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0. INTRODUCTION

These notes are intended to provide an introduction to Intersection Theory and the al-
gebraic theory of Chern classes. They grew out of several lectures on the subject in
Kaiserslautern within the programme Mathematics International. It is supposed that
the reader is familiar with the basic language of schemes and sheaves as presented in
Harteshorne’s book [9] or in sections of EGA.

Concerning the general Intersection Theory, the intention is to explain fundamental no-
tions, definitions, results and some of the main constructions in Fulton’s Intersection
Theory [7] without trying to achieve an alternative approach. Often the reader is refered
to [7] for a proof, when a statement has been made clear and the proof doesn’t contain

major gaps.

Besides the fundamentals of Intersection Theory, emphasis is given to the theory of Chern
classes of vector bundles, related degeneracy classes and relative and classical Schubert

varieties.

Most of the notation follows that of [7]. A scheme will always mean an algebraic scheme
over a fixed field k, that is, a scheme of finite type over Spec(k). In particular, such
schemes are noetherian. A variety will mean a reduced and irreducible scheme, and a
subvariety of a scheme will always mean a closed subscheme which is a variety.

For a closed subscheme A of a scheme X we use the following notation. If A <5 X is the

underlying continuous embedding, we identify the sheaves
i"(Ox/Za) =04 and .04 =0x/Z4
such that we have an exact sequence
0—Z4—0O0x — 04— 0.

Given two closed subschemes A, B of X, the subscheme AN B is defined by Z4, + Zp and

there are isomorphisms

Ousng = Ox/IA +1p = OX/IA & Ox/IB =04 ® 0.

1. RATIONAL FUNCTIONS

Let U be an open subset of a scheme X and let Y be its complement. U is called s—dense

(or schematically dense), if for any other open set V' of X the restriction map
rV,0x) - T(VNnUOx)

is injective. Since the kernel is T'y (V, Ox) = ['(V, H%Ox), the condition is equivalent to
HYOx = 0, where H) denotes the subsheaf of germs supported on Y.

1.1. Lemma: If U is s—dense it is also dense. The converse holds if X is reduced.
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Proof. Let U be s—dense and V # (). If UNV = (), then T'(V,Ox) — 0 is not injective.
Therefore U NV # () and U is dense. Let conversely U be dense. In order to show that
HYOx = 0 we may assume that X is affine. Assume that there is a non—zero element
[ € Ty(X,0x) with flU = 0. Then U C Z(f) and by density X C Z(f). This implies
rad(f) = rad(0) = 0 and then f = 0, contradiction. O

1.2. Lemma: Let X be an affine scheme and g € A(X). Then D(g) is s—dense if and
only if g is a NZD (non—zero divisor).

Proof. Let g be a NZD. It is enough to show that I'(X, Ox) — I'(D(g), Ox) is injective.
Let f be a section of Oy with f | D(g) = 0. Then there is an integer m with ¢™f = 0.
Since ¢ is a NZD, f = 0. Conversely, if D(g) is s—dense and f-g = 0 in A(X), then
fID(g) = 0 and by s—density f = 0. O

1.3. Lemma: Let X be an affine scheme and g € A(X). Then D(g) is dense if and only
of
I(g) ={a€ A(X) | g"a=0 for somem > 0}

1s contained in the radical of 0.

Proof. 1f I(g) C rad(0) and D(g) is not dense, there is an element f € A(X) such that

D(fg)=D(f)NnD(g) =0

but D(f) # 0. Then fg € rad(0) or f™g™ = 0 for some m > 1. Then f™ € I(g) C rad(0)
and f™ = 0 for some n > 1. O

The proof of the following Lemma is left to the reader.
1.4. Lemma: Let X be a scheme and let U,V C X be nonempty open parts.

(i) If U and V are dense (s—dense), then so is UNV.
(ii)) If U C V is dense (s—dense) in V, and V is dense (s—dense) in X, then U is
dense (s—dense) in X.

1.5. Lemma: Let X be an affine scheme. Then the system of D(g)’s with g a NZD is
cofinal with the system of all s—dense subsets, i.e. any open s—dense U contains a D(g)
for some NZD gq.

Proof. Let U be s—dense, Y = X\ U = V(a). We have to show that there is a NZD g € a.
Then D(g) C U. Let p, = Ann(a,) be the associated primes of A(X), such that the set
ZD(A(X)) of zero divisors is py U---Up,. If a C ZD(A(X)), then a C p, for some v.
Then a-a, =0and a, | U =0. Then I'( X, Ox) — ['(U, Ox) would not be injective. O

1.6. Example: Let X C A? be defined by the relations zy = 0,y? = 0 of the coordinate
functions. So X is the affine line with an embedded point. The open set D(x) is dense
because I(z) = (y) C rad(0). But D(x) is not s—dense because = is a ZD.
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1.7. Example: Let X C A? be the double line defined by y? = 0. Since Z(y*) = Z(y) =
X, we have D(g) = (). Now any D(f) # 0 is given by a NZD f because (y) is the set of
zero divisors. Therefore in X the dense and s—dense open subsets coincide.

1.8. Definition: Let X be a scheme. Two pairs (f1,U;) and (fs, Us) of regular functions
f, € Ox(U,) on s—dense open sets U, are called s—equivalent if there is an s—dense open
U C Uy NU, such that f1|U = fo|U. We let Ry(X) be the set of s—equivalence classes,

Ry(X)=A{[f,U]s | f € Ox(U), U s—dense}.

It is easy to see that Rs(X) is a ring under the obvious definition of addition and multi-
plication. Similarly we define the ring R(X) of rational functions using the usual dense
open subsets.

R(X)=A{[f,U] | f € Ox(U), Udense}

There is a natural ring homomorphism
Ry(X) — R(X)
by [f,Uls — [f,U]. If X is reduced, this is an isomorphism. Moreover, if U C X is any

open subset, we have natural restriction homomorphisms
Ry(X) — Rs(U) and R(X)— R(U).

We thus obtain presheaves of rational functions whose associated sheaves will be denoted
by Rs and R. There is a homomorphism R; — R, which is an isomorphism if X is
reduced.

1.9. Lemma: 1) If U is dense, R(X) = R(U) is an isomorphism.

2) If U is s-dense, Ry(X) = Ry(U) is an isomorphism.

Proof. only for 2). The map [f,V]s — [f|UNV,UNV], is well-defined and injective. For,
if there is an s—dense subset W C UNV with f|W = 0, then W is also s—dense in X and

so [f,V]s =0. Given [f,V]s with V' C U s—dense in U, V is also s—dense in X and [f, V],
is already in R4(X). O

1.10. Remark: If X isirreducible, the presheaf R is a sheaf, R = R, and thus R(X) —
R(U) is an isomorphism for any nonempty open subset U. So R is a simple sheaf in the
sense of [1], 8.3.3 in this case.

1.11. Lemma: If X is affine, then Ry(X) = Q(A(X)), the total ring of fractions of the
coordinate ring.
Proof. Let @ = Q(A(X)). We have a natural homomorphism @ — Ry (X) well defined

) Lo Lo

s
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because for a NZD ¢ as denominator, D(g) is s—dense. This homomorphism is injective:
if f/g|U =0 as a function with U C D(g) s—dense, there is a NZD h with D(h) C U, see
1.5. Because D(h) C D(g),h"™ = ag for some n,a. We get h? f = 0 for some p, and then
f = 0. Surjectivity: given [p, Ul]s € Rs(X), there is some D(g) C U with g a NZD. Then
w|D(g) € A(X), and ¢|D(g) = f/g™ for some m, g. Now

L 1oID(), Dg)]. = [, U], O

m

1.12. Remark: In general R (X) — R(X) is neither injective nor surjective. As an
example consider the line X C A? with embedded point as in 1.6. Let z,y be the
generators of the coordinate ring A(X) with relations zy = 0,y? = 0. Then D(x) is dense
but not s—dense. The element [1/x, D(x)] € R(X) is not in the image: Assume it is equal
to some [f/g,D(g)] with g a NZD. Then there is a dense subset D(h) C D(xg) with
1/x = f/g in A(X)p. Then there is an integer m with

W"(xf —g) =0.

But g — zf is a NZD because the set of ZD of A(X) is just the prime ideal (x,y). If
g—zf € (x,y), then also g € (z,y), contradiction. Now h = 0 contradicting D(h) # 0.

Now consider [y, X|s € Rs(X). This is not 0. Otherwise there is a NZD g € A(X) and
y|D(g) = 0 or g™y = 0 for some m, and then y = 0. But [y, X] = 0 in R(X), because
ly, X] = [y, D(z)] = 0 since D(z) is dense and y|D(z) = 0.

1.13. Lemma: Let X be an integral scheme with generic point . Then R(X) is a field

and isomorphic to Ox .

Proof. For any open affine subset U # () we have R(X) = R(U) <& Q(Ox(U)) and
Q(Ox(U)) is a field since Ox(U) is a domain. On the other hand U is dense in X if and
only if £ € U. By the definition of R(X) we have R(X) = Ox. O

1.14. Examples:

(1) R(A}) = k(x1,...,x,) the field of rational functions in the indeterminants z1, ..., z,.
(2) R(Pnk) = R(AL) = k(3E,...,3%) where xo,...,z, are the standard homogeneous
coordinates. We also have

R(P,, ) = {f

= | f, g homogeneous of the same degree with g # O} .
g
For that use

)
)
(3) R(Pg X Pry) = {% | f,g bihomogeneous of the same bidegree, g # 0},

f(.’lfo,...,l‘n) f(lvi_(l)a"'a
Z1

g(xo, ..., Tp) g1, 2.,

g |k

with f = f(zo,. -+ Tm, Yo, -+, Yn) and g = g(To, - -+, Ty Yoy - « - » Yn)-
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(4) Let X be a reduced algebraic scheme over k and let X,..., X, be the irreducible

components of X. Then

R(X) = PR(X.).
Proof. X!, := X, \ ;J X, is dense in X, and X' := UX] = [[ X] is dense in X. Therefore
UFAV

R(X) =~ R(X') = PR(X)u) = OR(X,). O

1.15. The local ring of a subvariety

Let X be an algebraic scheme over k. A subvariety, i.e. an integral closed subscheme Y
of X, has a unique generic point such that ¥ = m Therefore, for any open set U C X
we have UNY # () if and only if n € U. In this case U NY is also dense in Y. It follows
that

OX,n = OY,X = {[va] | f € Ox(U) and UNY 7é @}
Here the equivalence classes are defined as in the case of R(X) under the additional

assumption - Or eacn representative. 1imilar € maximal ideal m, O X.p Call De
ption 1 € U for each representative. Similarly th imal ideal m, of Ox,, can b

described as
my =Smyx = {[U,f] | f GIy(U) and UNY 7é @}
Note that Oy x is a noetherian local ring.

Lemma: Oy x/myx = R(Y) for any subvariety Y C X.

Proof. [U, f] — [UNY, f] with f = f mod Zy defines a homomorphism Oy x — R(Y).
It is surjective. To show this, let [W, ¢] € R(Y") and choose an affine open subset U in X
with @ 2 U NY C W. Then [W,¢] = [UNY,y]. Because I'(U,Ox) — I'(U NY,Oy) is
surjective there is an element f € Ox(U) with f = ¢. Now [U, f] = [W, ¢]. On the other
hand my, x is obviously the kernel of the homomorphism. O

1.16. Dimension: Recall that the dimension of an algebraic scheme X can be charac-

terized as the maximal length n of chains
0=VocVic...cV,cX
Z F 7

of closed integral subschemes. If X is integral,
dim X = trdeg(R(X)/k).

If Y is a subvariety, the codimension codimxY is the maximum of integers d such that

there is a chain

Y=VycVicC..CcV;CcX
# # #

of closed integral subschemes.
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1.17. Lemma: Let Y be a closed integral subscheme of X. Then for any open subset U

of X withUNY # 0,
codimyY NU = codimyY .

Proof. Given a chain YNU = Z, % g Z4 C U of integral subschemes, also Z,NU = Z,,.
Therefore

codimyY NU < codimxY.
On the other hand, if Y = 1} g g V3 C X is a chain in X, then also V,NU # V, .1 NU
because V,, NU is dense in V,,. Moreover V,, NU is also integral. This implies that the two

codimensions are equal. O

1.18. Lemma: Let Y be an integral subscheme of X. Then
dim Oy x = codimxY.

If also X s integral, then Oy x is integral.

Proof. Let U be open and affine in X, UNY # ). Let A = Ox(U) be the affine coordinate
ring of U and p C A the prime ideal of Y N U. Then

Oy x = Oyruy = Ox,y = A,

The prime ideals p’ C p correspond to varieties U D Z’ D Y NU. Therefore the Krull
dimension of Oy x equals the codimension of Y N U in U or of ¥ in X. If X is also
integral, then any U # () is dense in X and we obtain a homomorphism Oy x — R(X)
by [U, fly +— [U, f]. This is injective. For, if [U, f] = 0, then f|V = 0 for some V C U.
But Ox(U) — Ox(V) is injective and hence f = 0. Since R(X) is a field, Oy x has no
zero divisors. 0

1.19. Corollary: If both Y and X are integral and Y has codimension 1, then Oy x is a

1-dimensional integral domain. Moreover,
Q(Oyx) = R(X).

Proof. Tt remains to verify the last statement. As in the previous proof we may assume
that X is affine and Y corresponds to a prime ideal p C A = A(X). Now Oy x = A, and
R(X) = Q(A). By the assumption A, C Q(A) and it follows that Q(A,) = Q(A). O

1.20. Proposition: Let Y C X and both be integral with codimyxY = 1. IfY ¢ Sing(X),
then Oy x is a reqular ring and o discrete valuation ring.

Proof. The generic point 7 of Y is not in Sing(X') and therefore Oy, is a regular ring. If
U is an open affine subset of X with n € U C X \ Sing(X), then U NY is given by one
equation in the smooth variety U, which is the generator of my x = mynyy = m,,. 0]
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1.21. Corollary: Let Y C X be as in proposition 1.20 with Y ¢ Sing(X), and let
r € R(X). If ordy(r) > 0 (see 3.3 for definition), then r € Oy x.
Proof. We have r = f/g with f,g € Oy x and f = ut™, g = vt" where u,v are units in
OY,X and My x = (t) Then

0 < ordy(r) = ordy (f) — ordy(g) = m — n.

Therefore r = uv™'t™™™ € Oy x. O

2. MEROMORPHIC FUNCTIONS AND DIVISORS

Let X be an algebraic scheme over k and for an open set U C X let
S(U) c Ox(U)

be the subset of those f for which f, € Ox, is a NZD for any point. Then S defines a
subsheaf of Ox which is multiplicatively closed. If U is an affine open set, then S(U) is
the subset of NZD. For, if A = Ox(U) and f € A is a NZD, then f, is a NZD for any
prime ideal p : Let f-(g/s) =0 with s ¢ p. Then tfg = 0 for some ¢ ¢ p and then tg = 0
or g/s = 0. Now we define the sheaf M = My of meromorphic functions as the sheaf

associated to the presheaf
U MU) =SU)0x(U).
This is a sheaf of Ox—algebras. A reference for meromorhpic functions is [3] §20.

2.1. Lemma: For any x € X the stalk M, is the total ring of fractions of Ox ;.

Proof. Let Q, = Q(Ox ) denote the total ring of fractions. For any open neighbourhood
U of z let

MU) — Q,
be defined by f/g +— f./g.. It is easy to see that this is well-defined and that it induces

a homomorphism
My — Qs

It is also immediately verified that this map is bijective. O

2.2. Lemma: Ox — Mx and Mx is a flat Ox-module.

Proof. The canonical homomorphism Oy — My is the embedding Ox , — Q(Ox,) for
any stalk. It is also well-known that Q(Ox ,) is a flat Oy ,—module for any =. O

2.3. Lemma: On any scheme X there is a natural isomorphism M x Z, R,.
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Proof. Let U be any open subset and g € S(U). Then the sheaf H%(g)(OU) = 0 because g
is a NZD at any point and H%( g)((’)U) is annihilated by the powers of g locally. Therefore,
U, =U N Z(g) is s—dense. Now the map f/g — [U,, f/gls

S(U)0x(U) — Ry(U)
is well-defined and induces a sheaf homomorphism
Mx — R,.
For any affine open set U the composed homomorphism
S(U)Ox(U) = Ry(U) = Q(Ox(V))

is the identity because S(U) is then the system of NZD’s. This proves that My — R is

an isomorphism. 0

2.4. Proposition: Let X be integral and U C X an affine open set. Then we have the
commutative diagram

M(X) R(X) == Ox¢

of natural homomorphisms with indicated isomorphisms.

