
ON QUILLEN’S PLUS CONSTRUCTION

MARC HOYOIS

Abstract. A discussion of Quillen’s plus construction from an ∞-categorical perspective.

Let X be an ∞-topos. An object X ∈ X is called acyclic if the map X → ∗ is an epimorphism in the
categorical sense, i.e., if the square

X ∗

∗ ∗
is cocartesian. Note that when X = S, this is equivalent to H̃∗(X,Z) = 0. We shall say that a map X → Y
in X is acyclic if it is acyclic as an object of X/Y . The class of acyclic maps is closed under composition, base
change, cobase change, colimits, and finite products. Moreover, if g ◦ f and f are acyclic, then g is acyclic.

Lemma 1. Acyclic maps form the left class of a modality on X.

Proof. It suffices to show that the class of acyclic maps is of small generation as a saturated class. The full
subcategory of X spanned by the acyclic objects is accessible, being the fiber of the suspension functor. It
is thus generated under filtered colimits by a small subcategory. Let C ⊂ Fun(∆1,X) be the union of these
small subcategories of X/X as X ranges over a small set of generators of X. Using that acyclic maps are stable
under base change, we immediately deduce that C generates the class of acyclic maps under colimits. �

In particular, every morphism f in X factors uniquely as f = h ◦ g where g is acyclic and h is right
orthogonal to acyclic maps. The plus construction X 7→ X+ is the localization functor associated with this
factorization system, i.e., X → X+ is the acyclic map such that X+ is local with respect to acyclic maps.

For X ∈ X, recall that πn(X) is a discrete object in X/X , which is a group if n ≥ 1 (abelian if n ≥ 2).

Lemma 2 (Hurewicz theorem). Let X ∈ X be an n-connective object for some n ≥ 1. Then the Hurewicz
map πn(X)→ Hn(X,Z)×X in X/X exhibits Hn(X,Z)×X as the abelianization of πn(X).

Proof. If X is a presheaf ∞-topos, this follows from the classical Hurewicz theorem. If f∗ : X → Y is a
geometric morphism and the result holds for some n-connective object Y ∈ Y, then the result holds for
f∗(Y ). It remains to observe that X is the preimage by a geometric morphism of an n-connective object
in a presheaf ∞-topos Y. Indeed, if g∗ : X → P(C) is a fully faithful geometric morphism, one can take
Y = P(C)/τ≤n−1g∗(X) ' P(C/τ≤n−1g∗(X)). �

Recall that a discrete group is perfect if its abelianization is trivial, and hypoabelian if it has no nontrivial
perfect subgroups.

Lemma 3. Let X ∈ X be acyclic. Then X is 1-connective and π1(X) is perfect. If π1(X) is trivial, then X
is ∞-connective.

Proof. If C is stable and F : X → C preserves pushouts, then clearly F (X) ' F (∗). In particular, H̃0(X,Z)
and H1(X,Z) are trivial. The former implies that X is 1-connective. By the latter and the Hurewicz theorem,
π1(X) is perfect. The final statement follows immediately from the Blakers–Massey theorem. �

Remark 4. We do not know an example of an ∞-connective acyclic object that is not contractible.

Corollary 5. Let f : X → Y be an acyclic morphism in X. If π1(X) is hypoabelian, then f is ∞-connective.
In particular, if X is moreover hypercomplete, then X ' X+.
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Proof. It follows from the exact sequence

f∗π2(Y )→ π1(f)→ π1(X)

that π1(f) is hypoabelian. By Lemma 3, we conclude that π1(f) is trivial, hence that f is∞-connective. �

Lemma 6 (van Kampen theorem). Let

X Y

Z W

f

g

f ′

g′

be a pushout square in X where f and g induce isomorphisms on τ≤0 and let h = g′ ◦ f . Then

π1(X) f∗π1(Y )

g∗π1(Z) h∗π1(W )

is a pushout square of groups.

