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1 Introduction

Singular homology can often seem too algebraic for the student looking for topological intuition, which is
why textbooks and classes often start with the more geometric simplicial homology. For those who have
had experience with manifolds and differential topology, a few texts also offer an explanation of Unoriented
bordism homology, proffering this as a more intuitive parallel to singular homology [2]. However, perhaps
due to the fact that it is presented as a more palatable, intuitive version of singular homology, most sources
seem skim or completely omit the proofs necessary to show that Bordism does indeed give rise to a homology
theorem, that is the statements and proofs of the Eilenberg-Steenrod axioms. In fact, bordism homology is
not a full homology theory: it fails the 7th Eilenberg-Steenrod axiom of dimension, making it an extraordinary
homology theory. This is covered in Conner’s Differentiable Periodic Maps for the oriented variant of bordism
homology, but in my search I have found no sources which compile a full list of the axioms for the simpler
unoriented version. In this paper, my goal is to briefly introduce the concept of unoriented bordism to the
reader, prove the first 6 Eilenberg-Steenrod axioms, and show why the 7th fails. Note that because this
paper focusses on only a basic understanding of bordism and proving it is an extraordinary homology theory,
we will take results from differential topology for granted when necessary, and state when this is the case.

2 Cobordism

Cobordism quite literally means “together boundary,” and the formal definition is not far from this etymo-
logical one:

Definition 1. For closed k-manifolds My, Ms, we say they are cobordant if there exists a diffeomorphism
i: My II My — ON
where N is a k+1 manifold with boundary. N is known as a bordism of My and M,

As one can tell immediately from the definition, at least in lower dimensions this is a very intuitive concept.
For instance: M x [0, 1] is a bordism of M with itself for any closed manifold. This is best visualized as the
cylinder for M = S,

There is an alternate convention for defining cobordism, and this is through the idea of a null-bordism. For
this definition, we will need to consider N = () to be a manifold of any dimension.

Definition 2. A closed manifold M is null-bordant if it is cobordant to K = () .

Of course, by definition this only occurs when M is the boundary of some N. To the reader familiar with
homology, this should immediately hint towards the idea of modding by the image of the boundary map, as
K =0 and M = ON are in the same equivalence class for all N. Now here we are getting a bit ahead of
ourselves, first we wish to show that cobordism is an equivalence relation.

Proposition 3. Cobordism is an equivalence relation



Proof. We will sketch transitivity, since the reflexivity and symmetry are immediate. Let M7, My, and M3y
be closed k-manifolds s.t. M7 ~ Ms, and My ~ Mj3. The idea behind the proof is to “glue” the cobordisms
for these relations N and N’ at the side of their boundary which is given by Ms. Assuming we may glue
N and N’ as such and keep the smooth structure (this indeed the case), the resulting manifold N has
boundary diffeomorphic to M7 II M3, and is thus a cobordism of My and M3, so My ~ Mj as desired. [

Now there is an obvious way to create a group structure from this definition, and that is in considering the
cobordism classes of the set of closed n-manifolds up to diffeomorphism (M O,,) with the operation given by
disjoint union. This is called the unoriented Thom bordism group after Thom’s seminal work on bordism
theory [1]. These groups are all known [3], and as we will discuss in the next section it turns out that
bordism homology reduces to this when working over the single point space, and thus fails to satisfy all of
the Eilenberg-Steenrod axioms.

3 Bordism Homology

In a way, the above construction is similar to simplicial homology in that the elements of M O,, are equiva-
lence classes of spaces “mod boundary”, particularly manifolds, just as elements of simplicial homology are
cycles mod boundary made out of simplices. As in the transition to singular homology, where one looks at
continuous maps from simplices into a topological space X, in bordism homology one examines continuous
maps from compact n-manifolds into X. We will define a Singular Manifold over X to be a pair (M, f) such
that f : M — X is a continuous map. Further we define the boundary map 9(M, f) = (OM, f|OM). We will
also use the notation f|OM = 9f for a singular manifold (M, f) throughout. Now there are a couple ways
to define a cobordism over X from here. Hopkins, in his notes on bordism homology, states that

Definition 4. two singular n-manifolds (f1, My), (f2, M2) are cobordant if there exists an n + 1 manifold
(h,N) and a diagram

My 11 My — 9 L HN
\ﬂl)fz /

where g is a diffeomorphism.

