QUANTUM THEORY OF A MASSLESS RELATIVISTIC SURFACE
AND A TWO-DIMENSIONAL BOUND STATE PROBLEM
by

Jens Ho
7 ppe

SUBMITTED TO THE DEPARTMENT OF
PHYSICS IN PARTIAL FULFILLMENT OF THE
DEGREE . OF
DOCTOR OF PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 1982

¢ Jens Hoppe 1982
The author hereby grants to M.I.T. permission to reproduce

and to distribute copies of this thesis document in whole
or in part.

Signature of Author

{ ~ tDepartment of Physics
January 20, 1982

Certified by

- ii‘ \3 _ _3effrey Goldstone
Thesis Supervisor

Accepted by PR ‘v g

George Koster
Chairman, Departmental Graduate Committee

Archives

MASSACHUSETTS (NSTTUTE
GF TECHMOLOCY

AT Ty ™y
AR U 81987

LIBRARES



QUANTUM THEORY OF A MASSLESS RELATIVISTIC SURFACE
AND A TWO-DIMENSIONAL BOUND STATE PROBLEM
by
JENS HOPPE

Submitted to the Department of Physics
on January 20, 1982, in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy in
Physics

ABSTRACT
PART ONE

A massless relativistic surface is defined in a Lorentz
invarjiant way by letting its action be proportional to the
volume swept out in Minkowski space. The system is described
in light cone coordinates and by going to a Hamiltonian for-
malism one sees that the dynamics depend only on the transverse
coordinates X and Y. The Hamiltonian H is invariant under the
group of area preserving reparametrizations whose Lie algebra
can be shown to correspond in some sense to the Large N-limit
of SU(N). Using this one arrives at a SU(N) invariant, large
N-two-matrix model with a quartic interaction [X,Y]Z2.

PART TWO

The problem of N particles with nearest neighbors é-function

interactions is defined by regularizing the 2 body problem and
deriving an eigenvalue integral equation that is eguivalent to
the Schrddinger equation (for bound states). The 3 body problem
is discussed extensively and it is argued to be free of irregu-
larities, in contrast with the known results in 3 dimensions.
The crucial role of the dimension is displayed in looking at the
limit of a short-range potential.
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PART ONE

QUANTUM THEORY OF A MASSLESS RELATIVISTIC SURFACE




INTRODUCTION

As a natural generalization of the massless string theory, *
but also of interest in its own right, as an example in which
geometry, classical relativity and quantum mechanics are deeply

connected, one can define the dynamics of a massless closed M

space n + A particular observer with coordinate system
x“=(t,x2) would describe the shape he gees by xi(t,ll...AM),
where % isg & parametrization of the surface and the time like
pParameter A° of the M+l--dimensional manifold was chosen to Le t.
Related to the arbitrariness of the choice of parametrization,
not all of the x" ang their conjugate momenta pu are independent.
It turns out to be extremely convenient to describe the
system in terms of light cone coordinates t(E%(t+xD_l)J
K(Et-xD-l) and §(E{x'...xD_2)L because the Hamiltonian turns cut
to be independent of 3 and** one can take x and the conjugate

momentum'ﬁ'as the independent dynamical variables. 1In the clas-

sical theory 3’ is determined via constraint equations, which are

consistent provided {Q'F}*.SE %—?r ?_%%‘:_Q))_ Q(F/ﬁﬂ)) ,_3:".’. 0O

C 5T
where w(l) is a chosen density. These constraints fortunately do
Not cause a problem as their poisson bracket (commutator in the quan-
tum theory) with the Hamiltonian is 0. (In the quantum theory they

are interpreted as constraints acting on the wave functions y.)

*Goddard, Goldstone, Rebbi, Thorn, NP B5g (1973} "Quantum
dynamics of a massless relativistic string",

**by picking a particular gauge, called orthonormal gauge.
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{')-(.lp\ s are the generators of volume preserving (time
independent) f-reparametrizations, which form a symmetry group
that remains in ortheonormal gauge,

After the general theory is described, everything else will
be for the case M=2, D=4, with the parameter space (A*,3?) taken
to have the topoleogy of a 2-sphere, (Two examples of solutions

to the equations of motion are given to become a little bit more

familiar with the geometry of the problem and the parametrizations),

The Hamiltonian which becomes
. 2oz | /oaxe _y 2x \*
th=Smododg g & (g ]

is invariant under the group 6} of areapreserving reparametri~
zations of S? (and x#y+'(fa(x4§J}. The rLie algebra EE consists
of all smooth functions* of 6 ahd T » @ basis of which one can
take to be the usual spherical harmonics (leaving out YOO)'

In Part B it will be Proved that the Structure constants
of_G_- in the Yfm-basis are in fact equal to the N+« limit of the

structure constants of SU(N), in a particular, Properly chosen

basis, fThis proof, which from a mathematical point of view
turns out to be much more natural than the construction first
Seems to be, makes use of the fact that the Yﬂm are the harmonic

pelynomials (restricted to the unit sphere S?) which one writes

o {wn)
as Z a. y Xn. ><"4.. - A basis of the fundamenta] represen-
e )
. =L
tation of SU(N) can then be defined as LM_Z olfﬂ'n.& < ":L

where 5, is a N-dimensional represéntation of S0(3). A compact

formula for the structure constants of SU{N) in this basis and
*identifying any two differing Just by a constant




others differing from P by N and & dependent normalization

Lm
factors so to make the structure constants have a finite non-
zero totally antisymmetric No= limit, c¢an be derived., The SU(N)-
invariant Hamiltonian HN one gets by replacing x(8&, ¢) by a
hermitian NxN matrix x, { , } by %[,],* fdﬂ by Tr, is a good
approximation to H for large N-in the sense that the degrees
of freedom corresponding to ng with fg¢N-1 are represented
correctly up to 0(%}, while the higher "freguencies" (L2N) have

been cut off.

Note that both H and HN are hamiltonians for a gauge theory

in 2+1 dimensions with spatial derivatives = 0:

H." Z; <(ra: Pr(pr) + (; Lo XJJZ)
I (E:—-P” E; ¥ CB?')

X X Y L AT .
where x, © Ab' and B=[A",A"]. The conditions fabc x,-p_=0 which

are needed as a consistency condition for %ﬂFo be well defined
translates into [K,E]=0 which is exactly Gauss's law {when the
spatial derivatives are 0). Bjorken** has looked at the analogue
of this for SU(N=3) in 3 dimensions {H=Tr(§ﬁ+§2), with the vectors:

now having 3 components) and seems to have shown that the lowest

*Please note the misleading notation: this transition
has nothing to do with the transition from a classical theory
with poisson bracket {}p to a guantum theory with [x,p]=iH,

*T“Elements of quantum chromodynamics", SLAC PUB 2372,
Dec. '79,.
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lying set of energy levels is a rotational band corresponding to
3-dimensional rotations. We have $0 far been unable to confirm

this result, The last chapter éoutains Some work on or related

to HN.

OCne would hope to be able to find out much about the
spectrum of Hy by using (or finding new) techniques for large
N-matrix models.* The work on this during the past menths,

however, has providegd puzzles rather than insight,

Though the original classical action is manifestly Lorentz in-
variant, we are quantizing in a particular Lorentz frame and will have

te demenstrate the Lorentz-invariance of our theory. a satisfactory

method would be to construct the generators of Lorentz transg-
formations, but we have been unable to do this, A weaker method,
which woulgd give only a necessary condition, is to show that the
Spectrum is consistent with Lorentsz invariance, i.e., that the
states fall into multiplets characterized by mass and spin. we
have not carried our study of the dynamics far enough to see if
this is true, although there is some indication that HN(N+w)

will have a high degeneracy of its energy levels,

*See e.g., "Planar Diagrams™" CMP 59 p.35-51 (1978), by
Brezin et al., and the review article about the 1/N expansion
by Sidney Coleman: SLAC PUB 2484, 198,
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A. THE ACTION AND THE HAMILTONIAN FORMALISM

I. The action S and an example

A massless M-dimensional closed surface moving in D-
dimensional Minkowski Space can be defined by letting its action
be proportional to the M+l dimensional volume swept out in
Minkowski space (which is invariant under both Lorentz transfor-
mations and general reparametrizations (J\a-rla') of the surface:

N fual
v o M
S=-T. | ad" ¢ (A1)

Naii bt " o

[

M X

where G is (~)"+ the determinant of the metric élc N~

%4,

induced on the M+1 dimensional manifold M by Minkowski Space: )(h—x (x“;

are the space time coordinates of . =0, 1...D-1; a=0,,.M,

f~ 1 A A
L = L Eg;a* b for two D-vectors; and T0 is the surface

energy density (tension) of dim Energy

(length)M
on be put = 1 (one can always put it in on dimensional grounds).

Using g\(ﬁ \/‘G gé/.i' where G a8 is defined via

C‘({]C’!{ = XJ/ ¢ One derlves the equation of motion by setting

which will from now

the variation 65 of the action =

€8 = =1 () m’(ﬂ g’( xf@ X.)
go{“*‘x & {x -'* 2 % (/‘é’(/"“ D,

\?l&_ﬁ(a&(@@xﬁ/%;x(y)=0 (A2)

Choosing the timelike parameter A° of the manifold to be t, one

gives

has



..J_U-.

K -Rax 2= K :

N - — dX 3

G— = 202 ) ("’&”txzo )QQE%
— KX —

%(3_1 qdl i)ffs 2 e . (nr=f,[‘|)
)(:fo!‘_ Xm_) X =2 Xx (a3)

A=

Cafs == /a'r X7 X/,‘:‘f' 9}?@5?(% 2t=0 f;,—,\i—f)

It is convenient to partially fix the parametrization by

requiring

A

) 6= 1=% =49 (g=oktg,=ly |)
)66, ~XAK =0

This choice is possible provided x" satisfies the equations of
motion: (ii) says that given the parametrization AT of the
§urface at time t=t°, one chooses the parametrization at a
slightly later time t0+dt to be such that the intersections of
any normal with the two surfaces are at equal A%, Further
one certainly can choose the parametrization such that

— = L]
X % is 1-%? at a given time., But given (ii) (for

0= loa" 2y
all timesg) the/u=0 part of Eq. (A2) says that O‘t 1-(—33—2_)-_:0 ,
’—P( /

SO0 (i) is true for all t. Note that (a4) is still invariant

under volume preserving time independent reparametrizations of

the surface (as those are exactly the ones that leave g invarian9
It is not difficult to find 3 solution of the classical

equations of motion for M=2, D=4 (the physical case). The

{; e AP, :
X7= St/ "7 5(5‘“9%% Osp, C‘”Ey

Ansatz

(A5)
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with & and(f being the usual angles of spherical coordinates,

and defining Alz-cosezy, A%=T gives

N

— s z »
Gxﬂ“ 0 =% 0 (6= SVi-¢%
0 0 —5%$%/7
359 9. =0 (@/ﬁ‘) &9/(0 "‘) w6
The u =0 part of (AZ} ( b, 2 2 *@9 £ leads to
g) §79 S -8t

SYe Cmt)(1-52)

while the spatial part, which, using (A6) becomes

z+ 7 05@99+ ?5

is tr1v1ally satisfied by deflnltlon of n. The solution of Eq,

(A6), which is equivalent to -t g _Qi’_)g——
/ So ~ Y

¥ 1-xY

(8§ = maximal radius), is a periodic

elliptic function which ¢an easily be expressed in terms of the

standard Weierstrass-P-function.

II. General formalism in light cone coordinates

We define light cone coordinates by:

T=1(t+e) - £=T+ 54

3--{:—% =T -3

From now on x will always stand for (x'

(A7)

'a.o;xD ) and no diS-
tinction will be made between x.

i
i and x
Choosing A"=1?

(i=lr .w .NED-—Z). xu=(t; ;r z).
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N Z

— Goo (od" (.@3-")(9,.)()
cﬁc—. G #f)fs) T]’ XQK — /7>< @K.

0)1" /DAI

and x are dlfferently defined from the x
appearing on p. |{

(Note that x and x

«) Now x 1s a D-2-vector ande *indicates dif-

ferentiation with respect to [

N _ éoo. —Gor \ _ .
@—()o{v&@ﬁn At Ca"’ C:“J+ M()

a( 0e + 0’1‘6‘05? ) (‘3“@% 1’:)

having used the fact that for a completely general square matrix

-ék— P N
A Z} 3 with invertible B one has ,A-l = IB,!&{O—‘&L B ,&j

Therefore og _ p L /%—_r?

where F = Zj ? L{_ M—S
and {/{’1__ X /a)( ____/a j (LL cjrr.rw)

If we define canonlcal momenta by

F: "a)? F(K M/T—/a ?) © (a9)
T= 2% - _//;

we find that

'F'@,ﬁ? -f-_“_/a‘,j = ()

(AB)

I

(Al0)

This constraint ig a direct consequence of the invariance of ES

under T-dependent Yeparametrization,

i< =f0m9R  L5=4B)]




I
A [
To go to a Hamiltonian formalismﬂf we& expresg F\Xfﬂ_j-xr— 'z/
= __
as a function of P{'!U)( 3‘ {This eéxpression is, of course,
'

Not unique because of the relation (Al0).)*

L=XP+3iT+ @23-R%u 4+

+

Cok

s [ bt
\{E’_}R“-rbtfbd'
(3 [C ‘ j '
= 4 G A/ RS
23R Suur $-23 (V=X )
w&&fa%g: Ve3-stiym 9 ,
T q @3RYuur) |
9% 20y (3% u)'s (255 i)
- (g : |
= ~Vou "+ MJLTZ =¥ (o at
e | b
( T ¥ Aot g‘i‘jambuacat"z,-(a,;{,{,’r
2 | -
w% U~ £29 (An)

We can then obtain the equations of motion from the Hamiltonian

é%+ur(F-2§+F913>tmltilg )?!3115: 7~ and %T as

independent vari ableg:

*For a general discussion of "constrained Hamilt_:onian systems" one
could refer to the long article (with Same t1-tle) of Hansox}, Re_gge
and Teitelboim. Academia Nazionale Dei Lincei, 1976.(Contributi
del Centro Linceo Interdisciplinare Di Scienze Matematiche e
Loro Applicazioni,N.ZZ)
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gH F’BXFF@S 0 (‘H‘ f’{/\:}{)
gu, .
3= g 4 wr 9.3

* Zra

X = -—E{,—Jr W"”a,;)? S T =2, (Tw™) ear

P2 997a% 0 ()
(a,oJr 2%_=+ mh ,,,‘_f(a (Taa )[X gg

2T and H
Note that H' \S.(Xc—l,\ is invariant

under reparametrization provided that p and ] transform as den-

51t1es71.é Also as a consequence of Hamilton's equations, M, is
equal to [,L, as defined in (aB) (}N%‘CQ,MQ/IQ)(QX-?; f«%(m.‘)
To discuss classical sclutions, we can always choose the
time variation of the parametrization so that wr=0. Since (X
is independent of 3 » in this gauge _fi—=0 + We are still free
to make a time-independent reparametrization, Since T trans-
forms as a density we can make it equal to a constant times a
specified A-dependence, 1T=-r|-w(}\). We are then left with the

Hamiltonian

H Zfz :j{cx) P+%) e

N
to determine the motion of X. We call this gauge orthonormal
— —
gauge (ONG). The constrqdet (Al0) becomes '0-’91)( = fzw(X)Q{:g
which we can solve for \3 provided

B o B AR =2 B 2% =

W) < win)

* e fren, 47 gf) AW (F7F) bl b
% o CV*’L’W wector @ i’ f —(Qsif )%‘4— jr

Al3)
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These constraints are consistent with the equations of motion
derived from {Al2) because H is still invariant under repara-
metrizations which leave the measure w(}\)dMA invariant,

The constants ©f the motion pV may be obtained by

—_— D

comparing /P X/""_ ? X --’P > —’F’X
=P+ P -PX

+
We see that since P generates transverse translations, -P  mqust

generate translations in 3 and P~ must be our H which generates

the motion in 1. Thus f‘g 0‘{ A

.fPt—'-—&Tl" ij(k)v{f\
- L 2, 0{“«\ (A14)
O,».-.D’L/]D “Zr,?'g(f‘f'O)m

If for a given choice w(}) (with wind™ =W ) we choose a

complete orthonormal set of functions o (1), . n
f }Z( f( wod 3 -4,

P=2F. 4 vo ><=z>-<;¢m

and Py will be canonically conjugate variables. If we take

-

*m
! ..\
¢=F + 9 which depends only on {a,rX' will be independent
of X, and we find

R
~ 2 {7 )
P (RRZE & =
1

N 2?+(/P tw moﬁ" X w(:u)f)
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This relation is of the correct relat1v1st1c form,
2PHPT— ( PP )= ok
ol“x j_
2 = )
mo= W m7o ﬁ" t y a L"“) —HZ»{M

depending only on the degrees of freedom % X pn, n>o,

Of the & homogeneous Lorentz transformations, 4 have re-
mained explicit. H'nt is clearly invariant under rotations
about the z-axis, x+1y+e (x+1y) Boosts along the z-axis are
generated by simply changing ’Z/ to ’Zeu, so that Pi-*Pi *u o ¥

J +KY and Jy-!{ correspond to the transformations P—>P+vP

bR
P >P+, p >P +v- 'I-'=+-—-P The remaining two, Jx--Ky and Jy+Kx muest
_
involve the internal degrees of freedom X 'Ii\n.

