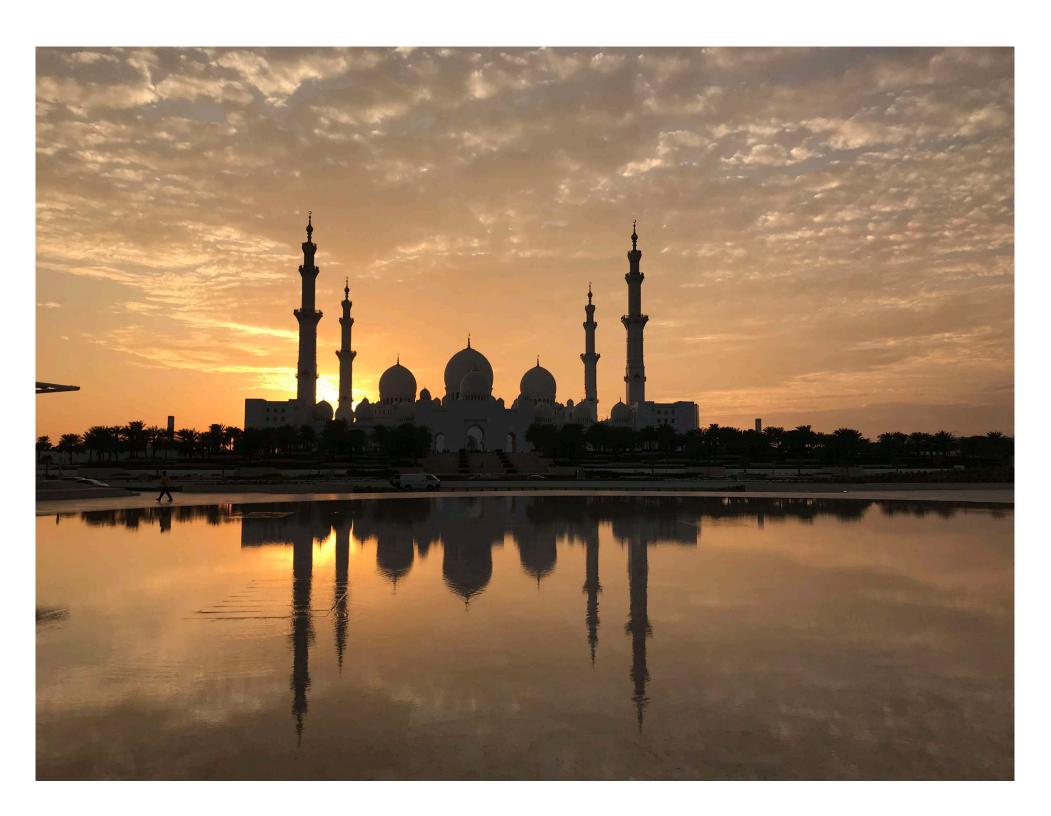
Charges and Duality in Gravity

Magnetic charges and exotic gravitons



Abu Dhabi, January 2023

Gravity and Magnetic Charges

- Circle reduction from D to D-1 dimensions $g_{mn} \rightarrow (g_{\mu\nu}, A_{\mu}, \phi)$
- Momentum $P^m \to (P^\mu, q)$
- q electric charge for A_{μ} .
- Magnetic charge $p_{\mu_1\mu_2...\mu_{D-5}}$, D-5 form in D-1 dimensions
- $K_{m_1m_2...m_{D-5}} \to (p_{\mu_1\mu_2...\mu_{D-5}}, K_{\mu_1\mu_2...\mu_{D-4}})$
- "K-charge" carried by KK monopoles, a "magnetic" gravitational charge

• D-dimensional origin: gravitational magnetic charge $K_{m_1m_2...m_{D-5}}$, D-5 form in D dims

Superalgebra

- D-5 form K-charge appears in susy algebra for $D \ge 5$.
- e.g. for D=11:

- m = (0,i)
- $Z_{i_1...i_5}$: M5-brane charge
- $Z_{0i_1...i_4}$: dual of $K_{i_1...i_6}$

 $\{Q,Q\} \sim P^m \Gamma_m + Z_{m_1...m_5} \Gamma^{m_1...m_5} + \dots$

K-Charge

- K-charge appears in algebra of conserved charges and so is a conserved charge
- "Magnetic" charge for gravity in $D \ge 5$
- Appears in BPS bounds
- Can be calculated from the super-algebra [CH '97] • Expression gives correct BPS charge carried by KK monopoles

ADM Momentum

- Metric $g_{\mu\nu}$ asymptotic to Minkowski space $\bar{g}_{\mu\nu}$
- Frames $e^a_\mu, \bar{e}^a_\mu, 1$ -forms e^a, \bar{e}^a Spin-connections $\omega^a_b(e), \bar{\omega}^a_b(\bar{e}), e^a \to \bar{e}^a$ as $r \to \infty$ $\Gamma^a{}_b = \omega^a{}_b - \bar{\omega}^a{}_b$
- An asymptotic Killing vector k^{μ} of $g_{\mu\nu}$ is constant KV of $\overline{g}_{\mu\nu}$
- ADM $Q[k] \sim P \cdot k$, S is D-2 sphere at spatial infinity

$$Q[k] = \frac{1}{4} \int_{S} \Gamma_{ab} \wedge * (k \wedge \bar{e}^a)$$

(My rewriting of Nester's expression for ADM momentum)

- $\wedge \bar{e}^{b}$

K-charge

- Corresponding K-charge $Q[\rho] \sim K \cdot \rho$

$$Q[\rho] = \frac{1}{4} \int_{S} \rho \wedge \Gamma_{ab} \wedge \bar{e}^{a} \wedge \bar{e}^{a}$$

• compare with ADM:

$$Q[k] = \frac{1}{4} \int_{S} \Gamma_{ab} \wedge * (k \wedge \bar{e})$$

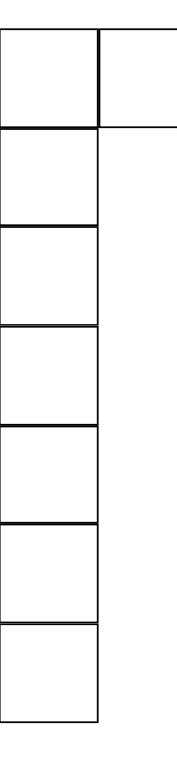
• "Asymptotic Killing form": Constant D-5 form p in background Minkowski space

 $\wedge \bar{e}^b$

 $\overline{e}^a \wedge \overline{e}^b$)

Dual Gravity Charges

- What is meaning of the charge K?
- Dual graviton charge?
- What is spectrum of states with charge K?
- Are there other magnetic charges?
- Dual "gravity" charges with hook Young tableaux suggested in various approaches
- Are there such charges too?



