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Abstract

In this paper I review the multiplet calculus of N = 1, D = 1 local supersymmetry with ap-
plications to the construction of models for spinning particles in background fields, and models
with space-time supersymmetry. New features include a non-linear realization of the local super-
symmetry algebra and the coupling to anti-symmetric tensor fields of both odd and even rank.
The non-linear realization allows the construction of a D = 1 cosmological-constant term, which
provides a mass term in the equations of motion.

* Dedicated to Jurek Lukierski on the occasion of his 60th anniversary.



1 Worldline supersymmetry
Supersymmetry, as a symmetry between bosons and fermions, was discovered almost 25
years ago [l]-[3]. Apart from mathematical elegance, supersymmetry has the quality of im-
proving the short-distance behaviour of quantum theories and has therefore been proposed
as an ingredient of many models of physical phenomena, most often but not exclusively
in the domain of particle physics and quantum gravity. Many of these applications are
presently speculative, but it was realized already early that supersymmetric extensions of
relativistic particle mechanics describe ordinary Dirac fermions [4]-[7]. Supersymmetric
theories of this type are known as spinning particle models. They are useful providing
low-energy descriptions for fermions in external fields [7]-[12] and path-integral expres-
sions for perturbative amplitudes in quantum field theories [13]-[20]. They are also useful
in studying aspects of higher-dimensional supersymmetric field theories and superstring
models [21].

Like in string theory, in the discussion of supersymmetric point-particle models one
has to distinguish between worldline supersymmetry, where the supersymmetry concerns
transformations of the worldline parameters of the physical variables (proper time), and
space-time supersymmetry which refers to supersymmetry in the target space of the phys-
ical variables. Both types of supersymmetry are encountered in the literature. In fact, in
[22] a model was constructed possessing both types of supersymmetry simultaneously.

In the present paper I review the construction of pseudo-classical spinning particle
models with worldline supersymmetry. To this end I present the multiplet calculus for local
worldline supersymmetry (N = 1 supergravity in one dimension) and construct general
lagrangians for D = 1 supersymmetric linear and non-linear <r-models with potentials;
many elements of this formalism were developed in [24, 25]. The coupling to all kinds
of background fields, including scalars, abelian and non-abelian vectors fields, gravity and
anti-symmetric tensors is discussed in some detail. I finish with the construction of a model
which exhibits space-time supersymmetry as well [22].

2 D = 1 supermultiplets
Supergravity models in 0 + 1 space-time dimensions describe spinning particles. Indeed,
the local supersymmetry and reparametrization invariance generate first-class constraints
which after quantization can be identified with the Dirac and Klein-Gordon equations.
Hence the quantum states of the model are spinorial wave functions for a fermion in a
c£-dimensional target space-time.

The models I construct below are general N — 1 supergravity actions in D = 1 with at
most 2 proper-time derivatives, and the correponding quantum theories. Higher-N models
have been considered for example in [26, 27]. Extended target-space supersymmetry has



been studied in [28, 29].
In one dimension supersymmetry is realized off-shell1 by a number of different sets of

variables, the supermultiplets (superfields):

1. The gauge multiplet (e,%) consisting of the einbein e and its superpartner x, the
gravitino; under infinitesimal local worldh'ne super-reparametrizations, generated by
the parameter-valued operator S(£,e) where £(r) is the commuting parameter of
translations and e(r) the anti-commuting parameter of supersymmetry, the multiplet
transforms as

2. Scalar multiplets (x, •$), used to describe the position and spin co-ordinates of parti-
cles. The transformation, rules are

UaZs QSu) 1
8x = £—- iei>, 8j> = £-?- + e-VTx, (2)

a/T d/r e

where the supercovariant derivative is constructed with the gravitino as the connec-
tion:

+ ix1>. (3)

3. Fermionic multiplets (TJ, / ) with Grassmann-odd 77 and even / . The /-component is
most often used as an auxiliary variable, without dynamics of itself. The transfor-
mation properties under local super-reparametrizations are

ar a/r e

The supercovariant derivative is formed using the same recipe as before:

xTlie term off shell implies that the supersymmetry algebra is realized without using dynamical con-
straints like the equations of motion.



