\right)
$$

Path induction and based path induction

- Path induction (two lines): $\Pi \subset:\left(\Pi x, y: A \cdot\left(x={ }_{A} y \rightarrow \mathcal{U}\right)\right)$.

$$
\left(\Pi x: A . C x \times r e f I_{x}\right) \rightarrow\left(\Pi x, y: A \cdot \Pi p:\left(x={ }_{A} y\right) . C x y p\right)
$$

- Based path induction: Па:А. ПС:(Пу:А. $(a=A y \rightarrow \mathcal{U}))$.

$$
\text { C a refla } \rightarrow(П y: А . П p:(a=A y) . C \text { y } p)
$$

- Equivalence on the blackboard (book!):
- Path induction follows easily from based path induction
- Based path induction follows from one 'universal' instance of path induction, 'pulling out' $П y: A . П p:\left(a={ }_{A} y\right)$.-
D ау $p \equiv П С:(П y: A .(a=A y \rightarrow \mathcal{U})) . C$ arefla \rightarrow С ур

Homotopy theory

- Path in a topological space X : continuous map $[0,1] \rightarrow X$
- Problem for the foundations: $[0,1]$
- HoTT = synthetic homotopy theory
- Striking: induction for identity types fits very well
- Pointwise equality of paths too fine (2-way trip = stay home?)
- Homotopy between $p, q:[0,1] \rightarrow X$: a continuous
$H:[0,1] \times[0,1] \rightarrow X$ such that $H(t, 0)=p(t), H(t, 1)=q(t)$
- Picture: image of square 'fills space between p and q in X '
- Example: $h(t)=1-|1-2 t|, H(t, z)=z \cdot h(t)$.

More homotopy theory

- Path $p:[0,1] \rightarrow X$, start point $p(0)$, end point $p(1)$
- Loop: $p(0)=p(1)$, loop at $x_{0}: p(0)=x_{0}=p(1)$
- Based homotopy: as above, with $H(0, y)=x_{0}=H(1, y)$
- Q: homotopic loops at x_{0} that are not based homotopic?
- Fundamental group: loops at x_{0} modulo based homotopy
- Homotopy between $f, g: X \rightarrow Y$: easy generalization
- Homotopy between X, Y in TOP: $f: X \rightarrow Y, g: Y \rightarrow X$, $f \circ g$ and $i d_{Y}$ homotopic, $g \circ f$ and $i d_{X}$ homotopic
- Invariant: homotopic spaces have isomorphic fundamental groups (for every $x \in X$ we have $\pi_{1}(X, x) \cong \pi_{1}(Y, f(x))$)

Higher dimensional paths

- Homotopies: " paths between paths", 2-dimensional paths
- Homotopies form a topological space (Q: how?)
- Paths between homotopies: 3-dimensional paths
- ... and so on, an infinite tower called ∞-groupoid
- Weak groupoid (only up to homotopy), not group
- Q: how to compose $p, q:[0,1] \rightarrow X$ if $p(1) \neq q(0)$?

Homotopy type theory

- Path in a type $A: p: x=A y$
- 2-Path in a type A : path in $x={ }_{A} y$, for $x, y: A$
- More explicitly: $p 2 q: p={ }_{x=A y} q$, for $p, q: x={ }_{A} y$
- What about the groupoid structure?
- ${ }_{-}^{-1} \equiv$ ind $_{l d_{A}} C$ refl $x y:\left(x={ }_{A} y \rightarrow y={ }_{A} x\right)$, with $C \equiv \lambda x, y: A \cdot \lambda p:\left(x={ }_{A} y\right) \cdot\left(y={ }_{A} x\right)$, satisfies refl $_{a}{ }^{-1}={ }_{\iota}$ refl $_{a}$
- Concatenation operator ${ }_{-} .^{-}(x=y) \rightarrow(y=z) \rightarrow(x=z)$
- LEM: for all $A: \mathcal{U}, x, y, z, w: A, p: x=y, q: y=z, r: z=w$

1. $p=r e f f_{x} \cdot p=p \cdot r e f l_{y}$
2. $p \cdot p^{-1}=$ refl $_{x}, p^{-1} \cdot p=$ refl $_{y}$
3. $\left(p^{-1}\right)^{-1}=p$
4. $p \cdot(q \cdot r)=(p \cdot q) \cdot r$

- Proofs on blackboard

Loop spaces

- Loop space: $\Omega(A, a) \equiv\left(a={ }_{A} a\right)\left(\right.$ with refla $\left.: a={ }_{A} a\right)$
- NOT provable: $\Pi p:\left(a=A\right.$ a). $p={ }_{\left(a={ }_{A} a\right)}$ refl $_{a}$
- Group: $\Omega(A, a)$, refl $_{a}$, - $^{\cdot},-^{-1}($ modulo $=\Omega(A, a))$
- This group is not necessarily commutative
- The loop space of the loop space:

$$
\Omega^{2}(A, a) \equiv\left(\text { refl }_{a}={ }_{(a=A)} \text { refl }_{a}\right)
$$

- THM 2.1.6 (Eckmann-Hilton): $\Omega^{2}(A, a)$ is commutative
- Book: picture good, proof improved in current version (09/13)
- Fair attempt on the blackboard: by based path induction

Па, $b: A, p, q:(a=b), \alpha:(p=q) . П c: A \cdot \Pi r:(b=c) \cdot p \cdot r=q \cdot r$

- ... and a lot more (proof assistant dearly missed)

Q to the topologists

If we have full freedom of definition, then we can define the following predicate on the path space of some topological space X :

$$
C x y p \equiv\left(x=y \wedge p=r e f I_{x}\right)
$$

By path induction: all continuous $p:[0,1] \rightarrow X$ are constant. Restrict path induction to continuous C, that is, C boolean valued and continuous wrt the discrete topology on the booleans. Q: what is the simplest (or: a simple) topological space X validating path induction, but not all paths constant? (A: $[0,1]$)

Pointed types and loop spaces

- $\mathcal{U}_{\bullet} \equiv \Sigma A: \mathcal{U} . A$
- Pointed type: $(A, a) \in \mathcal{U}_{\bullet}$ for $A \in \mathcal{U}$ and $a \in A$
- Pointed loop space: $\Omega(A, a) \equiv\left(\left(a={ }_{A} a\right)\right.$, refla $\left.{ }_{a}\right)$
- Iterated: $\Omega^{0}(A, a) \equiv(A, a)$,

$$
\Omega^{n+1}(A, a) \equiv \Omega^{n}(\Omega(A, a))
$$

- $\Omega^{2}(A, a) \equiv \Omega\left(\left(a=_{A} a\right)\right.$, refl $\left._{a}\right) \equiv\left(\right.$ refl $_{a}={ }_{\left(a==_{A}\right)} r$ refl ${ }_{a}$, refl $\left._{r e f I_{a}}\right)$

Functions as functors

- Type A as a category:
- Objects a: A
- Arrows $p: a={ }_{A} b$ for $a, b: A$
- Function $f: A \rightarrow B$ as a functor (in TOP: f continuous)
- LEM: For all $x, y: A$ there is $a p_{f}:(x=A y) \rightarrow\left(f x={ }_{B} f y\right)$
- Proof: easy path induction $\left(a p_{f} r e f_{x}={ }_{\iota}\right.$ refl $\left._{f_{x}}\right)$
- Shorthand: $f(p) \equiv\left(a p_{f} p\right)$ (application, action on paths)
- LEM: for all $f: A \rightarrow B, g: B \rightarrow C, p: x=A y, q: y={ }_{A} z$

1. $f(p \cdot q)={ }_{f x=}{ }_{f z} f(p) \cdot f(q)$
2. $f\left(p^{-1}\right)==_{f y=A} f_{x} f(p)^{-1}$
3. $g(f p)=g(f x)=c g(f y)(g \circ f)(p)$
4. $i d_{A} X={ }_{\beta} x, i d_{A}(p)==_{x=A y} p$

Transport

- Functor $f: A \rightarrow B$ maps paths in A to paths in B
- For $B: A \rightarrow \mathcal{U}$ and $f: \Pi x: A$. $B x$ this is not so easy \ldots
- ... because $B x$ and $B y$ are different types
- Type family $B: A \rightarrow \mathcal{U}$ is a non-dependent function (of types)
- LEM: for all $x, y: A$ and $p: x=_{A} y$ there is $p_{*}: B x \rightarrow B y$
- Proof: easy path induction $\left(\left(\text { refl }_{x}\right)_{*}={ }_{\iota} i d_{B x}\right)$
- Longhand: transport ${ }^{B} p \equiv p_{*}$, so transport ${ }^{B} p: B x \rightarrow B y$
- We can now lift paths in A to the total space $\Sigma A B$ (picture)
- COR: for all $x, y: A, p: x={ }_{A} y, u: B x$ there is

$$
\operatorname{lift}(u, p):(x, u)=\left(y, p_{*} u\right)
$$

- Type family B : fibration with base A
- Q: actually, the fibration is fst : $(\Sigma A B) \rightarrow A$

Heavy transport

- Picture of transport with dependent function $f: \Pi x: A . B x$
- LEM: for all $x, y: A$ and $p: x={ }_{A} y$ there is
$\operatorname{apd}_{f}:\left(x={ }_{A} y\right) \rightarrow\left(p_{*}(f x)={ }_{B y} f y\right)$ with $a p d_{f}$ refl $_{x}={ }_{\iota}$ refl $_{f x}$
- LEM: if $P: A \rightarrow \mathcal{U}$ with $P x=B$ fixed, then for all $x, y: A$, $p: x={ }_{A} y$ and $b: B$ there is $t p c_{p}^{B} b:$ transport $^{P} p b={ }_{B} b$
- LEM: for $f: A \rightarrow B$ and $p: x={ }_{A} y$ we have

$$
\operatorname{apd}_{f}(p)=\left(t p c_{p}^{B}(f x)\right) \cdot\left(a p_{f} p\right)
$$

