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Introduction

This text contains the notes from a course taught at MIT in the spring of 1999, whose topics
revolved around the use of stacks in studying complex oriented cohomology theories. The notes were
compiled by the graduate students attending the class, and it should perhaps be acknowledged (with
regret) that we recorded only the mathematics and not the frequent jokes and amusing sideshows
which accompanied it. Please be wary of the fact that what you have in your hands is the ‘alpha-
version’ of the text, which is only slightly more than our direct transcription of the stream-of-
consciousness lectures. Much of what is here is somewhat incoherent, and some of it is actually
wrong. A ‘beta-version’ may perhaps appear sometime in the future, but until then the notes
should probably only be circulated via the topology underground.

Date: August 13, 1999.
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In brief, the main physical goal of the course was to present proofs of the Landweber Exact Functor
Theorem and the Morava/Miller-Ravenel Change-of-Rings Theorem using the language of stacks.
The lecturer often prophesized that in this context those theorems would seem ‘almost obvious’—
the reader can decide for himself whether he ultimately buys this. There was a secondary goal of
the course, however, and that was to introduce students to the general yoga of complex oriented
cohomology theories. There are many lectures devoted to this background machinery, much of which
appears as an aside to the main discussion. The organization is at the moment somewhat convoluted,
but there also several nice vignettes to be found here. Good luck...

1. Complex Oriented Cohomology Theories

A complex oriented cohomology theory is a generalized cohomology theory E which is multiplica-
tive and has a choice of Thom class for every complex vector bundle. The latter statement means
that if ξ → X is a complex vector bundle of dimension n then we are given a class U = Uξ ∈ Ẽ2n(Xξ)
with the following properties:

(a) For each x ∈ X , the image of Uξ under the composition

Ẽ2n(Xξ)→ Ẽ2n(∗ξ)→ Ẽ2n(S2n)
∼=
−→ E0(∗)

is the canonical element 1.
(b) The classes Uξ should be natural under pullbacks: if f : Y → X then Uf∗ξ = f∗(Uξ).
(c) Multiplicativity: Uξ⊕η = Uξ · Uη.

Remark 1.1. It may appear that we had to make some choices in writing down the maps appearing
in part (a)—for instance, we had to choose an identification of S2n with ∗ξ. But the fact that ξ is
a complex vector bundle gives a preferred orientation of ∗ξ, and the induced map on cohomology
Ẽ2n(∗ξ)→ Ẽ2n(∗) only depends on the way the orientations match up.

Example 1.2.

(a) Both singular cohomology H∗(−; Z) and complex K-theory K∗ are complex orientable.
(b) Real K-theory KO∗ is not complex orientable. For example, if ξ is the canonical line bundle

over CP 1 then one can show that the map

Z ∼= K̃O
2
(Xξ)→ K̃O

2
(S2) ∼= Z

coincides with multiplication by 2. So 1 is not in the image.

If ξ is the tautological line bundle over CP∞ then the zero section CP∞ → (CP∞)ξ turns out

to be a homotopy equivalence. The Thom class Uξ ∈ Ẽ2(CP∞) then pulls back to a class usually

called x (or xE) in Ẽ2(CP∞).

Proposition 1.3. Any class x ∈ Ẽ2(CP∞) restricting to 1 under the composite

Ẽ2(CP∞)→ Ẽ2(CP 1) = Ẽ2(S1) ∼= E0(∗)

extends in a unique way to a complex orientation of E.

We will return to the proof later.

A complex orientation on a cohomology theory E gives rise to a Thom isomorphism

·Uξ : E∗(X)
∼=
−→ Ẽ∗+2n(Xξ).

It also gives rise to Chern classes ci(ξ) ∈ Ẽ2i(X) satisfying

(i) Naturality under pullbacks;
(ii) cn(ξ ⊕ η) =

∑
i+j=n ci(ξ)cj(η);

(iii) c1(L) = x ∈ Ẽ2(CP∞) where L denotes the tautological line bundle over CP∞.
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Question: In singular cohomology one has c1(L1 ⊗ L2) = c1(L1) + c1(L2) for line bundles L1 and
L2 over the same base X . What can we say about c1(L1 ⊗ L2) for an arbitrary complex oriented
cohomology theory?

Answer: It turns out that c1(L1⊗L2) can be written as F (c1(L1), c1(L2) for some F (x, y) ∈ E∗[[x, y]].
If we write x+F y for F (x, y), then this power series will have the following properties:

(i) x+F y = y +F x (because L1 ⊗ L2
∼= L2 ⊗ L1);

(ii) x+F 0 = x = 0 +F x (because L⊗ 1 ∼= L, where 1 denotes the trivial line bundle);
(iii) (x+F y) +F z = x+F (y +F z) (because tensor product of line bundles is associative).

Such an F is called a ‘formal group law’ over the ring E∗. As far as is known, any formal group
law can occur as the F (x, y) for some complex oriented cohomology theory. One of the main goals
of this course will be to frame the conjectural relationships between formal group laws and stable
homotopy theory.

Some basic computations.
Let E be a multiplicative cohomology theory and let x ∈ Ẽ2(CP∞) be an element restricting to 1 (as
in Proposition 1.3). This gives a map E∗[x]→ E∗(CPn) (for each n). One can see that xn+1 must
map to zero: First note that CP n can be covered by n+ 1 contractible open sets Ui, and because x
is a reduced cohomology class it must restrict to zero on each Ui. As a general rule one knows that
if a ∈ E∗(X,A) and b ∈ E∗(X,B) then ab ∈ E∗(X,A ∪ B). But we can write x ∈ E∗(CPn, Ui) for
each i, and so xn+1 lies in E∗(CPn, U1 ∪ . . . ∪ Un+1) = E∗(CPn,CPn) = 0.

We therefore get a map

E∗[x]/(xn+1) −→ E∗(CPn).

Lemma 1.4. The above map is an isomorphism.

Proof. Use the Atiyah-Hirzebruch spectral sequence

Ep,q2 = Hp(CPn;Eq(∗))⇒ Ep+q(CPn)

(which is multiplicative). The E2 term is isomorphic to E∗[x]/(xn+1), and both x and the elements
of E∗ all have to be permanent cycles—so there can be no differentials in the spectral sequence. The
rest is left to the reader.

We want to next calculate E∗(CP∞), and we can use the Milnor sequence:

0→ lim1E∗−1(CPn)→ E∗(CP∞)→ lim
n
E∗(CPn)→ 0.

The right-hand-term is limE∗[x]/(xn+1) ∼= E∗[[x]], and the left-hand-term is zero because the maps
E∗(CPn+1)→ E∗(CPn) are all surjective. This shows that E∗(CP∞) ∼= E∗[[x]].

The same argument gives that E∗(CP∞×· · ·×CP∞) ∼= E∗[[x1, . . . , xn]] where xi is the pullback
of x along the projection to the ith factor.

Chern Classes.
A line bundle L → X is classified by a map f : X → CP∞ (which is unique up to homotopy).

Define

c1(L) = f∗(x).

Let L denote the universal line bundle over CP∞, and consider the map

g : CP∞ × CP∞ → CP∞

which classifies the bundle L⊗ L. This induces a map on cohomology

E∗[[x]] ∼= E∗(CP∞) −→ E∗(CP∞ × CP∞) ∼= E∗[[x, y]],
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so the image of x will be some power series F (x, y) ∈ E∗[[x, y]]. By considering the universal example
above, it is easy to check that if L1 and L2 are two line bundles over a space X then

c1(L1 ⊗ L2) = F (c1(L1), c1(L2)).

Note that the crucial point in this argument is knowledge of E∗(CP∞).
Let ξ → X be a complex vector bundle of dimension n and let P(ξ) denote the projective bundle

of ξ—the fibre bundle overX whose fibre over x is the projective space of ξx. There is a ‘tautological’
line bundle Lξ over P(ξ). Let t ∈ Ẽ2(P(ξ)) denote c1(Lξ). An argument using the Atiyah-Hirzebruch
spectral sequence, similar to the one from the last section, proves that:

Proposition 1.5. E∗(P(ξ)) is free over E∗(X) with basis 1, t, . . . , tn−1.

We can now mimic the Grothendieck theory of Chern classes. There exist unique elements
ci ∈ E2i(X) such that

tn = c1t
n−1 − c2t

n−2 + · · ·+ (−1)n−1cn.

Definition 1.6. The ith Chern class of ξ is defined to be the above class ci.

Exercise 1.7. Verify the properties of Chern classes listed above.

Here is some motivation behind this definition (which also serves to prove that the theory of
Chern classes is unique). Let p : P(ξ)→ X denote the projection, and form the pullback

p∗ξ

��

// ξ

��
P(ξ) // X.

It is easy to see that p∗ξ = Lξ ⊕Q for some new vector bundle Q.
Write cs(ξ) = 1 + c1(ξ)s + c2(ξ)s2 + · · · + cn(ξ)sn—this is called the total Chern class. By the

Cartan formula, we must have

p∗cs(ξ) = cs(p
∗ξ) = cs( Lξ) · cs(Q) = (1 + st)cs(Q).

In particular, we find that s = − 1
t is a root of p∗(cs(ξ)), hence of cs(ξ). This gives the relation

1 + c1(ξ) ·
(
−

1

t

)
+ · · ·+ cn(ξ) ·

(
−

1

t

)n
= 0.

Multiplying through by tn gives the relation we used to define the Chern classes.

2. Formal Group Laws

When we talk about formal group laws we really only mean those which are commutative and 1-
dimensional. The reader should also be aware of the distinction between ‘formal groups’ and ‘formal
group laws’. A formal group law is essentially a formal group with a choice of coordinate—we will
discuss this more in the future. For now, we’ll only talk about formal group laws.

Definition 2.1. A formal group law over a ring R is a power series F (x, y) ∈ R[[x, y]] satisfying
the properties below (where we write x+F y instead of F (x, y)):

(i) x+F y = y +F x;
(ii) x+F 0 = x = 0 +F x;
(iii) (x+F y) +F z = x+F (y +F z).

Remark 2.2 (Change of Base). If f : R → S is a ring map and F is a formal group law over R,
then we can define a new formal group law f ∗F over S in the following way: if F (x, y) =

∑
aijx

iyj

then we let f∗F (x, y) =
∑
f(aij)x

iyj .
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Theorem 2.3. There is a universal formal group law: that is, there is a ring R and a formal group
law Funiv over R such that the map

Ring(R,S)→ {formal group laws over S}

which sends f to f∗Funiv is an isomorphism. (R and Funiv will be unique up to unique isomorphism).

Proof. A formal group law G over a ring is a power series G(x, y) =
∑
aijx

iyj with some special
properties. These properties can be expressed as formulas in the aij ’s:

(i) Commutativity implies aij = aji;
(ii) The fact that 0 is an identity implies that ai0 = 1 if i = 1 and ai0 = 0 otherwise;

(iii) Associativity translates into something complicated which we won’t write down.

So define R = Z[aij ]/(above relations), and let F (x, y) =
∑
aijx

iyj . It’s easy to check that this
gives the desired universal formal group law.

Remark 2.4. If we let aij have degree 2(i+j) and extend multiplicatively, then R becomes a graded
ring (because the relations amond the aij ’s are homogeneous). There’s a better ‘explanation’ of this
grading which will be discussed later.

Write R =
⊕

nR2n where R2n is the homogeneous part of R in degree 2n and note that

(i) R is connected: R2n = 0 for n < 0 and R0 = Z;
(ii) Each R2n is a finitely generated abelian group.

Some notation: let

Cn(x, y) =
1

dn

[
(x+ y)n − xn − yn

]
where dn =

{
p if n = pe

1 otherwise.

Theorem 2.5 (Lazard). Let L = Z[x1, x2, . . . ] where degxi = 2i. Then there is a formal group law
F over L with

F (x, y) ≡
∑

xn · Cn+1(x, y) mod (x1, x2, . . . )
2

and the map R → L classifying F is an isomorphism of graded rings. (Here R is the ring of
Theorem 2.3).

Corollary 2.6. Suppose f : S → T is a surjective map of rings and let G be a formal group law
over T . Then there is a formal group law G′ over S such that f∗G′ = G.

The proof of Lazard’s theorem is a little involved. First note that since R is connected and graded,
we only have to study homogeneous formal group laws over connected, graded rings. Perhaps the
simplest examples of such rings are obtained by starting with an abelian group A and an n > 0, and
defining a ring structure on Z ⊕ A where ab = 0 for a, b ∈ A, with the elements of A in degree 2n.
What are the formal group laws over such a ring?

If S is a connected, graded ring then let I = IS = {s ∈ S | deg(s) > 0}. I/I2 is denoted QS and
called the ‘module of indecomposables’. Note that graded ring homomorphisms S → Z ⊕ A2n are
in one-to-one correspondence with abelian group maps QS2n → A. The case S = R tells us that
studying formal group laws over Z⊕A2n will tell us about QR2n.

Now a formal group law over Z⊕A2n must look like x+ y+ f(x, y) for some f(x, y) ∈ A⊗Z[x, y]
which is homogeneous of degree n− 1. This f(x, y) will have the following properties:

(i) f(x, y) = f(y, x) (symmetry)
(ii) f(x, 0) = 0

(iii) f(y, z)− f(x, y + z) + f(x+ y, z)− f(x, y) = 0 (called the ‘2-cocycle condition’).

Part (iii) is obtained by writing out the associativity formula for x + y + f(x, y) and taking the
homogeneous part in degree n− 1.

Definition 2.7. A symmetric 2-cocycle with values in A is an f(x, y) ∈ A ⊗ Z[x, y] satisfying
the above properties.
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Proposition 2.8 (Symmetric 2-cocycle lemma). Any symmetric 2-cocycle with values in A is a
linear combination of those of the form a⊗ Cn(x, y).

Proof. Postponed.

The above result tells us that any formal group law over the ring Z⊕A2n has the form

x+ y + aCn(x, y)

for some a ∈ A. Now take A = Z and a = 1: there is a map R → Z ⊕ Z2n classifying the formal
group law x+ y + Cn(x, y). The symmetric 2-cocycle lemma shows that

Corollary 2.9. There is a canonical isomorphism QR2n → Z induced by the map above.

Now let xn ∈ R be any element whose image in QR2n maps to 1 under the above isomorphism.
The x’s define a map L = Z[X1, X2, · · · ]→ R.

Exercise 2.10.

(a) Show that a map S → T of connected, graded rings is surjective if and only if the induced map
QS → QT is surjective.

(b) Conclude that the above map L→ R is surjective.

The next step is to show injectivity. We’ll return to this after a brief message from our sponsor:

Maps between formal group laws.
The definition of maps between formal groups is what you would expect. If G and H are groups
then a map of groups is just a map f : G→ H which makes the following diagram commute

G×G

µG

��

f×f // H ×H

µH

��
G

f // H

We do the same for formal group laws. We should just remember that the power series rings
correspond to “rings of functions on the group” 1 and hence transform contravariantly:

xG +G yG R[[xG, yG]] R[[xH , yH ]]
f∗⊗f∗

oo xH +H yH

xG
_

OO

R[[xG]]

OO

R[[xH ]]
f∗

oo

OO

xH
_

OO

So a map between the formal group laws F and G is a ring homomorphism f ∗ between the ring of
functions on H and the ring of functions on G. This homomorphism is determined by where xH is
sent, i.e. by a power series in xG. Now we just have to be careful with how we write the composition
of two maps of power series rings in terms of where the generators get sent.

If f∗(xH) = f(xG) ∈ R[[xG]] and the formal group law on G sends xG to G(xG, yG) then the
composite of the two is the map that sends xH 7→ f(xG +G yG). The upshot of all this is the
following:

Definition 2.11. Let G and H be formal group laws over a ring R. A map of formal group

laws f : G→ H is a power series f(x) ∈ R[[x]] satisfying

(i) f(0) = 0
(ii) f(x+G y) = f(x) +H f(y).

Lemma 2.12. f is an isomorphism if and only if f ′(0) is a unit in R.

Note 2.13. A strict isomorphism is one where f ′(0) = 1.

1Indeed, the power series ring arose as the cohomology of CP
∞ and hence as a ring of homotopy classes of maps.



COMPLEX ORIENTED COHOMOLOGY THEORIES AND THE LANGUAGE OF STACKS 7

Example 2.14 (Examples of Formal Group Laws).

(1) Ga(x, y) = x+ y (the additive formal group law).
(2) Gm(x, y) = 1− (1− x)(1− y) = x+ y − xy (the multiplicative formal group law).

Are the above two formal group laws isomorphic? For this to be true we would have to produce
an f(x) with f(x+ y − xy) = f(x) + f(y). A little playing around suggests we do something with
the logarithm, and it’s not hard to check that

f(x) = − log(1− x) =
∑ xn

n
is the only power series that will work. So we get an isomorphism between Ga and Gm only when
we can divide by each n ∈ Z+—e.g., if our ring is a Q-algebra.

If we start with a power series g(x) = x+m1x
2 +m2x

3 + · · · then we can form

G(x, y) = g−1(g(x) + g(y))

and this will be a formal group law over our ring. The power series g(x) gives an isomorphism
G→ Ga.

Back to our regularly scheduled program.
Remember that the only thing left to do is show that the map L → R is injective. We start by

writing down the universal example of a twisted Ga: let U = Z[m1,m2, . . . ] where | mn |= 2n. Let
g(x) = x + m1x

2 +m2x
3 + . . . and define G(x, y) = g−1(g(x) + g(y)). This is a formal group law

over U , so there is a map R→ U classifying it.
To show L → R is injective, it suffices to show the composite L → R → U is injective. And it’s

enough to check this on indecomposables (because U is a polynomial algebra):

(QL)2n
∼=
−→ (QR)2n −→ (QU)2n.

So we need to write down what G looks like over the quotient Z +QU2n of U .
Now in this quotient we have

g(x) ≡ x+mnx
n+1 and g−1(x) ≡ x−mnx

n+1.

So

g−1(g(x) + g(y)) = g−1(x+ y +mn(xn+1 + yn+1))

= x+ y +mn(xn+1 + yn+1)−mn(x + y + · · · )n+1

= x+ y +mn(xn+1 + yn+1 − (x+ y)n+1) + · · ·

≡ x+ y − dn+1mnCn+1(x, y).

This means that the map Z ∼= QL2n → QU2n sends 1 to −dn+1mn, hence is injective. This finishes
the proof of Lazard’s Theorem.

Exercise 2.15. We’ve seen that the functor S 7→ {formal group laws over S} is co-representable.
Find the object representing the functor

S 7→ ((the category of formal group laws over S, with maps being isomorphisms)).

3. Proof of the Symmetric Cocycle Lemma

In this section we will give a homological proof of the symmetric 2-cocycle lemma. The reader is
referred to [F] for a combinatorial proof.

Theorem 3.1 (Symmetric 2-cocycle lemma). Let A be an abelian group and let f(x, y) ∈ A⊗Z[x, y]
be homogeneous of degree n. Assume that

(i) f(x, y) = f(y, x)
(ii) f(y, z)− f(x+ y, z) + f(x, y + z)− f(x, y) = 0.

Then f(x, y) = a⊗ Cn(x, y) for some a ∈ A.
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Recall that

Cn(x, y) =
1

dn

[
(x+ y)n − xn − yn

]
where dn =

{
p if n = pe

1 otherwise.

We begin with some simple reductions:

(a) Only finitely many elements of A are involved in the expression for f , so it suffices to prove the
lemma when A is finitely-generated.

(b) The lemma is true for A and B iff it’s true for A⊕B.
(c) So using the structure theory for finitely-generated abelian groups, we are reduced to the case

where A is either Z or Z/pr.
(d) If B ⊆ A and the lemma is true for A, then it’s true for B—hence we can check the case A = Z

by checking A = Q.
(e) The case A = Z/pr follows from the case A = Z/p:

Proof. The argument is by induction. Let f(x, y) ∈ Z/pr[x, y] be a symmetric 2-cocycle, where
r > 1. If we know the theorem for Z/pr−1 then we can write

f(x, y) = aCn(x, y) + pr−1g(x, y)

for some g(x, y) ∈ A ⊗ Z[x, y]. It’s easy to see that pr−1g(x, y) will also be a symmetric 2-
cocycle, and so we can think of g(x, y) as a symmetric 2-cocycle over Z/p[x, y]. But then using
the theorem for Z/p we get that g(x, y) = bCn(x, y), and we’re done.

So we have reduced to proving the result for A = Q and A = Z/p. In particular, we can assume
that A is a field.

Consider the chain complex

A
d0
−→ A[x]

d1
−→ A[x, y]

d2
−→ A[x, y, z](3.1)

where the maps are given by

d0a = a

d1f(x) = f(x+ y)− f(x)− f(y)

d2g(x, y) = g(y, z)− g(x+ y, z) + g(x, y + z)− g(x, y).

We may as well assume the modules in the complex are graded, with A in degree 0 and x, y, z in
degree 2.

Note that d1(xn) = dnCn(x, y), so that the 2-coboundaries (i.e., the image of d1) are spanned
by elements of the form a ⊗ dnCn(x, y). Also note that the 2-cocycles (i.e., the kernel of d2) are
precisely what we have been calling 2-cocycles all along. So the symmetric 2-cocycle lemma is saying
something about 2-cocycles modulos 2-coboundaries—i.e., something homological.

Consider the co-algebra structure on A[x] in which x is primitive: x 7→ x⊗ 1 + 1⊗ x. The above
complex is actually the beginning of something called the cobar construction for A[x]. Rather than
develop it in these terms, we will instead dualize and work with algebras instead of coalgebras (just
because it’s conceptually more familiar). Since we have graded our modules, dualization will not
cause us any trouble.

Definition 3.2. The divided polynomial algebra on one variable ΓA[t] is the quotient of the
free A-algebra A < t1, t2, · · · > by the relations

tn · tm =

(
n+m

n

)
tn+m

(where by convention t0 = 1). We will usually write Γ[t] instead of ΓA[t].
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Remark 3.3. Γ[t] is the dual of the coalgebra A[x], where x is primitive. The elements tn should

be thought of as behaving ‘formally’ like tn

n! (but note that the latter expression doesn’t make sense
in positive characteristic). The reader may check that if A is a Q-algebra then ΓA[t] ∼= A[t].

The Bar Construction.
The point of this section is to show that the complex we wrote down in (3.1) computes

Ext∗Γ[t](A,A), where A = Γ[t]/(t1, t2, . . . ) as a Γ[t]-module.

If K is a simplicial set then we can form a simplicial A-algebra Γ[t] ⊗K whose object in degree
n is [

Γ[t]⊗K
]
n

=
⊗

σ∈Kn

Γ[t].

Here there is one tensor factor for every n-simplex of K, and the tensor products are formed over
A. There is nothing special about Γ[t] here—we could have formed R⊗K for any A-algebra R. (It
may be helpful to note that the tensor product is the coproduct in the category of A-algebras—this
allows one to work out the face and degeneracy maps fairly easily).

In particular, we may form Γ[t]⊗∆1 where ∆1 denotes the usual 1-simplex. The n-simplices of
∆1 correspond to order-preserving maps {0 < 1 < · · · < n} → {0 < 1}: 0-simplices are {0, 1}, 1-
simplices are {00, 01, 11}, 2-simplices are {000, 001, 011, 111}, etc. So the simplicial algebra Γ[t]⊗∆1

looks like

Γ[t] Γ[t]⊗ Γ[t]oooo Γ[t]⊗ Γ[t]⊗ Γ[t]oooooo · · ·oo oooo
oo

Working out the face and degeneracy maps is left as an exercise for the reader. Note that what we
gain by saying things in this way is that it is obvious that the simplicial relations are satisfied, no
checking is necessary.

Now the inclusion of the 0th vertex ∆0 → ∆1 is a simplicial homotopy equivalence, so it follows
that Γ[t]⊗∆0 → Γ[t]⊗∆1 is also a simplicial homotopy equivalence. The same likewise holds for

A⊗Γ[t] ⊗Γ[t]⊗∆0 → A⊗Γ[t] ⊗Γ[t]⊗∆1,

and so the associated chain complexes are chain homotopy equivalent. But note that the chain
complex associated to the left object just has homology A in degree 0 and zero everywhere else. So
we conclude that the complex associated to A ⊗Γ[t] Γ[t] ⊗∆1 is a resolution of A—this complex is
called the bar construction. Each term of the complex is free as a right Γ[t]-module.

The reader may check that the first few terms of the complex

HomΓ[t](A⊗Γ[t] Γ[t]⊗∆1, A)

coincide with the complex we wrote down in (3.1). In particular, the homology of that complex
computes Ext∗,∗Γ[t](A,A). We will now prove the Symmetric 2-Cocycle Lemma by computing these

Ext-groups using a more efficient complex.

Computations.

Case 1: A = Q.