4. A non-linear multiplet consisting of a single fermionic component a with the trans-
formation rules

8a = £— + e - ie-aVTa, (6)
OLT e

with the supercovariant derivative

_ da i da ._.
v ^ ( r )

On any component of any multiplet the commutator of two infinitesimal variations with
parameters (£1,2, £1,2) results in an infinitesimal transformation with parameters (£3,23)
given by

2%

de2 t dex 2%
ar <zr e

For the non-Knear representation cr the proof requires use of the supersymmetry variation

S(e) (-ZVc-J = -ie-VT \-<rVTo\ = -ie-<rVT (-VTA . (9)

Then a simple result is obtained:

S(e) (-<TVT<T) = e-Vr<r. (10)
\e / e

It follows that each of these multiplets is a representation of the same local supersym-
metry algebra, and this algebra closes off-shell. However, the parameters of the resulting
transformation depend on the components of the gauge multiplet (e,x), indicating that
the algebra of infinitesimal transformations is a soft commutator algebra, rather than an
ordinary super Lie-algebra.

Among the representations discussed, the gauge multiplet and the non-linear multiplet
have manifestly non-linear transformation rules. The variations of the other two multiplets
are linear in the components of these multiplets. For this reason the scalar and fermionic
multiplets are called linear representations of local supersymmetry, although some of the
coefficients depend on the gauge variables (e,x).



3 Multiplet calculus
The linear representations (scalar and fermionic) satisfy some simple addition and mul-
tiplication rules; this tensor calculus has been developed in [25]. The rules can also be
formulated in terms of D = 1 superfields [24]. As concerns addition, any linear multiplets
of the same type can be added component by component with arbitrary real or complex
coefficients. The linearity of the transformation rules then guarantees the sum to be a
multiplet of the same type.

The multiplication rules are also simple. There are 3 different product formula's:

1. The product of two scalar multiplets S = (x,tf>), S ' = (x',^') is a scalar multiplet

S x S ' = E " = (zxf, xi>' + x'i?). (11)

This rule can be extended to arbitrary powers of scalar multiplets, for example:

(12)

In this way one can define functions of scalar multiplets by power series expansions.

2. The product of a scalar multiplet S = ( s , ^ ) and a fermionic multiplet $ = (rf,f) is
a fermionic multiplet

S x $ = $ ' = (xrj, xf - iipT)). (13)

3. The product of two fermionic multiplets is a scalar multiplet:

- t $ x $' = S' = (-irjv'y N ~ fv) • (I4)

Next I introduce the operation of derivation of scalar and fermionic multiplets; the super-
derivative on linear multiplets is a Grassmann-odd linear operator turning a scalar multiplet
into a fermionic multiplet, and vice-versa, with the following components:

= *' = (y,, \vTx);
(15)
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On product multiplets this super-derivative satisfies the Leibniz rule, with in particular
the result

S n - 1 . (16)

The super-derivative satisfies an operator algebra similar to the supersymmetry algebra:

V2 = -Vr, (17)

where T>T is the supercovariant proper-time derivative on components, encountered before
in eqs.(3) and (5).

4 Invariant actions
1. Invariant actions can be constructed for the linear as well as the non-linear multiplets.
As there exists no intrinsic curvature in D — 1, there is no invariant action for the gauge
multiplet involving the einbein, but there is a very simple action for the gravitino, namely

= Jdrthx, (18)
where A is a constant. The equation of motion for this action by itself is not consistent (it
requires A to vanish); but this is changed if one adds other terms to the action, like the
ones discussed below. Also, one can replace x m t n e action by dx/dr, but then the action
becomes a total derivative.

A cosmological-constant like action can be constructed with the help of the non-linear
multiplet; it reads

) = Jdr(e- iX<r - iaVTcr). (19)

This is also the kinetic action for the fermionic <r variable, which in view of the anti-
commuting nature of a can be only linear in proper-time derivatives. Note, that the
non-linear nature of the multiplet allows one to rescale the variable a and thereby change
the relative co-efficients between the various terms in the action. A rescaling of a by a
factor 1/c gives the action

Sra(<r; c) = J dr (e - -1 X<r ~ -rj'*) , (20)

where I have introduced the dot notation for ordinary proper-time derivatives. Of course,
the rescaling also changes the non-linear transformation rule for cr under supersymmetry
to



dc is
8c<r = (— + ce (TVT<T. (21)

or ce

Combining the actions 5A and Sni in such a way as to get standard normalization of the
fermion kinetic term for a leads to the action (with the dimension of %)

dgrav —

(22)

where m is a parameter with the dimension of mass and c has the dimension of a velocity.
The Euler-Lagrange equations for the fermions x an<i a then give