In order to gquantize this theory, we use the Hamiltonian

f(o'f' A

with x()\), p(.\), (M), T (X)) as canonical variables, obeying e.g.

E)(. (y) fd A’)J ,.,‘f,'g g(;)wlth the constraints on the

eigenstates of H correspondlng to (Al10)

Cr -0

These constraints are consistent with each other and with

.H>?)=E (i)since they are the generators of the group of

réparametrizations. Since ¥ is independent of:( we can find

eigenstates which are also eigenstates of II (,\),

TOIP=—qowig> .,

— ol — o - -
TR T, oy (@ Loy

> X

(4)
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These will not satisfy (al5). However, (Al5) is equivalent to
the condition that the wavefunctions WLXO) T‘C} )j are
invariant when x, T are transformed by reparametrlzatlon. (T

transforms as a density.) We can always construct such a wave-
function from a (l) satisfying (Al6) and invariant under those
reparametrizations which leave w() ) invariant. Furthermore we
need only consider a single specified form of w(X) since all
Others may be reached by reparametrization and rescaling ofﬂz/
This invariance condition is exactly (Al3) interpreted as a
constraint onqJ » The classical discussion is now exactly
paralleled by the Quantum theory. We must find the eigenstates
of Hint subject to (Al3), These will also be eigenstates of J, .
Clearly a necessary condition for Lorentz invariance is that for
a given eigenvalue of Hint the states can be arranged into
S0(3) multiplets (i.e., that the number of states increases as
Ile decreases). It is possible to see that in a certain sense
this is also a sufficient condition, i.e., if it is satisfied
unitary operators realizing Lorentz invariance can be constructed
level by level of H; ¢- However, they would not necessarily be
related in any simple way to the canonical variables.

The further discussion will be restricted to the case M=2,
D=4, w() }dn) =sineded??. It is convenient to define ?'; f’%,;p
so that (L.nfﬂ. 2 — (0 )

Cxtp), F{&{c() =7 A lgly) =4 ') Sigg)
Then '-Jv- g&n@ d@ﬁi'f {f + ‘3/& s (A17)
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% ' = (X,
/ (&9<®9 ’auf 5%} oy 17
where we define the Lie bracket of two functions A,B by

fﬁf B]"Qe@’%g E(A:j;) R @'O

Area preserving transformaticns are of the-form .
B BT
where f/k_{,@ ;f - 0 $o Mﬁ_t

4= W {lf“ ~ o %f aoldx=pf |
The constraints (Al3) take the form f)( ,Ox]-)—f)/! f),} on the

states. It is seen that the whole theory now depends on the
single algebraic structure {A,B}, Part B will depend essentially

on this fact.

III. Another example and a comparison

The Ansatz ) R(l,//v)( ) RM (A19)

leads, in orthonormal gauge (ik ) to
f=/2£/m)
Ay RZO /E@-@}
3(6 “lo R*® V taky

and the equation of motion reads (*)

*See pg. 22,
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(‘zlé-—; R(RP\/)/ (220)

P A%
The constraint g F‘:{-— 5F -@-“5 =0 is satisfied,
/
asﬂﬂf%ﬂh,-o(so both terms = Equivalently one can see

directly that the equations for 3 are integrable,

for ? of the form (Al9):

N z .+ 2
= X3 = L R + R
3/ ZPZL /2 Zfz P
3= ,_'7: F‘*F? - RR’
(A21)

The 1ntegrab111ty conditions involving derivatives of 3 with

respect to Lf are trivially satisfied (as 3 is independent of

*/
Lf), the one involving 3 gives exactly (a20).

One particular solution of (A20) with /W-cose, is

R(-Tyu)aR(fr) £in®, leading to*
"._-—-P3 . p¥ N °7-= Lo ’)(AZZ)
£ = \/1L(C>R+Zfz R ZDZ , D= oot
and (A21) becomes
;3 ’2 g;" 6)'+ znz ﬁf (o 61
'm)
3L RR b b = £ RR g(26)
This will now be integrated explicitly from the second eguation
3 Rch(ze)J—;f(EQ'—)K f Co.;&({{ %z)
{(using (A22) which has to equal (A231)
' 2
LR 6 4 Y REE

*Please note that € is not any geometrical angle, in par-
ticular not the angle of thé spherical coordinates.

(A23)
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2
Therefore f has to equal R + T RV, which--using again (a22)--

is -;;- O%F(Ré), so that

___RR L '=_,I_ 9 al9)
3 —2—&9+/i('r)/-/; Z,Zz’R(fr) ‘

Both because (A22) is exactly the equation found earlier for
S(t} (the radius of the breath ing solution in a regular Lorentz
frame) and because both (A5) and %=R(1)sinef are most simple anad
symmetric solutions, one would think that they are in fact the
same solution, just looked at in different frames and with gif-
ferent variables. This appears to be wrong, i.e., the above
solution R=R(T).sin@ is not the R(T,a) in 3-:\=R(ﬁ/..)e ~ that
corresponds to the solution x (t,?)",(f}= (ﬁ-/ S(e) /-q" )
no.r a simple Lorentz transform of it.

One can, in fact, calculate the parameter yu as a function of
t and the geometric angle with the z-axis 7}»
So far 0‘ / 0{ ) /
3300, ReR (77, IR=RATERE, 01§ = 3ot 3of.
so that 0?4,“;6{3-‘33/ ahJOn the other hand one could extract
M =/..,( ™ 3) from (1",/~), R(‘T’,/u] and think of R as R(T",S),
so that dR=V’1’+BJdJ, d/u. =/uq,d¢'+ /‘:I ay there

RX

= OX
XTE AT lomotad3 ><3 T 23 e

By comparing the two expressions for d/q, one finds

/’Lr=_3/3/ //.‘”3=I/3’

Neting that
'=Q_@ _ @5- _ .
k= or e Rerks ”T/L Re#R3 | e

fc)/u
and putting this into (A21) one gets
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T-L (Re4 R 3)+]Z'Rf£ &
K_ (fR'l""’ngS),RS\S

from which cne deduces
3 ,Rt.

3= 1 \/23 ~(R#R )" —3/ V1= 2R R,

Therefore

= R(%: 1) RR: .
/“TQJI—Z’RT'RS) /“'3 ’[F“ZR Ry’

This expression is true whenever = C JNow one specifies;
X = R(t,p) P
Tt

the solution (to A20) R(‘T‘ } that corresponds to the solution
(a5) (x/*= (L, S¢) A ) obeys R™4 22 -S R% -3)% S@—+34)

From this it follows (Ca RJ—-—Z__——'—,SQ) that
M= (fsa(§9$+;})/~ 2 83(5(9§)+3 ZS)

and therefore Ca’ = T- 3/1,)

S¢2§ f ot }
adaln 29 $* /1 /¢t 3'333
from which one can determine H as a function of t and 2, or t

and‘y", one finds Z_fZ/M, ._0,_..@4.; l} fﬂ\né

{+ for collap51ng sphere) .
growing
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Summary of formulae in orthonormal gauge

For convenience, the important equations (in Particular

(A11')) are written out explicitly for orthonormal

‘u“.—_—-ﬂzw(x) , U, =0

onstraint | y _‘t =

e FARequmay B2 ° .
‘ %+

t(_= %%u) . ‘o - fzum)x

3 - -*/9 _C(ll Qx
F ‘L DEX)

*e

For M=2 a convenient choice is (used in ATIIT):

N=pz —wb ¢ 1,417 (6eloi])

)«"-—'lf ;)=

(Af poedler=1) | ate ot sk oa{fmw vobe

e h, B Aot fucs )

q';f M= 6 y Kee.  Looge w(,\)—-g.né
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B. The surface problem as the limit of a
large N matrix problem

I. The group of area pPreserving reparametrizations of 52
and the structure of its Lie algebra in connection
with the surface Hamiltonian

The Hamiltonian found in Section A may be written as:

l . . 2
Hoon3m (AL o]
Aee o = a{/wlt{ = (0P oy
=Xy Ry x| /xQy
0““0{" {X,y "'97.,5'4(! %’07"@ 99’3% %’ar

H is invariant under the group G of area preserving diffeomor-

(B1)

phisms of S2 (that are connected to the identity}-—meaning
that the functional dependence of H (on x and B) will not
change under a smooth reparametrizaﬁion of the parameter
space (a 2-sphere): (u,?)+(u',T'), with unit Jacobian. This
can be seen by looking at infinitesimal transformations

u'=u+dy, ?'=T+6r, for which the condition

= ;%f% q%%: l
F(S" u oy
?r- ’?Y

is satisfied (to first order) if 6u=+awf, 6T=-3uf with £

being any smooth infinitesimal function (defined by these
equations up to a constant); it follows that for any function

z(u,TJ one has _ |
So= 2(pip)~20it)= ?uzg.rf"%foff’ =y
= g%,fj +0(£°)
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and (to first order in f):

-4 fan(Fpe g1 2fdbfond )-o,

=0
as CLQ Caf:{ for any g(/q,?a} (integrate by parts!).
Using the Jacobi identity for E one has

(fiyd= {8y T+ fx 5= § 2Ly ] Pxifut
= | [l 4§ rSeduintil

= £ f48 fI5fop L o f ot 4]

The equations of motion derived from H are*

X = g{XO’j/}’}
y = = bodix]

The Lie algebra_(_s_of G is the space of all smooth
functions £ (e, lf)with f and g identified if they differ only

by a constant. The Lie bracket on G is

[hol-d(¥9-2 %)
= Uy 0L

*'A whole c¢lass of solutions is: x+iy=wel(w _lft)sine;
these sclutions are, however, not consistent with the light
cone description, as constraint{Al3) is not satisfied.
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[Note that for more than 2 parameters l'...lr...kﬂ /
Jacobian=1 would have still given 3 Gl —0, which is solved
by ffzsat=) F provided F is an anti-symmetric tensor;
the lie bracket on the space of all divergence-free vector

fields £(1) is

/5 =1 % -l 4o

For M=2 there is cnly one independent antisymmetric tensor
(érs) so that fr=88€_rsf so that (B4) translates to the Lie
bracket (B3) for functioné feG.]

As an orthonormal basis of G one can take the usual spherical
harmonics y; 't)lf Land define structure constants g

‘ea""‘:"{t’”‘l. 13 L
by the equation: =

,*
’ \T// ;{ ’ﬁ (B5)
lfﬂwv / {;f“%. Cyom,

'4 ’éﬂ"tzzﬂﬁx
(Summation over repeated indices is understood unless stated
Otherwise; (4m) will often be abbreviated by a or ¢ or Jjust
by ) ) For definiteness, the definition* of spherical

harmenics is given:

\Kcm(ﬁ‘f) = C')b/”" N, /P{M(Cwé)) ¢ il G

*This and all other conventions concerning angular mo-
mentum coupling—=coefficients are those of A, Messiah Quantum
Mechanics books, referred to as MI and MII (see especially
Appendix C of MII).
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where
K‘M f C /\1 m ke I\‘{fm: \/Zr (f‘f*'*“'l)-,
fral A+ I 6 :
O KHMI(F 1) /L (B6) |
)= o
/h' ;> 24 ?b‘tfb“‘ g/b /) (}/“/) ‘ Cf%:/‘
L=}

is an associated Legendre function of -uzcosse,)

Upon first inspection of (B5) , one sees that

iﬁ =+n j;kfl \fléikﬂ vjf Ao el (jf%( ?nbto A - )
amol ol m{:ﬂc)

. *==G‘ ,.,,,Y w( m{w W%&A}

YO L ey )—>9(mz-;“"34%

£y, 4 Ty

YU"Q tfH!Z)- S (53?))@()()()*0 42‘4%
4 f ARSI =) V=0 wlin Tmj =0

For later comparison it is useful to evaluate g for two

simple cases; with Y10= ﬁg; cose, Y20 = {E%; (3c0526—l)

*
and Y, =(-)"Y, _one finds:

C()fm,c:...f.o =t ()7 .ﬁ L SR
%f Lha'20 = +m C")Nﬁ fg‘ GIOLQC"’Q/ el (BS)

fum)(fﬂ ? 4w ‘H)
"3me) ‘,{.L { 24+t Z(f:y‘hf tf)(at—j
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where in the last step the decomp051tlon of coseY into the
linear combinaticn \l--- YL-H + \} \4 has been used,

The group G itself has been studied 1n the mathematical
literature, and although not relevant for the further dis-
cussion of the surface problem contained in this thesis, some
properties will be listed.

. . 1, - . .
- G is simple,” i.e., has nco nontrivial invariant sub-

e (e b Yye)

- The Homotopy classes of G are those of S0(3) [Stephen
smale? proved this for the group of all diffeomorphisms; it
then follows from a theorem by Moser3 that the same thing is
true for Gl

- any g& G has at least two fixed points [N.A. Nikishin4
and C.P, SimonS]

. 2 2 .
- given Pl...PRG 5%, Ql...QRés *J9€G with Q,=g(P;)

and furthermore let Cl"'CR be an arbitrary collection of

lI would like to thank Augustin Banyaga for telling me
this and other things about G; as a reference see: A.B. "Sur
la structure du groupe des diffeomorphismes qui préservent
une forme symplectigue”". Comment, Math. Helv, 53, 174-227
(1978).