M-theory beyond the Planck Scale

- What does M-theory look like at energies much higher than the Planck scale?
- New highly symmetric phase?
- theory with (4,0) supersymmetry
- Highly symmetric
- CONFORMAL theory of gravity without higher derivatives
- Exotic theory of gravity without g_{mn}

• Conjecture [CH, 2000]: M-theory on T^6 has trans-Planckian phase which is a 6D

5D Superalgebra

• N supercharges Q^a , central charges $Z^{ab} = -Z^{ba}, X$

 $\{Q^a_{\alpha}, Q^b_{\beta}\} = \Omega^{ab} P^{\mu} (C\Gamma_{\mu})_{\alpha\beta} + C_{\alpha\beta} (Z^{ab} + X\Omega^{ab})$

- a, b = 1, ..., N are USp(N) = Sp(N/2) R-symmetry indices
- Z Electric charges for Maxwell fields
- These are 0-branes of form
- N=8 SUGRA: X is K-charge

• N=4 SYM: X carried by "instantonic solitons": YM instanton in \mathbb{R}^4 lifts to 0-brane in $\mathbb{R}^{4,1}$ (YM instanton)x(time)

5D SYM at Strong Coupling

- Z^{ab} Electric charges carried by W-bosons
- YM instanton in \mathbb{R}^4 lifts to 0-brane in $\mathbb{R}^{4,1}$
- X proportional to instanton number *n*
- BPS states in massive tensor multiplets $M = |X| \propto n/g_{YM}^2$
- Massless as $g_{YM} \to \infty$. KK tower for 6'th dimension $R = g_{YM}^2$
- Decompactifies to 6D (2,0) theory [Witten]
- 5D SYM non-renormalizable, so embed in UV complete theory

$\{Q^a_{\alpha}, Q^b_{\beta}\} = \Omega^{ab} P^{\mu} (C\Gamma_{\mu})_{\alpha\beta} + C_{\alpha\beta} (Z^{ab} + X\Omega^{ab})$

$dB = \pm M \star B$

5DN=8 Supergravity at Strong Coupling

- Embed in UV complete theory: M-theory on T^6
- BPS states with M = |K| fit into multiplets with massive $C_{\mu\nu\rho\sigma}$
- **IF** such BPS states have spectrum $M = \frac{n}{l}_{Planck}$
- Become light as $l_{Planck} \rightarrow \infty$
- Decompactification with K-states as KK tower?
- D=5 SUGRA \rightarrow massless D=6 multiplet with $C_{\mu\nu\rho\sigma}$
- (4,0) supersymmetry, conformal multiplet!

[CH, 2000]

(2,0) and (4,0)

- Free theories of (2,0) and (4,0) 6D supermultiplets exist. (4,0) "square" of (2,0) • Free (4,0): C_{MNPO} , 8 $\psi_{MN}^{\alpha a}$, 27 B_{MN}^{ab} , 48 λ_{α}^{abc} , 42 ϕ^{abcd} . Sp(4) R-symmetry a, b = 1, ..., 8
- Reduce on S^1 to 5D SYM and SUGRA
- $A_{\mu}, g_{\mu\nu}$ from higher tensors B_{MN}, C_{MNPO} with self-dual field strengths
- No conventional field theory interactions possible for (2,0),(4,0)
- Interacting (2,0) theory exists: non-lagrangian CFT, reduces to interacting 5D SYM
- Does an interacting (4,0) theory exist, reducing to 5D supergravity?
- Would be a conformal theory of gravity in 6D based on exotic tensor instead of metric!

Light-cone gauge spectrum: Strathdee 1987; Covariant formulation CH 2000 Gauge field: symmetries of Riemann tensor

 $C_{MNPQ} = -C_{NMPQ} =$

Free (4,0) Theory

$$-C_{MNQP} = C_{PQMN}$$

Light-cone gauge spectrum: Strathdee 1987; Covariant formulation CH 2000 Gauge field: symmetries of Riemann tensor $C_{MNPQ} = -C_{NMPQ} =$

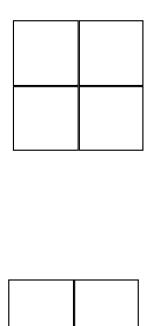
Gauge transformations

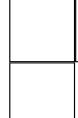
 $\delta C_{MNPQ} = \partial_{[M} \chi_{N]PQ} +$

Free (4,0) Theory

$$-C_{MNQP} = C_{PQMN}$$

$$\vdash \partial_{[P} \chi_{Q]MN} - 2 \partial_{[M} \chi_{NPQ]}$$





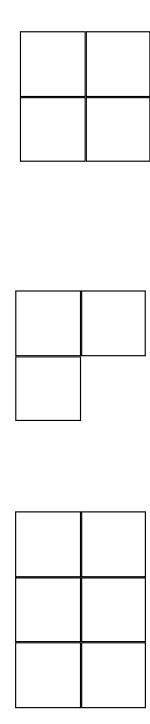
Light-cone gauge spectrum: Strathdee 1987; Covariant formulation CH 2000 Gauge field: symmetries of Riemann tensor $C_{MNPQ} = -C_{NMPQ} =$ Gauge transformations $\delta C_{MNPO} = \partial_{[M} \chi_{N]PO} +$ Field strength $G_{MNPQRS} = \frac{1}{36} (\partial_M \partial_S C_{NPRS} + \dots$