In this case Γ[t] is just isomorphic to a polynomial algebra Q[t], and it’s easy to compute Ext
over this ring by using the resolution

0 −→ Q[t]
·t
−→ Q[t] −→ Q −→ 0.

The conclusion is that

ExtsQ[t](Q,Q) =





Q s = 0

Q s = 1

0 s > 0.

In particular, Ext2 = 0 and therefore every 2-cocycle (symmetric or not) is a 2-boundary. This
proves the theorem in this case.
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Case 2: A = Z/p.

Let E[t] = Fp[t]/(t
p). It can be checked that

Γ[t] ∼=
⊗

k≥0

E[tpk ]

(where the tensor product is taken over Fp). By the Künneth formula, we then have that

ExtΓ[t](A,A) ∼=
⊗

k≥0

ExtE[t
pk ](A,A).

For a moment consider the case p = 3. E[t] may be drawn pictorially as: q

q

q

1

t

t2

The minimal resolution of Fp = E[t]/(t) over E[t] then has the following form:

q q

q

q

q

q

q q

q

q

q

q

q

�

�

�

�

�

�

p p p

This resolution is easy to describe algebraically, and in fact this generalizes for arbitrary p: when p
is odd, form the differential graded algebra E[t] ⊗ Λ[a] ⊗ Γ[b], where the differential is determined
by

da = t and db = tp−1a

together with the fact that it is a derivation. It can be checked that this complex gives a resolution
for Fp over E[t]. One way to see this is to recognize E[t] as the group algebra of a cyclic group
and notice that the resolution described above coincides with the standard resolution. One then
computes that

ExtE[t](A,A) = Λ[α]⊗ P [β], where α ∈ Ext1 and β ∈ Ext2 .

Here Λ[α] denotes an exterior algebra on the class α, and P [β] is a polynomial algebra. So

ExtΓ[t](A,A) ∼= Λ[αk | k ≥ 0]⊗ P [βl | k ≥ 0], αk ∈ Ext1 and βk ∈ Ext2 .

Corollary 3.4.

(a) When p is odd, Ext2Γ[t](A,A) has basis {βk, αiαj}.

(b) When p = 2, Ext(A,A) = P [αi] and so Ext2 has basis {α2
k, αiαj}.

Observe that one has the relations αiαj = αjαi.

Exercise 3.5.

(a) Show that when p is odd βk is represented by the 2-cocycle Cpk (x, y) and αiαj is represented

by the 2-cocycle xp
i

yp
j

.

(b) Show that when p = 2, α2
k is represented by C2k (x, y) and αiαj is represented by x2i

y2j

.

For n 6= pk we have Cn(x, y) = d1(xn) so we have the following

Corollary 3.6. A basis for the 2-cocycles is given by the Cn(x, y) and the xp
a

yp
b

when a < b.

Notice that xp
a

yp
b

+ xp
b

yp
a

= Cpa+pb(x, y). It therefore follows that the Cn(x, y) form a basis
for the symmetric 2-cocycles. This completes the proof.

Note 3.7.
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(a) The techniques used above to determine the 2-cocycles apply in more general situations. One
example would be the classification of cocyles satisfying

f(y, z)−G f(x+F y, z) + f(x, y +F z)−G f(x, y) = 0

(b) One can also work out a basis for all the 2-cocycles (not symmetric) for any algebra A by using
a Bockstein spectral sequence.

4. Complex Cobordism and MU

There are different approaches to complex cobordism; we will focus on the vector bundle/Thom
complex perspective. The best reference for the material in this section is Chapter 2 of [A].

Consider the sequence of classifying spaces

BU(1) ↪→ BU(2) ↪→ · · · ↪→ BU.

Let MU(n) denote the Thom space of the universal bundle ξn over BU(n). It’s easy to see that
there are natural maps Σ2MU(n)→MU(n+ 1).

Recall that a spectrum is a sequence of pointed spaces {En} together with (pointed) maps ΣEn →
En+1. So in particular, the MU(n)’s assemble to give us a spectrum—this is usually called MU .
Any spectrum gives rise to a generalized homology and cohomology theory defined by

Ẽk(X) = lim
n→∞

πn+k(En ∧X)

Ẽk(X) = lim
n→∞

[ΣnX,En+k]

The generalized cohomology theory associated to MU is called complex cobordism. It turns
to be a ring spectrum, and in fact it’s complex oriented. The latter is somewhat formal: given a
vector bundle η over X , one gets a map X → BU(n) expressing η as a pullback of ξn. Taking Thom

spaces then gives Xη →MU(n), which defines an element in M̃U
2n

(Xη) by definition.
Now the amazing thing is that MU is actually the universal complex oriented cohomology theory.

It can be shown that complex orientations of a spectrum E are in one-to-one correspondence with
multiplicative maps MU → E.

The complex orientation on MU defines a formal group law on MU ∗ = π∗(MU). Therefore one
gets a map of graded rings

Z[x1, x2, . . . ] = L→ π∗(MU).

Theorem 4.1 (Quillen). The above map is an isomorphism.

We’ve seen that complex oriented cohomology theories give rise to formal group laws. The fact
that the universal complex oriented cohomology theory gives rise to the universal formal group law
suggests a very intimate relationship between the two. We will explore this more as the course
progresses. The proof of Quillen’s theorem uses computations with the Adams-Novikov spectral
sequence and complex oriented cohomology theories. We will begin with the former.

Adams resolutions.
We will follow the treatment by Haynes Miller [M]. The idea is the following. Let E be a spectrum

which we pretend to know something about and let X be another spectrum which we want to learn
about. Haynes’ idea is to think of this situation as you would in homological algebra.

Definition 4.2.

(i) A sequence of spectra A1 → A2 → . . . → An is exact if the sequence of homotopy functors it
represents is exact.

(ii) A map f : A→ B is a monomorphism if ∗ → A
f
→ B is exact.

(iii) A map f : A→ B is an epimorphism if A
f
→ B → ∗ is exact.

(iv) A sequence A→ B → C is short exact if ∗ → A→ B → C → ∗ is exact.
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Lemma 4.3. A map f : A→ B is a monomorphism iff there exists g : C → B such that

A ∨ C
f∨g
−→ B

is a weak equivalence.

Proof. Consider the cofiber sequence

A→ B → B/A

Since A→ B is mono, it follows that B → B/A is epi. We can now take C = B/A and g to be any
map lifting the identity.

Something similar holds for epimorphisms so the homological algebra of spectra in this naive form
is kind of stupid.

Definition 4.4. A sequence of spectra is E-exact if the sequence obtained from it by smashing with
E is exact.

We can now define the notions of E-monomorphism, E-epimorphism and E-short exact as above.

Definition 4.5. A spectrum I is E-injective if for each E-monomorphism f : A → B and each
map g : A→ I there exists a map h : B → I making the following diagram commute up to homotopy

A
g //

f

��

I

B

h

??�
�

�
�

Definition 4.6. An E-Adams resolution of a spectrum X is a sequence

∗ → X
j0
−→ I0

j1
−→ I1 −→ · · ·

such that

(i) jn ◦ jn−1 ∼ ∗
(ii) Each In is E-injective.
(iii) The sequence is E-exact.

Remark 4.7. It follows from Lemma 4.3 that defining I−1 = X , we have splittings E ∧ In =
Jn ∨ Jn+1 with J−1 = ∗, J0 = E ∧X, J1 = E ∧ (I0/X), . . . .

// E ∧X //

∼

��

E ∧ I0 //

∼

��

E ∧ I1 //

∼

��

· · ·

// J0
// J0 ∨ J1

// J1 ∨ J2
// · · ·

and the way one usually shows that a certain sequence is a resolution is by showing that the sequence
splits in this way.

Lemma 4.8. Let

∗ −→ X −→ I0 −→ I1 −→ · · ·

∗ −→ Y −→ J0 −→ J1 −→ · · ·

be E-Adams resolutions of X and Y and let f : X → Y be a map of spectra. Then there exists a
map of resolutions lifting f and this is unique up to chain homotopy.

Proof. Exercise.
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Note 4.9. One can actually speak of the space of maps between two resolutions. If the spectrum E
is a ring spectrum with higher order commutativity properties, the cells in the spaces parametrizing
the higher order homotopies give maps of resolutions shifting dimensions by the dimension of the
cell and it is in this way that all Adams differentials are derived.

Adams towers.
We will now show how Adams resolutions correspond to Adams towers.

Definition 4.10. A tower is a diagram of spectra

...

��
X2

��

// Σ−2I3

X1

��

// Σ−1I2

X
j0 //

;;wwwwwwwww

DD















X0 = I0 // I1

where the sequences Xn+1 → Xn → Σ−nIn+1 are cofibration sequences. The composites

Σ−njn+1 : Σ−nIn → Xn → Σ−nIn+1

where the first map is the inclusion of the fiber of Xn → Xn+1 are called the k-invariants of the
tower.

From a tower we get a sequence of spectra

X → I0
j1
−→ I1

j2
−→ I2 −→ · · ·

where clearly jn ◦ jn−1 ∼ ∗.
In general this sequence carries much less information then the tower we started out with. The

sequence just “remembers” the layers of the tower and the maps between them.

Definition 4.11. A tower is an E-Adams tower if its corresponding sequence is an E-Adams
resolution.

It is a miracle that in the case of an E-Adams resolution we can go back to get an E-Adams
tower. In general there are obstructions to constructing a corresponding tower which lie in the Toda
brackets < j0, j1, . . . , jn >. In the case of an E-Adams resolution the homological algebra somehow
guarantees that they all contain 0.

Proposition 4.12. Every Adams resolution arises from an Adams tower.

Proof. Let X → I0 → I1 → . . . be an E-Adams resolution. Then from the definition of a tower we
are forced to take X0 = I0 and X1 = fibre of I0 → I1. We will show how to get the next stage of
the tower which should make it clear how to proceed by induction.

So far we have the following diagram

X1

��
X

h

;;v
v

v
v

v
// X0 = I0 // I1 //

!!D
DD

DD
DD

D I2

ΣX1

g

==z
z

z
z
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In order to proceed one more stage we need to guarantee

(i) the composite X
h
−→ X1

Σ−1g
−→ Σ−1I2 is null.

(ii) the composite X1
g
−→ Σ−1I2 −→ Σ−1I3 is null.

It is now easy to check that these hold because the two maps are null after smashing with E and
hence must actually be null as the In’s are E-injective.

5. The Adams spectral sequence

The E-Adams spectral sequence is the homotopy spectral sequence associated to an E-Adams
tower. It turns out that this spectral sequence is useful even when we don’t know anything about
the spectrum E! We’ll see examples of this later. There are two obvious questions one can ask:

Question 1: What is the E2-term of this spectral sequence?
Question 2: To what does this spectral sequence converge?

Answer to Question 1: The E1 term is the complex

π∗I0 −→ π∗I1 −→ . . .

so the E2-term is the cohomology of this complex. By Lemma 4.8 this is independent of the choice
of resolution. In general, this is all you can say. But in good cases we can give a homological
description of the E2 term. We will discuss this in more detail in the next section.

Answer to Question 2: The spectral sequence converges conditionally to π∗ lim←Xn. That is, we
can tell what lim1

← π∗Xn and lim← π∗Xn are from the spectral sequence and there is the Milnor
sequence relating these to π∗ lim←Xn. I think this is what conditional convergence means.

There is also a map

X → lim
←
Xn

The space on the right hand side is called the E-nilpotent completion of X , which in good cases
coincides with LEX , the Bousfield localization of X . Rather than worry about to which extent
this map is an equivalence, the point of view we will take is that it is the completion of X we are
interested in.

In order to try to give a description of E2 we will need to assume that E is a ring spectrum.
Pretty much nothing is known if this is not the case and this might be an interesting question to
consider since we are losing generality by assuming that E is a ring spectrum. Ignoring for a moment
the difference between localization and completion, note that the abutment of the spectral sequence
depends upon the Bousfield class of E and it is not true that every Bousfield class contains a ring
spectrum. So all that we will say next does not apply in any way to the study of localizations with
respect to Bousfield classes not containing a ring spectrum.

So assume E is a ring spectrum, i.e. that we have a diagram

S0 ∧ E //

1∧id
%%KKKKKKKKKK E ∧ E

µ

��

E ∧ S0oo

id∧1
yyssssssssss

E

Lemma 5.1. A spectrum I is E-injective iff I → E ∧ I is the inclusion of a retract.

Proof. Exercise.

Lemma 5.2. For any spectrum X, the map X → E ∧X is an E-monomorphism.
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Proof. The diagram

E ∧X //

1 &&NNNNNNNNNN E ∧ E ∧X

µ∧id

��
E ∧X

shows that E ∧X → E ∧E ∧X is the inclusion of a retract.

Corollary 5.3. Any spectrum X has an E-Adams resolution.

Proof. Let E denote the cofiber of the unit map S0 → E. Then it is easy to check that the top row
of the following diagram is an E-Adams resolution for X

X // E ∧X

$$J
JJJJJJJJ

// E ∧E ∧X //

''OOOOOOOOOOO E ∧E ∧ E ∧X // . . .

E ∧X

88qqqqqqqqqq

E ∧E ∧X

66mmmmmmmmmmmm

The resolution described in the previous proof is called the normalized E-Adams resolution.
This is not ideal for some purposes. For instance, if X is also a ring spectrum, one would like to
have a resolution made of ring spectra and maps of ring spectra and this is not the case with the
normalized resolution.

The standard resolution.
Let In = E∧ . . .∧E∧X (n+1 copies of E indexed from 0 to n) and define maps δi for i = 0, . . . , n+1

δi : In = E ∧ . . . ∧ E ∧X
∼
−→ E ∧ . . . ∧ S0 ∧ . . . ∧E ∧X −→ In+1

with the second map given by inclusion of the unit on the i-th factor.

Definition 5.4. The standard resolution of X is the resolution

X
δ
−→ E ∧X

δ
−→ E ∧E ∧X

δ
−→ . . .

where δ =
∑n

i=0(−1)iδi.

The standard resolution is also called the bar construction.

Remark 5.5.

(i) The functor which associates

[n] 7→ In = E ∧ . . . ∧ E ∧X

extends to a cosimplicial spectrum. If X is a ring spectrum then this is a cosimplicial ring
spectrum which we will denote by E•X .

(ii) The tot tower of this cosimplicial spectrum is an Adams tower associated to this Adams
resolution.

The E2 term.
We will now talk about the nice cases in which the E2 term of the spectral sequence gets a homological
name. Recall that the E2 term is the cohomology of the cochain complex

π∗E ∧X
//// π∗E ∧ E ∧X

////// · · ·(5.1)

There is a convenient assumption that we will make. Since E is a ring spectrum, π∗E = E∗ and
π∗E ∧ E = E∗E is also a ring. There are two maps given by smahing with the unit on the left and
right respectively

E∗
ηL //
ηR

// E∗E
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Note that the two maps differ by the flip automorphism of E ∧ E.

Assumption: The map ηL : E∗ → E∗E is flat. When this assumption is satisfied we say that E is
flat. Note that ηL is flat iff ηR is.

Remark 5.6. This assumption is not too restrictive although there are several interesting cases in
which it is not satisfied.

Recall that the smash product gives natural homomorphisms

π∗A⊗ π∗B −→ π∗A ∧B

which together with the definition of the tensor product as a coequalizer give the natural map

E∗E ⊗E∗ ⊗E∗X

��

//// E∗E ⊗E∗X //

��

E∗E ⊗E∗
E∗X

∃!

���
�
�

π∗E ∧ E ∧E ∧ E ∧X
1∧µ∧1∧1//
1∧1∧µ∧1

// π∗E ∧E ∧ E ∧X
1∧µ∧1 // π∗E ∧ E ∧X

where the action of E∗ on E∗E in the top right hand corner of the diagram is through ηR.

Proposition 5.7. If E is flat then the natural map

E∗E ⊗E∗
E∗X −→ π∗E ∧ E ∧X

is an isomorphism.

Proof.

(i) The result clearly holds when X is a sphere.
(ii) Since E is flat, both the domain and range of the map are homology theories in X (i.e. take

cofiber sequences to long exact sequences of abelian groups)
(iii) Both sides take infinite wedges to infinite direct sums.

We conclude that the map is an isomorphism for all X since a map of homology theories which is
an isomorphism on coefficients is an isomorphism.

Notation: We will write

A = E∗ Γ = E∗E M = E∗X.

Proposition 5.7 lets us write the complex (5.1) in a purely algebraic fashion. It is the complex

M
//// Γ⊗AM

// //// Γ⊗A Γ⊗AM · · ·

and we now have to unravel what the natural maps in this complex are. Let’s start first with the
case X = S0 or equivalently M = A. In this case all the natural maps can be derived from the
following

(i) The maps induced in homotopy by ηL and ηR which we denote by the same name

A
ηL //
ηR

// Γ

(ii) The maps induced in homotopy by the three maps

E ∧ E
////// E ∧ E ∧ E

Recall that π∗E ∧ E = Γ and π∗E ∧ E ∧ E = Γ ⊗A Γ. It is easy to check that under these
identifications

S0 ∧ E ∧E −→ E ∧ E ∧ E

induces

x ∈ Γ 7→ 1⊗ x ∈ Γ⊗A Γ
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and similarly

E ∧ E ∧ S0 −→ E ∧ E ∧ E

induces

x ∈ Γ 7→ x⊗ 1 ∈ Γ⊗A Γ

but the remaining map

E ∧ S0 ∧E −→ E ∧ E ∧ E

induces a map that we have to name. We will denote it by Ψ : Γ→ Γ⊗A Γ.

Exercise 5.8.

(a) Check that Ψ(ηL(a)x) = ηL(a)⊗ 1.Ψ(x) and Ψ(x.ηR(a)) = Ψ(x).1⊗ ηR(a).
(b) Check that all other maps in the bar construction can be derived from ηR, ηL and Ψ.

There are a couple of other maps which are useful although not really necessary to describe the bar

construction. The multiplication E ∧ E
µ
−→ E induces the augmentation ε : Γ → A and the flip

automorphism c : E ∧ E −→ E ∧ E induces a map Γ → Γ which we still denote by c. It is easy to
check that we have the following identities

ε ◦ ηL = ε ◦ ηR = 1

Hopf algebroids.
A ring A is determined by the functor it corepresents

Ring(A,−) : Rings → Sets

This is often a better point of view than thinking of rings in terms of elements. In this language, a
map of rings is a natural transformation of functors. The category of functors from rings to sets is
actually a lot like the category of sets and it is often convenient to think of objects in this category
as sets.

We have described the E2 term of the Adams spectral sequence in terms of some complicated
algebraic data (A,Γ, ηR, ηL, ε, c,Ψ). In our new language, thinking of the elements in the functor
category as sets, this data defines a groupoid. Writing

X0 = Ring(A,−) and X1 = Ring(Γ,−)

we have

(i) X1 represents the set of morphisms.
(ii) X0 represents the set of objects.

(iii) ηR represents range.
(iv) ηL represents domain.
(v) ε represents the identity morphism.

(vi) c represents the inverse map.
(vii) Ψ represents composition.

For the last item note that the set of composable maps is the fiber product X1 ×X0 X1 and so
composition X1 ×X0 X1 −→ X1 is represented by Ψ : Γ −→ Γ⊗A Γ. Also note that the above data
gives the first three terms of a simplicial object

X0
ε // X1

ηL

}}

ηR

aa X1 ×X0 X1.
Ψoo

π1

xx

π2

ff

(where we haven’t drawn the degeneracies from X1 to X1 ×X0 X1 for typographical reasons).
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Definition 5.9. A Hopf algebroid is a pair of rings (A,Γ) together with maps (ηR, ηL,Ψ, c, ε) as
above such that

1. ηL is flat
2. X0 = Ring(A,−), X1 = Ring(Γ,−) and (ηR, ηL,Ψ, c, ε) define a functor from Rings to

Groupoids.

Exercise 5.10. Check that the bar construction on (A,Γ) regarded as a functor from rings to
simplicial sets assigns to each ring the nerve of the groupoid associated to that ring by (A,Γ).

Exercise 5.11. Consider the functor Q : Rings −→ Groupoids with objects

ob(Q) = R ×R = {x2 + bx+ c|b, c ∈ R}

and maps

Map((b1, c1), (b2, c2)) = {r ∈ R|(x+ r)2 + b1(x+ r) + c1 = x2 + b2x+ c2}

This is the groupoid of quadratic expressions and changes of variables. Find explicitly a Hopf
algebroid (A,Γ) representing this functor.

We also need to consider the case when X is not a sphere. In this caseM = E∗X is an A-comodule
over (A,Γ):

Definition 5.12. A comodule M over the Hopf algebroid (A,Γ) is a left A-module M together
with a coaction map

η : M −→ Γ⊗AM

of left A-modules satisfying

(a) The composite M −→ Γ⊗AM
ε⊗1
−→M is the identity. (Counital property)

(b) (Ψ⊗ id) ◦ η = (idΓ ⊗ η) ◦ η (Coassociativity)

Facts:

1. Co-modules over (A,Γ) form an abelian category with enough injectives (this requires flatness
of ηL).

2. The E2 term of the Adams spectral sequence is

Ext∗(A,Γ)(A,M)

This is also written Ext∗Γ(A,M) and ExtE∗E(E∗, E∗X).

Note that different Hopf algebroids can have the same cohomology. This is true if the groupoids
they represent are equivalent (or even locally equivalent). This suggests that the Hopf algebroid is
still not the natural object we should be considering when analyzing the Adams spectral sequence.

6. The Hopf Algebroid (MU∗,MU∗MU) and formal groups

We have already seen Quillen’s theorem that the ring MU∗ is isomorphic to the Lazard ring which
corepresents the functor

S 7→ {formal group laws over S}

from rings to sets. We will now examine the Hopf algebroid (MU∗,MU∗MU) and the functor from
rings to groupoids which it corepresents.
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Computation of E∗CP
∞, E∗BU,E∗MU . Rather than specifically computingMU∗MU , we’ll com-

pute the ring E∗MU where E is any complex oriented cohomology theory. The computation in this
general case is no different from the special case E = MU .

We have seen that E∗(CP∞) ∼= E∗[[xE ]], where xE ∈ E2(CP∞) is the complex orientation of E,
and that E∗(CPn) ∼= E∗[x]/(xn+1), where x denotes the restriction of the class xE . To compute
E∗(CP

n) and E∗(CP
∞), we make use of the pairing of Atiyah-Hirzebruch Spectral Sequences

H∗(CPn;E∗) +3 E∗(CPn)

× ×

H∗(CP
n;E∗)
��

+3 E∗(CPn)
��

E∗ E∗

.

The nonsingularity of the pairing in the E2-term, together with the vanishing of all differentials
in the spectral sequence for cohomology, shows that all differentials in the spectral sequence for
homology likewise vanish. Hence E∗(CP

n) is a free E∗-module on classes b0, . . . , bn with bi dual to
xi. Passing to the colimit, we find that E∗(CP

∞) is a free E∗-module on generators b0, b1, b2, . . .
dual to 1, x, x2, . . . .

Remark 6.1. Note that the natural map E∗(CP∞) → HomE∗
(E∗CP

∞, E∗) is an isomorphism.
For a power series

∑
anx

n
E ∈ E

∗(CP∞), the corresonding map E∗(CP
∞) → E∗ is determined by

bn 7→ an.

Before describing the structure of E∗MU it will help to discuss Thom complexes of vector bundles
and virtual bundles. Suppose V is a vector bundle over a space X . Let XV denote the Thom
spectrum of this bundle, i.e. the suspension spectrum of the Thom complex. If n is a trivial bundle
of real dimension n, then

XV+n = ΣnXV .

So take this to be the definition of XV+n even when n is a negative integer. If X is compact, this
allows us to define XV for any virtual bundle V ∈ KO(X), using the fact that any such V may be
written as W − n for some vector bundle W . For more general spaces X (i.e. for paracompact X),
we define XV by passage to the colimit along compact subspaces. (This definition of Thom spectra
is a bit troublesome because we made so many choices along the way. Later, when we define spectra
more carefully, we’ll see that Thom spectra may be defined in a way which is obviously functorial
and independent of the choices.)

Define βi ∈ E∗(CP
∞)L−1 to be the class corresponding to bi under the Thom isomorphism, and

observe that the correspondence

(CP∞)L−1 = Σ−2(CP∞)L ∼
←− Σ−2CP∞

maps βn to Σ−2bn+1.

Proposition 6.2.