2"Diffeomorphisms of the 2-sphere", Proc. Am, Math. Soc.
10, 1959.

3AMS Transactions 120, 1965, p. 287.

“Funct. Anal. Preloz. 8, 84-85 (1974) (in Russian).

®Inventiones Math. 26, 187-200 (1974)

6See "Transformation Groups" by Kobayashi-Nomizu.
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disjoint closed curves on Sz, then there is a l-parameter
group of area preserving transformations with these curves
as orbits,

Expanding XY Py and py (6,?) in spherical harmonics

x=2%. Y o)X= x,

and, Writing {er]' once as :I.glmz. i[lmll Amyx_. IY "m u(e ({)

the other time as ={X,Y} +19( Y ()¢ )u ( )Y( )tY o

i
V_ & e 0,0, ‘a’f“oswﬁf x‘-’f%"' (’3 >’C),,

One can think of H=T+V as describing infinitely many particles
(labelled by ? and m) moving in two dimensions (XEm and Yem)
and interacting through the, not very symmetric, gquartic

potential V. The unitary transformation

(ad lm
X M\ [ x,
g AL |
~ 5;-—- bhl the same for Y’Px'py)
X,(;—l'-nl (_ ‘i X»C"’Ifm,

corresponding to a real basis

\? =Cenimte N,_T_ E_, = Vg Il

A lwi ) !

(7

e
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P
will make x real,

Ax

Jaﬂ gc/L/ZY&{Yf Yf

are still totally antisymmetric (as the Y

The structure constants

ln‘are orthonormal},
but obey fewer selection rules than the gag

7~
Some properties of the real Y-basis:

f“‘" Ve =1 N, Pe ™

(see (B6)})

Jei»\..q ﬂ(( )MYUM, Y ,,_,,)“" N AT
Yz-w (‘ln " / " }/{_!m,)-:f\/h RV 5 lmly

A
Koot ﬁ'-* f\f[%y,f

is still totally antisymmetric,

Gl ) i)

is unitary:

ey e
=t (YO )1
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o X(64)= 2%, Y, L5 o Y:,...

x/effm-al >
X £ =)

has to transform with the complex conjugate of U:

(-\' f
(X!i!mr >= u/’k (X{Im:) )
K f=im| ><C"m] /
in shorthand notation:

<-uFX \/‘—"/L?

so that

cas

+
h.x 3
3
>?<?

5y

x|

*
b

L
-

((:"1'-

AN
N

x|

-
o b

fra 2 frm I'2

~ _ __(_ 'm." * f ! )

A = lom] E%<>Q;MT§+M) Vea\ (ﬂ) S F e .
One has
~ '

A J —
{x’emz sz%’}mum&'effmm’j
where
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and { }P is now the poisson bracket for functions of the
canonical variables %;m and R;m' The invariance of H under

G is now expressed as

(\r

# ‘MX Riz UK =0

1)

(which one can verify explicitly)-Eﬁe constants of the motion

a2 Y, §%,p/

are the generators of area preserving transformations, and,
for the light cone coordinate description to be consistent,

one has to have K —0 *f Note that, of course,

km kﬂz - %«ﬁ/&{ kb’

(see also below). As mentioned in part A, one can proceed
to the guantum theory via the correspondence {,}p(-)-i[,],

ioeop

CRe, Bi0=488 (B0

for the hermitian operators Qj.and'ﬁg. (From now on drop ~

for the guantum mechanical operators.)
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One finds that

C k/&’ k‘,&:{ = A 6;,.{{ KC

as it must (they are a basis of the representation of G as

operators on Hilbert space) , Swa e
[K‘fk&]: L@""ﬁﬂ fr, ey 5y ﬁj
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Also one can check that [Ka'H]=O’ The consistency conditicn
(Al3) requires physical states |y> to be singlets under the
symmetry group, i.e., Ku1¢> =0 a=(4m) * The change of a wave-
functional Y [x] under an infinitesimal are preserving repara-

metrization characterized by a function f(u,4) is:

LR CANIC AL
= - ;f-< ka((f)
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II. Explicit construction and proof that a basis of
the fundamental representation of SU(N) can be
chosen such that for the structure constants:

i g (N)
£im £ =g
N+ C"BY

»

o By

The aim of this section is to establish a correspondence
between the Lie algebra G* of area preserving transformations
and the Lie algebra SU(N} for N»=. This correspondence allows
one to transform the problem of finding the spectrum of the
surface Hamiltonian H to that of finding the spectrum of a

large N-matrix Hamiltonian

Bo= LT R B Lonya®]

ul

(5

(x,y,px and pY traceless hermitian NxN=matrices). Going from
H to HN is a sort of renormalization as one is cutting off the
degrees of freedom corresponding to ng with 22N ("High fre-
quencies") while representing the low frequencies (2£4N-1) cor-
rectly up tco G(1l/N).

({BII) is subdivided into 5 sections as follows.

1. By a correspondence to the solid spherical harmonics
ring (written as harmonic polynondjﬂgone defines Nz-l linearly
independent real, traceless NxN matrices %lm {2=1...N-1, lm|<£).
They are a basis of the N-dimensional representation of SU(N).
Also they are, for given L, tensor operators of degree £; so is

0
any T, differing from TEm by N and £ dependent (but m-independent!)

factor ,

*The underlining always denotes the Lie algebra of the
corresponding group.




g
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2. Using the Wigner Eckart theorem, the structure constants
N +
gtm! ]=fé£)| RIITR'IImII r Can
mlm"

of SU(N), defined by the relation [Tﬁm T

be calculated in terms of the reduced matrix elements RN(R). The
answer also involves Wigner 3j- and 6j-symbols.

3. Instead of actually calculating the structure constants
IoBy of G (o is a short-hand notation for (tm)), a proof is given

that
O

4 _
L v \AL-1
()"

must lead to structure constants fa

By that in the N+« limit are

equal to the gaBY'**aBY' This proof is the central part of (BII).

4. Knowing this one can deduce the corresponding choice
A
RN(L}, when calculating the N-2*limit of the structure constants
derived in (2). This limit then is the formula for Japy - In

(5} the correct choice RN(Q) is derived without using 3,

0

l., Definition of TRm:

Let s, be an N-dimensional representation of the Lie
algebra S0(3), the spin s4®-;y2 representation. Conventionally

one chooses a basis Sl' 52, 53 with
LSm"[S }SmD=mm S0,
<M/, S{i&ﬂ; ]m>=ﬁ(5“)—m (MI')_'!/ (B11)

M}M’\t[
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83 and Sizsliis2 are real. One then defines NXN matrices
;'Rm as polynomials of degree % in the 5 which ébrrespond in
some sense to the ng{eﬂr]. One does this by remembering

that rR'Y are homogenecus, in fact harmonic, polynomials of

2m
degree & in the wvariables xl(Ercos 5in8)) X (54—'&“9 l‘m‘f’)
2

onnt_ )(3(_:—': N CwQ)

TEY, ()

(B12)

3

GL(’.'") J'><~‘L>< > (m)

i Qs XX,
. U & ] £

— ‘10( =}

. ‘ﬂ.f '“,8,)
SJ - [ 3) . (a( Izl
¢ ()
The Q,n\ . defined this way are traceless between any two
17T

A
indices ( &> v %Lm =0 ) and totally symmetric. For

given & there are 2%+l independent ones. Then define:

3 .
=5 ™ G .

The first few ones are:

o (FS, R ees) T R69)

) 2




-37=

o

T, =% (5§+ § &4 S,C,ngf))

211

tfz = Jﬂ_i: (SK £4 (85 +5;-§,>)
[ (25;‘-—5; *-S))

All T are by definition real and traceless, but not hermitian:

(Teﬂ) (!m) =) T
(o=~ )= al

N A
!

£ f\ - A‘C
For fixed &, the T£ form a set of tensor operators of

rank {, i.e., for a rotation R:

LL(R)T L((K) Z /R (’R) (B14)

o -—/C

where Rl'Rl"l'Il'l are the rotation matrices for angular momentum £
(see for instance Messiah II, p. 1070) and U(R) is a N-
dimensional representation of the rotation R). [If RE 50(3),

N would have to be odd, and later one would take fim f(N);

N«

(N odd:!)
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well take RE SU(2) which does not alter anything as the two

Lie algebras SU{2) and SO(3) are the same.] Changing the

0
normalization of the Tim's in an m-independent way will not
alter the transformation properties. Therefore any

0
T£m=U(2,N)T£m will obey the Wigner Eckart theorem*

' w) ™ /G 8
<S/‘m[ ‘Sm.&> ( ) ¢ /R(Z)(BIS)
' r N

’"‘Mm‘

where ( ) denotes the 3j-symbol* and RN(R) the reduced

. 2 ;
matrix element (real for real U(R,N)). RN(/&) = QN('z)ua(N,f)

has been left general, as different normalizations will be
useful in different situations.

One may now define structure constants f(N) by:

+

PR A
mm " m"
[: —T—-' (N) ‘f-
,C,w, Lm] J’F,uu, R (B16)

o o pen”

By using {B1l5) and standard formulae concerning coupling of

angular momenta one can proceed to calculate'T;(Tﬁg and f(N}

This is done in the next section.

*See e.g., MII. p. 1l056.



W

2. Calculation of Tr(TT+), Tr(TTT), and choice of RN(R}

From (B15) one has

T T = o T Dl T o>

i
MIIML

({Jl)R,e) >

/ . ;
esmmemtm 0 4 ¢ N/ 4s

—m, Mmm, M, Tm ,(Y"'l

! /

As the second 3j-symbol is 0 unless ml=m2+m‘, 2S-ml-m2+m'

ZS-m m +m! therefore =+1. Further

has to be even and (-)

ZOO =T (S5 ) om o m,
:Z—(n«f,ii mf/:’i (_._)fﬂzf'
:(_‘_)ia*e"'z :ij/e)(fji

m, ﬂh
2+e’
C) ‘(:?z !m/ 2L+ | /

where in the first step m, was changed to —m, ; in the second

step 2nd and 3rd column of the first 3j-symbol were inter-
changed {giving factor (-]2S+R) and in the second 3j-symbol
the sign of the lower row was changed (i.e., -m ~+m, giving

25+ . . , .
; 1n the third step invariance of ( } under
P

a factor (-)
cyclic permutations of the 3 columns was used,; the last step

is true because of Eg. (Cl5a}, p. 1057, MII. Therefore
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N K ;1 )
l.-r" (,&» E’ ;) gﬁc (fg:(—/f) (B17)

i.e., the T, 's are orthogonal (with the choice Réglg {foli

m
they would be orthonormal.} Note that TngD for 23N=25+1, as

( ?fc.s)s O then.

But this means that one has constructed this way exactly

N2-l { 3+5+...+N-1) independent traceless real NxN matrices. They,

therefore, furnish a basis of the fundamental (i.e., N-

dimensional) representation of the Lie algebra SU(N), and

N)
aBy

SU(N) in this basis, They will now be calculated:

T (Ten T, To, )=

Bimmm g S e\/SLs
(;-) 7IEI%NCQ ) | /;>(; /)(innnn ™

#

the f( defined via (Bl6) are the structure constants of

{rmomn e

Now change summation variables to M,E-m M3=-m', Mz-m" in all
three 3-j symbols interchange 2nd and 3rd row, picking up a
6.(4—2'_'.? 204 T8

factor of(") altogether;

use formula (C33), p. 1064 in MII, with the identification

@Mﬂ) &) (d:’im" ) and 'J_}r-".j_;-:j; ES/\ nl‘_(—:n". to get:

—r;(nh—gm;_’zm; )

asr5e. /Al A, 2, 4, 4,
= TR (o o { A
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where {} denotes the Wigner 6j-symbol.

_t:<fﬂ%{TZmJTamj> | |
~(TR)e  (feeN il e

as {} is invariant under interchange of two columns, while

R +£ +£

(} has to be multiplied by (~-) Therefore,

” P(Z)K’u’ (z,€+: o @m% )fi,(eé

P(x) £5s
L2, 4, (",’f 2R oclol > (B18)

e O (,,f Z 4 ww)

I

ti

Note that £=0 if one £i>N. Also f=0 unless Zmi=0 and the £i

satisfy the triangle inequalities. (Bl18 was obtained from (Bl6):

) = e TR,

= Te T, 0% I = {. o Rée) (260 )’)

(B1l8) is a formula for the structure constants of SU(N) in
0
the basis T£m=T2m-U(N,£).

Particular choices for RN(R)=R§(£)-U(N,£) are:

i) R=R
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ii)R = R:(ﬁ) = sz’

f(N) totally antisymmetric for all N.

This choice will make
A . . . =
(=T£m-ba51s orthonormal) (any R differing from R by an

2-dependent factor will not have this property).

N
iii) R = G—') ‘G}:? leads to
z
7f (V7 £, 4, \( e 2 ,e
bl m Oy g f
Y, Yy omy
iv) R = /ZLH-'r N3/,~_ =7 Y 31 . (B19)
N lo

:" totally antisymmetric (¥NJ, but in addition, the corresponding
f(N) will have a finite, non-zero limit as N+, as
-3
FANA j <« N %
§ 1Y
for S+= (see below). Therefore, if there is any choice of RN

{at all) for which

(~)

NP jF O(F{ g "((J(Y
one can use the above cheoice K N /7_ |f2,8+l] to

calculate gaBY (up to a constant independent of of and y--

which turns out to be (16'!T').-l/zJ . The "correct” choice is

m a20)

-—

W
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and is based on the precof given in the next section. {As

RN differs from (B19) only by

\rr
3 There is a basis T(N] of SU(N} with fZim f(N) =g
. 2m _— Now oBY ZoaBy
(constructive proof)
First look at the process that determines gasy:

= £ -._—Tc(m) .
Hﬁiwn T ‘&ZM~‘— L, O ><ft

R A

. . L] .
are harmonic peolynomials, a traceless (and symmetric of course),

43(9'?)/8(&}?)};&96%37" 3 'f)

is in fact what one gets when one restricts the space of all
polynomial functions f(xlx2x3) with the Lie bracket

defined as
hol=Cosngag =

to functions on the unit sphere (X; Ty X,_z-f—}{.l a-—}_(-‘a: { )
That (B2l) really defines a Lie bracket (i.e., { }

satisfies the Jacobi identity; {£,£f}=0 is trivial) is shown
in III; there in fact for é‘ belng replaced by any CJk
antisymmetric in j and k and satlsfylng the Jacobi identity.