- LEM: if $P: A \rightarrow \mathcal{U}, p: x={ }_{A} y, q: y={ }_{A} z$, and $u: P x$, then

$$
\left(q_{*} \circ p_{*}\right) u=(p \cdot q)_{*} u
$$

- LEM: if $f: A \rightarrow B, P: B \rightarrow \mathcal{U}, p: x=A y$, and $u: P(f x)$,

$$
\text { transport }^{P \circ f} p u=\text { transport }^{P} f(p) u
$$

- LEM 2.3.11: book

Homotopies

- DEF: Let $f, g: \Pi x: A$. Px for $P: A \rightarrow \mathcal{U}$. A homotopy from f to g is a dependent function of type $f \sim g$, where

$$
(f \sim g) \equiv \Pi x: A . f x=P_{x} g x
$$

- NB: $f \sim g$ is NOT the same as $f={ }_{\Pi \times: A . P x} g$
- LEM: homotopy is an equivalence relation:
- ?r: $\Pi f:(\Pi x: A . P x) .(f \sim f)$
- ?s: $\Pi f, g:(\Pi x: A . P x) \cdot(f \sim g \rightarrow g \sim f)$
- ?t: $\Pi f, g, h:(\Pi x: A . P x) .(f \sim g \rightarrow(g \sim h \rightarrow f \sim h))$
- LEM: if $H: f \sim g$ for $f, g: A \rightarrow B$, and $p: x=A y$, then $H x \cdot g(p)=f(p) \cdot H y$ (naturality, picture, proof by induction)
- COR: if $H: f \sim i d_{A}$ for $f: A \rightarrow A$, and $x: A$, then $H(f x)=f(H x)$ (picture, proof by cancelling $H x$)

Equivalences

- DEF: For $f: A \rightarrow B$, a quasi-inverse is a triple (g, α, β) with $g: B \rightarrow A$ and $\alpha: g \circ f \sim i d_{A}, \beta: f \circ g \sim i d_{B}$.
- DEF: the type qinv (f) of quasi-inverses of f is

$$
\Sigma g: B \rightarrow A .\left(\left(f \circ g \sim i d_{B}\right) \times\left(g \circ f \sim i d_{A}\right)\right)
$$

- Examples:
- ? : $\operatorname{qinv}\left(i d_{A}\right)$ for $i d_{A}: A \rightarrow A$
- ?: $\operatorname{qinv(p\cdot _)\text {for}p^{\cdot }:~:y=z\rightarrow x=z~}$
- ? : qinv(transport P_{p}^{P}) for transport $P_{p}^{P}: P x \rightarrow P y$
- qinv not well-behaved: nonequal inhabitants

Equivalences and Univalence

- DEF: For $f: A \rightarrow B$, the type $\operatorname{isequiv}(f)$ is

$$
\left(\Sigma g: B \rightarrow A .\left(f \circ g \sim i d_{B}\right)\right) \times\left(\Sigma h: B \rightarrow A .\left(h \circ f \sim i d_{A}\right)\right)
$$

- LEM: (i) $\operatorname{qinv}(f) \rightarrow \operatorname{isequiv}(f)$; (ii) isequiv $(f) \rightarrow \operatorname{qinv}(f)$
- Proof: (i) take $g=h$; (ii) use $g \sim h \circ f \circ g \sim h$
- LEM: for all e_{1}, e_{2} : isequiv (f) we have $e_{1}={ }_{i s e q u i v(f)} e_{2}$
- Proof: postponed (interaction between $=$ and \times, Σ)
- DEF: $(A \simeq B) \equiv \Sigma f: A \rightarrow B$. isequiv (f)
- LEM: For all $A, B: \mathcal{U}$ there is idtoeqv : $(A=\mathcal{U} B) \rightarrow(A \simeq B)$
- Proof: by induction, using isequiv $\left(i d_{A}\right)$
- Univalence Axiom: for all $A, B: \mathcal{U}$, isequiv(idtoeqv); hence:

$$
(A=\mathcal{U} B) \simeq(A \simeq B)
$$

Type equivalence

- An equivalence e $: A \simeq B$ is a pair (f, p) with $f: A \rightarrow B$ and p : isequiv (f); sometimes p is left implicit
- LEM: Type equivalence is an equivalence relation on \mathcal{U} :
- For any $A: \mathcal{U}, i d_{A}: A \rightarrow A$ is an equivalence
- For any $f: A \simeq B$ we have an equivalence $f^{-1}: B \simeq A$
- For any $f: A \simeq B$ and $g: B \simeq C$ we have $g \circ f: A \simeq C$
- Proofs:
- $_{-1 d_{A}}: A \rightarrow A$ is its own quasi-inverse; hence an equivalence
- If $f: A \rightarrow B$ is an equivalence, it has a quasi-inverse
$f^{-1}: B \rightarrow A$, which is also an equivalence
- If $f: A \simeq B$ and $g: B \simeq C$, take their quasi-inverses \ldots

Structuralism

- Will turn out very different:
- 'Two pairs are equal if they are componentwise equal'
- 'Two functions are equal if they are pointwise equal'
- Type formers: $\times,+, \Sigma, \Pi, \mathcal{U}, \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbb{N}$, Id
- A lot of structural properties to investigate:
- equality (example: lemma below)
- transport
- action on path
- LEM: $\left(x={ }_{A \times B} y\right) \simeq\left(\left(p r_{1} x=A p r_{1} y\right) \times\left(p r_{2} x={ }_{B} p r_{2} y\right)\right)$
- Proof on the blackboard

Equality in cartesian products

- LEM: $\left(x={ }_{A \times B} y\right) \simeq\left(\left(p r_{1} x={ }_{A} p r_{1} y\right) \times\left(p r_{2} x={ }_{B} p r_{2} y\right)\right)$
- Proof: $\operatorname{isequiv}\left(\lambda p:\left(x={ }_{A \times B} y\right)\right.$. $\left.\left(p r_{1}(p), p r_{2}(p)\right)\right)$, by:

1. define the function in the 'other' direction (notation: pair ${ }^{=}$)
2. prove that pair ${ }^{=}$is a quasi-inverse

- pair $=$: introduction rule for $x=A \times B y$, elimination:

$$
\begin{aligned}
& \text { 1. } a p_{p r_{1}}:(x=A \times B y) \rightarrow\left(p r_{1} x==_{A} p r_{1} y\right) \\
& \text { 2. } a p_{p r_{2}}:(x=A \times B y) \rightarrow\left(p r_{2} x==_{B} p r_{2} y\right)
\end{aligned}
$$

- yielding propositional computation rules:

$$
\begin{array}{ll}
\text { 1. }\left(\begin{array}{ll}
& \left(p_{p r_{1}}\left(\operatorname{pair}^{=}(p, q)\right)\right)=p
\end{array}\right. & \text { for } p:\left(p r_{1} x=A p r_{1} y\right) \\
\text { 2. } \left.\left(a p_{p r_{2}}\left(\operatorname{pair}^{=}(p, q)\right)\right)\right)=q & \text { for } q:\left(p r_{2} x=_{B} p r_{2} y\right)
\end{array}
$$

- and a propositional uniqueness principle:

$$
r=\text { pair }=\left(a p_{p r_{1}} r, a p_{p r_{2}} r\right) \quad \text { for } r:\left(x=_{A \times B} y\right)
$$

- plus a lot of other componentwise propositional equalities

Transport and action in cartesian products

- THM: If $A, B: Z \rightarrow \mathcal{U}, p: z=z w$ and $x:((A z) \times(B z))$, then $p_{*} x={ }_{(A w) \times(B w)}\left(p_{*}\left(p r_{1} x\right), p_{*}\left(p r_{2} x\right)\right)$
- Proof: path induction plus propositional uniqueness
- Functoriality of ap under cartesian products: let $g: A \rightarrow A^{\prime}$, $h: B \rightarrow B^{\prime}$ and define $f:(A \times B) \rightarrow\left(A^{\prime} \times B^{\prime}\right)$ by $f \equiv \lambda x: A \times A^{\prime} .\left(g\left(p r_{1} x\right), h\left(p r_{2} x\right)\right)$. Then:
- THM: if also $x, y: A \times B, p:\left(p r_{1} x\right)={ }_{A}\left(p r_{1} y\right)$ and $q:\left(p r_{2} x\right)={ }_{B}\left(p r_{2} y\right)$, we have (picture)

$$
f\left(\text { pair }^{=}(p, q)\right)=_{f x=f y} \text { pair }^{=}(g(p), h(q))
$$

- Proof: by induction on pairs and paths

Equality and transport in \sum-types

- THM: let $P: A \rightarrow \mathcal{U}$ and $w, w^{\prime}: \Sigma x: A$. $P x$. Then:

$$
\left(w=\Sigma x: A \cdot P \times w^{\prime}\right) \simeq \sum_{p: p r_{1} w=p r_{1} w^{\prime}}\left(p_{*}\left(p r_{2} w\right)=p r_{2} w^{\prime}\right)
$$

- THM: let $P: A \rightarrow \mathcal{U}$ and $Q:(\Sigma x: A . P x) \rightarrow \mathcal{U}$. Then $\lambda x: A$. $(\Sigma u: P x . Q(x, u))$ is a type family such that for $p: x=y$ and $(u, z):\left(\sum u: P x \cdot Q(x, u)\right)$ we have:

$$
p_{*}(u, z) \quad=\sum_{u: P y, Q(y, u)} \quad\left(p_{*} u, \operatorname{lift}(u, p)_{*} z\right)
$$

- Generalizes: $p_{*} x \quad=(A w) \times(B w) \quad\left(p_{*}\left(p r_{1} x\right), p_{*}\left(p r_{2} x\right)\right)$
- Time for a picture!