<7 = A, x = I ^ : = o. (23)
c AT

Thus the constant A is like a vacuum expectation value of the fermionic variable cr. How-
ever, the variation (21) of a is such that for non-zero c it can be gauged away completely by
a supersymmetry transformation. Therefore it does not represent a true physical degree of
freedom. Of course, this seems to contradict the equation of motion (23), but we observe
that also the equation for the einbein is inconsistent, requiring the constant c to vanish.
Again, these problems are solved by adding further terms to the action. In applications c
usually represents the velocity of light, which can conveniently be taken as unity (c = 1).

2. Next we turn to a formula for the construction of invariant actions for linear multiplets.
Given a fermionic multiplet $ = (77, / ) , an action invariant under local supersymmetry
transformations is

= fdr(ef-ixv). (24)
Note, that in eqs.(19) and (24) the integrand itself is not invariant, but transforms into a
total proper-time derivative:

6SUn = fdT^-(-ier}), (25)

and the same for ^ 5 ^ with ij —> cr. Eq.(25) shows, that 6S vanishes for variations which
are zero on the endpoints.

Eq.(24) can be applied to the construction of actions for scalar multiplets if one applies
an odd number of super-derivatives so as to obtain a composite fermionic multiplet, some-
times called the (fermionic) prepotential. A simple example of this construction is the free
kinetic action for a scalar multiplet, constructed from the composite fermionic multiplet



(26)

Inserting the components of this multiplet into the action formula (24) gives

Skin = f dr ( — x2 + %- i4 + " xi>x) • (27)

If one extends this formula to d free multiplets S^ = (x^,^), ft = 1,...,d, then using
the appropriate minkowski metric it becomes the action for a free spinning particle in
(/-dimensional space-time.

This is a special case of the most general action involving only scalar multiplets and
quadratic in proper-time derivatives of the bosonic co-ordinates i*1: the D = 1 (non-)linear
(r-model in a (/-dimensional target space, constructed from a fermionic multiplet

$ [9) = ^ ( S ) x Z>2£" x 2>E". (28)

Here (^(S) is a symmetric tensor in the space of the scalar multiplets, which can be
interpreted as a metric on the target manifold. Using $[</] in the action formula (24) gives
the component expression

Skin [9] = Jdr Q-gr{x)iMr + l-gixv{x)VDV + ^ ( * ) x ^ " ) , (29)

where D denotes a target-space covariant derivative

= 1jf + i ^ I W " , (30)

with r<cl/
/x(x) the Riemann-Christoffel connection. The action Sktn[g] is manifestly covariant

in the target space. The symmetries of this action have been investigated in detail in
[30, 31], with applications to special target manifolds like Schwarzschild space-time and
Taub-NUT in [31, 32, 12].

The simplest action for scalar multiplets involves only one super-derivative. It starts
from the general fermionic multiplet (super 1-form)

[A] = i4M(S) x W, (31)

with -4.M(S) an abelian vector field on the target space. Inserting the components of
i h i f l (24) i h l

()

in the action formula (24) gives the result

Svec [A] = jdr (A^{X)X» - j F^x^r) , (32)

with F,a, the field strength tensor of the abelian vector field A/Z(x).



A similar construction can be carried out using arbitrary odd super p-forms [24]. For
example p — Z gives

$ [H] = ^ J5UA(E) x X>S* x VHV x 2>S\ (33)

This gives an action involving the anti-symmetric 3-tensor H^xix):

oifrvvv*. (34)Sou [H]

The inclusion of even p-forms is also possible, but requires one or more fermionic multiplets;
details are given below.

In the same spirit one can find odd p-form extensions of the kinetic term

$[G\ = 6V..«v(S) x Z>2S" x ^ S " 1 - x S*». (35)

For a discussion of these unconventional actions I refer to [24]. Finally, actions with higher
powers of V2 and/or with V1 {n > 3) lead to higher-derivative component lagrangians. I
do not consider them here.

