FI-MODULES AND REPRESENTATION STABILITY

TREVOR HYDE

These are lectures notes for a talk I gave in the Student Representation Theory seminar at the University of Michigan on March 24th, 2016.

1. Representations of Categories

There are a few ways to think about k-representations of a group G.

- (1) A vector space V with a linear G-action.
- (2) A vector space V with a group homomorphism $\rho: G \to \mathrm{GL}(V)$.
- (3) A module V over the group algebra kG.
- (4) A functor $V: G \to k$ -Vec from G viewed as a groupoid with one object to the category of k vector spaces.

These are all equivalent and useful perspectives. The last one is my favorite because it suggests many generalizations. We change the target...

- We could replace k-Vec with Sets to consider functors from G to Sets. These are called G-sets or group actions.
- We could replace k-Vec with Top to get G-spaces, or topological spaces with a continuous action of G.
- I think of the category G as the generic model of an object with G-symmetry and a representation of G as a concrete object in some category with G-symmetry.
- Some people would say you're only doing representation theory when the target category is vector spaces or maybe modules over a ring; however, I do not agree.

Or we can change the source...

- Question: What's the most general thing we could replace G by and still have this make sense? Answer: A general category C.
- A linear representation of C is a functor from C to k-Vec.
- A C-set would be a functor from C to Sets, etc.

We will focus on linear representations of C and we just call these *representations*. You might also call this a C-module

Note: One may construct a *category algebra* kC generalizing the notion of a group algebra as well as that of an *incidence algebra* of a poset.

- The objects of kC are finite k-linear combinations of morphisms from C.
- If α and β or morphism in C, we define their product by

$$\alpha\beta = \begin{cases} \alpha \circ \beta & \text{if source}(\alpha) = \text{target}(\beta) \\ 0 & \text{otherwise.} \end{cases}$$

• Extend multiplication k-bilinearly.

Date: March 24th, 2016.

2 TREVOR HYDE

Then every representation of C corresponds to a kC-module, although not conversely when C has infinitely many objects.

2. The category FI

We will look specifically at representations of the category FI.

- FI is the category of finite sets with injections.
- If we let $[n] = \{1, 2, 3, ..., n\}$, then FI is equivalent to the category having [n] as objects for each $n \ge 0$ and the injections between them.

What does FI look like?

$$\bigcap \qquad \bigcap \qquad \bigcap \qquad \bigcap \qquad \\
[0] \longrightarrow [1] \Longrightarrow [2] \Longrightarrow [3] \qquad \cdots$$

- All morphisms "flow" upwards.
- $\operatorname{End}([n]) \cong S_n$ since any injection from a finite set to itself is a bijection.
- There are $\frac{m!}{(m-n)!}$ maps from [n] to [m] which we see by taking any listing of [m] and selecting the first n.

What do representations of FI look like? Say $V : FI \rightarrow k\text{-Vec}$ is an FI-representation.

- For each n, we get a vector space $V[n] = V_n$ with a linear action of S_n . Hence V_n is a representation of S_n .
- For each inclusion $[n] \hookrightarrow [m]$ we get a linear map $V_n \to V_m$, and these maps are compatible with the action of S_n and S_m .
- Note: we have representations of infinitely many groups all patched together in a consistent way; not all the same group.
- A representation of FI is called an FI-module.

What are the morphisms between FI-modules?

- For representations of groups, these are called "intertwining operators."
- The functor perspective gives a clue: morphisms between functors are natural transformations. Intertwining operators are exactly natural transformations.
- Hence, a morphism $f:U\to V$ between FI-modules is a natural transformation between the functors.
- More concretely, for each n, we get an S_n -map $f_n:U_n\to V_n$.
- For each injection $i:[n] \hookrightarrow [m]$ the following square commutes:

$$\begin{array}{ccc}
U_n & \xrightarrow{i} & U_m \\
f_n \downarrow & & \downarrow f_m \\
V_n & \xrightarrow{i} & V_m
\end{array}$$

An FI-module is a lot of information bundled together into a single mathematical object. Building them artificially could be a lot of work, but the point is that they often arise *naturally*.

3. AN EXAMPLE

Let HP⁴ be the FI-module of homogeneous degree 4 polynomials.