A singular manifold is null-bordant then if it is cobordant to (). Dieck chooses to define the null-bordance
first, stating

Definition 5. A null bordism of the closed singular manifold (M, f) over X is a triple (B, F, ¢) of a singular
manifold (B, F) and a diffeomorphism ¢ : OM — OB such that (F|0B)o¢ = f

The two definitions give the same diagram and diffeomorphism, so the reader may choose whichever is easier
to follow. To show that this idea is not far from the above, we provide the same example:

Example 6. Any closed singular n-manifold (M, f) over X is cobordant to itself.

Proof. Consider the singular (n + 1)-manifold (M x [0,1], F') over X, where F(x,t) = f(z). Then we have
a diagram (for simplicity let B = M x [0, 1])

MHM—>M><{0}HM><{1}

where i is simply the diffeomorphism sending the first copy of M to M x {0} and the second copy of M to
M x {1} O



Now similar to above, bordism is an equivalence relation. Here the idea relies on additional differential
topology, so we omit the proof, one may find it in most discussions of bordism homology. Then, adopting
Dieck’s notation, we may define the nth dimensional bordism homology of X N, (X) to be the set of closed
singular n-manifolds over X up to bordism. As it turns out, this is an abelian group whose elements are
at most order 2 The constant map serves as the identity, and every manifold is cobordant to itself, so the
above is clear. With these out of the way, it seems natural to address the map induced by a continuous map
of topological spaces—a concept integral to homology.

Proposition 7. a continuous map f: X =Y induces a homomorphism fi : No(X) = Np(Y)

Proof. For those familiar with singular homology, the proof is similar. Given a bordism class [(M;, )] of X,
we define f,[(My,0)] = [f(M1,0)] = [(My, fo)] and check this is well defined. We must show that f(o) is
cobordant to f(o’) for any o’ : My — X cobordant to o. Using the diagram given by this cobordance and
precomposing with f, we get the diagram

MM, —2 5 ON
f(o)f(o
f(8h)

IT f(¢') by definition. This diagram commutes as we have Ohog = o Il o,
) so f(o) is cobordant to f(o’) as desired. O

where we note f(o Ilo’) = f(0)
but then f(0h)og = f(o) I f(o’

4 Relative Bordism Homology

Now before tackling the Eilenberg-Steenrod axioms, we will need to define bordism homology over a pair of
spaces (X, A). This is a necessity for any homology theory those who know singular homology will recognize
this as the homology given by the chain complex ( o8 (ii) 0), where 0 is the induced boundary map on the
quotient space. The transition to relative homology here will not be quite as smooth, and we will need
redefine both our objects of interest and bordism itself. Let a singular manifold over the pair (X, A) be a
compact manifold M, and a map of pairs f : (M,0M) — (X, A). Bordism now takes a slightly more complex
form:

Definition 8. (My, fo) and (Mu, f1) are cobordant if there exists a pair (n + 1)-manifold (B, F) such that
(1) OB is the union of My, My, and M', (2) OM' = OMy 11 OM; and M; " M' = OM;, (3) FIM; = f;,
and (4) F(M') C A. Note that (B, F) is not a singular manifold! This would already give the condition
F(M') C A, but would restrict f(Moy) and f(Mi) to A which we cannot allow.

This looks much the same as above but with the extra M’ term and added conditions. This comes from the
fact that we are no longer working over closed manifolds: M’ gives an added bordism for the boundaries of M
and M; which we will need for the boundary map on the long exact sequence of pairs to be well defined. Once
again we have that bordism is an equivalence relation (again the proof relies heavily on differential topology
so we omit it, see Dieck 15.10.3). Let the set of compact singular manifolds over (X, A) up to bordism be
denoted N, (X, A). All results above follow similarly: this is a group under disjoint union elements are of
order at most 2, and a map of pairs f : (X, A) — (Y, B) induces a map fi : N,(X, A) — N, (Y, B).