Combining the results for scalar fields, within the restrictions we have imposed the
general action for scalar multiplets is of the form

ITtC

S [S] = mSkin [g] + qSvec [A] + aS^ [H] + mcSA - - y ^ . (36)

This action describes a spinning particle in background electro-magnetic and gravitational
fields, with the possible inclusion of torsion for a. ̂  0. The first-class constraints obtained
from the equation of motion for the einbein and gravitino are

mV (i" + iXV) (iv + ixV) = -me2 (me2 iF^AjW f

iot \

f
H^x^ij^ij; = mce (A — a).

(37)
Here F^A) and FKllv\{H) are the field strenghts of the vector A^ and 3-form H^x,
respectively. Eqs.(37) are the pseudo-classical equivalents of the Klein-Gordon and Dirac
equations. Note that local supersymmetry can be used to chose a gauge a = A in which the
expressions on both sides of the second equation vanish. If c = 0 (absence of Sni and 5A)
the particle is massless. With the inclusion of Sni (c ^ 0) the particle acquires a non-zero
mass.

If the kinetic terms are normalized in the standard way, the relative co-efficient q be-
tween the first two terms represents the electric charge of the spinning particle, as defined
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by the generalized Lorentz-force [11]. Then the anti-symmetric tensor D^ — q^i^" repre-
sents the electric and magnetic dipole moments. The terms involving the 3-form Hta/\(x)
combine to form an anti-symmetric contribution to the Riemann-ChristofFel connection,
representing torsion indeed.

3. Finally we turn to the construction of actions involving elementary fermionic multiplets.
To begin with, there is the simple action formula (24) linear in the components of a
single fermionic multiplet. It involves no proper-time derivatives, and therefore it can
constribute only to potential terms. A natural and straightforward generalization of this
action involving r fermionic multiplets $*, i = l,...,r, is constructed from the composite
fermionic prepotential

* f , (38)

with the Ui(E) a set of scalar-multiplet valued potentials. The component action then is

Spat [U] = Jdr (eUi(x)f - iUiWxn* ~ ierdJJi{x)rf) . (39)

As the equation of motion for f requires all U{(x) to vanish, this action by itself is useful
only to impose constraints on the target manifold. This conclusion is modified when
additional (kinetic) terms are added to the action.

More complicated actions obtained using the multiplet calculus with both fermionic
and scalar multiplets must have an odd total number of fermionic multiplets and super-
derivatives. Therefore the next complicated type of action involves the product of two
fermionic multiplets including a super-derivative. The general form of the fermionic pre-
potential is

$[K] =.- Jfy(S) x V& x $ J , (40)

with Kij(L) a scalar-multiplet valued symmetric matrix. The component action for this
prepotential is

Sferm [K] = fdr (1JM*)7^ + e-Ki5{x)fP - ^ d ^ O O / V ) • (41)

It contains kinetic terms for the fermionic variables 7/% but the variables /* only appear
without derivatives and are auxiliary degrees of freedom. In combination with the potential
term Spot[U] its elimination turns the constraints Ui into a true potential, allowing the
bosonic variables to fluctuate around the solutions of the constraints Ui(x) = 0.

Other actions can be constructed by replacing some of the super-derivatives 2?SM in
the odd p-form prepotentials like $[H] (33) by fermionic multiplets. I give the details for
the case p = 3. First consider a prepotential linear in fermionic multiplets:



£ ^ ( E ) x $ x X£ x VW. (42)

The potentials Bi^x) define r anti-symmetric tensors (2-forms) on the target space of the
scalars. Thus this construction and its higher-rank generalizations allows the inclusion of
even p-forms in the action. Substitution in the linear-multiplet action Sun, eq.(24), gives

Seven [B] = J dr [~ ~ f B^X^V " «?%, W * " + £ JW'̂ U W V
(43)

Next consider the case of a quadratic expression in fermionic multiplets. The prepotential
is

$ [VI = — V-g ( S ) x $ * x $ J x 'Diyi. (44)

The vector field Vij^x), anti-symmetric in [ij], takes values in a gauge group G C SO (r)
for r even (in the quantum theory this is always the case [19]). Thus this action describes
the coupling to Yang-Mills fields. After quantization the fermionic variables rf generate a
Clifford-algebra representation of the group G embedded in SO(r) on the particle wave-
functions. The explicit expression for the pseudo-classical action is

\

Here Ff£) represents the abelian (linear) part of the field-strength for the vector field V^.
The non-abelian part can be obtained by a proper choice of Kij in Sferm and subsequent
elimination of the auxiliary variables /* (see below).

