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Abstract. In this paper, we try to determine when the derived category of an
abelian category is the homotopy category of a model structure on the category
of chain complexes. We prove that this is always the case when the abelian
category is a Grothendieck category, as has also been done by Morel. But
this model structure is not very useful for defining derived tensor products.
We therefore consider another method for constructing a model structure,
and apply it to the category of sheaves on a well-behaved ringed space. The
resulting flat model structure is compatible with the tensor product and all
homomorphisms of ringed spaces.

Introduction

It very often happens in mathematics that one has a category C and a collection
of maps W in C that one would like to consider as isomorphisms. In this situation,
one can formally invert the maps in W , but the resulting localization Ho C of C may
not be a category in general, because HoC(X, Y ) may not be a set. Furthermore,
it is hard to get a handle on maps in HoC from X to Y . Model categories were
invented by Quillen [Qui67] to get around these problems. In general, it is hard to
prove a given category C is a model category, but, having done so, many structural
results about HoC follow easily; for example, Ho C is then canonically enriched
over the homotopy category of simplicial sets. And of course one can then use the
considerable body of results about model categories to investigate C.

An obvious example of a situation where one wants to invert some maps is
the construction of the derived category of an abelian category A. Recall that
this is the localization of the category Ch(A) of (unbounded) chain complexes
by maps which induce homology isomorphisms. The category of nonnegatively
graded chain complexes of R-modules was one of Quillen’s first examples of a model
category. Nevertheless, the first published proof that the category of unbounded
chain complexes of R-modules is a model category appears to be in [Hov98].

We begin the paper by establishing a model structure on Ch(A) whose homotopy
category is the derived category, when A is a a Grothendieck category. In particular,
A could be the category of sheaves on a ringed space, or the category of quasi-
coherent sheaves on a quasi-compact and quasi-separared scheme. The author has
heard that this has been done by F. Morel as well, but does not know any details.
The injective model structure is natural for exact functors of abelian categories,
but not for left adjoints which are only right exact. Also, if A is closed symmetric
monoidal, the injective model structure will not be compatible with the tensor
product, making it of no use for defining the derived tensor product.
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We therefore discuss a different method for constructing a model structure on
Ch(A). This method enables us to define a different model structure on Ch(A)
in case A has a set of generators of finite projective dimension. In particular, we
apply it when A is the category of quasi-coherent sheaves on a nice enough scheme,
using the locally free sheaves as the generators. Though the resulting locally free
model structure is still not compatible with the tensor product, it does give us some
information about the resulting derived category that does not seem accessible from
the injective model structure.

But this method works better when A is the category of sheaves on a ringed
space (S,O) satisfying a hypothesis related to finite cohomological dimension. In
this case, we construct a flat model structure on Ch(A) that is compatible with the
tensor product. We then get model categories of differential graded O-algebras and
of differential graded modules over a given differential graded O-algebra. The flat
model structure is also natural for arbitrary maps of ringed spaces.

To understand this paper, the reader needs to know some basic facts about
model categories, Grothendieck categories, and sheaves. A good introduction to
model categories is [DS95]. The book [Hov98] is a more in-depth study, but still
starting from scratch. All the terms we need are defined in [Hov98]; we will give
specific references as needed. For Grothendieck categories, [Ste75] is sufficient. For
sheaves and schemes, we try to refer mostly to [Har77], but we also need more
advanced results occasionally.

The author would like to thank Matthew Ando and Amnon Neeman for helpful
discussions about sheaves, and Dan Christensen for his many useful suggestions.

1. Grothendieck categories

In this section, we develop the basic structural properties of Grothendieck cat-
egories that we need. In particular, we show that every object in a Grothendieck
category is small and that the fundamental lemma of homological algebra holds in
a Grothendieck category.

Recall that a cocomplete abelian category is called an AB5 category if directed
colimits, or, equivalently, filtered colimits, are exact. A Grothendieck category is an
AB5 category that has a generator. Recall that U is a generator of A if the functor
A(U,−) is faithful. For example, the category of sheaves on a ringed space, or a
ringed topos, is a Grothendieck category. The Popescu-Gabriel theorem, a proof
of which can be found in [Ste75, Section X.4], asserts that every Grothendieck
category A is equivalent to the full subcategory of T -local objects in a module
category R-Mod, for some hereditary torsion theory T and some ring R. The ring
R can be taken to be Hom(U, U) for a generator U , but since the generator U is
not canonically attached to A, neither is the ring R.

One of the most basic tools used to establish the existence of a model category
structure is the small object argument [Hov98, Section 2.1]. In order to use the
small object argument, we need to know that the objects in a Grothendieck category
are small; i.e.that maps out of an object commute with long enough colimits. In
order to make this precise, we need some definitions.

Definition 1.1. 1. Given a limit ordinal λ, the cofinality of λ, cofin λ, is the
smallest cardinal κ such that there exists a subset T of λ with |T | = κ and
sup T = λ.
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2. Given an object A in a cocomplete category C and a cardinal κ, we say that A
is κ-small if, for every ordinal λ with cofin λ > κ and every colimit-preserving
functor X : λ −→ C, the natural map colimi<λ C(A, Xi) −→ C(A, colimi<λ Xi)
is an isomorphism.

3. An object A in a cocomplete category C is called small if it is κ-small for
some cardinal κ.

Proposition 1.2. Every object in a Grothendieck category is small.

We do not know if this proposition holds more generally, e.g., in any AB5
category, but it seems unlikely.

Proof. We may as well assume that our Grothendieck category A is the localization
of R-Mod with respect to a hereditary torsion theory T , for some ring R. Let κ
be the larger of ∞ and the cardinality of R, let λ be an ordinal with cofin λ >
κ, and let X : λ −→ A be a colimit-preserving functor. We will first show that
colimXi, calculated in R-Mod, is still T -local, so is also the colimit in A. This
proof will depend on the fact that both R/a and a are κ-small in R-Mod [Hov98,
Example 2.1.6], for all (left) ideals a of R.

To see this, first note that colim Xi is torsion-free. Indeed, T is generated by
cyclic modules R/a, so it suffices to show that R-Mod(R/a, colimXi) = 0. But we
have chosen κ so that

R-Mod(R/a, colimXi) ∼= colimR-Mod(R/a, Xi) = 0,

since each Xi is torsion-free. Hence colim Xi is torsion-free.
It follows that the localization of colimXi is

colima Hom(a, colimi Xi),

where the colimit is taken over ideals a such that R/a is torsion, as in [Ste75,
Section IX.1]. But then we have

colima Hom(a, colimi Xi) ∼= colima colimi Hom(a, Xi)

∼= colimi colima Hom(a, Xi) = colimi Xi.

Thus colimXi is already local.
Now suppose M is an arbitrary local module. There is a cardinal κ′ such that

M is κ′-small as an R-module, and we can choose κ′ ≥ κ. It is then immediate
from the argument above that M is κ′-small in A.

We will be most interested in the category of unbounded chain complexes Ch(A)
on a Grothendieck categoryA. This is again a Grothendieck category; since colimits
are taken dimensionwise, filtered colimits are obviously exact, and if U is a generator
of A, then the disks DnU are generators of Ch(A). Recall that DnU is the complex
which is U in degrees n and n− 1 and 0 elsewhere, with the interesting differential
being the identity map. To see that the disks generate Ch(A), use the adjunction
relation Ch(A)(DnU, X) ∼= A(U, Xn). In particular, every object of Ch(A) is small.

We recall the fundamental lemma of homological algebra, which holds in any
abelian category [Mit65, Section VI.8].

Lemma 1.3. Suppose A is an abelian category, and

0 −→ A
f
−→ B

g
−→ C −→ 0
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is a short exact sequence in Ch(A). Then there is a natural long exact sequence

. . . −→ Hn+1C
∂∗−→ HnA

f∗

−→ HnB
g∗

−→ HnC
∂∗−→ Hn−1A −→ . . .

in homology.

Recall that a map f in Ch(A) is called a quasi-isomorphism if H∗f is an isomor-
phism. The following corollary is immediate.

Corollary 1.4. Suppose A is an abelian category, and

A
f

−−−−→ B

r

y
ys

C −−−−→
g

D

is a commutative square in Ch(A).

(a) If the square above is a pushout square and f is an injective quasi-isomorphism,

so is g.
(b) If the square above is a pushout square, r is injective and f is a quasi-

isomorphism, then g is a quasi-isomorphism.