- HP $_n^4$ is the vector space of homogeneous degree 4 polynomials in n variables x_1, x_2, \ldots, x_n .
- The maps in FI act on the subscripts of the variables.

- x_1^4 is an "element" of HP⁴. We may view it as living in any HP⁴_n, though it "comes from" HP⁴₁.
- x_3^4 , on the other hand, lives in any HP_n⁴ with $n \ge 3$. However it still "comes from" HP₁⁴ in a natural way.
- $x_1^2 x_2^1 x_3^1$ lives in HP_n^4 with $n \ge 3$, but unlike x_3^4 , it is a "native." This monomial is not a relabelling of anything from HP_1^4 or HP_2^4 .

The monomials form a basis for HP_n^4

HP_1^4	HP_2^4			HP_3^4				HP_4^4				
x_1^4	x_1^4	$x_1^3 x_2^1$	$x_1^2 x_2^2$	x_1^4	$x_1^3 x_2^1$	$x_1^2 x_2^2$	$x_1^2 x_2^1 x_3^1$	x_1^4	$x_1^3 x_2^1$	$x_1^2 x_2^2$	$x_1^2 x_2^1 x_3^1$	$x_1^1 x_2^1 x_3^1 x_4^1$
1	2	2	1	3	6	3	3	4	12	6	12	1

- If we go to HP_n^4 for any n > 4 we get "nothing new".
- If we were to compute the dimension of HP_n^4 , we would do it by grouping the monomials based on the partition $\lambda \vdash 4$ as we have done in the tables.
- We can see the number of monomials in n variables with partition type λ are counted by a polynomial in n.
- For example, if $\lambda = [3, 1]$, then there are $\frac{n!}{(n-2)!} = n(n-1)$
- Another example, if $\lambda = [2, 1, 1]$, then there are $\frac{n!}{(n-3)!2!} = \frac{n(n-1)(n-2)}{2}$
- Since there are 5 partitions of 4, the total dimension of HP_n^4 will be the sum of 5 polynomials in n, one counting monomials of each shape, for $n \ge 4$.

This natural grouping of basis elements we have observed may be compactly expressed as a structural decomposition of the FI-module HP⁴.

- Given a partition λ , let HP^{λ} be the FI-module of homogeneous polynomials spanned by monomials of shape λ .
- This gives an FI-module because relabelling variables (injectively!) does not change the shape of monomials.
- If $\lambda \vdash 4$, then HP^{λ} is an FI-submodule of HP⁴
- In fact, we have

$$HP^4 \cong HP^{[4]} \oplus HP^{[3,1]} \oplus HP^{[2,2]} \oplus HP^{[2,1,1]} \oplus HP^{[1,1,1,1]}$$

• Each HP^{λ} is cyclic, generated in $HP^{\lambda}_{\ell(\lambda)}$ by a single monomial (the first monomial of shape λ).

This simple decomposition says a lot all at once.

- We get a simultaneous decomposition of HP_n^4 as S_n -representations for all n. Hence, the characters decompose as well.
- All the S_n -representations $\operatorname{HP}_n^{\lambda}$ for $n \geq \ell(\lambda)$ are induced. Therefore, all of these representations are completely determined by the first non-zero one. For example, their characters may be computed from that of $\operatorname{HP}_{\ell(\lambda)}^{\lambda}$ using Frobenius reciprocity.
- Thus, while originally the FI-module HP⁴ seemed like a large, infinite object, we see that it is completely determined by 5 representations of specific symmetric groups.
- All of this simple structure is a consequence of HP⁴ being a *finitely generated* FI-module. We say an FI-module is finitely generated if, just as in the case examined, there are finitely many elements (in possibly different "degrees") which generate the entire module.

All the properties of HP⁴ witnessed are examples of representation stability.

4. AN APPLICATION TO NUMBER THEORY

Let q be a prime power and \mathbb{F}_q a finite field of size q. An interesting phenomenon in number theory is that counting problems over finite fields often have answers given by a polynomial in q, the size of the field, and which otherwise do not depend on the particular field or characteristic.

One source of such counting problems are called *polynomial statistics*.