The last definition we need regarding the relative groups is the boundary map 9. : N, (X, A) = N,,_1(A4)
which will appear in the LES of pairs and the naturality axiom.

Remark 9. For a singular n-manifold (M, f) over (X, A), O(M, f) = (OM, flOM), is a well-defined homo-
morphism from Np(X,A) — N,_1(A).

Proof. The target follows from the fact that M is a closed (n — 1)-manifold, and f|O0M maps exclusively
into A by definition of the (M, f). Further this is well defined due to M’ as mentioned above. That is,
if [My, fo] = [M, f1], then for a bordism of the two B, (M’, F|M') as defined above gives a bordism of
(8M078f0) and (8M1,8f1) as F|MZ = fz and OM = 8M0 I 8M1 O]

With that, we are finally ready to present the 7 axioms. Instead of in numerical order, we present the axioms
by length of proof, unsurprisingly leaving the long exact sequence of a pair for last.



5 The Eilenberg-Steenrod Axioms

5.1 Axioms 1-3

Now that we have fully defined Relative bordism homology, axioms 1-3 will follow immediately but we
provide proofs for completeness:

Remark 10. The identity I : (X, A) — (X, A) on a pair induces the identity I, : N,,(X, A) = N, (X, A)
Proof. I[M, f] = [(M,Io f)] = [M, f] O
Remark 11. for f: (X,A) = (Y,B) and g : (Y, B) = (Z,C), (fg)s = f+gs

Proof. By definition we have (fg).[M,h] = [M, f(gh)] = f.[(M,gf)] = feg:[M, f] O

Remark 12. The boundary map O, is natural, that is for a map ¢ : (X, A) — (Y, B), the diagram

Np(X, A) =5 N,_1(A)

lm Lﬁ* 1A

5.
N,(X,B) —— N,,_1(B)

commutes.

Proof. ¢.0.[M, f] = [¢(0M, f|OM)] = [0M, ¢(f|0M)]
0.9 [M, f] = [0(M, ¢ )] = [OM, (¢)|OM] H

5.2 Axiom 5: Homotopy

Now we will move on to the first non-trivial axiom, which provides a nice transition into a method we will
continue to use, proof by explicit construction of a bordism. The idea for the homotopy axiom is fairly
obvious-we must construct a bordism using the given homotopy:

Proposition 13. Given homotopic maps of pairs f and g : (X, A) = (Y, B), f« = g«

Proof. For any singular n-manifold (M, ¢) € N, (X, A), we wish to exhibit a bordism between f.(M,¢) =
(M, f¢) and g.(M, ¢) = (M, gp). Now we know there exists a homotopy of f and g, h: (X x [,Ax I) —
(Y, B). This allows us to define a singular (n + 1)-manifold, (M x I, F), where F(x,t) = h(¢(z),t). The
boundary of M x I is M x 9[0,1]IT1OM x [0, 1], and further F(x,0) = f¢(x) and F(z,1) = g¢(z). Then this
singular manifold satisfies (1) and (3) of the above definition immediately, note for (1) that M’ = OM x [0, 1].
(2) follows from having defined M’ as such. For (4), we must examine F(OM x [0,1]) = h(¢p(OM),[0,1]).
We know ¢(OM) C A, and because h is a homotopy of pairs, A x [0, 1] always maps into B, thus we have
F(M') C B as desired, giving us a bordism of f,(M, ¢) and g.(M, ¢). O

5.3 Axiom 6: Excision

The proof for excision requires a deeper foray into differential topology not within the scope of this paper.
Thus we will state a key lemma necessary for the result and omit the proof, see Conner and Floyd section
1.3 for a full discussion.

