Proceedings of the IX Fall Workshop on Geometry and Physics,
Vilanova i la Geltri, 2000
Publicaciones de la RSME, vol. 3, pp. 79-88.

Multisymplectic geometry: generic and exceptional

Alberto Ibort

Departamento de Matemdticas, Universidad Carlos III de Madrid

email: albertoi@math.uc3m.es

Abstract

We shall discuss various examples of multisymplectic manifolds, both
generic and exceptional, from the point of view of their groups of diffeo-
morphisms properties.
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1 Introduction: first examples

Multisymplectic geometry is a broad and so far not very well defined area of
mathematics. Starting with the definition itself of a multisymplectic manifold,
it changes substantially depending on the initial interests of the people work-
ing in the field. Thus, if we were using forms of higher degree in developping
a geometrical background for variational calculus, the emphasis would be on
the additional geometrical structures present on the problem and we would
be led to a restrictive notion of multisymplectic structure. However there is
another approach, let us call it the minimal approach, that simply asks for the
properties common to a class of geometrical structures characterized simply by
the existence of a closed form on a manifold M. This is the starting point for
symplectic geometry/topology where we are interested in the study of mani-
folds equipped with a closed nondegenerate 2—form. From a more fundamental
perspective a closed form emerges as a representative of a cohomology class
of the manifold, and such cohomology class usually represents an invariant of
another structure. For instance an integer closed 2-form represents a line bun-
dle, whose sections help us to understand the topology of the manifold itself.
From this perspective it makes sense to ask what can be said on the geometry
of higher order closed forms having as a reference the already mature field of
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symplectic geometry. Some of the ideas and results collected in this direction
are the scope of these review notes.

We should acknowledge a number of practicioners of the field that though
mainly interested in the geometrical background of the calculus of variations
have laid the ground for most of the discussion here. Without pretending
being exhaustive we should mention Takens, Anderson, Kijowski, Tulczy-
jew, P.L. Garcia, Goldschmidt, Sternberg, Krupka, Aldaya, de Azcédrraga,
Kostant, Binz, Saunders, Gotay, Isenberg, Marsden, Montgomery, Crampin,
Carinena, Ibort, Martin, Gunther, Byrnes, Cantrijn, de Ledén, Echeverria,
Munoz-Lecanda, Roman-Roy, Shardanasvily, Schkoller, ... and apologize to
any other person that not being listed here has contributed to the field.

The minimal attitude taken here with respect to the notion of a multi-
symplectic structure motivates the following definition.

Definition 1 A multisymplectic manifold is a manifold M equipped with o
closed k—form 2 < k < dimM, such that the map Q:TM — AF=1(T*M)
defined by Q(U)(ul, ceosup—1) = Qvyug, .. ug—1), VUL, .. ug—y € TM, is
injective or, in other words, it is nondegenerate.

The image of the bundle map € is a subbundle of the bundle of (k — 1)~
forms on M and will be denoted by E. Notice that rankE = k.

We should exhibit at this point some examples to show the scope and
interest of this notion.

The first example which is deeply related to the geometrical formulation
of the calculus of variations is that of exterior bundles.

1.1 A first example: multicotangent bundles

Let @ be a smooht manifold and T*(@) its cotangent bundle. We shall denote
by A¥(T*Q) the kth exterior power of T*Q and by m: A¥(T*Q) — Q the
canonical projection. There is a canonical k—form © on A¥(T*Q) defined as
follows:

Ou(Ui, ..., Up) = (o, (mp)s UL A=+~ A(m)Ui),  YUL,...,Up € T,AM(T*Q).

The form Q = dO is a closed nondegenerate (k4 1)-form on A*(T*Q). In
local coordinates we have

O = pilmikdl‘il A - Adx'*

and
Q =dpj, i, Ndz" N Ndz'F,
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where z¢ denote local coordinates on Q and Diy...i;, are canonical coordinates
of k-covectors in the basis dz’' A --- A dz'*.

The space A¥(T*Q) together with the multisymplectic form € of degree
k+1 will be called a multicotangent bundle. Notice that the cotangent bundle
with its canonical symplectic structure corresponds to the case k = 1.