(c) If the square above is a pullback square and g is a surjective quasi-isomorphism,

so is f .

(d) If the square above is a pullback square, s is surjective, and g is a quasi-

isomorphism, then f is a quasi-isomorphism.

It is also useful to know that homology commutes with colimits.

Lemma 1.5. Suppose A is an AB5 category, I is a small filtered category, and

F : I −→ Ch(A) is a functor. Then there is a natural isomorphism colimHnF −→
Hn colimF .

Proof. We have an exact sequence

0 −→ ZnF (i) −→ F (i)n
d
−→ F (i)n−1 −→ BnF (i) −→ 0

for each object i of I. Since filtered colimits are exact, we find that Zn colimi F (i) ∼=
colimi ZnF (i) and smiilarly for Bn. Applying colimits to the short exact sequences

0 −→ BnF (i) −→ ZnF (i) −→ HnF (i)

completes the proof.

In particular, using transfinite induction, we obtain the following proposition.

Proposition 1.6. Suppose A is an AB5 category, λ is an ordinal, and X : λ −→
Ch(A) is a colimit-preserving functor such that, for all α < λ, the map Xα −→ Xα+1

is a quasi-isomorphism. Then the map X0 −→ colimα<λ Xα is a quasi-isomorphism.

In the theory of model categories, one frequently has a set of maps J and wants
to consider the class J-inj of maps that look like fibrations to J and the class J-cof
of maps that look like cofibrations to J-inj. These classes are defined by lifting
properties [Hov98, Section 2.1].

Corollary 1.7. Let A be a Grothendieck category. Suppose J is a set of injective

quasi-isomorphisms in Ch(A). Then J-cof consists of injective quasi-isomorphisms.
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Proof. By the small object argument [Hov98, Theorem 2.1.14 and Corollary 2.1.15],
every element of J-cof is a retract of a transfinite composition of pushouts of el-
ements of J . Injections are closed under retracts and pushouts in any abelian
category; the AB5 condition guarantees that they are also closed under transfi-
nite compositions. Part (a) of Corollary 1.4 then shows that pushouts of maps of
J are quasi-isomorphisms. Proposition 1.6 shows that transfinite compositions of
quasi-isomorphisms are quasi-isomorphisms. It is clear that retracts of injective
quasi-isomorphisms are quasi-isomorphisms.

Note that this corollary holds in any AB5 category as long as the domains and
codomains of the maps of J are small, so that the small object argument applies.

2. The injective model structure

In this section, we construct the injective model structure on Ch(A) when A is
a Grothendieck category.

Definition 2.1. Define a map p : X −→ Y in Ch(A) to be an injective fibration if
it has the right lifting property with respect to all injective weak equivalences in
Ch(A).

Note that, by definition, a complex X is injectively fibrant if and only if X is
DG-injective in the sense of [AFH97, Section 7]. The arguments in that paper
then show that X is DG-injective if and only if each Xn is injective in A and X
is K-injective in the sense of Spaltenstein [Spa88]. We will see in Proposition 2.12
that an injective fibration is just a dimensionwise split surjection with DG-injective
kernel.

Then the object of this section is to prove the following theorem.

Theorem 2.2. Suppose A is a Grothendieck category. Then the derived category

of A is the homotopy category of a cofibrantly generated proper model structure

on Ch(A) where the cofibrations are the injections, the fibrations are the injective

fibrations, and the weak equivalences are the quasi-isomorphisms.

We call this model structure on Ch(A) the injective structure, or the injective

model structure.

Corollary 2.3. (a) Suppose (S,O) is a ringed space (or a ringed topos). Then

the injective structure on the category Ch(O-Mod) of unbounded complexes of

sheaves of O-modules is a model structure, whose homotopy category is the

derived category.

(b) Suppose S is a quasi-compact, quasi-separated scheme. Then the injective

structure on the category ChQCo(S) of unbounded complexes of quasi-coherent

sheaves of OS-modules is a model structure, whose homotopy category is the

derived category of quasi-coherent sheaves.

Proof. It is well-known that the category of sheaves on a ringed space is a Grothen-
dieck category [Gro57, Proposition 3.1.1]. The category of quasi-coherent sheaves
on ringed space is an abelian subcategory of all sheaves, closed under colimits. So
colimits are exact. It remains to show that the category of quasi-coherent sheaves
on a quasi-compact, quasi-separated scheme has a generator. This is a corollary
of Deligne’s result in [Har66, Appendix, Prop. 2], which asserts that every quasi-
coherent sheaf is the colimit of finitely presented sheaves. Since there is only a set of
finitely presented sheaves, the direct sum of all of them will serve as a generator.
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Theorem 2.2 is of course a generalization of the corresponding theorem about
complexes of modules [Hov98, Theorem 2.3.13], and will be proved in a similar way.
We need sets I and J of generating cofibrations and generating trivial cofibrations.
We will find these sets by just taking all injections (resp. all injective weak equiv-
alences) whose cardinality is not too large. Then we will show that I-cof is the
class of injections and J-cof is the class of injective weak equivalences. We must
also show that every map in I-inj is an injective fibration and a weak equivalence.
The recognition theorem [Hov98, Theorem 2.1.19] will then prove that we do get a
model category. Properness is automatic from Corollary 1.4.

To carry out this plan, we need a notion of cardinality. This notion will depend
on a way of representing our Grothendieck category A as a localization of a category
of modules, but the resulting model structure will be independent of this choice.
So throughout the rest of this section, we will assume that A is the localization of
R-Mod, for some ring R, with respect to a hereditary torsion theory. In particular,
we will think of objects of A as being R-modules.

Definition 2.4. Suppose A is a Grothendieck category. Define the cardinality

of X , |X |, to be the cardinality of X as an R-module. Given a chain complex
X ∈ Ch(A), we define |X | to be the cardinality of the disjoint union of the Xn.
Define γ to be the supremum of ∞ and 2|R|. Then define I to be a set containing
one element of each isomorphism class of injections A −→ B in Ch(A) with |B| ≤ γ.
Define J to be the set of all quasi-isomorphisms in I .

The reason for choosing γ as we have done is the following lemma.

Lemma 2.5. Suppose R is a ring, T is a torsion theory on R-Mod, and

L : R-Mod −→ R-Mod

is the corresponding localization functor. If M is an R-module with |M | ≤ γ, then

|LM | ≤ γ.

Proof. We may as well assume M is torsion-free, since killing the torsion only de-
creases the cardinality of M , without changing LM . Then LM = colim Hom(a, M),
where the colimit is taken over ideals a such that R/a lies in T . Thus

|LM | ≤ 2|R||M ||R|.

In case |R| is finite, γ = ∞, and one can easily see from this equation that |LM | is
countable when |M | is so. In case R is infinite, we have

|LM | ≤ 2|R|(2|R|)|R| = 2|R|2 = 2|R| = γ,

as required.

As a simple case of this lemma, we have the following corollary.

Corollary 2.6. Suppose A is a Grothendieck category, X ∈ Ch(A), and x ∈ Xn

for some n. Then the smallest subcomplex Y of X in Ch(A) containing x has

|Y | ≤ γ.

Proof. The smallest subcomplex Y ′ of R-modules containing x is simply R/ ann(x)
in degree n and R/ ann(dx) in degree n−1, so |Y ′| ≤ γ. Since localization is exact,
the localization Y of Y ′ will be a subcomplex in Ch(A) containing x. Lemma 2.5
guarantees that |Y | ≤ γ.
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We also need the following standard lemma. Given a class of maps K, K-proj
is the class of maps which look projective to K; that is, they have the left lifting
property with respect to K. See [Hov98, Section 2.1] for the precise definition.

Lemma 2.7. Let A denote an abelian category with enough injectives. Let K de-

note the class of surjections in Ch(A) whose kernel is an injective object of Ch(A).
Then K-proj is the class of injections. Furthermore, (K-proj)-inj = K.

Proof. We first show that any map in K-proj is injective. Recall the disk functor
Dn : A −→ Ch(A) that takes an object X to the complex which is X in degrees n
and n − 1, and 0 elsewhere. The functor Dn is right adjoint to the exact functor
X 7→ Xn−1. Thus Dn(X) is injective whenever X is injective in A. In particular,
suppose i : A −→ B is a map of complexes with kernel C. Fix n, and embed Cn into

an injective object M . This embedding extends to a map An
f
−→ M , and so defines

a map of complexes A −→ Dn+1M , which is f in degree n. This map obviously
cannot extend to a map B −→ Dn+1M unless Cn is 0. Since the map Dn+1M −→ 0
is in K, this shows that every map in K-proj is an injection.