Therefore:
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(m) o {,« {
%f.ﬂ/ £ Z d'-ﬁ&r Xf{,"')(;& XJ';-_.)(' ;

/ e
— - o(m,") (B22)
2, LZ_ XK. K- Xfx KX X
A a:Jx T | pb e % ho %n

s g 4] ~fi9.2] +14 4f3

The order is, of course, completely irrelevant, as evérything
commutes, and with f q.(} Jﬂj ’1.<M 3 Xﬁ one gets
(B21) as one must. There were/are two reasons for having
written down (B22). The first is that it makes slightly more
apparent the following decomposition of jiaf“‘ltjeintf‘-
which is a homogeneous but no longer harmeonic polynomial
Pergr-1 into a sum of harmonic polynomials of degree £+4'-

and lower:

#

e [-< »9
A
P = ol ,,(><)
; /sze p {B23}
£+¢~ Y e
/ha,,e-:,! /W‘Mm M

V4
(@1*6'/*!'6 6m:~.,)
O (m) o (;w,)
(corresponding to making 7 P AN & . traceless
Yre o el e
and totally symmetric)., By restriction to the unit sphere,
one sees that d££,2"=-ig22.£" (see BS5). The second reason is

that (B22) stresses the connection between ?Lm and ﬁtm ag the

. o
expression for [T

ﬁnﬂ%kfm'] will be exactly like (B22) just with
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x: =S, M[ ]—>L§ § )

s
- 2¢, . S
4 6”«.&;}& ‘Sfi .
f,-m, j @,e+€ is a homogeneous polynomial in
the §,; Of degree,€+£l_1, The decomposition of q£+£,_ into
£+£-’-f
) T GolX =s6r)

e

(ﬁ*f 'ﬁ"cwm)

however is more complicated, as the Sy

' (rXM)T ’N-i)(Bza'

are non commuting

objects so that the process of making a(rn)O(m ) a

""J(J&

traceless and symmetric, which involves moving the 5; around,

-

bwh'f(’) Q% = SJ— S: .,'.,,‘éﬂ_d_& Sﬁ\ (B24)

will give lower order polynomials. Therefore

/ 4
;F CX)':E ff / ‘fXN (B25)
: it N gLe
fﬁf oé—_-o (MM‘J".M#

o o (x e )

with highest order term

feset1-¢] (———,,afihe ) (_—7{«:5—: <
A E%fafc o 1%y

e’

v n o am
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; . _ i ~2 2 W3
will contain lower powers of N 7(N' /IL—‘—"E S\} d_g' +S3==N7:dj_
of course arises from the trace contributions}) But what is
important is that all terms in (B23') of degree £+ - |

(XN has degree 2, ?Cﬂ degreele"), i.e.; all terms

zfc—:-zz 'f'
jffc({” (7<F _—_ (kuﬂfwmwwém/)

roor
mom m

arose from always picking up the first term in (B24), i.e.,

treating the §; as commuting objects, in effect. Therefore:

ilfgﬁ # == AO{ ;o (B26)

Le' g

™ 7 mmg,m/?

(the ifas [;] gives an extra i compared with {}). This means

[
that for ‘ﬁL‘ — , leading to
_ eﬂl‘h l‘f g
N

eil— A - NN .T_
E ’6”“/ ,d'"’j#é; f (,x: '_—]j‘/

one has

A (N ’)C

five )y cpt)

y x.zx“’
M pan ! am %

N . ﬂnm,m‘

~ A{'—T/\('—n’a )23 /&ﬂv % (B28)
N =) oo 1;4/4: Le'e
MMM

Thus one has the desired result.

pwn o o
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(B28)

4. Calculation of gaBY

Because of (B28) one can now use (B18) (for properly

chosen RN(R)J to calculate = a8y First one has to find out

the behavior of ,£ 46 ,C
3 5 5

Racah's formula [see e.g. MII, p. 1065,

for | & £ &4 &4, , At €25 = N-1

Jer L, £, AN (i+&%’(£+f*{’)¥fﬁf*ﬁ)l g
{SSSE ’g'(f‘] &%ma)t 2

(25’/5)' @s-£,)! «P%—'f )*< y "

(2£+l+£ (28“1-1 )t Q\s_ﬂ_f”{)f

as N,

s .
‘Z (Z‘_(.;_[ﬁ-x.ﬂ).’ —) (B29)

= (254t DX Gt N0 U (g

Lth-Ay

= J,) HM(,&)(—)ZC—( 1)

X

(B29"')

(/e)

[i.e., T includes all N and x—independent factors; HN consists

of the remaining x-independent factors (apart from (-)N) GN

depends on both x and N, F is independent of N])
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(e N’r"") b

-1
= N={2: +1 A _33 )
'H—N T((NH?,)' T_((MEXMJ l) (N-’L)_’N/N 1[“%,

the leading term in GN is N

independent term in GN will give 0, as F(x; £ ) is invariant

under ——>(£'+4—%)_x ; the # of terms in Z_ is even

é'f—f f-t +1
However, any

X
(as )Zg‘f’f,_’lz is odd), and therefore Z G_)_ =0
Fox)
The leading contributing term in
_ =(N+x +.£ ,I )
CN ( 1) (2 kc\-ofw(,

N+ x-(24400)!

The leading term in ’ef fl ‘@I as N»=, is therefore:
§ S g
Kt 6,-L, e
- X (-
N LC) (Eﬁ(ﬁf H)Z_ (=) (B29")

Fix)

and

a‘+ A

ON R )R (1)
{f‘fﬁ oy i)@f’“)z(z,e l) UZK o “l()(uo()

Ld‘el.r(_, T =/ f,q (¢ l(—-) fﬁ*‘t’é)f(f.%'ﬁ)! (4,+4,-2)) N
. Ay
R !
(Lt b L 41) 30

anol. Fixy= ! (244-4-x)! (&-x))(4-x)! O, )i xr2-¢)!
| €444, AT E
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(these two conditions are slightly artificial as they are

only necessary to write down ‘el Ly "3

as explicitl
sss] B Y
as in (B29)).

Because of (B18), and because RN has to behave like
N3/2 i2JL+1 const. for large N (so to make (B30} finite and

totally antisymmetric as No«=}, guBY can be calculated as:

jF C Ru“’) = Nﬂ/’-m C""‘é]
N =)o oy

where the constant can be determined by comparing g and

e' itn) (calculated via (B30)) in just one simple case,
N -» e

e B As not more work is invelved one
g o -H -| )

calculates f(N) for the case C b€ £ j . with
| £ £ ) * C_)Z-m m__
O pm —pm \((2'&"')'5 Ce+1)
(B30) gives, for R=N3/2 \fZ,L;- » (const,):
@e) .
{ = @”'6 )(2,64-!),/’(2.64-2)(6’) @i+ Ze2)! L1 D!

0"""’"‘ o E)M

= 2 mE) cmit . . \(2 (,(,H)(Z,CH?

*See e.g. MII, p. 1060.




which agrees with

%Iu, - m(")m\/l%: (.f"""“ B¢)

OM-M

{
provided const = /\/ ](,‘ﬁ' » and provides already a first
check, as { and m are general in | £ 2 So
0 m —-m,

f 2
R ()= o N e

(B3l)

can be used to calculate A Ay
[S4

_ P (N)
%&& /&M )3‘ z,CK{'U pN JEZT'—] f
fra, 1, L4, 2

™, ™, g, s
ZH’!
(zmzﬂ)ﬂﬁﬂ E n’f” )2_ < (—)¥ (832)
T o X =0 FCr; 4)

( | €6t e, 2L, odel | Jamol F ao w E30 )
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Since g is totally antisymmetric, it can be
calculated via (B32) for all (ﬂ(ﬂa’) « We check (B32) for
E 2L

0 m ~pm © Using

2 2 X+ #* 2- - /
. — " E{(Ctamt1 Q8 ~mn +
| (o m'“) ) 2%\/ (Comi)(dm el

(2e+y) (2Lr 32t )2t )22

one finds that #2..4’.&{ calculated via (B32), agrees with
O m —m

= £ C ™ (5*"""‘*‘)(‘6”-’“) from (B8')
%24&. 3 ‘rﬂ'm‘() J(Zﬁﬂ)@{fl)

0 m —pmm

Finally it is useful to calculate £ for )63-'—",@'*,{73-‘.‘

with the notation as in (B29'} one has for this case

Krb~Ly - WX { | <
D A
=0 4D xmo (= (get)l Pox ,)
_ L (N;f&).’ (Nt 1))

Fo) N'-'(,K,ML-H) f ( N+l-@+4ﬂ)) .’ )

!
= L () (N4 ~4~N=£,~1)

= =2 (N+L+4-1)!
= (N —=L,—4 )]

(£,+4, )

v
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Therefore, using (B18) and (B29):

7f(w) — Rye)Riz) (2424 ’) L4, £+
44, £t Ralbrt-1) <
ey ™y <._ 2(L,+4.)

Flo ) ) T (€ ) w3

’JT_I)? ,1,,)1/@ (M-f—g,'f'f{"l)‘l
N+L )’ N”J (N+£14-1)1 N-4£ -1,

The proof in (BII3) showed in particular that R corresponding

mj ’mg MJ

to &
A ]
e — e ————
’N’"‘l ' L)
4
‘A(N) . ,
leads to f that is independent of N for ,Zs=,€l+,{z—~]
A factor
A . £ +1/2
must therefore be contained in RN This factora N as

3/2

N+=, To have RN“ (as N+=), which is needed so that

A . ,
f(N) has a finite non-zero limit, one must include another

factor that is ~ 1 =4 (as N-Ho). Because of

/[—px ,

one is led to choose this factor to be \N={

Putting all together
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D>

— «EZE:;#] (Afff); T -4
= \/ N
N T Y(ne-)! '/‘————’ (B20)

5. Direct calculation of RN

Rather than by making heavy use of the proof BII3 and
deducing RN by the above arguments, RN can be derived directly

from the correspondence to the Y and the properties of that

Em
R will then provide a check on the proof, rather than relying

on it!

0 _C"‘ £ o, _ y,
Toe 7oz ) (8455

=

o

Rj“._.’]‘ 2~ o _ (2e+1)!
m TC_ELTE—L )_-ij@;) a2 z.c—!r—r_(s;'e‘_fﬂ (B17)

(from (E12))
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TGss?)

= 2_ <"“"’§ | =12 l,f Im-2>. - (m-ri--.ejglmﬁ,(>
<m-a—-,€]§ ’/\MH 2> - <M—l,s_lm>

= 5 (simien) (- (t1-otons)

m=4-¢
J;”) N-£2-|

_ Z; S»(H,,)_é{ J'Hfl/f St )) GCSH)‘(JH+ —J«—é)

ol =0
@-Ceh()rjﬂ“(éhc))

(J (2( 1) kﬁ-f‘(s{-}-l))
N-=¢-]

=oc(_z,- (N (£+<) "@f"y - .(N (<t1) "@H)

=S+
N=2S+]|

o
= i (&) h2 ). («te) ~(N’-é<+;y,..(N"(c<’+fC))
N-£-{

Z f @) (n-trp)

=]

S (I ()
- )" @)

(ze+i)! (N-e-))!
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{B34} can be proved in the following way: Since one has
o —m- | o+
(1) = 2 (
: T

one has (,-—x)_m-l( "’X) Z (mhr) fr+s(m+r)

but also

_(' -—m m-?-_:— Z(Mm{ut)xt
— L (“’"‘“‘) “’"‘9 m+%+;+t)

so that v§=¢

(ﬂ/"\+-m+-(+t

"M+ M .;-’

Since

(‘”ﬁ)( ) = (O

one obtains (B34) by identifying

LT REm  N-I=L — <2 §

M £ J M=t N”'/C/ mtmpl e 2.0+

Using (B30) one has




G
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As was done in the previous section, one can explicitly see,
that for this choice, the structure constants of the stretched
position (£3=El+£2-l) are independent of N, a fact whose signi-

ficance appears in the next section.
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ITI. AN UNDERLYING MATHEMATICAL REASON

FOR THE ABOVE CONSTRUCTION

Having found explicitly the correspondence between the
Lie algebra of area preserving transformations and an N-dimensional

representation of SU{(N) (N»«) by constructing a basis (the T, )

£m
as polynomials in the S {2 basis of the N-dimensional represen-
taticn of S0(3)) one might wonder whether there is not an under-
lying mathematical reason for this construction to work. This
would provide some additional understanding and also possibly
lead to generalizations. In particular, most statements would
be independent of a particular representation.

It turns out that it is the space of the Yim's with {,} and
the role of the abstract Lie algebra SQ(3) which have a natural
generalization, while SU(N) arises as the space in which N-
dimensional unitary representation of 50(3) lie. (In this sense
S0(3) is special, as for a general Lie algebra there will not be
exactly one irreducible inequivalent representation for each N,
Also there will be in general more than one Casimir operator
that when going to an N-dimensional representation will carry
the N-dependence.) |

Let G be a Lie algebra over the complex numbers, whose

adjoint representation is completely reducible, and G be the

adjoint group.* Let XyeooXn be a basis of G. The enveloping

*Note: G will not correspond to the group of area pres€rving ﬁf
reparametrizations of §2 (which was called G in BI}, but rather :
to S0(3).
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algebra U(G), which is defined in rather abstract terms *, can

be taken** +to be the tensor algebra 1t(G) (i.e.,, the space of

all polynomials a, . X. +eaaX; ) with two elements iden-
f10e0in m

tified if they are equal using the commutation relations

[x ;x ]= ck the set of all

ij X ?
A| Jx Jm (: ' )
0 24 >0
is therefore a basis of U(G), and u€U will be written as

Z (u.) )( Jm

m
Define q{ as the space of all ué¢ U with degree

-

(E Zd'x)é.,é . L(.LLLiQ(/La(

and the QL. are called a filtration of U, There is a

natural Poisson bracket defined on U: [U,U'lsuu'-utu; then
(Oxr¥ 1€ Uy p1-

The symmetric algebra S(G) is defined as the space of

all polynomials in n commuting objects KieweX o This space

also has

'5':.. )(d"‘ “Z( ) Z_JX>0E

*See e.g. "Lie Algebras" by -Jacobson (Interscience, 1962).

**Poihcaré-Birkhoff-Witt theorem, see *,
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as a basis, but xx'-x"x=0 in S(_q). §{G) can (and will from
now on) be regarded as the space of pel nomial functions £
on the dual space _(_;_' = Rn, {(then s€ S is a polynemial in n
real variables,with complex coefficients). Let SkCS be the
set of all homogeneous polynomials of degree=k. One can

define a Poisson bracket {} on S, with {Sk's 1€ Sk+4 -1’ by

defining the following surjective homomorphism (r __> Sﬂ
(which has Up_, as kernel): ﬁ
U= 2- Ob b x

Zack Tl

-> 2_- OL - Kisl'---'xms" € S(
T4y '={

and letting
i~
gﬁl ) S{tj =0H ,{l"'{,__’ (C“"l ) u“j)

where the uk‘; are some elements of Uki with ki (uk‘)=Ski.
{} is well defined, as uy is ambiguous only in the terms of

1
degree k,, so that [ukl'ukzl is some uk1+k2—l' with an

ambiguity only in the terms of degree kl+k2-1, which makes

(rk +k_=1 (uk +k _1)€Sk +x_=1 unambiguous (uniguely defined).
1 72 1 72 1 72

The so defined Poisson bracket {f,g} of two polynomial

functions f£f,g€s5(G) is in fact eqgual to

C di X’; Odf Oﬁ g {B35)
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where.c?]'k are the (not necessarily totally antisymmetric)
structure constants * of G. One can verify explicitly that

(C3) defines a Poisson bracket, i.e.,

E% :ﬂ B cfs‘& X3 g =o &acjf—q‘{)
and

Z Mg fud 4]

(V’ ohtr&nanme

FUSYT - Cralanat as,
= Z Cdf\csﬁx g 9 fﬁ c;flfi ‘n(fw

+§ Cd‘k CSI: >(,,'X_',- (/ad}:Fw..)Qi-fﬁ :]P{_ /’f”’l

A "
T Z;‘ Cjﬁcf{: Kix,r. @an @d{;:frs>9ﬁfw

e forl dewn =X
'f”' (Cé{;cﬁ'i'cﬁ_g J éﬂ d.s bfﬁ {fn fq
=0 cobilen <
One then sees that the SE;EE¥ ;;iaéhlrd terin Ca ceE:(G{

using only Cjk ij

* &
4n the basis Xy - Xy
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Following B. Kostant*, one can characterize the structure
of U and § and the relation between them in the following way:

1. S=Jd@li(every element of 5 can be written as
Z d,‘/&.‘{ Lnl'e» J"‘(GT/ ,&0{6 ”’)

where J is defined as the space of all peolynomials invariant
under the group action [which is induced by the adjoint action
of Gong-_}' 'for ma/fm'o.'m :

xe G = 5"x3 ¢ ¢ j

and H g the set of all G-harmonic polynomials, i.e., all
f€ S such that @ f=0 for every homogeneous differential operator
‘d with constant coefficients, that commutes with the group

W= Spase ij Abrmon ¢ fﬂﬁrw& wi Ke taunad doaot (V}&“’/)'
e coodoke £ (5%, %, s Xp oMo a0
C::am ¢ / ,’f( X.)C il on He il
1

/Z-_ dl(r)(z szd"ﬁ\ém(s’]‘())/ separatnon of vamublen

2. Let O  denote the G-orbit in G of x€G, and let S(0,)
be the ring of all functions on O, defined by restricting

S to O,; let r be the rank of G; then 04,-;«.0?( & m = A" and

*"[,ie group representations on polynomial rings", Am. J.M.
85, 1963, p. 327-404. I would like to thank Prof. Kostant,
Alex Uribe and Robin Ticciati very much for several discussions
and much patience. This Section {BIII) would not exist without
their ideas and help.