A multisymplectic submanifold is a submanifold i: S — A¥(T*Q) such
that ¢*( is nondegenerate. Simple examples of multisymplectic submanifolds
are constructed as follows. Let n: () — B be a locally trivial fibration and
Ak () the space of r—semibasic k—forms on @, this is,

A,’f(ﬂ'):{aEAk(T*Q)| (a, Vi AN~ AVog1 AUpyo A=+ Ug) =0,
mVi=0,i=1,...,r+1}

There is a natural embedding if,: A¥(Q) — A¥(T*Q) and Q, = i} Q is
multisymplectic. ’

Given a Lagrangian density £ on J'(7) we can define the Legendre trans-
formation F: J1(7) — A}(Q), n = dimB and Qg = F*Q,, is the Poincaré—
Cartan form of the theory and the central object in the geometrical description
of the calculus of variations defined by £. Notice that {2y does not need to be
nondegenerate.

A diffeomorphism p: M — M, such that ¢*Q = Q will be called a multi-
symplectic diffeomorphism. The group of all multisymplectic diffeomorphisms
will be denoted by G(M, ).

The following theorem states a few well-known facts for the group of sym-
plectic diffeomorphisms (see [16], [1]) of a cotangent bundle that extends nat-
urally to multicotangent bundles.

Theorem 1 Let M be the multicotangent bundle A¥(T*Q). The group G(M, Q)
is an infinite dimensional Lie group extension of Diff(Q). The group G(M, Q)
acts w—transitively on M and s local.

From this result a natural question arises: to what extent the group of mul-
tisymplectic diffeomorphisms of a multisymplectic manifold shares the prop-
erties of the group of multisymplectic diffeomorphisms of a multicotangent
bundle? To answer such question we first need to understand better the prob-
lem of understanding the local structure of multisymplectic manifolds.

1.2 Other natural examples

To end this introduction we just list here some multisymplectic structures
that have appeared in other branches of mathematics that are important by
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themselves and that show that multisymplectic structures are not only related
to problems of the calculus of variations.

e Semisimple Lie groups. It is well-known that if G is a semisimple Lie
group with Lie algebra g, then the left-invariant 3-form defined by

QX,Y, Z) = (X,[Y, Z]) + eyclic

for every X,Y, Z € gis closed and nondegenerate, thus a multisymplectic
form of degree 3.

e Cosymplectic manifolds.
¢ (Almost)-Quaternionic manifolds.

e (Calabi-Yau manifolds. These class can be extended to the setting of
symplectic geometry as follows. Let (M,w) be a symplectic manifold
and let .J be a compatible almost complex structure on M. Consider the
natural decomposition of the bundle of 1-forms with complex values in
its holomorphic and anti-holomorphic part,

ANT*M,C) = T M @ TOD M

If dimM = 2n, then the nth exterior power of T M is a complex
line bundle lover M. We shall denote it by A™0 = A»(TMOM). If Q is
a section of A™° which is closed and QA Q # 0 we will call (M,w, Q)
an almost-Calabi-Yau manifold. We will recover the usual notion when
(M,w) is Kéahler.

2 The local classification problem

For the degrees k = 2,n all multisymplectic structures are locally isomorphic
because they correspond to the symplectic and volume cases.

The existence of a local model for all symplectic structures is a conse-
quence of Darboux’ theorem which is a combination of two facts: i) Symplectic
structures a locally constant (they define a flat G-structure) and, ii) there is
a normal form for skewsymmetric bilinear forms.

The situation changes dramatically for 2 < £ < n — 1 where there is no a
Darboux’s theorem. We shall examine briefly why (see also [14]).

Let V be a linear space of dimension n. The space of k-forms on V' denoted
by A¥(V*) has dimension C}. The group of linear isomorphisms GL(V) acts
on AF(V*) and the quotient space $(V) is the space of normal forms for
k-forms on V. The space ¥} (V') is an stratified manifold.
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We denote by A¥(V*) the space of k-forms of rank 7. Linear multisymplec-
tic structures correspond to elements of Al'(V*) which is a GL(V)-invariant
open dense subset of A™(V*). The space of normal forms for linear multisym-
plectic structures of degree k is thus the quotient space

ko = A (VH)/GL(V)

and has dimension bigger than 1 if n > 9 and & > 3. Consequently it is not
possible to expect a Darboux’ like theorem for multisymplectic structures of
degrees bigger or equal than 3 in manifolds of dimension bigger or equal than
9. Moreover, there is no yet a description of the set EZ,n fork>3,n>T.