E∗(BU) = SymE∗
[E∗CP

∞]/(b0 − 1) = E∗[b1, b2, . . . ]

E∗(MU) = SymE∗
[E∗(CP

∞)L−1]/(β0 − 1) = E∗[β1, β2, . . . ]

Proof. Both statements follow from the known case E = HZ, using the Atiyah-Hirzebruch Spectral
Sequence. The multiplicative structure of E∗MU is as indicated because the multiplication map
MU ∧MU →MU is derived from the Whitney sum map BU ×BU → BU upon passing to Thom
complexes.
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E∗MU and formal groups. Now, we want to understand the ring E∗MU , and the functor it
corepresents, in terms of formal groups, but again it helps to work in greater generality. Let E,M be
complex oriented cohomlogy theories with complex orientations xE , xM , respectively. The spectrum
E ∧M has two complex orientations, which we shall also call xE , xM , coming from the two maps

Σ−2CP∞
xE→ E → E ∧M, Σ−2CP∞

xM→ M → E ∧M

Likewise, if F,G are the associated formal groups over E∗,M∗, then their images under the natural
maps E∗ → (E ∧M)∗, M∗ → (E ∧M)∗ define two formal groups over (E ∧M)∗ which we will also
call F,G. We know that (E ∧M)∗(CP∞) = (E ∧M)∗[[xE ]]. In particular, the element xM may be
expressed as a power series

xM = t0xE + t1(xE)2 + . . .

In fact, t0 = 1 because complex orientations must restrict to a preferred class in (E ∧M)2(CP 1).
Let g(x) be the power series x+ t1x

2 + . . . . Looking at

(E ∧M)∗(CP∞) → (E ∧M)∗(CP∞ × CP∞)

xE 7→ xE +F yE

g(xE) 7→ g(xE +F yE)

g(xE) = xM 7→ xM +G yM = g(xE) +G g(yE)

we see that g(x +F y) = g(x) +G g(y). Hence g is an isomorphism from F to G. In fact g satisfies
the additional property that g′(0) = 1; such an isomorphism is called a strict isomorphism.

Definition 6.3. Let R,S be rings, and F,G formal group laws over R,S, respectively. The functor
StrictIso(F,G) : Rings→ Sets is defined by

T 7→ {f : R→ T, g : S → T, φ : f∗F → g∗G a strict isomorphism}.

The previous discussion shows that a pair of complex oriented theories E,M with formal group
laws F,G determines a natural transformation τE,M : Ring(π∗(E ∧ M),−) → StrictIso(F,G) of
functors from rings to sets.

Lemma 6.4. If E,M,N are three complex oriented theories with formal group laws F,G,H, then
the following diagram of natural transformations commutes:

Ring(π∗E ∧M ∧N,−)

ttiiiiiiiiiiiiiii

�� **UUUUUUUUUUUUUUU

Ring(π∗E ∧M,−)

τE,M

��

× Ring(π∗M ∧N,−)

τM,N

��

Ring(π∗E ∧N,−)

τE,N

��
StrictIso(F,G) × StrictIso(G,H) // StrictIso(F,H)

Here the map StrictIso(F,G)× StrictIso(G,H)→ StrictIso(F,H) is defined by composition of strict
isomorphisms. The map Ring(π∗(E ∧M ∧N),−)→ Ring(π∗(E ∧M),−) is induced by the natural
map π∗(E ∧M)→ π∗(E ∧M ∧N), and likewise for M ∧N and E ∧N.

Proof. Comparing the two complex orientations on E ∧M, and on M ∧N, and on E ∧N, gives us
three power series:

• g1, an isomorphism from F to G over (E ∧M)∗
• g2, an isomorphism from G to H over (M ∧N)∗
• g3, an isomorphism from F to H over (E ∧N)∗.

The lemma asserts that g3 = g2 ◦ g1 if we consider all three power series as being defined over the
ring (E ∧M ∧N)∗. But in the ring (E ∧M ∧N)∗(CP∞), we have

g3(xE) = xN = g2(xM ) = g2(g1(xE))
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which verifies that g3 = g2 ◦ g1.

Proposition 6.5.

1. The natural transformation τE,MU is an isomorphism. In other words, E∗MU corepresents
the functor which assigns to each ring R the set of triples (f,G, g), where f : E∗ → R is a ring
homomorphism, G is a formal group over R, and g is a strict isomorphism between f ∗F and
G over R.

2. The Hopf algebroid (MU∗,MU∗MU) corepresents the functor Rings→ Groupoids which asso-
ciates to each ring R the groupoid of formal group laws over R and strict isomorphisms between
them.

Proof. First observe that the information in a triple (f,G, g) as in part (1) is redundant, because
the formal group G is uniquely determined by f and g. Furthermore, since E∗MU ∼= E∗[β1, β2, . . . ],
a map φ : E∗MU → R is clearly determined by the map f : E∗ → R and the power series∑
φ(βn)xn+1. It remains to show that this power series is equal to g(x). For this, see the lemma

below.
For part (2), we have already shown that MU∗MU corepresents the functor StrictIso(Funiv , Funiv)

which assigns to R the set of morphisms in the groupoid of formal group laws over R. It remains
to show that ηL, ηR, ε,Ψ identify sources, targets, identity maps, and composition in this groupoid.
All of these assertions are easy; the fact that Ψ induces the composition law for strict isomorphisms
is a consequence of Lemma 6.4.

Lemma 6.6. The two complex orientations xE , xMU of E∧MU are related by the equation xMU =
Σβnx

n+1
E .

Proof. By the remark following the computation of E∗CP
∞, the power series coefficients of a class

in E∗(CP∞) = E∗[[xE ]] may be extracted by considering the induced map E∗(CP
∞) → E∗. We

are working with E ∧MU , and the coefficient of xn+1
E in the power series expansion of xMU is the

image of bn+1 under this induced map, i.e. it is the element in π2n(E ∧MU) represented by the
class

S2n
Σ−2bn+1// E ∧ (CP∞)L−11∧xMU// E ∧MU ,

which by definition is βn.

On the proof of Quillen’s theorem. Until now, we have been using Quillen’s theorem without
having seen a proof of it. A complete proof appears in [A]; here we will only provide a short sketch
of the proof.

In the above discussion, consider what happens if we take E = H , the integral Eilenberg-MacLane
spectrum. The formal group associated to H is Ga, the additive formal group. Hence the ring
H∗MU = Z[β1, β2, . . . ] corepresents the functor StrictIso(Ga, Funiv). In other words, there is an
isomorphism between Ga and Funiv over H∗MU , and it is the universal ring over which such an
isomorphism exists. We considered this ring during the proof of Lazard’s Theorem, and we showed
that the map L→ Z[β1, β2, . . . ] was a monomorphism and that the induced map on indecomposables,

(QL)2n //

∼

��

(QZ[β1, β2, . . . ])2n

∼

��
Z // Z (generated by βn)

is multiplication by dn. Milnor, using the Adams Spectral Sequence, showed that π∗MU → H∗MU
is a monomorphism and induces the same map on indecomposables. This implies Quillen’s theorem.
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7. More on isomorphisms, strict isomorphisms, and π∗E ∧ E.

If R,S are rings and F,G are formal groups over R,S, respectively, we defined in the last section
a functor StrictIso(F,G) from rings to sets by

T 7→ {f : R→ T, g : S → T, φ : f∗F → g∗G a strict isomorphism}

Similarly, we can define functors Iso(F,G),Hom(F,G) by considering isomorphisms or homomor-
phisms from f∗F to g∗G in place of strict isomorphisms.

Proposition 7.1. The functors Iso(F,G), StrictIso(F,G),Hom(F,G) are corepresentable.

Proof. The functor T 7→ {f : R→ T, g : S → T} is corepresented by R⊗S. Pushing forward F and
G via the natural maps R→ R⊗S, S → R⊗S, we may interpret F,G as being defined over R⊗S.
A homomorphism between them is a power series φ(x) = a0x+ a1x

2 + . . . satisfying

φ(x+F y) = φ(x) +G φ(y)

Expanding the two sides of this equation as power series in x and y and equating the coefficients of
the monomials xiyj gives a set of relations among the ai’s. Let I ⊂ R ⊗ S[a0, a1, . . . ] be the ideal
generated by these relations. Then it is easy to see that:

• Hom(F,G) is corepresented by R ⊗ S[a0, a1, . . . ]/I
• Iso(F,G) is corepresented by R⊗ S[a±1

0 , a1, . . . ]/I

• StrictIso(F,G) is corepresented by R⊗ S[a±1
0 , a1, . . . ]/(I + (a0 − 1))

Recall from the last section that MU∗MU corepresents the functor StrictIso(Funiv , Guniv). This
reliance on strict isomorphisms is a weird facet of the grading. Eventually we wll restrict our
attention to complex oriented theories E for which π2E contains a unit, e.g. K-theory. In
such cases the formal group law is defined over π0E, and the “model” in such cases is that
π0(E1 ∧ E2) corepresents Iso(F1, F2). In other words, there is always a natural transformation
Ring(π0(E1 ∧ E2),−) → Iso(F1, F2), and in good cases this natural transformation is an isomor-
phism. For example, after formulating an appropriate definition of “flat formal group law” we will
prove:

Theorem 7.2. The natural transformation Ring(π0(E1 ∧E2),−)→ Iso(F1, F2) is an isomorphism
if one of F1, F2 is flat.

The Hopf algebroid (HZ/2∗, HZ/2∗HZ/2). The original impetus for thinking about formal
groups in the context of cohomology theories came from an observation of Atiyah and Hirzebruch
concerning the dual Steenrod algebra [AH]. Consider imitating the analysis of complex oriented
cohomology theories but with “real orientations” instead of complex orientations. In other words,
we let RP∞ play the role of CP∞, define a real orientation of a cohomology theory E to be a class in
E1(RP∞) whose restriction to RP 1 is the suspension of the class 1 ∈ E0(S0), and associate a formal
group to a real oriented cohomology theory using the map RP∞ × RP∞ → RP∞ which classifies
the Whitney sum of real vector bundles.

The formal group associated to the mod-2 Eilenberg-MacLane spectrum HZ/2 is the additive
formal group law over the field F2. Over HZ/2 ∧HZ/2 we have two “orientations”

(ΣHZ/2) ∧HZ/2

RP∞

xL
22

x //

xR

,,

ΣHZ/2

66nnnnnnnnnnn

((PPPPPPPPPPP

HZ/2 ∧ (ΣHZ/2)

.
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We know xR can be written as a power series f(xL), where f(t) = t+ higher order terms. Taking
into account the formal group law, f has to satisfy

f(xL + yL) = xR + yR = f(xL) + f(yL)

i.e. f(s+ t) = f(s) + f(t). Since we are working in characteristic 2, this implies

f(t) =
∑

n≥0

ζnt
2n

,

where ζ0 = 1. In fact, the functor StrictIso(Ga,Ga) on F2-algebras is corepresented by the ring
F2[ζ1, ζ2, . . . ] with |ζn| = 2n − 1. The above formula for f(t) defines a map

F2[ζ1, ζ2, . . . ]→ (HZ/2)∗HZ/2,

and Milnor’s computation of the dual Steenrod algebra A∗ = (HZ/2)∗HZ/2 shows that this map is
an isomorphism.

Consider the three maps HZ/2 ∧HZ/2
//////HZ/2 ∧HZ/2 ∧HZ/2 obtained by smashing the

unit map ι : S0 → HZ/2 on the first, second, or third factor with the identity map on the remaining
two factors. Applying π∗, we get three maps A∗

// ////A∗ ⊗A∗ , namely a 7→ 1 ⊗ a, a 7→ Ψa, and
a 7→ a⊗ 1, respectively. We may use the composition law for strict isomorphisms of Ga to work out
the formula for Ψ. If our two strict isomorphisms are

f(t) =
∑

(ζn ⊗ 1)t2
n

g(t) =
∑

(1⊗ ζn)t2
n

then their composition g ◦ f is

g ◦ f(t) =
∑

m,n

(1⊗ ζn)((ζm ⊗ 1)t2
m

)2
n

=
∑

m,n

(ζ2n

m ⊗ ζn)t2
m+n

Hence

Ψ(ζn) =
∑

i+j=n

ζ2j

i ⊗ ζj

which is the familiar formula for the coproduct in the dual Steenrod algebra.
To extend this analysis to odd primes p, in place of H∗(RP∞; Z/2) we would consider

H∗(BZ/p; Z/p) = E[a] ⊗ P [b], where a, b are classes in H1, H2, respectively. The comultiplica-
tion is given by a 7→ a ⊗ 1 + 1⊗ a, b 7→ b⊗ 1 + 1⊗ b, which is like an additive formal group but
with two variables instead of one. To deal with this, we introduce the category of “super-rings”, i.e.
Z/2-graded rings with multiplication satisfying the graded commutativity relation ab = (−1)|a||b|ba.
In the commutative case, we have affine n-space An whose ring of functions is k[x1, . . . , xn], so that
H∗(RP∞) can be identified with the ring of functions on A1. The additive group structure on A1

gives rise to a group Ga whose formal completion is the formal group law over H∗. In the “super”
case, we may think of P [x1, . . . , xk] ⊗ E[y1, . . . , y`] as the ring of functions on affine (k, `)-space
Ak,`. This identifies H∗(BZ/p) with the ring of functions on A1,1, and the additive group structure
on A1,1 gives rise to a “supergroup” G1,1

a whose formal completion is the formal group law over H∗.

Exercise 7.3. Show that StrictIso(G1,1
a ,G1,1

a ) is corepresented in the category of Fp-superalgebras
by the mod-p dual Steenrod algebra.

Remark 7.4. We have indicated how isomorphisms of the formal group associated to a complex
oriented cohomology theory are related to stable operations in that cohomology theory. It turns
out that endomorphisms of the formal group are related to unstable operations. For example, in
K-theory, upon completing at a prime p, one has unstable Adams operations ψk for any k ∈ Zp,
corresponding to the “multiplication by k” endomorphism of the formal group. These operations
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extend to stable operations only in the case where k is a p-adic unit, i.e. only if the endomorphism
is an automorphism of the formal group.

The formal group associated to K-theory. Let K be the spectrum representing K-theory. Bott
periodicity tells us that π∗(K) = Z[v, v−1], where |v| = 2. The isomorphism π2(K)

∼
→ K̃0(S2) maps

v to 1 − L, where L is the restriction to CP 1 = S2 of the tautological line bundle L over CP∞.
Therefore the class x = v−1(1− L) ∈ K̃2(CP∞) is a complex orientation for K-theory.

Remark 7.5. We could also take x′ = 1−L as our complex orientation, leading to a formal group
law over π0K.

To determine the formal group law associated to K-theory, we begin by observing that the map
K2(CP∞) → K2(CP∞ × CP∞) sends v−1(1 − L) to v−1(1 − L ⊗ L). In K2(CP∞ × CP∞), let
x = v−1(1− L⊗ 1), y = v−1(1− 1⊗ L). Then

L⊗ L = (1− vx)(1− vy)

= 1− v(x+ y − vxy)

v−1(1− L⊗ L) = x+ y − vxy

hence the formal group law is x 7→ x+ y− vxy. Let’s call this formal group law Gv
m. If we set v = 1

we get the formal group law

x 7→ x+ y − xy,

which is called the multiplicative formal group law and is denoted by Gm. We will see later that the
formal group law for K-theory is flat, hence π0(K ∧K) corepresents Iso(Gm,Gm).

To calculate Iso(Gm,Gm) we consider power series of the form

1− (1− x)b = bx−

(
b

2

)
x2 +

(
b

3

)
x3 − . . .

These determine endomorphsms of Gm which if b is invertible will be isomorphisms. Let

Z[b±1
0 , b1, . . . ]/rels ↪→ Q[b±1]

bn−1 7→

(
b

n

)
,

where the above relations are imposed by the requirment that the homomorphism defined above be
a monomorphism. Since Z[b±1

0 , b1, . . . ]/rels is constructed to represent some automorphisms of Gm

there is a naural transformation of functors

Spec Z[b±1
0 , b1, . . . ]/rels→ Iso(Gm,Gm).

Proposition 7.6. This natural transformations is an isomorphism.

Spec Z[b±1
0 , b1, . . . ]/rels ∼= Iso(Gm,Gm).

Note 7.7. Clark and Adams prove this from a different perspective.

Logarithm of a FGL. Let G be a formal group law over a ring R and l(x) a power series which
defines a strict isomorphism (i.e. l′(0) = 1) of G with the additive formal group law Ga:

l(x+G y) = l(x) + l(y).

Taking the derivative of the above equation with respect to y and then evaluating at y = 0 we
calculate

d

dy
|y=0 : l′(x +G y)Gy(x, 0) = 1.

l′(x)Gy(x, 0) = 1

l′(x) =
1

Gy(x, 0)
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l(x) =

∫
1

Gy(x, 0)
dx.

For all G we call the power series
∫

1
Gy(x,0)dx the logarithm of G. This series though is not

necessarily defined over R, but rather over R ⊗ Q, because integrating the coefficient of xn will
require dividing by n. By the above calculation the logarithm defines an isomorphism of G with Ga

if and only if this power series is defined over R. The differential 1
Gy(x,0)dx, which is always defined

over R, is called the invariant differential of G.

Example 7.8. Gm(x, y) = 1− (1− x)(1− y).

Gy(x, 0) = 1− x

logGm
(x) =

∫
1

1− x
dx =

∑ xn

n
This calculation proves that over any Fp-algebra R the formal group laws Gm and Ga are not
isomorphic.

Exercise 7.9. Work out the relationship between

• π∗HQ ∧ E and Iso(Ga, GE).
• π0HQ[u±1] ∧ E and Iso(Ga, GE).

8. STACKS

We start with an example to give intuition. Let X be a topological space, we think of X as
a category whose objects are the open sets of X and morphisms inclusions, denoted CX . For a
topological group G consider the assignment to each open U ↪→ X the groupoid of principle G-
bundles and isomorphisms. To each inclusion V ↪→ U in X there corresponds a pullback functor
from principle G-bundles over U to those over V . This assignment is (almost) a functor from CX to
groupoids.

Definition 8.1. A sheaf on X is a contravariant functor F : CX → Sets satisfying the “sheaf
condition” :

If {Ui} is a covering of U then

F (U)→
∏

F (Ui)⇒
∏

F (Ui ∩ Uj)

is an equalizer sequence.

The simplest example of a sheaf on X assigns to each open U the set of continuous real valued
functions on U .

Example 8.2. (Continued) The assignment to the open set U the groupoid of principle G-bundles
consists of both the assignment of the set of objects and the set of morphisms in the groupoid. Each
of these assignments is a sheaf (in as much as it is an actual functor to sets).

(We will mention the following technical difficulties but will ignore them for now:

• The collection of G-bundles on U is a class and not a set.
• Pullback of G-bundles is not functorial. Given E → U a principle G-bundle over U and

W
� � i // V

� � j // U

it is true that (j ◦ i)∗E ∼= j∗ ◦ i∗E but (j ◦ i)∗E 6= j∗ ◦ i∗E as G-bundles over W .)

Even though both the object and morphism assignment are sheaves there is an even stronger
“lifting” property that holds for this groupoid valued functor. The stronger lifing property roughly
says that given a cover and objects on each member of the cover which are isomorphic (not necessarily
equal) on the intersections then there is a lifting. More precisely, given a cover of U by {Ui}, G-
bundles Ei → Ui, and isomorphisms we call “gluing data” αij : Ei|Ui∩Uj

→ Ej |Ui∩Uj
satisfying
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the “cocycle condiditon” αjk ◦ αij = αik, there is a principle G-bundle E → U and isomorphisms
fi : E|Ui

→ Ei, compatible with the gluing data:

Ei|Ui∩Uj

αij &&LLLLL
LLLLL

E|Ui∩Ujfi

oo

fj

��
Ej |Ui∩Uj

.

We would like to generalize this stronger sheaf property. If (X0, X1) is a sheaf of groupoids and
{Ui} a covering of U , let Desc{Ui} be the “category of descent datum” for the covering {Ui}.

• Objects: collections of objects Ei ∈ X0(Ui) together with isomorphisms αij : Ei|Ui∩Uj
→

Ej |Ui∩Uj
in X1(Ui ∩ Uj) satisfying the “cocycle condiditon” αjk ◦ αij = αik.

• Morphisms: Desc{Ui}((Ei, αij), (E
′
i, α
′
ij)) consists of “morphisms” fi : Ei → E′i in X1(Ui)

which are compatible with αij in the sense that:

Ei|Ui∩Uj

αij

��

fi // E′i|Ui∩Uj

α′

ij

��
Ej |Ui∩Uj

fj // E′j |Ui∩Uj

commutes.
• Gluing Property - Descent Condition: The functor

(X0, X1)(U)→ Desc{Ui}

is an equivalence of groupoids.

Definition 8.3. A stack on X is a sheaf of groupoids (X0, X1) satisfying the descent condition for
each open cover {Ui → U}.

Remark 8.4. A Hopf algebroid will have a stack associated to it. Also, a stack turns out to be a
like a space - it has coverings and cohomological invariants.

Reference 8.5. The reader is referred to Mumford’s article [Mu] for a nice discussion of stacks
(which never actually uses the word ‘stack’, however).

Example 8.6. How do we make principle G-bundles into a stack?

• Let E be the category whose objects are pairs (U,EU ) where EU is a principle G-bundle over
U . Morphisms in E((V,EV ), (U,EU ) are pullback squares:

EV //

��

EU

��
V // U

.

• Consider the projection funtor E→ CX . Let CX/U denote the “over category of U”.
• The category of sections of

E

��
CX/U //

<<x
x

x
x

CX

is a groupoid. The assignment which sends U to this category of sections is a sheaf of groupoids
(and a stack).

If M and N are stacks on X then Stacks(M,N) is the set of functors between them (as members
of GroupoidsCX ). Considering in addition the natural transformations we see that Stacks over X is
a 2-category.
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Stacks on a Grothendieck Topology. More generally we can define stacks over any category
with a Grothendieck topology.

Definition 8.7. A Grothendieck topology on a category C (with finite limits) is a “notion of
covering” J . Here J is a collection of sets {Ui → U} called “coverings” which satisfy:

1. Isomorphisms are coverings.
2. Transistivity: {Ui → U} and {Vij → Ui} are coverings implies {Vij → U} is also a covering.
3. {Ui → U} covering and V → U any map implies {V ×U Ui → V } is also a covering.

Example 8.8.

1. X is a space, CX is equiped with the usual notion of cover.
2. C is the category of all spaces with the usual notion of open covering.
3. (Spaces)et is the category of spaces where coverings are collections of maps {Ui → U}, whose

image is an open cover of U , and in which each Ui → U is a covering space of its image.
Note that the “open subsets” in this example have nontrivial automorphisms, unlike the above
cases.

Definition 8.9. Let (C, J) be a category with a Grothendieck topology. A sheaf on C is a con-
travariant functor F : C→ Sets with the property that for any cover {Ui → U} the sequence

F (U)→
∏

F (Ui)⇒
∏

F (Ui ×U Uj)

is an equalizer.

Example 8.10 (Affine schemes in the flat topology).
Let C = (Rings)op. Coverings are the opposite of collections {R→ Ri} where

1. Each R→ Ri is flat.
2. (Faithful) If M is an R-module such that M ⊗R Ri = 0 for all i, then M = 0.

Verify that this is a Grothendieck topology.

Example 8.11. C is Spaces, usual open covers, G is a topological group. BG is the stack of principle
G-bundles. BG is equivalent to the fundamental groupoid of BGX (if X is a reasonable space).

Exercise 8.12. Check this. Is it true in general or just for G discrete? (Difficulty may arise in
X 7→(morphisms in fundamental groupoid of BGX ) being a sheaf?)

Groupoid Objects in C. A category in C consists of a pair of objectsX0, X1 ∈ Ob(C) corresponding
to the sets of objects and morphisms in a category, and morphisms corresponding to the usual
functions between these sets....

X1

range

&&

domain

88 X0
id

oo

X1 ×X0 X1
composition// X1

.

Given a category we can construct a simplicial set called the nerve of the category by setting

(NC)n = {x0 → . . .→ xn ∈ C}

(with face and degeneracy maps given by composition and the insertion of identity morphisms).
Similarly given a category in C the same nerve construction assigns to it a simplicial object in C. A
simplical object is the nerve of a category if and only if the map Xn → X1 ×X0 X1 ×X0 · · · ×X0 X1

is an isomorphism. So equivalently we can think of a category object in C as a simplicial object
satisfying the above condition (assuming C has fiber products).

A groupoid in C is a category in C (X0, X1) together with a map i : X1 → X1 corresponding to
the inverse of a morphism and satisfying the obvious properties.

A simplicial set is the nerve of a groupoid if and only if any one of the following hold:
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1. It is the nerve of a category and it is a Kan complex.
2. The map Xn → X1 ×X0 · · · ×X0 X1 (where the product is over d1 and on the ith component

the map Xn → X1 is the one induced by (0 7→ 0, 1 7→ i) check this !!)
3. The nerve is a cyclic set in the sense of Connes.