The unit type

- THM: for all $x, y: \mathbf{1}$ we have $(x=y) \simeq \mathbf{1}$.
- Proof: exercise
- Pitfall: don't start proving $(\star=\star) \simeq \mathbf{1}$

Equality in П-types

- Wanted, for $A: \mathcal{U}, B: A \rightarrow \mathcal{U}$ and $f, g: \Pi x: A$. $B x$:

$$
(f=g) \simeq\left(\Pi x: A \cdot f x={ }_{B x} g x\right)
$$

- By an easy path induction (to be viewed as elimination):

$$
\text { happly : }(f=g) \rightarrow(\Pi x: A . f x=B x g x)
$$

- Axiom (function extensionality): isequiv(happly)
- Quasi-inverse of happly (to be viewed as introduction):

$$
\text { funext : }\left(\Pi x: A . f x={ }_{B x} g x\right) \rightarrow(f=g)
$$

- Propositional equalities (use functional extensionality):
- happly $($ funext $h)=h$
- $\alpha=$ funext (happly α)
- $\operatorname{refl}_{f}=$ funext $\left(\lambda x: A\right.$. refl $\left._{f x}\right)$
- $\alpha^{-1}=$ funext $\left(\lambda x: A .(\text { happly } \alpha x)^{-1}\right)$
- $\alpha \cdot \beta=$ funext $(\lambda x: A .($ happly $\alpha x) \cdot($ happly $\beta x))$

Transport in П-types

- Let $A, B: X \rightarrow \mathcal{U}$ and define $A 2 B \equiv \lambda x: X .(A x \rightarrow B x)$. Given a path $p: x_{1}=x x_{2}$, there are two natural ways to transport $f: A x_{1} \rightarrow B x_{1}$ to $A x_{2} \rightarrow B x_{2}$ (picture):

1. by applying transport ${ }^{A 2 B} p:\left(A x_{1} \rightarrow B x_{1}\right) \rightarrow\left(A x_{2} \rightarrow B x_{2}\right)$
2. by transporting any given a : $A x_{2}$ first back to $A x_{1}$, applying f, and then transporting the result in $B x_{1}$ to $B x_{2}$
These two ways turn out to be propositionally equal.

- LEM: under conditions as above:
transport ${ }^{A 2 B} p f=\lambda a: A x_{2}$. transport $^{B} p\left(f\left(\right.\right.$ transport $\left.\left.^{A} p^{-1} a\right)\right)$
- Proof: by path induction
- This was only the non-dependent case ... (see the book)

Univalence

- idtoeqv : $(A=\mathcal{U} B) \rightarrow(A \simeq B)$ defined by path induction
- Univalence Axiom: for all $A, B: \mathcal{U}$, isequiv(idtoeqv); hence:

$$
(A=\mathcal{U} B) \simeq(A \simeq B)
$$

- Abuse of notation: $(f, p): A \simeq B$ identified with $f: A \rightarrow B$
- A different view on univalence:
- Introduction (postulated): ua : $(A \simeq B) \rightarrow(A=\mathcal{U} B)$
- Elimination (transport): [pr r_{1}] idtoeqv : $(A=\mathcal{u} B) \rightarrow(A \rightarrow B)$
- Propositional computation rule: idtoequiv (uaf) f) f
- Propositional uniqueness: $p=u a\left(\right.$ istoeqv p), so refl $_{A}=u a i d_{A}$
- LEM: $($ uaf $) \cdot(u a g)=u a(g \circ f) ;(u a f)^{-1}=u a\left(f^{-1}\right)$
- LEM: for $B: A \rightarrow \mathcal{U}, p: x={ }_{A} y$ we have (no UA!):

$$
p_{*} \equiv \text { transport }^{B} p=B_{x \rightarrow B y} \text { idtoequiv }\left(a p_{B} p\right)
$$

Identity types

- THM: if $f: A \rightarrow B$ is an equivalence, then for all $a, a^{\prime}: A$ we have the equivalence $a p_{f}:\left(a={ }_{A} a^{\prime}\right) \rightarrow\left(f a={ }_{B} f a^{\prime}\right)$
- Transport in families of identity types, with $p: x_{1}={ }_{A} x_{2}$.

LEM: for $p: x_{1}={ }_{A} x_{2}$ and $q: P x_{1}$ for superscript $P: A \rightarrow \mathcal{U}$

1. transport ${ }^{\lambda \times: A .}\left(a={ }_{A} \times\right) p q=q \cdot p$
2. transport ${ }^{\lambda x: A . ~}(x=A a) p q=p^{-1} \cdot q$
3. transport ${ }^{\lambda x: A .}\left(x={ }_{A X}\right) p q=p^{-1} \cdot q \cdot p$
4. transport ${ }^{\lambda x: A . ~}\left(f x={ }_{B g}{ }^{x}\right) p q=\left(a p_{f} p\right)^{-1} \cdot q \cdot\left(a p_{g} p\right)$ for $f, g: A \rightarrow B$
5. transport ${ }^{\lambda x: A .(f x=}{ }_{B g x} p q=\left(a p d_{f} p\right)^{-1} \cdot p_{*}(q) \cdot\left(a p d_{g} p\right)$ for $f, g: \Pi x: A$. $B x$
Proofs by pictures

- THM: for $p: a=A a^{\prime}, q: a=A$, and $r: a^{\prime}=A a^{\prime}$ we have:

$$
\left(\left(\text { transport }^{\lambda x: A \cdot\left(x={ }_{A x}\right)} p q\right)=r\right) \simeq(q \cdot p=p \cdot r)
$$

Coproducts

- Coproducts are interesting: try defining $f: A+B \rightarrow A \ldots$
- Hopefully (proof not obvious, too special):

1. $\left(\right.$ inl $a_{1}=$ inl $\left.a_{2}\right) \simeq\left(a_{1}=a_{2}\right)$
2. $\left(i n r b_{1}=i n r b_{2}\right) \simeq\left(b_{1}=b_{2}\right)$
3. $($ inl $a=i n r b) \simeq \mathbf{0}$

Idea: combine $1,3(2,3)$ and generalize! $(\mathrm{Q}: 1,2,3,4$?)

- Fix $a_{0}: A$; then $P \equiv \lambda x: A+B .\left(i n l a_{0}=x\right): A+B \rightarrow \mathcal{U}$.
- Wanted: $P(i n l a) \simeq\left(a_{0}=a\right)$ and $P(i n r b) \simeq \mathbf{0}$
- Define code : $A+B \rightarrow \mathcal{U}$ recursively by

$$
\operatorname{code}(\text { inl } a) \equiv\left(a_{0}=a\right) \quad \operatorname{code}(\text { inr } b) \equiv \mathbf{0}
$$

- Define encode : $\Pi x: A+B . П p:\left(i n l a_{0}=x\right) .(\operatorname{code} x)$ and decode: $\Pi x: A+B . П c:(\operatorname{codex}) .\left(\right.$ inl $\left.a_{0}=x\right)$
- Prove that encode $\left(x,,_{-}\right)$and $\operatorname{decode}\left(x,{ }_{-}\right)$are quasi-inverses

Coproducts (ctnd)

- THM: for all $x: A+B$ we have $\left(\left(\right.\right.$ inl $\left.\left.a_{0}\right)=x\right) \simeq(\operatorname{code} x)$
- Details on the blackboard
- COR (of the proof):
- encode(inl a) : $\left(\left(\right.\right.$ inl $\left.a_{0}\right)=($ inl $\left.a)\right) \rightarrow\left(a_{0}=a\right)$
- encode(inr b) : ((inl $\left.a_{0}\right)=($ inr $\left.b)\right) \rightarrow \mathbf{0}$
- Transport: for $A, B: X \rightarrow \mathcal{U}$ and $p: x_{1}=x x_{2}$:
- transport ${ }^{\lambda x: X \cdot(A x+B x)} p($ inl a) $)=$ inl $\left(\right.$ transport $\left.^{A} p a\right)$
- transport ${ }^{\lambda \times: X \cdot(A x+B x)} p($ inr $b)=\operatorname{inr}\left(\right.$ transport $\left.^{B} p b\right)$

Natural numbers

- We define code : $\mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathcal{U}$ such that: THM: for all $m, n: \mathbb{N}$ we have $(m=n) \simeq($ code $m n)$
- Details on the blackboard (or in book)
- COR: we have (inhabited)
- $\Pi m: \mathbb{N}$. $((S m)=0) \rightarrow \mathbf{0}$, as $\operatorname{code}((S m), 0) \equiv \mathbf{0}$
- $\Pi n, m: \mathbb{N} .((S m)=(S n)) \rightarrow(m=n)$, as $\operatorname{code}(S m, S n) \equiv \operatorname{code}(m, n)$
- COR: \mathbb{N} is a set (type in which paths are unique)

Transporting structure

- $\operatorname{SGS}(A) \equiv \Sigma m: A \rightarrow A \rightarrow A . \Pi x, y, z: A .(m x(m y z)=m(m x y) z)$
- $S G \equiv \Sigma A: \mathcal{U} . \operatorname{SGS}(A)$
- If $e: A=\mathcal{U} B$, then transport ${ }^{S G S}$ ua(e) : $\operatorname{SGS}(A) \rightarrow \operatorname{SGS}(B)$
- For (m, a) : $\operatorname{SGS}(A)$, transport ${ }^{S G S} u a(e)(m, a) \equiv\left(m^{\prime}, a^{\prime}\right)$ with
- $m^{\prime}=u a(e)_{*} m \equiv$ transport ${ }^{\lambda X . X \rightarrow X \rightarrow X} u a(e) m$
- $a^{\prime}=\operatorname{transport}^{\lambda(X, m) \cdot A s s o c(X, m)}\left(\right.$ pair $=\left(u a(e)\right.$, refl $\left.\left._{m^{\prime}}\right)\right) a$
where $\operatorname{Assoc}(X, m) \equiv \Pi x, y, z: X .(m x(m y z)=m(m x y) z)$
- NB: pair $=\left(u a(e)\right.$, refl $\left._{m^{\prime}}\right):(A, m)=\left(B, m^{\prime}\right)($ Thm. 2.7.2/4)
- Indeed $\left(m^{\prime}, a^{\prime}\right): S G S(B)$ (no need to reprove)
- $m^{\prime}: B \rightarrow B \rightarrow B$
- $a^{\prime}: \operatorname{Assoc}\left(B, m^{\prime}\right) \equiv \Pi x, y, z: B \cdot\left(m^{\prime} x\left(m^{\prime} y z\right)=m^{\prime}\left(m^{\prime} x y\right) z\right)$

Some calculations

- If $p: A=\mathcal{U} B$, then transport ${ }^{\lambda X: \mathcal{U} \cdot X_{p}: A \rightarrow B}$
- Also: [pr 1_{1}]idtoeqv : $(A=\mathcal{U} B) \rightarrow(A \rightarrow B)$
- Verbatim the same: transport ${ }^{\lambda X: \mathcal{U} \cdot X} \equiv i d t o e q v$
- Hence: transport ${ }^{\lambda X: \mathcal{U} \cdot X}$ and ua are each other's quasi-inverse
- So: transport ${ }^{\lambda X: U . X} u a(e)^{-1}=e^{-1}$
- Recall back-and-forth technique for transport ${ }^{\lambda X} . A X \rightarrow B X$
- Then: $m^{\prime} b_{1} b_{2} \equiv\left(\right.$ transport $\left.{ }^{\lambda X . X \rightarrow X \rightarrow X} u a(e) m\right) b_{1} b_{2}=$ $t s p t^{\lambda X \cdot X} u a(e)\left(m\left(t s p t^{\lambda X \cdot X} u a(e)^{-1} b_{1}\right)\left(t s p t^{\lambda X \cdot X} u a(e)^{-1} b_{2}\right)\right)$
$=e\left(m\left(e^{-1} b_{1}\right)\left(e^{-1} b_{2}\right)\right)$ (recall $e: A \rightarrow B$ equivalence)
- Algebraic proof of $\operatorname{Assoc}\left(B, m^{\prime}\right)$ not needed (equal to $\left.a^{\prime}\right)$

Equality of semigroups

- By Thm. 2.7.2: the type $(A, m, a)=s G\left(B, m^{\prime}, a^{\prime}\right)$ is equal to type of pairs

$$
\begin{aligned}
& p_{1}: A=\mathcal{U}^{B} \\
& p_{2}: \text { transport }^{S G S}{ }_{p_{1}}(m, a)=\left(m^{\prime} a^{\prime}\right)
\end{aligned}
$$

where by univalence $p_{1}=u a(e)$ for some equivalence e and $p_{2}=\left(p_{3}, p_{4}\right)$ is a pair of proofs with p_{3} of type

$$
\Pi y_{1}, y_{2}: B \cdot\left(e\left(m\left(e^{-1} y_{1}\right)\left(e^{-1} y_{2}\right)\right)=m^{\prime} y_{1} y_{2}\right.
$$

which is equivalent to

$$
\Pi x_{1}, x_{2}: A \cdot\left(e\left(m x_{1} x_{2}\right)=m^{\prime}\left(e x_{1}\right)\left(e x_{2}\right)\right.
$$

- ... recovering the notion of semigroup isomorphism

Universal properties

- LEM: λf. $\left(p r_{1} \circ f, p r_{2} \circ f\right)$ is an equivalence

$$
(X \rightarrow(A \times B)) \rightarrow((X \rightarrow A) \times(X \rightarrow B))
$$

- ... and also for type families (see book)
- EXC: define an equivalence

$$
((A+B) \rightarrow X) \rightarrow((A \rightarrow X) \times(B \rightarrow X))
$$

- For $A: \mathcal{U}, B: \mathcal{U}, R: A \rightarrow B \rightarrow \mathcal{U}$, ac is an equivalence

$$
\text { ac }:(\Pi x: A . \Sigma y: B . R x y) \rightarrow \Sigma f: A \rightarrow B . \Pi x: A . R x(f x)
$$

- Cartesian closure: $((A \times B) \rightarrow C) \simeq(A \rightarrow(B \rightarrow C))$
- ... and also for type families (see book)

Sets

- A set is a type in which paths are unique:

$$
\text { isSet }(A) \equiv \Pi_{x}, y: A \cdot \Pi_{p, q} q:\left(x==_{A} y\right) \cdot p==_{x=A y} q
$$

- Examples: 0,1,N
- Proofs: trivial, $\Pi x, y: 1 .(x=1 y) \simeq \mathbf{1}$ (picture), and $\Pi x, y: \mathbb{N} .\left(x=_{\mathbb{N}} y\right) \simeq \operatorname{code}(x, y)$
- Most type forming operations preserve sets:
- if A and B are sets, then so are $A \times B$ and $A+B$
- if A is a set and $B: A \rightarrow \mathcal{U}$ such that $B x$ is a set for every $x: A$, then $\sum A B$ is a set (by 'structuralism')
- if A is any type and $B: A \rightarrow \mathcal{U}$ such that $B x$ is a set for every $x: A$, then $П A B$ is a set (using function extensionality twice!)
- Proof of last: if $f, g: \Pi A B, p, q: f=g$, then by fun.ext. $p=$ funext(happly p) and $q=$ funext(happly q). By assumption on $B x$, happly $p x=$ happly $q x$ for all $x: A$. Hence, again by fun.ext. happly $p=$ happly q, so $p=q$.

Sets (ctnd)

- The universe is not a set: isSet $(\mathcal{U}) \rightarrow \mathbf{0}$
- Proof: we construct by univalence $p: \mathbf{2}=\mathbf{2}$ with $(p=2=\mathbf{2} r e f / 2) \rightarrow \mathbf{0}$. Define the equivalence $e: \mathbf{2} \rightarrow \mathbf{2}$ by $e(0)=1, e(1)=0$ (e is its own quasi-inverse). If $u a(e)={ }_{2}=2 r e f f_{2}$, then 0 gets inhabited by $e=i d t o e q v(u a(e))=i d t o e q v r e f l_{2}=i d_{2}$,
- Definition of h-levels (later also levels $-2,-1$):
- $0 \operatorname{type}(A) \equiv \operatorname{isSet}(A) \equiv \Pi x, y: A \cdot \Pi p, q:\left(x={ }_{A} y\right) \cdot p==_{x=A y} q$
- $1 \operatorname{type}(A) \equiv \Pi x, y: A$. $\operatorname{sSet}\left(x={ }_{A} y\right) \equiv \ldots$
- LEM: inhabited isSet $(A) \rightarrow 1$ type (A)
- Proof on blackboard (uses Lemmas 2.3.4 and 2.11.2)

Types vs. propositions

- THM: UA conflicts with for all $A: \mathcal{U},(\neg \neg A) \rightarrow A$
- More precisely:
- without UA, ПА:U. $((\neg \neg A) \rightarrow A)$ consistent
- with UA, $\neg П А: \mathcal{U} .((\neg \neg A) \rightarrow A)$ is inhabited
- Intuition: under UA, there cannot be a natural choice operator selecting an element from every non-empty type
- Proof: assume $f: \Pi A: \mathcal{U}$. $(((A \rightarrow \mathbf{0}) \rightarrow \mathbf{0}) \rightarrow A)$. We construct an inhabitant of $\mathbf{0}$. Take $e: \mathbf{2} \simeq \mathbf{2}$ as above. Use that f acts on ua(e) by

$$
\operatorname{apd}_{f} u a(e):\left(\text { transport }^{\lambda A .}(\neg \neg A) \rightarrow A \text { ua }(e)(f 2)\right)=f 2
$$

Rest on blackboard (use back-and-forth and $(\neg \neg \mathbf{2}) \simeq \mathbf{1})$

- COR: UA conflicts with for all $A: \mathcal{U}, A+(\neg A)$
- Conclusion: we cannot use all types as propositions

Mere propositions

- Wanted: \mathcal{V}, UA consistent with $П A: \mathcal{V} .((\neg \neg A) \rightarrow A)$
- Examples: 0,1:V, but not $2: \mathcal{V}(U A: \simeq$-naturality $)$
- Mere proposition: isProp $(P) \equiv \Pi x, y: P .(x=p y)$
- Level 0: $\operatorname{isSet}(A) \simeq \Pi x, y: A$. isProp $\left(x={ }_{A} y\right)$
- LEM: inhabited isProp $(P) \rightarrow P \rightarrow(P \simeq \mathbf{1})$
- LEM: isProp is closed under \times (UA not needed)
- LEM: isProp (P) and $P \simeq Q$, then isProp(Q) (UA not needed)
- LEM: with funext, if $A: \mathcal{U}$ and $B: A \rightarrow \mathcal{U}$ such that isProp $(B x)$ for every $x: A$, then isProp($\Pi x: A$. $B x)$.
- COR: $P \rightarrow Q$ is a mere proposition whenever Q is
- NB: isProp is not closed under + , nor Σ

More on Mere propositions

- LEM: if P, Q are mere propositions with $P \rightarrow Q, Q \rightarrow P$, then $P \simeq Q$.
- LEM: Every mere proposition is a set (cf. Lemma 3.1.8)
- LEM: for every type A, $\operatorname{isProp}(A)$ and $\operatorname{isSet}(A)$ are mere propositions
- Proof: use funext. If f, g : isProp (A), then $f x y, g x y: x={ }_{A} y$, hence $f x y=g x y$ since A is a set. Analogously for $\operatorname{isSet}(A)$ (use Lemma 3.1.8).
- The HoTT laws of excluded middle and double negation:
- $\operatorname{LEM}_{-1} \equiv П А: \mathcal{U}$. isProp $(A) \rightarrow(A+\neg A)$
- $D N L_{-1} \equiv \Pi A: \mathcal{U}$. isProp $(A) \rightarrow((\neg \neg A) \rightarrow A)$

Both are equivalent, independent, consistent with UA

Decidability, subtypes and subsets

- Under $L E M_{-1}$, no need for + , nor Σ, for doing logic
- For $A: \mathcal{U}$ and $B: A \rightarrow \mathcal{U}$, localized forms of $L E M_{-1}$:
- A is decidable if $A+\neg A$
- B is decidable if $\Pi x: A$. $(B x+\neg B x)$
- A has decidable equality if $\Pi x, y: A .\left(\left(x=_{A} y\right)+\neg\left(x={ }_{A} y\right)\right)$
- Example: $L E M_{-1}$ implies that sets have decidable equality
- For $A: \mathcal{U}$ and $P: A \rightarrow \mathcal{U}$ such that isProp $(P x)$ for all $x: A$, if $(x, p),(x, q): \Sigma x: A$. $P x$, then $p=q$, and we write:

$$
\{x: A \mid P x\} \equiv \Sigma x: A . P x
$$

- EXC 3.3: $\Sigma x: A$. $P x$ is a set if A is a set and $P: A \rightarrow \mathcal{U}$ such that $\operatorname{isSet}\left(P_{x}\right)$ for all $x: A$

Propositional truncation

- Propositional truncation (or 'squash') hides all info about inhabitants beyond their mere existence.
- NEW: this is a higher inductive type (Chapter 6)!
- Formation: $\|A\|: \mathcal{U}$ if $A: \mathcal{U}$
- Introduction, both for objects and paths:
- |a| : \|A\| if a : A
- $x=\|A\| y$ if $x, y:\|A\|$
- Elimination: defining $f:\|A\| \rightarrow B$ means
- specifing $f|a|: B$ for all $a: A$
- making sure $f|a|={ }_{\|A\|} f|b|$ for all $a, b: A$
- Only 'constant' functions, or better: if isProp(B), any $g: A \rightarrow B$ defines $f:\|A\| \rightarrow B$ with $f|a|=g a$
- EXC: isProp $(\|P\|)$, isProp $(P) \simeq(P \simeq\|P\|)$, for all $P: U$

Traditional logic, unique choice

- Under UA: like propositions as types, but with mere propositions

$P \Longleftrightarrow Q$	$P \vee Q$	$\exists(x: A) \cdot P x$				
$P=\mathcal{U} Q$	$\\|P+Q\\|$	$\\|\Sigma x: A \cdot P x\\|$				

- $L E M_{-1}$, decidability: mathematical axioms
- LEM (unique choice): if $P: A \rightarrow \mathcal{U}$ such that

1. $P x$ is a mere proposition for all $x: A$
2. for each $x: A$ we have $\left\|P_{x}\right\|$ (so, $\Pi_{x}: A$. $\left\|P_{x}\right\|$ inhabited) Then $\Pi_{x}: A$. $P x$ (proof: isProp $(P x) \rightarrow\|P x\| \rightarrow P x$)

- Choice can sometimes be refined to unique choice
- Homework: read 3.9 and 3.10

The Axiom of Choice (AC)

- Let isSet (X), and $A: X \rightarrow \mathcal{U}, P: \Pi x: X .(A x \rightarrow \mathcal{U})$ such that

1. $A x$ is a set for all $x: X$
2. $P x a$ is a mere proposition for all $x: X, a: A x$

Then AC asserts
$(\Pi x: X .\|\Sigma a: A x . P x a\|) \rightarrow\|\Sigma f:(\Pi x: X . A x) . \Pi x: X . P x(f x)\|$

- LEM: AC is equivalent to, with $Y: X \rightarrow \mathcal{U}$ such that $Y x$ sets,

$$
(\Pi x: X .\|Y x\|) \rightarrow\|\Pi x: X . Y x\|
$$

- Proof: use that ac is an equivalence (2.15.7) and that $Y x$ is equally expressive as $\sum a: A x . P x a$ (subset!)
- Discussion

Contractible types

- Contractible type: inhabited mere proposition
- DEF: isContr $(A) \equiv \Sigma a: A$. Пx:A. $a=x$
- LEM: logical equivalences (Q: why not \simeq ?) isContr $(A) \Longleftrightarrow(A \times$ isProp $(A)) \Longleftrightarrow(A \simeq \mathbf{1})$
- LEM: isProp(isContr $(A))$, for all A
- Proof: first para in book + isProp(Пx:A. $\left.a^{\prime}=x\right)$
- isContr $(A) \rightarrow$ isContr $($ isContr $(A))+$ other closure properties
- isContr not closed under +

Retraction

- Retraction: \pm half of an equivalence (Q: OK?)
- DEF: $r: A \rightarrow B$ retraction if there is $s: B \rightarrow A$ (the section of r) such that $r \circ s \sim i d_{B}$. Then we call B a retract of A.
- LEM: if B a retract of A, then isContr $(A) \rightarrow$ isContr (B)
- LEM: for all $A: \mathcal{U}$ and $a: A$, isContr $(\Sigma x: A . a=x)$
- LEM: let $P: A \rightarrow \mathcal{U}$ be a type family

1. if each $P x$ is contractible, then $A \simeq \Sigma x: A$. $P x$
2. if A is contractible with center $a: A$, then $P a \simeq \sum x: A$. $P x$

- LEM: $\operatorname{isProp}(A) \simeq \Pi x, y: A$. isContr $\left(x={ }_{A} y\right)$

Equivalences

- Wanted: $X Y Z$ equiv $(f) \leftrightarrow \operatorname{qinv}(f)$ and $\operatorname{isProp}(X Y Z e q u i v(f))$
- Q: desirable or really needed that isProp $(X Y Z e q u i v(f))$?
- LEM: $\left.\operatorname{qinv}(f) \rightarrow\left(\operatorname{qinv}(f) \simeq \Pi x: A \cdot x={ }_{A} x\right)\right)$ for all $f: A \rightarrow B$
- Book: for some $A: \mathcal{U}, \Pi x: A . x={ }_{A} x$ not contractible
- Some information is missing from $\operatorname{qinv}(f) \ldots$
- Three alternative (equivalent) definitions:

1. ishae (f), adds coherence info to $\operatorname{qinv}(f)$
2. $\operatorname{biinv}(f)$ ($\equiv \operatorname{isequiv}(f)$, splits quasi-inverse in two
3. is $\operatorname{Contr}(f)$, imposes contractibility of fibers

Half Adjoint Equivalences

- DEF: for $f: A \rightarrow B$, the type ishae (f) is
$\Sigma g: B \rightarrow A . \Sigma \alpha:\left(g \circ f \sim i d_{A}\right) . \Sigma \beta:\left(f \circ g \sim i d_{B}\right) . \Pi x: A . f(\alpha x)=\beta(f x)$
- Diff with $\operatorname{qinv}(f): \mathbf{1}$ vs. last Π-type
- Logically equivalent: last Π-type $\Pi x: A \cdot g(\beta x)=\alpha(g x)$
- LEM: for any $f: A \rightarrow B$, $\operatorname{qinv}(f) \rightarrow$ ishae (f)
- Proof: take 'the' g and α from $\operatorname{qinv}(f)$. Define

$$
\beta^{\prime} b \equiv \beta(f(g b))^{-1} \cdot f(\alpha(g b)) \cdot(\beta b)
$$

Find $(\tau a):\left(f(\alpha a)=\beta^{\prime}(f a)\right)$ (see book)

- DEF: The fiber of $f: A \rightarrow B$ over $b: B$ is

$$
f i b_{f}(b) \equiv \Sigma x: A .(f x=b)
$$

- LEM: if ishae (f), then any fib $_{f}(b)$ is contractible

Bi-invertible maps

- DEF: for $f: A \rightarrow B$, define:

1. $\operatorname{linv}(f) \equiv \Sigma g: B \rightarrow A .\left(g \circ f \sim i d_{A}\right)$
2. $\operatorname{rinv}(f) \equiv \Sigma g: B \rightarrow A .\left(f \circ g \sim i d_{B}\right)$
3. $\operatorname{biinv}(f) \equiv(\operatorname{linv}(f) \times \operatorname{rinv}(f))$ (that is, $\operatorname{isequiv}(f))$

- LEM: if $\operatorname{qinv}(f)$, then $\operatorname{linv}(f)$ and $\operatorname{rinv}(f)$ are contractible
- Proof: $\Sigma g: B \rightarrow A$. $\left(g \circ f=i d_{A}\right)$ is a fiber and $\operatorname{qinv}(-\circ f)$
- DEF: for $f: A \rightarrow B,(g, \alpha): \operatorname{linv}(f),(g, \beta): \operatorname{rinv}(f)$ define:

1. $\operatorname{lcoh}(f, g, \alpha) \equiv \Sigma \beta:\left(f \circ g \sim i d_{B}\right)$. Пy:B. $(g(\beta y)=\alpha(g y))$
2. $\operatorname{rcoh}(f, g, \beta) \equiv \sum \alpha:\left(g \circ f \sim i d_{A}\right) . \Pi x: A .(f(\alpha x)=\beta(f x))$

- Intuition: Icoh (f, g, α) expresses that ' g is also right inverse, plus coherence'

A Mere Proposition

- LEM: for all $f: A \rightarrow B,(g, \alpha): \operatorname{linv}(f),(g, \beta): \operatorname{rinv}(f)$ 1. $\operatorname{Icoh}(f, g, \alpha) \equiv \Pi_{y}: B \cdot(f(g y), \alpha(g y))={ }_{f b_{g}(g y)}\left(y\right.$, refl $\left.\left.\left._{g y}\right)\right)\right)$ 2. $\operatorname{rcoh}(f, g, \beta) \equiv \Pi x: A .(g(f x), \beta(f x))=$ fib $\left._{f}\left(f_{x}\right)\left(x, r e f_{f_{x}}\right)\right)$
- LEM: if ishae (f), then $\operatorname{Icoh}(f, g, \alpha)$ and $\operatorname{rcoh}(f, g, \beta)$ are contractible for any $(g, \alpha): \operatorname{linv}(f),(g, \beta): \operatorname{rinv}(f)$
- LEM: ishae (f) is a mere proposition, for any $f: A \rightarrow B$
- Proof: $\Sigma(g, \beta): \operatorname{rinv}(f) \cdot \operatorname{rcoh}(f, g, \beta) \ldots$ is contractible
- LEM: $\operatorname{biinv}(f)$ is a mere proposition for any $f: A \rightarrow B$, and $\operatorname{biinv}(f) \simeq \operatorname{ishae}(f)$

Contractible fibers

- DEF: for $f: A \rightarrow B$, we define:

$$
\text { isContr }(f) \equiv \Pi_{y: B . ~ i s C o n t r}\left(\text { fib }_{f}(y)\right)
$$

- LEM: isContr $(f) \rightarrow$ ishae (f), for any $f: A \rightarrow B$
- Proof: blackboard, or latest pdf of book
- REM: converse has been shown already
- LEM: isContr (f) is a mere proposition for any $f: A \rightarrow B$, and isContr $(f) \simeq$ ishae (f)
- LEM: if $f: A \rightarrow B$ such that $B \rightarrow \operatorname{isequiv}(f)$, then $\operatorname{isequiv}(f)$
- THM (summing up): $\operatorname{biinv}(f) \simeq \operatorname{ishae}(f) \simeq \operatorname{isContr}(f)$