Conversely, suppose we have a commutative diagram in Ch(A) as follows,

A −−−−→
f

X

i

y
yp

B −−−−→
g

Y

where i is an injection and p is a surjection with injective kernel W . Since W is
injective in Ch(A), there is a splitting q : Y −→ X of p. We have p(qgi − f) = 0,
so, since W is injective, there is an extension h : B −→ W such that hi = qgi − f .
Then qg − h : B −→ X is the desired lift. Hence i is in K-proj.

Now, we always have (K-proj)-inj ⊇ K. Conversely, suppose p : X −→ Y has the
right lifting property with respect to all injections. Consider the map Dn(Yn) −→ Y
that is the identity in degree n. Since p has the right lifting property with respect
to all injections, there is a lift DnY −→ X of this map. This shows that p is a split
surjection in each dimension. Since the map ker p −→ 0 is a pullback of p, it too will
have the right lifting property with respect to all injections, and so ker p is injective
as an object of Ch(A).

We can now prove that I generates all injections.

Proposition 2.8. Suppose A is a Grothendieck category. The class I-cof is the

class of injections, and the class I-inj is the class of surjections whose kernel is an

injective object of Ch(A).

Proof. Let K denote the class of surjections whose kernel is injective. Applying
Lemma 2.7, we see that I ⊆ K-proj, so I-cof ⊆ (K-proj)-cof = K-proj. Thus I-cof
consists of injections. Furthermore, if we can show I-cof consists of all injections,
Lemma 2.7 will show that I-inj is K, as required.

So suppose i : A −→ B is an injection. To show that i ∈ I-cof, we will show that
i has the left lifting property with respect to I-inj. So suppose p : X −→ Y is in
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I-inj, and we have a commutative diagram as follows.

A
f

−−−−→ X

i

y
yp

B −−−−→
g

Y

Let T be the set of partial lifts of this diagram, so T is the set of all pairs (C, h),
where C is a subcomplex of B containing i(A) and h : C −→ X is a chain map such
that ph = g|C and hi = f . Then T is a partially ordered set, where (C, h) ≤ (C ′, h′)
if C ′ contains C and h′ extends h. The set T is nonempty and we claim that every
chain in T has an upper bound. Indeed, given a chain (Ci, hi) in T , the colimit C
of the Ci is still a subcomplex of B, by the AB5 condition, and the union of the
hi defines a lift on C. Thus there is a maximal element (M, h) of T . Suppose that
M is not all of B, and choose a homogeneous element x ∈ B that is not in M . Let
Z be the smallest subcomplex (in Ch(A)) of B containing x, so that |Z| ≤ γ by
Corollary 2.6. Let M ′ denote the subcomplex of B generated by M and x, so that
we have the pushout diagram below.

M ∩ Z −−−−→ Z
y

y

M −−−−→ M ′

Since the top horizontal map is in I , the bottom horizontal map is in I-cof. Hence
there is a lift h′ in the following diagram.

M
h

−−−−→ X
y

yp

M ′ −−−−→
g

Y

This lift violates the maximality of (M, h), so we must have M = B. Hence
i ∈ I-cof, as required.

Corollary 2.9. Suppose A is a Grothendieck category. Then every injective object

of Ch(A) is injectively fibrant and has no homology. Every map in I-inj is an

injective fibration and a quasi-isomorphism.

Proof. The second statement follows from the first. Indeed, a map in I-inj has the
right lifting property with respect to all injections, so in particular is an injective
fibration. If p ∈ I-inj, then ker p is an injective object of Ch(A), so has no homology
by the first statement. Thus p is a homology isomorphism, by the long exact
sequence.

Now suppose X is an injective object of Ch(A). Certainly X is injectively
fibrant. To see that X has no homology, let Y denote the complex defined by
Yn = Xn ⊕ Xn−1 with d(x, y) = (dx + y,−dy). Then X −→ Y is an inclusion
of complexes, so since X is injective, has a retraction Y −→ X . This retraction is
equivalent to a contracting homotopy of X , so in particular X has no homology.
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To complete the proof of Theorem 2.2, we must show that J-cof is the class
of injective quasi-isomorphisms, from which it will follow that J-inj is the class of
injective fibrations. We begin with the following crucial, but technical, lemma.

Lemma 2.10. Suppose A is a Grothendieck category. Suppose i : A −→ B is an

injective quasi-isomorphism in Ch(A). For every subcomplex C of B in Ch(A) with

|C| ≤ γ, there is a subcomplex D of B in Ch(A) containing C such that |D| ≤ γ
and i : D ∩ A −→ D is a weak equivalence.

Proof. The failure of C ∩ A −→ C to be a quasi-isomorphism is measured by
H∗(C/C ∩ A). Suppose for the moment that for every homogeneous element x
of H∗(C/C∩A), we can find a subcomplex C(x) containing C such that |C(x)| ≤ γ
and the map H∗(C/C ∩A) −→ H∗(C(x)/C(x)∩A) sends x to 0. Since |C| ≤ γ, the
R-module homology of C/C ∩ A has size ≤ γ. But then Lemma 2.5 assures that
|H∗(C/C ∩ A)| ≤ γ, so have ≤ γ choices for x. We can therefore take the union
of all the C(x) to form a new subcomplex FC with |FC| ≤ γ (using Lemma 2.5
again), such that the induced map H∗(C/C ∩ A) −→ H∗(FC/FC ∩ A) is the zero
map.

Now iterate this construction to form a sequence F nC, and let D be the colimit of
all the F nC. Then |D| ≤ γ, by Lemma 2.5. Note that D/D∩A is the colimit of the
F nC/F nC∩A, by commuting colimits. Lemma 1.5 then shows that H∗(D/D∩A) =
0, as required.

To complete the proof, we must construct the complex C(x). The construction
we give is fairly complicated; we do not know if there is a simpler one. Let us

denote the R-module homology of a complex X by H̃(X) and let us denote the
torsion submodule of an R-module M by tM . Then the class x is represented by

a homomorphism f : a −→ H̃n(C/C ∩ A)/tH̃n(C/C ∩ A), for some left ideal a of R
such that R/a is in the torsion theory. The class x must map to 0 in Hn(B/A),
since A −→ B is a quasi-isomorphism. This means that there is a subideal b of a

with R/b also in the torsion theory, such that the composite

b
f
−→ H̃n(C/C ∩ A)/tH̃n(C/C ∩ A) −→ H̃n(B/A)/tH̃n(B/A)

is the zero map. We need to construct C(x) so that this map is already the zero
map when C(x) replaces B.

For each y ∈ b, choose an element zy in Cn with dzy ∈ An whose homology class
[zy] is a representative for f(y). Since the above composite is 0, there is an ideal

cy such that R/cy is in the torsion theory, and cy[zy] = 0 in H̃n(B/A). This means
that, for every w ∈ cy, there is an element vw,y ∈ Bn+1 such that wzy−dvw,y ∈ An.
We define C(x) to be the smallest subcomplex of B containing C and all the vw,y.
It is clear from the construction that x goes to 0 in Hn(C(x)/C(x) ∩ A). Since
there are ≤ |R| ≤ γ choices for w and y, the smallest subcomplex of R-modules
containing C and the vw,y has size ≤ γ. Lemma 2.5 then shows |C(x)| ≤ γ, as
required.

With this lemma in hand, it is now not difficult to show that J-cof is the class
of injective quasi-isomorphisms.

Proposition 2.11. Suppose A is a Grothendieck category. Then the class J-cof

consists of the injective quasi-isomorphisms, and the class J-inj consists of the

injective fibrations.
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By the recognition theorem [Hov98, Theorem 2.1.19], this proposition completes
the proof of Theorem 2.2.

Proof. The second statement is an immediate corollary of the first. By Corol-
lary 1.7, the maps of J-cof are injective quasi-isomorphisms. Now suppose i : A −→
B is an injective quasi-isomorphism. To show that i ∈ J-cof, we show that i has
the left lifting property with respect to J-inj. So suppose p is in J-inj, and we have
a commutative diagram as follows.