-h2=-

for every x¢& G such that dim0x=ni£, H and S(Ox] are jiscmorphic
as G-modules [a G-module is a vector space V together with a map
G3GL(V), g)(5V) = (99)V] . For G=50(3), aim0,=3-1- .
3. U=Z ® E where Z = Center of U (i.e., all 2 with [2,u]=0
-v.,..eU and E = space spanned by all powers xk, for all nilpotent
elements x € G (xég is called nilpotent if (adx)M=0 for some

M, where adx is the adjoint representation of x, which is a

nxn matrix) [for G=8S0(3):

& =l f""f“"“‘”‘”(” ’XFX|2+X11'+‘><3L

ad x2S, b (§). W
J

/
~ ) Qg ~4q,
-1 S; ~Aa3 0 aﬂ

Ay - A,y 0

satisfies

A+ A (akaital) -

{3}
L=

——
—

et (ﬁr*kﬂl,) -:-(>3+an)

hkas to vanish for > =A. Therefore A3=0 for'$2=0 and one has:
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Xﬁ“*‘“ (Za,_;)(ﬂ-)ﬁ
T (a4, )%, %,

1R ' A 4
X hilpotent (ﬁ) 2%=0 & OL totally traceless. as (X is by

!

definition a symmetric tensor, one has: E(S0(3))C U(S0(3))}

W
is the space of all u with (& traceless (and symmetric).

Eka UknE is (2k+1l) dimensional.]
4. J ® Hand Z 8 E are isomorphic as G-modules.
5. Now look at the Poisson structures of S and U; using

l and 3 one finds

Ee’ﬁ ¢ j = M’ﬁ-k{—!

) Aome
dit-1 ()

) L E; e

A=[ M=

“

where the
€ jug (1€ mj € o (€))
denote a basis of E] and 4 T %o(,) e Z

{Mﬁ Mx_
is a polynomial in the independent Casimir operators s
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A4l ~
/(= TZ

" ””“f "““c

w&c/ﬁ (,H fn#

is a basis of HJ which one chooses to be the one given by

s

A

the 1somorphlsm between E and H and g~ ™ c g

Romg £
is just a set of complex numbers when restricting S(G) to
S(Ox). [The Y 's are a basis of S(Ox) for G=50(3) and

E:! = 1l.] Because of the way { } was defined via (?"j in

terms of [,] one has g{:" =“€fﬂ""!fm,; — 0{/'{= i‘auz{-l; A
[if one has chosen JM ) /L’, ﬁ,fwt”"
according to the isomorphism between E and H] , L)(JI‘;/C

is, of course, independent of 7(;4 anyway (just counting
powers). it is therefore also the same for all representations
c¢f U. Let the mapping I y from U into the set of all complex

NxN matrices be such a N-dimensional representation of U.

INGO A CUM/ (X))

&
then just become a set of numbers and T ,(E) is a Lie algebra

with structure constants d; feak D{Lr:e...af, m N vm,?’ ‘]]‘( \ ‘

The earlier proof that g f’(”)_ 8 relied on the

N D@
fact that for $0(3) there is only one independent Casimir
operator% (ES%+S§+S§) ,» (exactly) pme irreducible repre-

2
. —|
sentation for each N, and " ?C)s N..._ —) 0 as N-P=o
. N( Lf
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C. THE NATURE OF THE SPECTRUM OF HN

I. Some general remarks

In Section B it was shown that the structure constants

gaBY appearing in

H= 2 fa (pi+ Py + g"’\/r)
- Iz'c:?:_(z,“)(ﬁ;'FL {aﬁ"fﬂ e ‘r [

are equal to the N+m llmlt of the SU(N) structure constants

£ (N)

. The Hamiltonian
aBY

Nz'f -~ ok AT (N)
(f’o( i + “Fz( {({GKN/( L )

involving only a finite number of degrees of freedom is,
therefore, a good approximation to H as N+=. It is invariant
under the finite group SU(N). Defining traceless hermitian

NxN matrices x=xaTu,Y = ..., the above Hamiltonian becomes

é-{gp(?ﬁ?‘-cx,\mt)j
e To (1202870 = (2 1 00w)
$e B3 amoll B 20

One is, of course, always free to change the relative strength
of potential to kinetic energy by rescaling X and Y. {See
" B17 and B20).
One could have gone directly from the surface Hamiltonian
H to the above matrix hamiltonian.noticing that H depends

only on the algebraic structure {,}which is preserved when
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replacing {){(Q-,L()}y(@ft()j by :{" CK;Y_-]

Note that, as already mentioned in the introduction, this
transition has nothing to do with the transition from the
classical surface Hamiltonian to +ha quantum theory, although
the 1/i formally comes from the extra i in Lgi,Sj]=i€;iiji
compared to {X.; ,2‘(\‘L I?= 6_\-'&-,,‘ XR (C‘avw,’)ﬂ—ft f't'“atq'q'/S)
In order to obtain a sensible N-2>2limit one rescales X

A
and Y by Nl/s, absorbs the overall factor CN1/3 in the surface

tension TO and defines the SU(N) invariant Hamiltonian

Ho= LT(RSR = LTy
N -z T X y N { (c1)

From what is known about large N-matrix models in general,*
H, will have a groundstate with energy of 0(N2) (which one
subtracts) and the level spacing of the excited states will
be of 0(1).

| From now on the matrices x,y ++». are most conveniently
expanded in hermitian orthonormal generators'fT:L

(e XarTo | To (BT = e )
with real coefficients. With [T,, 71 = ifabcTc one then has,

€.g., for the potential

V= 2!}'\, {m,ﬁ-c ;fqo{c,.x&)/c X‘,(_ )/E /. (C?_)
for SU(N=2) this is \/=.— -'4—(? x ;})2

i i isi, Zuber
*Following the work of Brezin, ;tzykson, Parisi, ‘
Communications in mathematicalg physics 59, p. 35-51 (1978).




The generators of SU(N) symmetry transformations are
‘ __ :
Ko= = ﬂ{ o (Cx P 4 CY,P;JX

and one is interested in Ka=0 (classically), Ka ,qt> =
(for the quantum theory). [These constraints, unfortunately,
iwt

exclude the class of solutions X+iY=e U(Sx+isy) YN which

solve the classical equations of motion derived from {(C1):

X=wCYOqva] , V=ilxoyxdl  (c2)

The S (i=1,2,3) denote 3NxXN matrices satisfying [S ,S 1= 1(, 5
K""'ZwN T (a8, ) #o

One can further see that, at least for SU(N=2) that these

solutions are unstable against small perturbations. Note

that one can rewrite (C3) in the slightly more compact form:

(5\ - Z%QCQJEQ{Q.U_] e Q= ><+HY j

Althoﬁgh‘V)(Ias A—[x.y]--A R V—f;% r(A+A}30) one might wonder
whether the potential C2 confines* or not, as V=0 for a rather
large subspace of configuration space (for fixed X, all matrices

Y that commute with X).1~The simplest case, SU{N=2)

V—-L(z 4)2
= X)/
2 Y ,
which is 0 for x||y (the classical partition function
diverges as a result) : The simplest guartic potential
of type (C2) one could possibly think of is v=x?y? (in fact,one
is lead to something very similar for 0(2)x0(3)singlet states of\i)
which will be looked at ini the next section. As the answer there is
that V confines, one is led to believe that the spectrum of HN

ie discrete.

¥ i.e.has a purely discrete spectrum
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II. The x’y?~problem and the "p,g," approximation

We consider the Spectrum of A4+—-== 2++ t t,r (C4)

Although there is a short mathematical Proof* that the spectrum

.0of H is discrete**
[H>H' = %—(p;+p;+]x[+]y[lg spectrum of H' discrete —"'—‘>

Spectrum of H discrete] it might be worth looking at the pProblem
in the following Way. As the guestion of binding shoula not have
much to do with the shape of the potential in a finite region,

assume V=o0 for x <A, A D] and try to solve the problem

_(@xﬁ-gt)ﬁ;a | .()q »=EW £ x> , (cs)
OS5 iy Wq)_:o 4 o

Changing variables to E)O and "z/ by writing x-—=A+ r Y =%
v

ohe gets

Bp-gf; §0 ~ g0
TR {—;\’- ;+(——'9{+ l/(},z))j

V3= (1 340" = witg). 4
Now one first solvesg the/z-dependent Part (as /\>>' 1) .

gives

E=C.(3)=2(m-Yy) D (}) sl

pPotential for the two nuclei, Em(}‘) will now be treated as a
potential for the\f ~coordinate, i.e., for given m solve for:

the eigenvalues and eigenstates of

*pointed out by Barry simon,in Private communication
—l 2 with R.Jackiw.
**as.g._.—_- e X 70{){”& NT Déx& still diverges (logarithmically)

one could say that the discreteness is due to the uncertainty
principle,.
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boy= (2 ) A Homm))  COT 1)

{/L-'— (2—«4"")"3
Calllng the eigenvalues of (-’J + L), as before, EA ,

= — (OX +9y )+>< N4 ‘V{x’fi/\) =0
will therefore (w1th1n the Born Oppenheimer approximation) have

the eigenvalues

One can show quite generally that the Born-Oppenheimer
approximation gives a lower bound for the true ground state
energy [so that Ey ; £ true Ej 413 arle .Erif: Consider a
general Hamiltonian H = Hi{p,qg;p'.d )=p2 +H(g;q',p') where p' and
q'" are abbreviating all degrees of freedom different from q and
p. Define HB.O. to be the Hamiltonian obtained from H by
replacing H(gq:;q',p') for fixed g by its eigenvalues Em(q), i.e,.,
HB.0‘=F?+Em(q)’ Using (9)(q)"y(q)) as an abbreviation for
integrating (g.q") only over g'-coordinates, one has

E (q)l((sz) #(Z)(f)(g% {r))by the variational principle and,

<G> = ﬁ’%(%) Hlly)

- G4 {3 B ooy, )]

' }gv{% (Fo, '+ .92 Miyn)= )| oo V>, ]
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ror our case one can do an

. . . . a .
Explicit calculation and comparison of EB.O. nd Evar

_ 2,2
1/2w (x%+y%) as trial wave function and

VL) =12

b) . E; = lowest elgenvalue of

2 3.0
(—gx +|xl). One therefore has to find the smallest E for which

;f(e) efm =0 2=(Ix|-E)c [E +0), f(@)m ﬂt)
(4*%")&&

and J defined as in

a) taking e

minimizing with respect to w gives t:vmf’-_é—(g /%.+

has a solution. For z»0 one takes f(z)= %& Ve 14

and by analytical continuation (H{l)

Jahnke Emde.\d

5 2_ — ' 2 _ ;
of = & N 2= ) L7 G
bp{i: 2=—C 3sm el I%CJ ) JH(Z(g C
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[ calculating ‘@(a")zg‘o{)(d\f@‘ % T;'(Xt Yi;?; b sz)

|=|

Although it does not provide any information about the

spectrum of H"f (the integral 2.:(87-) = fp{x 0{\//6,' Ha

will be calculated below,where
_ . 2 -2
= e e (e Y= 040 Doy dY)

X omesl. Y L bio Nx N Flodncres
N
This integral is inge;esting i; f%s own right as,at least to the
best of my kggaedge,integrals of this type(i.e a two-matrix-model
with coupled quartic interaction)have not been calculated so far
in the literature,while the one-matrix-model with quartic self-
interaction,and the multi-matrix-problem with gquartic self- but
only quadratic nearest neighbour interactions have been solved*,

In the case at hand,one first integrates over all but N of the

original 2Nz'(real) variables explicitely (arriving at (C7)).The

resultant integral is ff—d'\“ c'_ WC_{L}J

where W is of O(NT).Therefore,as Nepoo ,the integral will be

o C‘_WC{ZE N where Zr-i:j minimizes W.By defining the
density LL(L)E_: —'-Z{(,\—)’;) the problem of minimizing W becomes
a =y

that of solving a singular integral equation for u{k) (see C 40)
One can do so,but instead of calculating (e.g.)the first moment
of u (i.e. g).z'u,u)aik las a function of g ,we are only able to
explicitely calculate it as a function of a parameter b,where b
is given as a function of g via an implicit equation involving
complete elliptic integrals(see C }18iii).The formula for

<%’L EXIY_]Z'> , (the expectation value of the potentiallis

given in terms of f ?'[4,(}) ﬁi,\ { see C|) ).

* Eﬁrezin et ai] and  Mehta et al rJ.Phys.A . Math.Gen. |4 (198})
P.579-586,
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where x; are the eigenvalues of X and then, using ¥ diagonal

and y =y: Trix,yl = 2Tr(xyxy-x’y?)

= (ZK-X' 1 2 7'),_..__ T T
= 2L =i ) = = 2005 Ty
and writing the exponent as

‘ I 2 - \E v o3t
_szf_zlz Y. _:Z_J_ ((&(f"«g ))+ @m%.l-> )({4. %éN(X“ ;) )/
the integral dY is simply a product of gaussian integrals so
that (withh; = Kg/@)

00 N ¢
~ /(N — N Z ),‘ . (8
Doc{Te 0T )
—oo™ ~ 4y (+%z()\:.">td') |

One can also calculate the integral in a more symmetrical way

by introducing an auxiliary matrix Fg——to get rid of the
gqua.r_.tic interaction, then integrating over x and the \ i

appearing in the above formula are then the eigenvalues of

7R
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€9

s L(xvyY?)—9t .
)= Wa’ SO(X(,{Y@ [ X+Y?) %érz:x.yjf
(GZ=><+A _ I#Q 3/ G—CQTL
1"
%/(o S{Q ¢ ‘
f;w) ﬁv{a? ’ér@*ca GG L gt g )2
W)
(;Gbu\u,” l

= Ao g” {2 “{Z”qu?{f\ T!—(X'\ )"
12__12‘(!4—-& 2, [li)_.-a Z—)\

N

?t““) STM”—“ 4 T +jl/ (\; A)) e z'mz"

Ooend,) | F\
’?fC{ 10) g o ~r<:£ H—a (A A" ¢ ?