The representable functors associated to groupiods in C are sheaves in groupoids (or groupoid
valued sheaves) which is our starting point for the discussion of stacks.

Associated Stacks. From here onward we assume that the Grothendieck topology (C, J) is sub-
canonical (this means that the representable functors are sheaves).

The associated stack to a sheaf of groupoids (X0, X1) is the stack M(X0,X1) nearest to (X0, X1)
from the right. Morally:

ShGroupoids((X0, X1),N) = Stacks(M(X0,X1),N).

(Really this is a 2-category equivalence....will explain latter.)

Definition 8.13. M(X0,X1)(U) = colimDesc{Ui→U}(X0, X1).

Example 8.14. X0 = pt. and X1 = G. Given {Ui → X}, Desc{Ui}(pt,G) is the category of priciple
G-bundles over X together with a trivialization over {Ui}. So we have M(pt,G) = BG.

Example 8.15. Suppose S is a space and G is a group acting on S. (S, S×G) is a groupoid in the
category of spaces. M(S,S×G) is called the “orbifold” of this group action.

Example 8.16. C is the category of smooth manifolds (no limits, strictly speaking can’t have
Grothendieck topology). G is a Lie group, g the associated Lie algebra, and Ω1 the sheaf of 1-forms.
The sheaf G acts on Ω1⊗g by (a, ω) 7→ aωa−1 +da ·a−1. (Ω1⊗g, G×Ω1⊗g) gives rise to a sheaf of
groupoids. The associated stack M(Ω1⊗g,G×Ω1⊗g) is called the stack of G-bundles with connections.

Morphisms of Stacks.

Definition 8.17. A 2-category consists of:

1. A collection C of objects.
2. For x, y ∈ C a category of morphisms denoted C(x, y).
3. A “composition law” functor C(x, y)× C(y, z)→ C(x, z) which is associative.

Example 8.18. The category CAT of (small) categories.

Definition 8.19. The objects of C(x, y) are called 1-morphisms. The morphisms of C(x, y) are
called 2-morphisms.

We have embedding functors

C ↪→ Shv(C, J) ↪→ Stacks(C, J)

where the last inclusion assigns to a sheaf of sets the sheaf of groupoids whose objcts are the memeber
of the set with only identity morphisms (check this is a stack). So we can think of C as a subcategory
of Stacks(C, J), or Stacks(C, J) as an enlargement of C and we will try to extend the notions and
constructions from C. The Yondeda lemma implies that for X ∈ C,M ∈ Stacks(C, J) we have

Stacks(X,M) = M(X).

The moral is we have inflated C so as to incorporate new “classifying spaces”. A representable stack
is an object of C regarded as a stack. (MY Note or equivalent to one??). We will extend this now
to the notion of a representable morphism.

Definition 8.20. Let
M2

j

��
M1

i // N
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be a diagram of stacks. The 2-category fiber product M1 ×N M2 is given by:

1. Ob(M1 ×N M2)(X) = {a ∈M1, b ∈M2, φ : i(a) ∼= j(b)}.
2. Mor(M1 ×N M2)(X) = what you would guess.

The diagram

M1 ×N M2
//

��

M2

j

��
M1

i // N

satisfies a certain univeral property, but does not commute (we will talk about this more latter).

Example 8.21.
pt

j

��
pt

i // BG

pt ×BG pt = G—here by G we mean the stack assigning to each open the groupoid whose objects
are the members of G with only identity morphisms.

Check: an object of pt×BG pt(X) is an automorphism of the trivial principle G-bundle over X -
this is just an element of G.

Example 8.22.

BH

j

��
X

i // BG

H ↪→ G, X a space. The map X → BG classifies a priciple G bundle E → X . X ×BG BH =
E ×G G/H = E|H . Check this as an exercise.

Definition 8.23. A 1-morphism M→ N is called representable if for each X ∈ C and each map
X → N the 2 category fiber product X ×N M is equivalent to a representable stack.

Example 8.24.

1. If H is a subgroup of G, then BH → BG is representable.
2. pt→ BG is representable.

The principle here is to extend properties of maps in C to properties of representable 1-morphisms
in stacks.

Example 8.25. A collection of representable 1-morphisms {Ni → N} is a cover if for each X ∈ C

and each 1-morphism X → N the collection {X ×N Ni → X} is a cover.

9. Stacks and Associated Stacks

In this section we are going to do some general theorems about stacks. We want to say something
about the relationship between a groupoind (X0, X1) on a category C with a Grothendieck topology
J that is subcanonical and its associated stack M(X0,X1) as defined in the last section. We denote
by Stacks the 2-category of stacks on (C, J).

Now let M be a stack. Define the category Stacks/M of stacks over the stack M to be the
category with

• Objects: 1-morphisms N →M of stacks, and
• Morphisms: Stacks/M((N1 →M), (N2 →M)) = {sections N1 → N1 ×M N2}.
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Example 9.1. Let C = Top be the category of topological spaces, and let J be the usual
Grothendieck topology on Top. Let BG be the stack of principal G-bundles. Since we always
identify an object with the stack it represents, we have Top/BG ⊂ Stacks/BG. Explicity, Top/BG
is the category with

• Objects: all pairs (X,E) where X is a space and E is a principal G-bundle over X , and
• Morphisms: f : X → Y together with an isomorphism EX → f∗EY of principal G-bundles.

Proposition 9.2. The category Stacks/M together with the notion of covering as defined in the
previous section is a Grothendieck topology.

Proof. Postponed.

Remark 9.3. This proposition allows us to think about stacks as somewhat like spaces. In partic-
ular, we can talk about sheaves, cohomology, etc. in Stacks/M.

Stacks and associated stacks. Fix a category C with a Grothendieck topology J that is subcanon-
ical. Suppose that (X0, X1) is a representable groupoid in C. Recall that M(X0,X1) is the associated
stack of (X0, X1).

Lemma 9.4. The map

X1
// X0 ×M X0

induced by the domain and range maps X1 → X0 is an isomorphism of stacks.

The proof will be given after the following remarks.

Remark 9.5. The above lemma says that

X1
range //

dom

��

X0

��
X0

// M(X0,X1)

is a pullback square of stacks.

Remark 9.6 (Descent datum for morphisms). Suppose {Ui → U} is a cover, and suppose (Ei, g
E
ij)

and (Fi, g
F
ij) are objects in the descent category Desc{Ui}. What is a morphism between them? The

answer is: It’s what you think it is. So a morphism h : (Ei, g
E
ij) → (Fi, g

F
ij) is a collection of maps

hi : Ei → Fi compatible with the g’s on intersections, i.e. on Uij = Ui ×U Uj the diagram

Ei
gE

ij //

hi

��

Ej

hj

��
Fi

gF
ij // Fj

commutes. In particular, if both gEij and gFij are identities for all i and j, then hi = hj on Uij .

Question: What does this tell us?
Answer : You never need to refine a cover to make a map. In down-to-earth language, we know that
the hi’s agree on intersections, Uij = Ui×U Uj . So the sheaf axiom tells us that {hi} actually comes
from a global section.

Now we can prove the lemma.

Proof. Let S be an object of C. We as usual identify it with the stack it represents. A 1-morphism
S → X0×M(X0,X1)

X0 consists of two elements a, b ∈ Stacks(S,X0) = X0(S) (by the Yoneda lemma)

together with an isomorphism a → b in M(X0,X1)(S). By the construction of the associated stack,
giving such an isomorphism is equivalent to giving a cover {Ui → S} of S and an isomorphism in
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the descent category Desc{Ui}. The above remark implies that hi = hj on Uij , so we can paste them
together to get an element of X1(S), or equivalently, a 1-morphism S → X1.

Local presentability.

Definition 9.7. A stack M for which the diagonal map ∆ : M → M ×M is a representable 1-
morphism is called locally presentable.

We have alternative characterizations of local presentability.

Proposition 9.8. The following conditions on a stack M are equivalent.

(1) M is locally presentable.
(2) Given representable stacks A,B ∈ C and 1-morphisms A → M, B → M of stacks, the 2-

category fiber product A×M B is representable.
(3) Every 1-morphism B →M from a representable stack B ∈ C to M is representable.

Proof. Conditions (2) and (3) are clearly equivalent by definition.
(2) ⇒ (1). Let A ∈ C be a representable stack, and let (E1, E2) : A → M×M be a 1-morphism

of stacks. Let N be the 2-category fiber product A×M×M M.

N //

��

M

∆

��
A

(E1,E2)
// M×M

We will show that N is equivalent to the stack A×MA, which by assumption is representable. If X
is any stack, then giving a 1-morphism F : X → N is equivalent to giving a 1-morphism f : X → A
and isomorphisms

f∗E1
c1 // F f∗E2.

c2oo

But the groupoid of (f, F, the above sequence) is equivalent to the groupoid of (f, f ∗E1
d
→ f∗E2)

via the maps
(c1, c2) 7→ c−1

2 ◦ c1
d 7→ (F = f∗E1, c1 = d, c2 = id).

So N is equivalent to the stack A×M A.

(1) ⇒ (2). Suppose given representable stacks A, B and 1-morphisms A
f
→M, B

g
→M of stacks.

Then A× B is also a representable stack. Now A×M B is representable because ∆ : M→ M×M

is by assumption locally presentable, and there is a pullback square

A×M B //

��

M

∆

��
A×B

f×g // M×M.

Proposition 9.9. Assume the objects of (C, J) descend (defined below). If (X0, X1) is a repre-
sentable groupoid on C, then the associated stack M(X0,X1) is locally presentable. Conversely, if M

is a locally presentable stack, then there exists a groupoid (X0, X1) on C with mboxdom : X1 → X0

a cover, for which M is equivalent to the associated stack M(X0,X1). Is this correct?

Proof. Postponed.
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Remark 9.10. dom : X1 → X0 is a cover if and only if range : X1 → X0 is a cover. Indeed, there
is an isomorphism c : X1 → X1 (the “flip” map) of stacks that takes f ∈ X1 to f−1 ∈ X1, and there
is a commutative triangle

X1
c //

dom !!B
BB

BB
BB

X1

range
}}||

||
||

|

X0
.

Definition 9.11. We say that in (C, J) objects descend if for every representable sheaf X ∈ C,
F a sheaf on C with a map F → X, and {Uα → X} a cover of X in C, for which each pullback
Fα := Uα ×X F is representable, then F is also representable.

See the following pullback diagram:

Fα //

��

F

��
Uα // X.

This condition says that one can test the representability of a sheaf locally. If X ∈ C, let C/X be
the groupoid with

• Objects: morphisms Y → X in C,
• Morphisms: commutative triangles

Y1
∼ //

  A
AA

AA
AA

Y2

~~}}
}}

}}
}

X

Then the objects of (C, J) descend if and only if the functor C/− : X 7→ C/X is a stack on C. Note
that this functor is not contravariant, but one can rigidify it.

Remark 9.12. If C is the category of schemes, then objects do not descend.

10. More on Stacks and associated stacks

We continue our journey on stacks and associated stacks. We will prove a proposition that was
stated in the previous section.

Proposition 10.1. If C/− is a stack (i.e. the objects of (C, J) descend), then for any representable
groupoid (X0, X1), the associated stack M = M(X0,X1) is locally presentable.

Proof. By a proposition in the previous section, we need to show that given a diagram

B

j

��
A

i
// M

with A,B ∈ C, the pullback A ×M B is equivalent to an object in C (i.e. is representable). We do
this in several steps.

Case 1. A = B = X0 with i, j the canonical maps. We showed that X0 ×M X0 is isomorphic to
X1 in the previous section, so it is representable.
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Case 2. Suppose A → M factors through a map A′ → M such that A′ ×M B is representable.
Then we have the diagram

B

��
A // A′ // M.

But A×M B = A ×A′ (A′ ×M B). Since A′ ×M B is representable, so is A×M B. In particular, it
holds if A→M factors through X0.

Case 3. Suppose there is a cover {Ui → A} of A in C such that each Ui ×M B is representable.
Then A ×M B is also representable. Indeed, since objects of C descend, A ×M B is obtained from
the Ui ×M B by descent, so it is representable.

Case 4. B = X0 and j is the canonical map. By definition of M = M(X0,X1), a map A → M is
represented by a cover {Ui → A} of A together with maps Ui → X0, plus gluing data. So we have
a diagram

∐
Ui

��

// X0

��
A // M

that is commutative on the nose. Now this case follows from Case 3 and the following diagram

X0

��
Ui // A // M.

In more detail: There is a diagram

X0

��
Ui // X0

// M

for each i. By Case 1, X0 ×M X0 is representable, so Case 2 implies that Ui ×M X0 is also repre-
sentable. Now Case 3 says that A×M X0 is representable.

Case 5 (General case). As in Case 4, to give a map B → M is to give a cover {Vj → B} of B
together with maps Vj → X0, plus gluing data. See the following diagram.

A

��
Vj // X0

// M

Now A ×M X0 is representable by Case 4. So Case 2 implies that Vj ×M A is representable for all
j. By Case 3, since we know Vj ×M A is representable for all j, so is A×M B.

Remark 10.2. Something is not right about this proof. Stacks are supposed to encode all the
descent datum. So you don’t need to talk about covers when using a stack. The proof above does
not exploit the stack properties of C/−. The diligent reader might want to find a proof that does
use the stack properties of C/− (as a good exercise).
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Question: What is special about the following map?

X0

��
M = M(X0,X1)

We know that we can recover X1 by taking the fiber product X0 ×M X0. Suppose M is locally
presentable. Consider a 1-morphism E : A0 →M. Define A1 by the pullback diagram

A1
range //

dom

��

A0

E

��
A0

E
// M.

We claim that (A0, A1) forms a groupoid. Indeed,

C(−, A0) and C(−, A1)

represent a functor Cop → Groupoids with

• Objects: maps X
p
→ A0,

• Morphisms: p1 to p2 are isomorphisms p∗1E
∼
→ p∗2E in M(X).

Now we can form the associated stack M(A0,A1) and get a 1-morphism M(A0,A1) →M. The above
question is equivalent to the following
Question: When is this 1-morphism an equivalence of stacks?
Answer 1: When E : A0 →M is a cover.
Answer 2: When there is a cover X →M for which the map A×M X → X admits a section.

Proof. Postponed, as usual.

Example 10.3. Let C = Ringsop, the opposite category of the category of commutative rings. The
Grothendieck topology J here is the flat topology. For a commutative ring R, we use the notation
SpecR to denote the object R in C. Then the flat topology is defined as follows: {SpecUi → SpecR}
is a cover if

• each R→ Ui is flat, and
• if M ⊗R Ui = 0 for all i, then M = 0.

Equivalently,

• each R→ Ui is flat, and
• given a prime ideal p in R, there exists a prime ideal q in some Ui such that p = q ∩R.

Example. {Spec Z[ 12 ]→ Spec Z, Spec Z[ 13 ]→ Spec Z} is a cover.

Example. {SpecR[x]/f(x)→ SpecR} is a cover, where f(x) = a0 + · · ·+ an−1x
n−1 + xn.

Proof. The set {1, x, . . . , xn−1} is a basis of R[x]/f(x) over R, so it is free over R of rank n. Hence
it is flat, and it is now clear that it is a cover.

Claim 10.4. For C = Ringsop, C/− is a stack, i.e. objects descend.

Proof. It is a dumb exercise in commutative algebra, so we postpone it as usual. The reader can
read about faithfully flat descent in, e.g. Milne’s book [Mi].
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Hopf algebroids and stacks. A Hopf algebroid (A,Γ) gives a groupoid (SpecA, Spec Γ) on C.
The domain map is a cover because ηL is flat. M(SpecA,SpecΓ) will be denoted by M(A,Γ).

Example 10.5. Take A = Z[b, c], Γ = A[r]. Then (A,Γ)(R) is the groupoid of b, c ∈ R together
with maps b 7→ b+ 2r, c 7→ r2 + br + c. Let M be the associated stack M(A,Γ).
Question: What is a map SpecR→M?
Answer: To give a map SpecR →M is to give a faithfully flat map R → E, elements b, c ∈ E, and
‘gluing data’: an element r ∈ E ⊗R E such that

(i) b⊗ 1 = 1⊗ b+ 2r and c⊗ 1 = 1⊗ c+ (1⊗ b)r + 2r, and
(ii) d0r − d1r + d2r = 0, where the di are the three maps

E ⊗R E
// //// E ⊗R E ⊗R E

each of which takes the value 1 in the ith position.

Question: Is there another way to define M?
Answer: Yes, we’ll actually get a much smaller presentation of it.

So let B = Z[b] = A/(c). Consider the map SpecB →M, which actually factors through SpecA.

Claim 10.6. The map SpecB →M is a cover.

Before proving this claim, note that it will imply (by Answer 1) that there is an equivalence
M ∼= M(B,ΓB), the associated stack of (B,ΓB).

Proof. We need to show that given any representable stack SpecR and 1-morphism j : SpecR→M,
the dotted arrow in the diagram

SpecR×M SpecB //

���
�
�

SpecB

��
SpecR

j // M

is a cover. Note that it is sufficient to show that there is a cover {Ui → SpecR} of SpecR such that
{Ui ×M SpecB → Ui} is a cover for each i. See the following diagram:

SpecB

��
Ui // SpecR

j // M

We can find a cover SpecE → SpecR so that

SpecE //

��

SpecA

��
SpecR // M

commutes. So we may assume that SpecR→M factors through SpecA. Let SpecW be the pullback

SpecW //

��

SpecB

c=0

��
SpecR

(β,γ)
// M.

It turns out that W has to be R[r]/(r2 + βr + γ = 0), and B → W has to be the map b 7→ β + 2r.
Now it is clear that R→W is flat and gives a cover SpecW → SpecR.

Setting R = B, it follows that ΓB = B[r]/(r2 + br), (B,ΓB) is a Hopf algebroid, and the map
M(B,ΓB) →M is an equivalence by Answer 1.
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11. Sheaves on stacks

Recall that (C, J) denotes a category C with a Grothendieck topology J. Also Stacks :=
Stacks(C, J) denotes the 2-category of stacks on (C, J) as defined in Section ?? . Let M denoteI don’t think this the

def is very clear in
sec 8 however

a fixed object in Stacks and let Stacks/M denote the over-category of the 2-category Stacks over
M (see Section ??) .

the def in section 9
could be more clear

Definition 11.1. A sheaf on M is defined to be a sheaf on Stacks/M, that is a functor
Stacks/M→ Set which satisfies the sheaf condition.

The category of sheaves on M is defined to be the category with objects such sheaves and mor-
phisms maps of sheaves.

Consider the following two functors:

Sh : Cop → Groupoids;X 7→ category of sheaves on C/X and isos

Sh-map : Cop → Groupoids;X 7→ cat. with obj. maps of sheaves and morphisms isos:

F0
//

'

��

G0

'

��
F1

// G1

These two functors are easily seen to satisfy the descent condition i.e. they are in fact stacks (Def
8.3??). Now the pair (Sh, Sh-map), together with the domain and range maps Sh-map→ Sh form a
category object in Stacks.

Theorem 11.2. The category of sheaves onM is equivalent to the category of morphisms of stacks

M→ (Sh, Sh-map)

That is the objects are the 1-morphisms, and the morphisms are the 2-morphisms.

Proof. We will prove this next time.Oh yeah?

We now proceed into what is hopefully an oasis of truth:

Definition 11.3. A sheaf on a groupoid (X0, X1) is defined to be the following data:

1. A sheaf F on X0

2. An isomorphism Domain∗ F → Range∗ F satisfying the cocycle condition for sheaves on
(X0, X1) (see below).

The category of sheaves on a groupoid (X0, X1) is denoted Shv(X0, X1).

Definition 11.4 (The cocycle condition for sheaves on (X0, X1)). Let p1, p2 ∈ X1 be elements such
that Range(p1) = Domain(p2). Composition µ : X1 ×X0 X1 → X1 gives an element µ(p1, p2) ∈ X1

with domain Domain(p1) and range Range(p2). The cocycle condition demands that the following
diagram commutes:

Domain(p1)∗F //

µ(p1,p2)

++XXXXXXXXXXXXXXXXXXXXXXX
Range(p1)∗F

' // Domain(p2)∗F

��
Range(p2)∗F

Proposition 11.5. The functor Shv(M(X0,X1))→ Shv(X0, X1) is an isomorphism of categories.

Proof. For any stackN , we have, by definition of stackification as left adjoint to the forgetful functor,
that Stacks(M(X0,X1),N ) = Groupoid((X0, X1),N ). Now let N be the stack (Sh, Sh-map) from
before. The left-hand side gets identified with sheaves on M(X0,X1) by Theorem 11.2 and writing
out what the right-hand side means, gives the requirements for a sheaf on (X0, X1).
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Quasi-coherent sheaves on stacks on Aff . Let (C, J) = (Aff, flat) be the Grothendieck cate-
gory of affine schemes with the flat topology. A quasi-coherent sheaf F on Aff/ Spec(R) is a sheaf
on Aff/ Spec(R) such that for all (flat?) ring homomorphisms R→ S we have functorial maps and
isomorphisms:

S ⊗ F(Spec(S)) //

'
�O
�O
�O

F(Spec(S))

'
�O
�O
�O

S ⊗ (S ⊗R F(Spec(R))) // S ⊗R F(Spec(R))

So, the category of quasi-coherent sheaves on Aff/ Spec(R) is equal to the opposite category of
R-modules.

Using this definition of quasi-coherent sheaves on Aff/ Spec(R) we now get an obvious defini-
tion of the pair (Shq.−c., Sh-mapq.−c.) by requiring (Sh, Sh-map) to take values in quasi-coherent
sheaves. We now define a quasi-coherent sheaf on a stack M on Aff to be a 1-morphism
M→ (Shq.−c., Sh-mapq.−c.).

Let (A,Γ) be a Hopf algebroid, and letM(A,Γ) be the corresponding stack on Aff . The following
proposition is establishes the fundamental link between stacks and algebraic topology.

Proposition 11.6. We have an equivalence of categories

{ quasi-coherent sheaves on M(A,Γ)} ↔ (A,Γ)− comodules

Proof. This is really easy, but I’ll leave it to you. I think we could fill
in this one, if we
wanted...

Let us at least explain this equivalence: Let p : SpecA→M(A,Γ) be the map induced by the counit
SpecA→ Spec Γ composed with the stackification. We have a pull-back square

Spec Γ //

��

SpecA

p

��
SpecA

p //M

so A corresponds to OM and Γ corresponds to p∗OSpec(A) since Spec(Γ) is the pushforward of the
pullback. I’m afraid this ex-

planation is not even
quasi-coherent12. A calculation and the link to topology

A calculation. Let A = Z[b, c], ΓA = A[r], and let (A,Γ) be the associated Hopf algebroid from
Example 10.5??. That is (A,Γ) is the functor Ring → Groupoid which to each ring R associates
the groupoid with objects quadratic expressions x2 + bx+ c,b, c ∈ R and morphisms x2 + bx+ c 7→
x2 + b′x + c′ induced by a translation coordinate changes x 7→ x + r,r ∈ R (i.e. b 7→ b + 2r,
c 7→ r2 + br + c). Likewise we want to consider (B,ΓB), where B = Z[b] and ΓB = B[r]/(r2 + br).
In Section 10?? we saw the following theorem:

Theorem 12.1. The stacksM(A,ΓA) andM(B,ΓB) are equivalent. Especially the category of quasi-
coherent sheaves on M(A,ΓA) and M(B,ΓB) coincide.

Using our equivalence of categories from last time we get the following corollary.

Corollary 12.2. The category of (A,ΓA) comodules is equivalent to the category of (B,ΓB)-
comodules. Especially

Ext∗(A,ΓA)(A,A) = Ext∗(B,ΓB)(B,B).
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In the first part of this lecture we will be concerned with calculating Ext∗(B,ΓB)(B,B). From now
on we set Γ := ΓB . We want to find a resolution

0→ B → I0 → I1 → · · ·

where the In have the property that Exts(B,Γ)(B, In) = 0 for all s > 0. By a spectral sequence
argument we see that such a resolution can be used just as an injective resolution to calculate Ext,
i.e. that

Exts(B,Γ)(B,B) = Hs(Hom(B,Γ)(B, I∗))

We want to see that we can construct a resolution with the above properties by setting In = Γ.

Lemma 12.3. Let B → Γ be the inclusion b 7→ b + 0r (equal to ηL) and let p : Γ → B be the
projection b+ b′r 7→ b′. Then

0→ B
ηL
→ Γ

p
→ B → 0

is a short exact sequence of (B,Γ)-comodules.

Proof. Since exactness in the category of (B,Γ)-comodules is the same as exactness in abelian groups,
the only thing which needs to be justified is that ηL and p are maps of (B,Γ)-comodules.