Free (4,0) Theory

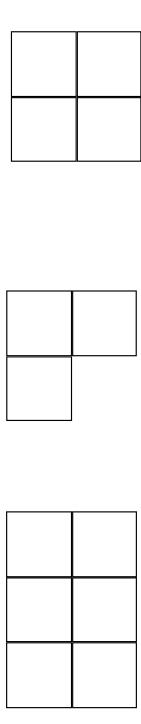
$$-C_{MNQP} = C_{PQMN}$$

$$-\partial_{[P}\chi_{Q]MN} - 2\partial_{[M}\chi_{NPQ]}$$

$$.) = \partial_{[M} C_{NP][QR,S]}$$



G



Light-cone gauge spectrum: Strathdee 1987; Covariant formulation CH 2000 Gauge field: symmetries of Riemann tensor $C_{MNPQ} = -C_{NMPQ} =$ Gauge transformations $\delta C_{MNPO} = \partial_{[M} \chi_{N]PO} +$ Field strength $G_{MNPQRS} = \frac{1}{36} (\partial_M \partial_S C_{NPRS} + \dots$ $G_{MNPQRS} = -\epsilon_{MN}$ Self-dual

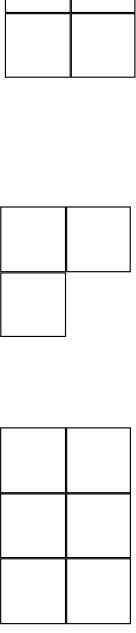
Free (4,0) Theory

$$-C_{MNQP} = C_{PQMN}$$

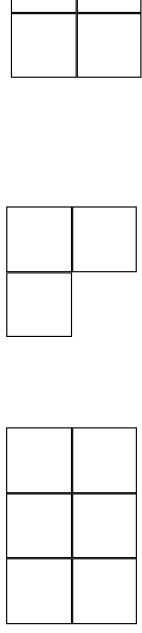
$$-\partial_{[P}\chi_{Q]MN} - 2\partial_{[M}\chi_{NPQ]}$$

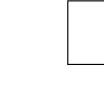
$$.) = \partial_{[M} C_{NP][QR,S]}$$

$$_{PTUV}G^{TUV}_{QRS}$$



G = *G = G*





Self-dual B-field \rightarrow E-M duality Reduce from 6D to 5D on S^1

Reduction of general B-field

 $B_{MN} \rightarrow (b_{\mu\nu}, A_{\mu})$

 $H = dB \to (h, F)$

 $b_{\mu\nu} = B_{\mu\nu}, A_{\mu} = B_{\mu5}$

h = db, F = dA

Self-dual B-field \rightarrow E-M duality **Reduce from 6D to 5D on** S^1

Reduction of general B-field

$$B_{MN} \rightarrow (b_{\mu\nu}, A_{\mu})$$

$$H = dB \to (h, F)$$

If H self dual H = *H

Fields A, b are electromagnetic duals

Alternate formulations of same degrees of freedom for Free Theory Theory can be written in terms of A or b, dual formulations

$$b_{\mu\nu} = B_{\mu\nu}, A_{\mu} = B_{\mu5}$$

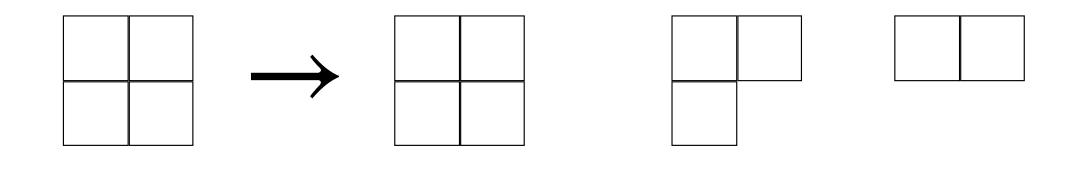
$$h = db, F = dA$$

$$h = *F$$

Self-dual C-field \rightarrow Gravitational duality **Reduce from 6D to 5D on** S^1

Reduction of general C-field $C_{MNPQ} \rightarrow (c_{\mu\nu\rho\sigma}, d_{\mu\nu\rho}, h_{\mu\nu})$

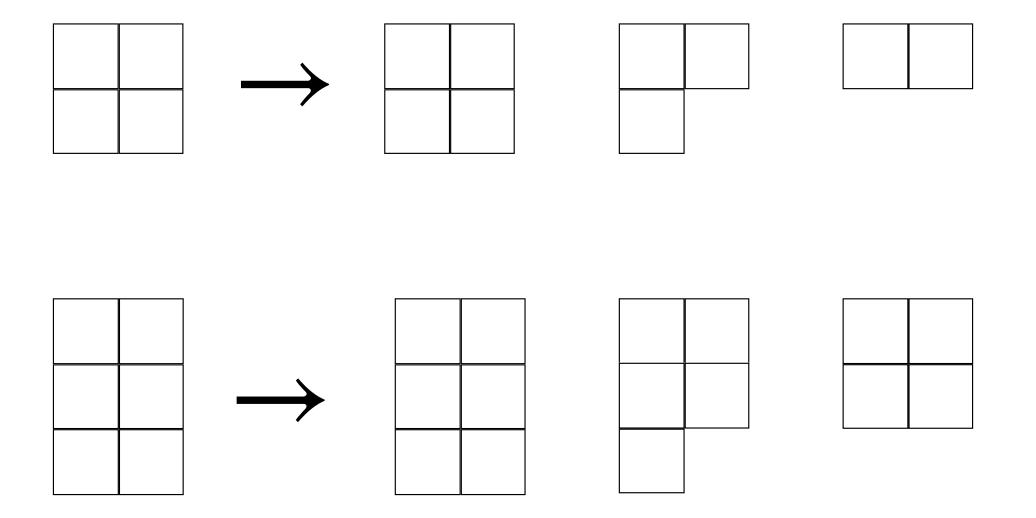
 $c_{\mu\nu\rho\sigma} = C_{\mu\nu\rho\sigma}, d_{\mu\nu\rho} = C_{\mu\nu\rho5}, h_{\mu\nu} = C_{\mu5\nu5}$