3 An example of an exceptional multisymplectic
structure

However, the lack of a normal linear form for higher order forms as discussed
in the preceeding section is not the worst thing that can happen, because the
existence of families of normal forms would not be a disastreous thing if the
topological properties of all of them would be the same.

Things are as bad as possible as the following example of a multisymplectic
structure shows. Let M be the linear space R”. We shall denote by 6%,...,07
a linear basis of the dual space and

A N L LN N
Then we define the 3-form
Q — 9123 1 945 | gI6T | 9216 _ 9257 _ 347 _ 356
which is a constant multisymplectic form. Let G(V,Q) be the group of multi-

symplectic diffeomorphisms of €, i.e., ¢*Q = Q.
Then, we have the following characterization for G = G(R", Q).

Theorem 2 [6] The group G is a compact, connected, simple, simply con-
nected Lie group of dimension 14. In fact, G =2 G>.

This example of multisymplectic structure is the first of a family of ex-
ceptional ones characterized by the fact that their automorphisms groups are
“exceptional” like in this case Gs.
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4 Kleinian geometries

The failure of the group of automorphisms of a multisymplectic structure to
resemble the group of symplectic diffeomorphisms of a symplectic manifold
can be consider to point out the exceptional or non generic multisymplectic
structures.

Where should we look for generic multisymplectic structures? One possi-
ble way to address this question would be to call Klein’s erlangen programme
to help in this search. It is well-known that the classical geometries which
are characterized by their group of automorphisms are symplectic, volume
and contact geometries. Are there other classes of multisymplectic geome-
tries possessing this property? As we shall see immediately the answer to this
question is positive. There is a class of multisymplectic structures possess-
ing a local homogeneity property that is also characterized by its group of
automorphisms.

Definition 2 A local Liouville vector field in the neighborhood of a point x
in M is a vector field Ay such that its support, suppAy = {y | Az(y) #0},
contains just one fixed point in its interior which is the accumulation point of
all the integral curves of A,.

Let M be a manifold and z € M. Let z* be local coordinates in a neigh-
borhood of x and A = 2'9/dz' + -+ + 1"0/0z". Let p; be a bump function
centered in z whose support is small enough to be contained in the local chart
above, then A, = p, A is a local Liouville vector field.

Definition 3 A multisymplectic manifold (M, Q) is locally homogeneous if for
every x € M there exist a local Liouville vector field A, such that the vector
bundle E image of Q is invariant with respect to its local flow.

It is clear that if for any z € M there exists a local Liouville vector field
such that
LA, Q=2

then (M, Q) is locally homogeneous.

A symplectic manifold (M, w) is locally homogeneous because the bundle
FE, the image of w, is all T*M, hence automatically invariant with respect
to any flow. Volume manifolds are also locally homogeneous. Choosing local
coordinates z' such that Q = dz' A --- A dz”, and the local dilation vector
field A = £'0/0z" + - - + 2"0/0z"™, we have LAQ = n{). Moreover in radial
coordinates we have Q = r" 1dr A ©, with i(A)® = 0 and £Lo© = 0. Then,
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i(A)Q = r"©. Choosing a bump function p centered around z and denoting
by Az = pA, a simple computation shows

La,Q=d(i(Ar)Q) = d(pi(A)Q) =dp Ar"O + npQt = (rp + np)Q.

The main result on locally homogeneous multisymplectic manifolds is the
content of the following theorem, which states that they constitute another
instance of Kleinian geometries.

Theorem 3 Let (M,,Q,), a = 1,2 be two locally homogeneous multisymplec-
tic manifolds and G, = G(M,,Q,) their corresponding groups of multisym-
plectic diffeomorphisms. Let ®: Gy — Go be a group isomorphism which his
also a homeomorphism with respect to the point-open topology. Then there
exists a C®-diffeomorphism @: M1 — My such that ®(f) = @ o fop ! for
every f € Gy and p.:TM; — TMs maps locally hamiltonian vector fields of
(My, Q) into locally hamiltonian vector fields of (Ma,Qs). In addition, if ¢.
maps the graded Lie algebra of infinitesimal automorphisms of (My, 1) into
the graded Lie algebra of infinitesimal automorphisms of (Ms, Qo) then there
exists a constant ¢ # 0 such that p.Qy = c€)y.