Finally I consider the action cubic in fermionic multiplets:

§J (46)

The action constructed from this prepotential becomes

int [T] = Jdr (llTijk(x)VW'fk + ̂ XTijk(x)VWvk + ̂ ^ T « * ( * ) l V V ) (47)Si

Comparison with the action Spot[U] shows, that this action represents the coupling to
non-abelian scalar fields, where the generators of the group are again expressed in terms
of the rank-r Grassmann algebra. Extensions of these results to higher-order forms are
straightforward.
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5 Applications
The actions constructed above can be used to describe spinning particles in a ^-dimensional
target space-time in various kinds of background fields: scalar fields, abelian and non-
abelian vector fields, anti-symmetric tensor fields, rank-3 anti-symmetric torsion, etc. (Note
that in four-dimensional space-time the rank-3 anti-symmetric tensor is dual to an axial
vector field.) In this section I discuss some special examples which are particularly useful
in physics applications.

1. Yukawa coupling. One of the simpler cases is that of a spinning particle in Minkowski
space-time interacting with a scalar field. This situation is described by the kinetic action
with g^ = Tffu,, the Minkowski metric, extended with the action Sferm for the internal
fermion variables in a flat background (Kij = Sij) and a potential term XSpot, where A is
the coupling constant:

[77^] + Sferm [Sij] - XS^ [U]. (48)

The full component action is

-XeUi(x)f + iXUi{x)Xrf

The auxiliary variables /* can be eliminated using their algebraic Euler-Lagrange equation

fi = XUi(x). (50)

This gives the result

( ^ + T ^ ^ + 5 W - | V D ?

(51)

+ iXUi{x)xvi + iXe-^dJJiix)-?) .

The constraints from varying the action with respect to the gauge variables are
2 ( i

(52)
+ eXUirf = 0.

The model describes a spinning particle in a relativistic scalar potential X2Uf(x), which may
be dynamical. If this field has a vacuum expectation value X2(Uf) = me2, it generates a
mass for the particle, showing it can act as a Higgs field. This mechanism of generating mass
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dynamically is an alternative to adding the non-linear multiplet action. However, in some
sense the two mechanisms are the same, because the action for the linear fermionic multiplet
(77,/) becomes identical with the non-linear multiplet action Sni(<r;c) if one imposes the
constraint that / = c, a constant.

2. Yang-Mills coupling. A very interesting application from the point of view of particle
physics is the case of a spinning particle (e.g., a quark or lepton) coupled to a vector gauge
field V^x) [7, 34, 35], a supersymmetric generalization of Wong's model [33]. Again, I
consider ordinary Minkowski space-time and a flat internal space-time. Then adding the
vector action:

Sgauge = ™>Skin fo^] + Sferm [£y] - gSYM [V] , (53)

and eliminating the auxiliary variable f* by its Euler-Lagrange equation

Wr, (54)
the component action reads

(55)
For convenience I have introduced here the Grassmann-algebra valued gauge field

v^ = -i^yv^, (56)
and similarly for the field-strength:

i
^ = d^Vv - dvVp -g [FM,Vv\. (57)

The equation of motion for a particle in a non-abelian background gauge field then becomes

I
where df = edr and D" is the gauge-covariant derivative. The first term represents the non-
abelian Lorentz force, the second one the Stern-Gerlach term responsible for non-abelian
spin-orbit interactions [11].

3. Gravity. The actions above can be easily generalized to include gravity, by using a
general curved-space metric g^i^x) in the kinetic multiplet rather than the Minkowski
metric T)^. The internal-space metric K,j(x) however remains flat. The only new feature
is then to change the kinetic terms to the general form Skin[g], eq.(29).
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4- Anti-symmetric tensor coupling. As a final example of the coupling of spinning particles
to external fields we consider anti-symmetric rank-2 tensor fields Bi^z) in curved space-
time as well as internal space. The action to use is

g) + Sferra[K] ~ J/Soent-S], (59)

where y is a coupling constant. The auxiliary variables /* now satisfy the equation

\ {Vd^Kirf yBi(lvrr) • (60)