A
f

−−−−→ X

i

y
yp

B −−−−→
g

Y

Let T denote the set of partial lifts (C, h), where C is a subcomplex of B containing
iA such that the map i : A −→ C is a quasi-isomorphism, and h : C −→ X is a
partial lift in our diagram. Then T is obviously partially ordered and nonempty.
Proposition 1.6 and the argument used in the proof of Proposition 2.8 imply that
a chain in T has an upper bound. Zorn’s lemma then gives us a maximal element
(M, h) of T . Suppose M is not all of B, and choose an element x in B but not in
M . Let C denote the subcomplex of B generated by x, so |C| ≤ γ by Corollary 2.6.
Since M −→ B is a quasi-isomorphism, Lemma 2.10 implies that there is a complex
D containing C such that |D| ≤ γ and the map D∩M −→ D is a quasi-isomorphism.
Let N denote the subcomplex of B generated by M and D. Then the map M −→ N
is in J-cof, since it is a pushout of D∩M −→ D. Since p ∈ J-inj, there is an extension
of h to N , contradicting the maximality of (M, h). Therefore we must have had
M = B, and so i ∈ J-cof, as required.

To complete the description of the injective model structure, we would like to
characterize the injective fibrations. This characterization is precisely the same as
the corresponding characterization in the category of chain complexes of modules,
found in [Hov98, 2.3.16–20], with the same proofs.

Proposition 2.12. Suppose A is a Grothendieck category. Then a map p ∈ Ch(A)
is an injective fibration if and only if it is a split surjection in each degree with

injectively fibrant kernel. Any injectively fibrant complex is a complex of injective

objects, and any bounded above complex of injective objects is injectively fibrant.

We now discuss the functoriality of the injective model structure.

Proposition 2.13. Suppose F : A −→ B is a functor between Grothendieck cate-

gories, with right adjoint U . Then F induces a Quillen adjunction F : Ch(A) −→
Ch(B) between the injective model structures if and only if F is exact.

Proof. If F is exact, then clearly F preserves injections and all quasi-isomorphisms,
so preserves cofibrations and trivial cofibrations. Conversely, suppose F preserves
cofibrations and trivial cofibrations. We can think of an exact sequence as a complex
X with no homology, so 0 −→ X is a trivial cofibration. Then 0 −→ FX must also
be a trivial cofibration, so F must be exact.

Note that F being exact is equivalent to U being additive and preserving injec-
tives. This proposition is expected, but not very satisfying. It means we cannot
use the injective model structure to form any interesting total left derived functors,
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since such a total left derived functor would be defined by first replacing an object
by a cofibrant object weakly equivalent to it, and every object is already cofibrant.
We can use the injective model structure to form some right derived functors.

In fact, we can use it to form more right derived functors than one might first
expect. The construction of the total right derived functor of U [Hov98, Defi-
nition 1.3.6] only requires that U preserve weak equivalences between injectively
fibrant objects. But a quasi-isomorphism between injectively fibrant chain com-
plexes is in fact a chain homotopy equivalence (since every object is cofibrant). So
in order to construct the right derived functor of U , we only need to insure that U
preserve chain homotopy. For this, all we require is that U be additive.

We have then proved the following proposition.

Proposition 2.14. Suppose U : A −→ B is an additive functor between Grothendieck

categories. Then the total right derived functor RU : D(A) −→ D(B) of U exists.

This recovers the usual right derived functors of U : if X ∈ A, we have (RiU)(X) =
Hi((RU)X). The functor RU is of course calculated by replacing X by an injective
resolution (or an injectively fibrant approximation if X is a complex), then applying
U . In particular, if f is a map of ringed spaces, we recover the total right derived
functor Rf∗ between complexes of sheaves in this way.

3. An alternative approach

We have already discussed the drawbacks of the injective model structure on a
Grothendieck category A. In this section, we offer another approach; we will apply
it to the category of sheaves on a ringed space satisfying a hypthesis related to
finite global dimension in the next section. Though this is our only application of
this approach, we present the method in a general fashion in the hope that it may
find other applications. This approach is based on the standard projective model
structure when A = R-Mod for some ring R, and generalizations of it considered
by Christensen in [Chr98]. Recall from [Hov98, Section 2.3] that the projective
model structure on Ch(A), where A = R-Mod for some ring R, is a cofibrantly
generated model structure, with generating cofibrations I = {Sn−1R −→ DnR} and
generating trivial cofibrations J = {0 −→ DnR}. Here n runs through all integers,
Sn−1M is the complex whose only nonzero object is M in dimension n − 1, and
DnM is the complex whose only nonzero objects are M in dimensions n and n− 1.
Our plan is to replace the map 0 −→ R by a set of monomorphisms M.

Definition 3.1. Suppose M is a set of monomorphisms in a Grothendieck category
A. Let F denote the set of codomains of the maps of M. We will say that M is
pointed if 0 ∈ F and, if F ∈ F , then 0 −→ F is in M. Define J to be the set of
all Dnf , where n is an integer and f ∈ M. Define I to be the union of J and the
maps Sn−1F −→ DnF for F ∈ F and n an integer. Then define a map p to be a
M-fibration if p is in J-inj, define p to be a M-cofibration if p is in I-cof.

If M consists only of the maps 0 −→ F for F ∈ F , then we recover the definitions
of [Chr98].

Our goal is to determine conditions on M under which the quasi-isomorphisms,
the M-cofibrations, and the M-fibrations determine a model structure on Ch(A).
We use the recognition theorem [Hov98, Theorem 2.1.19]. Since the maps of J
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are injective quasi-isomorphisms in I-cof, the maps of J-cof will also be, by Corol-
lary 1.7. Hence we need to show that the maps of I-inj coincide with the maps that
are both M-fibrations and quasi-isomorphisms.

We begin by characterizing the M-fibrations.

Definition 3.2. Suppose M is a pointed set of monomorphisms in a Grothendieck
category A. Define an object X of A to be M-flasque if A(f, X) is surjective for
all f ∈ M.

This definition is a generalization of the usual notion of flasque, or flabby, sheaves.
We will discuss this in detail in the next section.

Let us denote the category of chain complexes of abelian groups by Ch(Z).

Proposition 3.3. Suppose M is a pointed set of monomorphisms in a Grothendieck

category A. Then a map p : X −→ Y in Ch(A) is a M-fibration if and only if A(F, p)
is a surjection in Ch(Z) for all F in F and ker p is dimensionwise M-flasque.

In particular, if F is a set of generators for A, then M-fibrations are surjective.
To see this, consider the map from Yn into the cokernel of pn.

Proof. Adjointness implies that p has the right lifting property with respect to

DnB
Dnf
−−−→ DnC if and only if the map

A(C, Xn) −→ A(C, Yn) ×A(B,Yn) A(B, Xn)

is surjective. Applying this when f is the map 0 −→ F for F ∈ F , we find that, if
p is a M-fibration, then A(F, p) is surjective. Furthermore, if p is a M-fibration,
then ker p −→ 0 is in J-inj. Applying the above criterion, we find that ker p is
dimensionwise M-flasque.

Conversely, suppose A(F, p) is a surjection for all F ∈ F and K = kerp is
dimensionwise M-flasque. Suppose f : B −→ C is in M. We have an exact sequence

0 −→ A(B, Kn) −→ A(B, Xn) −→ A(B, Yn)

and a similar exact sequence that is in fact short exact when B is replaced by C.
By pulling back the exact sequence for B through the map A(f, Yn), we obtain the
following commutative diagram whose top row is short exact and whose bottom row
only misses being short exact because the right map is not necessarily surjective.

A(C, Kn) −−−−→ A(C, Xn) −−−−→ A(C, Yn)

A(f,Kn)

y
y

∥∥∥

A(B, Kn) −−−−→ A(C, Yn) ×A(B,Yn) A(B, Xn) −−−−→ A(C, Yn)

Since K is dimensionwise M-flasque, the left-hand vertical map is surjective. A
standard diagram chase, as in the snake lemma, then show that the middle vertical
map is surjective, so p is a M-fibration.

Proposition 3.4. Suppose M is a pointed set of monomorphisms in a Grothendieck

category A. Suppose in addition that the set F of codomains of M generates A.