Self-dual C-field \rightarrow Gravitational duality Reduce from 6D to 5D on S^1 CF

Reduction of general C-field $C_{MNPQ} \rightarrow (c_{\mu\nu\rho\sigma}, d_{\mu\nu\rho}, h_{\mu\nu})$

$G \sim \partial \partial C \rightarrow (G, S, R)$



Self-dual C-field \rightarrow Gravitational duality Reduce from 6D to 5D on S^1 CF

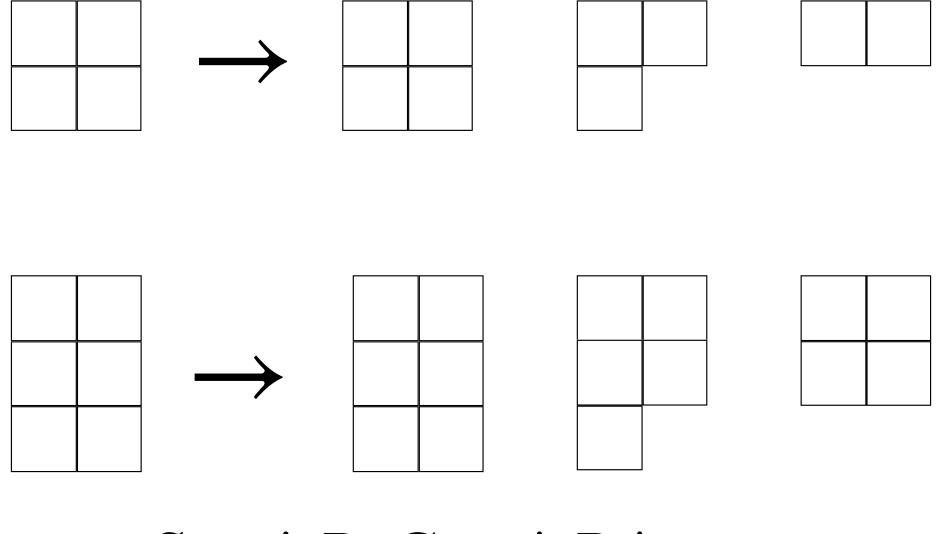
 \rightarrow

Reduction of general C-field $C_{MNPQ} \rightarrow (c_{\mu\nu\rho\sigma}, d_{\mu\nu\rho}, h_{\mu\nu})$

$G \sim \partial \partial C \rightarrow (G, S, R)$

If G self dual G = *G = G *

 $h_{\mu\nu}$ is graviton, $d_{\mu\nu\rho}$ is *dual graviton*, $c_{\mu\nu\rho\sigma}$ is *double dual graviton* Alternate formulations: can write free theory in terms of h,d or c



S = *R, G = *R*

Duality of Free Fields in D dimensions CH 2000

Photon A_{μ}

Dual Photon n-form $\tilde{A}_{\mu_1...\mu_n}$

n = D - 3

Duality of Free Fields in D dimensions CH 2000

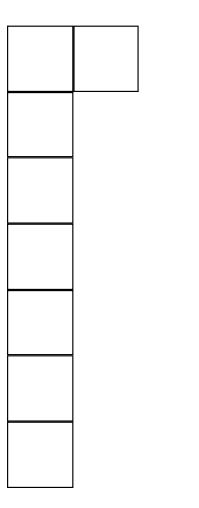
Photon A_{μ}

Dual Photon n-form $\tilde{A}_{\mu_1...\mu_n}$

Dual Graviton Graviton $D_{\mu_1\mu_2...\mu_n | \nu}$ [n,1] $h_{\mu
u}$ [1,1]

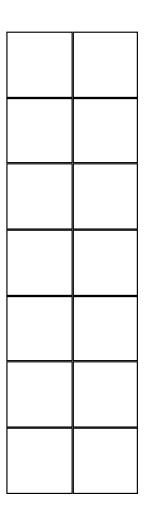
Gravitational duality interchanges field equations and Bianchi identities

n = D - 3



Double Dual Graviton

$$C_{\mu_1\mu_2\ldots\mu_n\,|\,\nu_1\nu_2\ldots\nu_n} \quad [n,n]$$



If (4,0) limit exists...

- l_{Planck} NOT dimensionless. Limit is one to energies $E > 1/l_{Planck}$
- Highly symmetric superconformal phase emerging at transplanckian energies
- 32 Supersymmetries + 32 conformal supersymmetries, $OSp(8*/8) \supset SO(6,2) \times Sp(4)$
- Graviton arising from tensor C_{MNPO}
- Exotic theory of gravity
- (4,0) Phase of M-theory?
- Test: Does M-theory on T^6 have states with K? Do they fit in KK tower?

Circle Reduction from 6D

- Momentum modes on $S^1 \rightarrow 0$ -branes in 5D. 5D theory shd have 0-brane solutions
- Interacting $(2,0) \rightarrow 5D$ SYM:
- KK modes identified with instantonic solitons of 5D SYM
- Free (2,0): can do reduction explicitly, get free SYM
- Instantons \rightarrow zero size singular instantons in Maxwell theory
- Free (4,0) theory: can do reduction explicitly, get linearised SUGRA
- KK modes in free theory: zero size singular gravitational instantons used to make instantonic 0-branes?

O-branes: gravitational instantons?