Proof. Replacing X by X/τ≤0X , we may assume that X, Y , Z, and hence W are 1-connective. As X is in

particular 0-connective, we may assume that it has a global section s : ∗ → X. Then τ≤1X ' Bs∗π1(X), and
similarly for Y , Z, and W . Since B induces an equivalence of categories between discrete groups and pointed
1-connective 1-truncated objects, we deduce that s∗ of the given square of groups is a pushout square. But
s is 0-connective, so this suffices. �

Lemma 7. Let X be a hypercomplete ∞-topos, let f : X → Y be an acyclic morphism in X, and let P be
the kernel of π1(X)→ f∗π1(Y ). Then f is the initial morphism that kills P .

Proof. Let g : X → X ′ be a morphism that kills P , and consider the pushout square

X Y

X ′ Y ′.

f

g

f ′

Then f ′ is acyclic, and we must show that it is an equivalence. Write g = g′′ ◦ g′ where g′ is 1-connective
and g′′ is 0-truncated. Then g′ still kills P , so we can assume that g is 1-connective. Since f is acyclic, it is
1-connective by Lemma 3. By the van Kampen theorem, the associated square of groups

π1(X) π1(X)/P

g∗π1(X ′) g∗f ′∗π1(Y ′)

is a pushout square. It follows that the lower horizontal map is an isomorphism, so that g∗π1(f ′) is abelian.
It is also perfect by Lemma 3, hence trivial. Since g is 0-connective, π1(f ′) is trivial. By Lemma 3, we
deduce that f ′ is ∞-connective, whence an equivalence. �

Let X♦ be the∞-category of pairs (X,P ) where X ∈ X and P is a perfect subgroup of π1(X); a morphism
(X,P )→ (Y,Q) is a morphism f : X → Y sending P to Q.

We say that π1 preserves products if, for every family of objects (Xα)α with product X, the canonical
map π1(X) →

∏
α p
∗
απ1(Xα) is an equivalence, where pα : X → Xα is the projection. This condition holds

in any presheaf ∞-topos, and is inherited by essential subtopoi.

Theorem 8. Let X be an ∞-topos where π1 preserves products. Then the fully faithful functor X ↪→ X♦,
X 7→ (X, 1), admits a left adjoint (X,P ) 7→ X/P . Moreover, the unit map η : X → X/P is acyclic.
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Proof. Fix (X,P ) ∈ X♦, and let X(X,P )/ be the full subcategory of XX/ consisting of the morphisms f : X →
Y that kill P . Clearly, X(X,P )/ is accessible, and in particular it has a small coinitial subcategory. It therefore
suffices to show that X(X,P )/ is closed under nonempty limits in XX/. The assumption that π1 preserves
products implies that X(X,P )/ is closed under products. It remains to show that X(X,P )/ is closed under
pullbacks. Given a cartesian square

Y Y0

Y1 Y01

under X such that P is killed in π1(Y0) and π1(Y1), we must show that P is killed in π1(Y ). The exact
sequence

π2(Y01)→ π1(Y )→ π1(Y0)× π1(Y1)

in X/Y shows that the image of P in π1(Y ) is abelian, hence trivial since P is perfect. The fact that η is
acyclic follows immediately from its universal property. �

Remark 9. In the context of Theorem 8, there is an epimorphism π1(X) → η∗π1(X/P ) whose kernel is
perfect and contains P . We do not know if its kernel equals P in general. This is equivalent to the existence
of a morphism f : X → Y that kills exactly P . If X = S, it is trivial to construct such a morphism where Y
is a groupoid. In that case, X → X/P is an acyclic map that kills exactly P , which is one of the standard
characterizations of Quillen’s plus construction. It follows that X → X/P kills exactly P whenever the
2-topos X≤1 has enough points.

We will say that X ∈ X is hypoabelian if the group π1(X) is hypoabelian. As always, a morphism
f : X → Y in X is hypoabelian if it is so as an object of X/Y . Since π1(f) is an extension of the kernel of
π1(X)→ f∗π1(Y ) by a quotient of f∗π2(Y ), f is hypoabelian if and only if that kernel is hypoabelian.