Sketch of the proof (see [13] for details).

1st step. The key step is to show that locally hamiltonian vector fields are
localizable. This is shown using a variation of Moser deformation argument. If
LxQ =0, theni(X)Q =n € Fisaclosed (k—1)—form. Then the (k—1)—form,

1
7 =—d / B (i( Ayt
0

where A, is a local Liouville vector field leaving invariant E is another closed
(k — 1)-form lying in F, thus there exists X’ such that i(X')Q = n’ which is
the localized locally hamiltonian vector field we are looking for.

2nd step. Prove that locally hamiltonian vector fields span the tangent
bundle.

3rd step. Show that the group G(M, ) acts transitively on M ([5]).

4th step. There exists a bijection @: M; — My such that ®(f) = pofop™!
(slight adaptation of [21]).

5th step. The map ¢ a homeomorphism (adaptation of a theorem by
Takens [20]).

6th step. The map ¢ is smooth (adaptation of a theorem by Banyaga [1]).
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7th step. A multisymplectic extension of Lee-Hwa-Chung theorem [12]. If
« is a smooth form such that Ly« = 0 for all multivector hamiltonian fields,
then a = QP and ¢ # 0 if £ divides |a|.

8th step. Show that Lx¢*e = 0 for all X implies that ¢*Qo = c;. O

5 Reduction of multisymplectic structures:
an application

One of the most effective tools to construct symplectic manifolds is that of
symplectic reduction. A slightly generalized technique can be used to construct
non trivial multisymplectic manifolds.

Let us describe first such generalized multisymplectic reduction and later
we will construct a family of examples. Let (M,Q) be a multisymplectic
manifold and ¢: S — M a submanifold. Let F be a regular foliation of S and
we shall denote by R the quotient space S/F. Let 7 denote the canonical
submersion 7: S — R. Let us denote by Qg the pull-back i*Q of 2 to .S, then
we will assume that ker Qg = TF. We will say that the foliated submanifold
(S, F) is compatible with ©. Under such conditions there exists a closed form
Qg on R such that

7 Qp = Qg.

When €2 is a nondegenerate 2—form, i.e., a symplectic form on M, we will
call the previous process a generalized symplectic reduction of M by S and
F. The fact that Qg is a symplectic structure again on the quotient space R
is the content of the symplectic reduction theorem.

A well-known example of such process is given by the following example.
Let ¥ a compact oriented riemannian surface, and A the space of irreducible
SU(N)-connections on 3. We can define a symplectic form on such space by
means of

QAU V) = / THUAV), U,V eTaA.
by
A submanifold S of A is given by the set of flat connections,
S={Ac€A|Frs=0}

A foliation of S is given by the action of the group of gauge transformations

G. Because Fag = AdyFy, clearly G leaves invariant S and the quotient space

R is the moduli space of flat connections on Y. The foliation defined by the

action of G on S is compatible with g because it is contained in ker Qg.

Hence, the moduli space of flat bundles R inherits a symplectic structure.
This example can be generalized to higher dimensions as follows.
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Let V be an n-dimensional riemannian closed manifold and A the space
of SU(N)-connections on it. Such space carries a multisymplectic structure
defined by

Q(Ul,...,Un):/ Te(Us A -+ A Up)
14

for all Uy,...,U, € TaA = Q' (V;su(n)). Again, let S be the space of flat
connections and g the restriction of Q to S. A simple computations shows
that ker Qg is spanned by the vectors of the form da{, & € Lie(G), thus
the foliation defined by the action of the group of gauge transformations is
compatible with Qg and the moduli space carries a canonical multisymplectic
structure of degree n. We conclude with the following statement.

Theorem 4 Let V' be a riemannian manifold of dimension n. Then the mod-
uli space of flat hermitian bundles of rank N has a natural multisymplectic
structure ) of degree n.
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