- Does non-linear 5D supergravity have suitable 0-branes?
- KK modes have multiplet structure of (self-dual 4D space) x (time)
- Gibbons Hawking form of gravitational instanton:

$$ds_{GH}^2 = V^{-1}(dy + A)$$

$$\nabla^2 V = 0 \qquad \qquad F_{ij} = \epsilon_{ijk}$$

• KK monopole

 $ds^2 = -dt^2 + ds_{GH}^2$

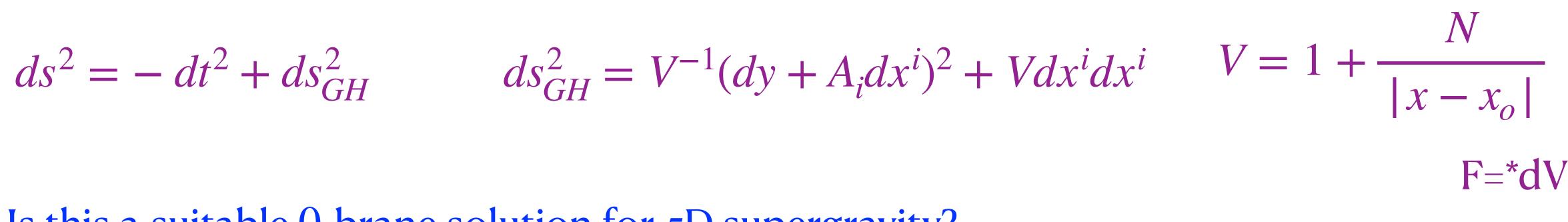
• Single centre:

i = 1,2,3 $V = V(x^i)$ $(dx^i)^2 + V dx^i dx^i$ $\nabla^k V \qquad \qquad F_{ii} \equiv \partial_i A_i - \partial_j A_i$

V = 1 + U, $U = \frac{N}{|x - x_o|}$

Self-dual Euclidean Taub-NUT

Is this a suitable 0-brane solution for 5D supergravity? Require to be asymptotic to 5D Minkowski space?



 $ds^2 = -dt^2 + ds_{GH}^2$ $ds_{GH}^2 = V^{-2}$

$$F^{1}(dy + A_{i}dx^{i})^{2} + Vdx^{i}dx^{i} \qquad V = 1 + \frac{N}{|x - x|}$$
F=
N

- <u>Problems</u>: 1)Singular at $x = x_0$ 2) Dirac string singularity e.g. $A_{\pm} = -\frac{1}{2}(\cos\theta \pm 1)d\phi$
- Dirac string can be moved by diffeomorphisms. Curvature depends only on F=dA=*dV

 $ds^2 = -dt^2 + ds_{GH}^2$ $ds_{GH}^2 = V^{-2}$

Dirac string can be moved by diffeomorphisms. Curvature depends only on F=dA=*dV

Usual approach:

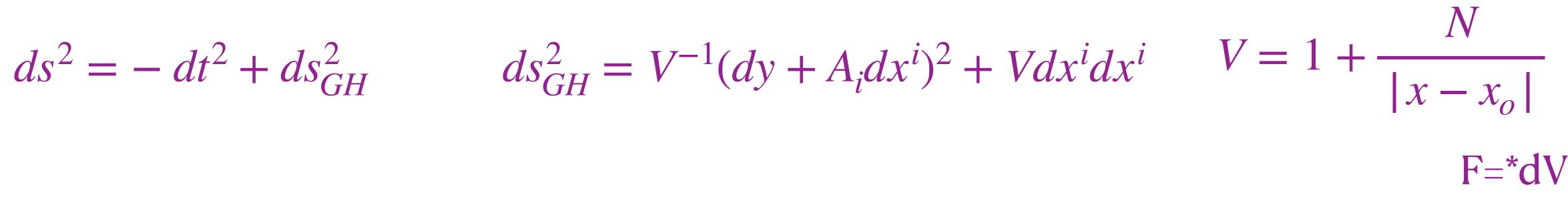
 A_+ , one with A_- . Each patch has no Dirac string. If N = 1, no singularity at $x = x_0$. For other *N*, orbifold singularity Smooth complete manifold, S^1 fibration over \mathbb{R}^3 . Asymptotic to Hopf fibration over S^2 at infinity giving a (squashed) S^3

$${}^{1}(dy + A_{i}dx^{i})^{2} + Vdx^{i}dx^{i} \qquad V = 1 + \frac{N}{|x - x|}$$
F=
N

<u>Problems</u>: 1)Singular at $x = x_0$ 2) Dirac string singularity e.g. $A_{\pm} = -\frac{1}{2}(\cos\theta \pm 1)d\phi$

- If $N \in \mathbb{Z}$ and y periodic $y \sim y + 4\pi N$, construct manifold with two patches, one with

Is this a suitable 0-brane solution for 5D supergravity? Require to be asymptotic to 5D Minkowski space? But for asymptotically flat, require non-periodic y. Do Dirac strings matter? Can we think of this solution without compactifying y?



Gravitational Charges

Gauge symmetry: diffeomorphisms Isometries: subroup preserving a given configuration Generated by Killing vectors k^{μ}

E.g. Minkowski space: Isometry is Poincare group, translations and Lorentz Isometries: Global symmetry group with associated Noether charges

$$J_{\mu} = T_{\mu\nu}k^{\nu}$$

Conserved charge

 $Q[k] = \int *J$

- $\nabla_{(\mu}k_{\nu)}=0$

$$\nabla_{\mu}J^{\mu}=0$$

- Σ is spatial hypersurface
- Use Einstein's equations to rewrite as integral over $S = \partial \Sigma$, sphere at spatial infinity

Gravitational Charges 2

General configurations have no isometries so no Noether charges

If spacetime is asymptotic to some (M, \bar{g}) which has isometries generated by KV k^{μ} , then (M, g) can have asymptotic Killing vectors ADM construction: Generalised Noether charges Q[k]

Can write as integrals over (D-2)-sphere at spatial infinity Requires suitable boundary conditions

- e.g. if $(\overline{M}, \overline{g})$ is Minkowski space: ADM momentum P^{μ} , angular momentum $J^{\mu\nu}$

Gravitational Charges 3 **Linearised gravity**

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

 $G^L_{\mu\nu}(h) = T_{\mu\nu}$

Gauge symmetry $\delta h_{\mu\nu}$ $\partial_{(\mu}k_{\nu)} = 0$ Killing vector All configurations have isometry generated by such KV, so there are Noether charges Q[k]