Lemma 14. Let My and My be closed, disjoint submanifolds of a compact manifold M. Then there exists
a submanifold M’ closed in M such that Mo C M', and My N M’ = () which may be given a differentiable
structure [1]

Now the proof for excision will also rely on a sort of analog of the theorem over the manifolds themselves:

Lemma 15. Given a closed singular n-manifold (M, f) over (X, A) and a compact sub-manifold V' such
that f: (M, M\V) — (X, A) is a map of pairs, then [M, f] = [V, f|]V] in Np(X, A)



Proof. We will construct a bordism of (M, f) and (V, f|V). Consider the singular (n+1)-manifold (M x I, F'),
such that F(x,t) — f(x). Its boundary is two disjoint copies of M, i.e. M x OI (as M is closed), so we
consider the submanifold V' x 1UM x 0. The complement of this submanifold is M\V x 1, and F(M\V x1) =
f(M\V) C A by definition. Now we prove this gives a bordism: relabeling M as M x 0, V as V x 1, and
M’ = M\V x 1, gives the desired relation. M’ =0 and M'NV x1=M" NM x 0=10, so (1) and (2) are
satisfied. Our definition of F immediately gives F|M x 0 = f and F|V x 1 = f|V, and we showed above
that F(M') C A so we have satisfied (3) and (4) and are done. O

Proposition 16. The (weak) excision property holds for Relative bordism homology: the inclusion i induces
an isomorphism i, : Np(X\Z, A\Z) — N, (X, A) for Z C Int(A)

Proof. We begin with a singular n-manifold (M, f) in (X, A). For some Z C A C X whose closure lies in the
interior of A, define compact sub-manifolds My = f~1(X\Int(A)) and M; = f~1(Z). By Lemma 14, there
exists a compact sub-manifold M’ with My C M’ and My N M' = 0. Now [M’', fIM'] € N,(X\Z, A\Z),
as we have strictly avoided the entire pre-image of the closure of Z. Further, we have by definition that
F(M\M’) C A, but then Lemma 15 gives that i, [M’, f|M'] = [M, f] proving that i, is a surjection.

Injection will follow in a similar manner. Assume we have i.[My, f] = i.[M1, g], then there exists a bordism
(B, F) of (Mg, f) and (My,g) over (X,A). Using the same process as above, let P = F~1(X\Int(A)),
Q = F~Y(Z). Then by Lemma 14 there exists a sub-manifold B’ of B such that P C B’, B'NQ = (), and
i«[B', F|B'] = [B, F]. We claim (B’, F|B’) is a bordism of (Mj, f) and (M;,g). Now Lemma 14 guarantees
that B’ is closed in B, and thus 0B’ = dB. Then (B’, F|B’) inherits conditions (1) and (2) directly from
B. Similarly, property (3) is inherited from F, that is F(My) = f and F(M;) = g. Lastly condition (4)
is satisfied by construction, as B’ N F~1(Z) = (), and F(M') C A (due to being a bordism over (X,A))
together imply F|B'(M') C A\Z as desired. Then we have constructed a bordism of (My, f) and (M, f) so
[My, f] = [My, g] and we have proved injectivity. O

5.4 Axiom 4: LES of Pairs

Finally we reach the last axiom bordism satisfies. Because most of our groups are over a single space, we
will often be dealing with closed singular manifolds. Thus we will need both the Lemma 15 and another
brief result on closed manifolds:

Lemma 17. Any null-bordism of a closed singular n-manifold (M, f) over (X, A) is a bordism of (M, f)
and some (M', F) over X such that F(M') C A

Proof. Let (B, F) be a null-bordism of a closed singular n-manifold (M, f) over (X, A), then by definition
OB=MUM' FIM=f MNM =0M =0, and lastly F(M’) C A. Then we have the diagram

MM —L 9B

L

with the added condition F(M') C A as desired O

With this out of the way, we may show how to construct the long exact sequence for a pair (X, A). A terse
proof is offered in Dieck, but we aim to add significant clarification.



Proposition 18. The sequence of pairs:

s Na (X, A)
D

L Np(A) —=— Nj(*X) Ly No(X,A). . j

. A
L No(A) —= Np(X) —Z No(X, A) j

Go

is a long exact sequence where i : A — X is the standard inclusion, j. takes a closed singular manifold
(M, f) € Ny(X) to (M, f) € Ni(X,A) where 9M = 0, and 8. is boundary map defined above.