To prove that ηL is a map of (B,Γ)-comodules we to check that the following diagram commutes:

B
ηL //

ηL

��

Γ

ψ

��
Γ = Γ⊗B B

1⊗ηL // Γ⊗B Γ

Taking the high route in the diagram associates to a pair of composable maps the domain of the
composition. Taking the low route associates to a pair of composable maps the domain of the first
map. But these are same same, so the diagram commutes.

To prove that p is a map of (B,Γ)-comodules we need to check that the following diagram
commutes:

Γ
p //

ψ

��

B

ηL

��
Γ⊗B Γ

Γ⊗Bp // Γ⊗B B

Taking the high route we get b + b′r 7→ b′ 7→ ηL(b′) = b′ ⊗ 1. Taking the low route we get
b+ b′r 7→ (b⊗ 1 + (r ⊗ 1 + 1⊗ r)(b′ ⊗ 1)) = (b⊗ 1 + b′r ⊗ 1 + b′ ⊗ r) 7→ b′ ⊗ 1.

Lemma 12.4 (Shapiro’s lemma). The functor Γ ⊗B −: B-modules → (B,Γ)-comodules is right
adjoint to the forgetful functor, and sends injectives to injectives.

Especially Ext∗(B,Γ)(M,Γ⊗B N) = Ext∗B(M,N)

Proof. The adjointness follows by checking the definition. That Γ ⊗B − sends injective objects to
injective objects now follows from the definition of an injective object, using the adjunction together
with the fact that the forgetful functor preserves injections. The statement about Ext now follows
from the definition of Ext via injective resolutions.

Remark 12.5. Note that Γ⊗B− is a right adjoint, not a left adjoint as usual, since we are working
with comodules.

Proposition 12.6. For any Hopf algebroid (B,Γ) we have that Exts(B,Γ)(B,Γ) = 0 for s > 0, and

the map B → Hom(B,Γ)(B,Γ), b 7→ ηL(x)ηR(b) is an isomorphism.

Proof. From the lemma we get Exts(B,Γ)(B,Γ) = ExtsB(B,B) =

{
B if s = 0
0 if s > 0

.

To finish the proof one just has to navigate through the isomorphism Hom(B,Γ)(B,Γ) = B to see
that it is the one claimed.
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Theorem 12.7.
Ext∗(B,Γ)(B,B) = Z[b2][η]/(2η)

where η ∈ Ext1.

Proof. The additive part of the statement is that Ext0 = Z[b2] while Exts = F2[b2] for s > 0, and we
will restrict ourself to this. (The easiest way to see the multiplicative structure is to use the periodic
resolution together with composition of Yoneda extensions.)

By splicing our exact sequences 0→ B → Γ→ B → 0 we get a resolution

0→ Γ→ Γ→ · · ·

of the (B,Γ)-comodule B, where the boundary map is given by b + b′r 7→ b′. By the previous
proposition we can use this resolution to calculate Ext. Applying Hom(B,Γ)(B,−) to the resolution,
yealds the sequence:

0 // Hom(B,Γ)(B,Γ) // Hom(B,Γ)(B,Γ) // · · ·

0 // B
d // B

d // · · ·

From the previous lemma we get that under the isomorphism B ' Hom(B,Γ)(B,Γ), b 7→ (1 7→
ηR(b) = b+ 2r), 2 7→ (1 7→ 2), so d(b) = 2. We also need to find d(bn). First note that ηR(b2) = (b+
2r)2 = b2 + 4rb+ 4r2 = b2, since r2 + rb = 0. Hence, more generally, ηR(b2n) = b2n and ηR(b2n+1) =
b2n(b + 2r). But this shows that d(b2n) = 0 while d(b2n+1) = 2b2n. We have now described the
differential d completely, and taking homology we see that we get the claimed result.

Exercise 12.8. Compute Ext∗(A,Γ)(A,A) where A = Z[a1, . . . , ap], Γ = A[r]. That is, analogous to

before, we look at degree p polynomial expressions xp+a1x
p−1 + · · ·+ap and get monoidal structure

by looking at the effect on the coefficients of the coordinate change x 7→ x+ r.
This is easiest done modulo Ext0, and in fact unknown in general. You should get E(y1)⊗P (x2)

(i.e. exterior in degree 1 tensor polynomial in degree 2).

A fundamental example and link to topology. Let (A,Γ) be the Hopf algebra of formal group
laws and isomorphisms. That is, A is the Lazard ring A = L = Z[x1, x2, . . . ] and Γ the ring of
universal isomorphisms Γ = A[b−1

0 , b0, b1, b2, . . . ].
With a bad notation, let MU+(X) = MU∗(X)⊗Z[u, u−1] where |u| = 2. Let MU+ be the Thom

spectrum of Z ×MU → Z × BO. (This will have a lot of structure, e.g. an E∞ structure, if you
know what that means (it actually has the structure, even if you don’t)). We get

1. π0(MU+) = L
2. π0(MU+ ∧MU+) = Γ

Note that by inverting u we get isomorphisms instead of strict isomorphisms, and hence a good
connection to algebraic geometry.

Until now we have been talking about formal group laws. We are now ready to define what we
mean by a formal group. (We will make this definition more explicit in a later lecture.)

Definition 12.9. LetMFG =M(A,Γ). The category of formal groups over R and isomorphisms is
the category of maps Stacks(SpecR,MFG) (remember, stacks is a 2-category).

We now have a functor which to a spectrum X associates the (A,Γ)-comodule (MU+)n(X).
(Note that we get one for each n, but all even ones are isomorphic, since we’ve inverted u.) This last
object corresponds, via our equivalence of categories to a quasi-coherent sheaf Mn(X) on MFG.

If SpecL
p
→MFG denotes the counit composed with stackification, then p∗Mn(X) corresponds to

the L-module πn((MU+) ∧X).
If X → Y → Z is a cofiber sequence, then we get a long exact sequence of sheaves

· · · → Mn(X)→Mn(Y )→Mn(Z)→Mn−1(X)→ · · · ,
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either by appealing to the equivalence of category or arguing directly, using that SpecL → MFG

is a cover (i.e. flat). Also the wedge axiom is satisfied Mn(∨αXα) = ⊕αMn(Xα). So we get a
cohomology theory. We generalize this:

Definition 12.10. A formal group over a ring R is flat if the classifying map SpecR
p
→ MFG is

flat.

If SpecR
p
→ MFG is flat, then X 7→ p∗Mn(X) ∈ R-modules still defines a cohomology theory.

This amounts to unraveling the definition and using that locally we are just tensoring up over a flat
extension, which preserves exactness. Note that if we suppose that p comes from a formal group,
then we would have SpecR→ SpecL→MFG, and hence p∗Mn(X) = πn((MU+)∧X)⊗π0(MU+)R.
However p might be flat without the the map SpecR→ SpecL being flat. We want to find out how
to recognize flat formal groups.

Another, slightly tangential question which comes up is the following: In the category of co-
modules the forgetful functor is not a right adjoint as usual so the inverse limit functor has higher
derived functors. One should try to find a way to compute the derived functors of inverse limits of
comodules. Any takers?expand or leave out?

13. Formal groups in prime characteristic

In this section, we will be interested in maps from SpecK to a stack M. Observe the following
analogy with schemes: given a scheme X , we can consider the set of all maps SpecK → X where
K is an (algebraically closed) field. If we regard two such maps SpecK1 → X , SpecK2 → X as
equivalent if SpecK1 and SpecK2 are isomorphic over X then, in the case where X = SpecR is
affine, the set of all such maps corresponds bijectively to the set of prime ideals of R. Given a map
R→ K, the kernel is a prime ideal; conversely, given any prime ideal p /R, R→ R/p→ (R/p)(0) is

a map into a field with kernel p.
Now, suppose that M = M(A,Γ) is the stack associated to a Hopf algebroid.

Definition 13.1. An invariant prime ideal (for (A,Γ)) is a prime ideal p/A such that (ηR(p)) =
(ηL(p)) where (X) denotes the ideal generated by the set X.

Next, we will study maps from fields into the stack MFG of formal groups. Note that fields are
local rings.

Lemma 13.2. Let R be a local ring. Then every 1-morphism SpecR → MFG factors (up to an
isomorphism) through SpecL → MFG, where L is the Lazard ring. In other words, every formal
group over a local ring comes from a formal group law.

Proof: postponed.

Corollary 13.3. If R is a local ring then the map of groupoids

{formal group laws over R with isomorphisms} ←→ Stacks(SpecR,MFG)

is an equivalence.

This result shows that the classical theory of formal groups over local rings carries over to the
stack setting.

Until now, we have not seen any method for showing that two given formal groups are not
isomorphic. We will now look for an invariant that can distinguish them.

Let G be a formal group over R and p be a prime. Define the p-series of G to be [p](x) =
x+G · · ·+G x. Since G is commutative and associative, [p] is an endomorphism of G.

A formal group can be considered as a group object in the opposite category of the category of
linearly topologised complete local rings or something like that. Then the p-torsion of G, pG, is
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defined to be the kernel of the map of groups (SpecR[[x]], G)
[p]
−→ (SpecR[[x]], G) in this category. It

fits into a diagram

pG //

��

G

[p]

��
1 // G

Taking rings of functions, this translates to

O
pG R[[x]]oo [p](x)

R

OO

R[[x]]oo

OO

x
_

OO

0 x�oo

We measure the size of pG by R[[x]]/[p](x).

• Case 1: R = K = field of characteristic 0. Then [p](x) = px + . . . . Since p is a unit in K,
K[[x]]/[p](x) ∼= K (by inversion of the power series [p](x)).

• Case 2: R = K = field of characteristic p.

Lemma 13.4. Let R be an Fp-algebra, F,G formal group laws over R, φ : F → G a homomorphism.
Then there exists an integer n and a power series g ∈ R[[x]] such that

• g′(0) 6= 0 in R
• φ(x) = g(xp

n

)

Proof. If f ∈ R[[x]] with f ′(x) = 0 then f(x) = g(xp) for some g. To see this, let f(x) =
∑
anx

n.
f ′(x) = 0 implies that nan = 0 for (n, p) = 1.

If φ 6= 0 is a homomorphism with φ′(0) = 0, then we automatically have φ′(x) = 0. To show this,
we take the equality G(φ(x), φ(y)) = φ(F (x, y)),apply ∂

∂y at y = 0 and get:

G2(φ(x), 0)φ(0) = φ′(F (x, 0))F2(x, 0) = φ′(x)F2(x, 0).

Since F2(x, 0) is a unit and the left hand side is zero, we get φ′(x) = 0.
To return to the assertion of the Lemma, we proceed inductively. If φ′(0) 6= 0, we are done by

taking n = 0, φ = g.
Now assume φ′(0) = 0. This means we can write φ(x) = h(xp).
Claim: There is a unique formal group law F ′ such that the map x 7→ xp induces a homomorphism

of formal group laws F → F ′.
Let us write F (x, y) =

∑
aijx

iyj . We have to show that (x+F y)p = xp +F ′ yp for a unique F ′.
Since we are in characteristic p, we have

(∑
aijx

iyj
)p

=
∑

apijx
ipyjp,

and hence we must define
F ′(x, y) =

∑
apijx

iyj .

F ′ is certainly a formal group since it is the image of F under the ring homomorphism R → R,
x 7→ xp.

Hence we get
F //

φ ��>
>>

>>
>>

F ′

h��~~
~~

~~
~

G.
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We check that h is a homomorphism of formal group laws:

h(xp +F ′ yp) = h(x+F y)p = φ(F (x, y)) = φ(x) +G φ(y) = h(xp) +G h(yp).

Hence we have h(x+F ′ y) = h(x)+G h(y) and the result follows by induction in applying it to h.

Definition 13.5. The height of a formal group law F over a field of characteristic p is the unique
integer n = htF such that [p](x) = g(xp

n

) with g′(0) 6= 0. If [p](x) = 0 we say htF = ∞. In
characteristic 0, the height of every formal group law is defined to be 0.

• The height measures the p-rank of pF . htF = logp dimR[[x]]/[p](x).

Lemma 13.6. The height is independent of the coordinate of the formal group, i.e. if F and G are
isomorphic then their heights are equal.

Example 13.7. R = Fp. Then ht Ga = ∞, but since 1 − (1 − x)p = xp, ht Gm = 1. Hence
Ga � Gm.

A good reference for the following is Serre’s article in [CF], pp. 148ff. The original proof can be
found in [LT1].

Theorem 13.8 (Dieudonné, Lubin–Tate).

(a) If charK = p > 0 then there exists a formal group law of height n for every n ∈ N ∪ {∞}.
(b) If additionally K = K then any two formal group laws of the same height are isomorphic.

We first turn to the construction of formal group laws with certain given endomorphisms over
complete local rings.

Let A be a complete local domain with maximal ideal m = (π) and residue field k = A/m =
Fpn = Fq , such that the associated graded ring satisfies

⊕ mn

mn+1
= k[π].

The examples to have in mind are:

• A = Zp (which is not the topologist’s Z/(p) but the p-adics) with π = p, n = 1;
• A = Zpn := Zp[ζpn−1] where ζpn−1 is a primitive (pn − 1)st root of unity, π = p. This is the

ring of p-typical Witt vectors on Fpn , as described below in Section 16;
• A = Zp[π]/(πk − p);
• A = k[[π]].

Let
Fπ =

{
f ∈ A[[x]] | f(x) = πx+O(x2); f(x) ≡ xq (π)

}

be the set of “Eisenstein polynomials” with respect to the uniformiser π.

Lemma 13.9. Let f, g ∈ Fπ and φ1(x1, . . . , xn) a linear form. Then there exists a unique
φ(x1, . . . , xn) ∈ A[[x1, . . . , xn]] satisfying

(a) φ ≡ φ1 mod deg 2 and
(b) f ◦ φ(x1, . . . , xn) = φ (g(x1), . . . , g(xn)) =: φ(g(x)).

Proof. Suppose by induction φ(g(x)) ≡ f(φ(x)) mod deg n + 1 for a (mod deg n + 1) unique φ
satisfying also a. This is true for n = 1 by the definition of Fπ. Then we can write

f(φ(x)) − φ(g(x)) ≡ En+1 mod deg n+ 2

for a unique term En+1 homogeneous of degree n+ 1. Now we try to correct φ by adding φn+1 of
degree n+ 1. We have:

f(φ+ φn+1) ≡ f(φ) + πφn+1

φ(g(x)) + φn+1(g(x)) ≡ φ(g(x)) + πn+1φn+1

}
mod deg n+ 2.
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Subtracting yields En+1 = (π−πn+1)φn+1. Since A is a domain, we must take φn+1 = 1
π(1−πn)En+1

if this exists, i.e. if π|En+1 (note that the factor 1− πn is a unit in A).
Computing mod π, we find that

φ(g(x)) ≡ φ(xq); f(φ(x)) ≡ φ(x)q ;

so En+1 ≡ φ(x)q − φ(xq) ≡ 0 since A/(π) = Fq.

Application 13.10. Take f = g, φ1(x, y) = x + y. We get a φ(x, y) = F (x, y) which turns out
to be a formal group law. This follows from other applications of Lemma 13.9. For example,
F (x, y) = F (y, x) by uniqueness; (x +F y) +F z = x +F (y +F z): both sides commute with F and
equal x+ y + z mod deg 2, so again by uniqueness, they coincide.

Take two f, g ∈ Fπ and denote the formal group laws obtained as above by F f , F g. Then F f

and F g are canonically isomorphic. Once again, this follows from Lemma 13.9 by taking φ1(x) = x.

We get a unique φ with f(φ(x)) = φ(g(x)). We show that φ : F g
∼=
−→ F f . Set

h(x, y) = F f (φ(x), φ(y)) ,

h′(x, y) = φ (F g(x, y)) .

Both series are congruent to x+ y mod deg 2, and the calculations

f(h(x, y)) = f
(
F f (φ(x), φ(y))

)
= F f (f(φ(x), f(φ(y))) = F f (φ(g(x)), φ(g(y))) = h(g(x), g(y));

f(h′(x, y)) = f (φ (F g(x, y))) = φ (g(F g(x, y))) = φ (F g(g(x), g(y))) = h′(g(x), g(y))

show that h and h′ must agree, by Lemma 13.9.
F f (or its reduction mod π) is called the Lubin–Tate formal group.
We will finally be interested in the endomorphism ring of a formal group law F . Lubin–Tate

formal group laws come with a useful ring homomorphism A → End(F ) that determines a lot of
endomorphisms. One says that F is a formal A-module or, in analogy with elliptic curves, that F
has complex multiplication. We will now construct this homomorphism.

Pick any f ∈ Fπ, F = F f . For a ∈ A, define φ1(x) = ax. Setting f = g, Lemma 13.9
produces a power series φa(x) =: [a](x). To check that it is an endomorphism, we have to see that
φa(x+F y) = φa(x)+F φa(y). This is true for the linear part since a(x+y) = ax+ay. Furthermore,
both sides commute with f : φa (f(x) +F f(y)) = φa (f(x+F y)) = f(φa(x +F y)), similarly for
φa(x) +F φa(y). So, by uniqueness again, they agree.

Lemma 13.11. For the Lubin–Tate formal group F = F f over the ring A, [−] is a homomorphism
of rings

A
[−](x)
−→ End(F )

satisfying [π](x) = f(x).

Proof. It only remains to show that [a + b](x) = [a](x) +F [b](x) and [ab](x) = [a] ([b](x)). Both
sides agree mod deg 2, so they are equal if all four terms commute with f . But this is trivial since
f commutes by construction both with F and [a] for all a ∈ A.

The second assertion follows since f(x) ≡ [π](x) ≡ πx mod deg 2 and both sides commute with
f .

Example 13.12.

1. A = Zpn = WFpn = Zp[ζpn−1], π = p, f(x) = px + xq . We get a formal group law F with
[p]F (x) = f(x) ≡ xq mod p. Its reduction mod p therefore has height n. F has coefficients
in Zp since f(x) has (this follows by the invariance under the choice of the primitive pn − 1st
root of unity).
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2. There is a variation of this, due to Ravenel. The equation f(x) = px +F x
q has a unique

solution for f , which can be seen as follows (due to Bobby):
We start with f0(x) = px+xq and get a formal group law F0 with p-series f0(x). Inductively,

we define fi+1(x) = px+Fi
xq and Fi+1 as its Lubin–Tate formal group law. We have to show

that the Fi converge. However, in general, if f(x) ≡ g(x) mod xn then F f (x, y) ≡ F g(x, y)
mod (x, y)n. The easiest way to see this is to regard f and g as equal elements of Fπ for the
complete local ring R/mn, hence F f and F g agree mod (x, y)n.

We claim that fi ≡ fi−1 mod xiq+2−i. Suppose it is true for i. Then fi+1(x) =
Fi(px, x

q) ≡ Fi−1(px, xq) = fi(x) mod (px, xq)iq+2−i. The lowest term where they could
differ is xiq+1−ixq = x(i+1)q+1−i, so they are congruent mod x(i+1)q+2−(i+1).

This group law is superior because it has a managable logarithm: We have logF (px) +
logF (xq) = logF (px+F x

q) = logF ([p](x)) = p logF (x).
F therefore satisfies the identityI don’t think this is

true. When I do it,
there is a (unit but
not 1) factor in each
coefficient.

logF (x) =
∑

n

xq
n

pn
.

3. A = Zp[π]/(πn − p). Then A/(π)Fp. The Lubin–Tate formal group for A satisfies [p](x) =

[πn](x) = xp
n

mod π, so it has height n.

Now let F ∈ Fpn [[x, y]] be the mod p reduction of the formal group law F as in the first example.
We have already constructed a map

Zpn

[−]
−→ End(F ),

but this map is not surjective. Indeed, the equality F (x, y)p = F (xp, yp) shows that the map V
which sends x to xp is another element in End(F ). Note that V need not commute with [a], a ∈ Zpn ;
hence we get a map Zpn〈〈V 〉〉 −→ EndF , where R〈〈x〉〉 denotes the following noncommutative power
series ring in x:

Zpn〈〈V 〉〉 =
{∑

amV
m

∣∣∣ am ∈ Zpn , V a = aσV
}
,

where a 7→ aσ is the Frobenius automorphism which sends ζ to ζp.
To check the identity V a = aσV , it is enough to consider a = p, where it is obvious, and a = ζk,

which is easy.
One also checks that V ◦ · · · ◦ V︸ ︷︷ ︸

n

(x) = xp
n

= [p](x).

Proposition 13.13. The maps

Z〈〈V 〉〉/(V n − p) −→ End(F )

and
Sn := (Z〈〈V 〉〉)× −→ Aut(F )

are isomorphisms. The latter group is called the nth Morava stabiliser group.

The proof will be given later.
We have shown the first part of Theorem 13.8, we still have to show uniqueness over algebraically

closed fields. Thus, let K = K be an algebraically closed field of characteristic p > 0, F any
formal group law over K of height n, and FLT be the Lubin–Tate formal group law coming from
Zpn , passing through Fpn and arriving at K (with respect to f(x) = px + xq). For this, we fix an

inclusion Fpn ↪→ K such that Fpn = {t ∈ K | tp
n

= t}.
Theorem 13.8 will be proven once we have shown the following.

Proposition 13.14. F and FLT are isomorphic over K.

Proof. We proceed in two steps:

Step I: F is isomorphic to a formal group law G which satisfies:
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1. G(x, y) =
∑
aijx

iyj with all aij ∈ Fpn ;

2. [p]G(x) = xp
n

.

Step II: Choose any lift of G to G̃ over Zpn . Then [p]G̃(x) ∈ F(p), hence G̃ comes from [p]G̃ by the
Lubin–Tate construction and is therefore isomorphic to any other Lubin–Tate formal group law.

Step I: Since F has height n, we can write [p]F (x) = g(xp
n

) with g′(0) 6= 0. We use 2) as an Ansatz
and try to solve for φ in the commutative diagram:

F
φ //

g(xpn
)

��

G

xpn

��
F

φ // G,

i.e. φ(x)p
n

= φ(g(x)p
n

). Write

φ(x) =
∑

i

bix
i and g(x) =

∑

k

akx
k .

Then

φ(x)p
n

=
∑

i

bp
n

i

(
xp

n
)i

=: φσ(xp
n

).

We need to solve φ−1φσ = g.
First look at the coefficient of x:

bp
n−1

1 = a1

This is solvable since K = K. Now assume inductively that we have replaced F by a formal group
law for which

g(x) = x+ akx
k +O(xk+1).

We look for a φ satisfying φ(x) = x+ bkx
k. We have

φ−1 ◦ φσ = x+
(
bp

n

− bk
)

+O(xk+1),

so we need bk to satisfy bp
n

k − bk = ak; this is again possible since K is algebraically closed.
In Step I, 2) actually implies 1): We have [p]G(x) +G [p]G(y) = [p](x +G y), hence by 2),

G(xp
n

, yp
n

) = G(x, y)p
n

. Hence
∑

aij

(
xp

n
)i (

yp
n
)j

=
∑

ap
n

ij

(
xp

n
)i (

yp
n
)j
,

meaning that all aij = ap
n

ij and therefore aij ∈ Fpn .

Recapitulation of what was done above. Let K be an algebraically close field of characteristic
p > 0. Let F be a formal group law over K of height n, and choose an inclusion Fpn ↪→ K.

Goal: F is isomorphic to the Lubin-Tate formal group law coming from Zpn and f(x) = px+ xp
n

.

The proof proceeds in two steps:

Claim: F is isomorphic to a formal group law G satisfying

(i) G(x, y) =
∑
aijx

iyj with aij ∈ Fpn ;

(ii) [p]G(x) = xp
n

.

Conclusion: Choose any lift of G to G̃ over Zpn . Then [p]G̃(x) ∈ Fπ, so G̃ is isomorphic to the
Lubin-Tate formal group law for [p]G̃(x) (and hence isomorphic to any other Lubin-Tate group).
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Proof of the claim. We prove (ii) first. Write [p]F (x) = g(xp
n

) for some g(x) with g′(0) 6= 0. We’re
looking for a formal group law G and an isomorphism ϕ : F → G such that the square

F
ϕ //

g(xpn
)
��

G

xpn

��
F ϕ

// G

commutes. So we need ϕ(x)p
n

= ϕ(g(xp
n

)). Recall that if f(x) =
∑
bix

i then fσ is defined to be

the power series fσ(x) =
∑
bp

n

i xi. So our equation becomes

ϕσ(xp
n

) = (ϕ ◦ g)(xp
n

).

In other words, we need to solve

ϕ−1 ◦ ϕσ = g.

Write g(x) =
∑
aix

i and ϕ(x) =
∑
bix

i. We have to solve for the bi’s. Looking at the coefficient

of x in the above equation, one finds that bp
n−1

1 = a1. Since K is algebraically closed, we can find a
b1 such that this holds. By twisting F by x 7→ b1x, we see that we can replace F by an isomorphic
formal group law for which a1 = 1.