Then every map of complexes p : X −→ Y in I-inj is both a M-fibration and a

quasi-isomorphism.
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Proof. Recall that the functor Sn−1 : A −→ Ch(A) is left adjoint to the functor that
takes X to Zn−1X , the cycles in Xn−1. This implies that p is in I-inj if and only
if it is a M-fibration and the map

A(F, Xn) −→ A(F, Yn) ×A(F,Zn−1Y ) A(F, Zn−1X)

is surjective for all n and F ∈ F . Let K = ker p. If p ∈ I-inj, then the map
K −→ 0 is as well. Hence the map A(F, Kn) −→ A(F, Zn−1K) is surjective for
all n and all F ∈ F . Since F is a set of generators for A, this implies that the
map Kn −→ Zn−1K is surjective, and hence that K has no homology. A similar
argument shows that p is surjective, and so the long exact sequence implies that p
is a quasi-isomorphism.

If F is not a generating set for A, we can still say that, if p ∈ I-inj, then A(F, p)
is a surjective quasi-isomorphism for all F ∈ F .

To complete the construction of our model structure, we need to know that every
map that is both a M-fibration and a quasi-isomorphism is in I-inj. We begin with
a lemma.

Lemma 3.5. Suppose M is a pointed set of monomorphisms in a Grothendieck

category A, and let F be the set of codomains of M. Suppose p : X −→ Y is a map

in Ch(A) such that A(F, p) is surjective for all F ∈ F . Then p is in I-inj if and

only if kerp −→ 0 is in I-inj.

Proof. The only if implication is clear. Suppose A(F, p) is surjective for all F ∈ F ,
and let K = ker p. Suppose K −→ 0 is in I-inj. In particular, this means that K is
dimensionwise M-flasque, so p ∈ J-inj. In order to show that p is in I-inj, we must
show that, given F ∈ F , a map x : F −→ Zn−1X , and a map y : F −→ Yn such that
d ◦ y = p ◦ x, there is a map x′ : F −→ Xn such that p ◦ x′ = y and d ◦ x′ = x. First
choose z : F −→ Xn such that p ◦ z = y, using the fact that A(F, p) is surjective.
Then p ◦ (d ◦ z − x) = 0, so dz − x : F −→ Zn−1K. Since K −→ 0 is in I-inj, there is
a map w : F −→ Kn such that d ◦ w = d ◦ z − x. Now let x′ = z − w.

Proposition 3.6. Suppose M is a pointed set of monomorphisms in a Grothendieck

category A. Suppose that the set F of codomains of M generates A, and, fur-

thermore, suppose that if K is an acyclic, dimensionwise M-flasque, complex and

F ∈ F , then A(F, K) is an acyclic complex of abelian groups. Then, if p : X −→ Y
is a M-fibration and quasi-isomorphism in Ch(A), then p is in I-inj.

Proof. By Lemma 3.5, it suffices to show that K = ker p −→ 0 is in I-inj. But K
is an acyclic dimensionwise flasque complex, and so A(F, K) is also acyclic. Hence
the map A(F, Kn) −→ A(F, Zn−1K) is surjective, and so K −→ 0 is in I-inj.

We have proved the following theorem.

Theorem 3.7. Suppose M is a pointed set of monomorphisms in a Grothendieck

category A such that the set of codomains F of M forms a generating set of A
and, for all acyclic, dimensionwise M-flasque, complexes X and for all F ∈ F , the

complex A(F, X) is acyclic. Then Ch(A) is a proper cofibrantly generated model

category, where the weak equivalences are the quasi-isomorphisms, the fibrations are

the M-fibrations, and the cofibrations are the M-cofibrations.

One interesting feature of the hypotheses of this theorem is that, if they are true
for a given set of monomorphisms M with codomains F , then they remain true if
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we expand M by adding any set of monomorphisms whose codomains are all in F .
So in fact we get many different model structures with the same weak equivalences,
all relying on more or less stringent definitions of “flasque”.

One might hope that we would still get a model structure on Ch(A) if we drop
all hypotheses about the set of monomorphisms M. The weak equivalences would
have to change, probably to maps f such that A(F, f) is a quasi-isomorphism for all
F ∈ F . With this definition, an appropriately modified version of Proposition 3.6
does hold. However, we do not know if the maps of J-cof are weak equivalences
with this definition.

4. Generators of finite projective dimension

In this section, we apply the method of the previous section to construct a new
model structure on Ch(A), when A is a Grothendieck category with generators of
finite projective dimension. Recall that an object B is said to have finite projective

dimension if there is an integer n0 such that Extn
A(B, C) = 0 for all n ≥ n0 and all

object C of A. One normally thinks of an object of finite projective dimension as
being the 0th homology group of a finite complex of projectives, but this will not
be true unless there are enough projectives in the category. In the categories we
are interested in, this is almost never true.

Nevertheless, objects of finite projective dimension are useful in constructing a
model structure because of the following lemma.

Lemma 4.1. Suppose A is a Grothendieck category, F ∈ A has finite projective

dimension, and X ∈ Ch(A) is an acyclic complex such that Exti
A(F, Xn) = 0 for

all i > 0 and all n. Then A(F, X) is still acyclic.

Proof. Since X is acyclic, we have a short exact sequence

ZnX −→ Xn −→ Zn−1X.

Since Exti
A(F, Xn) = 0 for all i > 0, this gives us an exact sequence

0 −→ A(F, ZnX) −→ A(F, Xn) −→ A(F, Zn−1X) −→ Ext1A(F, ZnX) −→ 0

and isomorphisms Exti
A(F, Zn−1X) ∼= Exti+1

A (F, ZnX) for i > 0. Thus

Ext1A(F, ZnX) ∼= Extm+1
A (F, Zm+nX)

for all m ≥ 0. Since F has finite projective dimension, this implies Ext1A(F, ZnX) =
0 for all n. It follows that A(F, X) is acyclic.

Theorem 4.2. Suppose A is a Grothendieck category with a set of generators F ,

each element of which has finite projective dimension. Let M denote the set of

inclusions A −→ F of subobjects of objects F ∈ F . Then there is a proper cofi-

brantly generated model structure on Ch(A), where the weak equivalences are the

quasi-isomorphisms, the fibrations are the dimensionwise split surjections with di-

mensionwise injective kernel, and the cofibrations are the M-fibrations.

Proof. Note first that the M-flasque objects of A coincide with the injective objects,
by [Ste75, Prop. V.2.9]. Lemma 4.1 implies that if X is an acyclic, dimensionwise
injective, complex, then A(F, X) is acyclic for all F ∈ F . Hence Theorem 3.7 gives
us a model structure. Any M-fibration is a surjection with dimensionwise injective
kernel, by Proposition 3.3, and therefore must be a dimensionwise split surjection.
Conversely, a dimensionwise split surjection with dimensionwise injective kernel
certainly satisfies the conditions of Proposition 3.3, so is a M-fibration.
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This model structure is related to the injective model structure; the identity
functor from this model structure to the injective model structure is a Quillen
equivalence. It appears to be new even when A is the category of modules over a
ring R. The generating cofibrations and trivial cofibrations in this model structure
are explicit, and the fibrations are easier to understand than the injective fibrations.
On the other hand, we know nothing about the cofibrations in this model structure.

In general, this model structure is poorly behaved with respect to functors of
abelian categories. If F is an additive functor with right adjiont U , then U will
preserve fibrations in this model structure if an only if U preserves injectives, which
is equivalent to F being exact. But this is not enough to conclude that F induces a
Quillen functor; we must also know that U preserves acyclic complexes of injectives.
This will happen if U is exact, but may happen in some other cases as well.

We now consider an interesting example of this model structure. Suppose S is a
noetherian scheme. We say that S has enough locally frees if every coherent sheaf
on S is a quotient of a locally free sheaf of finite rank. For example, a noetherian,
integral, separated, locally factorial scheme has enough locally frees by a result of
Kleiman [Har77, Ex. III.6.8].

Proposition 4.3. Suppose S is a noetherian scheme with enough locally frees. In

addition, suppose that either S is finite-dimensional or is separated. Then the

locally free sheaves of finite rank are generators of finite projective dimension for

the category QCo(S) of quasi-coherent sheaves on X.

Proof. We first show that the locally frees generate QCo(S). Deligne [Har66, Ap-
pendix, Prop. 2] shows that every quasi-coherent sheaf is a colimit of finitely pre-
sented sheaves. On a noetherian scheme, finitely presented sheaves are coherent,
and thus, since S has enough locally frees, are quotients of locally free sheaves of
finite rank.