Corollary 10. Let X be a hypercomplete ∞-topos where π1 preserves products. Then a morphism in X

is right orthogonal to acyclic morphisms if and only if it is hypoabelian. Hence, for any X ∈ X, we have
X+ ' X/P where P ⊂ π1(X) is the maximal perfect subgroup.

Proof. One implication was already proved in Corollary 5. Suppose f : X → Y is right orthogonal to acyclic
maps. Let K be the kernel of π1(X) → f∗π1(Y ) and let P ⊂ K be a perfect subgroup. Then f factors

uniquely as X
η−→ X/P

g−→ Y . Since η is acyclic and f is right orthogonal to acyclic maps, η admits a
retraction, hence π1(X) is a retract of η∗π1(X/P ), hence P = 1. �

For an arbitrary ∞-topos X, the proof of Theorem 8 shows that X(X,P )/ is closed under nonempty finite

limits in XX/, so the inclusion X ↪→ X♦ admits a left pro-adjoint X♦ → Pro(X), (X,P ) 7→ X/P . Moreover,

if f∗ : Y → X is a geometric morphism of ∞-topoi and (X,P ) ∈ X♦, we have f∗(X/P ) ' f∗(X)/f∗(P ) by
comparison of universal properties. For example, suppose X is a subtopos of a presheaf ∞-topos P(C), and
let a : P(C)→ X be the left adjoint to the inclusion. If X ∈ X and P is a perfect subgroup of the fundamental
group of X in P(C), then X/a(P ) exists in X, since X/a(P ) ' a(X/P ).

Example 11. Let C be some category of qcqs schemes equipped with the Zariski topology. Let Vect(X) be
the groupoid of finite locally free sheaves on X, and let sVect(X) be the colimit of the sequence

Vect(X)
⊕OX−−−→ Vect(X)

⊕OX−−−→ · · · .
Then sVect ∈ Shv(C) and π1(sVect)(X)ξ is the group GL(ξ) of automorphisms of ξ ∈ sVect(X). Let
SL ⊂ GL be the subgroup of automorphisms of determinant 1, which is the subsheaf of GL generated by
elementary matrices. Then SL is a perfect subgroup of π1(sVect) and

sVect/SL ' K

in Shv(C), where K is Thomason–Trobaugh K-theory. In other words, if F : Cop → S is a Zariski sheaf and
f : sVect → F is a map that kills SL (e.g., π1(F ) is abelian or F is A1-homotopy invariant), then f factors
uniquely through K.

We conclude with a version of the McDuff–Segal group completion theorem.
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Theorem 12. Let X be an ∞-topos, M =
∐
n≥0Mn an N-graded homotopy-commutative monoid in X with

τ≤0(M) ' N, and x : ∗ →M1 a global section. Let Mgp be the group completion of M , let

M∞ = colim(M0
x−→M1

x−→M2 → · · · ),
and let P ⊂ π1(M∞) be the commutator subgroup. Then P is perfect and the canonical map Z×M∞ →Mgp

induces an equivalence Z×M∞/P 'Mgp. In particular, Z×M∞ →Mgp is acyclic.

Proof. When X = S, the classical group completion theorem states that Z ×M∞ → Mgp is acyclic. Since
π1(Mgp) is abelian, this implies that P is perfect and that Z × M∞/P ' Mgp (by Lemma 7). This
immediately generalizes to the case of a presheaf ∞-topos. In general, suppose that X is a subtopos of P(C),
and let a : P(C) → X be the left adjoint to the inclusion. The graded pieces Mn assemble into an N-graded
monoid M ′ in P(C) such that a(M ′) 'M . The section x defines a morphism of N-graded monoids N→M ′,
and we let M ′′ ⊂ M ′ be its image. Then a(M ′′) ' M and M ′′ satisfies the assumptions of the theorem in
P(C). The result for M in X then follows from the result for M ′′ in P(C). �


