
FI-MODULES AND REPRESENTATION STABILITY

TREVOR HYDE

These are lectures notes for a talk I gave in the Student Representation Theory seminar at the
University of Michigan on March 24th, 2016.

1. REPRESENTATIONS OF CATEGORIES

There are a few ways to think about k-representations of a group G.
(1) A vector space V with a linear G-action.
(2) A vector space V with a group homomorphism ρ : G→ GL(V ).
(3) A module V over the group algebra kG.
(4) A functor V : G → k-Vec from G viewed as a groupoid with one object to the category

of k vector spaces.
These are all equivalent and useful perspectives. The last one is my favorite because it suggests

many generalizations. We change the target...
• We could replace k-Vec with Sets to consider functors from G to Sets. These are called
G-sets or group actions.
• We could replace k-Vec with Top to getG-spaces, or topological spaces with a continuous

action of G.
• I think of the category G as the generic model of an object with G-symmetry and a repre-

sentation of G as a concrete object in some category with G-symmetry.
• Some people would say you’re only doing representation theory when the target category

is vector spaces or maybe modules over a ring; however, I do not agree.
Or we can change the source...
• Question: What’s the most general thing we could replace G by and still have this make

sense? Answer: A general category C.
• A linear representation of C is a functor from C to k-Vec.
• A C-set would be a functor from C to Sets, etc.

We will focus on linear representations of C and we just call these representations. You might
also call this a C-module

Note: One may construct a category algebra kC generalizing the notion of a group algebra as
well as that of an incidence algebra of a poset.

• The objects of kC are finite k-linear combinations of morphisms from C.
• If α and β or morphism in C, we define their product by

αβ =

{
α ◦ β if source(α) = target(β)

0 otherwise.

• Extend multiplication k-bilinearly.
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Then every representation of C corresponds to a kC-module, although not conversely when C has
infinitely many objects.

2. THE CATEGORY FI

We will look specifically at representations of the category FI.
• FI is the category of finite sets with injections.
• If we let [n] = {1, 2, 3, . . . , n}, then FI is equivalent to the category having [n] as objects

for each n ≥ 0 and the injections between them.
What does FI look like?

[0] [1] [2] [3] · · ·

• All morphisms “flow” upwards.
• End([n]) ∼= Sn since any injection from a finite set to itself is a bijection.
• There are m!

(m−n)! maps from [n] to [m] which we see by taking any listing of [m] and
selecting the first n.

What do representations of FI look like? Say V : FI→ k-Vec is an FI-representation.
• For each n, we get a vector space V [n] = Vn with a linear action of Sn. Hence Vn is a

representation of Sn.
• For each inclusion [n] ↪→ [m] we get a linear map Vn → Vm, and these maps are compat-

ible with the action of Sn and Sm.
• Note: we have representations of infinitely many groups all patched together in a consis-

tent way; not all the same group.
• A representation of FI is called an FI-module.

What are the morphisms between FI-modules?
• For representations of groups, these are called “intertwining operators.”
• The functor perspective gives a clue: morphisms between functors are natural transforma-

tions. Intertwining operators are exactly natural transformations.
• Hence, a morphism f : U → V between FI-modules is a natural transformation between

the functors.
• More concretely, for each n, we get an Sn-map fn : Un → Vn.
• For each injection i : [n] ↪→ [m] the following square commutes:

Un Um

Vn Vm

i

fn fm

i

An FI-module is a lot of information bundled together into a single mathematical object. Build-
ing them artificially could be a lot of work, but the point is that they often arise naturally.

3. AN EXAMPLE

Let HP4 be the FI-module of homogeneous degree 4 polynomials.
• HP4

n is the vector space of homogeneous degree 4 polynomials in n variables x1, x2, . . . , xn.
• The maps in FI act on the subscripts of the variables.
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• x41 is an “element” of HP4. We may view it as living in any HP4
n, though it “comes from”

HP4
1.

• x43, on the other hand, lives in any HP4
n with n ≥ 3. However it still “comes from” HP4

1

in a natural way.
• x21x12x13 lives in HP4

n with n ≥ 3, but unlike x43, it is a “native.” This monomial is not a
relabelling of anything from HP4

1 or HP4
2.

The monomials form a basis for HP4
n

HP4
1 HP4

2 HP4
3 HP4

4

x41 x41 x31x
1
2 x21x

2
2 x41 x31x

1
2 x21x

2
2 x21x

1
2x

1
3 x41 x31x

1
2 x21x

2
2 x21x

1
2x

1
3 x11x

1
2x

1
3x

1
4

1 2 2 1 3 6 3 3 4 12 6 12 1

• If we go to HP4
n for any n > 4 we get “nothing new”.

• If we were to compute the dimension of HP4
n, we would do it by grouping the monomials

based on the partition λ ` 4 as we have done in the tables.
• We can see the number of monomials in n variables with partition type λ are counted by

a polynomial in n.
• For example, if λ = [3, 1], then there are n!

(n−2)! = n(n− 1)

• Another example, if λ = [2, 1, 1], then there are n!
(n−3)!2! = n(n−1)(n−2)

2

• Since there are 5 partitions of 4, the total dimension of HP4
n will be the sum of 5 polyno-

mials in n, one counting monomials of each shape, for n ≥ 4.
This natural grouping of basis elements we have observed may be compactly expressed as a

structural decomposition of the FI-module HP4.
• Given a partition λ, let HPλ be the FI-module of homogeneous polynomials spanned by

monomials of shape λ.
• This gives an FI-module because relabelling variables (injectively!) does not change the

shape of monomials.
• If λ ` 4, then HPλ is an FI-submodule of HP4

• In fact, we have

HP4 ∼= HP[4] ⊕HP[3,1] ⊕HP[2,2] ⊕HP[2,1,1] ⊕HP[1,1,1,1]

• Each HPλ is cyclic, generated in HPλ`(λ) by a single monomial (the first monomial of
shape λ).

This simple decomposition says a lot all at once.
• We get a simultaneous decomposition of HP4

n as Sn-representations for all n. Hence, the
characters decompose as well.
• All the Sn-representations HPλn for n ≥ `(λ) are induced. Therefore, all of these represen-

tations are completely determined by the first non-zero one. For example, their characters
may be computed from that of HPλ`(λ) using Frobenius reciprocity.
• Thus, while originally the FI-module HP4 seemed like a large, infinite object, we see that

it is completely determined by 5 representations of specific symmetric groups.
• All of this simple structure is a consequence of HP4 being a finitely generated FI-module.

We say an FI-module is finitely generated if, just as in the case examined, there are finitely
many elements (in possibly different “degrees”) which generate the entire module.

All the properties of HP4 witnessed are examples of representation stability.
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4. AN APPLICATION TO NUMBER THEORY

Let q be a prime power and Fq a finite field of size q. An interesting phenomenon in number
theory is that counting problems over finite fields often have answers given by a polynomial in q,
the size of the field, and which otherwise do not depend on the particular field or characterisitic.

One source of such counting problems are called polynomial statistics.
• Let Confn(Fq) denote the collection of monic, degree n, squarefree polynomials defined

over the finite field Fq.
• A degree n, squarefree polynomial corresponds to a set of n distinct points in Fq. Being

defined over Fq means the set is invariant under the action of Frobenius, or equivalently,
that the coefficients of the polynomial are in Fq.
• We call a function F : Confn(Fq) → Q a polynomial statistic if F (f) only depends on

the factorization type of the polynomial f .
• The following are equivalent,

{Factorization type of f ∈ Confn(Fq)} ←→ {Partitions λ ` n} ←→ {Conjugacy classes Cλ ⊆ Sn}.
• CEF give a cool formula for computing the total value of a statistic F on Confn(Fq).
• Let PConfn(C) = {(z1, . . . , zn) ∈ Cn : zi 6= zj for i 6= j} be the space of ordered

configurations of n distinct points in C.
• This gives an FI-space PConf(C). For each k we may compose PConf(C) withHk(−,Q)

to get an FI-module.

FI
PConf(C)−−−−−−→ Man

Hk(−,Q)−−−−−→ Q-Vec

• Let hkn be the character of Hk(PConfn(C),Q) as an Sn-representation. Then∑
f∈Confn(Fq)

F (f) = qn
n∑
k=0

〈F, hkn〉(−q)−k

• This is the Twisted Grothendieck-Lefschetz formula. It shows that the answer to any
such counting problem is given by a polynomial in q of degree at most n. Furthermore,
the coefficients are integers representing the multiplicity of certain irreducible factors in
Hk(PConfn(C),Q).
• Therefore, understanding the structure of the cohomology of PConfn(C) as an Sn-representation

is equivalent to understanding polynomial statistics over finite fields.
• For each k, the FI-module Hk(PConf(C),Q) is known to be finitely generated, hence

exhibit representation stability.
• The stability of these representations manifests as stability of polynomial statistics.

We can potentially use the twisted Grothendieck-Lefschetz formula in both directions. For
example, it is well-known that there are qn − qn−1 monic, degree n, squarefree polynomials in
Fq[x]. This corresponds to the polynomial statistic 1, which is constant equal to 1 on Confn(Fq).

• As a class function, this is the trivial character.
• Hence 〈1, hkn〉 is the multiplicity of the trivial representation in Hk(PConfn(C),Q).
• Comparing both sides of the TGL, we see that

〈1, h0n〉 = 1

〈1, h1n〉 = 1

〈1, hkn〉 = 0, for k ≥ 2.
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Next we have an example in the other direction. Let QR and QI be the polynomial statistics
“quadratic reducible factors” and “quadratic irreducible factors”, let QE = QR − QI be “qua-
dratic excess”. Then we can compute the total value of QE on Confn(Fq) for some small values
of n:

n
∑

f∈Confn(Fq)
QE(f)

5 q4 − 4q3 + 5q2 − 2q
6 q5 − 4q4 + 7q3 − 7q2 + 3q
7 q6 − 4q5 + 7q4 − 8q3 + 8q2 − 4q
8 q7 − 4q6 + 7q5 − 8q4 + 9q3 − 10q2 + 4q

Each coefficient corresponds to a different level of cohomology. That these values appear to be
eventually constant is a consequence of the stability of Hk(PConfn(C),Q). Note that the point
at which we stabilize depends on k.

5. REPRESENTATION STABILITY

The notion of representation stability was introduced by Church and Farb in their 2010 paper
Representation theory and homological stability.

• The notion of homological stability had been observed and studied for some time. This is a
phenomenon where one has a sequence of topological spacesXn with mapsXn → Xn+1,
if the induced maps on kth homology are eventually isomorphisms for each k, then we say
the sequence of spaces is homologically stable.
• Of course, not every sequence of spaces with such maps will be homologically stable.

However, in some cases, our spaces have more structure, like an action of a symmetric
group. This action makes the homology into a group representation. One can then ask
how these representations decompose to obtain more refined information.
• What Church and Farb observed is that in many cases, the structure of these decomposi-

tions “stabilizes” in the sense that the irreducibles and their multiplicities eventually fall
into a family which does not change. (Elaborate with an example if time.)
• They describe these families by their corresponding partitions.
• Another observation about these representations is that their dimensions are eventually

given by a single polynomial in n.
• These properties were taken as the definition of representation stability.

Soon after, Church, Ellenberg, and Farb introduced the concept of an FI-module to simplify
the original notion of a family of representations of different symmetric groups with compatible
maps.

• They demonstrated that any finitely generated FI-module will exhibit all the properties
originally used to characterize representation stability.
• For example, the stability of the partitions associated to irreducible components can be

seen as a consequence of Pieri’s rule for computing the irreducible decomposition of an
induced representation.
• Church, Ellenberg, and Farb proved a beautiful result, later improved with Ellenberg’s

student Nagpal: If R is a Noetherian ring, and V is a finitely generated FI-module over
R, then every FI-submodule W of V is finitely generated.
• Finitely generated FI-modules are closed under many other natural properties. This pro-

vides a tool for proving a sequence of compatible Sn-representations is stable: prove the
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corresponding FI-module is finitely generated by embedding it into another FI-module
which we know to be finitely generated.
• Using this tool, they were able to prove many of the conjectures on representation stable

sequences.
• From a different perspective, Snowden proved a result about ∆-modules from which one

many also deduce their original Noetherian result.
The first definition of representation stability appears in the paper of Church and Farb [4]. The

theory of FI-modules is introduced and developed in Church, Ellenberg, Farb [2]. Their results are
extended to representations in positive characteristic with Nagpal in [3]. Another approach to these
results on stability is through ∆-modules, beginning in the paper of Snowden [6]. The twisted
Grothendieck-Lefschetz formula and applications to number theory appear in a follow-up paper
of Church, Ellenberg, and Farb [1]. A recent survey on representation stability by Khomenko and
Kesari [5] appeared on the arXiv, giving a good overview of the rapidly developing state of the
theory.
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