'nco) Sm “"fm *eNZﬁv(ﬂ(m V)

~ Lz o4
-1 W —wa\) M whl T) 41
_'-)LMLM 6 /\ @ 31’ @?_)
fd/\ é V(O‘,A)

(At ', y
W=— /éf,v A ) (= c8
= H“a?'(l )) -l-l\fg).{ (c8)




w
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Z
W is of O(N'), so that Z can be computed, in the large N-limit,

by minimizing W with respect to the') .3
1 2
-9 Ge \)
O’,;;E’ZN}*Z&;& y T Zgg +¢a (x,c—}) (c9)

Introducing the eigenvalue density u(\) = 2:<f(\ \ )

the above equation can be written as

4+ +
S Rval R SLC
B\ §:)7o/{*‘- -—6{,/%11'[}/"') Oﬁw o

which is a singular integral equation for u(\ ), which has to

be solved subject to the constraint ‘g UL())Cﬂl I . Before
outlining how to solve equation (Cl0) note how one can, e.g.;

determine<v> once u(A) is known:

<v> (MNG—CKYJ>~-— ’*”‘?%g?yy
(X, )£2 -
'r'csca H} O y) © ()"f‘wfm Lj)
=Nt fu.mwu /w‘“p(j—--@@
B =

The last step could be made because

=2 % (;);)
= 2v ZN - (v )+2 8 N & iwau
Fez

Solution of (ClO) first for g—O: Defining

which is real for real Zf [-a,+a], behaves like 1/% for [z —>ee
/
is analytic in the complex Z-plane except for a cut along

[~a,+a], and~~approaching the cut from above _ - )
below

\ £ | €
’(”-"?BOZ'«;F( tof) ( o, ):;Lu N \F
= LA g Apeie e/ )
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Ik |
while s \£4 " —_— -
" c->oJ FOe) =5 4 f“}““(/“)( e M
= z'Z .gf’{/”“f/‘*) (+3»'7_f(>7«)) =7 Tul))
The (unigue) function having these properties is
FG>=2- 22

as is easy to see and even simplerto check:

Fee) = /av (%_\l ~at )

!
satisfies the first 3 criteria, while éﬁ,w, &)4_().47,6):%—:)‘

gives a= (-' o-rhen one calculates u()) as

I/LO) 'l A :(MI‘(Hne)""" Lo (-2 6re)E 2")

T ¢~o - 4+ AL (C12)

As a check one can calculate

A

?w)d,\ ——-ﬁx/z ) = = fcm%w.e!

as it must be. Also, according to the general formula (Ci1)

for <V> v();?' ktd) 4\ has to be +1/2 for g=0, so that (\9=0:

1ndeed

f
%f\fz- ’\atk-‘m“ maa@p(e- ?’Fa‘f'

0

For g#0, define G(2) = —, F(’Er-f' ,é ) F(Z""‘/ ))
_ E’ (L) ot ( ) ?

. M*M»
) @D Ay _bfwn-i)

assuming u(), }=u{-)\) behaves like=——

0(‘;“:)

g? 8&4
and has, because of (Cl0}, the property:

I €0 E g ) =D for ) €Cay 1]

(irrespective of approach from above cr below). Defining

2
G'": =gz +G this translates to:




, / .

IG=o for 2Nsvy, Nelw, T
Y 0 (o ol o Blen)

bl feo -

' /é( Z-)/ G *(Z"k_) = Gjée’) (Mv-rrccg(cw)

ol afr 00 1 (1) & —q %t+a’/éc+f/29 TR .

(where necessarily = ~1/g and } A .
X fk"u(&)d,\ - :‘;‘(fcg‘ —%{
so that the knowledge of S will yieldtiv;) via (ClO').)

In order to find such a function G', analytic everywhere
except at the two cuts [-a,+al)ti/2g9, think of G' as being first

only defined in the domain D. shown in the figqure below:

I

< -
- N ff : ' T
?;,w /{jj///ijti;?;é:/_ -
r_o A1
L ) hra I
and then define G' in _Lé: JQ{ by analytic continuation
-~ =
which, using {C1l3ii) and (iii) gives

for 2:65;1%5[‘ ' G;/EQE;)EE é;/f*((éf1*/)
or 2 ¢ Oy ¢ Gle)= G (-2)
re dr o Cl)=gH(2*)

This shows that, in fact, g ;)vanishes on the entire bhoundary

of %I' Therefore G'(z) can in fact be taken to be, up t0 real

constants, the conformal transformation (z,ais) mapping DI onto

the upper half plane. This transformation (3-(3) /mapping P=>-1,
—) =C, P = =b-¢ real z into real ¥ is given

a4 — -C, P <e<o, 5 p

implicitly by the equation(s}*

_ 3 G:+c')d(:
2= A fb TR

*See, e.g., Fuchs and Shabat "Functions of a complex variable",

vol., 1, Problem % in Ch. 8, but note the mistakes nthe last two
lines before Problem 10.
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__ \ C
0 Z)A' S\ (c f)f’{_f Gn )A (C-g) é{f
1(,(3 “IX{J’)J / ,‘ ‘(@’r--ij—rzf__'
QM) .S‘ (f’ —-C)é’ff (C14)
N Ce-gl s

Although it would be nice (andS:.mp&fa to know 3 (z)/ which

is an elliptic function/in closed form, e.g., expressed in
terms of the Weierstraﬁ function P(z) of the same periods
(and, possibkly, ()3 ' (29, one can calculate S , the coefficient
of 1/z in 5 Qas z —‘mn) also directly and therefore give a
formula for <v> (which, however, will be very complicated and
not much less implicit than (Cl4), as the g-dependence of ¢

a~d. ‘b can only be given implicitly). Froe Cly :
S/ £+¢C |
g <\[t(t+r)(e o) ?’")”% r2l3’

mm s (=l

The third term will be expanded, the second term (':—:Z)can be

shown to be =0, using (Cl4) (i)-(iii):

T - gmd/)( (\[?;tr():(xlﬂs) “l) «—ooaf/x )

(x=®) °

As the integrand :\ behaves like 1/x% ato®, one can close the

contour (at e )} without altering z, and}as J is analytic 4w g
upper half-plane except for a cut between i and i(l:; alter the

contour to the closed path r' shown below . RN

"l
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|"§ dx=0, and therefore, with \57-_-__-—)(1
& c-p
DZ < f ($G-1Xb-5) —¢) Cif

which is 0 because of (Cl4ii) + (iii) (added together). The

constant term in the expansion of z/2A for large 3’ is

therefore 0, and

%/ZA—(—7+ :D/{_'-F /33’/&‘(‘/357 +---

{higher order terms will not be needed to calculate }. From

(Cl5) the coefficients D,E and F can be calculated

:D (@,4-[ 20 E __(éd‘r’ Q(’aff) 940
(Clse)
= ""‘jw (f—H)‘-'“‘-?(Z@ ?(C

from which
E}(/1¥/%a.== E; +' /igf/ 4‘/??%;’2 + -
) -/ Cle?")
(x=D*r2E< o/ﬂz 2F+€DE+2D7 35}23)

and therefore

g2 AT (6(<50) A
e

22 - é? 4 1+ - (c16'*)

so that

C/(30) = —YqAt(3@+20)

A At /-}“ (xH2 (1)
92 L 6& tAxy | qu o ﬁi—"

will have the required behav1or atoe, Also it must be that

Y = 9 . :-'“-,' | | (C17')

—a
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i

and, extracting g‘ as the coefficient of 1/z in (Cl17), one

has, using (Cll):

£ B>ty A g

The problem with the above formula(e) is that they are
rather useless unless one can determine bec and A {(a is not
needed} as functicns of g via {Cl4i)-(ii)--which seems to be
very difficult. What one can do without much work, however, is
to derive equations for C, A and g as functions of b: {Cl44ii)-

l

(iii) gives A

C=Cl)=£ =

|- é’c V-G b k(ﬁ) !
COT R ) - 6’ f z«ff) <(42’)+C/4”/ ’W}) te18)

oot f”"‘*@l%) @ )

Etd)_ L'("f’) Et)
f@ ( l*(fr) 69 (2 lqﬁ) K(g) ?mé} 3))

One can lock at the limits g-90 {(g-—<s), corresponding to
b)c-ﬁ)oo(c<b—>l), using the expansions of the complete elliptic

integrals E‘O() ool K(K) for x=>0 and x=1

(Tl X doate- ) e

Z/&‘ﬁ)«( ></ [,& })+'—- f,xﬂﬂ -0
(=) e
L e D el

k(x‘) =

/& L
S Y- &J Lo d< =z C'{{’) (égl-é E{&
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SUMMARY

The Lorentz-invariant action and the transition to a
Hamiltonian formalism are given for a closed M-dimensional surface
moving in D-dimensional Minkowski space. The definition of the
system, the use of light cone coordinates and much more is in
close analogy to the theory of a massless relativistic string,
although the important role which the group of volume preserving
reparametrizations plays is new. For the case M=2, D=4 this
group and in particular its Lie algebra are studied, and the
latter can be shown to correspond in some sense to the limit of
SU(N) (as N-»es). This fact is used to transform the surface
Hamiltonian into a large N two-matrix hamiltonian with the guartic
interaction [x,Y]z, a problem formulated in a much more familiar
language. However, we have been so far unable to find out much
about the spectrum of this Hamiltonian, apart from being almost
certainly purely discrete, and some hints that its levels are
highly degenerate which is needed for the theory to be Lorentz
invariant. We hope that the states of each energy level of HN
could be arranged into multiplets of total spin S. As the
"energy" is really the square of the restmass, the states
would then be characterized by spin and mass, as they should

in a relativistic theory.




=-81-

PART TWO

2 TWC DIMENSIONAL BOUND STATE PROBLEM
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INTRODUCTION

Attempts to relate field theories of the strong inter-
actions, in particular QCD, to string models of hadrons lead
one* to study the nonrelativistic system of N distinguishable
particles of egual mass (labelled 1 to N) moving in two
dimensions with an attractive g-function potential between

particles r and r+l:

Wi e S5

N

where the second sum runs from either 1 to N-1 ("open case")
or 1 to N {"closed case", (N+l)=(1)). Solving the two-body
problem one encounters divergences which are regularized by
introducing a cut=off A to the divergent integral(s) and

choosing the coupling constant & in a cut-off dependent way

so to make the two-body binding energy A o of the bound state

2 =2/
A e A _ A,

(which one then sets =1). The guestion then is what happens

independent of A ‘

to the N({)2)=-body problem, with‘x giveN by the above equat?on?
While in 3 dimensions the spectrum of the 3-body problem will

not be

*See e,q. C.B. Thorn, Phys. Rev. D19 (1979) 639 .T‘nor_r:]‘
J.L. Gervais, A, Neveu, N.P, B163 (1980} 189.




W
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bounded from below (when regularizing the 2-body problem

in an analcgous way ) , the answer for D=2 seems to be
that the open (closed) 3-body system has only one {(two)} bound
state(s) at enerqgy -2.,5* ( =16 and =-1,5), and is free of
any irregularities. ©One can conclude this by deriving an
eigenvalue-integral eguation that is equivalent to the

Schrgdinger equation for bound states (but no longer contains

‘\ nor /\)

How delicate a porder case D=2 is(note that for D{Z2 no regula-

rization is necessary at all) can be illustrated by looking

at the g--function as a limit of a short-range potential

S p/r
_241(/0»)/ f@ﬂ%-ﬁ) , a0

one finds out how the choice of S=S(a), that will give one
bound state at finite energy (~l1l, say) depends crucially on

the dimension:

O= O/QJ”){ D<2 (*‘“a,fioﬂ)
$=iem 1 9%

szle g p-zre(el)
oTs -
§ '/(f f D=3

*See also Bruch/Tjon, Phys. Rev. Al9, No. 2 (79)p.425-432
I.V. Simenog (1280) "Regularisation of the zero range

interaction limit in a one- and two-dimensional many-
particle problem.™

/
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D=2, looked at it this way, is more like D2 as 2im S{a}=0
a0

;rv®4'2 ) Anle Mwee Scay = ot A0 .f,ZD>Z.

&—0 :
For Q}Z both kinetic and potential energy diverge (loga-
rithmically for D=2 but with the kinetic energy contained in
the classically allowed region r< a finitejas a negative power
for D> 2)and the total energy (-1) arises from a delicate
cancellaqtion between them.

Fer the general N-body problem one can,using the con-
sistency relation for >\ ,again derive an integralequation that
does not centain >\ nor /\ and is equivalent to the Schrg-
dinger eguation for bound states.

In an earlier work* the following results were derived for
the open case (they will only be stated here in the introducticn)

The N-body system binds
| r A+

and in a random phase approximation is found to have phonon
like excitaticns that come arbitrarily close to the grounJL

state energy as Ne«x;

Em=Em+E L @eie)

*J.H. Master Thesis, MIT, 1980,
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when this result is used in the hadron models, one obtainsl
a relation between the slope of the Regge trajectories and
the QCD perturbation theory scale parameter /\ . Eiu)will be

the same for any short-range potential, while for an arbitrary

interaction
Mo -
PSS

-1/2
has to be replaced by (-gxx(O) 1/

where gxx(w) is a response
function for the corresponding two-body problem. A {(diagram-

matic) random phase approximation is used to obtain

E.(n)~—1% N + (2.0 )«-E’&L ro(t)

A

as an approximation to the ground state energy, which should
be compared with a second order perturbation theory result:

EO(N)x-—(l.3)N+l.6.

1See [&hori] ,which also contains some of the above

mentioned results.
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A. The two-body problem (exact solution)

In two dimensions tihne Hamiltoni n is

b= LR R~ ) s GT)

As the potential depends only on the relative coordinate,
the problem separates in the center of mass system:

= LR (ph e ()

— ) B S N
h —_ = -7
where >< E? rD > ('ﬁ- N, )
)
and/TD is the total momentum 1’}-+ 1’; . The problem is

therefore reduced to finding the spectrum of
—_ i . (2).—\
= {o"'._ (evd) § (%)

The eguation for a bound state is h\B}: _aAl§>.

Maltiply by (P] to get
P LPIBO- () (Pl B>=-A1D
//

insert a complete set of states, use <F' , g(“(k-\) ' 'F/> - [

and rearrange terms to get

(F+4)<FIB>- (zﬂ)g%%-éf 18> = it
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Therefore there is only one bound state |B> of the two-

body system (with binding energy A = A )

Q(F): le>- _(CWt) = ViTA
B th) Pt A,

( v“(zmawaﬂé‘a <3|:|$>= | )

Putting<plB> back into the original eguation gives the

consistency relation for )\ N

(21)) 5

er)*
The integral < g
E+4A,

i L
a cutoff /\2 it becomes equal to L.'_I'i-' /&A_ ( A/A )
i 2

and therefore
A=A ¢
pa

In order to have A 5 finite, )\ has to go to 0 as A-)ao_ The

'

) diverges; introducing

_2//\

parameter of this model problem is therefore not X , but the
two=body binding energy A 2.* From now on all energies will

be measured in units of A o i.e., A2=l.