Now let F be a locally free sheaf of finite rank, and C a quasi-coherent sheaf of
O-modules on S. By the corollary to [Gro57, Prop. 4.2.3], we have

Exti
O-Mod(F, C) ∼= H i(S; Hom(F, C))

where Hom denotes sheaf Hom and the cohomology groups are sheaf cohomology.
If S is finite-dimensional, we can apply Grothendieck’s vanishing theorem [Har77,
Theorem III.2.7] to conclude that these cohomology groups are 0 for large enough
i. If S is separated, then we can apply [Har77, Ex. III.4.8] to reach the same
conclusion, using the fact that Hom(F, C) is quasi-coherent.

This does not complete the proof, because these are Ext groups in O-Mod rather
than in QCo(S). However, these two possibly different Ext groups in fact coincide,
because the exact inclusion functor QCo(S) −→ O-Mod has a right adjoint and left
inverse Q [SGA6, p. 187] whenever S is quasi-compact and quasi-separated, as any
noetherian scheme is. In detail, given a quasi-coherent sheaf C, we can first take
an injective resolution I∗ of C in O-Mod and apply Q to get a complex of injectives
QI∗ in QCo(S). We claim that QI∗ is still exact. To see this, consider the short
exact sequence

0 −→ C −→ I0 −→ ZI1 −→ 0.

After we apply Q, we get a long exact sequence involving the derived functors RiQ
of Q. However, RiQC = 0 for i > 0, by the last paragraph of [SGA6, p. 189]. Fur-
thermore, RiQI0 = 0 for i > 0 because I0 is injective. It follows that (RiQ)ZI1 = 0
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for i > 0 as well. Repeating this argument on the short exact sequence

0 −→ ZI1 −→ I1 −→ ZI2 −→ 0,

we find that (RiQ)ZI2 = 0 for i > 0, and, by induction, that (RiQ)ZIm = 0 for
all m and i > 0. Hence QI∗ is still exact, and so is an injective resolution of C in
QCo(S).

Applying QCo(S)(B,−) to QI∗ and using adjointness, we find that, if B and C

are both quasi-coherent, then Exti
QCo(S)(B, C) = Exti

O-Mod(B, C), completing the
proof.

Hence, as a corollary to Proposition 4.3 and Theorem 4.2, we get the following
theorem.

Theorem 4.4. Suppose S is a noetherian scheme with enough locally frees, and

suppose that S is either finite-dimensional or separated. Then there is a prop-

er, cofibrantly generated, model structure on the category ChQCo(S) of unbounded

complexes of quasi-coherent sheaves, where the weak equivalences are the quasi-

isomorphisms and the fibrations are the dimensionwise split surjections with di-

mensionwise injective kernel.

Let us call this model strucure the locally free model structure. We do not
understand the cofibrations in the locally free model structure, though we point out
that SnF is cofibrant for any locally free F , and DnA is cofibrant for any coherent
sheaf A. If f −→ S −→ T is a map between schemes satisfying the hypotheses
of Theorem 4.4, then the functor f∗ : QCo(T ) −→ QCo(S) will induce a Quillen
functor between the locally free model structures if and only if f ∗ is exact; we have
already seen that this is necessary, and it is sufficient since f ∗ preserves locally free
sheaves of finite rank.

Despite these drawbacks, the locally free model structure does gives some infor-
mation about the derived category D(QCo(S)).

Corollary 4.5. Suppose S is a noetherian scheme with enough locally frees, and

either S is finite-dimensional or separated. Then the locally free sheaves of finite

rank form a set of small weak generators for the derived category D(QCo(S)).

Proof. The fact that the locally free sheaves form a set of weak generators follows
from [Hov98, Section 7.3]. To see that they are small, in the triangulated sense, we
use the result of [Hov98, Section 7.4]. We must then show that, if F is a locally free
sheaf of finite rank, the functor QCo(S)(F,−) preserves all transfinite compositions.
Since we are on a noetherian scheme, we can take the transfinite composition in
the category of presheaves [Har77, Ex. II.1.11]. It is then easy to check the desired
result.

In case S is a quasi-compact, quasi-separated scheme, we can use the right adjoint
Q to the inclusion QCo(S) −→ O-Mod to show that QCo(S) is a closed symmetric
monoidal category under the tensor product. Thus ChQCo(S) is also a closed sym-
metric monoidal category. It would be preferable, then, to have a model structure
on ChQCo(S) that is compatible with the closed symmetric monoidal structure, in
the sense of [Hov98, Chapter 4]. This compatiblity condition is discussed before
Theorem 5.6 below. Unfortunately, the locally free model structure is not compat-
ible with the tensor product.
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Despite this, it is known that D(QCo(S)) is a symmetric monoidal triangulated
category, at least when S is a finite-dimensional noetherian scheme. Indeed, Lip-
man [Lip98, Section 2.5]shows that D(O-Mod) is a symmetric monoidal triangulat-
ed category. But D(QCo(S)) is equivalent to the full subcategory of D(O-Mod) con-
sisting of complexes with quasi-coherent cohomology, when S is a finite-dimensional
noetherian scheme, by [SGA6, p. 191], and the inclusion D(QCo(S)) −→ D(O-Mod)
has a right adjoint given by the right derived functor of Q. It follows from this that
D(QCo(S)) is a symmetric monoidal triangulated category.

Furthermore, locally free sheaves of finite rank F are strongly dualizable in
D(QCo(S)). Recall that this means that the natural map

Hom(F,O) ⊗ X −→ Hom(F, X)

is an isomorphism, where of course both the Hom and the tensor have to be in-
terpreted in D(QCo(S)), so are really derived versions. This follows from the
corresponding fact in O-Mod itself, and the fact that locally free sheaves are flat.

In the language of [HPS97], then, we have proved the following corollary.

Corollary 4.6. Suppose S is a finite-dimensional noetherian scheme with enough

locally frees. Then the category D(QCo(S)) is an unital algebraic stable homotopy

category, where the generators are the locally free sheaves of finite rank.

5. The flat model structure on sheaves

In this section, we apply the method of Theorem 3.7 to the category O-Mod of
sheaves over a ringed space (S,O). In this case, there is a standard set of generators;
namely, the sheaves OU for U an open set of S. Recall that OU is the sheafification
of the presheaf that assigns V to O(V ) if V ⊆ U , and to 0 otherwise. The stalk of
OU at x is 0 if x 6∈ U , and is Ox if x ∈ U . We have O-Mod(OU , X) ∼= X(U), which
implies easily that the OU form a generating set for O-Mod.

Note that, if V ⊆ U , there is a natural monomorphism OV −→ OU corresponding
to 1 ∈ OU (V ). Thus, we take the set of monomorphisms M of the previous section
to consist of these natural monomorphisms. One can then easily check that a sheaf
X is M-flasque if and only if the restriction maps X(U) −→ X(V ) are surjective
whenever V ⊆ U , corresponding to the usual notion of a flasque sheaf.

To apply Theorem 3.7 we need to know that, if X is an acyclic complex of flasque
sheaves, then O-Mod(OU , X) is also acyclic; i.e.that X is acyclic as a complex
of presheaves. Unfortunately, this need not always be true. Amnon Neeman has
constructed a complex X of injective sheaves on infinite-dimensional real projective
space whose sheaf cohomology is trivial, but whose presheaf cohomology is non-
trivial. The example is a bit complicated, but is closely related to the example
in [Hov98, Remark 2.3.18].

We therefore need a hypothesis on our ringed space to apply Theorem 3.7.

Definition 5.1. Define a ringed space (S,O) to have finite global dimension if
there is an integer n > 0 such that the sheaf cohomology Hn(X) = 0 for all O-
modules X . Define (S,O) to have finite hereditary global dimension if every open
ringed subspace (U,O|U ) has finite global dimension.

We then get the following theorem.

Theorem 5.2. Suppose (S,O) is a ringed space with finite hereditary global dimen-

sion. Then there is a cofibrantly generated proper model structure on Ch(O-Mod),
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called the flat model structure, where the weak equivalences are the quasi-isomorph-

isms and the fibrations are the surjections with dimensionwise flasque kernel.

Proof. We apply Theorem 3.7, taking the set M to be the canonical inclusion-
s OV −→ OU . We use Lemma 4.1. One can easily check that Exti

O(OU , B) =
H i(U ; B|U ); this is essentially the definition of sheaf cohomology. In particular,
S has finite hereditary global dimension if and only if each OU has finite projec-
tive dimension. Also, since the restriction of a flasque sheaf is still flasque and
flasque sheaves have no cohomology, Exti(OU , Xn) = 0 if i > 0 and X is a complex
of flasque sheaves. So Lemma 4.1 applies, and Theorem 3.7 gives us the desired
model structure.