Now suppose by induction that we can replace F by a formal group law for which g(x) = x +
akx

k +O(xk+1). The goal is to show that we can also get rid of ak, and to do this we look for a ϕ
of the form ϕ(x) = x+ bkx

k .

The equation ϕ−1 ◦ ϕσ = g becomes g(x) = x+ (bp
n

k − bk)xk +O(xk+1), and so we need to solve

(bk)p
n

− bk = ak.

Again, since K is algebraically closed we can do this, and so we’re done by induction.

Now we must go back and prove (i). We’ve found a power series ϕ(x), and we let G be the twist
of F by this series. By construction of ϕ(x) we have [p]G(x) = xp

n

. Now write G(x, y) =
∑
aijx

iyj .
G must commute with its own p-series, so one finds that

G(xp
n

, yp
n

) = [p]G(x) +G [p]G(y) = [p](x +G y) = G(x, y)p
n

,

or that
∑

aij(x
pn

)i(yp
n

)j =
(∑

aijx
iyj

)pn

=
∑

ap
n

ij (xp
n

)i(yp
n

)j .

So aij = ap
n

ij , which means aij ∈ Fpn .

14. The automorphism group of the Lubin-Tate formal group laws

Consider the Lubin-Tate formal group law with p-series [p](x) = px+F x
pn

, and let Γ denote its
reduction to Fpn . (Note that the coefficients of Γ actually lie in Fp, as we have seen before). The
goal of this section is to calculate Aut Γ, and also End Γ. There are essentially two parts to this:

(1) Can we explicitly write down all the automorphism and endomorphisms?
(2) The functors

Fpn −Alg −→ Group (Fpn
i
−→ R) 7→ Aut(i∗Γ)

and

Fpn −Alg −→ Ring (Fpn
i
−→ R) 7→ End(i∗Γ)

are both co-representable. Can we determine the representing objects?

Lemma 14.1. Let F be the Lubin-Tate formal group law defined over Zp with p-series [p](x) =

px+F x
pn

. Then over Zpn [t]/(tp
n

− t) the map ϕ : x 7→ tx is an endomorphism of F .
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Proof. What must be shown is that F (tx, ty) = tF (x, y). Since our ring is torsion-free, it suffices to
do this after tensoring with Q. But rationally we have an isomorphism

log : F −→ Ga

and so it suffices to show that

log(tx+F ty) = log(t(x+F y)).

Now F is defined so that its log has the form

logF (x) =
∑ xp

nk

pk

and it follows directly that log(tλ) = t · log(λ) (using that tp
n

= t). So now one just computes that

log(tx+F ty) = log(tx) + log(ty) = t log(x) + t log(y) = t(log(x) + log(y))

= t(log(x+F y))

= log(t(x+F y)).

Let R be an Fpn-algebra via a map i : Fpn → R.

Corollary 14.2. If t ∈ R satisfies tp
n

= t then x 7→ tx is in End(i∗Γ).

Proof. We can define a map Zp[t]/(t
pn

− t) → R in the obvious way, and then we use the fact that
x 7→ tx was an endomorphism of Γ over the first ring.

So we have now constructed a simple class of endomorphisms of i∗Γ. Since Γ is actually defined
over Fp, there is also the ‘Frobenius’ endomorphism v defined by v(x) = xp.

Lemma 14.3. Suppose ϕ(x) =
∑
akx

k ∈ End(Γ). Then ap
n

k = ak.

Proof. Since ϕ is an endomorphism, we must have that

ϕ([p]Γ(x)) = [p]Γ(ϕ(x)).

But [p]Γ(x) = xp
n

, and the lemma follows by comparing the coefficients on either side of the equation.

Corollary 14.4. Any endomorphism of i∗Γ is of the form
∑Γ

tnx
pn

for some tn ∈ R such that
tp

n

= t.

Proof. Let ϕ ∈ End(i∗Γ), and set t0 = ϕ′(0). By the lemma above we know tp
n

0 = t0. Now suppose
by induction that we’ve found t0, t1, . . . , tk−1 and we want to find tk. Consider the power series

g(x) = ϕ(x) −Γ

(∑Γ
tix

pi
)
.

This is an endomorphism of i∗Γ (since the maps x 7→ xp
i

and x 7→ tx are both endomorphisms).
The first nonvanishing term of g(x) is of the form umx

pm

for some m ≥ k, and so we define tm = um
and tl = 0 for k ≤ l < m. Now repeat ad infinitum.

Corollary 14.5.

(a) The functor R 7→ End(i∗Γ) is co-represented by Fpn [t0, t1, . . . ]/(t
pn

k − tk).

(b) The functor R 7→ Aut(i∗Γ) is co-represented by Fpn [t±1
0 , t1, . . . ]/(t

pn

k − tk).

Corollary 14.6. If R is an Fp-algebra which is a domain, then the obvious map

Zpn〈〈v〉〉/(vn − p)
α
−→ End(i∗Γ)

is an isomorphism.
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Proof. We first observe that any element a ∈ Zpn〈〈v〉〉/(vn − p) can be uniquely written in the form

a =
∑
akv

k where each ak is either zero or a (pn−1)st root of unity (in other words, ap
n

k = ak). The

map α sends such an element to
∑F akx

pk

, and so the observation shows that α is a bijection.

Presentations of End(Γ). Let Γ be the Lubin-Tate formal group law of height n over Fpn . Recall
that this is defined over Fp even though it is constructed over Fpn . We have seen that over Fpn ,

End(Γ) = Zpn〈〈V 〉〉/(V n − p)

where V a = aσV for a ∈ Zpn . This is a very important algebra in homotopy theory. There are two
useful ways of thinking about it.

(i) Write x ∈ End(Γ) as

x =

∞∑

k=0

tkV
k

where tp
n

k = tk. The tk’s are continuous functions on End(Γ) if End(Γ) is given the topology of the
filtration by powers of the ideal generated by V (note that V n = p).

(ii) The elements {1, V, . . . , V n−1} form a basis for End(Γ) as a right Zpn-module. End(Γ) acts on
itself on the left by right Zpn-module maps which gives us a matrix representation of End(Γ).

Example 14.7. Take n = 2. Then one easily checks that a+ bV is represented by the matrix
[
a pb
bσ aσ

]

In general, we note that if a0 + a1V + . . . + an−1V
n−1 corresponds to the matrix A then aσ0 +

aσ1V + . . . + aσn−1V
n−1 will correspond to the matrix Aσ obtained from A by applying σ to all its

entries.
The element V clearly corresponds to the matrix (also denoted by V )




0 · · · · · · p
1 0 · · · 0

0 1 · · ·
...

0 · · · 1 0




It is not hard to check that

End(Γ) = {A ∈Mn(Zpn) : V A = AσV }

This second point of view is very useful. For example, it gives us a non-trivial homomorphism
det : End(Γ)× −→ Zpn which would have no easy description from the point of view of Hopf
algebroids and formal groups.

15. Formal Groups

The purpose of this brief section is to finally write down a definition of formal groups, as opposed
to formal group laws.

Faithfully flat descent. Suppose R→ S is a map of rings. We define a category Desc(S/R) called
the category of ‘descent datum’ for S/R.

(i) An object is an S-module N together with an isomorphism ϕ : S ⊗R N → N ⊗R S of S ⊗R S-
modules, which is required to satisfy the ‘cocycle condition’ saying that the following diagram
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commutes:

S ⊗R S ⊗R N
1⊗ϕ //

((RRRRRRRRRRRR
S ⊗R N ⊗R S

ϕ⊗1

��
N ⊗R S ⊗R S.

(ii) The morphisms are the obvious candidate.

Remark 15.1. If R → S is flat and we set A = S, Γ = S ⊗R S, then (A,Γ) is a Hopf algebroid.
One can check that the category Desc(S/R) is equivalent (or isomorphic?) to the category of (A,Γ)-
comodules.

There is a canonical map

ModR → Desc(S/R) M 7→ S ⊗RM.

This is left-adjoint to the functor

Desc(S/R)→ModR N 7→ {n ∈ N | ϕ(1⊗ n) = n⊗ 1}.

Recall that a map R→ S is said to be faithfully flat if

(i) The functor S ⊗R (−) is exact (flatness), and
(ii) A map of R-modules M → N is an isomorphism if and only if S ⊗R M → S ⊗R N is an

isomorphism of S-modules (faithfulness).

Remark 15.2. If R→ S is flat, then the condition that it be faithful is equivalent to requiring that
S ⊗RM = 0 iff M = 0.

Proposition 15.3. If R → S is faithfully flat, then the functors ModR � Desc(S/R) are an
equivalence of categories.

Proof. We check that the unit and co-unit of the adjunction are isomorphisms.

Step 1: This is easy if the map R→ S admits a retraction.
Step 2: By applying S ⊗R (−)—which replaces R with S ⊗R R and S with S ⊗R S—one reduces to

the above case.

One can repeat this discussion with R-modules replaced by R-algebras, and one obtains the
following

Corollary 15.4. If R → S is faithfully flat then the functor R − Alg −→ AlgDesc(S/R) is an
equivalence.

Definition 15.5. Let R be a ring. A formal group over R is

(1) An augmented R-algebra A
ε
−→ R with augmentation ideal m, with the properties that

(i) A is complete with respect to m—i.e., the map A→ limA/mn is an isomorphism;
(ii) m/m2 is locally free of rank one over R;
(iii) GrmA ∼= SymR(m/m2).

(2) A map A
F
−→ limA/mn ⊗A/mn =: A⊗̂A making the following diagrams commute:

A

F !!C
CC

CC
CC

C
F // A⊗̂A

t

��

A

id
!!C

CC
CC

CC
CC
F // A⊗̂A

1⊗ε

��

A
F //

F

��

A⊗̂A

1⊗F

��
A⊗̂A A A⊗̂A

F⊗1
// A⊗̂A⊗̂A.

Remark 15.6.

(a) A formal group over the ring R[[x]] is exactly what we’ve been calling a formal group law.
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(b) If we have a formal group for which m/m2 is free over R and we pick a generator, then there is

an isomorphism R[[x]]
∼=
−→ A and one gets an actual formal group law.

(c) If R is a field—or more generally, a local ring—then every locally free module is actually free
(more-or-less by definition). So every formal group over such a ring actually comes from a formal
group law.

Remark 15.7. A formal group should be something which is locally a formal group law in the flat
topology. The previous definition gave something which is locally a formal group law in the Zariski
topology. These turn out to be equivalent. The reason boils down to the fact that if a module over
a local ring R becomes free of rank 1 under a faithfully flat base change R→ S, then it was free of
rank 1 to start with.

16. Witt Vectors

The p-adic integers Zp are in some sense constructed by starting with Z/p. A similar construction
can be done starting with Fpn , and leads to the ring of Witt vectors.

One of the first things you learn in math is to add numbers. The digits represent a number in the
associated graded of Z given by Z ⊃ 10Z ⊃ 100Z ⊃ · · · . So in some sense we’ve built the integers
out of Z/10. The usual algorithm for addition is not so good, because it is not algebraic: it requires
the mysterious process of ‘carrying’. Witt’s idea is that if we choose different coset representatives,
then we can actually make the addition and multiplication laws completely algebraic. There is a
presentation of this with a lot of good motivation in the appendix to [Mu1].

Let p be a prime. Good coset representatives for pZp ⊂ Zp are 0 and roots of unity. Write a ∈ Zp
as a =

∑
k≥0 akp

k where the ak’s are 0 or roots of unity. Define

wn = ap
n

0 + ap
n−1

1 p+ · · ·+ anp
n =

∑

i+j=n

ap
j

i p
i .

Note that in Z/p, api = ai so that wn = a0 + a1p+ · · ·+ anp
n.

For a = (a0, a1, · · · ) and b = (b0, b1, · · · ) ∈ R∞, we’d like to define the Witt addition and
multiplication in the way that wn(a +w b) = wn(a) +wn(b) and wn(a ·w b) = wn(a) ·wn(b). Since
we want to do this for any ring R, we may as well work in the universal case.

Example 16.1. Observe that if c = (c0, c1, · · · ) = a +w b, then one is forced to have c0 = a0 + b0.
c1 has to have the property that

cp0 + pc1 = (ap0 + pa1) + (bp0 + pb1)

(a0 + b0)p + pc1 = (ap0 + pa1) + (bp0 + pb1) .

So that

c1 = (a1 + b1)−
1

p

p−1∑

i=1

(
p

i

)
ai0b

p−i
0 .

The formulae get complicated in general.

Let A = Z[a0, a1, · · · ; b0, b1, · · · ], the universal ring. Consider the map

A∞
(w0,w1,w2,··· )
−→ A∞

(x0, x1, x2, · · · ) 7→ (x0, x
p
0 + px1, x

p2

0 + pxp1 + p2x2, · · · ) .

We’ll show that there are unique +w and ·w on the domain which map to componentwise addition
and multiplication.

Remark 16.2. If our ring is a Q-algebra, then we can solve xp
n

0 + · · · + pnxn = wn for the x’s in
terms of w’s. So there is nothing to check in this case. This also implies that if the ground ring is
torsion free and the operations +w and ·w exist, then they are unique.
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Lemma 16.3 (Dwork). Suppose R is a torsion-free ring with a ring homomorphism σ : R → R
satisfying σ(r) ≡ rp mod p.

Then a sequence (w0, w1, · · · ) ∈ R∞ is of the form (w0(a), w1(a), · · · ) for some a ∈ R∞ if and
only if

wn − w
σ
n−1 ≡ 0 mod pn .

Moreover, the sequence a is unique.

The idea of using this lemma is thinking of σ as raising to the p-th power so that

wn = ap
n

0 + · · ·+ pn−1apn−1 + pnan

wn−1 = ap
n−1

0 + · · ·+ pn−1an−1

wσn−1 = ap
n

0 + · · ·+ pn−1apn−1

wn − w
σ
n−1 ≡ 0 mod pn .

Proof. If p is a prime and x ≡ y mod p, then xp
k−1

≡ yp
k−1

mod pk since x ≡ y mod pk−1 implies

xp = (y + pk−1r)p = yp + p(pk−1r)yp−1 +

(
p

2

)
(pk−1r)2yp−2 + · · · ≡ yp mod pk .

We know a0 = w0. Suppose we’ve found a0, · · · , an−1 with wk = ap
k

0 + · · ·+pkak for k < n. From

wn = ap
n

0 + · · ·+ pn−1apn−1 + pnan, we need to see that

wn − (ap
n

0 + · · ·+ pn−1apn−1) ≡ 0 mod pn .

The previous discussion shows

(aσk )p
n−1−k

≡ (apk)p
n−1−k

≡ ap
n−k

k mod pn−k .

Hence
wσn−1 = (aσ0 )p

n−1

+ · · ·+ pn−1aσn−1 ≡ a
pn

0 + · · ·+ pn−1apn−1 mod pn

and
wn − (ap

n

0 + · · ·+ pn−1apn−1) ≡ wn − w
σ
n−1 ≡ 0 mod pn .

Go back to A = Z[a0, a1, · · · ; b0, b1, · · · ]. Define σ : A → A by aσi = api and bσi = bpi . By the
Dwork lemma, the existence of c ∈ A∞ with wn(c) = wn(a) + wn(b) is implied by

wn(a) + wn(b)− (wn−1(a) + wn−1(b))σ ≡ 0 mod pn

which is fairly clear.
So there is a unique c ∈ A∞ such that wn(c) = wn(a) +wn(b) for n ≥ 0, and similarly there is a

unique d ∈ A∞ such that wn(d) = wn(a) · wn(b).

Definition 16.4. For any ring R, the ring of Witt vectors of R, W(R), is the set R∞ with the
above addition and multiplication.

Sometimes these are called the p-typical Witt vectors and denoted by Wp∞(R).

Exercise 16.5. Think through these definitions to show that W(Z/p) = Zp.
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Big Witt vectors.

Define Wn(a) =
∑

d|n da
n/d
d for a = (a1, a2, · · · ). If n = pk, this is an expression similar to that used

before. There is a similar game which produces the big Witt vectors.

Lemma 16.6 (Big Dwork lemma). Let R be a torsion-free ring. Suppose that for each prime p
there is an endomorphism σp : R→ R such that σp(x) ≡ xp mod p. For a = (a1, a2, · · · ) ∈ R∞, let

Wn(a) =
∑

d|n

da
n/d
d .

Then the set of equations Wn =
∑
d|n da

n/d
d can be solved uniquely for the a’s if and only if

Wpnm ≡W
σp

pn−1m mod pn

for each prime p and each m with (m, p) = 1.

Proof. Left to reader. You might need to assume the σp’s commute, but probably not.

The additive group of big Witt vectors comes up in a different context:

Proposition 16.7. Given a ring R, let (1 + xR[[x]])× = ({f ∈ R[[x]]|f(0) = 1},multiplication).
This group is isomorphic to the additive group of big Witt vectors.

Proof. Any element of (1 + xR[[x]])× can be uniquely written in the form
∞∏

n=1

(1− anx
n) .

So we need to check ∏
(1− anx

n) ·
∏

(1− bnx
n) =

∏
(1− cnx

n)

where c = a +W b in the big Witt vectors. Again, it suffices to check this in the universal case
A = Z[a1, · · · ; b1, · · · ]. In fact, we can check over Q[a1, · · · ; b1, · · · ]. Taking the log of both sides
shows it:

− log
[∏

n

(1− anx
n)

]
=

∑

n,j

najn
xnj

nj
=

∑

k

Wk(a)
xk

k

− log
[∏

(1− anx
n) ·

∏
(1− bnx

n)
]

= −
∑[

log(1− anx
n) + log(1− bnx

n)
]

=
∑

[Wn(a) +Wn(b)]
xn

n

=
∑

Wn(c)
xn

n
= − log

[∏
(1− cnx

n)
]

Now, we are going to relate big Witt vectors to p-typical ones.

Proposition 16.8. If R is a Z(p)-algebra, then

bigWitt(R) ∼=
∏

(m,p)=1

W(R)

as rings.

Proof. Let us define the map in the universal case A = Z(p)[a1, a2, · · · ]. Take σp(ai) = api
and σq(ai) = 0 for primes q other than p. Notice that (W1(a),W2(a), · · · ) splits to Wm(a) =
(Wp0m(a),Wp1m(a),Wp2m(a), · · · ) for (m, p) = 1. Each sequence Wm(a) has the property of the
Dwork lemma, and therefore has the form w(bm) for some unique bm ∈ A∞. This defines the map

bigWitt(R) −→
∏

(m,p)=1

W(R)
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a 7→ {bm} .

It is easy to see this is an isomorphism.

Remark 16.9. We have an explicit isomorphism

(1 + xZ/p[[x]])× ∼=
∏

(m,p)=1

Zp .

We can do something similar for
(
1 + xZ/p[[x]]/(xn)

)× ∼= (product of cyclic groups of determined orders) .

The role of the log (actually exp) for the p-Witt vectors.

Suppose R is a torsion-free Z(p)-algebra with σ : R → R such that σ(x) ≡ xp mod p. Then

exp

(∑
vn

tp
n

pn

)
has coefficients in R provided vn ≡ vσn−1 mod pn.

Example 16.10. In the case where R = Z(p) and σ(x) = x, we would find exp
(∑

tp
n

pn

)
∈ Z(p)[[t]]

which is called the Artin-Hasse exponential. This comes up in writing the map back from
∏

(m,p)=1

W(R) −→ bigWitt(R).

17. Classifying Lifts — The Lubin-Tate Space

Up until now we have only looked very carefully at the points of this stack. Now we will try to
expand our vision to the local picture, a small neighborhood of these points. This involves analysis of
formal groups over complete local rings whose residue field is our point. We will begin by discussing
the contents of the second important paper of Lubin and Tate [LT2] on formal groups, which deals
with deformation theory—i.e. the theory of how to lift a structure from a residue feild to a complete
local ring sitting over it.

Let Γ be the Lubin-Tate formal group law of height n over Fp. Let B be a local ring with nilpotent
maximal ideal m.

Definition 17.1. A deformation of Γ to B consists of a triple (G, i, t) where

(a) G is a FGL over B
(b) i : Fp −→ B/m is an inclusion

(c) t : G −→ i∗(Γ) is an isomorphism, where G denotes the image of G in B/m.

Remark 17.2. The map i is superfluous since it is unique. We have included it in the definition of
deformation because, following Drinfeld, this is the thing to do if we consider fields other than Fp.

We will denote a deformation (G, i, t) by a diagram

G i∗Γ

Definition 17.3. An isomorphism (G1, i, t1)
f,g
−→ (G2, j, t2) consists of an isomorphism G1

f
−→

G2 such that t2 ◦ f = (j ◦ i−1)∗ ◦ t1, i.e.

G1
f //

t1

��

G2

t2
��

i∗Γ
(j◦i−1)∗// j∗Γ

g // j∗Γ

An isomorphism is called a ∗-isomorphism if we can take g = id in the above definition.



54 COURSE NOTES FOR 18.917, TAUGHT BY MIKE HOPKINS

The space of deformations modulo ∗-isomorphism is called the Lubin-Tate space. The category
of deformations modulo ∗-isomorphism is the Lublin-Tate category, where the objects are ∗-
isomorphism classes and the morphisms are isomorphisms modulo ∗-isomorphisms.

Note that g ∈ Aut(i∗Γ) acts on the space of deformations by t 7→ g ◦ t

G

t

��
i∗Γ

g // i∗Γ.
don’t know how to
make an arrow come
back to the same
spot

Here (G, i, t) and g(G, i, t) = (G, i, g ◦ t) are isomorphic via a non-∗-isomorphism which we call g̃
given by

G
= //

t

��

G

g◦t

��
i∗Γ

g // i∗Γ

It is easy to see that this action preserves ∗-isomorphism classes and as such descends to a faithful
action on the Lubin-Tate space. Writing a typical morphism in the category

G1
f //

t1

��

G2

t2
��

i∗Γ
(j◦i−1)∗// j∗Γ

g // j∗Γ

we see that it factors as (G1, i, t1)
∗iso
−→ (G1, j, (j◦i−1)∗◦t1)

g̃
−→ (G1, j, g◦(j◦i−1)∗◦t1)

f∗iso
−→ (G2, j, t2),

so morphisms in the Lublin-Tate category are given by pairs consisting of an object and an element
of Aut(i∗Γ).

The Lublin-Tate category coresponds to the fiber category of the projection FGL(B)→ FGL(Fq)
over Γ. Geometrically, Γ is a point of the moduli stack of formal groups and the Lublin-Tate category
is a infinitesimal neighborhood of this point given by ways of completing the diagram:

Spec Fq

Γ

$$J
JJJ

JJJJ
J� _

��
SpecB //___ MFG

To best understand what these neighborhoods “looks like” is to find a representing pair for the
Lublin-Tate category. This is equivalent to finding a universal lift of Γ and universal isomorphism.
Already we have reduced this problem to representing the objects of this category (since the previous
section showed how to represent Aut(i∗Γ) from the previous section).

The Lubin-Tate space is a basic object in homotopy theory. Many unsolved problems in homotopy
theory have to do with the fact that this action is very hard to describe.

Theorem 17.4 (Lubin-Tate).

(a) There exists a formal group law F over Zp[[u1, . . . , un−1]] for which
(i) F (x + y) = x + y + u1Cp(x, y) + . . . + un−1Cpn−1(x, y) + Cpn(x, y) mod n2 where n =

(p, u1, . . . , un−1)
(ii) F ≡ Γ mod n

(b) Given such an F , the functor

Ring(Zp[[u1, . . . , un−1]], B) ∼= m
×(n−1) −→ {Deformations}/(∗ − iso)

f 7−→ f∗F
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is (pro)corepresented by (F, 1, 1) over Zp[[u1, . . . , un−1]], and this map is in isomorphism.
(c) More precisely, in the category of complete local rings with residue field an Fp-algebra the functor

of Deformations is corepresented by (F, 1, 1) over Zp[[u1, . . . , un−1]].

We will first give several lemmas which prove the case B = Fp ⊕m,m2 = 0. Then we will deduce
the general case.

———————–
NONE OF THIS MAKES ANY SENSE TO ME
———————–
For (a): Here it suffices to construct F ′ over Zp[[u1, . . . , un−1]]/(u1, . . . , un−1)2. Let l(x) be the

logarythm of the Lublin-Tate formal group law over Zp. wrong log?

l(x) =
∑ xp

nk

pk

We can show that how??
l(x) +

u

p
l(xp) + · · ·+

un−1

p
l(xp

n−1

)

is the log of a formal group law over Zp[[u1, . . . , un−1]]/(u1, . . . , un−1)2. (We just have to check that
l(x +F y) has integer coefficients, and this is easy since it is true for l and v2

i = vivj = 0). Given
this we will prove (b).