*In a slightly more mathematical treatment A would
appear as the one Eeal parameter of the class of s&lf adjoint
extensions of h,=p‘. For a mathematically precise treatment

of point interactions in general see: Albeverio, Fenstadt (cont.)
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and the self consistency relaticn for \ is

@T)*) g@r) _L_! = | (Al)

Because v(x)==£2(x) is a (special case of a) separable

potential, the scattering problem hl6¢>= é;{|3t>can be

solved exactly by using the Lippman Schwinger equation, One

finds

(2) 4T

<F|{£>"’ b PJ)ﬂ@F&w@)@ﬁf)ﬂ-@

and Hoegh Krohn, "Singular Perturbation and Nonstandard
Analysis", Transac. AMS, Vol. 252, August 1979, and for 3
dimensions, the good review article by G, Flamand, "Mathe-
matical Theory of Nonrelativistic 2- and 3-particle Systems
with Point Interactions" in Cargese lectures in Theor.
Phys., Gordon and Breach, N.Y., 1967, Lurcat, ed.. Also I
would like to thank Prof. T.T. Wu for interesting dis-
cussions.




Gl @‘(—‘gir (h2)

<S|F|X> will not be used, ( R l‘—glg> is =0.

1 = 18>8 + f?‘;f{afa”*XﬁJ

The normalisations of position and momentum eigenstates

and the definition of Fourier trensformaticn are listed below:
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Theg—function as the limit of a short-range potential

Instead of locking at a " g-function" with cutoff /A in
the limit f\-—)w, one can look at a short-range radially sym-
e . ..
metric potential (V{r)=0 for r= [x]> afaé:.l] in the limit a->0.

Oon dimensional grounds

V= = (%)= V.

o

=0
with § and f dimensionless, and f normalized to&ﬁj)dj:-l}.i.e.:
f determines the shape of V, S its strength. 57 defining a

rescaled variable \f = r/a one writes the two-body hamiltonian

b TV T SO

/Q»L:a—’l—; #Y@?—"—Sf{f)); -{E: (23)
a’ ‘

For h2 to have exactly one bound state at a given finite
energy (- { say) as a-» 0, 5 has to be chosen appropriately as
a function of a (and § ) so that mme ¥V just binds (1'12 with
bound state at energy - S\az—) 0, as a=» 0).

As the dimensiocnality of the problem turns out to be an in-
teresting point,one defines the problem in 2+€ dimensions
(—-lé c é-pe)by writing down the Schrgdinger eguation for

. . . { . . )
radially symmetric bcoand state wavefunctions \l}(f) in 2+ € dimensions:
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I ((V’L algp f@)%)) =+5 45 @A)

from now on fkj ) will be taken to be simply —e(ljf Yo o (A4)
isg, of course, solved by solving for the regionsjﬁ( 1 and
,f>l (from now on referred to just as ¢ and > ) and then
matching function and logarithmic derivatives at;f =1

{(giving a condition on g )

For r{a (Ad) becomes

WA e (a51)
LAt )W) =0
with solution*-C
=5 —_—
uj? ¢ kJéﬁ}{{gif;>
assuming
S— So& >0
for r>a (Af1) becomes
{A52)

(1)//(4‘)+ = 9/(4-) = § Q) =

with solution¥* é;

el & K(.;/L (”F @>

*Conventions used, in particular for Bgssel functions J
and K, are those of "Table of integrals series and products",
GradSteyn and Ryzhik.



)
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matching

/
4(1-)* '-V(? T=a . g “’C/z(p ! \6-) k,H‘@/z (a-(?)
JG,L((Q) k’ C—/ (q.,“ﬁ)

Requiring that (A6é) has only §=l as a solution independent
of at 0),which is eguivalent to h having exactly one bound

state with enercy -a*,one finds:
for Nep o S=0(at?) (34071
D=2 &= ;iu @9')

D= 24¢ (oce ). §52€
D=3 . S"-:—'W%Jrzovg_“—

/ﬁr

fwhere xgy for two functions of a means that x=y (l+h{a})

with /&‘,‘, ﬁ(a,)_o) A"f)

a->0

(A7) shows that for D& 2, /ew-v L) =0 whi1
a0 —O wmile £ Ga)>0

A—=2D
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for D»2; this is of interest as it suggests that--despite the

fact that

04***“"3‘0 7f~' D=2

(J+/.\

. while for D€2 everything is finite--the
binding in 2 dimensions is more like D{ 2 rather than D> 2,
and, therefore, a more regular phenomenon than for D)-Z,;n
particular for D=3 where the spectrum of the corresponding
3-body problem is not bounded from below, both “"Thomas"- and
Efimov-effect are known to occur.*

Tt is interesting to calculate the expectation values
of the potential, the kinetic energy contained in the inside
region r¢a and the outside region rYa,and where the wave-
function is concentrated, With = T defined by (A8): for D=2

take ¢¥~—* !
(s= 7l

l
L})(fr) @

(+ : __
| S. ) tdsiele @3)
| lwa| To (@ T wiarele

*See e.g., L.H., Thomas "The Interaction between a neutron
and a proton and the structure of H”", Phys. Rev. 47, 1935.
Minlos and Faddeev [M F] "Comment on the problem of three par-
ticles with point interactions", Soviet Physics JETP Vol. 14,
No. 6, 1962, §S. Albevenio, Hoegh-Krohn and Tsai Tsun Wu "A
class of exactly solvable three-body guantum mechanical pro-
blems and the universal low energy behavior", Phys. Lett. 83A,
No. 3, 1981, and [Flamand].




Kanr glw‘frwf ‘-5-”_"_/@ , f{lwfowf S la'la
= Svlw«owr Sl flwmdr,_ a4 enck
] t J 4 w.(s

(V?) _ z}z - K, ( ))

Ll (=% T(f"")) puboole

ot lfao
_|_> = S;(-V‘(P)Ld’d(dr = _gkl(r)rmbr Sgoj{

n

+ lba| + cant.

("‘”“""b :r:/(x)=—3',(x)°=*§) T, — |

Koy == KoosL

Ko = 1ast) + 42 — (fulon tushaky ) aaxao)

One sees that both T, and <V> diverge logarithmically as a+0

and the finite binding energy (-1} arises as a delicate can-

cellation between them.
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On the other hand for D=3 one has

r_:—_'__ a / oA siole
ver g Yy s (£ ) woside (4n)

Thus (the approximation lies in taking Tf-/ instead of (‘

in the expression for @C : <%>and <'r>>are exact however):

_(lL[’I 7olr §=0ol8Y = , S;l‘{)l'r'abro{_(l‘—-"a,

= d2 .
(Vg aded = -IFTBI-T §<|‘f’f ried == Tz

g”*“'(t)(’ -‘:-:(.,-'— ¢ (14)) odoide
2o 7 (o = 52 nie

(us= "r,'/q_ T/:,)
One f;oto
g(vtp)-r‘budf& = =3 FO®)

gcw)fwn. 20t Qm- e

T

— 17
-.-.-Tr-—.f—IL—F"L:_“-’]’L:-‘E-E
Ya & W <o ba

One sees that in 3 dimensions not only V and T> but also

T< diverge,all like l/a .,and one can check that,again,the

divergent terms cancel in the expression for the total energy

T+ Ty KV
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The 3-body problem

B.

As in the two-body case, one can separate the center

of mass motion also in the open 3-body problem by going to

relative coordinates

.-><| 31—31 sl ;?2' = E?.' E'z

The Hamiltonian becomes

il

PP -Gm ) (€ o+ SR

l‘b:ﬁ:’f’?—# lr*’-

Multiplying the egquation for a bound state

H 19> = —Aly > & (FR
(Frp=pRra )P
@Tk ) S.gr)"(@(ﬁ 15:)'{'{}‘)(/3:: F/))

Caf-(ﬁ) ! (F')

Iy

W
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Because H3 is invariant under interchange of 1 and 2, one

D (7.5) -+ 057

ioeop gl=192!g so that

+? Fi

can use

J

r\@

and from above

(p, )= 2T | - bR -2m (28 il f%(r)
AP, j( ful {()r

oAp.
= (27\) -
( g(fr) (f”[’f-?ﬁw)

(2w ) j O\(f’z
) CD® PPt A

pividing by 2T\ , using the consistency relation (Al) for

X and subtracting the first term on the right hand side

gives:

A (7S5 F+,r P }

- g "\(Ft
@W ﬁ+f “P Pt A




—9g-

i . = =
changing variables from P, to p;p2-(l/2>b.\l on the left hand

side and then from p2 to E, the curly bracket becomes

A -
foo L dE 1 SA_LV‘_E._. %
G CE W OE+(="¢ﬁ‘+A>

A—e0
/&(qﬂ”&) (/&AJ”&'('* ‘}a))

a5,
Defining rescaled variables [3 F'/ | % F"’ fE and

//F(‘o ) = % (F F) the resulting equation is:
— a8 4ip=L(eir)fpri | 1k

+2—
=g )ep>

which can be rewritten as

@%')

( )_ /f(a)(}’{i
A= 5 Sk N 7t

E§)<(F’i);ﬁ(g)0i% (’(f >(r;‘~) (B1')

@n*



p-

@
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These equations are equivalent to the Schredinger equa-

tion for bound states

Hlp> = =A>

in the sense that

. - 9> Wt
if fC‘) satisfies (BLl') - -
’ then ""({;‘{-2*) = ff(%?):t,f@/ar B3)

Soton fieo r(zz)z _2

Although X and /\ and S -functions do not appear in the

equation(s) (Bl“h, which on a naive level might suggest that
with the two-body system also the 3-body {and hopefully N-

body) problem has been successfully regularized, one really
still has to show that (B1Y) is free of irregularities,-pre-

ferably that there is only a finite number of bound states,
i.e., that ! ™ & vabduwes c:F A ;For whadd, (31‘”)6%1&,

N~ / (B
Solweol , ﬁrvm a AFW:,!(, olirede § :B(f)

Neither the guestion per se ner the task of actually proving
(B4} are of academic nature, as the following discussion-—
which is an uncompleted attempt to gigorously answer (:3('.)
positively for D=2 "~ and the fact that (B4) is in fact wrong
for D=3 (although the corresponding equation is alsco free of

the naive divergencies) show,
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For D=3 the eguation corresponding to (Bl) is

L 9 @)

kg 44
e PRRN (' P S

IR

which at least for S-wavesl (f=f(‘$|)) has been studied
extensively in the 1iterature.2 Even after a continuum of
solutions is removed by orthogonality cconc'iiticms,,3 (B5) still
admits sclutions for an infinite set of values for A , that
extends tc +%, so that there is no ground state.4 These
results sharpen the difficulty pointed out as early as 1935
by L.H. Thomass, who=--in the formulation of the problem as
the limit of particles interacting by short-range potentials-=-
constructed a complicated trial wavefunction (whose deri\}a-

tives are not everywhere continuous e.g.) for

Lom = m CV TV s f@a”%’»’)

which has infinite Binding energy as a 0. (The attempt
to find the analogous trial wavefunction for D=2 leads to
one containing Bessel functions and complete 'elliptic integrals;

however,Evar.turns out to go to +ee(rather than -ed)as a-»0)

. T
L then equations (S1) p. 259 in [F], with L1, ‘-35,
an extra 1/2 1n front of the integral {(open casel} and

(l)é—)f f—.) [F] contains a long dis-

cussion of (B5). (F

2First derived by Skornyakov and Ter-Martirosjan,
JETP 4,648 (1957)

3panilov, J.E.T.P. 13, 349 (1961).

4Minlos and Faddeev, J.E.T.P. Vol. 14, No. 6, 1962.

5L.H. Thomas, Phys. Rev. 47, 903 (13835},
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This article is often gquoted but never cursed at for its
misprints at crucial places.*

After this brief discussion of the 3-bedy
problem in 3-dimensions, {Bl') will be discussed {trying to
prove (B4)): It is not too difficult to prove that Eg. (Bl')

has no sclution f£E€ L2

<¥CL & "f,_..) (Ylﬂz ”y)( x})

/
if ZX :> @ 3, Oone does this by noting that

/

Wil R0 ¥ SK"")') 7 7 S‘kcv)fc/) < kix) 1

(ﬂccw:c o,f Shuotty & mczuo&ln)
Mw{. 1

1= kg = Iign=lkgu & IKEIEHL,
oo 1K1 = NED (2 "‘jjf,v )

*In particular, Egq. (28) should read:

J-—(,.,. —@5‘”'}( (‘)[q ot T,\+2 (é%" ) O(f—;)d\g
il 4y -(22): I =-@§..-
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As tgu & LK) ig @c)

£=Kf cannot have a solution £#0 (€ L%) if |k|< 1.
As K 1is c¢learly a monotcnically decreasing function of A
for the kernel of (Bl1'}), one in fact needs only tc show that
i ] . N
lKl is finite (then for some big enough AA = A, [K.(_ l/
L
and there cannot be a bound state with binding energy A)A)

However, accidentally IK\ can be computed exactly (as a

function ofA } for

Kpg-eL L
T/&(A(H%roa))(f +2%-f'§+l)

K|~ Lend) (e 'g(x df

/&.ZA?( !+-f—,<) _Vﬂf(,;cmrﬂ)?_

0

_ géjxx ()(+)/+in5/
JAh A(1rEx) (('x+y+f)2—></ %

using g_ﬁl/__ - Z(%y%&)
: ()/L*@%C)% (Lf.C'—ﬂt)J;ﬁé/ ‘e
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and

)”5 - == 2C+ &y
% - ’
(y +@/+C) (2 (qc_ﬁa)\[;ﬁ{i/-ﬁg

(with b=(x+2), c=(x+1)?, (4c-b2)=4x(l+3x/4)>0) one gets

S N T
V2iamdo (1#%) 3 an

(B7}

[KI=

« K1 g A>e 5329

Unfortunately one has to allow for a larger class of

functions than L2——because

= §iGepl*

iz |t &

= 3 § 2V coR fefpd
T H'-(f*r - 12-'0;?-%]) 27 ¥

(19 83)

2 (B8)
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is finite for a larger class of functions L. L includes,

2
€.9., L1+p , defined as the space of functions f with

A
ll{ll“. (Sw t.) <

For this space one would wr1te(p19 as
Z

;F((*;) - S@Sl ‘*Zi) K( )fz)

) (49 4G) _‘f%_
t || A(H"f’))(f +Za_.i5‘-'i+, @F){sz)

= @f )(ff)

a.nd Z ~ 0’{?’ C‘lzi |
P = Syt 4 »
l K\erm) - S l l‘\ ' @u’)"‘(r?}l)(g LH)

no longer converges, so that the proof based on (B6&) ceases

to hold, (However, the fact that ' k | is infinite, does

l‘+|°
not necessarily mean that (B4) is wrong.)