The characterization of fibrations in Proposition 3.3 translates into surjections
of presheaves with dimensionwise flasque kernel. However, sheaf surjections with
flasque kernel are also presheaf surjections, so we get the claimed characterization
of fibrations.

The author knows of two cases when ringed spaces are guaranteed to have finite
hereditary global dimension.

Proposition 5.3. Suppose (S,O) is a ringed space.

1. If S is a finite-dimensional noetherian space, then (S,O) has finite hereditary

global dimension.

2. If S is a finite-dimensional locally compact topological manifold that is count-

able at infinity, in particular if S is a finite-dimensional compact manifold,

then (S,O) has finite hereditary global dimension.

Proof. Part 1 follows from the vanishing theorem [Har77, Theorem III.2.7] of Groth-
endieck, since an open subspace of a finite-dimensional noetherian space is still a
finite-dimensional noetherian space. Part 2 is an immediate consequence of [KS90,
Proposition 3.2.2].

We now discuss the cofibrations in the flat model structure. Recall that the
category O-Mod is a closed symmetric monoidal category. The monoidal structure
is given by the tensor product X ⊗O Y , which we will always denote by X ⊗ Y .
This is defined by forming the obvious presheaf tensor product, and sheafifying.
On each stalk, the tensor product is the ordinary tensor product of modules. In
particular, a sheaf F is flat if and only if each stalk Fx is flat as a Ox-module;
hence, the sheaves OU are flat. The closed structure is given by the sheaf Hom;
Hom(X, Y )(U) = O|U -Mod(X |U , Y |U ). These structures extend to complexes in
the usual way, making Ch(O-Mod) into a closed symmetric monoidal category.
This works for any symmetric monoidal additive category, as described in [HPS97,
Section 9.2]

Definition 5.4. Suppose A is a symmetric monoidal abelian category. Define a
complex F ∈ Ch(A) to be DG-flat if each Fn is flat, and, for any acyclic complex
K, the complex A ⊗ K is also acyclic.

Proposition 5.5. Suppose (S,O) is a ringed space with finite hereditary global

dimension. Then any cofibration in the flat model structure is a degreewise split

monomorphism on each stalk, with DG-flat cokernel.

We do not know if the converse to this proposition holds, nor even whether every
DG-flat complex is cofibrant.
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Proof. The maps of I are all degreewise split monomorphisms on each stalk. Every
cofibration is a retract of a transfinite composition of pushouts of maps of I , by the
small object argument [Hov98, Theorem 2.1.14]. Since retracts, transfinite compo-
sitions, and pushouts all commute with the operation of taking stalks and preserve
split monomorphisms, every cofibration will be a degreewise split monomorphis-
m on each stalk. The cokernel of a cofibration will of course be cofibrant, so to
complete the proof it suffices to show that every cofibrant object is DG-flat.

Every cofibrant object A is a retract of the colimit of a transfinite sequence Xα,
where each map Xα −→ Xα+1 is a pushout of a map of I and X0 = 0. Since colimits
commute with tensor products and homology, it suffices to show that, if Xα is DG-
flat, so is Xα+1. On each stalk, the maps of I are degreewise split monomorphisms
with degreewise flat cokernel, so the same will be true of Xα −→ Xα+1. Thus, if Xα

is a complex of flat sheaves, so is Xα+1.
Now suppose K is an acyclic complex and f is a map of I . Again, since the

maps of I are degreewise split monomorphisms on each stalk, the map f ⊗ K will
still be injective. Thus the map Xα⊗K −→ Xα+1⊗K will be injective. It therefore
suffices to show that f ⊗ K is a quasi-isomorphism, by Corollary 1.4. In case f is
of the form DnOV −→ DnOU , both the domain and codomain of f are contractible.
The same will be true of f ⊗ K, so f ⊗ K will be a quasi-isomorphism. In case
f is of the form Sn−1OU −→ DnOU , the codomain of f ⊗ K is contractible, so
it suffices to show that Sn−1OU ⊗ K is acyclic. But, since OU is flat, we have
Hm(Sn−1OU ⊗ K) = Hm−n+1(K) ⊗OU , so we are done.

In particular, it follows that cofibrations are pure monomorphisms, in the sense
that, if f is a cofibration and K is an arbitrary complex, then f ⊗ K is still a
monomorphism.

We now show that the flat model structure is compatible with the tensor product
on Ch(O-Mod). To do this, we need to recall the definition of this compatibility.
If f : A −→ B and g : C −→ D are maps in a cocomplete closed symmetric monoidal
category, we denote the induced map

(A ⊗ D) qA⊗C (B ⊗ C) −→ B ⊗ D

by f2g. In case C is also a model category, we say that C is a symmetric monoidal

model category if, whenever f and g are cofibrations, so is f2g, and furthermore,
if one of f or g is a trivial cofibration, so is f2g. This is the condition needed
to ensure that the homotopy category HoC is again closed symmetric monoidal,
as explained in [Hov98, Chapter 4]. (Actually one also needs a condition on the
unit, but this condition is unnecessary when the unit is cofibrant, as it is in the flat
model structure).

Theorem 5.6. Suppose (S,O) is a ringed space with finite hereditary global di-

mension, and f and g are maps in Ch(O-Mod).

(a) If f is a flat cofibration and g is a monomorphism, then f2g is a monomor-

phism.

(b) If f and g are flat cofibrations, then so is f2g.
(c) If f is a flat cofibration and g is an injective quasi-isomorphism, then f2g is

a quasi-isomorphism.

(d) If f is a flat trivial cofibration and g is a monomorphism, then f2g is a

quasi-isomorphism.
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Proof. As explained in [Hov98, Chapter 4], since monomorphisms and injective
quasi-isomorphisms are closed under retracts, transfinite compositions, and pushout-
s, it suffices to check this theorem when the flat cofibration is in fact a map of I , and
the flat trivial cofibration is a map of J . We begin with parts (a) and (c). Suppose
that g : A −→ B is a monomorphism, and suppose f is the map DnOV −→ DnOU .
Let P denote the domain of f2g, and suppose x ∈ S. If x ∈ V , then the stalk
of Pm at x is (Bm−n ⊕ Bm−n+1)x; if x ∈ U \ V , then the stalk of P at x is
(Am−n ⊕ Am−n+1)x; and if x is not in U , then the stalk of P at x is 0. The stalk
of the codomain of f2g at x is (Bm−n ⊕ Bm−n+1)x if x is in U , and 0 otherwise,
and the map f2g does the obvious thing on the stalks. Hence f2g is a monomor-
phism. Furthermore, the domain and codomain of f are contractible, so the same
will be true for f2g. Thus f2g will be a quasi-isomorphism, completing the proof
of part (c).

To complete the proof of part (a), we must show that f2g is a monomorphism,
where now f is the map Sn−1OU −→ DnOU . In this case, the stalk of the domain P
of f2g at a point x is 0 if x 6∈ U , and otherwise is (Am−n ⊕ Bm−n+1)x. The stalk
of the codomain of f2g at x is 0 if x 6∈ U , and otherwise is (Bm−n ⊕ Bm−n+1)x.
The map f2g does the obvious thing, and so is a monomorphism.

For part (c), we can assume f is the map Sn−1OU −→ DnOU . Then the codomain
of f2g is contractible, so it suffices to show that the domain P of f2g has no
homology. Since g : A −→ B is an injective quasi-isomorphism, and OU is flat,
g⊗Sn−1OU is also an injective quasi-isomorphism. Hence its pushout A⊗DnOU −→
P is also an injective quasi-isomorphism. Since DnOU is contractible, it follows that
P has no homology.

Finally, for part (d), we can assume that both f and g are maps of I . To calculate
f2g in this case, use the easily checked (on stalks) fact that OU ⊗OV

∼= OU∩V . It
follows that

SmOU ⊗ SnOV
∼= Sm+nOU∩V

and

SmOU ⊗ DnOV
∼= Dm+nOU∩V

and that DmOU ⊗ DnOV is an amalgamation of Dm+n−1OU∩V and Dm+nOU∩V .
With these identities in hand, the proof is a calculation we leave to the reader.