Linearisation of ADM charges. ADM from "integrating up" linearised construction

Linearise about Minkowski space $\mathcal{U}\mathcal{V}$ $G_{\mu\nu}^L$: terms in Einstein tensor linear in $h_{\mu\nu}$

$$_{\nu} = \partial_{(\mu} \xi_{\nu)}$$

Generate Poincare group

Charges in General Gauge Theories Similar structure to Gravity

- Isometries/invariances
- For a given configuration, the gauge transformations preserving that configuration give an "isometry group", typically finite dimensional.
- Killing gauge parameters, Noether charges
- General configurations have no isometries. If asymptotic to configuration with isometries can be asymptotic Killing gauge parameters and ADM-type charges
- Linearising gauge symmetry about that configuration, these become Noether charges
- ADM-type charges from "integrating up" the linearised construction

Antisymmetric Tensor Gauge Theories D dimensions, general spacetime

- dF = *J
- (n + 1)-form field strength F
- n-form electric current J, (D n 2)-form magnetic current \tilde{J} Conserved
- If $\tilde{J} = 0$, locally there is n-form potential A
- Gauge symmetry
- Reducible: exact $\lambda = d\alpha$ don't act

$$\widetilde{J}, \qquad d^*F = ^*J$$

 $d * \widetilde{J} = 0 \qquad d * J = 0$ F = dA $\delta A = d\lambda$

Isometries/invariances

Killing gauge parameters: closed n-1 forms λ $d\lambda = 0$ Modulo exact, so isometries correspond to cohomology classes1-form currents $*j = (\lambda \land *J)$ $j_{\mu} = \frac{1}{(\mu - 1)!} J_{\mu\nu_1}$

Conserved $d * j[\lambda] = 0$

Conserved charge for each cohomology class $Q[\lambda + d\alpha] = Q[\lambda]$

 $*j[\lambda] = \lambda \wedge *J = \lambda \wedge d(*F) = d(\lambda \wedge *F)$

$$j_{\mu} = \frac{1}{(n-1)!} J_{\mu\nu_{1}...\nu_{n-1}} \lambda^{\nu_{1}...\nu_{n-1}}$$

- 0

$$Q[\lambda] = \int_{\Sigma} *j[\lambda]$$

 $Q[\lambda] = \int_{\partial \Sigma} \lambda \wedge *F$

If J = 0, locally there is (D-n-3)—form potential \tilde{A} Gauge symmetry

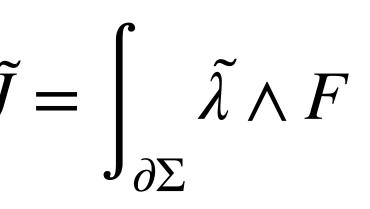
Reducible: exact $\tilde{\lambda} = d\tilde{\alpha}$ don't act

$$Q[\tilde{\lambda}] = \int_{\Sigma} \tilde{\lambda} \wedge *\tilde{J}$$

Conserved charges corresponding to Killing gauge parameter cohomology classes

 $*F = d\tilde{A}$

 $\delta \tilde{A} = d\tilde{\lambda}$



Magnetic charges as electric charges of dual theory

$$dF = *\widetilde{J},$$

$$Q[\lambda] = \int_{\partial \Sigma} \lambda \wedge *F$$

Charges conserved if sources J, \tilde{J} have compact support

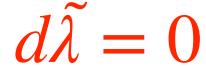
Charges "topological": depend only on cohomology classes [F], [*F]

d * F = *J

$$Q[\tilde{\lambda}] = \int_{\partial \Sigma} \tilde{\lambda} \wedge F \qquad \qquad d\lambda = 0,$$

If $\tilde{J} = 0$ $Q[\lambda]$ is electric charge associated with $A \to A + d\lambda$, $Q[\lambda]$ is a magnetic charge

If J = 0 $Q[\tilde{\lambda}]$ is electric charge associated with $\tilde{A} \to \tilde{A} + d\tilde{\lambda}$, $Q[\lambda]$ is a magnetic charge



Gravity Magnetic Charges: Noether Charges of Dual Graviton **Linearised gravity**

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \qquad \qquad G^L_{\mu\nu}(h) = T_{\mu\nu}$$

Gauge symmetry
$$\delta h_{\mu\nu} = \partial_{(\mu} \xi_{\nu)}$$

Invariant field strength $R_{\mu\nu\sigma\tau} = \partial_{\mu}\partial_{\sigma}$

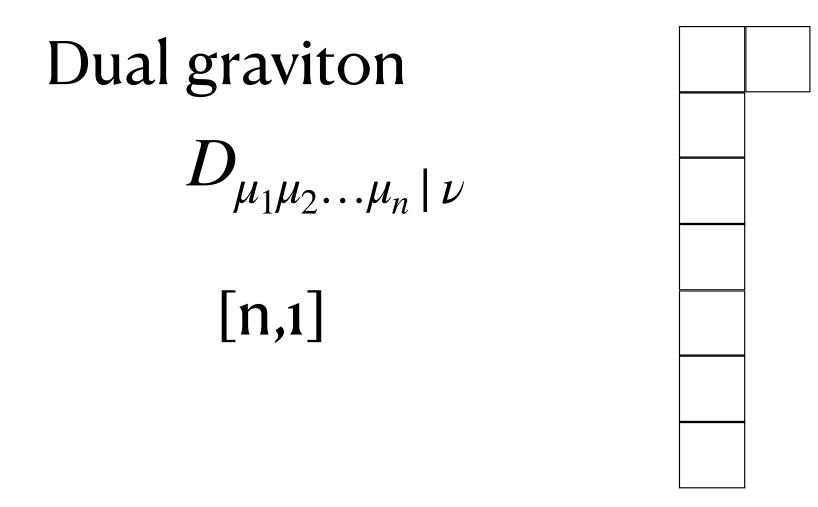
$$R_{[\mu\nu\sigma]\tau} = 0 \qquad \qquad R_{\mu\nu}$$