Bijections, surjections and embeddings

- DEF: for sets $A, B: \mathcal{U}$, we call an equivalence a bijection
- DEF: for types $A, B: \mathcal{U}, f: A \rightarrow B$, we define:

1. f is a surjection if for all $b: B$ we have $\left\|f i b_{f}(b)\right\|$ (inhabited)
2. f is a split surjection if $\Pi b: B . \sum a: A .(f(a)=b)$
3. f is an embedding if for all $x, y: A$ we have isequiv $\left(a p_{f}\right)$
4. f is an injection if f an embedding and A, B sets

- REM: last clause iff $\Pi x, y: A .\left(f x={ }_{B} f y\right) \rightarrow(x=A y)$
- THM: isequiv (f) iff (isEmbedding (f) and isSurjection (f))
- COR: $\operatorname{isequiv}(f) \simeq($ isEmbedding $(f) \times$ isSurjection $(f))$

Fiberwise equivalences

- DEF: for $P, Q: A \rightarrow \mathcal{U}$, we call $f: \Pi x: A .(P x \rightarrow Q x)$ a fiberwise equivalence if $f x:(P x \simeq Q x)$ for all $x: A$
- DEF: for $P, Q: A \rightarrow \mathcal{U}, f: \Pi x: A$. $(P x \rightarrow Q x)$, we define:
$\operatorname{total}(f) \equiv \lambda w .\left(p r_{1} w, f\left(p r_{1} w, p r_{2} w\right)\right):(\Sigma x: A . P x) \rightarrow(\Sigma x: A \cdot Q x)$
- THM: for $f: \Pi x: A .(P x \rightarrow Q x), x: A$ and $v: Q x$

$$
\operatorname{fib}_{t o t a l(f)}(x, v) \simeq \operatorname{fib}_{f x}(v)
$$

- THM: f is a fiberwise equivalence iff $\operatorname{total}(f)$ is an equivalence

Univalence implies weak extensionality

- DEF: the weak extensionality principle is: for all $P: A \rightarrow \mathcal{U}$

$$
\left(\Pi_{x}: A . \text { isContr}(P x)\right) \rightarrow \text { isContr }\left(\Pi x: A . P_{x}\right)
$$

- Intuition: if co-domain singleton, there is only one function
- LEM: if $p r_{1}:(\Sigma x: A . P x) \rightarrow A$ and $a: A$, then fib $_{p r_{1}}(a) \simeq P a$
- LEM: if UA and $A, B, X: \mathcal{U}, e: A \simeq B$, then ([pr $\left.\left.r_{1} \circ\right] e \circ_{-}\right)$ defines an equivalence $(X \rightarrow A) \rightarrow(X \rightarrow B)$
- THM: if UA and $P: A \rightarrow \mathcal{U}$ is a family of contractible types, then $\Pi x: A$. $P x$ is (a retract of fib $_{\alpha}\left(i d_{A}\right)$ and so) contractible
- Proof: assume UA and a family of contractible types $P: A \rightarrow \mathcal{U}$. Then $p r_{1}:(\Sigma x: A . P x) \rightarrow A$ is an equivalence, defining an equivalence $\alpha:(A \rightarrow \Sigma x: A . P x) \rightarrow(A \rightarrow A)$. $f i b_{\alpha}\left(i d_{A}\right)=\Sigma f:(A \rightarrow \Sigma x: A . P x) .\left(p r_{1} \circ f=i d_{A}\right)$, retract \ldots

Weak extensionality implies extensionality

- Recall: happly $f g:(f=g) \rightarrow\left(\Pi x: A . f x=p_{x} g x\right)$
- Recall: funext $f g:\left(\Pi x: A . f x={ }_{P x} g x\right) \rightarrow(f=g)$
- To prove (where П $A P$ abbreviates $\Pi x: A . P x$):

$$
\Pi A: U . П P:(A \rightarrow \mathcal{U}) . \Pi f, g:(\Pi A P) . \text { isequiv(happly } f g))
$$

- Proof: we show that total(happly f) is an equivalence

$$
\left.(\Sigma g:(\Pi A P) \cdot(f=g)) \rightarrow\left(\Sigma g:(\Pi A P) . \Pi x: A . f_{x}={ }_{P_{x}} g x\right)\right)
$$

Lhs contractible, it suffices that rhs is contractible too. Rhs is retract of $\Pi x: A . \sum u: P x .(f x=u)$, which is contractible by weak extensionality. (Retraction uses $={ }_{\eta}$, not extensionality.)

Inductive Types

- Inductive type: type of objects that are freely generated by constructors (roughly, functions with the inductive type as co-domain), plus an elimination principle (induction)
- Examples:

1. $\mathbf{0}$ without constructors; $\operatorname{ind}_{0} C: \Pi x: \mathbf{0} . C_{x}$
2. $\mathbf{1}$ with constructor $\star: \mathbf{1}$; ind $C: C(\star) \rightarrow \Pi x: \mathbf{1}$. $C x$
3. 2 with constructors $0_{0}, 1_{1}: 2 ; \operatorname{ind}_{2} C: C(0) \rightarrow C(1) \rightarrow \Pi x: 2 . C x$
4. \mathbb{N} with constructors $0: \mathbb{N}$ and $S: \mathbb{N} \rightarrow \mathbb{N}$; usual induction

- Recursion: non-dependent elimination $(C=\lambda x: I T . A)$

Inductive Types (ctnd)

- More examples:

1. $A \times B$ with constructor $(-,-): A \rightarrow B \rightarrow A \times B$; induction $\operatorname{ind}_{A \times B} C:(\Pi a: A . \Pi b: B . C(a, b)) \rightarrow \Pi p: A \times B . C p$
2. $A+B$ with constructors inl: $A \rightarrow A+B$,inr: $B \rightarrow A+B$; $\operatorname{ind}_{A+B} C:(\Pi a: A . C($ inl $a)) \rightarrow(\Pi b: B . C($ inr $b)) \rightarrow \Pi s: A+B . C s$
3. List A with constructors nil:List A, cons: $A \rightarrow($ List $A) \rightarrow($ List $A)$; ind $_{L i s t A} C: C$ nil $\rightarrow \Pi$ a: A. $\Pi \ell$:List A. $C($ cons a $\ell) \rightarrow \Pi \ell:$ List A. $C \ell$

- Uniqueness principle: under funext, induction and recursion yield unique functions in $\Pi x: T$. Cx
- Example of uniqueness in case of N on blackboard (recall $\left.\operatorname{ind}_{N} C e_{0} e_{S} 0={ }_{\iota} e_{0}, \operatorname{ind}_{N} C e_{0} e_{S}(S n)={ }_{\iota} e_{S} n\left(i n d_{N} C e_{0} e_{S} n\right)\right)$

Uniqueness of Inductive Types

- Y.a. inductive type: \mathbb{N}^{\prime} with constructors $0^{\prime}: \mathbb{N}^{\prime}, S^{\prime}: \mathbb{N}^{\prime} \rightarrow \mathbb{N}^{\prime}$
- Looks familiar ..., but this is not \mathbb{N}
- Induction very similar, with computation rules ind $C e_{0} e_{S} 0^{\prime}=\iota e_{0}$, ind $C e_{0} e_{S}\left(S^{\prime} n\right)=\iota$ es $n\left(\right.$ ind $\left.C e_{0} e_{S} n\right)$ where $n: \mathbb{N}^{\prime}, e_{0}: C 0^{\prime}, e_{s}: \Pi n: \mathbb{N}^{\prime} .\left(C n \rightarrow C\left(S^{\prime} n\right)\right)$
- Define $f \equiv r e c_{\mathbb{N}} \mathbb{N}^{\prime} 0^{\prime}\left(\lambda n: \mathbb{N} . S^{\prime}\right): \mathbb{N} \rightarrow \mathbb{N}^{\prime}$, $g \equiv r c_{\mathbb{N}^{\prime}} \mathbb{N} 0\left(\lambda n: \mathbb{N}^{\prime} . S\right): \mathbb{N}^{\prime} \rightarrow \mathbb{N}$; prove $\mathbb{N} \simeq \mathbb{N}^{\prime}$.
- Discuss options to define $d^{\prime} \equiv$ double ${ }^{\prime}: \mathbb{N}^{\prime} \rightarrow \mathbb{N}^{\prime}$ and prove

$$
\Pi n: \mathbb{N}^{\prime} .\left(\text { double }{ }^{\prime}\left(S^{\prime} n\right)=S^{\prime}\left(S^{\prime}\left(\text { double }^{\prime} n\right)\right)\right)
$$

- HoTT: transport along $\mathbb{N}=\mathbb{N}^{\prime},(\mathbb{N}, S, d)=\left(\mathbb{N}^{\prime}, S^{\prime}, d^{\prime}\right)$

W-Types

- Purpose: encoding inductive types uniformly
- Formation: if $A: \mathcal{U}$ and $B: A \rightarrow \mathcal{U}$, then $W A B: \mathcal{U}$
- Intuition: the type of A-labelled, $B(a)$-branching wf trees
- One constructor: sup : Пa: $A .(B a \rightarrow W A B) \rightarrow W A B$
- Examples:
- $N^{W} \equiv W 2\left(\right.$ rec $\left._{2} \mathcal{U} 01\right)$ (why?)
- $0^{W} \equiv \sup 0_{2}\left(r e c_{0} N^{W}\right), S^{W} \equiv \lambda n: N^{W} . \sup 1_{2}(\lambda y: 1 . n)$
- List $A \equiv W(\mathbf{1}+A)\left(\operatorname{rec}_{(1+A)} \mathcal{U} \mathbf{0} \lambda a . \mathbf{1}\right)$ (why?)
- nil $\equiv \sup (i n / \star)\left(\operatorname{rec}_{0}(\right.$ List $\left.A)\right)$, cons on blackboard
- Exercise: find the W-type for labeled binary trees
- Exercise 5.7: $(C \rightarrow \mathbf{0}) \rightarrow C$ is not a valid constructor type

Induction in W-Types

- Recall: sup : Пa:A. $((B a \rightarrow W A B) \rightarrow W A B)$
- Intuition for induction: to prove $P x$ for all $x: W A B$ it suffices to show that P is closed under sup. That is, for all $a: A$ and $f: B a \rightarrow W A B$, if (IH) for all $b: B a$ we have $P(f b)$, then $P($ sup a $f)$.
- Intuition for recursion: to define $h: W A B \rightarrow C$ it suffices to define h (sup af), for all $a: A$ and $f: B a \rightarrow W A B$, using function values $h(f b)$ for b : $B a$ (and possibly a, and f as predecesor).
- Examples: $d b I^{W} \equiv r e c_{N} w N^{W} e$, with $e 0 \equiv \lambda f, g: 0 \rightarrow N^{W} .0^{W}$ and $e 1 \equiv \lambda f, g: \mathbf{1} \rightarrow N^{W} .\left(S^{W}\left(S^{W}(g \star)\right)\right)$
- Exercise: define a predecessor $N^{W} \rightarrow N^{W}$

Homotopy-initial algebras

- \mathbb{N}-algebra: a type C with objects $c_{0}: C$ and $c_{S}: C \rightarrow C$
- Formal definition: a \sum-type $\mathbb{N} A l g$ (on blackboard)
- \mathbb{N}-homomorphism between \mathbb{N}-algebras $\left(C, c_{0}, c_{S}\right),\left(D, d_{0}, d_{S}\right)$
- Formal definition: an even bigger \sum-type $\mathbb{N} \operatorname{Hom}(-,-)$
- \mathbb{N}-algebras thus form a category
- H-initial \mathbb{N}-algebra I:

$$
\operatorname{isHinit}_{\mathbb{N}}(I) \equiv \Pi C: \mathbb{N} A l g . \text { isContr}(\mathbb{N} \operatorname{Hom}(I, C))
$$

- THM: any two h-initial \mathbb{N}-algebras are equal
- THM: the \mathbb{N}-algebra $(\mathbb{N}, 0, S)$ is h-initial
- THM: any W-algebra ($W A B$, sup) is h-initial
- We skip 5.5-8

Higher Inductive Types

- Inductive type: constructors freely generate the objects
- Higher inductive type: some constructors generate objects of this type, called points, but others may generate paths, or even higher paths.
- Key Q: what is the equivalent of 'freely'? Induction?
- Example: the circle \mathbb{S}^{1} (cf. $\mathbb{N}, 2$):
- a point constructor base : \mathbb{S}^{1}
- a path constructor loop : base $=\mathbb{S}^{1}$ base.
- Generation: takes the relevant operations into account
- On the point level: none (the type has no apriori structure)
- On the path level: groupoid structure (', refl, ${ }^{-1}$)
- Not: loop $=r e f f_{\text {base }}$, loop \cdot loop $=r e f f_{\text {base }}$

Higher Inductive Types

- Example: the circle \mathbb{S}^{1} :
- a point constructor base : \mathbb{S}^{1}
- a path constructor loop : base ${=\mathbb{S}^{1}}$ base.
- What is base $=_{\mathbb{S}^{1}}$ base? (should be \mathbb{Z})
- Later: a path constructor merid : $A \rightarrow(N=\operatorname{Susp}(A) S)$ generates higher paths in $\operatorname{Susp}(A)$ from paths in A
- Example: the 2-dimensional sphere \mathbb{S}^{2} :
- a point constructor base : \mathbb{S}^{2}
- a 2-path constructor surf : refl ${ }_{\text {base }}=$ base=base refl $_{\text {base }}$.
- We have surf \neq refl $_{\text {refl }}^{\text {base }}$. What is base $==_{\mathbb{S}^{2}}$ base? Book: there is an unexpected 3-path, cf. the Hopf fibration

Induction in HITs

- Induction in \mathbb{N} : to prove $\Pi x: \mathbb{N}$. Px, it suffices to have base in the fiber above 0 , and step 'acting on the fibers above S '.
- By analogy, in \mathbb{S}^{1} : to prove $\Pi x: \mathbb{S}^{1}$. Px, it suffices to have b in the fiber above base, and ℓ 'acting on the fiber(s) above loop'.
- Want means 'fiber(s) above loop : base = base'?
- Not: a path $b=b$ in the fiber above P (base) (cf. refl lase)
- But: transport of b along loop plus a path $\operatorname{loop}_{*}(b)=b$
- Recall transport $P x \rightarrow P y, P$ (base) $\rightarrow P$ (base)
- Example: torus as fibration $P \rightarrow \mathbb{S}^{1}$, Fig. 6.1,2
- Induction: $b: P$ (base) and $\ell: b={ }_{\text {loop }}^{P} b$ define $f: \Pi x: \mathbb{S}^{1}$. $P x$ with f (base) $={ }_{\iota} b$ and $a p d_{f}$ (loop) $=\ell$ (propositionally!)
- The last equality: a pragmatic choice (!)

Recursion in HITs

- Recursion: if $B: \mathcal{U}$, then $b: B$ and $\ell:\left(b={ }_{\text {loop }}^{P} b\right)$ define $f: \mathbb{S}^{1} \rightarrow B$ with $f($ base $)={ }_{\iota} b$ and $\operatorname{apd}_{f}($ loop $)=\ell$
- Recall the following transport lemmas, with $P: A \rightarrow \mathcal{U}, f: A \rightarrow B, x, y: A, p: x=A y:$
- $f(p) \equiv a p_{f} p: f x={ }_{B} f_{y}($ Lem. 2.2.1)
- $p_{*} \equiv$ transport $^{P} p: P x \rightarrow P y$ (Lem. 2.3.1)
- if $g: \Pi x: A$. P_{x}, then $a p d_{g} p: p_{*}(g x)=p_{y} g y$ (Lem. 2.3.4)
- if $P \equiv \lambda x: A . B, b: B$, then $t p c_{p}^{B} b:\left(p_{*} b=b\right)$ (Lem. 2.3.5)
- if $P \equiv \lambda x: A$. B, then $t p c_{p}^{B}(f x) \cdot a p_{f} p=a p d_{f} p$ (Lem. 2.3.8)
- LEM: $a: A$ and $p: a=A$ a define a unique (!) $f: \mathbb{S}^{1} \rightarrow A$ with f (base) $=\iota$ a and $a p_{f}$ (loop) $=p$
- COR: $\left(\mathbb{S}^{1} \rightarrow A\right) \simeq \Sigma x: A .\left(x={ }_{A} x\right)$ (univ. prop. of the circle)

The Interval

- The interval I is the HIT generated by:
- a point constructor 0 I: I
- a point constructor $1_{I}: /$
- a path constructor seg: $0_{l}=1_{1}$.
- Recursion: the following data defines a unique $f: I \rightarrow B$
- points $b_{0}: B, b_{1}: B$, a path $s: b_{0}=B b_{1}$
- Induction: the following data defines a unique $f: \Pi x: I . P_{x}$
- points $b_{0}: P 0_{l}, b_{1}: P 1_{l}$, a path $s: b_{0}={ }_{\text {seg }}^{P} b_{1}$
- I is contractible; I gives function extensionality by magic (!)

Properties of the Interval

- LEM: the interval / is contractible.
- Proof. Take 1_{I} as the center. By induction we prove $\Pi x: I . P x$ for $P x \equiv\left(x=\jmath 1_{l}\right)$. Take seg : $P 0_{l}$ and reff $1_{l}: P 1_{l}$. We also need an inhabitant of seg $=_{\text {seg }}^{P}$ refl ${ }_{1}$. The latter type is $\operatorname{seg}_{*}(\mathrm{seg})=$ refl $_{1,}$. By Lemma 2.11.2 we have $\operatorname{seg}_{*}(\mathrm{seg})=\operatorname{seg}^{-1} \cdot \operatorname{seg}($ picture $)$ and by Lemma 2.1.4 refl $_{1}{ }^{\prime}=$ seg $^{-1} \cdot$ seg.
- LEM: the interval / gives function extensionality (!)
- Proof. Let $f, g: A \rightarrow B$ and $p: \Pi x: A . f x=B g x$. For every $x: A$, define $\tilde{p}_{x}: I \rightarrow B$ by $\tilde{p}_{x} 0_{I} \equiv f_{x}, \tilde{p}_{x} 1_{I} \equiv g x$, $\tilde{p}_{x}(\operatorname{seg})=p$. Define $q: I \rightarrow(A \rightarrow B)$ by $q i=\lambda x: A$. $\left(\tilde{p}_{x} i\right)$. Then $q 0_{I}={ }_{\eta} f$ and $q 1_{I}={ }_{\eta} g$ and so $q(s e g): f=A \rightarrow B g$.

More on the Circle

- LEM: the circle \mathbb{S}^{1} is non-trivial: loop \neq refl $l_{\text {base }}$.
- Proof. If loop $=$ reff $_{\text {base }}$, then define for any $x: A$ and $p: x=x$ a function $f: \mathbb{S}^{1} \rightarrow A$ by $f($ base $) \equiv x$ and $f($ loop $)=p$. By functoriality of $a p_{f}$ we get $p=r e f I_{x}$. So $\Pi x: A . \Pi_{p:}(x=x) .\left(p=r e f I_{x}\right)$, which implies that A is a set (by path induction). Contradiction for $A=\mathcal{U}$, Example 3.1.9.
- LEM: the type $\Pi x: \mathbb{S}^{1} .(x=x)$ has an element that is not equal to $\lambda x: \mathbb{S}^{1}$. refl l_{x}.
- Proof. Define $f: \Pi x: \mathbb{S}^{1} .(x=x)$ by induction taking $f($ base $) \equiv$ loop and f (loop) : loop $($ loop $)=$ loop. By Lemma 2.11.2, with type family $\lambda x: \mathbb{S}^{1} .(x=x)$, loop $_{*}($ loop $)=$ loop $^{-1} \cdot$ loop \cdot loop, so $f($ loop $)=$ refl $_{\text {loop }}$ is OK. By happly, the previous lemma implies $f \neq \lambda x: \mathbb{S}^{1}$. refl $_{x}$.
- COR: if $\mathbb{S}^{1}=\mathcal{U}_{n}$, then \mathcal{U}_{n} is not a 1-type (?)