Corollary 5.7. Suppose (S,O) is a ringed space with finite hereditary global di-

mension. Then the flat model structure makes Ch(O-Mod) into a symmetric monoi-

dal model category. Furthermore, if A is cofibrant, then the functor A⊗− preserves

quasi-isomorphisms. Therefore, to calculate the derived tensor product up to iso-

morphism, it suffices to replace one of the factors by a cofibrant complex quasi-

isomorphic to it.

Proof. The fact that Ch(O-Mod) is a symmetric monoidal model category is im-
mediate from Theorem 5.6. Suppose A is cofibrant. Then A ⊗− preserves trivial
cofibrations in any symmetric monoidal model category. So, in order to see that
A ⊗− preserves quasi-isomorphisms, it suffices to show that, if p is a trivial fibra-
tion, then A ⊗ p is a quasi-isomorphism. Let K denote the kernel of p, so that
K is an acyclic complex. Since cofibrant objects are degreewise flat, A ⊗ p is still
surjective, and its kernel is A ⊗ K. Since cofibrant objects are DG-flat, A ⊗ K is
still acyclic, so the long exact sequence completes the proof. In general, the total
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derived functor of the tensor product is defined by X ⊗L Y = QX ⊗ QY , where
QX (resp. QY ) is a functorial cofibrant replacement for X (resp. Y ). But, since
the map QX ⊗ QY −→ QX ⊗ Y is a quasi-isomorphism, X ⊗L Y is isomorphic in
the derived category to QX ⊗ Y .

Note that Theorem 5.6 actually says not only that the flat model structure is
symmetric monoidal, but also that the injective model structure is a module over
the flat model structure, in the sense of [Hov98, Chapter 4].

We can also use Theorem 5.6 to conclude that the derived category of O-modules
is almost a unital algebraic stable homotopy category [HPS97].

Corollary 5.8. Suppose (S,O) is a ringed space such that S is a finite-dimensional

noetherian space. Then the derived category of O-modules is a symmetric monoidal

triangulated category and {OU} is a set of small weak generators.

Proof. It is well-known that the derived category of any abelian category is trian-
gulated, but this also follows, in a stronger sense of the word triangulated, from the
results of [Hov98, Chapter 7]. We have already seen that the flat model caetgory is
a symmetric monoidal model category, so the derived category is also closed sym-
metric monoidal in a way that is compatible with the triangulation (see [Hov98,
Chapter 6], with one technical point dealt with by [Hov98, Corollary 5.6.10]). S-
ince the flat model structure is cofibrantly generated, the cofibers of the generating
cofibrations form a set of weak generators [Hov98, Section 7.3]. In our case, these
are the objects SnOU (the cofibers of the maps of J are trivial in the derived cat-
egory). Because S is noetherian, the presheaf colimit of a direct system of sheaves
coincides with the sheaf colimit [Har77, Exercise II.1.11]. It follows from this that
Ch(O-Mod)(SnOU ,−) commutes with direct colimits. The results of [Hov98, Sec-
tion 7.4] then show that SnOU is small (in the triangulated sense) in the derived
category.

The derived category of O-modules is known to be a symmetric monoidal tri-
angulated category even without the finite hereditary global dimension assump-
tion [Lip98, Section 2.5]. This might indicate that there is some replacement for
the flat model structure that works more generally, or it might indicate that model
categories are simply not adequate to cope with the general case.

To show that the derived category is in fact a unital algebraic stable homotopy
category, we would need to know that the generators OU are strongly dualizable.
This would mean we would need to show that the natural map

R Hom(OU ,O) ⊗OV −→ R Hom(OU ,OV )

is a quasi-isomorphism. (We don’t need the derived tensor product since OV is
cofibrant, using Corollary 5.7). Unfortunately, this is false in the simplest non-
trivial example. Indeed, consider sheaves of abelian groups on the Sierpinski space
S. Recall S has only two points, exactly one of which is open. Sheaves on S coincide
with presheaves, which in turn coincide with maps A −→ B of abelian groups. In
this case, O is the identity map Z −→ Z, and, taking U to be the open point, OU is
the map 0 −→ Z. One can then calculate to find R Hom(OU ,O) = R Hom(OU ,OU ),
but this equality is destroyed on tensoring the left hand side with OU . A similar
counterexample works if we think of S as the underlying space of Spec Z(p).

There is an additional condition that a symmetric monoidal model category
might satisfy, called the monoid axiom [SS97]. This axiom guarantees that the
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monoids in a symmetric monoidal model category, and the modules over a given
monoid, themselves form model categories. The monoid axiom asserts that every
map in K-cof is a weak equivalence, where K is the class consisting of all maps
f ⊗ X , where f is a trivial cofibration and X is an arbitrary object.

Theorem 5.9. Suppose (S,O) is a ringed space with finite hereditary global di-

mension. The the flat model structure on Ch(O-Mod) satisfies the monoid axiom.

Proof. Suppose f is a flat trivial cofibration, and X is an arbitrary object. Then
0 −→ X is a monomorphism, so applying Theorem 5.6 shows that f ⊗ X is an
injective quasi-isomorphism. Corollary 1.7 completes the proof.

The following corollary follows immediately from Theorem 5.9 and [SS97].

Corollary 5.10. Suppose (S,O) is a ringed space with finite hereditary global di-

mension. Then:

(a) The category of monoids in Ch(O-Mod) is a cofibrantly generated model cate-

gory, where a map of monoids is a weak equivalence or a fibration if and only

if it is so in the flat model structure on Ch(O-Mod).
(b) Given a monoid R in Ch(O-Mod), the category of R-modules, R-Mod, is a

cofibrantly generated proper model category, where a map of modules is a weak

equivalence or a fibration if and only if it is so in the flat model structure on

Ch(O-Mod).
(c) If R is a commutative monoid, then R-Mod is a symmetric monoidal model

category satisfying the monoid axiom. Furthermore, the category of algebras

over R is a cofibrantly generated model category, where a map of algebras is a

weak equivalence or fibration if and only if it is so in the flat model structure

on Ch(O-Mod).

The category of monoids will certainly be right proper, but we do not know if
the category of monoids is left proper.

A map of monoids R −→ R′ will induce the usual induction and restriction
adjunction R-Mod −→ R′-Mod. This adjunction will be a Quillen adjunction, but
we would like something more.

Proposition 5.11. Suppose (S,O) is a ringed space with finite hereditary global

dimension, and R −→ R′ is a weak equivalence of monoids in Ch(O-Mod). Then the

induction and restriction adjunction R-Mod −→ R′-Mod is a Quillen equivalence.

Proof. It suffices to show that, if N is a cofibrant R-module, then −⊗R N preserves
weak equivalences, by [SS97]. The proof of this is very similar to the proof of the
corresponding fact in Corollary 5.7, so we leave it to the reader.

We now investigate the functoriality of the flat model structure. Suppose we have
a map of ringed spaces f : (S,OS) −→ (T,OT ). Recall that this is a continuous map
f : S −→ T together with a map of sheaves of rings OT −→ f∗OS . Here, for any
sheaf X on S, f∗(X) is the sheaf on T defined by f∗(X)(U) = X(f−1(U)). If X is
an OS-module, then f∗X is an f∗OS-module, and so an OT -module by restriction.
The functor f∗ : OS-Mod −→ OT -Mod has a left adjoint f∗. To define this, recall
that if Y is a sheaf on T , f−1Y is the sheaf on S associated to the presheaf that
takes U to colimV ⊇f(U) Y (V ). The functor f−1 is left adjoint to f∗ on the category

of sheaves of abelian groups, so in particular we have a map f−1OT −→ OS . Given
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an OT -module Y , we define f∗Y = OS ⊗f−1OT
f−1Y . It is well-known that f∗ is

left adjoint to f∗ and is symmetric monoidal [Gro60, Section 0.4.3].
One can verify using adjointness that, if U is an open subset of T , then f ∗OU =

Of−1U . Hence we have the following proposition.

Proposition 5.12. Suppose f : (S,OS) −→ (T,OT ) is a map of ringed spaces with

finite hereditary global dimension. Then f ∗ is a left Quillen functor with respect to

the flat model structures.

In particular, this shows that the total left derived functor of f ∗ exists and is left
adjoint to the total right derived functor of f∗. It is proved in [Lip98, Section 2.7]
that the total left derived functor of f ∗ exists without the finite hereditary global
dimension hypotheses. It is disconcerting that we are unable to reproduce this
result using model categories.
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