To solve it, we assume that K{j(x) is invertible. Elimination of the auxiliary variables from
the action then gives the component result

7 _ / AT (— n ~MA«- , „
^tensor — / **' 1 ^ 9t*v X X "T ^ 9ILV

1

%7Y1 1.TT7

— 9(JLV VDV + —

e

8
-1 • dvK).. VV - \ j {dxK • K-1)' Biia,

(61)
Here Fifj.v\(B) = 1/3 (dxB^,, + dvBi\^ + d,j.Biv\) is the field-strength of the anti-symmetric
tensor field. When the internal metric is flat: Kij(x) = <$#, considerable simplifications
occur and the whole third line vanishes. In four dimensions the product ^^^"^"^^ is
proportional to £*""**, and the last term is of the form B • K~x • B, where the tilde denotes
the dual tensor.

6 Space-time supersymmetry
In all previous examples the fermionic multiplets were used to represent internal degrees of
freedom, connected with rigid or local internal symmetries. I conclude this paper with an
application where the extra fermionic variables represent space-time degrees of freedom.
This example is the spinning superparticle [22, 23], which possesses both (local) world-line
and (rigid) target-space supersymmetry [36].

For simplicity, I consider only space-times which allow Majorana spinors (d = 2,3,4
mod 8). In such a space-time one can define, in addition to the usual co-ordinate multiplets
SM, a spinor of real fermionic supermultiplets

13



*a = ( 0 . A ) , (62)

with a = 1, . . . , 2^ . More generally, in an arbitrary spinor basis we do not require reality,
but the Majorana condition

(63)

where $ = ^j0 is the Pauli conjugate spinor, and C is the charge conjugation matrix.
Then the components (0a, ha) define an anti-commuting and a commuting Majorana spinor
in then target space-time, respectively. The super-derivative of this spinor of multiplets is
denned as in eq.(15).

Introducing the Dirac matrices 7M in the d-dimensional target space-time, I next con-
struct a d-vector of composite spinor multiplets

(64)

The components of these spinor multiplet axe

n« = («", IP) = (V - l-f$, - vTx" + - vThf9 - h"h). (65)

From the spinor supermultiplets fl** it is straightforward to construct a fermionic prepo-
tential which is a Lorentz scalar in target space-time:

Wxfi"- (66)

The component action derived from this prepotential is

+~ (V H^)

A superfield derivation of this action has been presented in [37]. We observe that h is an
auxiliary commuting Majorana spinor. Contrary to our previous actions, in Ssuper these
auxiliary variables in general have a cubic and a quartic term, of the form f^hh'j^h and
(hfnh)2. However, owing to the Fierz identities these terms vanish in four-dimensional
space-time, where the auxiliary variables only appear quadratically.
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The action SaupeT has a huge number of symmetries. Except for local worldline super-
symmetry, I mention rigid target-space supersymmetry, under which the gauge multiplet
(e,x) is inert, whilst the linear multiplets SM and \Pa transform with an anti-commuting
Majorana spinor parameter e:

= -ifrfe, Sip11 = Wfz,
(68)

80 = e, 8h = 0.

These transformations imply that the components of the multiplet fiM = (wM, IP) in eq.(65)
are invariant: 6a>M = SW = 0.

Then there is the Siegel invariance with anti-commuting spinor parameter « on the
worldline, which takes the form

89 = 7 • E/c, 8h = - — h$K, (69)2j .^
e

8e — AiBn, 8x = 0.

Under these variations the components (a>M, IP) transform as

8W = — h11! -J1K-—§K HM, 8^ = 0. (70)

e e
In addition there is a bosonic counterpart of the Siegel invariance [22] with commuting
spinor parameter a:

Sx" = 0, 8^ = 07^7 • Ha -

80 = 0, 8h = 7 • Ha - 2hha, (71)

8e = —Aeha, 8x = 0,

resulting in

8W = 2a7^7 • ILh, 8u» = 0. (72)

Still other symmetries can be found for the massless spinning superparticle, which I do
not discuss here. If one assigns the space-time supersymmetry transformation 8a — 0 to
the non-linear fermion multiplet, addition of the mass term Sgrav respects local world-line
supersymmetry and space-time supersymmetry. However, in this case the Siegel transfor-
mations and their bosonic extension are no longer invariances of the model.
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