- Let $\operatorname{Conf}_n(\mathbb{F}_q)$ denote the collection of monic, degree n, squarefree polynomials defined over the finite field \mathbb{F}_q .
- A degree n, squarefree polynomial corresponds to a set of n distinct points in $\overline{\mathbb{F}}_q$. Being defined over \mathbb{F}_q means the *set* is invariant under the action of Frobenius, or equivalently, that the coefficients of the polynomial are in \mathbb{F}_q .
- We call a function $F: \operatorname{Conf}_n(\mathbb{F}_q) \to \mathbb{Q}$ a polynomial statistic if F(f) only depends on the factorization type of the polynomial f.
- The following are equivalent,

{Factorization type of $f \in \operatorname{Conf}_n(\mathbb{F}_q)$ } \longleftrightarrow {Partitions $\lambda \vdash n$ } \longleftrightarrow {Conjugacy classes $C_\lambda \subseteq S_n$ }.

- ullet CEF give a cool formula for computing the total value of a statistic F on $\mathrm{Conf}_n(\mathbb{F}_q)$.
- Let $\mathrm{PConf}_n(\mathbb{C}) = \{(z_1, \ldots, z_n) \in \mathbb{C}^n : z_i \neq z_j \text{ for } i \neq j\}$ be the space of ordered configurations of n distinct points in \mathbb{C} .
- This gives an FI-space $\operatorname{PConf}(\mathbb{C})$. For each k we may compose $\operatorname{PConf}(\mathbb{C})$ with $H^k(-,\mathbb{Q})$ to get an FI-module.

$$\operatorname{FI} \xrightarrow{\operatorname{PConf}(\mathbb{C})} \operatorname{Man} \xrightarrow{H^k(-,\mathbb{Q})} \mathbb{Q}\text{-Vec}$$

• Let h_n^k be the character of $H^k(\mathrm{PConf}_n(\mathbb{C}),\mathbb{Q})$ as an S_n -representation. Then

$$\sum_{f \in \text{Conf}_n(\mathbb{F}_q)} F(f) = q^n \sum_{k=0}^n \langle F, h_n^k \rangle (-q)^{-k}$$

- This is the *Twisted Grothendieck-Lefschetz formula*. It shows that the answer to any such counting problem is given by a polynomial in q of degree at most n. Furthermore, the coefficients are integers representing the multiplicity of certain irreducible factors in $H^k(\operatorname{PConf}_n(\mathbb{C}), \mathbb{Q})$.
- Therefore, understanding the structure of the cohomology of $\operatorname{PConf}_n(\mathbb{C})$ as an S_n -representation is equivalent to understanding polynomial statistics over finite fields.
- For each k, the FI-module $H^k(\mathrm{PConf}(\mathbb{C}),\mathbb{Q})$ is known to be finitely generated, hence exhibit representation stability.
- The stability of these representations manifests as stability of polynomial statistics.

We can potentially use the twisted Grothendieck-Lefschetz formula in both directions. For example, it is well-known that there are q^n-q^{n-1} monic, degree n, squarefree polynomials in $\mathbb{F}_q[x]$. This corresponds to the polynomial statistic 1, which is constant equal to 1 on $\mathrm{Conf}_n(\mathbb{F}_q)$.

- As a class function, this is the trivial character.
- Hence $\langle 1, h_n^k \rangle$ is the multiplicity of the trivial representation in $H^k(\mathrm{PConf}_n(\mathbb{C}), \mathbb{Q})$.
- Comparing both sides of the TGL, we see that

$$\begin{split} \langle 1, h_n^0 \rangle &= 1 \\ \langle 1, h_n^1 \rangle &= 1 \\ \langle 1, h_n^k \rangle &= 0, \text{ for } k \geq 2. \end{split}$$

Next we have an example in the other direction. Let QR and QI be the polynomial statistics "quadratic reducible factors" and "quadratic irreducible factors", let QE = QR - QI be "quadratic excess". Then we can compute the total value of QE on $\mathrm{Conf}_n(\mathbb{F}_q)$ for some small values of n:

$$\begin{array}{|c|c|c|}
\hline n & \sum_{f \in \operatorname{Conf}_n(\mathbb{F}_q)} QE(f) \\
\hline 5 & q^4 - 4q^3 + 5q^2 - 2q \\
6 & q^5 - 4q^4 + 7q^3 - 7q^2 + 3q \\
7 & q^6 - 4q^5 + 7q^4 - 8q^3 + 8q^2 - 4q \\
8 & q^7 - 4q^6 + 7q^5 - 8q^4 + 9q^3 - 10q^2 + 4q
\end{array}$$

Each coefficient corresponds to a different level of cohomology. That these values appear to be eventually constant is a consequence of the stability of $H^k(\mathrm{PConf}_n(\mathbb{C}),\mathbb{Q})$. Note that the point at which we stabilize depends on k.