The 2-Sphere

- Recall: the 2-dimensional sphere \mathbb{S}^{2} :
- a point constructor base : \mathbb{S}^{2}
- a 2-path constructor surf : refl base $=$ base=base reflbase .
- Recursion: the following data defines a unique $f: \mathbb{S}^{2} \rightarrow B$
- a point $b: B$, a path $s:$ refl $_{b}=_{b=B} b$ refl b_{b}
- we get f (base) $\equiv b$, and apap $($ surf $)=s(!)$
- Induction: the following data defines a unique $f: \Pi x: \mathbb{S}^{2}$. $P x$
- a point b : Pbase, a path s : refl ${ }_{b}=_{\text {surf }}^{P}$ refl $_{b} \ldots$
- ... and this gets complicated with trtr along a 2-path ...

Suspensions

- For any $A: \mathcal{U}$ we define a HIT $\operatorname{Susp}(A)$ by :
- two point constructors $N, S: \operatorname{Susp}(A)$
- a path constructor merid : $A \rightarrow(N=\operatorname{Susp}(A) S)$
- NB: the path constructor generates higher paths in $\operatorname{Susp}(A)$
- Recursion: the following data defines a unique $f: \operatorname{Susp}(A) \rightarrow B$
- points $n, s: B$, a path function $m: A \rightarrow n={ }_{B} s$
- Induction: the following data defines a unique $f: \Pi x: \operatorname{Susp}(A) . P x$
- points $n: P(N), s: P(S)$, and $m: \Pi a: A .\left(n={ }_{\text {merid (a) }}^{P} s\right)$
- LEM: $\operatorname{Susp}(0) \simeq 2, \operatorname{Susp}(2) \simeq \mathbb{S}^{1}, \mathbb{S}^{n+1} \simeq \operatorname{Susp}\left(\mathbb{S}^{n}\right)$
- Proofs: easy, medium (uses 2.11.3), difficult
- LEM 2.11.3 implies: $\operatorname{tr}^{\lambda x \cdot(h x=x)} p q=h\left(p^{-1}\right) \cdot q \cdot p$

The torus

- The torus is the HIT T^{2} defined by :
- a point $b: T^{2}$
- two paths $p, q: b=b$
- a 2-path $t: p \cdot q=q \cdot p$
- Intuition: put $r=q$ and $s=r$ in

- Very tricky induction principle (because of the 2-path)
- LEM: $T^{2} \simeq \mathbb{S}^{1} \times \mathbb{S}^{1}$

Truncation

- For every $A: \mathcal{U}$ we define the HIT $\|A\|: \mathcal{U}$ by:
- a function |_| : $A \rightarrow\|A\|$
- a path function path : $\Pi x, y:\|A\| \cdot\left(x=_{\|A\|} y\right)$
- Recursion: the following data defines a function $f:\|A\| \rightarrow B$ satisfying $f|a| \equiv g a$ and $a p_{f}\left(\operatorname{path}\left(|a|,|a|^{\prime}\right)\right)=p\left(a, a^{\prime}\right)$:
- a function $g: A \rightarrow B$ and a path function $p: \Pi x, y: B .\left(x={ }_{B} y\right)$
- LEM: ||2 $\mathbf{2}$ gives function extensionality
- Proof: let $f, g: A \rightarrow B$ and $p: f \sim g$. Define $p_{x}: \mathbf{2} \rightarrow \Sigma y: B . f_{x}={ }_{B} y$. Note that $\Sigma y: B . f x=B y$ is contractible. etc.

Homotopy n-levels

- Intuition: no interesting homotopy above dimension n
- Definition of homotopy n-levels:
- is $(-2) \operatorname{type}(A) \equiv$ isContr $(A) \quad$ (equivalent $A \simeq \mathbf{1)}$
- is $(-1) \operatorname{type}(A) \equiv \Pi x, y: A$. is $(-2) \operatorname{type}\left(x==_{A} y\right) \quad(i s P r o p(A))$
- is $(0) \operatorname{type}(A) \equiv \Pi x, y: A$. is $(-1) \operatorname{type}\left(x={ }_{A} y\right) \quad(i s \operatorname{Set}(A))$
- is $(n+1) \operatorname{type}(A) \equiv \Pi x, y: A$. is (n) type $\left(x={ }_{A} y\right)(n \geq-2)$
- Idea: understanding a space through its (higher) path spaces
- Later: n-truncation, trivializing homotopy above dimension n
- Later: n-connected, that is, n-truncation is contractible, means no interesting homotopy in or below dimension n
- \mathbb{S}^{1} is not an 0-type, \mathbb{S}^{n+1} is not an n-type
- CONJ: \mathcal{U} is not an n-type for any n

Closure properties of homotopy n-levels

- LEM: if $p: X \rightarrow Y$ a retraction and X is an n-type, then Y is an n-type ($n \geq-2$)
- Proof: induction on $n \geq-2$. Base case easy. Assume OK for n and let $s: Y \rightarrow X$ with homotopy $\epsilon: p \circ s \sim 1$. Assume $\Pi x, x^{\prime}: X$. is (n) type $\left(x=X x^{\prime}\right)$, to prove is(n)type $\left(y=Y y^{\prime}\right)$ for all $y, y^{\prime}: Y$. Let $y, y^{\prime}: Y$, then $s y=x s y^{\prime}$ is an n-type. By IH it suffices that $y=Y y^{\prime}$ is a retract of $s y=x$ sy y^{\prime}. Take $a p_{s}$ and $t(q) \equiv \epsilon_{y}^{-1} \cdot p(q) \cdot \epsilon_{y^{\prime}}$ and use naturality of ϵ (picture).
- COR: if $X \simeq Y$ and X is an n-type, then so is $Y(n \geq-2)$
- LEM: if X is an n-type, then X is also an $(n+1)$-type ($n \geq-2$). So, the levels are cumulative.
- Proof: by induction on $n \geq-2$

More closure properties of homotopy n-levels

- LEM: if $f: X \rightarrow Y$ an embedding and Y is an n-type, then so is $X(n \geq-1)$
- Proof: $x=x x^{\prime} \simeq f x=y f x^{\prime}$ for embedding f. NB $f: \mathbf{0} \rightarrow \mathbf{1}$
- LEM: for $A: \mathcal{U}, B: A \rightarrow \mathcal{U}$, if $B a$ is an n-type for every $a: A$, then $\Pi A B$ is an n-type $(n \geq-2)$
- LEM: for $A: \mathcal{U}, B: A \rightarrow \mathcal{U}$, if A is an n-type and $B a$ is an n-type for every a: A, then $\Sigma A B$ is an n-type, for all $n \geq-2$
- LEM: for $A: \mathcal{U}$, is $(n) \operatorname{type}(A)$ is a mere proposition $(n \geq-2)$
- DEF: n-type $\mathcal{U}=\Sigma X: \mathcal{U}$.is(n)type (X), for all $n \geq-2$
- LEM: n-type $\mathcal{U}_{\mathcal{U}}$ is an ($n+1$)-type, for all $n \geq-2$
- Proofs: by induction on $n \geq-2$

Uniqueness of Identity Proofs

- Axiom UIP(X): for all $x, y: X$ and $p, q: x=x y$ we postulate $p=q(\operatorname{NB} \operatorname{UIP}(X) \equiv i s \operatorname{Set}(X))$
- Axiom $\mathrm{K}(\mathrm{X})$: for all $x: X$ and $p: x=x x$ we postulate $p=$ refl $_{x}$
- LEM: $K(X) \simeq \operatorname{UIP}(X)$
- LEM: if $R: X \rightarrow X \rightarrow \mathcal{U}$ a reflexive mere relation implying $=x$, then (1) isSet (X) and (2) $\Pi x, y: X .(R x y \simeq(x=x y))$
- Proof: note that (1) and (2) are equivalent; prove, e.g., $K(X)$
- COR: if $\neg \neg(x=x y) \rightarrow(x=x y)$, then X is a set
- COR: if $(x=x y) \vee \neg(x=x y)$, then X is a set
- COR: \mathbb{N} is a set (prove by induction that $=_{\mathbb{N}}$ is decidable)

n-Truncations

- Idea: n-truncation removes all interesting homotopy above dimension n
- DEF: for every $A: \mathcal{U}$, define:
- (-2)-truncation: $\|A\|_{-2} \equiv \mathbf{1}$ ('contractible' truncation)
- (-1)-truncation: $\|A\|_{-1}^{-1} \equiv\|A\|$ (propositional truncation)
- (0)-truncation: $\|A\|_{0}$ is defined as a HIT with two constructors: a function $\left|\left.\right|_{0}: A \rightarrow\|A\|_{0}\right.$, and a path function 2path: $\Pi x, y:\|A\|_{0} . \Pi p, q:\left(x={ }_{\|A\|_{0}} y\right) .\left(p==_{x=\|A\|_{0} y} q\right)$
- The general definition in the book uses \mathbb{S}^{n+1} (complicated)
- LEM: for all $n \geq-2$ we have that $\|A\|_{n}$ is an n-type
- Induction, recursion, properties ...

n-Connectedness

- Idea: n-connectness expresses that there is no interesting homotopy in and below dimension n
- DEF: for types $A: \mathcal{U}, \operatorname{conn}_{n}(A) \equiv$ isContr $\left(\|A\|_{n}\right)$
- DEF: function $f: A \rightarrow B$ is n-connected, if for any $b: B$, the fiber of f in b is connected, $\operatorname{conn}_{n}\left(\right.$ fib $\left._{f}(b)\right)$
- DEF: function $f: A \rightarrow B$ is n-truncated, if for any $b: B$, the fiber of f in b is n-truncated, is(n)type $\left(\right.$ fib $\left._{f}(b)\right)$
- LEM: any function factors as an n-connected function followed by an n-truncated function (generalized epi-mono-decomposition)