Proof. We begin with proving exactness at N,,(A). Consider i,00.[M, f| = i.[0M, f|OM] = [i(OM, f|OM)] =
[OM, flOM] € N,(X). (M, f) gives an obvious null bordism of (OM, f|OM), so this is [}] = 0. Similarly,
consider any element (M, f) € N,(A) in the kernel of i,. By definition this simply means that i(M, f) =
(M, f) over X is null-bordant. Then there exists some null-bordism (B, F) of (M, f). Being a bordism over
X, we know OB is diffeomorphic to M by some g, and 9F o g = f, but then (0B, F|0B) is cobordant to
(M, ), as the diagram below commutes, and we get [M, f] = 9B, F] as desired.

MTIoB — % 5 M x a()

Now we examine exactness at N,,(X). For some element [M, f] € N,,(A), we have by definition j,0i.[M, f] =
[M, f] € N, (X, A) where 9M = (), and most importantly f(M) C A. This last condition allows us to apply
the Lemma 15 with V' = (}! Then we have j.i.[M, f] = [(] € N,,(X, A) as desired.

Now take some element [M, f] € N,,(X) in the kernel of j,, i.e. [M, f] € N,(X,A) = 0. Like above, this
means there exists a null-bordism (B, f) of (M, f). By Lemma 17, (B, f) is a cobordism of (M, f) and
(M', F) for some M’ such that F(M’) C A, but then there exists [M’, F] € N,,(A) such that i,[M', F] =
M, F] = [M, f] € No(X)

Finally we move to proving exactness at N, (X, A). Given [M, f] € N, (X), consider j.0.[M, f] = [0j(M, f)] =
[OM, flOM] but M is closed so this is [)] = 0. Now consider an element [M, f] in the kernel of d.. As above
pick a null-bordism (B, F) of (OM, f|O0M). This is a null-bordism over A, so its boundary is diffeomorphic
to OM. Then because M and B have diffeomorphic boundaries, we may glue them along the boundary to
create a closed manifold (N, k). Note F|OM = f, so setting h = f on M and F on B is well-defined and
continuous. Now consider j.[N,h] € N, (X, A) and recall that B C N was a null-bordism over A and thus
h(int(B)) C A. Then by Lemma 15 we have j.[N,h] = j.[N\int(B), h|N\int(B)] = [M, f] O

5.5 Axiom 7: Dimension

Despite its simplicity, we have saved axiom 7 for last. Indeed, as the reader may recall, this is because bordism
homology actually fails the Dimension axiom. As we mentioned above, N, (pt) = MO,,, the unoriented Thom
bordism group.

Remark 19. N, (pt) = MO,

Proof. We define the obvious homomorphism i : N, (pt) — MO, s.t. i[M,c] — [M] where c is the constant
map. Surjection follows immediately from definition. Assume i([My,c]) = ([M1,¢]), then My and M; are



cobordant, so there exists a compact (n + 1)-manifold N with a diffeomorphism i : ON — M, II M;, which
gives the bordism

MoIIM; —— L L HN

and thus [My, ] = [My, c]. O

Of course we are note quite done, as we have not proven 3 n > 0s.t. MO,, # 0, but as mentioned above these
groups are completely known. The simplest example comes from the fact that RP? is a closed manifold but
not the boundary of any compact 3-manifold, and thus MOy # 0. In fact, MOs = Z/2, and is completely
generated by this bordism class [3]

6 Conclusion

We have introduced the topic of bordism and singular manifolds in a hopefully intuitive fashion for the
reader, and given straight-forward proofs for the first 6 Eilenberg-Steenrod axioms, as well as showing why
the 7th fails. In this, we have shown that bordism homology is an extraordinary homology theory. For
more information on the differential background to bordism we omitted from this paper, one should see the
opening sections of Conner’s Differential Periodic Maps.
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