Looking at(Bl(") for rotationally symmetric functions

(‘F}g ,f(‘o") simplifies the formulata little bit, but does

not help much !

o0

Aoydy (
=:if ’ 4 = g X
At O/&A(fo)ﬁmﬁg%—x/vl | k°/£)()m9>
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4
The bound A L e 4 (B7) for L°-functions is not much
improved: instead of getting
[~ o]

. ok _
IS &M%)z

1

YA

)

(Camfw; B, 1+3 «=e® )

one gets
¢
‘LLS 2+e e )
-t
— €
] k l ,&..A + {:) lf — (B10)
\(jhh ("_ é ‘)
-t
With 2—11--&—_- = (& the curly bracket becomes
lj-e | &
g- 21‘+0“'97L j;
which, instead of being =1 (in the calculation for ’ KI '

varies slightly, but not much?! 1Its minimal value in the

_.---

range of integration is L e 0.907.
2(3

Rewriting (BY9) as

—L AL = L1+ %x)_ﬁc,\)
___5 ,&(y)plby (")
3
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{now restricting oneself alsc to symmetric wavefunctions o
for every antisymmetric ’Lf> there is always a
symmetric ]?:} with lower energy) one could naively
apply the variational principle by thinking of the right
hand side as a Hamiltonian E/acting on h: Gﬁn(x} with

eigenvalue - £nA . It is not difficult to find normalized

trial wavefunctions hE:Ll+x with arbitrarily large binding

energy: take

P oo = (@ (ux)"é (B1)

”/&”Hx ) /&,(::&) < (G HZC)—-}

independent of € . then

= Ze Tla (13 b 2 (m)ﬂmg(v)
( 1+x) +2€ <+><) \{7+K+7)'-)<)/

,&( 1 ) elx

2e (+2€ —2¢
< (} X ) ‘S‘GX)HG(I-}H/) W
et o
= 2@ t & 0{6 -‘Zéf[,;she

IH

I+ &

o

N
2’§(x+|) e € Zéc =0
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1+x .

oY . .
However, H acting on L is not a self-~adjoint operator,

soc that the "variational principle" (i.e., the statement
that the true ground state energy E < I+x

v B, < W?zv Vel
does not hold.

One final argument will be given, strongly suggesting
that the 3-body spectrum is bounded from below: 1eaving
the cutoff parameter /\ in the integral equation, instead of
taking A - oo — once X has disappeared and the

appearing expressions are finite as /\'f)00 -— one has,

for S-waves:

(B12)

W=Vt = (ka)
(_x) ; th,/\)f(x»rym)_x) 9/

where

%x,/\)i’ F(‘sz/\)

i

>h:‘ \~

LS‘ Cit ﬁl_ __ f ——
214/\1% g f‘+2a—pz+A
. = A(f—xm%,ew(u-}\—z -

— f X124 (K+A L, x+eAa
/gN'(f '+ A+ ﬁ!i + 5 -+ /\z

|
C?C/_3

2
and g(x) is assumed to be Lebes’ue—integrable on [0,A].




with

97 Kig = Ngh <K Jign
as A\ o9, F(x,A) is dominated by /&‘ 2 A
(for all x:)*f so that as /\ —) oo z( y Xt )

K <Y, 4

(see (B7) and (Bl0)), which is independent of /\ for large

/\, so that (Bl2) cannot have a solution g#0 o
) | | (o ey
/{’M%C A / it A 2 € ({/3' — From now on (B4)
< e

will be assumed to be true with A

fa. -V 4
Strengthened by the above argument,one performs a

variational calculation for H (defined in Bl),with

fP- (o (Cug=1)

‘otm,-
5
as trial wavefunctions (a as parameter). One finds:
| o . . _
. * n-€. F(x(/\) :@(T{KfA))thG(x,A)), irdes f;oécxm)-o

vt n;]f o allows x@/\?) fo fe o oL'WB.;oa /f..c/kmo;f/\, |
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o ,fw( Iy sl
—]—§5€— qu) B ﬁfﬂ—
(¢ = L{/s )
\,\/:_____ I O*fp &{9, (Y41a)
=7 g3 qe-ra,)(% ~m)({° -FZH )
B (f 1)()(+3)
qw ,) SK -3 W((w—r) %*X)

_/|-o.,)

In order to arrive at the above form of W, Feynman's trick

(B13)

of combining denominators was used first. The results of a
numerical calculation* for different wvalues of a, which are
listed below, gave ax 3/4 to be the value which leads to a

maximal lower bound, on A.3, giving =~ 2.4.

_— /
o W T W-T A2 2wT A,
b LY43 0.58¢ .57  2.350 2294
3 it 0.F40  p g3 2.3489 2.uge

|q 326 ©.863 0.%i3 2.320 2.5¥9

Y, e | 24671

G, o 1 1

2 L .2k 2. 74

G 2oy (.34 2.2¢7 ,

b, 2084 1UoS 2 763 1584

2 2. L Yép | 2 7L

b 2.5 16uf | 2.73f

(2W-T has been listed,as it turns out to be the lower bound

/
. for 1ln A3 )
*] would like to thank Slobodan Tepi& for having done
this computation
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Finally it will be shown that the closed 3-body problem

(i.e., all 3 particles mutuadly interacting) is exactly the
same as the open case, apart from a factor of 2 in front

of the integral in the integral equation{s) (B1C) ¢

#b{:-ﬁ T+T+7—) (9::))(5(@ § + ( j_;) ﬁ}z))

Multiplying H{ﬁv> = ——Ajlﬂ> ﬁ‘a <m _ﬁﬁ |

gives

((T, + T, 41 )J, A)?,b‘r;,‘,*f‘

= QuT)+ QR+ ) @

where

= e G | SG3 I
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i\
RN
=

i}
E)D
=
N

d, and g3 are given by the same expression with the arguments
of Lr being cyclicly permuted. Restricting cneself to totally
symmetric solutions ’%ﬁ) 9;= g2=g3Eg therefore, and--using

(Bl4)-one thus has:

@ )=6m)[ds, U TG )7
% f% Z‘”’ :’/,&__'—31 |
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f
OWJ) 2“>O)(T)§” 2+(/M"Z+A)

4’(2“)25_2_ i’)(?—u/d)
+(/u +A/)

and

L’)____ i}(ﬂ)%- O\('L)+ (-7,-T. )

T_ZJ—ML +u,T‘¢+A

Changing q to —q assuming g to be an even function* and

with the identification

AC)A re_af Ze;p-—-r f%‘?

this is, apart from a factor of 2 in front of the second term,

*%(ﬁ), or) &”% PERLET 5+ )
M A
= CE) (+T ) ~ ~ a0

|P>to have positive parlty i.e. (-——=) +lP(+++) Note
that H3 is invariant under
>._§‘ 3




L3
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the same as the equation considered in the open case and the
lower bounds on the ground state binding energy for the

closed system (Aa') ; corresponding to trial wave functions
of the form @?—+ G are now given as EZW-T

instead of ew_T. a®>1l1ll/4 led to a maximal bound on Aé

p
A3)15.8. That the binding energy of the closed three-body
system comes out so largelmight be explained by noting that

AZ/-=c:o in a sense, because the coupling strength had

been adjusted to make A come out finite,

2
Because of the additiconal factor of 2 multiplying the

kernel of the integral eguation, one has

K-y (L) |

for the Lz—case, so that one knows that for A>e16/3 there

is no square integrable solution of

3) = & 2 (*)c*{z
(‘o j/&(/& !+9 1))([0+Z—/0 ) (B15)




-115-

Bruch and Tjon* have in fact calculated numerically the
eigenvalues of (B1l5) as {ﬁé=16.1 (t0.2) (so that the above
variational calculation gave in fact an astonishingly good
bound) and a second eigenvalue at AA '=1.25 (£0.05). For the
open case it follows from their numerical calculation that
Zl=-2.5, which is in very good agreement with the above

variational calculatien,

*Phys., Rev. 19, No, 2; Only after having done the work
presented in this thesis did I find this article. I believe
the numerical calculation, although in the theoretical treat-
ment they take the calculation corresponding to (B7) for the
closed case(and for S-waves) as proof of (B4) without
worrying about functions not in LZ{ which does not convince

M€} Maybe they assume even in the numerical calculation,that
the eigenfunctions are sguare integrable.
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C. The N=-body proklem

A T
Changing variables to relative coordinates X £ ""§
T 7 "4

Wr N 2 N a2
I -
-H_N = 242::_, -"_'-r B Zf)tzr (3" Efm) (C1)
and -s-(i:.tlng the total momentum ,P Z T (conjugate
to x 3 -f';-( Z T-r ) egual to O gives
I
N-} “‘L N—z—\ .
1 - ?.:( RICONCEVN X M
=1

For the closed case (i.e., particles 1 and N also interacting)

one ;:an shC:: thil )-‘ N a4
#o= 2 (F- e SR)-TFeFe

f)..s

B G NP o

= TG -f)+V  (Furf)

— _; y

is equivalent to HNM (closed case) with ZT y
-
provided that one restricts oneself to states with f}( *0

(Note: [_H.N’ZT} EH-“’Z:KJ"‘O )

e ——— T m e EEEERE—r————— - T
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As was done for the 3-body system, one can eliminate k

i
and derive an integral eguation from the Schrodinger eguation

for bound states;: Htx(I/) Ill)> = - A |ll)> . Multiply

by a momentum Eigen-—bra(pl. . .le to get

(-Rf""fﬂ)*A)L})(f’l"'f’u
21‘)25;2 (f" 2"' P)
N
where T(p;...py) gz Z Ji(ﬁ;'ﬁ,,,)l and the

-

vector notation will from now on be dropped. Defining the

right hand side of (C3) to be ; gr(pl...pﬁr...pN) where ¢1'

indicates that this variable does not occur, one has

9, =@ % Bepg . p)

G')" / |
= mZ 3s P fofs ~F
\S.Ciii) T(ﬁ’_ z'( fﬂ) .|-A (c4)

S

is (21[')\ ) times the Fourier transform of the wave function

in position space, with the r-'K, coordinate X, fixed at the

origin. Separating out the diagonal term in the above

equation for g, one has:
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%fr(f"“ﬂ'"f")( 2r) ggé ' >

m)* T(r‘.? .-ﬂ)-’-A

= ‘a(r.g/ Pu)
s?;r @'r) T(---) + A

which, using the consistency relation for ) (Eg. Al), leads

to an integral eqguation for the 9,r Dot containing ) :

A o(‘ [

2
=L (de _ (dg |
T 4TI EH

GT)* T4 (-g)eks- 0T
whee | Lia-3 .
Té _ éz(f’s Por) = (ﬁ.’";n,‘_')%]\[;‘}»{}
o 0 oHennsc

in the second term change integration variable from% to

Y
q-:'q‘r - 1/2 (pr l+pr+1) (note that the integral is only loga-

rythmically diverging) and then to Esq , so that the

denominator becomes

T Tort Hpurp )+ €

and, by combining the two integrals, one gets
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w A (T o+ e A)

so that

%f A (A 'I'T’pz"' T:“" 't!,,_(ﬁ-n‘ﬂ'?-l)z

____Zf %5 (P %r/ P)

T ger T(p-g,-p)t 4
Scaling all momenta by (-‘ nd with fr(...ps...lsgr(...psﬁ'n)
one finally arrives at
A A )

= A (T 3 ) T ) 4

—_7 5{3(?: %J( F) e
T‘*"S\O(% |+ T (g, pu)

th; (H;)(f, Fopu) ,rr.-:z N,

Also, by definiti

§ ot% m 2h-PO=Jdg £ (p-fpp)e
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Although the above derivation is written cut for the closed

case, all corresponding equations for the open case can be

obtained by simply setting PNE 0 everywhere (pN non-existing).
For the closed case one can simplify (C5) considerably by

making use of the fact that Hﬁ is invariant under cyclic

permutations (r- r+l) and also reflections (N 1, N-1&>2,.,.).
Restricting oneself to states that are singlets under these

transformation i.e.,

Q(PI PN)= q)(ﬁ' fi-- fu—.)’:(’)(ﬂﬁu—vﬁ)

one has

‘a (P f/ [’,,,) 21!‘)5@([*, £ fu) ‘éif
= 21\ ,W}(f’nf’ 9 ’op) (©7)

= 9 (Gt /--,o..,,

%ff’l(f&"'/’r" w f’l)
%N-H-— (F"f{' P'

Using {(C7) {(in fact only (i)), (C5) becomes

(analogously)

(,w.)
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R Y
=/g~( ,4-‘1; "i(fﬂ‘;'f.,.)""(':f(ﬂ"ﬂ)?);ﬁ (c8)

o(.& PP Pu g Bl b P02 )

I+ P84 R )L £ )

(f= fl' all other f are obtalned from f via Cc?). (C8) is a
single Schrgdlnger—llke equation for a function f of N-1
variables -E;r‘ It is important, however, to remember that
(C8) (and also (C5), for the closed case) is subject to the

N o

A
constraint Z X,r'= O which translates to
I

;F(f’;. ‘DN) = ,‘F(f’,_-l-{,,_,’ FM"'{) ©9)

{in general f (pg. . )=fr(...p +K.o..) ‘b‘L’. }. Also one must
not forget the condition (C6), which e. g., for N=4 says that
gd pf(p, 2 2 ) is invariant under all permutations of the
arguments of f, For the case N=3 can (C9) be used to

further reduce the number of variables explicitly: for N=3:

~Ab L) =4 (143 (prp)) 4
54% f(r’» &)+ £4,p.)

I+ 2Py b g )i 16
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(c9) = f(p,,Py) = £(p3-P,); by shifting the integration
variabkle in the first term to dy=Pys in the second to d1-P,
(and using f£(x)=f(-x), from parity invariance of Hﬂ]*) one sees

that both terms are, in fact, equal to

L0y 490
2k AL R AR GE

which agrees with Eqg. (BL5) (ﬁgpe’-pz) .

N=3 is a special case . As
for a function of two variables, reflection invariance is
equivalent to invariance under cyclic permutations, (C8) is
the correct equation also for the open case (which has only
reflection symmetry) putting'ﬁN=3=-0 (which up to Eg. (C5) was
the simple and correct procedure of getting the corresponding

equation for the open case)s (CB) then is

s b 1) = L (14 FPDE
OL%, ,f(?' )
X i .

which is exactly Bl. The important new feature of (C8) for

N3 is that it cannot be brought into the form f= Kf with K
nonsingular. As the f in the different terms in the integral
of (C8) contains all the variables DPye Py and the integration
variable q; (in cyclic permutations), K necessarily involves

many é-functions.

*Or use (C7iii) for N=3, r=2 gz(p)=92(-p}$ gl(p}=g‘- (-p).
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SUMMARY

Two particles attracting each other by a S.—function
will have infinite binding energy in 2 (or more) dimensions,
unless one chooses the coupling constant to be infinitesimal
and regularizes the g -function by introducing a cutoff to
the divergent integrals. Equivalently, one can define the
g-function as a limit of a short-range potential., It turns
out that then 2 dimensions are more similar to lower dimensions
(DL 2), where there is no regularization needed in the first place.

For the N-body problem, one can derive an integral
equation for the Schrodinger equafion for bound states, which
is free of any naive divergencies. However, one has to make
sure that this equation cannot be solved for arbitrarily large
binding energy.

For the 3-body case this is argued not to happen (in
contrast to the analogous eguation in 3 dimensions, where there
are eigenfunctions explicitly known for any large binding
energy). The major problem is that one has to allow for a
rather large class of functions f in the integral equation,
as the physical wavefunction will be square integrable even if

f falls off much slower at & (in momentum space).
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