———————-
I THINK IT SHOULD BE CUT OUT
———————-

Lemma 17.5. Let B = Fp ⊕m,m2 = 0. Then

{Def}/ ∗ iso ∼= H2(Γ; m) ∼= symmetric 2-cocycles/coboundaries.

• A symmetric 2-cocycle is an ε(x, y) ∈ m[[x, y]] satisfying

ε(y, z)− ε(x+Γ y, z) + ε(x, y +Γ z)− ε(x, y) = 0.

• Coboudaries are of the form

δα(x, y) = α(x +Γ y)− α(x) − α(y).

for α(x) ∈ m[[x]].

The correspondence is given by G(x, y) = Γ(x, y) +Γ ε(x, y).

Proof of Lemma. We have Γ and a deformation G. By using an appropriate ∗-isomorphism we
can suppose that t = id and G ≡ Γ mod m. Now write G(x, y) = x +Γ y +Γ ε(x, y), where
ε(x, y) ∈ m[[x, y]]. Now

x+Γ y +Γ ε(x, y) = x+Γ y + Γ2(x +Γ y, 0)ε(x, y)

since the coeficients are in m and square to 0 (here Γ2 denotes the derivative in the second variable
of Γ).
ε(x, y) satisfies:

• ε(x, y) = ε(y, x)
• ε(0, y) = y
• ε(y, z) +Γ ε(x, y +Γ z) = ε(x, y) +Γ ε(x+Γ y, z).

The latter statement follows from associativity of G:

(x+G y) +G z = (x+G y) +Γ z +Γ ε(x+G y, z)

= (x+Γ y +Γ ε(x, y)) +Γ z +Γ ε(x+Γ y, z)x+G (y +G z)

= x+Γ (y +G z) +Γ ε(x, y +G z)

= x+Γ (y +Γ z +Γ ε(y, z) +Γ ε(x, y +Γ z).
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So there is a correspondence between the set of suchG and ε(x, y) satisfying the above properties—
these are symmetric 2-cocycles on Γ with values in Ga.

The most general ∗-isomorphism is

g(x) = x+Γ α(x), α(x) ∈ m[[x]].

One readily checks that g−1(x) = x−Γ α(x), since m2 = 0. Then

g−1G(g(x), g(y)) = G(g(x), g(y))−Γ α(G(g(x), g(y)))

= g(x) +Γ g(y) +Γ ε(g(x), g(y))−Γ α(g(x) +Γ g(y) +Γ ε(g(x), g(y)))

= x+Γ α(x) +Γ y +Γ α(y) +Γ ε(x, y)−Γ α(x +Γ y)

= x+Γ y +Γ ε̃(x, y)

where ε̃(x, y) = α(x) +Γ α(y) +Γ ε(x, y) −Γ α(x +Γ y) is a coboundary by definition. So the ∗-
isomorphism sends ε(x, y)→ ε̃(x, y). Thus

{Def}/ ∗ iso = H2(Γ; m) = symmetric 2-cocycles/coboundaries.

We have calculated this before using homological algebra on a 2-stage chain complex. This chain
complex is the tangent space to our stack at the point Γ.

Lemma 17.6. H2(Γ; m) is free of rank n− 1 on generators which start out looking like

Cpk (x, y) + monomials of degrees higher than pk

for k = 1, . . . , n− 1.

Proof. We look at the complex which computes H2:

Z/p +3 Z/p[[x]] _*4 Z/p[[x, y]] _*4 Z/p[[x, y, z]] . . .

where
α(x) 7→ α(y)− α(x +Γ y) + α(x),

f(x, y) 7→ f(y, z)− f(x+Γ y, z) + f(x, y +Γ z)− f(x, y).

i added this and i
think it is right and
but it needs to be
checked and if so the
discussion expanded
here a little more

(We can think of this as the cohomology of Z/p with respect to the triple on ⊗Zp[[x]] with trans-
formations given by x 7→ 0 and Γ.)

Recall the analgous complex with + = +Ga
, instead of +Γ, whose cohomology we already com-

puted.

H1(Ga; m) has basis {αk := xp
k

|k = 0, 1, . . . }

H2(Ga; m) has basis {xp
i

xp
j

− xp
j

xp
i

, i < j;βk := Cpk =
(x + y)p

k

+ xp
k

+ yp
k

p
}

H∗(Ga; m) = E[αi]⊗ P [β??].

what is the business
with Cp and βj?? Now filter the Γ-complex by powers of the maximal ideal. The associated graded complex for this

filtration is the +-complex. So we have a spectral sequence with E2 = H∗(Ga; m). We need now to
compute the remaining differentials.

Let Γ̃ be the Lublin-Tate Formal group over Zp and Γ be the Lublin-Tate Formal group over Z/p.
Recall:

logΓ̃(x) = x+
xp

n

p
+ . . . and expΓ̃(x) = x−

xp
n

p
+ . . .

Thencheck this is really
the right log
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Γ(x, y) = exp(log(x) + log(y)) = x+ y −
(x+ y)p

n

+ xp
n

+ yp
n

p
+ o(xp

n

)

= x+ y + Cpn(x, y) + . . .

In the Γ-complex we have

δ(α0) = α0(x) + α0(y)− α0(x +Γ y) = Cpn(x, y) + . . . .

We can conclude from this that in the spectral sequence α0 hits βn. Similarly,

δ(αk) = αk(x) + αk(y)− αk(x+Γ y) = xp
k

+ yp
k

− (x+Γ y)p
k

= xp
k

+ yp
k

− (x+ y − Cpn(x, y))p
k

= Cpn+k(x, y) + higher terms.

The last equality follows from computing

• (x+ y)p
k−1

≡ xp
k−1

+ yp
k−1

mod (p).

• (x+ y)p
k

≡ (xp
k−1

+ yp
k−1

)p ≡ xp
k

+ yp
k

+ pCp(x
pk−1

, yp
k−1

) mod (p2).

• ⇒ Cpk (x, y) ≡ Cp(xp
k−1

, yp
k−1

) mod (p)
• Combining this with the fact that Cpn(x, y)p ≡ Cpn+1(x, y) mod (p), we discover finally that

Cpn(x, y)p ≡ Cp(xp
n+1

, yp
n+1

) mod (p).

So αk hits βn+k. It now follows that the E∞-term of the spectral sequence is Fp[[β1, . . . βn−1]] so
H2(Γ; Z/p) is free of rank n− 1 on classes Cpi(x, y)+ higher terms.

Corollary 17.7. Let bk(x, y) be a symmetric 2-cocycle lifting the cohomology class βk. Then the
map

m
n−1 → H2(Γ; m)

(x1, . . . , xn−1) 7→
∑

xibi

is an isomorphism.

Proof of Theorem 17.4 for general B.
Part (a): Let Γ1(x, y) = Γ(x, y) +Γ v1b1(x, y) +Γ · · · +Γ vn−1bn−1(x, y). This looks right over
Fp[v1, . . . , vn−1]/(v1, . . . , vn−1)2 and it is a formal group law. We can let F be any lift to
Zp[[v1, . . . , vn−1]].

Part (b): The proof is by induction on k. Suppose we have proved the result for B/mk−1 (i.e.
where the maximal ideal to the (k − 1)-st power is 0). In other words, assume that we’ve shown

m/mk−1 × · · · ×m/mk−1 → Def(B/mk−1)/ ∗ −iso

is an isomorphism.
Now we want to show that if we have two deformations over B/mk which agree mod (mk−1) then

they differ by an element of ??????.
Consider the following diagram whose columns are exact:

mk−1/mk × · · · ×mk−1/mk

��

// ker

��
m/mk × · · · ×m/mk

��

// Def(B/mk)/ ∗ −iso

��
m/mk−1 × · · · ×m/mk−1

∼= // Def(B/mk−1)/ ∗ −iso
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We want to show that the middle row is also an isomorphism, and for this it suffices to check
that the top row is an isomorphism. Suppose G,G1 are formal group laws over B/mk, with

G ≡ G1 ≡ Γ mod (m)

and G ≡ G1 mod(mk−1). The upper right hand corner consists of the set of such G1 modulo isomor-
phisms which reduce to the identity modmk−1. We have then G1(x, y) = G(x, y)+G ε(x, y), ε(x, y) ∈
mk−1/mk[[x, y]] ⊂ B/mk[[x, y]]. Thus the set of such G1 modulo isomorphisms which reduce
to the identity modmk−1 is in bijective correspondence with these symmetric 2-cocycles ε mod-
ulo coboundaries which is again H2(Γ; mk−1/mk). This is just the case where m2 = 0, so
H2(Γ; mk−1/mk) ∼= mk−1/mk × · · · ×mk−1/mk.

The chromatic spectral sequence.

We will discuss the chromatic spectral sequence, which provides much of the motivation for the
formal group point of view in homotopy theory. The cornerstone on which it rests is the Miller-
Ravenel (or sometimes Morava) change of rings theorem. Moreover, the spectral sequence can be
realized geometrically via the Landweber exact functor theorem, which we will also have to discuss.
The idea behind both of these is to find a different presentation for the stack of height-n formal
groups.

The Adams-Novikov spectral sequence is derived from the cosimplicial spectrum

MU +3 MU ∧MU _*4 MU ∧MU ∧MU _*4 . . .

We have already seen that applying π∗(−) to the above complex gives the nerve of the category
of formal groups and strict isomorphisms. The E2-term, the cohomology of the above complex,
is Ext∗MU∗MU (MU∗,MU∗). Note that this is also the cohomology of the structure sheaf over the
moduli stack of formal groups MFG. From now on we’ll denote Ext∗MU∗MU (MU∗, N) by Ext(N) for
short.

To help us compute more of Ext(MU∗) we look at short exact sequences like

0→MU∗ →MU∗ ⊗Q→MU∗ ⊗Q/Z→ 0.

This leads to a long exact sequence of Ext groups. It’s easy to compute the middle terms coming from
Ext(MU∗ ⊗ Q), since formal groups over a Q-algebra are all isomorphic to Ga with isomorphisms
classified by the log of the formal group law. This is equivalent to the trivial groupoid whose one
object is Ga (since the automorphism group of Ga is trivial). It suffices to compute the cohomology
over this equivalent groupoid represented by the Hopf algebroid (Q,Q)-in Q-algebras. The category
of such comodules is equivalent to Q-vector spaces so there are no higher derived functors and we
have:

Ext0,0(MU∗ ⊗Q) = Q

Exts,t(MU∗ ⊗Q) = 0, (s, t) 6= (0, 0).

Getting back to our computation of Ext∗(MU∗) we need still to figure out Ext∗(MU∗ ⊗Q/Z). We
will be working one prime at a time so we want to calculate Ext∗(MU∗ ⊗ Q/Z(p)). We can write
Q/Z(p) = lim Z/pnZ and we have short exact sequences

0→ Z/pnZ→ Z/pn+1Z→ Z/pZ→ 0.

So if we found Ext(MU∗/p) then we could work inductively to find each Ext(MU∗/p
n), and thus

deduce Ext(MU∗ ⊗Q/Z(p)).

Let G be a formal group law over a Z/p-algebra. Then

[p]G(x) = v1x
p + . . .

for some v1 (possibly zero). This gives us an element v1 ∈ π2p−2MU/p which is invariant, in the sense
that it is equalized by the two arrows π∗(MU/p) ⇒ π∗(MU/p∧MU/p). Therefore we get an element
v1 ∈ Ext0,2p−2(MU∗/p). In fact the natural map Fp[v1]→ Ext0,∗(MU∗/p) is an isomorphism. Now
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to find the higher Ext groups MU∗/p we can play a similar trick with v1 as we did before with p
and look at the sequence

0→MU∗/p→ v−1
1 MU∗/p→MU∗/(p, v

∞
1 )→ 0.

Here too the middle terms Ext(v−1
1 MU∗/p) are easy to compute and so Ext0(MU∗/(p, v

∞
1 )) will

give us Ext1(MU∗/p) (and eventually Ext2(MU∗)).
To find Ext(v−1

1 MU∗/p) we consider formal groups over Fp-algebras where v1 is a unit—these are
the formal group laws of height 1. The groupoid of such formal groups is equivalent to the groupoid
whose sole object is the Lubin-Tate formal group Γ1 of height 1, and whose morphisms are all its
automorphisms.

Theorem 17.8 (Morava, Miller-Ravenel Change of Rings Theorem).

Fp[v
±
1 ]⊗H∗(Aut(Γ1)) ∼= Ext(v−1

1 MU∗/p).

Note that Aut(Γ1) ∼= Z∗p.
Returning to Ext∗(MU∗/(p, v

∞
1 )) we write MU∗/(p, v

∞
1 ) = limMU∗/(p, v

n
1 ) where to start the

induction again we look at Ext∗(MU∗/(p, v1)). Over MU∗/(p, v1) the universal formal group law

has [p]F (x) = v2x
p2+ higher terms. This gives a new element v2 in π2p2−2(MU/(p, v1), and in fact

yields a corresponding v2 ∈ Ext0,2(p
2−1)(MU∗/(p, v1)).

Theorem 17.9. Fp[v2] ∼= Ext0,∗(MU∗/(p, v1))

Following the same pattern we can try to get information from the sequence

0→MU∗/(p, v1)→ v−1
2 MU∗/(p, v1)→MU∗/(p, v1, v

∞
2 )→ 0.

Again we have a change of rings theorem which says

H∗cont(Aut′(Γ2); Fp[v
±
2 ])⊗ Fp2

∼= Ext(v−1
2 MU∗/(p, v1))⊗ Fp2 .

there are some more
details about this
ch.rng.thm here
which i don’t get at
all

Here the H2(−) is to be interpreted as continuous cohomology, and Aut′(Γ2) is defined in the
following way: Any element x ∈ Aut(Γ2) has the form t0x+Γ . . .+Γ tmx

pm

+Γ . . . for some unique
ti’s, and the assigment x 7→ t0 gives a homomorphism

Aut(Γ2)→ F∗p2 .

The group Aut′(Γ2) is the kernel of this map.

The pattern of the above analysis continues, and allows one to express the Adams-Novikov E2-
term in terms of the continuous cohomology of certain profinite groups.

Note: It would be really nice if we could get this last section cleaned up at some point.
—dd

18. Cohomology of stacks, with applications

Let M be a stack of the form M(A,Γ), where (A,Γ) is some Hopf algebroid. In some sense all
that we will really need about M is that

• The diagonal is representable, and
• M admits a covering by representables.

(In fact even these criteria can be relaxed somewhat).
Let F be a quasi-coherent sheaf on M. The cohomology of M with coefficients in F are

the groups

H∗(M; F) := Ext∗(OM,F).

We will often abbreviate these to H∗(F).
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There is a standard recipe for computing cohomology in this case: coverM by the map SpecA→
M and use the Čech nerve of this covering.

· · · SpecA×M SpecA×M SpecA ////// SpecA×M SpecA // // SpecA

· · ·Spec Γ⊗A Γ // //// Spec Γ // // SpecA.

Note that the simpicial object on the bottom is Spec(−) applied to the cobar construction for (A,Γ).

Write M = F(SpecA). Then there is a canonical isomorphism F(Spec Γ) ∼= Γ ⊗A M , and M
becomes an (A,Γ)-comodule in a canonical way. Applying F to the above simplicial stack, one gets

· · ·F(Spec Γ⊗A Γ) F(Spec Γ)oo oooo F(SpecA)oo oo

· · ·Γ⊗A Γ⊗AM Γ⊗AMoo oooo M,oooo

and this is of course the cobar construction for the comodule M .
The spectral sequence associated to the Čech nerve is now seen to be

Hp(SpecA× · · · × SpecA,F)⇒ Hp+q(M; F),

where there are q copies of SpecA in the product. Since F is quasi-coherent it has no higher
cohomology on affines, and therefore the spectral sequence collapses to the p = 0 line. We find that
H∗(M; F) in this case is just the cohomology of the cobar complex for M as an (A,Γ)-comodule.

Now assume that SpecR→M is an arbitrary map. We can form the Čech nerve just as before,
and we’d like to ask the following:

Question: If SpecRn denotes SpecR ×M · · · ×M SpecR (with n copies), when does the complex
H0(SpecRn; F) compute H∗(M; F)?

If SpecR→M is a cover then one can repeat the argument from above, and the claim is almost
automatic. But in fact one can get by with even less: all we need is that SpecR→M is ‘surjective
in the flat topology’.

Definition 18.1. A map SpecR→M is said to be surjective if for any given map SpecB →M
there exists some faithfully flat cover Spec B̃ → SpecB and a map Spec B̃ → SpecR with the
property that the diagramSlanted arrow show-

ing 2-morphism will
appear in final ver-
sion.

SpecR

��
Spec B̃ //

44

SpecB //M

commutes up to a 2-morphism

(Spec B̃ → SpecR→M)⇒ (Spec B̃ → SpecB →M).

Proposition 18.2. If SpecR →M is surjective, then the Čech complex computes the cohomology
H∗(M; F).

Proof. Consider the two maps

SpecR

��
SpecA //M.
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By surjectivity, we can find a faithfully flat extension A→ Ã and a map Spec Ã→ SpecR giving us
the diagram

SpecR

��
Spec Ã

44

// SpecA //M.

We can replace A by Ã and Γ by Γ ⊗A Ã without effecting anything, and so we reduce to the case
where the map SpecA→M factors through SpecR (up to a 2-morphism).

Now let U = SpecR and V = SpecA. Form the double complex

· · · ////// U ×M U //// U //M

· · · ////// U ×M U ×M V // //

OO

U ×M V //

OO

V

OO

· · · // //// U ×M U ×M V 2 // //

OO OO

U ×M V 2 //

OO OO

V 2

OO OO

...

OO OO OO

...

OO OO OO

...

OO OO OO

Here V n is short for V ×M · · · ×M V . The assumption that V →M factors through U can be seen
to imply that the horizontal simplicial sets (except for the top one) admit a contracting homotopy.

Now apply F(−) to the double complex Un ×M V m above, and take the associated chain com-
plexes. One gets:

...
...

· · · F(U2 × V 3)

OO

oo F(U × V 3)oo

OO

· · · F(U2 × V 2)

OO

oo F(U × V 2)oo

OO

· · · F(U2 × V )oo

OO

F(U × V )oo

OO

The horizontal rows are seen to be acyclic, with H0 the complex

F (V )→ F (V 2)→ F (V 3)→ · · ·

So the homology of the above bi-complex is just the homology of this ordinary complex, which is
H∗(M; F) (as we have seen already).

But now let’s think about the columns in the double complex. These came as the result of
applying F to the Čech nerve of the map Uk×MV → Uk. But this map is a cover (because U →M
was a cover, and covers pull back). So the cohomology of the columns are computing H∗(Uk; F).
Since each Uk is affine the higher cohomology vanishes, and so the columns are acyclic and the H0

is the complex

· · · ← F (U3)← F (U2)← F (U).
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Hence, we find that the cohomology of the double complex is the cohomology of F(−) applied to
the Čech nerve of U = SpecR → M. The conclusion is then that this latter complex computes
H∗(M; F), which is what we wanted.

For the remainder of the section we fix a prime p.

Definition 18.3. M
(n)
FG is the moduli stack over Fp-algebras consisting of formal groups G with the

property that

[p]G(x) = vnx
pn

+ · · ·

where vn is a unit. (One can check that this property doesn’t depend on the choice of a coordinate).

It’s easy to see that M
(n)
FG = M(A,Γ) where A = v−1

n L/(p, v1, . . . , vn−1) and Γ = ΓFG ⊗L A =
A⊗L ΓFG.

Proposition 18.4. The 1-morphism Spec Fp →M
(n)
FG classifying the Lubin-Tate formal group law

is surjective.

Remark 18.5. The map is not just surjective, but is actually a cover—proving this requires some
extra work, however, and being surjective is good enough for our purposes.

Proof. The proof is very similar to something we’ve seen already.

Given a map SpecB →M
(n)
FG classifying some formal group G, we need to show that there is a

faithfully flat extension f : B → B̃ such that f∗G is isomorphic to the Lubin-Tate group ΓLT .
First note that we can find a flat extension f : B → B0 for which f∗G is a formal group law, and

for which the p-series of f∗G has the form

[p](x) = vnx
pn

+ · · ·

for some vn ∈ B× (essentially by the definition ofM
(n)
FG). Let’s now write G for f∗G, and write the

p-series as [p](x) = g(xp
n

) for some g(x) = vnx+ · · · .
Next we try to find an isomorphism ϕ(x) : G→ ΓLT . The isomorphism must preserve the p-series,

in the sense that

ϕ(x)p
n

= ϕ([p]G(x)).

If we write ϕ(x) =
∑
akx

k and ϕσ(x) =
∑
ap

n

k xk, then the above equation translates into

ϕσ(xp
n

) = ϕ(g(xp
n

)),

or

ϕ−1 ◦ ϕσ = g.

This is secretly a collection of equations in the ak, and what we must show is that we can solve them
after some faithfully flat extension of B0.

Since ϕ(x) = a1x+O(x2) and g(x) = vnx+O(x2), it’s easy to see that we must have ap
n−1 = vn

for the above equation to be satisfied. So we set B1 = B0[a]/(ap
n−1 − vn) and make the faithfully

flat extension f1 : B0 → B1 (it is faithfully flat because the target is free as a B0-module).
We again follow the practice of just writing G for f ∗1G. By twisting G via the isomorphism

ϕ(x) = ax, we have arranged for the resulting formal group law to have p-series g(xp
n

) with g(x) =
x+O(x2).

Now assume by induction that B → Bk−1 is a faithfully flat extension such that G is isomorphic
over Bk−1 with a formal group law having p-series g(xp

n

) where g(x) has the form

g(x) = x+ cxk +O(xk+1).

We will show that we can eliminate c by extending Bk−1 even further.
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As we did a few lectures back, we look for a ϕ(x) of the form ϕ(x) = x+ akx
k + · · · . Then

ϕ−1 ◦ ϕσ(x) = x+ (ap
n

k − ak)xk +O(xk+1),

and we want this to equal g(x) = x+cxk+O(xk+1). So form the extensionBk → Bk[ak]/(ap
n

k −ak−c),
which is again faithfully flat by inspection. This does it.

We have now shown that after a faithfully flat base extension the original G is isomorphic to
a formal group law whose p-series if [p](x) = xp

n

(and so we may as well assume that this is the
p-series of G). We want to conclude that G is isomorphic to ΓLT . There are two basic approaches:

(1) Since G must commute with its own p-series, we know that G(xp
n

, yp
n

) = G(x, y)p
n

. So if

G(x, y) =
∑
aijx

iyj then it must be that ap
n

ij = aij . One must show that G is isomorphic to a

formal group law coming from Fpn with the same p-series (perhaps after a faithfully flat base
change). This will be left to the reader as an exercise.

(2) Make use of the theory of p-typical formal group laws (to be discussed in the next section):
Choose a p-typical coordinate on G, and apply the Quillen idempotent.

19. p-typical Formal Group Laws.

In this section we explain how specializing to Z(p)-algebras greatly simplifies the Hopf algebroid
of formal group laws and isomorphisms.

The group of curves. In the study of Lie groups, it is useful to associate to each Lie group its
Lie algebra. This has the effect of producing a functor from Lie groups to Lie algebras, a category
which is much more manageable from an algebraic point of view. We will try doing something of
the same sort for formal groups. The algebraic object which plays the role of the Lie algebra will be
something called the Dieudonné module of the formal group.

Definition 19.1. The group of curves on G is the set CG = {f(x) = a1x + a2x
2 + . . . : ai ∈ R}

with addition law given by (f + g)(x) := f(x) +G g(x).

Geometrically, CG is the group of functions A1 −→ G. The analog of the Lie algebra is the
quotient of CG by the subgroup of curves whose derivative vanishes at 0. Usually one recovers the
group from the Lie algebra using the Campbell-Baker-Hausdorff formula. However, for us, this is
not an option since the formula requires introducing denominators which may not exist if R is not
a Q-algebra. Instead we can consider the full group of curves on G together with certain natural
operations on CG:

1. Homothety: Given r ∈ R let (〈r〉g)(x) := g(rx). Geometrically this is precomposition with
multiplication by r:

A1 r
−→ A1 g

−→ G

2. n-th Verschiebung: Given n ∈ N, define Vng(x) := g(xn). Geometrically this is precomposition
with the n-th power map:

A1 xn

−→ A1 g
−→ G

3. n-th Frobenius: Given n ∈ N and letting ζ denote a primitive n-th root of unity, we define

(Fng)(x) =

G∑

i=1,... ,n

g(ζix1/n) =

G∑

yi n-th root of x

g(yi)

This formula requires a little explanation: the expression on the right is a power series on
x1/n with coefficients in R[ζ]. Since the formal group law is commutative and associative the
coefficients can be expressed in terms of the elementary symmetric functions on the ζ i. But
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these all vanish except for σn(1, ζ, . . . , ζn−1) = (−1)n so the expression is really a power series
in x with coefficients in R.