Killing vector $\partial_{(\mu}k_{\nu)}=0$ Noether charges Q[k]

$$\partial_{\sigma}h_{\nu\tau} + \ldots = -4\partial_{[\mu}h_{\nu][\sigma,\tau]}$$

 $\nu \left[\rho \sigma, \tau \right] = 0$

Dual Graviton in D Dimensions



$$\delta D_{\mu\nu\dots\sigma|\rho} = \partial_{[\mu}\alpha_{\nu\dots\sigma]|\rho} + \partial_{\rho}\beta_{\mu\nu\dots\sigma} - \partial_{[\rho}\beta_{\mu\nu\dots\sigma]}$$

Field strength $S_{\mu\nu\ldots\rho\,|\,\sigma\tau} = \partial_{[\mu}D_{\nu\ldots\rho]\,|\,[\sigma,\tau]}$ [n+1,2]

Two types of Noether charge for two types of symmetery

Two gauge symmetries.

Parameters:

 $\alpha_{\mu_1...\mu_{n-1}|\rho} \qquad [n-1,1]$ $\beta_{\mu_1...\mu_n} \qquad [n,o] \qquad n-form$

Killing Tensors

$\delta D_{\mu\nu\dots\sigma|\rho} = \partial_{[\mu}\alpha_{\nu\dots\sigma]|\rho} +$

"Dual isometries" if

 $Q[\kappa],$ $Q[\lambda]$ Noether charges

$$\partial_{\rho}\beta_{\mu\nu\ldots\sigma} - \partial_{[\rho}\beta_{\mu\nu\ldots\sigma]}$$

- 1) parameter α is [n-1,1] generalised Killing tensor $\kappa_{\mu_1...\mu_{n-1}}|_{\rho}$ satisfying $\partial_{[\mu}\kappa_{\nu\ldots\sigma]\rho} = 0$
- 2) parameter β given by a Killing-Yano tensor, i.e., an n-form $\lambda_{\mu_1...\mu_n}$ satisfying
 - $\partial_{\rho}\lambda_{\mu\nu\ldots\sigma} \partial_{\rho}\lambda_{\mu\nu\ldots\sigma} = 0$

[n-1,1] generalised Killing tensor $\kappa_{\mu_1...\mu_{n-1}|\rho}$ satisfying $\partial_{\left[\mu \kappa_{\nu \dots \sigma}\right]\rho} = 0$

Particular solution

 $\kappa_{\mu_1...\mu_{n-1}|\nu} = \rho_{[\mu_1...\mu_{n-2}}\eta_{\mu_{n-1}]\nu}$

where $\rho_{\mu_1...\mu_{n-2}}$ is closed (n-2)-form, $d\rho = 0$

Noether charge $Q[\rho]$ is linearised K-charge, depends only on cohomology class of ρ

K-Charge

n-2=D-5

Gravitational Duality

Dual to graviton:

 $S_{\mu_1\mu_2\ldots\mu_{n+1}\mid\nu
ho}$

$$R_{\mu\,\nu} = 0 \qquad \qquad \leftrightarrow$$

$$R_{[\mu\nu\sigma]\tau} = 0 \qquad \leftrightarrow$$

Trace
$$S'_{\mu_1\mu_2...\mu_n | \nu} = S_{\mu_1\mu_2...\mu_n \rho | \nu}^{\rho}$$

Double Trace $S''_{\mu_1\mu_2...\mu_{n-1}} = S_{\mu_1\mu_2...\mu_{n-1}\nu\rho | \nu}^{\nu\rho}$

$$= \frac{1}{2} \epsilon_{\mu_1 \mu_2 \dots \mu_{n+1} \alpha \beta} R^{\alpha \beta}{}_{\nu \rho} \qquad S = *R$$

$$S_{[\mu_1\mu_2...\mu_{n+1}\nu]\rho} = 0$$

$$S'_{\mu_1\mu_2\ldots\mu_n\nu}=0$$

Field Equation

"Einstein" tensor

 $E_{\mu_1\mu_2...\mu_n \,|\,\nu} = S'_{\mu_1\mu_2}$

Identically conserved

Field equation

 $E_{\mu_1\mu_2}$

Conserved dual stress energy tensor

 $\partial^{\mu_1} U_{\mu_1 \mu_2 \dots \mu_n \mid \nu} = 0,$

$$\sum_{2...\mu_{n}|\nu} - \frac{n}{2} S_{[\mu_{1}\mu_{2}...\mu_{n-1}}^{\prime\prime\prime} \eta_{\mu_{n}}]\nu$$

$$\partial^{\mu_1} E_{\mu_1 \mu_2 \dots \mu_n | \nu} = 0, \qquad \partial^{\nu} E_{\mu_1 \mu_2 \dots \mu_{n-1} \mu_n | \nu} = 0$$

$$\dots \mu_n | \nu = U_{\mu_1 \mu_2 \dots \mu_n | \nu}$$

$$\partial^{\nu} U_{\mu_1 \mu_2 \dots \mu_n | \nu} = 0$$

$T_{\mu\nu}$ source for $R_{\mu\nu}$ $U_{\mu_1\mu_2\ldots\mu_n\mid\nu}$ source for $T_{\mu\nu}$ gives regular $h_{\mu\nu}$, but Dirac strings in $D_{\mu_1\mu_2...\mu_n}$ $U_{\mu_1\mu_2...\mu_n | \nu}$ gives regular $D_{\mu_1\mu_2...\mu_n | \nu}$, but Dirac strings in $h_{\mu\nu}$

In regions with $T_{\mu\nu} = 0$, can write theory in terms of $h_{\mu\nu}$ In regions with $U_{\mu_1\mu_2...\mu_n | \nu} = 0$, can write theory in terms of $D_{\mu_1\mu_2...\mu_n | \nu}$

Sources

or
$$S_{[\mu_1 \mu_2 ... \mu_{n+1} \nu] \rho}$$

 $S'_{\mu_1\mu_2...\mu_n\nu}$ or $R_{[\mu\nu\sigma]\tau}$

Linearised KK monopole solution:

Superposition of 2 solutions

1) delta-function $T_{\mu\nu}$ source at $x_0 = 0$

$$h_{yy} = -U, \qquad h_{ij} = U\delta_{ij}$$

2) delta-function $U_{\mu_1\mu_2...\mu_n \mid \nu}$ source at $x_0 = 0$

$$h_{iy} = h_{yi} = A_i$$

BPS if V = W, M = N

$X^{\mu} = (t, y, x^{l})$ $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$

U = -

 $F_{ij} = \varepsilon_{ijk} \partial^k W \qquad \qquad W = \frac{N}{-1}$

Linearised KK monopole solution: 1) delta-function $T_{\mu\nu}$ source at $x_0 = 0$ $h_{yy} = -U$, $h_{ij} = U\delta_{ij}$ $U = \frac{M}{r}$

2) delta-function $U_{\mu_1\mu_2...\mu_n \mid \nu}$ source at $x_0 = 0$

$$h_{iy} = h_{yi} = A_i$$
$$F_{ij} = \varepsilon_{ijk} \partial^k W \qquad W = \frac{N}{r}$$

Linearised KK monopole solution: 1) delta-function $T_{\mu\nu}$ source at $x_0 = 0$ $h_{yy} = -U$, $h_{ij} = U\delta_{ij}$ $U = \frac{M}{r}$

2) delta-function $U_{\mu_1\mu_2...\mu_n \mid \nu}$ source at $x_0 = 0$

Dualise

$$D_{ty|y} = W$$

W 3D dual of A_i $F_{ij} = \varepsilon_{ijk} \partial^k W$

$$h_{iy} = h_{yi} = A_i$$

$$F_{ij} = \varepsilon_{ijk} \partial^k W \qquad W = \frac{N}{r}$$

Linearised KK monopole solution: $U = \frac{M}{r}$ $h_{vv} = -U, \qquad h_{ii} = U\delta_{ii}$

1) delta-function $T_{\mu\nu}$ source at $x_0 = 0$

Dualise $D_{ti|v} = B_i, \ D_{ti|i} = k_{ii}$ B_i, k_{ii} 3D duals of U $\varepsilon_{iik}\partial^k U = \partial_i B_i - \partial_i B_i$

2) delta-function $U_{\mu_1\mu_2...\mu_n \mid \nu}$ source at $x_0 = 0$

 $\partial_i \partial_i U = \varepsilon_{ikl} \varepsilon_{imn} \partial_k \partial_m k_{ln}$ $h_{iv} = h_{vi} = A_i$ $F_{ij} = \varepsilon_{ijk} \partial^k W \qquad W = -\frac{N}{2}$

Linearised KK monopole solution: $U = \frac{M}{r}$ $h_{vv} = -U, \qquad h_{ii} = U\delta_{ii}$

1) delta-function $T_{\mu\nu}$ source at $x_0 = 0$

Dualise $D_{ti|v} = B_i, \ D_{ti|i} = k_{ii}$ B_i, k_{ii} 3D duals of U $\varepsilon_{iik}\partial^k U = \partial_i B_i - \partial_i B_i$

2) delta-function $U_{\mu_1\mu_2...\mu_n \mid \nu}$ source at $x_0 = 0$

Dualise $D_{ty|y} = W$

 $W_{3}D$ dual of A_{i}

Dirac Strings for A_i, B_i

 $\partial_i \partial_i U = \varepsilon_{ikl} \varepsilon_{imn} \partial_k \partial_m k_{ln}$ $h_{iv} = h_{vi} = A_i$ $F_{ij} = \varepsilon_{ijk} \partial^k W \qquad W = -\frac{N}{2}$

Linearised KK monopole solution 2

- Superposition: "electric" solution with charge M & "magnetic" one with charge N
- CHARGES: Mass Q[k]=M for $k^{\mu} = (1, \underline{0})$, K-charge $Q[\rho] = N$ for 0-form $\rho = 1$
- Each has Dirac string in one duality frame and not in other
- Can move positions of string singularities by gauge transformations
- Magnetic solution: can take 2 patches with $h_{iy}^{\pm} = A_i^{\pm}$, $A^+ A^- = N d\phi$
- Transition function: $\xi_v = \phi$. Locally OK but globally problematic: $\phi \sim \phi + 2\pi$
- OK(?) if allow generalised gauge transformations cf $\delta A = \alpha$ with $d\alpha = 0$

KK Modes for (4,0) Theory

- Free (4,0) theory compactifies to linearised D=5 supergravity • KK modes associated with linearised KK monopole
- Dirac strings depend on duality frame
- Singularity at $x^i = 0$ representing presence of "particle"
- Non-linear D=5 SUGRA: candidate solution given by GH metric for $x \neq 0$
- Dirac strings may not be so bad: signal of using wrong variables?
- Singularity at x = 0: resolve with *core* of 6D (4,0) theory?

Discussion

- New magnetic charges for linearised gravity from Noether charges for dual isometries of dual graviton. Includes linearised K-charge, extends to GR in $D \ge 5$
- Interacting (4,0) theory needs KK tower of K-charged BPS states in D=5 M-theory
- If can show there are no such states in M-theory, then conjecture falsified
- K-states are U-duality singlets, so duality doesn't help
- Would have liked non-singular soliton, as for YM/(2,0)
- Analysis of linearised theory suggests Dirac strings may be tolerable

- Singular D=5 solution OK if resolved in full D=6 theory
- cf M-theory: KK modes are D0-branes, which correspond to singular IIA supergravity solutions. But singularity resolved in D=11 pp-wave solution
- BPS states in M-theory correspond to supergravity solutions. If solution nonsingular, then supergravity soliton strong evidence for existence of BPS state. If singular, need further input to understand whether state actually arises.
- Spin-off: gravitational duality, magnetic charges etc
- Irrespective of whether (4,0) conjecture true, gravitational duality, magnetic charges etc may have interesting consequences, especially for gravity in $D \ge 5$.