5. Representation Stability

The notion of representation stability was introduced by Church and Farb in their 2010 paper *Representation theory and homological stability*.

- The notion of homological stability had been observed and studied for some time. This is a phenomenon where one has a sequence of topological spaces X_n with maps $X_n \to X_{n+1}$, if the induced maps on kth homology are eventually isomorphisms for each k, then we say the sequence of spaces is homologically stable.
- Of course, not every sequence of spaces with such maps will be homologically stable. However, in some cases, our spaces have more structure, like an action of a symmetric group. This action makes the homology into a group representation. One can then ask how these representations decompose to obtain more refined information.
- What Church and Farb observed is that in many cases, the structure of these decompositions "stabilizes" in the sense that the irreducibles and their multiplicities eventually fall into a family which does not change. (Elaborate with an example if time.)
- They describe these families by their corresponding partitions.
- Another observation about these representations is that their dimensions are eventually given by a single polynomial in n.
- These properties were taken as the definition of representation stability.

Soon after, Church, Ellenberg, and Farb introduced the concept of an FI-module to simplify the original notion of a family of representations of different symmetric groups with compatible maps.

- They demonstrated that any finitely generated FI-module will exhibit all the properties originally used to characterize representation stability.
- For example, the stability of the partitions associated to irreducible components can be seen as a consequence of Pieri's rule for computing the irreducible decomposition of an induced representation.
- Church, Ellenberg, and Farb proved a beautiful result, later improved with Ellenberg's student Nagpal: If R is a Noetherian ring, and V is a finitely generated FI-module over R, then every FI-submodule W of V is finitely generated.
- Finitely generated FI-modules are closed under many other natural properties. This provides a tool for proving a sequence of compatible S_n -representations is stable: prove the

6 TREVOR HYDE

- corresponding FI-module is finitely generated by embedding it into another FI-module which we know to be finitely generated.
- Using this tool, they were able to prove many of the conjectures on representation stable sequences.
- From a different perspective, Snowden proved a result about Δ -modules from which one many also deduce their original Noetherian result.

The first definition of representation stability appears in the paper of Church and Farb [4]. The theory of FI-modules is introduced and developed in Church, Ellenberg, Farb [2]. Their results are extended to representations in positive characteristic with Nagpal in [3]. Another approach to these results on stability is through Δ -modules, beginning in the paper of Snowden [6]. The twisted Grothendieck-Lefschetz formula and applications to number theory appear in a follow-up paper of Church, Ellenberg, and Farb [1]. A recent survey on representation stability by Khomenko and Kesari [5] appeared on the arXiv, giving a good overview of the rapidly developing state of the theory.

REFERENCES

- [1] Thomas Church, Jordan S. Ellenberg, and Benson Farb. Representation stability in cohomology and asymptotics for families of varieties over finite fields. In *Algebraic topology: applications and new directions*, volume 620 of *Contemp. Math.*, pages 1–54. Amer. Math. Soc., Providence, RI, 2014.
- [2] Thomas Church, Jordan S. Ellenberg, and Benson Farb. FI-modules and stability for representations of symmetric groups. *Duke Math. J.*, 164(9):1833–1910, 2015.
- [3] Thomas Church, Jordan S. Ellenberg, Benson Farb, and Rohit Nagpal. FI-modules over Noetherian rings. *Geom. Topol.*, 18(5):2951–2984, 2014.
- [4] Thomas Church and Benson Farb. Representation theory and homological stability. Adv. Math., 245:250–314, 2013.
- [5] A. Khomenko and D. Kesari. A Survey of Representation Stability Theory. ArXiv e-prints, March 2016.
- [6] Andrew Snowden. Syzygies of Segre embeddings and Δ-modules. Duke Math. J., 162(2):225–277, 2013.

DEPT. OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MI 48109-1043, *E-mail address*: tghyde@umich.edu