Another way to think of the Frobenius is as the Verschiebung on the Pontryagin dual (or
character group) of G.

The algebra D generated by the operations 〈r〉, Vn and Fn modulo certain universal relations
is called the Dieudonné algebra. CG with its D-module structure is called the Dieudonné
module of G and it is the sought after analog of the Lie algebra: one can show that the functor
which associates to each formal group law its Dieudonné module is an equivalence of categories.

To get a better understanding of the Dieudonné algebra we can consider the case when R has no
additive torsion. When R ↪→ R⊗Q we can understand the operators 〈r〉, Vn and Fn in terms of the
logarithm.

Proposition 19.2. Suppose R is a Q-algebra and let log denote the logarithm of G. Then if g ∈ CG
and log(g(x)) =

∑
n≥1 anx

n

(a) log(〈r〉g(x)) =
∑
rnanx

n

(b) log(Vkg(x)) =
∑
anx

nk

(c) log(Fkg(x)) =
∑
kankx

n

Proof. Only (c) requires proof. Writing ζ for a primitive k-th root of unity we have

log(Fkg(x)) = log




G∑

i=1,... ,k

g(ζix1/k)




=

k∑

i=1

log g(ζix1/k)

=

k∑

i=1

∑
an

(
ζix1/k

)n

Since
k∑

i=1

(ζin) =

{
k if k|n
0 otherwise

we see that

log(Fkg(x)) =
∑

kankx
n

as required.

Using the formulas of the previous proposition it is easy to deduce the relations that the operators
〈r〉, Vn and Fn satisfy.

p-typical curves. If we consider only formal group laws over Z(p)-algebras the theory is simplified.
From now on we assume that R is a Z(p)-algebra. We begin with a definition due to Cartier.

Definition 19.3. Let p be a prime. A curve g ∈ CG is p-typical if for every n such that (n, p) = 1
we have Fng = 0. The subgroup of CG consisting of all p-typical curves is denoted by Cp∞(G).

Remark 19.4. If R ↪→ R⊗Q, Proposition 19.2 implies that a curve g is p-typical if and only if

log(g(x)) =
∑

n≥0

mnx
pn

for some mn ∈ R.
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The operators Vp, Fp and 〈r〉 act on Cp∞(G). The algebra generated by these operators modulo
certain universal relations is called the Cartier algebra. One can show that a formal group law G
over a Z(p)-algebra is determined by the Cartier module structure on Cp∞(G).

Definition 19.5. A curve g(x) on G is a coordinate if g′(0) is a unit in R.

Note that a coordinate y 7→ g(x) determines a formal group law on R[[y]] in the usual way:
F (x, y) = g−1(G(g(x), g(y)).

Definition 19.6. A formal group law is p-typical if the coordinate x is a p-typical curve, i.e. if
Fn(x) = 0 for every n such that (n, p) = 1.

The following proposition shows that every formal group law over a Z(p)-algebra is isomorphic in
a natural way to a p-typical one.

Proposition 19.7 (Cartier). If R is a Z(p)-algebra then any formal group law over R has a p-typical
coordinate.

Proof. Suppose first that R is torsion free. We need to find a coordinate g so that log(g(x)) =∑
mnx

pn

. We can use the Dieudonné module structure on CG to change any coordinate g on G to
one which has this form as follows.

Let log(g(x)) =
∑
anx

n then

log(VlFlg(x) =
∑

lanlx
nl

If (l, p) = 1 then the l-series [l](x) is invertible in R[[x]]. Let [1/l](x) denote the inverse. Then

log([1/l]VlFlg(x)) =
∑

anlx
nl

and

log(g(x)−G [1/l]VlFlg(x)) =
∑

(n,l)=1

anx
n

Iterating this process for all l such that (l, p) = 1 clearly gives us a p-typical coordinate.
In order to deal with the general case, however, it is useful to have an expression for the p-typical

curve thus obtained. Let µ denote the Möbius function defined by

µ(m) =

{
0 if l2|m for some prime l
(−1)k if m = p1 . . . pk with pi distinct primes

Then defining the operator

ε =
∑

(m,p)=1

[
µ(m)

m

]
VmFm(19.1)

one easily checks that for any g ∈ CG, εg is p-typical.

Remark 19.8. The operator ε defined by (19.1) is easily seen to be an idempotent. It defines a
projection

CG
ε
−→ Cp∞(G)

In topology it corresponds to the Quillen idempotent.
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Parameterizations of p-typical formal group laws. It is helpful to have different parameter-
izations of the ring classifying p-typical formal group laws. The next proposition is useful for this
purpose.

Lemma 19.9. Suppose R ↪→ R ⊗ Q and G is a formal group law over R. Then G is p-typical if
and only if there exist vi ∈ R such that

[p]G(x) = px+G v1x
p +G . . .+G vnx

pn

+G + . . .(19.2)

Proof. The expression (19.2) is equivalent to

p log(x) =
∑

n≥0

log(vnx
pn

)(19.3)

with v0 = p or equivalently since R is torsion free,

log(x) =
∑ 1

p
log(vnx

pn

)

If this is the case then clearly log(x) =
∑
mnx

pn

and hence the formal group law is p-typical by
Remark 19.4. Conversely, if G is p-typical log(x) is of this form and so one clearly can inductively
choose vn ∈ R such that (19.3) holds. Moreover the choice is unique.

Proposition 19.10 (Cartier). Let G1 and G2 be p-typical formal group laws over a Z(p)-algebra.
If [p]G1(x) = [p]G2(x) then G1 = G2.

Proof. Let L = Z[x1, x2, . . . ] be the Lazard ring. Consider the universal formal group law F̃ over L⊗
Z(p) with coordinate z and let x = ε(z) be the p-typicalization of z. Let G denote the corresponding
p-typical formal group law and let ϕ be the ring endomorphism

L⊗ Z(p)
ϕ
−→ L⊗ Z(p)

classifying the formal group lawG. Then ϕ is idempotent (because ε is). We write Lp∞ = ϕ(L⊗Z(p)).
Then clearly, G defined over Lp∞ is the universal p-typical formal group law.

By the Lemma 19.9, there are elements vn ∈ Lp∞ such that

[p]G(x) =
∑G

vnx
pn

Applying logG to this equation we see that in the module of indecomposables of L⊗Q, up to a unit
in Z(p), we have

vn = pmn

The same argument used to prove Lazard’s theorem now implies that

Lp∞ = Z(p)[v1, . . . , vn]

which concludes the proof.

The previous proposition describes one of the two usual schemes for parameterizing p-typical
formal group laws - the Kudo-Araki parameterization.

The other scheme is the Hazewinkel parameterization. The parameters are traditionally also
called vn although they do not coincide with the vn’s above. Let σ be the endomorphism of Lp∞

defined by

σ(vk) = vpk

and write fσ for the power series obtained from f by applying σ to the coefficients. Then the
Hazewinkel parameters vi are defined by the equation

logG(x) = x+
v1
p

logσG(xp) + . . .+
vn
p

logσ
n

G (xp
n

) + . . .(19.4)
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If we write

logG(x) =
∑

mnx
pn

then in the Kudo-Araki case we have,

pmn = vn +m1v
p
n−1 + . . .+mn−1v

pn−1

1 +mnp
pn

and in the Hazewinkel case,

pmn = vn + vn−1m
σn−1

1 + . . .+ v1m
σ
n−1

Note that the Hazewinkel parameterization gives easy closed formulas for the mn’s in terms of the
vn’s, unlike the Kudo-Araki parameterization.

Example 19.11. The Lubin-Tate formal group law. The p-series is given by

[p](x) = px+F x
pn

so the Kudo-Araki parameters are simple. The expression for the log is mildly complicated.
The isomorphic formal group law with Hazewinkel parameters vi = 0 for i 6= n and vn = 1 has a

log satisfying the functional equation

log(x) = x+
1

p
log(xp

n

)

This gives an easy expression for the log:

log(x) =
∑

k≥0

xp
nk

pk

but a slightly complicated p-series.

Remark 19.12. Over Lp∞ ⊗ Z/p, the Kudo-Araki and Hazewinkel parameters coincide.

20. Stacks: what’s up with that?

In this section we will discuss what there is to gain by using the point of view of stacks in homotopy
theory and also talk a little about prospects for the future.

The basic miracle about complex oriented (not just orientable) cohomology theories is their close
relationship with the algebra of formal group laws. The language of stacks allows us to go much
deeper in this correspondence between algebra and topology.

There are two main theorems coming from the correspondence between complex oriented coho-
mology theories and formal group laws

1. Landweber’s exact functor theorem.
2. The Morava, Miller-Ravenel change of rings theorem.

Both of these have nice proofs in the language of stacks. But there is much more to be gained
from this language.

Spectra associated to sheaves over MFG. Let E be a multiplicative spectrum satisfying

(a) E is complex orientable
(b) π2E contains a unit
(c) π1E = 0

Remark 20.1. Properties (b) and (c) imply property (a).
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We have seen that this data gives us a map

Spec π0E −→MFG

so we have a way of assigning to certain spectra affine stacks over MFG. It is natural to ask the
following naive

Question: Can we go back?

This turns out to be a surprisingly good question. The answer is that in certain cases (more than
you would think) we can and there is a nice criterion for this.

Let MU be the spectrum determined by

MU∗(X) = MU∗(X)⊗ Z[u±1]

Alternatively, MU is the Thom spectrum associated to the identity map

Z×BU −→ Z×BU

just as MU is the Thom spectrum associated to Z × BU −→ BU . Then π0MU = L is the Lazard
ring and under the correspondence above, MU corresponds to a very special element in the category
Aff/MFG, namely the canonical map

SpecL
l
−→MFG

Let F be a flat quasi-coherent sheaf overMFG. In some cases we can associate to F a spectrum
which we will call E(F). It will be defined by descent.

The motivating fact for the construction is the following. Suppose that E is a spectrum satisfying
our assumptions. Then you should recognize that we have proved that

Specπ0MU ∧ E

k1
��

// Spec π0E

k2

��
Specπ0MU

l //MFG

is a pull back square of 2-categories.
This diagram tells us that the smash product of (certain) spectra in topology corresponds to the

fibre product over MFG in algebra. Moreover, since l is a cover, the statement should be true in
general as k1 should be determined by k2 and descent data.

If we have a flat quasi-coherent sheaf F overMFG, we get a flat L-module l∗F and by flatness a
homology theory

X 7→ l∗F ⊗π0MU MU∗(X)

which, in view of the remarks above, should be represented by the spectrum MU ∧ E(F) (even
though we haven’t defined E(F) yet).

Similarly, considering the maps

Spec Γ ⇒
π1
π2

SpecL
l
−→MFG

by flatness we get a diagram of cohomology theories

l∗F ⊗π0MU MU∗(−) ⇒ (l ◦ π1)∗F ⊗Γ (MU ∧MU)∗(−)(20.1)

We would like to define E(F)∗(−) to be the equalizer of (20.1) but we can’t guarantee that the
equalizer will be exact. This will be the case however, if F comes from a flat map

SpecR −→MFG

which factors through SpecA, i.e. a formal group which comes from a formal group law. In this
case the equalizer above will split and we will get a homology theory, namely

X 7→ R⊗LMU∗(X)
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Remark 20.2. If we are more fancy we can actually see that this works for any representable sheaf,
without any flatness assumption.

Harder question: What about more general maps? Given a flat map

N −→MFG

can we associate to N a cohomology theory E(N )?
Every time we can do this we obtain an interesting cohomology theory. The answer is yes in

many cases but there is no general theorem giving a functor from such maps to cohomology theories
and this is an important problem.

We can try to define the cohomology theory E(N ) using the following approach: the cover
SpecL −→ MFG gives us a simplicial stack over MFG and taking pullbacks under the boundary
maps d0

N2
// //// N1

//// N0
// N

��
Spec Γ⊗L Γ

// //// Spec Γ // // SpecL //MFG

we obtain from N a simplicial stack overMFG

N• −→MFG

which we would like to think of as the nerve of a covering of N .
As the map N −→MFG is flat, it is in particular representable so we have

N• = SpecR•

for some cosimplicial ring R•, with Rk flat over Γ⊗L · · ·⊗LΓ. Hence we have a cosimplicial homology
theory

X 7→ Rk ⊗Γ⊗L···⊗LΓ MU ∧ . . . ∧MU∗(X)

This is where we run into trouble. If we could refine this to a cosimplicial spectrum E(SpecR•)
we could define

E(N ) := Tot(E(SpecR•))

but if we pick spectra representing the various homology theories, the cosimplicial identities will
only hold up to homotopy modulo phantom maps.

It is definitely not the case that we can always rigidify such a cosimplicial diagram of cohomology
theories, but by a miracle this seems to happen in important examples.

Properties of the construction. Assuming however that we did have this fantasy correspondence
between flat stacks overMFG and spectra it would have the following properties:

1. E(N1 ×MF G
N2) = E(N1) ∧ E(N2) up to natural weak equivalence.

2. There is a spectral sequence converging to π∗E(N )

Property 1 is very useful because the smash product in spectra is so much easier to understand
than the fiber product in stacks. It seems to be a new part of this miraculous correspondence
between the algebra of formal group laws and algebraic topology.

The spectral sequence in 2 is just the spectral sequence of a cosimplicial spectrum but there is a
nice homological name for the E2 term which we now describe.

There is a map

MFG
ω
−→ BGm
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classifying a line bundle. In the language of formal groups, ω is the sheaf of invariant differentials
on the universal formal group. It is determined by the map of groupoids corepresented by

Γ Z[λ±1]ϕ
oo

L

OO OO

Zoo

OO OO

where ϕ corepresents the map assigning to an isomorphism between formal group laws its derivative
at 0.

As fairly immediate consequences of the setup and denoting by the same symbol the pullback of
ω to a stack overMFG, one finds that

π2mE(SpecR) = H0(SpecR;ωm)

π2m+1E(SpecR) = 0

From this it is easy to identify the E2 term of the spectral sequence. We get

Es,t2 = Hs(N , ωt)⇒ π2t−sE(N )

Remark 20.3. There are cohomological obstructions to rigidifying cosimplicial diagrams of coho-
mology theories. Stacks allow us to give these a natural cohomological name. This is what got me
started thinking about stacks in the first place. I then realized that this could be used to push the
analogy between FGLs and cohomology theories further.

The sphere spectrum. We will start with the worst possible example. We take N =MFG and
the identity map

N −→MFG

In this case, the cosimplicial homology theory we get is represented by

MU // // MU ∧MU // //// · · ·

which is the Adams-Novikov resolution of the sphere. Thus

E(N ) = S0

and the spectral sequence that we described above is just the Novikov spectral sequence. Note how
we have brought the sphere into this picture of formal groups in a systematic way.

Elliptic cohomology. If C is a plane curve meeting each line in 3 points, we can define a group
structure on C by decreeing that colinear points add up to 0 and choosing a point of inflection as
the unit. Such a curve C is called an elliptic curve. We want to describe the moduli stack of elliptic
curvesMEll.

If we choose ∞ to be a point of inflection and pick the line at infinity to be the tangent to this
point, it is an easy exercise to check that C will be defined by an equation of the form

y2 + a1xy + a3y = x3 + a4x+ a6

The isomorphisms between such curves will be the automorphisms of P 2 which preserve the line at
infinity. It is easy to check that a general isomorphism is given by

x 7→ λ−2x+ r

y 7→ λ−3y + sx+ t

Thus we can define a Hopf algebroid (A,Γ) with

A = Z[a1, a2, a3, a4, a6]

Γ = A[r, s, t, λ±1]
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and we define the moduli stack of elliptic curves to be the associated stack

MEll =M(A,Γ)

Remark 20.4. Locally every elliptic curve embeds in the plane so this is really the moduli stack of
elliptic curves.

There is a map

MEll −→MFG

obtained by expanding the group law of C in the parameter x/y, which is a local coordinate near
∞. By the procedure described above this yields a spectrum

eo2 := E(MEll)

and there is a spectral sequence

Hs(MEll;ω
n)⇒ π∗eo2(20.2)

Given that H0(MEll;ω
n) is the group of modular forms of weight n over Z, (20.2) gives us a

spectral sequence relating modular forms and homotopy groups.

The spectrum eo2 seems to play an important role in homotopy theory. For example, it is very
easy to compute the homotopy groups of spheres through dimension 60 using eo2.

In the 60′s using K-theory it was possible to describe in a geometric way the first layer of the
homotopy groups of spheres (the image of J). Similarly, elliptic cohomology promises to describe
the second layer of the homotopy groups of spheres in a way which is close to geometry.

21. The Landweber exact functor theorem

In this section we will see how using the language of stacks we can get both a simpler proof and
a stronger statement of the Landweber exact functor theorem.

Let R be a ring and G a formal group law over R. Write

[p]G(x) =
∑

i

aix
i

Then for each prime p we have a sequence of elements of R

vi := api

for i ≥ 0 where v0 = p. This is not an intrinsic definition of the vi’s as it depends on the choice of
the coordinate x. However it turns out that the choice of vn is more or less unique modulo the ideal
(p, v1, . . . , vn−1) in the following sense: if we change coordinate by

x 7→ g(x) = λx+ . . .

then modulo (p, v1, . . . , vn−1),

[p](x) = vnx
pn

+ . . .

is sent to

g ◦ [p](g−1(x)) = λ1−pn

vnx
pn

+ . . .

In the language of stacks this says that vn is a section of the line bundle ωp
n−1 overMFG, which is

canonically defined over the stack M
[n]
FG defined by

M
[n]
FG :=M(A,Γ)

with A = L/(p, v1, . . . , vn−1) and Γ = ΓFG ⊗L A.

Now let A = L be the Lazard ring. We have elements vi ∈ A corresponding to a universal formal
group law over A. Let Γ = L[t±1

0 , t1, . . . ] be the ring corepresenting isomorphisms of formal group
laws. Then we can state the following theorem of Landweber
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Theorem 21.1. Let M be an (A,Γ)-comodule such that for each prime p and each n ≥ 1 the map

vn : M/(p, v1, . . . , vn−1) ↪→M/(p, v1, . . . , vn−1)

is an injection. Then for X a spectrum the assignment

X 7→MU∗(X)⊗AM

is a homology theory on finite spectra.

Note that the (A,Γ)-comodule MU∗(X) with X a finite spectrum is a very special kind of co-
module.

Remark 21.2. Note that it doesn’t matter whether we take M to be just an A-module or an
(A,Γ)-comodule because we can always make an A-module an (A,Γ)-comodule and come down by
faithfully flat descent.

We will now formulate a variation of Theorem 21.1 in the language of stacks and give a proof of
this stronger version.

In the language of stacks, M corresponds to a quasi-coherent sheaf F(M) overMFG andMU∗(X)
corresponds to a graded quasi-coherent sheaf F(X).

Moreover we have that under the map

Spec(L)
f
−→MFG

f∗F(X)⊗OMF G
F(M) =MU∗(X)⊗LM

Since f is flat, M ⊗LMU∗(X) is exact in the X variable if and only if F(M) ⊗OMF G
F(X) is

exact in the X variable. So the question we have to answer is: when is F(M), or more generally a
quasi-coherent sheaf overMFG, flat?

Exercise 21.3. Check that the Landweber conditions given in the statement of Theorem 21.1 are
necessary for flatness.

Landweber’s conditions are also close to being sufficient. They are not quite because we are only
testing exactness tensoring with special kinds of comodules. We can actually get sufficient conditions
for flatness. It is usually the case that when we apply Theorem 21.1 these stronger conditions are
satisfied.

Let F be a quasi-coherent sheaf on MFG. As we have pointed out above, we have sections vn of
the line bundle ωp

n−1 overMFG. We define inductively the sheaves cF/(p, . . . , vn) by

F/(p) := coker(F
p
−→ F)

F/(p, . . . , vn) := coker
(
ω1−pn

⊗ F/(p, . . . , vn−1)
vn−→ F/(p, . . . , vn−1)

)

Theorem 21.4. If F satisfies

(i) vi : ω1−pi

⊗ F/(p, v1, . . . , vi−1) ↪→ F/(p, v1, . . . , vi−1) is an inclusion for each i ≥ 1.
(ii) F/(p, v1, . . . , vn−1) = 0 for n� 0.

then F is flat.

Proof. Let N be a quasi-coherent sheaf overMFG. We need to show that

Tor1(F,N ) = 0

It suffices to do this after tensoring F with Z(p) for each prime p. The short exact sequence

F
p
−→ F −→ F/(p)

gives

Tor2(F/(p),N ) −→ Tor1(F,N )
p
−→ Tor1(F,N )

so it suffices to show that
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(i) Tor2(F/(p),N ) = 0
(ii) Tor1(p−1F,N ) = 0

Now consider the short exact sequence

ω1−p ⊗ F/(p)
v1−→ F/(p) −→ F/(p, v1)

yields the long exact sequence

Tor3(F/(p, v1),N ) −→ Tor2(ω1−p ⊗ F/(p),N )
v1−→ Tor1(F/(p),N )

and defining

v−1
1 F/(p) := colim

(
F/(p)

v1−→ ωp−1 ⊗ F/(p)
v1−→ ω2(p−1) ⊗ F/(p)

v1−→ · · ·
)

we see that is suffices to show

(i) Tor1(p−1F,N ) = 0
(ii) Tor2(v−1

1 F/(p),N ) = 0
(iii) Tor3(F/(p, v1),N ) = 0

Since by hypothesis F/(p, . . . , vn−1) = 0 for large n, continuing in this way we see that the theorem
is reduced to proving

Tork+1(v−1
k F/(p, . . . , vk−1),N ) = 0(21.1)

for all k.

To see why this is true, recall that there is a natural map of stacks

M
(n)
FG

f (n)

−→MFG

which gives a pair of adjoint functors

f (n)∗ : q − coh/M
(n)
FG � q − coh/MFG : f

(n)
∗

(f
(n)
∗ is the right adjoint). Since M

(n)
FG =M(An,Γn) with

An = v−1
n L/(p, . . . , vn−1)

Γn = Γ⊗An

in terms of comodules we have

f (n)∗M = v−1
n M/(p, . . . , vn−1)

f
(n)
∗ N = N regarded as an (L,Γ) comodule

Moreover f
(n)
∗ embeds q− coh/M

(n)
FG as the full subcategory of comodules where p, . . . , vn−1 act as

0 and vn acts as a unit (this is independent of the choice of vn). Thus we can rephrase (21.1) as
saying that

Tork+1(f
(k)
∗ f (k)∗F,N ) = 0(21.2)

This result now follows from the following proposition.

Proposition 21.5. If G is a quasi-coherent sheaf on M
(n)
FG and N is a quasi-coherent sheaf on

MFG then Torm(f
(n)
∗ G,N ) = 0 for m > n

Proof. We must show that the m-th left derived funtors of the functor

N 7→ f
(n)
∗ G⊗N

vanish for m > n. But, as is easily checked on the level of comodules, we have

f
(n)
∗ G⊗N = f

(n)
∗ (G⊗ f (n)∗N )
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and so, since f
(n)
∗ is an exact functor, it is enough to check that the m-th left derived functors of

the composite functor

q − coh/MFG
f (n)∗

// q − coh/M(n)
FG

G⊗− // q − coh/M(n)
FG

N // f (n)∗N // G⊗ f (n)∗N

vanish for m > n. This will follow from the composite functor spectral sequence and the following
two results

(a) Ltf
(n)∗ = 0 for t > n

(b) If A,B are quasi-coherent sheaves overM
(n)
FG then Tors(A,B) = 0 for s > 0

Proof of (a): There is a pullback diagram

SpecAn //

i
��

SpecL

j

��
M

(n)
FG

f (n)

//MFG

Since j is faithfully flat, so is i. Pulling back under i takes nonzero objects to nonzero objects so it
is enough to check that if N is an L-module then

Tort(N,An) = 0

for t > n. This is true because there is a Koszul resolution for An given by

An ⊗E[b0, . . . , bn−1]

with d(bk) = vk, which is a flat resolution of length n.

Proof of (b): The map

Spec Fp
Γn−→M

(n)
FG

classifying the modp reduction of the Lubin-Tate formal group law is faithfully flat (we have only
proved that it was a cover but looking at the argument more closely reveals that it is faithfully flat).

Then since all Fp-modules are flat,

TorFp
s (Γ∗nA,Γ

∗
nB) =⇒ Tor

M
(n)
F G

s (A,B) = 0

for s > 0

This completes the proof.

Remark 21.6. The proof just given is not really simpler than Landweber’s since it uses the language
of stacks. The good thing about it is that it uses the same idea as the proof of the change of rings
theorem and so fits in a general framework.
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