Proof. 1 is an isomorphism because U is dense. The arrows 2 are isomorphisms because
M ~Rs~TR. 3is an isomorphism because U is affine and 4 are isomorphisms because
R is a constant sheaf. If follows that » on R is an isomorphism as well as . OJ

A sheaf A of abelian groups on X is called simple if the restriction A(X) — A(U) is an
isomorphism for any nonempty open subset U of X. It is shown in [1], Ch 0, 3.6.2, that
A is already simple if it is locally simple. Any simple sheaf is also flabby.

2.5. Corollary: If X s integral, then

(i) Mx is a simple and hence a flabby sheaf.
(i) any stalk Mx . and any Mx(U) for a nonempty open subset U of X is a field.
(iii) the sheaf MY of invertible meromorphic functions is a simple and hence a flabby

sheaf.
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Proof. (i) an arbitrary nonempty open subset U contains a nonempty open affine subset
V, such that the composition Mx(X) — Mx(U) — Mx(V) is an isomorphism. Also
the second restriction is an isomorphism because U is integral as well. Hence, the first
restriction is an isomorphism, too.

(ii) follows from (i) because any R(U) is a field.

(iil) M%(X) — M (U) is injective because this is true for M. Let f € M*(U) and let
F e Mx(X) with FIU = f. We have (F|U)g = 1 with ¢ = 1/f. Let G|U = g. Then
FG|U = 1. Because U is s-dense, FG = 1 on X. This proves that M% (X) — M% (U)

is bijective. O

2.6. Remark: Let F be a coherent sheaf on X, and X integral. Then

F ®@oy Mx =2 M% for some r > 0 (with M® = 0), and the kernel of the canonical
homomorphism F — F o, Mx is the subsheaf T of F of all torsion elements.

The number r is called the rank of F.

Proof. (i) We use the abbreviations M = My, O = Ox, Fy = F|U etc., and
M(F) = F ®o, Mx. We first show that M(F) is locally simple, hence also globally
simple. For that, notice, that any point of X has an affine open neighbourhood U with a

presentation OF, LN Of, — Fuy — 0. After tensoring one obtains the exact sequence
M S ME - M(F)y — 0.

Let 7 := q — rkyu) (F). Because M(U) is a field for any open U, the cokernel of F' is an
M (U)—vector space of dimension r, so that we have an exact sequence

MP(U) S MUU) = MT(U) = 0.

It follows that M(F)y = M, and then that M(F)y is simple. In order to show that
M(F) = M" globally, we choose any open subset U, on which the two sheaves are

isomorphic and consider the diagram

MF)U) — e M)

L)

M(F)WUNUy) == M"(UN )

for any other open subset U. It follows that the collection of the ¢(U) defines a global
isomorphism M (F) = M".
(ii) By defintion of the canonical homomorphism F — F ®p, Mx each stalk 7, of the

kernel consists of the germs ¢, which are annihilated by some NZD ¢, € O,. Hence 7T is
the subsheaf of all torsion germs of F. If r =0, then 7 = F. O
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2.7. Cartier divisors and line bundles

Let O% C Ox and M% C Mx be the subsheaves of units of Ox and M x. For any open
subset U of X we have

Ox(U) = {feOx({U)| f, isaunitin Ox, for any =z € U}
{f€eOx(U)| f isaunitin Ox(U)}.

and similarly for MY . The sheaf M?% /O% with multiplicative structure is called the sheaf

of (Cartier—)divisors. We have the exact sequences
11— 0% - My - My /0% — 1

and

div

(X, 0%) — D(X, M) —= D(X, M} /0%) “— H'(X, 0%)

Div(X) Pic(X)

Note here that for a sheaf A of abelian groups there is a canonical isomorphism between
the first C'ech cohomology group and the standard first cohomology group of A, such that

we have homomorphisms
H'U,A) — HY(X,A) ~ H(X, A)
for open coverings U compatible with refinements, see [9], Ch III, Ex. 4.4.

Any divisor D € I'(X, M% /O%) can be obtained by a system (f,) of meromorphic func-
tions f, € M*%(U,) with f, — D|U, for an open covering. This is the property of any
quotient sheaf. Now g.3 = fo/fs € O%(Uap) and (gap) is a cocycle of a line bundle or
invertible sheaf on X. Now §(D) is the image of [(gag)] under the canonical map

H'(U, 0%) — H'(X, 0%).
The invertible sheaf can be directly defined as the Ox—submodule
Ox(D) c Mx

which on U, is generated by 1/f,. It follows easily that Ox (D) is independent of the
choice of the system (f,) and the covering (U,). Then [(gag)] < [Ox(D)] under the
isomorphism

HY(X;O0%) = Pic(X).

2.8. Proposition: 1) The image of § consists of the isomorphism classes of those invert-

ible sheaves which are Ox—submodules of M x.
2) If X is integral, & is surjective.
Proof. 1) Each Ox(D) is an Ox submodule of M. If conversely £ C M, choose a

trivializing covering (U,) and let g, : Ox|Us — LUy — Mx|U,. Then g, is a NZD at
each point, because its homomorphism is injective, and g, € I'(U,, MY%). Let f, = 1/ga.
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We have f, = gapfs on U,g, where (gop) is the cocycle of L. Therefore (f,) defines a
divisor D on X, and £ = Ox (D) by definition.

2) As a simple sheaf M% is flabby and hence H'(X, M%) = 0. This implies that § is

surjective. 0

2.9. Effective divisors : Let X be a scheme and D € I'(X, M*/O*) a Cartier divisor.
D is called effective if it has a representing system (f,) with f, € T'(U,, O N M*). Then
any such system consists of regular functions. This means that the effective divisors are
the sections of the sheaf D which is the image of O N M* in M*/O*. We write D > 0
if D is effective. If D > 0, then O(D) has a section, namely 1 € M(X), because locally
1 = fo(1/fs). This means that Ox — Mx factorizes through Ox (D). The section is
also described by f, = gagfs. We thus have a homomorphism Ox — Ox (D) and dually
an ideal sheaf Ox(—D) — Ox. Its zero locus Z has the equation f, =0 on U,. For any
Cartier divisor D there is the

Supp(D) = |D = {z € X|fae & Ok, if x € Us}

where (f,) is a representing system. It is clear that this condition is independent of the
choice of the system. If D is effective, then |D| coincides with the zero locus Z of the

canonical section of Ox (D), because z € Z if and only if f,, € m,.

3. CYCLES AND WEIL DIVISORS

If Y is a codimension 1 subvariety of a variety X, then Oy x is a local ring of dimension
1. 'Y ¢ Sing(X), then by 1.20 this ring is regular and my x = (¢) is generated by
an element ¢. Then any a € Oy x can uniquely be written as a = ut™ with a unit u
and m > 0. This defines an order function R(X)* = Q(Oy.x) — Z with ord(a/b) =
exponent(a) — exponent(b). This order is the vanishing order of r along Y. If Oy x is not
regular, the exponent can be replaced by the length of Oy x/aOy x for any a € Oy x,
using the

3.1. Lemma: Let A be a 1-dimension noetherian local integral domain. Then for any
non—zero a € A the ring A/aA has finite length.

Note that any noetherian A-module M has a composition series M 2 M, 2 o 2 M, =0

with M;/M; 1 = A/p; where p; is a prime ideal. If all the prime ideals equal the maximal
ideal, M is said to have finite length k. In this case there are only finitely many prime
ideals with M, # 0 which are all maximal, and the number £ is independent of the
composition series. This number is called the length of M and denoted length (M) or
I(M).

Proof. Let A/aA 2 M, 2 2 M. a composition series with A/p; = M;/M;,,. Then
p; # 0. Otherwise there is a surjective homomorphism M; — A with some z; — 1. Since
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M; C AJaA,azx; =0 and then a = 0. Because A is 1-dimensional, p; = m for each of the

prime ideals. This proves the lemma. O

3.2. Lemma: Let 0 — M’ — M — M"” — 0 be an exact sequence of A-modules with
length(M"), length(M") finite. Then M has finite length and

length (M) = length (M') + length (M").

Proof. Consider composition series
M/M' > M /M > ...OMy/M' =0 and M' D My D...D My =0.
7 7 # £ 7

Then M, 2 o 2 M.y is a composition series of M. O

Let now A be as in 3.1 and a € A. We define ord(a) := length (A/aA). By 3.2 we obtain
ord(ab) = ord(a) + ord(b)
for two elements of A because there is the exact sequence
0 — aA/abA — AJabA — AJaA — 0
and A/bA = aA/abA. Tt follows from this formula that the order function
Q) 52
given by

a

ord( ;

) = ord(a) — ord(b)

is a well-defined homomorphism.

3.3. Vanishing order of rational functions and divisors

Let Y be a codimension 1 subvariety of a variety X, both integral by our convention.
Then Oy x is a 1-dimensional local integral domain and Q(Oy x) = R(X). Therefore, we
are given an order function

RX) — Z

ordy

defined by ordy(g) = length(Oy x/fOy x) — length(Oy x /9Oy, x) where f,g € Oy x.

We can as well write
ord, = ordy

where 7 is the generic point of Y. Then

ord,, <§) = length(Ox,/fOx ) — length(Ox ,/9O0x )
where f and g are germs in Ox,. For any rational function » € R(X)* we can now define

cye(r) = Z ordy (r)Y,

the (finite, see 3.4 below) sum being taken over all 1-codimensional subvarieties.
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Exercise: Let C' C A be an integral curve and F = Z(f),G = Z(g) two other curves

which don’t contain C' as a component. Then r = f/g has the order
Ordp(’r) = ”(pv C, F) - ,u(p, C, G)
at any point, where 1 denotes the intersection multiplicity, see 7.5, [7].
Let now D € I'(X, M% /O%) be a Cartier divisor and let (f,), fo € M*(U,) be a repre-

senting system of meromorphic functions. Then

ordy (D) := ord,( fay) = ordynu, (fa)

for n € U, is independent of o because different choices differ only by unit factors in O%

which have order 0. By definition

ordy (f) = ordy (div(f))
where f € M*(X) = R(X)* and div(f) is its image in ['(X, M?% /O%).
Lemma: Let X be an integral scheme. Then any non-zero divisor D € I'(X, M% /O%)
has |D| = Supp(D) # X.

Proof. Let (f,) be a representing system and let f, = ao/by With aq, by € Ox(Uy), U,
affine, both NZD’s. Then |D|NU, C Z(ay) U Z(b,) because = € Z(aq) U Z(b,) would
imply that a,, and b,, are units in Ox, and hence fu, € O, But Z(a,) U Z(ba) # Ua,
otherwise rad(anb,) = (0) and a,b, would be zero divisors. O

3.4. Associated cycles

We are now able to assign to any Cartier divisor on an integral scheme X a Weil-divisor.

For that we denote by
Zn-1(X)

the free Abelian group generated by the codimension 1 subvarieties of X, where n =
dimX. If D € I'(X, M%/O%), then ordy(D) = 0 for any Y ¢ Supp(D), because
then the generic point n of Y is not contained in Supp(D), i.e. fa, € Ok, and has
order 0. Because Supp(D) # X, there are only finitely many codimension 1 subvarieties
Y C Supp(D), namely the components of Supp(D), for which ordy (D) # 0. We put

cyc(D) := Zordy(D)Y € Zn-1(X).
We thus get a homomorphism
(X, M%/0%) =Div(X) 2% 7, 1 (X).
For a rational function r € R(X)* = I'(X, MY%) we take the composition and write
cyc(r) = cye(div(r)).

If D is an effective divisor, then ordy (D) > 0 for any Y because the representing functions

fo are regular in this case. In this case the Weil-divisor cyc(D) is also called effective.
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4. CHOW GROUPS Ai(X)

In the following X will always denote an algebraic scheme over a base field k and Z;(X)
the group of k—cycles, the freely generated Z-module over the set of integral subschemes
(subvarieties) of dimension & > 0. If necessary to distinguish the subvariety V' C X
from its basis element in Z(X), we also write [V]. If W C X is a (k 4+ 1)-dimensional
subvariety and r € R(W)* a rational function, we are given the cycle

cye(r) = Zordv(r)V € Z,(W) C Zy(X)
A cycle a € Z(X) is called rationally equivalent to 0, written as o ~ 0, if « = 0 or if
there are finitely many (k + 1)—dimensional subvarieties Wy, ..., W, C X together with
rational functions r, € R(W,)* such that

a= Z cye(ry).

14

These cycles form a subgroup Bi(X) C Z.(X). Note that cyc(r=') = —cyc(r). We put
Ap(X) = Zi(X)/Br(X).
Since X and X,.q have the same subvarieties, we have
Ar(X) = Ap(Xiea)
for any k.

4.1. Example: Let A" = A7. Given an integral hypersurface Y C A", we have Y = Z(f)
for a regular function (polynomial) f such that Y = cyc(f). Therefore A, _1(A") = 0.
Similarly we have Ag(A™) = 0 by using a line as W through a given point. Later we will
be able to show that Ai(A") = 0 for all k& < n. Clearly Ax(A") = 0 for £ > n. But
A,(A™) = Z. Note that [A"] € Z,(A™) must be a basis element, and is the only one.
Therefore, Z — Z,,(A") = A,(A"™) is an isomorphism, m — m[A"]. We have B,,(A") =0

by definition. [A"] is also called the fundamental class.

4.2. Example: If X is n—dimensional and Xi, ..., X, are its irreducible n—dimensional
components, then Z" = A, (X). This follows as in the case of A" with [X3],...,[X,] as a
basis of Z,(X) = A,(X).

4.3. Example: Let P, = P, ;. Since P, is irreducible, A,(P,) = Z. However, also
Ap_1(P,) = Z. To verify this, let Y be an integral hypersurfaces, Y = Z(g), of degree
d = deg(g). Then z3% is a rational function on W = P,, and

cye(zylg) =Y — dH,

where Hy is the hyperplane zq = 0. Therefore, Y ~ dHy. It follows that d — d[H,] is a
surjection Z — A, _1(P,). It is also injective: If d[Hy| ~ 0, there exist r1,...,7, € R(P,)*
such that

d[Hy| = Z cyce(r,) = cye(ry ... rp).
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It follows that r =ry - ... - r,, is a homogeneous polynomial of degree 0, and d = 0:

Let r = f{" -+ fts/g* ... g;* with irreducible forms f,, g, without common factor. Then

cye(r) =Y peZ(fo) = > v Z(gr) = dH,.

It follows that all v, = 0 and all except one u, = 0. But

Z o deg(fy) = Z v, deg(g,) = 0.
Then also the last p, = 0 and so dHy = 0 in Z,,_1(P,). This implies d = 0.

With a similar argument using lines through two points we can show that Aq(P,) = Z.

It will be shown later that Ag(P,) = Z with generator [E], E any k—dimensional plane.

4.4. Example: Let X C A} be the affine cone with equation zy = 2%, where z,y, 2
denote the residue classes of the coordinate functions as elements of A(X) = k[x,y, 2] =
kj[l‘ayv Z]/(:Ey - 22)' Let

A=Z(x)=Z(x,z) and B = Z(y) = Z(y, 2)
The prime ideal of A respectively B is
p=(z,2) and q=(y,2).

We also have Z(z) = AU B.
Claim 1: p and q are not principal.

Claim 2: cyc(z) = 24, cyc(y) = 2B, cyc(z) = A+ B. Note that A(X) ist not a UFD
and that as rational functions we have z/z = z/y. Then cyc(z/z) = cyc(z/y) mirrors

2A—(A+B)=(A+ B) —2B.

Proof of Claim 1: Assume that (z,z) = (f) for some f € A(X). Then x =af,z = bf for
some a,b € A(X), and therefore bz — az = 0. Now it is easy to prove that the relations
of x and —z are generated by the pairs (z,x) and (y, z). This implies b = az + By and
a = az + Bz. It follows that x, 2 € m? where m is the maximal ideal of the origin of X.
Similarly y € m2. Hence m = m? which is impossible.

Proof of Claim 2: Since p is the generic point of A, we have
Oax = Oxp 2 k[r,y, 2] (2.)
and
max = (2, y2)k[2,y, 2]z = 2k[T, Y, 2] (2,2),

the last equality following from zy = 2? with y a unit in the localized ring. We obtain

the exact sequence
0— (z,2)/(x) = Oax/2O0sx — Osax/max — 0

with an isomorphism O4 y/max = O4 x/204x = (x,2)/(z) because of zy = 22. This
proves that ords(z) = 2. But Supp div(z) = A and therefore ordg(z) = 0 for any
other integral hypersurface. This proves cyc(z) = 2A. By the same argument we obtain
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cyc(y) = 2B and cyc(z) = A + B. If A, B denote the residue classes of A, B in A;(X),
we have shown that

2A=0,2B=0, A+ B =0.
We will show later that A generates A;(X) and that A # 0. Then Z/2Z = A;(X). That
Ap(X) =0 and Ay(X) = Z can be shown as for A",

4.5. Proposition: Let Y be a closed subscheme of X. Then there is an exact sequence
Ap(Y) 25 Ap(X) D A (X NY) =0

for any k > 0. The homomorphism i, is induced by the inclusion Y < X and 7% s
induced by restricting a subvariety V to V 'Y, such that

PO Vi) = m(ViNY),

Vigy

Proof. 1) Both maps are well-defined. For i, this follows directly from the definition of
2) If V. .C W are two subvarieties of X of dimension k and k 4+ 1 and if {n} =V ¢ Y,

then R(W) = R(W \Y) = Q(Ow,,), because n € W \ Y and this set is open and dense
in W. It follows from the definition of the order that then for any r € R(WW)* we have

ordy (r) = ord,(r) = ordy _y (r|W \Y).

It follows that for any W C X of dimension k£ + 1 and any r € R(W)*
jreye(r) = 5* Zordv(r)V = Z ordy (r)V = cyc(r|W \Y)
Vey

This proves j*(Bg(X) C Be(X \Y).

3) If V. C X \ Y is an integral subscheme of dimension k, then also its closure V in X is

integral. It follows that j* is surjective. To proves exactness, let a € Z(X) and j*a ~ 0.
Then

Ja= Z cye(ry)

with r, € R(W,)* and W,, C X \ 'Y integral of dimension & + 1. Let W, be the closure

in X. We have R(W,) = R(W,) and there are rational functions 7, € R(W,)* extending
r,. As shown in 2), j*cyc(r,) = cyc(r,).

Now 3 = a — ) cyc(r,) is a chain representing the class a with j*3 = 0. This means
that all the components of 3 are contained in Y and therefore & = 4, 0. O

4.6. Example: Let Y C P, be any reduced hypersurface of degree d. We then have

the exact sequence

A (V) 25 A4 (P) — A (PaNY) — 0
I I
/Al N Z.
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Let Y7, ...,Y, be the irreducible components of Y of degrees d, ..., d,. Since ¢.Y, ~ d,H
for some hyperplane H, the map « is just (nq,...,n,) — Y n,d,. It follows that

An—l(]P)n AN Y) = Z/(dl, ey dr)
where (dy,...,d,) is the GCD of the degrees.

4.7. Example: Affine cone X C A}, continued. Let A, B C X be the lines defined by

2 we obtain

x =0resp. y =0. Then X \ B = Spec k[z,y, z],. Using the relation zy = z
isomorphisms

klo,y, 2)< 2 kly,y™', 2] = kly, 2,
Therefore X \ B = A%~ A!. From 4.5 we have the exact sequence

Al(AQ) — Al(AQ AN Al) — 0

and therefore A;(X \ B) = 0. Again by 4.5 we have a surjection Z = A;(B) — A;(X)
given by 1 <+ B — i,B = B This proves that B or A generate A;(X). In order to show
that A # 0, assume that there is a rational function r € R(X)* with A = cyc(r). Let p
be the prime ideal (z, z) of Ain A(X). Now ords(r) = 1 and ordy () = 0 for any integral
curve Y C X different from A.

Claim: r € p C A(X).

Proof: All local rings Oy x = Ox, are regular of dimension 1, hence discrete valuation
rings. Let (t) = m,. Then r, € Q(Ox,) can be written as 7, = ut™ with a unit u in
Ox . Now m =1 for n = p and m = 0 for n # p. It follows that

r € NA(X), C QUA(X))
with the intersection taken over all prime ideals of height 1. But it is well known that

this intersection equals A(X). Since A(X),/rA(X), has length 1, r € p. O

Let now g € p be any element, g # 0. Then ords(g) > 1,ordy(g) > 0 for any other
integral curve in X. Then the rational function g/r has ordy(g/r) > 0 for any Y. By
the same proof as for the claim we get g/r = a € A(X). Hence ¢ = ar. Then p
would be a principal ideal =(r), contradicting claim 1 of 4.4. This completes the proof of
A (X) = Z/)27.

4.8. Proposition: Let X;, X5 be closed subschemes of X. Then for any k > 0 there is

an exact sequence

Ap(X1 N X2) 5 A(X1) 8 Ap(Xa) 2 Ap(X; U Xs) — 0

Proof. 1) The mappings are induced by the natural mappings
Zi(X1 N X2) S Z4(X1) @ Zi(X2) 2 Zi(X1 U X)

on the level of cycles, a as inclusion and b as difference of the inclusion. They are both

well-define on the Chow groups.
2) If o € Zp(X1NX3) then a(a) = a®a and boa(a) = a—a = 0. So we have a complex.
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3) b is surjective on the level of cycles and then surjective onto A, (X;UX5): If Y C X;UX,
is integral, then Y C X; or Y C X,. Therefore, given a cycle «, it can be written as a

difference oo = ay — ay with a,, € Z(X,).

4) Let now «, € Z(X,) and oy — ag ~ 0 in Z(X; U X3). Then
o — g = chc('r’,,)

with r, € R(W,)*, Wy,..., W, C X; U X, integral of dimension k£ + 1. We may assume
that
Wi, ..., W, C Xy and Wy4q,..., W, & X;.
Then
o= — chc(’r,,) =y + chc(r,,)

v<p p<v
has all its components in X; N Xs: If Y is a component of the left hand side,then Y C Xj,
by the choice of p. If Y ¢ Xs, it cannot occur in the right hand side, because W, C
X, for p < v and ay has its components in X5. Now [a] is mapped to ([a]1, [a]s) =

([aa]1, [a]2)- ]

5. AFFINE BUNDLES

For the affine space A" = A} we distinguish the following groups of automorphisms
GL, (k) g Aff(A™) g Aut(A")

which are all different. For simplicity we assume that k is algebraically closed and that
A™ and all its subschemes are determined by A™(k) = k™ and its subscheme of closed

points. The group Aff(A™) consists of all transformations
v gu+ €

with g € GL, (k) and £ € k". But Aut(A"™) contains transformations which are not affine.
For example (z,y) — (y + f(x),z) with any polynomial f is an automorphism of k™ and

defines an automorphism of A™.

5.1. Affine bundles: A morphism E %> X of schemes over k is called a general affine
bundle of rank n if each point of X admits an open neighbourhood U together with an
isomorphism Ey = p~1(U) — U x; A" which is compatible with the projections. It is
locally trivial, but the coordinate transformations need not be affine in the fibres.

If in addition the local isomorphisms Ey — U X A™ can be chosen to be affine on the

fibres or if the coordinate transformations are of the type
(z,0) = (2, g55(2)v + &),

using only the k-valued points, F %> X is called an affine bundle. The cocycle condition
then splits into the two conditions

9i595k = g and g4 &k + Sij = ks
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where U;; EER GL, (k) and Uj; S, . They are equivalent to the condition

(g(;j f{‘j) (gék g{k>:<gék %k) (B)

This means that together with E 2 X we are given two locally free sheaves £ and F, the
first defined by the cocycle (g;;) and the second defined by the cocycle (B), together with

an extension sequence

0—-€&—=F—-0—=0.

We let P(€) and P(F) denote the associated projective bundles of lines with fibres PE(x)
and PF(x) respectively, where £(z) = &,/m,E,.

5.2. Lemma: F =~ P(F)~ P(£).

Proof. We consider only the geometric points. Let (U;) with (g;;) and (&;;) be the
trivializing covering for E. We have the natural embedding k" = P,(k) \ P,_1(k)
given by v « (v,1), and the isomorphisms U; x k" 25 U; x (P, (k) ~ P,_1(k)). Let
a;j(x,v) = (z, gij(x)v + &;(x)), and let

a;j = (g(i)j gij ) modulo £*

be the cocycle of P(F) ~ P(€). Then

Pi O Qyj = Q5 O P

and therefore the system (¢;) defines an isomorphism F = P(F) \ P(&). O

The system (&;;) of translations of the cocycle of E' can be interpreted as a cocycle in
Z' U, ). Namely, if £|U; = O"|U; is the trivialization of £|U; with o; 0 0; ' = g;;, and
if (i; = a;lﬁij over U;;, we have
Gij + Cjk = Cik-

Then ((;;) defines a class in H'(U,E) = H'(X,E) which corresponds to the extension
class [F] € Ext!(X, 0, &) under the canonical isomorphism between the two groups. The
class of ((;;) is zero if and only if there is a chain ((;) with ¢;; = ¢; — ¢; and if and only if
the extension sequence splits. Indeed, if §; = 0;(; in this case, we have

&ij = 9665 — & (S)

I, —G gij 0 Ly ¢ _ | 9 Gij
0 1 0 1 0 1 0 1 '

which means that F =2 £ & O. On the other hand, condition (S) means that the affine
bundle with cocycle a;; has a section s with local components ;. But his in turn means

and therefore
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that as an affine bundle E is isomorphic to the affine bundle associated to the bundle
space £ — 0 0f &: If v;;(z,v) = (x, g;;(x)v) and a;(z,v) = (x,v + &, (x)) we have

-1
Qi = O Q.

Altogether we have the

5.3. Lemma: For an affine bundle E 2 X with associated extension sequence 0 — & —

F — O — 0 the following conditions are equivalent.

(1) F=E®O as an extension
(2) E= P(F)~ P(€) has a section
(3) E is a vector bundle

Let now E % X be a general affine bundle of rank n. Then the fibres of p are isomorphic
to the affine space A} and for any k—dimensional subvariety Y of X we obtain a (k+n)-
dimensional subvariety p~!(Y) of E. We thus obtain a homomorphism

Zi(X) 5 Zin(B).
If W C X is a (k+ 1)-dimensional subvariety and » € R(W)*, then p*cyc(r) = cyc(rop)
as can be easily verified. This implies that p* is well-defined as a homomorphism

A(X) 5 Apn(B).
If E % X is an affine bundle with E = P(F) ~\ P(€) we get a diagram

Appn(P(E)) — Agin(P(F)) —— Agn(E) — 0

Ap(X)

5.4. Theorem: For a general affine bundle E 2 X of rank n the homomorphism
Ae(X) L Apin(E) is surjective for any k > 0.

Proof. Step 1: We first check the simplest but essential case where X is affine and integral
and F = X x;, Al and where k =n — 1,n = dim X.
We are going to show that for any integral subscheme Y C E of dimension n there is a
cycle £ € Z,_1(X) and a rational function r € R(E)* such that

Y = p*& + cye(r).

Then A, _1(X) — A,(F) is surjective. To find £ and r we distinguish the cases p(Y) = X
or p(Y) a subvariety of dimension n — 1. Because p is locally trivial with fibre A', we

have n — 1 < dimp(Y) < n.

Ifn—1 = dimp(Y), we have Y = p~!p(Y") because both are n—dimensional and irreducible.
In this case there is nothing to prove. So we assume that p(Y) = X and Y dominates X.
Let

pCA(E) = AX)[1] € R(X)[1]
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be the prime ideal of Y. Because R(X) is a field, the ideal pR(X)[t] is generated by an
element r € R(X)[t]. There is an element 0 # b € A(X) such that

[

r==

b
with f € p. Then also f = br generates pR(X)[t] and we may assume that r» € p. Next
we observe that
pNAX)=0.
Otherwise there would be an element 0 # f in p N A(X) and then p*Z(f) D Z(p) =Y
with Z(f) # X. We are going to show now that r vanishes along Y in order 1. This is
equivalent to
pA(E)P = TA(E)FH
because the quotient modulo pA(E), has length 1. For that let f/g € p with f € p
and g € p. Because r generates pR(X)[t], f = rh/b, 0 # b € R(X), h € A(E). Then
f/g € rA(E),. Now we have
cye(r) =Y + Z n;Y;
with Y; # Y. We show that no Y; can dominate X. Assume that p(Y;) = X. Let as before
f €p with bf = hr,b # 0. Since r is a regular function and n; # 0, r vanishes along Y;.

Because b doesn’t vanish identically on X, f vanishes along Y; (use generic points). But
this implies that Y; C Z(p) =Y, contradicting Y; # Y as both are of the same dimension.
Now dimp(Y;) =n — 1 and Y; = p~p(Y;). This finally proves

Y =— Z nip*p(Y:) + cye(r)

which completes step 1.

Step 2: If X is affine and integral and k < n — 1 arbitrary, then Ay (X) — Ap;1(X x A})
k

is still surjective. To see this, let Y C E be integral of dimension k + 1. If dimp(Y) = k
then Y = p~!p(Y) and there is nothing to prove. If, however, dimp(Y) = k + 1, we

consider
A1 (Exy) — Ap(E)

T T

Ap(p(Y)) — Ar(X)
By step 1 there exists a k—chain n € Z,(p(Y)) C Zx(X) with [Y] = p*(7).
Step 3: The theorem is true for integral affine X and £ = X >k< A}
Proof: By induction n. We have

E=XxA"1x Al
ok Rk

and hence that p* as the composition
k k

of two surjective maps is surjective.
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Step 4: The theorem is true for any affine X and X x A}.
k

Proof: If X = X; U X’ is a decomposition with X; irreducible we use the diagram
Ap1(E1) @ Apsn(E) — Apsn(E)

where E; resp. E’ are the restrictions of the bundle F to the components and do induction

on the number of components.

Step 5: The theorem is true in general. We do induction on the dimension of X. We

may assume that the theorem is true for dim X < m. If dim X = m, we may assume that

X is irreducible by step 4. Then choose an affine open set U C X such that Ey = U x A}
k

Let Z = X \U. Then dim Z < m. The exact diagram
Apin(Ez) — Apn(E) — Apin(Ey) — 0
s

gives the result for X by the surjectivity of p}, and pj; OJ

5.5. Remark: We shall see later that for a rank n vector bundle £ 2 X all the maps

Ap(X) r, Ag1n(FE) are isomorphisms. In particular

AL(X) = Apal(X X A7)

are isomorphisms. All this follows from the existence of a section X 4 X x A" which
k

gives rise to a diagram

AR(X) = A (X > AT)

~N

AR(X)

5.6. Remark: If £ & X is a locally trivial fibration with typical fibre an open set
U C A7, then also Ap(X) — Agin(E) is surjective for any k. This can be shown with a

similar proof.

6. EXAMPLES

In this section theorem 5.4 will be applied to get information about the Chow groups of
affine and projective spaces, of Grassmannians and more generally of cellular varieties.
All schemes will be defined over k.
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6.1. Proposition: Let U be a nonempty open set of A™. Then Ax(U) =0 for k < n and
A (U) = Z.

Proof. By induction n. For n = 1 this is known. For n > 2 there is a projection A" — A"~}
with fibre A'. Tt follows that Ay (A"™1) — A;(A") is surjective for 1 < k < n. If k < n,
the groups are zero. If k = n, both groups are isomorphic to Z. It had already been
shown that Ag(A™) = 0. If U is an open set of A", we have a surjection Ag(A") — Ax(U)
for any k. U

6.2. Proposition: Ai(P,) = Z for any 0 < k < n and this group is generated by the
class [Hy] of any k—plane Hy, C P,,.

Proof. The result had been shown for £ = n — 1 and n. We proceed by induction on n

with £ < n. Let H C P, be any hyperplane. We have the exact sequence

Ap(H) — Ag(P,) — Ap(P, N~ H) — 0

Z
with H 2 P,y and P, ~ H = A". Then Ai(P,) for k < n is generated by the class of
any k—plane Hy. It remains to show that Z — Ay (IP,) is injective. Let dZ be the kernel.

There are (k 4 1)-dimensional subvarieties V,, and rational functions r, € R(V,)* such
that
dH; = chc(ru).
w
Let Z =V, U...UV,. There is a linear subspace L of dimension n — k — 2 such that
LNZ=1(. (If k=n =1 there is nothing to prove). If d # 0, the formula implies that
H, C Z. Now Z C P, ~ L and there is the central projection

m:Z —=P,~NL— Pryy

as composition. The morphism Z 5 Py, is proper with finite fibres. Because H,NL = ()
we find that 7(Hy) = Hj, is a k—plane in Py, with Hy — Hj.

By 7.4 and 7.1 we have m,[Hy] = [H]] and d[H]] = 0. But from Z = Ap(Pyy1) we
conclude that d = 0. O

6.3. Question: Let S C P, be a hypersurface with components Sy,...,.S, of degrees
dy,...,d,. We had shown in 4.6 that A,,_1(P, \S) is isomorphic to Z/(d,...,d,). What
can be said about A (P, \ S) for £ < n — 17 As an example let S C P3 be a quadric
surface, S = P; x P;. We shall see later that A;(S) = Z x Z with generators the classes
of a line in each system of lines in S. Then the homomorphism A;(S) — A;(P3) is given
as Z* — Z by (a,b) — a + b. Therefore, the cokernel A;(P3~ S) = 0.
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6.4. Projective cones: Let P, ~ {pt} = P, be the central projection from a point,
which is a line bundle. If Y C P, is a subvariety, let X be the closure of 77*(Y"). Then
X ~ {pt} — Y is also a line bundle and we have isomorphisms

A(Y) ~ A1 (X N\ pt) = A (X).
Let in particular X C IP3 be the subvariety by a3 —zox; = 0. It is a cone over the smooth
conic {x3 — zoxr; = 0} N {z3 =0} = C. Because C' = P; we have isomorphisms

Z = Ay(C) = Ai(X N A{p}) = Ai(X)
where p = (0,0,0,1). We have C' C X and the exact sequence

I I

7 o7

Let L = 7=1(p) be one of the lines of X. Then [L] is the generator of A;(X). The zero
scheme of zy in X is the union of two lines Ly, Ly C X. Now the cycle
0 ~ cyc(xo/x3) = Ly + Ly — C
and we get [C] = [L1] + [Lq] = 2[L].
Therefore h(a) = 2a and A} (X \ C) = Z/2Z.

6.5. Cellular varieties: As we have already realized, it is often easier to determine
generators of the Chow groups Ay(X) but more difficult to determine the relations. Gen-
erators can also easily be found for so-called cellular varieties. These are varieties X with

a filtration
X=X,0X,1D2---DXoDX 1=10
by closed reduced subschemes such that

X, N X, =[]0,

I

with U,, = A™» or more generally U,, open in some affine space. Let Z,, = Uyu the

closure. Then the classes [Z,,] generate the group

A(X) = PAX).

k>0

The proof follows by induction from the graded exact sequence
A (X, 1) = Ad(X)) — Ad(XL N X1) — 0.
Let us consider the special case with X, of pure dimension v. Then we have

Ap(Xn1) — Ap(X) —— An(X N Xp0) — 0.

1
0.
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Now A, (X ~\ X,_1) is generated by the open fundamental cycles U, and then A,(X) is
generated by the closures Z,,. In this case we even have A,(X) = ZP» where p, is the

number of the U,,. Next we have the exact sequence

0.
for k < n. By induction we may assume that Ay(X,,_1) is generated by the classes [Z,],
which then also generate Ay(X). Note that P, is a cellular variety of this type.

6.6. The Grassmannian Go,: Let G = G(2,V) C PA?V be the Grassmannian of 2
dimensional subspaces of a 4-dimensional k—vector space V. Let eg, ..., e3 be a basis of V
with induced basis e; A e; of A2V Let poy, . .., pe3 be the dual basis for A2V*, also called
Pliicker coordinates. Then G' C PA%V is given by the non—degenerate quadratic equation

Po1P23 — Po2P13 + Pozpiz = 0 (%)
(€ € A%V is decomposable if and only if £ A& =0 in AV).
Let @) C G be the hyperplane section given by pg; = 0. Then @ is the set of all lines in
PV = P3 meeting the line P(ey, e3) < (€3 A e3). Now G\ Q = A* is an affine chart of G
with local coordinates po2/po1, Pos/Pot1, P12/Po1, P13/Po1 (P23 is determined by (x)).
Next we consider a—planes and [-planes (classical names). Let P, C G be the set of
all lines through (e3). It is determined by the equations py; = po2 = p12 = 0 and
hence P, = Py. Dually we have the set P C G of all lines contained in the plane
H = P(eq, e9, e3) spanned by (e1), (e2), (e3). It has the equations pg; = po2 = pos = 0 and
so Pz =2 Py. Now P, U Pj is determined by the equations py; = ppe = 0. It follows that
P,UP; CQ and

Q AN Pa U Plg = A3

with local coordinates pia/poz, Pos/Po2s P23/po2. Finally P, N Ps = L,g is the set of lines
in the plane H through (e3). It is isomorphic to Py by intersecting each line [ € L,z with
the line P(e;, es) C H. We have the open sets

Uy = Po~ Log 2 A* and Us = Py \ Log = A
and we have
P, U Pg N Lag = UaUUﬁ.
Finally, there is the point p = (ea A e3) € Lag and Lap ~ {p} = A'. Altogether we have
the filtration
GDQDP,UP;D Lag D {p}
with
GNQ=AY, QNP,UP;=A® P,UPs~ Lag 2 A?UA%,  Los~ {p} = A"

By the procedure above we find:
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[G] generates Ay(G)
Q) generates Asz(G)
[P.],[Ps] generates As(G)
[Lags] generates A;(G)
[p] generates Ag(G).

The subvarieties @), Py, Pg, Log are the classical Schubert cycles in this case. One can

even prove that
A4<G) = Z7 A3<G> = Z7 AQ(G) = Z27 A1<G) = Z7 A(](G) =7

with the above generators.

6.7. Kiinneth map: Let X and Y be two algebraic schemes over k. If V C X and
W C Y are subvarieties of dimension ¢ and j respectively, then V' x W is one of X x Y
of dimension ¢ + j. Then

(V] W]) = [V x W]
defines a homomorphism
Zi(X) ® Z(Y) % Zis(X x Y)
also called Kiinneth homomorphism.

Ifa~0in Z;(X)and 8 ~ 0in Z;(Y), it follows from 7.16 below that then also o x 5 ~ 0.
Thus we are given homomorphisms
Sk(X,Y) = @) Ai(X) @ 4;(Y) = Ap(X xY)
i+j=k
for any k. It is an easy exercise to show that this homomorphism is surjective if X is

cellular.

7. PUSH FORWARD AND PULL—BACK

It is not clear how to define push forward of cycles for general morphisms. Proper mor-
phisms allow this in an easy way. We refer to Hartshorne’s book II, §4 for proper mor-
phisms. A morphism X L, ¥ of schemes is called proper it it is separated, of finite type

and universally closed. The following rules are useful:

(a) closed immersions are proper

(b) projective morphisms are proper

(c) properness is stable under base extension

(d) products f x g of proper morphisms f and g are proper
(e) compositions of proper morphism are proper

()

()

If f o g is defined and proper and if g is separated, then f is proper
properness is a local property with respect to the base space.



28
An algebraic scheme/k is called complete if X — Spec(k) is proper.
X LvYisa proper morphism and V' C X an integral subscheme with W = f(V'), then

we have

RW)—L 5 R(V)

T

OW,Y/m‘My ;) OV,X/mV,X

T T

OW,Y(L) Ov.x
and R(V) is a field extension of R(W). If V and W have equal dimension, there is an
open dense subset W/ C W over which fy = f|V has finite fibres. Since also fy is proper,
fv is finite, see [11], prop. 6.25. The open set W' can be chosen to be affine. Then also
V' = f;}(W') is affine and A(W’) — A(V’) is a finite integral extension and therefore
R(W)=RW') — R(V') = R(V) is a finite field extension. The degree of this extension
is used to define the multiplicity of W in Z(Y) when k& = dim V' = dim W.

7.1. Let X LY be a proper morphism and £ > 0. The homomorphism
Z(X) > Zu(Y)
is defined by
0 if dim f(V) <k
[V = o1
deg(V/f(V)) - f(V) if dim f(V) = k
where deg(V/f(V)) =deg(R(V) : R(f(V)) and V is a subvariety of X of dimension k.

7.2. Let @ C P, be a nonsingular quadric with equation 23 + ... + 22 = 0 and let
p = (1,0,...,0). Then p € Q and the composition f : Q C P, ~ {p} = P,_; of the
inclusion and the central projection is a 2 : 1 proper morphism which is surjective. For
the field extension

R(Pn1) — R(Q)

we have the minimal equation

2
Tu\"_ St T,
Lo

such that R(Q) is an algebraic extension of degree 2.

For £ =n — 1 there is the diagram

An_l(Q) — An—l(]P)n ~ {p}) :

In this diagram each of the groups is isomorphic to Z and both i, and f, correspond to
multiplication with 2. Moreover, if V' C (@) is a linear subspace of dimension k, then also
f(V) =m(V) is a linear subspace of the same dimension and we would have f,V = f(V).
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7.3. Lemma: Let X LY % 7 be proper morphisms. Then (g o f)s = g« o fi« on the

level of cycles.

Proof. Let U C X a subvariety of dimension k, V = f(U), W = g(V). If all of the three
subvarieties have the same dimension, then

deg(U|W) = deg(U|V). deg(V|W)

because

RW)cC R(V) C R(U)
are both finite field extensions. If the dimensions are not equal, one of f.U or ¢g.V would
be zero and then (g o f).U = 0. In either case we have (g o f).U = g. f.U. O

7.4. Theorem: Let X LY be a proper morphism and o € Zy(X). If a ~ 0, then also
fra ~ 0.

Proof. 1f we replace X by the (k+1)-dimensional subvariety on which the rational function
r of a component cyc(r) of « is defined, the following has to be shown. Let X LY be
a proper morphism of (integral) varieties and r € R(X)*. Then f.cyc(r) is 0 or equal to
cyc(s) for some s € R(Y)*. In fact, we prove

(i) if dim X = dim Y, then f.cyc(r) = cyc(N(r)) where N(r) is the determinant of
the multiplication map R(X) — R(X) as an R(Y)-linear isomorphism
(ii) if dim X > dim Y, then f.cyc(r) =

a) Since f.cyc(r) = > ordy(r)deg(V/f(V
1 subvarieties V' of X with dim f(V) =
subvariety W C Y

)f ( V') with the sum taken over all codimension

)
dimV, (i) will follow if for any codimension 1

> ordy(r) deg(V/W) = ordw (N (r)). (1)
fV)=w

For now fixed W we may assume that there are components Vi,. .., V; of f~1(W) which
dominate W and have the same dimension. Otherwise f~1(W) would equal X and f
could not be surjective. Then the generic point w of W has the finite fibre {&;,..., &}
where &; is the generic point of V; (W = f(V;) = f({&}) = {f(&)} and hence f(&) = w.
If f(€) =w, then f({€}) = {f(©)} = {f(€)} = W because f is closed and {€} is one of
the V;). Therefore there is an affine open neighbourhood Y’ of w in Y over which f is

finite. Since (1) is unchanged when we replace Y by Y’ we may assume that both X and
Y are affine, f is finite and

W)y =viu--- UV
b) Now w is the prime ideal p C A(Y) of W and &; is the prime ideal q;, C A(X) of V;
with q; N A(Y) = p, and the ¢, are all prime ideals with this property. Let A(X), be the
ring A(X)(A(Y) ~p)~!. The natural map

A(Y)p = A(X)p = A(X) ®apr) A(Y )y
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is also injective and a finite integral extension. Then we have the pull-back diagram

SpecA(X)y—— X
lf lf

SpecA(Y )y —— Y
with injective horizontal morphisms and finite vertical morphisms. The ideals m; =
q; A(X), satisty

m; NAY), =pAY),
and are maximal by the ”going up” theorem, see e.g. [11], 6.8, p. 102. By this theorem
we also conclude that the ideals

(0),myq,...,my

are the only prime ideals of A(X), because (0) and pA(Y’), are the only prime ideals of
A(Y),.

c) We put B = A(X)y, B; = B, A= A(Y), and q = pA(Y),. With this notation we
have

(c1) A(X)q = B and R(X) = A(X)) = By = Q(B)

(c2) RY)=Q(A), RV, =B;/mB;, R(W)=A/q

(c.3) A(X) @) R(Y) = R(X)

The isomorphisms of (c.1) are induced by A(X) — B and the definition of the lo-
calizations.  (c.2) follows from A = A(Y), = Owy and R(V;) = Oxg/mg =
A(X) g /0iA(X)q = Bi/myB;, and R(W) =2 A(Y),/pA(Y), = A/q. (c.3) is induced
by A(X) ®ar) A(Y) =2 A(X) and the fact that A(Y) C A(X) is an integral extension,
because any nonzero G € A(X) satisfies an equation

1
5+040+OZ1G+"'+04me:0

with ay, € Q(A(Y)) = R(Y).
d) Formula (1) follows if for any b € B

Z I, (B;/bB;)[B;/m;B; : A/q] = ord 4(det(b)) (2)

where for det(b) = o/ € Q(A) we have orda(a/B) = la(A/aA) —l4(A/BA).

Proof of (2): By (c.1) Ip,(B;/bB;) = ordy,(b) with b considered as an element of R(X),
and by (c.2) [B;/m;B; : A/q] = [R(V;) : R(W)], while ords(det(b)) = ordy (N(b)). If
r € R(X)* is general, it is the quotient b/a with b,a € B. Since the order functions and
determinant are homomorphisms, (2) implies (1).

e) Finally (2) follows from fundamental properties of the length. Because (0), my, ..., my
are the only prime ideals of B and since B;/bB; = By, /bBp, have finite length over A and
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By = bB(g) (note that the multiplication operator b is injective and hence an injective
operator of the finite dimensional R(Y )-vector space R(X)), B/bB has finite length and

A(B/bB) = ZzA (B;/bB;).

By [8], appendix A.2.3,
[A(B;/bB;) = lp,(B;/bB;)[B;/m;B; : A/q]
and hence finite. On the other hand, [8], appendix A.3, guarantees that
l4(B/bB) = orda(det(b)).
This proves (2) and finally (i).

f) In case n = dim Y < dim X we may assume that dim X = n+1. Otherwise dim f(V) <

dim V for any n—dimensional subvariety V' C X. Now
fecyc(r) = Z ordy (r) deg(V/Y)Y
fV)=y

because for any component V' of cyc(r) with f(V) # Y we have dim f(V) < dim V. Let
Vi,..., Vs be the components of S = Supp div(r) which are mapped onto Y. We have to
show that

Zordv )deg(V;/Y) = 0.

Let now &; resp. 1 be the generic points of V; resp. Y, and let X,, be the (1-dimensional)
fibre of . Then

ordy; (1) = orde,(r | X,)

and
deg(Vi/Y) = [R(V})/R(Y)] = [(Ox, ¢;/me,) /Oy ] -

Therefore we may assume that X is a complete curve over Spec(K) with K = R(Y').
g) We consider first the case where X = Py i and R(X) = K(t) with ¢t = x1/z9. Now
we may assume that r € K[t] is an irreducible polynomial because the order function is a
homomorphism. Let P € Pk be the prime ideal (r) C KJt]. Then ordp(r) = 1 and the
only other point () with ordg(r) # 0 is ) =< 0,1 >. In the affine neighbourhood of @

the local coordinate function is s = 1/t and we have
ordg(r) = —d
with d = deg(r). On the other hand, the field of P is R(P) = K|t]/(r) while the field of
Q@ is R(Q) = K. Therefore,
cyc(r) = P —dQ
and then
fecye(r) =dY —dY = 0.

h) If X is a general complete curve over Spec(K), we consider the normalization XL X
for which we have R(X) = R(X) and cyc(r) = g.«cyc(r), where 7 is the rational function
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corresponding to r. There is now a finite morphism X P,k over Spec(K) with fog =

po h, where p is the structural morphism of P;x. Now
feeye(r) = fugeeyce(r) = pohicyc(r).
By (i) hscyc(F) = cyc(N(r)) and by g) p.cyc(N(r)) = 0. O

Theorem 7.4 says that a proper morphism X LY defines a homomorphism
AW(X) % A(Y)

for any k and that f +— f, is a functor on the category of proper maps. The theorem also
provides a new proof of Bezout’s theorem for plane projective curves:

7.5. Example: If X is complete, X — Spec(k) is a proper map, then Ay(X) — Ag(pt) =
Z is nothing but the degree map. Let now F' C Py (over k) be an integral curve and L a

line, which is not a component of F'. Then the intersection multiplicity

p(p, I L) = Z(OL,p/prLm)

is defined at any closed point p € L N F', where f is the equation of F. If I’ is any other

line with equation z, then r = f / 2" is a rational function on Py, where n = deg(f). Then

cyc(r Z,u (p, F, L)p — npy € Zy(Py),
peEL
where py is the intersection point L N L'. By theorem 7.4
0=> ulp,F,L)—n.
pEL

Let now m be any integer and G = Z(g) a curve of degree m. Then
1(p, F,G) = UOFyp/9,0F,p)
where g, is the germ of the local function of g at p. Similarly
1(p, F, L) = H(Opp/u,'Opp) = m - (Opp(uyOpyp) = m - u(p, F, L),

where u denotes the equation of L and L,, is the multiple line «™ = 0. Now s = g/u™ is

a rational function and

cyc(s ZMP,FG Zup,FL

peEL peEF

> wp,F,Gy=m-> u(p,F,L)=

peEF peF

It follows that

7.6. Flat morphisms: A morphism X I, ¥ of schemes is called flat if the local ring
Ox ., is a flat Oy, y(,y~module for any x € X. It is shown in commutative algebra that this
is equivalent to

Tory (O, j@) /M), Ox.a) = 0
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for any x. Then
Tor; (M, Ox ;) =0
for any finitely generated Oy, s)-module. In terms of exact sequences this can be ex-
pressed as follows. If 0 — F/ — F — F” — 0 is an exact sequence of coherent Oy—
modules on an open set U C Y, then the lifted sequence 0 — f*F — f*F — f*F" — 0
is exact over f~1(U). Here f*F denotes the sheaf f*F ® o0, Ox where f*F is the topo-
logical pull-back. It is enough to test this for resolutions for the ideal sheaves m(y) of
points y € Y,
0—R— O} - m(y) — 0.

7.7. Example: Let X C A? be the subvariety defined by zy = 0, and let X EN A} be
the first projection. Then f is not flat along the fibre of 0. Here we have the resolution
0 — k[t]w L k[t] ) — k — 00of Op19/mg = k and the lifted homomorphism at any closed
point (0,b) € f71(0) is the localization of the complex

0 — Klz,y]/(zy) = Klz,y]/(z,y) —

which is not injective.

7.8. Example: Instead let X C A now be given by y*> —x? = 0. Here the lifted sequence

is the localization of the complex

0 — klz,yl/(y* — 2°) = K[z, 9]/ (y* — 2?) —

which is exact. The same can be said for any other point of A! or of X.

7.9. Example: Let V be a finite dimensional vector space and let X C PV x PS4V*
be defined by pairs ((v), (f)) with f(v) = 0. Then the induced projection X — PS4V*
is flat. This is also called the universal hypersurface. If 2y, ..., 2, is a basis of V*, i.e.
homogeneous coordinates of PV and if ¢,,, ,, with v+ ---+ v, = d are the homogeneous
coordinates of PS?V* (dual to the basis 2°...2%» of S4V*), then X is the hypersurface

n

defined by the (1, d)-homogeneous equation
f= Zt,,o___,,nzgo L2 =0.

This is a section of the line bundle
Opgay+(1) W Opy (d) = Opgay-xpv (1, d)
and we have the resolution
0 — Opgayxpyv(—1, —d) L Opgiverpy — Ox — 0.
For a fixed point
a= <Z Ay 20 " ZZ”> = (f,) ePSW* =Y

the structure sheaf of the fibre X, ist obtained as the tensor product

Ox ®je0, f*Oy/f*M(a)
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where M(a) is the ideal shaef of a. Tensoring the above sequence with f*Oy /f*M(a) we
get the sequence

0 — O]pv(—d) fﬁa OPV — Oxa — O,

which is exact. This proves flatness at any point of X.

7.10. Example: Let X C A? be the hypersurface ty —z? = 0 and let X — A} be defined
by the projection to the t—axis. We have the exact sequence
2
0—>OA3ty—>OA3—>OX—>O
and for any fixed ¢, the exact sequence
toy—a?

OHOA2%OA2—>0X%HO

because toy — x® # 0. This shows that X — A} is flat. Here X; is a parabola for any
t # 0 and a double line for ¢t = 0, see [9] II, Example 3.3.1.

7.11. Proposition: (see [9] III, 9.5, 9.6)
If X L yisa flat morphism of finite type between noetherian schemes, then
dim, X, = dim, X — dim, Y

for any x € X with y = f(x). In particular, if X and Y are pure dimensional, then all

fibres are pure dimensional.

7.12. Flat morphisms of fixed relative dimension:

In [7] only flat morphisms of fixed relative dimension (or fixed fibre dimension) are con-
sidered for pulling back cycles.

This means that for any subvariety V' C Y and any irreducible component V' of f~1(V),
dim V' =dimV +n

where n is fixed. By the above, this is fulfilled if f is flat between integral algebraic
schemes over some field. Then f is of finite type. The following are flat morphisms of

fixed relative dimension.

e open immersions
e projections of fibre bundles onto a pure—dimensional base scheme

e dominant morphisms from an integral scheme to a non—singular curve.

7.13. Fundamental cycle of a scheme

Let X be an algebraic scheme over k£ and let Xi,..., X, be the irreducible components
of X,eq. Each X, has a generic point §, which is not contained in any other component
Xy,0 # p. Then the local rings

OXPvX = OXvé.P = OYP7£P
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where Y, = X \ ;J X, have finite length, because
o#p
dim pr,gp = COdimprp =0.

Let u, be the length of Oy, x. This can be interpreted as the multiplicity of X, in X.

If all the X, have the same dimension n we obtain the cycle

[X] = ZNp[Xp] € An(X).

If there are different dimensions, we consider the direct sum

AX) = PAX)

k>0

and obtain a fundamental class [X] € A,(X).

7.14. Example X C A? with equation zy* = 0. X; = Z(y),Xs = Z(z) and [X] =
2[X1] 4 [Xs]. If A(X) is the coordinate ring, we have the exact sequence

0 — yAX)y) — AX) @ — AX) @) /yAX)y — 0

with yA(X) ) = A(X) ) /yA(X) ) because y? =0 in A(X),).
Hence length A(X),) = 2.

7.15. pull-back by flat morphisms

Let X L Y be a flat morphism of relative dimension n. Given a subvariety V' C Y of
dimension k. Then f~!(V) has pure dimension & +n, but need not be reduced. Then the

cycle
PV ==YV,
is defined as the fundamental cycle of f~'V where Vi,...,V, are the irreducible compo-

nents of (f7'V)ieq with a, = length Oy, ;-1,. We thus obtain a homomorphism

Zp(Y) L, Zn(X).

7.16. Theorem: Let X LY be flat of relative dimension n and o € Zp(Y). If a ~ 0,
then also f*a ~ 0 in Zyin(X).

For a proof see [8], section 1.7. The theorem says that f defines a homomorphism

*

Ak<Y> - Ak+n<X>-

It follows from the definition that for two flat morphism X Ly and Y & Z of relative

dimensions m and n, (¢f)* = f*g*.
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7.17. Projection formula: Let

X 2= X

L
Y/ L} Y

be a Cartesian diagram with ¢ flat of relative dimension n and f proper. Then also f’ is

proper and ¢’ is flat of the same relative dimension n and for any cycle a € Z;(X)

fig"a=g"fa

For the easy proof see [8], prop. 1.7.

8. INTERSECTION WITH CARTIER DIVISORS

As before X will denote an algebraic scheme over k and D a Cartier divisor on X. We
are going to define an intersection class DNV = D.V in Aj;_1(X) for each k—dimensional

subvariety V' and by this an intersection homomorphism
Ap(X) 25 A1 (X).
The image of this will be contained in Ay_1(|D|). To begin with D.V, let V/ <5 X be the

inclusion. Then j*Ox (D) is a line bundle (invertible sheaf) on V. Since V is integral,

there is a Cartier divisor C' on V' with
J*O0x (D) = Oy (C),
see 2.8. This divisor is only determined modulo principal divisors. If Oy (C) = Oy (C"),

there is a rational function » on V such that
C' = C + div(r) and then cyc(C") = cyc(C) + cye(r).

Therefore
D.V = D.[V] :=[cyc(O)] € Ap_1(V)

is uniquely determined.

8.1. Lemma: D.V € A;,_1(V N |DJ).
Proof. 1f V' C |D|, there is nothing to prove. If V' ¢ |D|, we can define a Cartier divisor

j*D as follows. Let (f,) represent D, each f, being a rational function in M*(U,).

IfVNU, #0, then VU, |D| # 0 because V \ |D] # 0 and V is irreducible. Then
the residue class f, = fo|V N U, . |D| is defined and

fa € OL(VNUL,N|D|) C MV NU).

The system (f.),V N U, # 0, defines a Cartier divisor j*D on V. It has cocycle (gas)
where g,z is the cocycle of D. Therefore

J"O0x(D) = Oy (5" D).
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Now cyc(5*D) € Z_1(V N |D|) because each f, is in Of(V NU, ~ |D|). This proves the

Lemma. ]

8.2. Intersection with D
Given a cycle o = > n;V; in Z(X), we can define
D.a =Y nD.V; € A1(|D N |al) € A4_1(|D]) C Ap_a(X)
where || is the union of the V;. This defines a homomorphism
Zu(X) 25 Ap_1(ID]) C Ap_1(X).

We are going to show that this is defined on Ax(X), i.e. if @ ~ 0, then D.av ~ 0, see 8.6.1
This intersection pairing (D, ) — D.« satisfies the rules

(a) D.(a+a')=D.a+ D.o/

(b) (D+D").aa=D.a+ D'«

(¢) div(r).ac = 0 for rational functions r € M*(X).
which follows directly from the definition.

If X is a smooth surface and V' C X an irreducible curve, then Div(X) = I'(X, M*/O*) =
Z1(X) and we obtain the pairing Z;(X) x Z1(X) — Ap(X) — Z written as («, ) —
eg

deg(D,.) where D, is the Cartier divisor defined by the Weil divisor a.

8.3. Chern classes of a line bundle

For an invertible sheaf £ on X and a k-dimensional subvariety V' C X there is also a
Cartier divisor C' on V' with j*£ = Oy (C) and a unique class ¢, (L) NV € Ax_1(V) C
Ag_1(X). As before we obtain a homomorphism

Z1(X) — Ap_1(X) denoted a — ¢1(£) Nav.

This operator is also called the first Chern class of £. If X is itself integral of dimension

n, the intersection with the fundamental cycle X in Z,(X) gives the class
Cl(ﬁ) = Cl(ﬁ) NnNX e An,1<X)

which is nothing but the class [cyc(C)] where £ = Ox(C). Note that this is only defined
modulo rational equivalence. If X =P, (over k), we have isomorphisms

Pic(P,) = Ap_1(Py) — Z

and the isomorphism class [£] is determined by an integer.

8.4. Projection formula: Let X’ L X be a proper morphism, let D € Div(X) a
Cartier divisor, and a € Z;(X'). Then the induced morphism

DN N lal % D10 f(lal)
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on the closed subscheme is also proper. If f*D can be defined as ¢*D, e.g. in case X’ is
integral and f~1(|D|) ; X', then
(d) 9x((f*D).c) = D.f. () in Ap_1(X).
For a proof see [7], 2.3. If f*D cannot be defined as a divisor, it is defined as a pseudo—

divisor. This is the reason why pseudo—divisors had been introduced in [7], 2.2. However,

(d) is true in general in the form

g«(c1(f*Ox (D)) Na) = D.f.(a)

8.5. Flat pull-back formula: Let X’ 7. X be flat of relative dimension n,D €
Div(X),« € Zg(X). Then the induced morphism

FHDIN |al) % [DIN ol
is also flat of relative dimension n and
() (f'D).(f'a)=g"(D.c) in Appp1(X")

if f*D is defined. In general the formula reads

a(f*Ox(D) N fra=g"(D.a)

8.6. Theorem: Let X be an n—dimensional integral scheme and let D, D’ be divisors on
X. Then

D.cyc(D") = D'.cyc(D).
For a proof see [7], 2.4.

8.6.1. Corollary: Let D be a divisor on an algebraic scheme/k and o € Zy(X). If
a~ 0, then D.a = 0.

Proof. Let V' C X be a (k + 1)-dimensional subvariety, r € R(V)* and a = cyc(r). We
have to show that D.a = 0. Now on V' we have cyc(r) = cyc(div(r)) and for any Cartier
divisor C on V: C.cyc(r) = C.cyc(div(r)) = div(r).cyc(C) = 0.

If j*Ox (D) = Oy(C), then

D.ocv = D.cyc(r) = C.cyc(r) =0. O
8.6.2. Corollary: For two Cartier divisors D and D" on X and any o € Zy(X),
D.(D'.a) = D'.(D.a) in Ap_o(|D|N|D'| N |af).
Proof. We may assume o = V for a k-dimensional subvariety V' <, X. Let 7 Ox(D) =
Oy (C) and 7*Ox(D') = Oy (C"). Then D.a = [cyc(C)] and D'.ac = [cyce(C")] and

D.(D'.a) = D.cyc(C') = C.cyc(C)
= ('.cyc(C) = D' .cyc(C) = D'.(D.«a)

in Ay_o(V N |D|N|D]). O
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8.7. Intersection with polynomials of divisors: By the preceding corollaries we
are now able to define intersections D.[a] = D.« for classes [a] € Ai(X) and iterated

intersections
(Dy-...-Dy).Ja] =D1.(Dy-...-Dy).[a]

by induction. This product is multilinear and commutative in the D’s. This identity
holds in

Arn(je] N [Dy N D)) if a € Zy(X).

More generally, if P(1y,...,T,) € Z[T},...,T,] is a homogeneous polynomial of degree d,

P(Ty,....T.) = ay, ., 1 ... T,
we obtain a class
P(Dy,...,Dyp).o =Y ay,.0,(Dy" ...  Di").ov € Ap_y(X)

for any k—cycle a and any subscheme Y containing (|D;| U ... U |D,|) N |al.
Examples: see [8], 2.4.4 to 2.4.9.

8.8. Intersection formulas with line bundles:

Let £ be an invertible sheaf on an algebraic scheme X over k. By 8.3 and 8.6.1 there is
the intersection operator

a(L)N: Ag(X) — Ap_1(X)
for any k defined by ¢;(£) NV = [cyc(C)] if L]V = Oy (C). It is clear that the formulas

for the intersection with divisors transcribe into

(@) a(L)Nnea(L)Na=c(l)Nna(l)Na
(b) (projection formula) If X’ L Xisa proper morphism, £ is a line bundle on X
and « a k—cycle on X', then

fular(f*L)Na) =1 (L) N fua in Ap_1(X).

(c) (flat pullback) If X’ L X is a flat morphism of relative dimension n, and £ and
« are given on X, then

al(f*C)n ffa=f(alL)Na) in Ag,1(X).

alLL)Na = g)Na+ca(L)Na
a(L)Na = —a(f)Na

It P(Ty,...,T,) € Z[T},...,T,] is a homogeneous polynomial of degree d, then

there is the intersection operator

P(cr(L1), ... er(La))N s Ap(X) — Ap_a(X).
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Examples: see [8], 2.5.2 to 2.5.6.

On P,, we have ¢1(Op, (H)) N [Hy] = [Hg_1] for projective linear subspaces H, Hy, Hy_; of
dimensions n — 1, k,k — 1. Since [Hy| is the free generator of Ag(P,) = Z,

e1(Op, ()N : Ag(P,) = Ay 1(Py)

is an isomorphism.

9. THE GYSIN HOMOMORPHISM

Given an effective divisor D € Div*(X) we can consider D also as a scheme structure on
|D| = Dyeq and define A(X) AN Ak—1(D) as above by « +— D.« with the Cartier divisor
D. This is the Gysin homomorphism. We are going to describe its rules.

9.1. Normal bundle: Let X be any scheme and let D be the image of O N M* in
M*/O*. Tt is called the sheaf of effective divisors, see 2.9. Divt(X) = ['(X,D") is the
group of effective divisors. If D € Div*(X), then cyc(D) has only positive coefficients, see
3.3. We thus have a homomorphism Div'(X) — ZF | (X) if X is a variety of dimension
n. When D if effective, the line bundle Ox (D) has a regular section Ox — Ox(D)
vanishing exactly on |D|. By abuse of notation we denote the zero scheme of this section
also by D. It has the ideal sheaf Ox(—D) with exact sequence

OHOX<—D) —>OX H(’)D — 0.

The cokernel of the dual sequence is called the normal bundle N' = Np /x of D in X with
exact sequence
0— Ox — Ox(D) — Np,;x — 0.

Denoting F (D) = F @ Ox (D) for any sheaf, we get, by tensoring this sequence with Op:
Tor%*(N,0p) = 0Op and  Op(D) = N.

9.2. Zero section of a line bundle: Let £ be an invertible sheaf on an algebraic scheme
X over k and let L & X be its bundle space. Then X has an embedding X <5 I as the
zero section. As such, X is an effective divisor: if (U,) is a trivializing covering of £ or L
such that Ly, = U, x; Al let t,, be the pull bak of the coordinate function of A, which
is the equation of X N Ly,. On Ly, N Ly, we have

toa = (gap 0 D)t
where (ga5) is the cocycle of L, and therefore O (X) has the cocycle (gas o p).

This means that
Moreover,

Nyjp = i*Op(X) 2 i'p"L = L.
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9.3. Gysin homomorphism

Let D € Div'(X) on an algebraic scheme over k and let D s X be the inclusion as a
subscheme. Then a — D.a € Ay_1(|D|) = Ag—1(Dyea) = Ar—1(D) defines a homomor-
phism

Ap(X) 5 A4 (D),

called the Gysin homomorphism. For this intersection operator we have the following

rules

(a) i.i*(a) = 1(Ox(D)) N« a € Ag(X)
(b) i*iv(a) = 1(Np)x) Nv € Ap(D)
(¢) If X is purely n—dimensional, i*[X] = [D]
(d) If £ is a line bundle on X,

(a(L)Na)=ca(@™L)Ni'a  in  Ag_o(D).

Proof. (a) follows from the definition. If o = [V] is the class of a subvariety of dimension
k,

*(a) = D.[V] = [eye(C)] = er(Ox (D)) N [V] in Ag (V)
where j*Ox (D) = Oy(C). Then i.i*(«) is the same class in A;_1(X). To prove (b), let
V < D with j =ioe. Then i,[V] = [V] in A,(X) and
i*1.[V] = D.[V] = [eyc(C)] € Ay (V) C Ak—1(D)

with
Ov(C) = j*Ox(D) = E*Z*Ox(D) = 5*ND/X-

(c) Let X, be the irreducible components of X, all of dimension n = dim X. Then
[X] = > m,[X,] with multiplicities m,,, see 7.13. Then

:Zm,,D X

Let C, C X, be defined by j;Ox(D) = Ox,(C,). Then C, can be chosen as the com-
ponent of D in X, and it has the same multiplicity m, with respect to D, see [8], 1.7.2.

Therefore,

= Y myfeye(CL)] = D)

(d) follows from ¢;(Ox (D)) N (c1(L) Na) = 1 (L) N (e1(Ox (D)) Nex) and the observation
that

alLyNnp=c@L)ynp for e A_1(D). O

9.4. Chow groups of line bundles:
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Let L & X be the bundle space of an invertible sheaf £ on X and let X <5 L be the zero

section. If V' is a k—dimensional subvariety, we have the pull-back diagram
Lyl
[ lp
veo X
Claim: *p*[V] = [V]
Proof: p*[V] = [p~'V] = [Ly] and i*[Ly/] is defined as [cyc(C')] where j; Or(X) = Op, (C).

But O, (C) = j;OL(X) = jip*L = pyj L = O, (V) and this proves that [cyc(C)] =
[V]. As a conclusion we get

9.4.1. Proposition: Let L 2 X be a line bundle on an algebraic scheme X over k.
Then the flat pull-back homomorphism Ay(X) 25 Ay (L) is an isomorphism for any k.

Proof. By 5.4 p* is surjective. Because ¢*p* = id, it is also injective. O
9.4.2. Corollary: With the same notation

a(f)Na=i‘i,a forany a € Apiqi(X).

Proof. There is the exact diagram

Ak+1 —) Ak+1 —) Ak+1<X AN L) — 0
N ﬂ
By 9.3, (b), we have i*i,a = cl(NX/L) Na and by 9.2 Ny, = L. 0

10. CHERN CLASSES OF VECTOR BUNDLES

In this section ' — X denotes an algebraic vector bundle of rank e + 1 over an algebraic
scheme over k and P(E) & X the associated projective bundle whose fibre at a closed
point is the projective space P(F,) of 1-dimensional subspaces of E,, which is isomorphic
to P.(k). We let € denote the locally free sheaf corresponding to E. There is a tautological
line subbundle Op(—1) C p*€ whose restriction to P(E,) is isomorphic to Op(g,)(—1) C
E, ®Op(g,). The cokernel of Og(—1) is the locally free sheaf 7pg), x ® Op(—1) of relative
tangent vectors in twist —1. The dual sequence is the relative Euler sequence

0— Q}—"(E)/X<1) —p"&’ — Op(1) — 0.

Note that Og(1) depends on £ and not only on the scheme P(FE). If L is a line bundle
on X, then P(E® L) = P(E) but Oggr(1) = Op(1l) @ p*LY. If X is a variety, then also
P(E) is integral and there is a divisor H C P(F) such that Og(1) = Opg)(H). Then
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H induces the hyperplane divisor H, C P(FE,) for each x on the fibre. The divisor H
is effective because locally P(F)y, = U, x P, and Og(1) | P(E)y, is the pull-back of
Op, (1). Therefore there are locally regular equations defining H.

10.1. Segre classes s;(F). Because p is a proper and flat morphism, for any class
a € Ak(X) the class

si(E) N = p.(c1(Op(1)) Npa)
is well-defined in Aj_;(X). We thus have defined an operator
s (E
A() 25 A (X)

for any ¢ and any k, called the i-th Segre class of E. When V is a k—dimensional subvariety
of X, then p*[V] = [p~'V] is a subvariety of dimension k + e. The Segre operator means
cutting p™'V  (e+1) times with H to arrive at a (k —i)-dimensional cycle and projecting

it down again to X.

10.2. Proposition: With the above notation the Segre classes satisfy the following rules

(a) so(E)Na=a and s;(E)Na=0 for —e <i<0.

(b) si(E)N (s;(F)Na) = s;(F)N(s;(E)Na) for any two vector bundles E and F' on
X.

(c) projection formula: given a proper morphism X' L X and a € Ar(X'), then

felsi(ffE) Na) = s;(E) N fia

(d) pull-back formula: given a flat morphism of fized relative dimension X' L X and
a class a € Ap(X), then

si([TE)N [fa = [(si(E) Na)
(e) If E = L is a line bundle, then

si(L)Na = —c (L) Na.

Proof. We are going to prove (c) first. Because P(f*FE) is the pull-back of P(E), we have
the diagram

P(*E) <— P(E)

PN

X — X

with f*Opg(1) 2 Og(1). Now we get the chain of equalities
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felsi(f*E) N a)
= f0(c1(Opp(1)*" Np*a) by definition
= pf(c(fFO(1)T Np*a) because po f' = fop', see 7.3
= pu(e(Op(1)) N flp*a) by 8.8 for [’
= p(c1(Op(1) Np*foa) by 7.17
= s5(F)N fu by definition.
The formula (d) can be proved by a similar chain using 8.8, (c¢). For the proof of (a) we

may assume that X is integral and o = [X] is the fundamental class, because, if o = [V]
with V <% X, we have
so(E)N[V] = so(E)Nj[V]
= Ju(so(j"E) N [V]) by (c)
= V] if true for [V] and j*E
= [V].
When U <> X is an open affine subset and Ey = ¢*F, then
so(Lu) N[U] = €"(so(E) N [X])
by (d). If the left hand side equals [U], then so(E) N [X] = [X] because £*[X] = [U] and
A, (X) L A, (U) is an isomorphism. (A, (X~\U) = 0 because dim(X~\U) < dim X = n).
Now we may assume that X is affine and integral and that F is a trivial bundle or
P(FE) =X xP.. Then Og(1) = ¢*Op, (1) where ¢ is the second projection, or
Op(1) = Opp)(X x He-y)
where H._; is a hyperplane in P.. But now
A(Op()N[X xP.] =X X He_y].
Continuing e — 1 times with a flag of planes, we arrive at
c(Op(1) N[X x P] = [X x {pt}] = [X].

This proves the first part of (a). If —e <1i < 0 and V' is a subvariety of dimension k, then
a cycle £ representing ¢ (Og(1))t N [p~1V] is of dimension &+ and has its support over
V. Then p.£ = 0 by definition, see 7.1. This finishes the proof of (a).

The formula (b) is a consequence of the commutativity relation 8.8, (a). In order to derive

it, we consider the pull-back diagram

p/

Y —— P(F)
]
P(E) — X

defined by two vector bundles. In this diagram all maps are proper and flat of fixed
relative dimension. Let e + 1 and f + 1 be the ranks of the bundles. Then



45

si(£) N (s;(F) Na)
= p.(c1(Op(1)) N p*q(ci(Op(1))H N g a)) by definition
= p(cl(Op(1)) ' Np™ (e (Op(1)) N g a)) by 7.17

= pedi(ci(q"Op(1)H Np*(a(Op(1)) ¥ Ng*a) by 84
= pdi(ci(q Op() N (a(p*Or(1)) Np g'a) by 8.5.
In the last expression we can interchange the two operators by 8.8, (a). Using then the

same chain of equalities, we obtain the formula (b). Finally, if £ = L is a line bundle, we

have P(L) = X and Op(—1) = L or Og(1) = LY. Then
sitl)Na=c(0sg())Na=a(LY)Na=—-c(L)Na. O

10.3. Corollary: Let P(E) L. X be the projective bundle of a vector bundle of rank e+ 1
over X. Then

A(X) 7= Ao (P(E))
18 a split monomorphism.

Proof. Let p be defined by p((3) = (cl((’)E( )¢ N B) for classes B € Agie(P(E)). Then
p is a homomorphism Ay .(P(E)) — Ax(E). If = p*«, then
(O

p(p*a) = p(c1(Op(1))*Np'a) =sg(E) Naa=a. O

10.4. Exercise: Let E be a vector bundle of rank e+ 1 on X and let L be a line bundle
on X. Then for any j

j .
J(E®L) ;) : (iiZ)si(E)cl(L)j—i.
Here s;(E)Ne¢y (L) is written as s;(E).c1(L) because the intersection operation is commu-
tative.
Proof. We have P(E ® L) = P(E) but

Ogper(—1) 2 O0p(-1) @ p"L
because the universal line subbundle of F ® L is

Oper(—1) Cp'é@p'L

and therefore
Opon(—1) ® LY C '€

is isomorphic to Og(—1). Now
10pgL(1) = c10(1) — c1p™ L

and we get

si(E@ L) Na=p((c1(Op(1) = a(p™L)™ Np*a).
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The formula follows now from the binomial formula for the difference of the ¢;—operators.

O

10.5. Recursion formulas. Let R be a commutative ring and R[t] the ring of formal

power series in one variable. Any series
1+ sqt + sot” + - - -
with first coefficient 1 is a unit in R[¢]. Let
(14 st 489t +-- ) =1+t +eot? +---.
The coefficients ¢, can be computed by the recursion formulas
Cn+Cno151+ - +8,=0 (SC)

The relation (s,) < (c,) will be referred as the correspondence between Segre and Chern
coefficients.

10.6. Chern classes. Let again E be a vector bundle on the algebraic scheme X of rank
e + 1. Its Segre classes s;(F) are commuting operators on A,(X). We let ¢;(F) be the
operators defined by the recursion formulas (SC). Then

Cl(E) = —Sl(E)
CQ(E) = Sl(E)2—$2(E)

c3(E) = —s1(E)®+2s1(F)so(E) — s3(F)

Thus each ¢;(E) is an intersection operator
c(E)N

Ap(X) —— Ap_i(X)

for all k. The ¢;(F) are called the Chern classes of E. The rules for the Segre classes turn
into the following rules for Chern classes.

10.7. Proposition: Let E and F' be vector bundles on the algebraic scheme X. Then

(a) ¢;(E) =0 fori > rk(F)

(b) ci(E).;(F) = ¢;(F).c;(E)

(c) projection formula: given a proper morphism X' L X and a € Ar(X'), then
fila(fFE)Na) = a(E)N fa

(d) pull-back formula: given a flat morphism of fized relative dimension X' L X and
a class a € Ap(X), then

a(f*(E) N fra= f"(a(E)Na)
(e) If E is a line bundle L with sheaf L = Ox(D) and X is equi-dimensional, then
a(L) N [X] = [D]
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(f) Whitney’s sum formula: given an exact sequence 0 — E' — E — E” — 0 of
vector bundles on X, then
cr(E) = > ¢(E)e;(E")
i+j=k

for any k.

10.8. Remark: On a variety X of dimension n one can define A*(X) = A, _;(X) using
the codimension of the cycles as index. We get classes

ci(E) = ci(E)N[X] € AY(X)

by intersecting the fundamental class. It is shown in 13.6, that the operators ¢;(F) are
already determined by the classes ¢;(E) if X is a smooth variety.

The rules (b), (c), (d), (e) follow directly from the corresponding formulas for the Segre
classes. The rules (a) and (f) will be proved after the theorem of the splitting principle.
For that we need the next two lemmata.

10.9. Exercise: Let £ be locally free of rank e+ 1, let P(E) 2. X be the projective bundle

and let Q be the tautological quotient bundle with exact sequence
0— Op(—1) = p'€ - Q—0.

Then
k

r(Q) = a1(Op(1)'a(pE)
=0
and for any class a € A, (X)

0 k<e
pa(cr(Q) Np*a) =
a k=e¢e.

10.10. Lemma: Let B be a finite set of vector bundles on X. There is a proper and flat
morphism X' ERD'e of fixed relative dimension such that for any E € B the pull-back f*FE
has a filtration

ffE=E.DFE._1D...OFE =0
by subbundles such that any quotient E;/E;_1 is a line bundle L;, and such that A.(X) EAR
A (X') is injective.

Proof. We proceed by induction on the sum of the ranks of the bundles of B. Starting
with one bundle E' € B we get

P(E) L X
with a line subbundle Og(—1) C p*€ or Ly C p*E. By 10.3 the mapping p* is an injection
A(X) — A (P(E)). Now we can proceed with p*(E)/Lg by induction, to arrive at a
complete flag of subbundles of a lifting of £ on Y % X. If F is a second bundle on X,
we can proceed with ¢*F and P(g*F) — Y. O
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10.11. Lemma: Let £ = E, D ... D Ey = 0 be a filtration with invertible quotients
L;=E&/E-1 and let 0 # s € I'(X,E) with zero scheme Z = Z(s). Then for any cycle
a € Zy(X) there is a cycle § € Zy_.(Z) with

[Te(z)nla] =[] € Avr(X)

(i.e. the class [ ci1(Li) N [a] is represented by a cycle with support in Z). In particular,
if Z(s) =0, then [ e1(L;) = 0.

Proof. The exact sequence 0 — &,_1 — &. — L, — 0 induces the exact sequence
0— H'X,E_,) — H' (X&) — HYX, L,)

and we let 5 denote the image of s in H%(X, L,). If 5§ # 0, then Y = Z(5) is an effective
divisor with £, = Ox(Y). Let Y <& X be the inclusion. Then

a(ly)Na=j.(Y.a)

where Y.a € A;_1(Y) is induced by a cycle on Y. Then

Hcl(Li) Na =

1

Tr:f (L) N (L) Na
Tr:f er(L) N j.(Y.a)

r—1

= j*(lj[ a(j*Li) N (Y.a)).

Because 5|Y = 0 there is a section t € HY(Y,;5*E,_;) which is mapped to s|Y €
HO(Y, j*E,). Because Z(s) C Z(5) =Y, we get Z(t) = Z C Y. By induction

r—1

HC1(j*£i) N (Y.a) =[5

with g € Z(k,l),(r,l)(Z).

If, however, 5 = 0, then s € H°(X,&,_;) and the zero scheme is the same. Now there is
an index p such that s € H%(X,&,) and s # 0 in H*(X, £,) and Z = Z(s). Let then

¥ = Hcl(ﬁl) Na e Ak—r-l—p(X)'

p+1
By the first part there is a cycle 5 € Z;_,.(Z) with
r p
[[a)na=]]a&)ny=1[8. O
1 1

10.12. Proposition: Let E and P(E) % X be as before and suppose that E has a
filtration E = E, D ... D Ey = 0 with invertible quotients L; = &;/E;_1. Then

L4+ (E)t+ &)+ =1+ (L)) ... (1+ (L)1)

In particular, ¢;(€) =0 fori > r.
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Proof. Og(—1) — p*E corresponds to a nowhere vanishing section of p*(£) ® Og(1). By
10.11

[T () ©op1) =0. (1)

This equation will be transposed into the formula of the proposition. To do this, let f be

any homogeneous polynomial in Z[T, ..., T.]. Then the projection formula gives
p(fler(p™La), ..., c1(p™Ly)).c1(Op(1)) Np*a)
= fla(La), -, e1(£4) N pu(er(Op(1) Np*a) (2)

= flar(Ly),...,c(Lr))Nsi(E) Na

Denoting ¢ = ¢;Og(1), formula (1) becomes

T

[,y +e =0

1
or

4+ '+ 4+0,=0 (3)
where ; denotes the i~th symmetric polynomial in the ¢;(p*£,). Multiplying with &~*
and putting e = r — 1, we get the equations

geti L G eetitl L G el =
for ¢ > 1. This operator equation means that
p(EH N p*a) + pu (G T Apra) £ = 0
for any ¢ > 1, and by formula (2) that
si€)Na+or.sia(E)Na+---+o5,.(E)Na=0

for any i > 1 and a € A.(X), where now o; is the i—th symmetric function of the
Yo = c1(L,). Let s; = 5;(€). The last equations are just the equations of the identity

(I4+ot+ - +ot") (L +sit+st> +---)=1
because s;(€) = 0 for —r < j < 0. Therefore, ¢;(£) = 0; and we have
l+ca)t+- -+ ()t + ...

T

= 1+ot+...04 =T[(1+7,0)
1
which is the formula of the proposition. ([l

As a corollary of 10.10 and 10.12 we get the

10.13. Theorem: (Splitting principle)

Let B be a finite set of vector bundles on X. There is a proper and flat morphism 'Y ERD'e

of fixed relative dimension such that A.(X) EAR A(Y) is injective, and such that any
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f*E,E € B, has a complete filtration with invertible quotients and such that the Chern
polynomial
a(f*E) = 1+a(f*E)t+ca(f*E)*+---
= (Thm) ().

The classes 7; = ¢1(L£;) are called Chern roots of £ and Y N is called a splitting

morphism of the bundles in B.

10.14. Proof of proposition 10.7, (a) and (f). Let Y L X bea splitting morphism
for £. Then ¢;(f*€) = 0 for @ > r. The pull-back formula says that f*(¢;(€) Na) =
c1(f*€)N f*a for any . Because f* is injective, the result (a) follows. Let now 0 — & —
E — & — 0 be an exact sequence of locally free sheaves with corresponding bundles
spaces. By the splitting principle we may assume then Y I Xisa splitting morphism
for the three bundles.

If £; and L7 are the invertible quotients for filtrations of f*€" and f*E” respectively, we
can construct a filtration of f*€ whose quotients are all the sheaves £ and L7 together.
Then the formula in 10.13 becomes

a(f€) =Ja+~4 [T+t = c(fENe(fE").

i j
This is equivalent to
(fE) = D alfE)e(fE").
i+j=k
Again the pull-back formula and the injectivity of f* on the Chow groups imply Whitney’s

formula.

10.14.1. Corollary 1: If £ has a nowhere vanishing section, then c.(€) = 0.

Proof. The assumption implies that there is an exact sequence 0 — O — & — F — 0
where F is locally free of rank r — 1. Because the Chern polynomial of O is the constant

1, (&) = ¢(F) and so ¢,.(€) = ¢.(F) = 0. O

The next corollary states that the construction of P(FE) is just to provide a first root of
the Chern polynomial ¢;(£) which is ¢;Og(1). It could be used to define the Chern classes
by the following formula.

10.15. Corollary 2: Let E be a rank r vector bundle on X and let & = ¢;Og(1) be the
class of the tautological bundle on P(E) 2 X. Then

4+ T+ e (p€)=0
on A.(P(FE)).

Proof. Over P(E) we have the exact sequence

0— Op(—-1) = p&—E" —0.
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By Whitney’s formula
(1+c1(Op(=1)))c(€") = a(€)
or
(1=l +at+ - +at" ) =1+cit+ - +ct"
where a; = ¢;(£") and ¢; = ¢;(p*E). Avoiding the substitution ¢ = &', we use the
identities
c; = a; — §a;_1
to derive the relation
4+ 4+ =0 0O

Remark: The pull-back formula ¢;(p*€) Np*a = p*(¢;(€) N «) and the injectivity of p*
imply that the classes ¢;(£) are determined by the formula of Corollary 2. Moreover, if
v L Xxis any splitting morphism for a finite set B of vector bundles, any polynomial
formula between the Chern classes ¢;(f*£), € € B, turns into a formula between the classes

¢;(€) with the same terms.

10.16. Remark: The splitting of f*£ can alternatively be obtained by the flag bundle
F(€) L. X on which f*E contains the universal or tautological flag

S iCcScC---C S =€,

see 10.10 and Section 14.

10.17. Remark: For any locally free sheaf £ there is also a locally trivial fibration
Sp(§) % X which factors through FI(E) % X such that A(X) — A(FIE) =
A, (Sp(€)) and such that ¢*& = L, @ --- @ L, splits into a direct sum of line bundles,
see [13]. This can be used to construct a flat (not necessarily proper) morphism Z 2 X
such that A,(X) g, A.(Z) is injective and f*& splits for finitely many £. Moreover, if
YL Xisa morphism as in 10.13, one can construct Z " Y such that g = foh has
this property. Therefore, in the following applications one might assume that the pulled
back bundles all split into direct sums of line bundles. However, the line bundles of the

complete flags provide the same formulas for the Chern classes.

10.18. Chern classes of a dual bundle.
Let & be locally free on X. Then ¢;(€Y) = (—1)%¢;(€) for any i.

Proof. Let Y L Xbea splitting morphism for € such that ¢;(f*€) = (1+7t)-...-(1+t)
with 71 = ¢1(L£;). It is easy to see that a filtration of f*€ with quotients £; yields a dual
filtration with quotients £ .. Therefore f*£Y has the Chern roots —v1,...,—7,. This
implies the identities. O
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10.19. Chern classes of tensor products.

Let £ and F be locally free of ranks r and s and let aq, ..., a,. and (1, ..., Os be the Chern
roots of £ and F respectively. Then & ® F has the Chern roots a; + 3; and
a(f (E@F) =]+ (ai+5)t)
i3
where f is a splitting morphism. Computing the symmetric polynomials of the roots

a; + 3; one arrives at a formula
E @ F) = Pos(cr(©), -, o)1 (F), -, ()

where P, ; is a polynomial.

Proof. Let f be a splitting morphism for both & and F. If £; and L) are quotients of
filtrations of f*€ nd f*F, one can construct a filtrations of f*€ ® f*F = f*(€ ® F) with
quotients £; ® L. Since ¢1(L; ® L) = c1(L;) + c1(L), this proves the formula. O

For small ranks the formula for the Chern classes can be derived very quickly by using
the elementary symmetric functions of the roots. For example, in case r =2 = s we get
A(ERF) = 2¢1(E)+2¢(F)
(ERF) = 2¢(E) 4 2c(F) 4+ c1(E)? 4+ 3c1(E)x1 (F) + 1 (F)?
3(EQRF) = 2¢1(E)ca(E) + c1(E)%ci(F) + 2¢2(E)er(F) + 2¢1(E)ca(F) + c1(E)cr (F)?
+2¢1 (F)co(F)
a(ERF) = ()’ +a(E)a(F)(eAl) + o F)) + ca(E)er(F) — 2¢a(E)ea( F)
+c1(E%co(F) + co(F)2.
For the tensor product of a line bundle £ with a rank r bundle £ we get
k

aEor) =Y (; B z) e E)er(L)F

1=0

10.20. Chern classes of wedge products.

Let &£ be locally free of rank » on X with Chern roots aq, ..., a,. Then
Ct(APS) = H (1+((le +—|—Oézp)t) .
1< <lp
In particular ¢;(A"E) = ¢1(£). The formula for APE could also be derived inductively if
an exact sequence (e.g. on P(E)) 0 - L — & — F — 0 is specified. Then there are

exact sequences
0= AP 'FRL— APE — APF —0

and one can use Whitney’s formula.

10.21. Chern classes of symmetric products.

Let £ be locally free of rank » on X with Chern roots ay, ..., a,. Starting with a filtration
of f*€ one can prove that SPE has the Chern roots p1aq + ...+ p.«,., where py, ..., p, are
natural numbers subject to p; + ...+ p,. = p.
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E.g. for r =2 and p = 2 we have

C1 (SQE) = 301 (5)
e2(S%E) = 4co(E) + 2¢1(E)?
03(528) = 401(5)02(5).

10.22. Chern characters

Let &€ be locally free of rank 7 on X with Chern roots a4, ..., a,. The power series exp(«;)

is finite as an operator on A,(Y) where Y L Xisa splitting morphism. The sum
h(E) = Y explar)
i=1
becomes a polynomial in the Chern classes ¢; = ¢;(€) because it is symmetric in the «;.
It is called the Chern character. Its first terms are
i(ci‘ —4cicy+4cies + 203 —dey) + ...

Its n—th term p,, may be computed inductively by the Newton formulas

1 1
ch(€) = r+cl+§(c% —2¢9) +6(c:{’ — 3160+ c3) +

Dy — C1Py—1 £ ...+ (—1)”_10,,,1]71 + (=1)"ve, = 0.

The Chern character has the formal advantage that for an exact sequence 0 — & — € —

E" — 0 of locally free sheaves we have
ch(&) = ch(&') + ch(&")

and for a tensor product

ch(€ ® F) = ch(E).ch(F).

10.23. Todd classes.

In a similar way the Todd class of a locally free sheaf £ of rank r had been introduced.
It is defined by

td(€) =[] Qe ,
i=1
where QQ(x) is the power series

Q(z) = 2(1 —exp(—2)) ' =1+ %x + Z(—l)"I%x%.

n>2

The coefficients contain the well known Bernoulli numbers. The first terms of td(&) are

1 1 1
td(€) =1+ €1 + E(cf + ) + 516162 +...

Similarly to the Chern character the Todd class is multiplicative on exact sequences, i.e.
td(€) = td(ENtd(E")

for any exact sequence of locally free sheaves as above.
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Exercise: (Borel-Serre) Let £ be locally free of rank 7 on a scheme X. Then

T

D (=1)Pch(APEY) = ¢, (E)td(E) ™!

p=0

11. CHOW GROUPS OF VECTOR BUNDLES AND PROJECTIVE BUNDLES

Let £ be a locally free sheaf of rank » = e + 1 on an algebraic scheme X and let £ = X
denote its bundle space and P(F) % X its associated projective bundle. It had been
shown in 5.4 and 10.3 that

Ar(X) . Apyr(E)  is surjective

and that

Ap(X) s Aye(P(FE)) s injective.
We are now in position to prove that 7* is bijective and to compute Ag(P(E)) in terms
of the groups A;(X) and the Chern classes of E.

11.1. Theorem: With the above notation

(1) 7 is an isomorphism for any k.
(2) For any k the homomorphism
D Ar—eri(X) 2 AL(P(E))
0<i<e
defined by
Op (e, - - - ap) = Z a1 (Op(1) Np ak_cp
0<i<e

1S an isomorphism.

Proof. a) Surjectivity of fg. As in the proof of 5.4 we can reduce this case to the situation
where X is affine and £ is trivial by induction on the dimension. (If U C X is open and
affine, consider the exact sequence 4.5 given by Y = X \U). Let £ = F® O and consider
the inclusions ' A

P(F)<5 P(E) and F = P(E)~ P(F) < P(E).
Here P(F) is the relative hyperplane at infinity and F is its affine complement. We are

given the commutative diagram

-k

J

P(F)— p&) L oF and Ap(P(F)) —= AL(P(E)) —— AL(F) — 0

RN (e

X Akfe<X> :

It follows from the definition of the projective bundles that Op(1) = i*Og(1) on P(F).
Moreover, the summand O of € induces a section Opy — Og(1) which vanishes exactly
on P(F) and has Op(1) as its cokernel.
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Now 7* is surjective by 5.4.
Claim: ¢(Og(1)) Np*a = i.q*a for any o € A, (X).
Proof of the claim: We may assume that o = [V] is the class of a subvariety of X of

dimension k. Then p*o = [p~'V] of dimension k+e. Now Og(1) = Ope)(P(F)) because
Og(1) has a section which has P(F) as its zero scheme. Therefore

a(Op(1) N[p~'V] = [C]

where Opey(P(F)) | p'V =2 Op-1y(C). But P(F) is effective and p~'V ¢ P(F).
Therefore, C ~ p~'V N P(F) = ¢~ 'V and then

[C] =ilg V] =ig"[V].
This ends the proof of the claim. Let now 5 € Ag(P(E)). There is an element o =
Qe € Ap_o(X) with 7% = 1*a = j*p*a or j*(f — p*«a) = 0. We may assume that 0p is

surjective by induction on the rank. Hence, there are classes

QAp—et1y- -5 A
in the Chow groups of the same index respectively such that
ﬁ = p*& + Z* Z CI(OF<1))V N q*ak76+u+1-
0<v<e
Now Op(1) =i*Og(1) and the projection formula together with the claim imply
B=pa+ Y c(Op(1)"™Np h—criio
0<v<e

Replacing pn = v + 1 we have Op(ag_e, ..., ) = 0.

b) Injectivity of 0g. Let § = Og(ag_c,...,ar) = 0, and let [ be the largest index with
a; # 0,k —e <[ <k. Then 3 intersected with ¢;(Og(1)) gives

0 = pu(c(0p(1)"'NP)

= (2 ea(Op(1) " N p ey
i=0

= o{l
because s;(£) Na for j < 0and so(€) N =a for any e and k—I1+i=e+ (k—e) — [ +i.
¢) Injectivity of 7*. We may assume that the vector bundle F' is the complement P(E) ~\
P(F), see 5.3. Then we can use the previous diagram. Let 7*« = 0. Then j*p*a = 0 and
pra=i( Y a(Op1)"Ngay)
0<v<e
where o € Ap_o(X) and (@g_ey1,--.,q) is given by the surjectivity of #p. Then again

pra = i. > a(@0p(1)" Ng ag—ciiro

0<v<e

= Z C1 (OE(l))V N i*q*akfeJrlJru

o<v<e

= > a(Op()"M Nprar_eriiy -

o<v<e

The injectivity of 6 implies now that o« = 0 and ag_cy14, = 0. O
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Remark: It will be shown in 13.8 that by 0 already the Chow ring of P(€) is determined.

11.2. Gysin homomorphism of a vector bundle. Let £ be locally free of rank r and
now F = & @& O with inclusions

PE) L P(F) L E

where E is the bundle space of £. We are given the diagram

AW(P(E)) —= A (P(F)) L= Ay(E) — 0
Akfr<X> : N

We let s* denote the inverse operator of 7. We are going to give a formula for s* in terms
of the Chern class ¢,(Q) where Q is the tautological quotient in 0 — Og(—1) — ¢*F —
Q — 0 on P(F).

11.2.1. Proposition: (Gysin formula) For any B € Ax(E)
s7(8) = a.(c:(Q) N B)
where j*3 = 3.

Proof. We can write § = ¢*v + 1,0 with 7*y = 3 by the exactness of the diagram and
bijectivity of m*. We are going to show that

W*Q*(CT<Q> N B) = j*B =
which proves the formula.
(a) The Chern polynomial of Q satisfies ¢;(¢*E) = ¢:(¢*F) = c:(Q)(1 — ¢1(Op(1))t) and
this implies that

cr(Q) =Y cru(a"E)er(Or(1))".

Then V:O .
(el N) = a.(L ersla E)e(Or(1) N
- z & o(€) N (e (Op(D) N g*7)
= s0(E)Ny =7
by 10.2, (a).

(b) Because ¢*F = ¢*€ @ Op(r), the sheaf Q has a section Op(z 2, Q. This is nowhere
vanishing on P (&) by its definition: At a point () € P(E,®k) we have the exact sequence
0= (Q) = B Pk — Q) — 0.

If 0.¢c~(1) = 0, then ((0,1)) = (¢) and (¢) ¢ P(E). Now the restriction of o to P(£)
defines a subbundle and a quotient bundle

0— Ope) —i'Q—Q"—0
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of rank 7 — 1. This implies that ¢,(Q") = 0 and ¢,(*Q) = 0. This implies
¢ (Q)Nid =iu(c, (i"Q) N ) =0

by the projection formula.

(c) Finally, (a) and (b) yield

¢ (e (Q) N B) = (e (Q) N (g™ +i0)) =7y = 4. 1

12. NORMAL CONES

Cones over a scheme X are defined as spectra of graded Ox—algebras §* = ¢ S” for
n>0

which we suppose that Ox — S° is surjective, S! is coherent as Ox-module and S* is

locally generated by S'. Then
C =Spec(S*) = X
and
P(C) = Proj(S8*) — X

are called the (affine) cone respectively the projective cone of the graded algebra, the
morphism to X being induced by Oy — 8% see [9], §7. If Ox = 8% then C has a
section which is defined by the surjection S* — SY. If St is locally generated by sections

s1,...,8y of S|U then there is an exact sequence

0—>A—>Ox[T1,,TN]—>@Sn—>0

n>0

over U and C|U is defined by the graded ideal sheaf A, and we obtain embeddings
ClUcU X AN and PO)UCU X Py 1.

12.1. Normal cones and blow up

Let X — Y be a closed subscheme of an algebraic scheme Y with ideal sheaf Z. Then we
obtain the following cones:

CxY: = Spec(negofn /I normal cone

PCxY : = Proj (ne]BOI" /I projective normal cone
NxY: = Spec(nEEOS"(I/IQ) = V(Z/Z?) normal fibration

PNxY : = Proj (n@OS"(I/ZQ) =P(Z/Z?) projective normal fibration
BxY : = Proj (nGEOI") blow up of Yalong X .
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Here S™ denotes the n—th symmetric product. There are natural surjections S™(Z/Z?) —
" /T™ and the induced diagrams

BS™(Z/1?) oI /I CxY S NxY
Oy /T X.

The section s is called the zero section of the cone. There is also the induced embedding
PCxY — PNxY over X. Likewise we have the diagrams

QI" —» EBI"/I"+1 PCxY—— ByxY
J J and l l
Oy —» Oy /T X———Y.

such that PCxY is the exceptional divisor of the blow up.

12.2. Regular embeddings: In general the normal fibration is not a vector bundle.
However, if X <— Y is a regular embedding of codimension d, i.e. Z is locally generated
by a regular sequence fi,..., fs € I'(U,I), then the conormal sheaf Z/Z? is locally free
and NxY = V(Z/Z?) is the normal bundle. In that case S™(Z/Z?%) = I"/Z""! for any n
and

CxY = NyY.

Moreover, if fi,..., fq is a regular system for Z|U, then BxY|U C U x P4_; is defined by
the equations z; f; — z; fi.

12.3. Examples: 1) Let Y C A" be an affine hypersurface with equation f = f,, +
fma1+ ... where f,, is the leading term of the polynomial, and let X = {0} be the origin.
Then CxY can be embedded into {0} x AY = AY and it is nothing but the zero scheme
Z(fm) of the homogeneous leading term. In particular, if Y is the cuspidal cubic with
f = y* — 23, then the normal cone is the double line Z(y?) C {0} x A% = A? and the
normal fibration is NxY = {0} x AZ?.

2)If D <, Y is an effective divisor, then CpY = NpY is the bundle space of the invertible
sheaf Z*Oy(D) = OD(D)

12.4. Lemma: IfY is purely k—dimensional then also CxY is purely k—dimensional.

Proof. Identifying Y with ¥ x {0} in Y x A! we consider the blow up Bx(Y x A!) with
exceptional divisor PCx (Y x A') which is the projective completion of CxY". Because X
is nowhere dense in Y x A!, the blow up is birational to Y x A! and has pure dimension
k + 1. Then CxY has pure dimension k as an open dense set of the exceptional Cartier

divisor. ]
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12.5. Normal cone of a pull-back: Given a pull back diagram

XY
I
X——Y
we obtain the diagrams
CxY' — CxY Nx Y —— NyxY
R
X ——X X —— X

and from the first morphism Cx/'Y' — X' xx CxY =: ¢*C'xY. This is an embedding by
the following argument. When Z respectively J denote the ideal sheaves of X respectively
X', then J is the image of f*Z — Oy, and this induces the surjective homomorphism
Of I/ — @J"/ T, which defines the embedding Cx/Y’ — ¢*CxY. Simi-
larly, we obtain an embedding Nx'Y' — X’ xx NxY = ¢g*NxY because of the induced
surjection f*S™(Z/Z%) — S™(J/J?).

13. INTERSECTION PRODUCTS

Motivation, see also [8]: Let Y be an algebraic scheme and X < Y be a regularly em-
bedded subscheme of codimension d. If X is globally the intersection of d Cartier divisors,
we can define the intersection class X.V with a subvariety V simply as Dy. ... .D,.V.
But even when X and Y are smooth, X need not to be the intersection of d divisors
globally. On the other hand X NV may have irreducible components of various dimen-
sions. It turned out that an intersection class X.V can be defined with a good general
behaviour and producing most of the specific classical intersection results by using the
normal cone of X NV in V. One should note that the normal cone functions as essential
leading "part” of a subvariety and thus may be used to define intersection multiplicities.
The problem that it is not contained in the ambient scheme can be settled by embedding
the cone C'x~yV into the bundle NxY and intersecting it with the zero section via the

Gysin isomorphism. This yields the expected dimension k — d for the resulting class X.V.
The intersection class V.W of two subvarieties of dimensions k£ and [ is then obtained by
VW =A(V xW)
where A C Y x Y is the diagonal. This corresponds to the set theoretic identity VW =

ANV xW).
13.1. Intersection with a regular embedded subscheme.

Let X <5 Y be a regularly embedded closed subscheme of codimension d and V C Y a
k—dimensional subvariety. Then, according to 12.5, there are embeddings

CxrvV C j*CxY = j*NxY = Nx(Y) | XNV C NyY,
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where j denotes the embedding X NV C X. Here CxnyV has pure dimension k and
CxY = NxY is a vector bundle over X. Then the Gysin homomorphism Ax(NxY) —

Ag_q(X) is an isomorphism and we obtain a class
XV =y¢s" [Cvav]

from the fundamental class of the normal cone C'x~yV'. The class X.V is in the image of

Ag—a(X NV) because there is the commutative diagram
A(Nx(Y) | Y NV) — A (NxY)
Ak,d(X N V) I Ak,d(X)
of Gysin homomorphisms. This intersection defines a homomorphism ¢* in the diagram

| T

Ap(Y) a Ap—a(X)

)

Using the “deformation to the normal cone”, it is proved in [7], 5.2, that i* passes through
Ar(Y). Then X.V = i*V and X.a = i*a by definition. The homomorphism i* is also
called the Gysin homomorphism of X.

13.1.1. Remark: If D is an effective divisor, then the newly defined intersection D.«

coincides with the definition of D.« in 9.3, see also 13.6.

13.1.2. Remark: The Gysin formula 11.2.1 for the inverse of the homomorphism 7*
of a vector bundle can be interpreted as the homomorphism s* of any section, see [7],
Corollary 6.5. Let E 5 X be the projection and let X = E be any section. This
is a regular embedding of codimension r, r = rank(E). By s*a = X.a we obtain a

homomorphism
A(BE) S A (X)

which turns out to be the inverse of 7*.

13.1.3. Remark: The definition of the Gysin operation X.V in 13.1 can be generalised

to morphisms V' Ly, Given such a morphism from a k-dimensional variety, let W 2 X
be the fibre of f or the pull-back of V. Then W C V and the normal cone Cy/V is
contained in g* NxY. We thus get a class

X.fV = S*[va] c Ak_d(W)

13.1.4. Remark: For a regular embedding as above and any class o € A,(X) we have

the self-intersection formula i*i,a = ¢4(NxY) N a.

13.2. Refined Gysin homomorphisms.
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Let X <5 Y be a regularly embedded closed subscheme as above, let Y’ LY bea

morphism and let

ety

s

Xy
be the pull-back diagram. Then, i’ is also a regular embedding of codimension d, and
there is an embedding C'x'Y' <— ¢*NxY, 12.5. We obtain the diagram

Z(Y") 2= Zp(Cx:Y') —— Z(g*NxY)

l

Ap(Y7) - Ap—a(X')

where o is defined by [V] — [Cynx/V] with Cynx/V C Cx/Y' | VN X', and in which '
also passes through Ax(Y”). For a class a € Ax(Y') we put

.l
Xya=1ioa.

For more details and functorial properties see [7], §6. More generally, let X LV be a
morphism from an arbitrary scheme to a smooth variety Y of dimension n and let X’ 2 X

and Y' L Y be schemes over X and Y. Then we have the pull-back diagram

X' xyY—— X'"x Y’

l l””’

X(—W>XXY

with the graph morphism ¢ being regular of codimension n. By the above, for any classes
x € Ap(X') and y € A(Y’) we are given a class

T.py = ’V}(SU X Y) € Appi—n(X' xy Y).
In the special case where X’ = X and X is purely m—dimensional, we obtain the class
fly=1X]py
and a homomorphism
Ae(Y) L A (X xy YY),

This is also called a refined Gysin homomorphism. See [7], Definition 8.1.2.

13.3. Intersection pairing on smooth varieties.

In the following Y will be a nonsingular variety of dimension n. Then the diagonal

embedding Y Ly xy is regular of codimension n. Combining the Gysin homomorphism



62
0* with the Kiinneth homomorphism x we obtain the pairing
A(Y) @ A(Y) 5 Aga(Y x4 Y) 5 Appia(Y)
denoted
TRQYr— Ty =xMN1Y.

In case of (smooth) varieties of dimension n one puts

AP(Y) = Ay p(Y),
indexing codimensions. Then the pairing reads

AP(Y) @ AYY) — APTI(Y).

The graded group A*(Y) = pGBOAp(Y) becomes a graded ring under the intersection pair-

ing, as follows easily from the functorial properties of the pairing, see [7], 8.3 . A*(Y) is
called the Chow ring of Y. Note that the fundamental class [Y] now serves as the unit

element.

13.4. Cap product. Let X L Y hbea morphism from an algebraic scheme to the smooth
variety Y of dimension n. Then the graph morphism

X4 X%, Y

is a regular embedding of codimension n. As in the previous case we obtain the pairing

*

Ap(Y) @ Al(X) — Apt(X %51 Y) 25 Agsrn(X)

denoted
y@x— .y = ffyN.

This can also be written as a cap product
AP(Y) @ Ayl(X) 5 A, (X)
and turns A,(X) into a graded A*(Y)-module.
If X is also smooth, this becomes
AP(Y) @ A1(X) D Arta(X).
In this case we obtain a homomorphism
An(y) L ar(x)

by y — f*y N [X]. One writes again simply f*y for f*y N [X].

13.5. Projection formula: Let X LY bea proper morphism of smooth varieties.
Then for y € A*(Y) and x € A*(X)

f(ffynae) =yn fa.

For a proof see [7], 8.3.
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13.6. Chern operators as classes.

If £ = Ox (D) is an invertible sheaf on a smooth variety, then we have the class [cyc(D)] €
AY(X). Then

D.a=ci(L)Na = [cye(D)] Na = [cye(D)].a (%)
where the first two intersections are those of 8.2 and 8.3 and the third is the new one. In

particular,
c1(£) N [X] = [eye(D)].

For a proof we may assume a = [V] € Ax(X) and D effective and irreducible and in
addition D NV g V. Then D NV is an effective divisor in V' and we have D.[V] =
[DNV]e Ap_1(V) and cyc(D) = D.

The definition of [D].[V] is now given by the normal cone C' = Cynp(V x D) C Nx (X xX).
Now Nx(X x X) is the tangent bundle 77X and we put 7" :=TX | V N D such that we
have C' C T over V. N D. Then [D].[V] is the class in Ay_1(V N D) corresponding to
[C] € Agyn_1(T) via the Gysin isomorphism of 7. Because C' and T" both have dimension

k+mn —1, they are equal and hence [C] = [T] is the fundamental class. Then also [D].[V]
is the fundamental class [D N V] = D.[V].

The coincidence (%) can be generalized to Segre and Chern operators of vector bundles.
Let € be locally free on X of rank r = e + 1 and let P(E) 2. X be its projective bundle

with the operator
¢ = a(Op(1)).
Let H be a divisor with Og(1) = Op(g)(H). By definition s;() Na = p.(¢“T Np*a) and

we get

(si(€)N[X]).a = pu(CF NP [X]).c

[
[cyc(H)]*™).[X].a  (projection formula)
[

Because the Chern operators are polynomials in the Segre operators, we also have
(GE)NX)a=¢lE)Na

for any class a € A*(X). Therefore the class ¢;(€) N[X] € AY(X) determines the operator
¢;(€) and both will be identified later by abuse of notation. At the moment we put

G(&) =i (&) N[X] € A(X).
Then the pull-back formula p*(ci(€) N o = ¢;(p*(€) N p*a immediately implies that

pa(€) = a(p*e).
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13.7. Remark: Let X L Y be any morphism with Y a smooth variety and let £ be
locally free on Y. Then for any classes z € A,(X) and y € A*(Y') there is the formula
fe@)ny)na = fryn(a(fE)n),
see [7], Example 8.1.6 . This implies
fre(€) = alfe)

for the fundamental classes x = [X] and y = [Y], when X is pure-dimensional.

13.8. Chow ring of P(&).

Let &€ be locally free of rank e + 1 and X be smooth of dimension n. The result on the
groups A (P(€)) in 11.1 can now be seen as the determination of the Chow ring A*(P(£)).

The isomorphism #g in 11.1 can now be written as

QE(Oék—e, . ,ak) = Z Ci N p*ak—e-l—i = Z Oélc—e+ifi )

0<i<e 0<i<e
where ¢ = ¢;O0g(1), and where we identify «, with p*a,, because p* is a monomorphism
A (X)) — AP H(P(&)). Therefore, we consider the homomorphism

AX)lH) == A (P(E))

2wt =

of graded rings with 7, € A" 77(X). This is surjective because 0 is surjective. In order

to determine the kernel, we recall the relation
C+a@E "+ Gt E) =0
from 10.15. This means that
a6 (€) (%)
is in the kernel of (*. The basis theorem 11.1 tells us that the homomorphism
AX)p AN (X)td o A (X))t — A P(E)
is an isomorphism for any j < e. This implies that 1,(,..., (¢ are free over A*(X) and

that the relation (x) is of minimal degree. Because the corresponding polynomial in ¢ is
monic, the kernel of (* can be reduced modulo that polynomial, proving that

A XY/ +a @+ +6.(E) 2 A (P(E)).

13.9. Chow ring of X x PP,. This product is the projective bundle of the trivial sheaf
O™ with Chern classes ¢;(£) = 0. Then
AN(X xPp) = ANX)[E]/ (") = AN(X) @ Z[H] /(1)
AY(X) @z A*(P,,) .
It is also easy to verify that this isomorphism is the Kiinneth homomorphism. In particular
AP x Pn) =2 A*(Py,) @z A*(Pn) = Z[s]/(s™ ) @z ZI[t]/ (")
Z[s, 1]/ (71, 441

~
~

~
~
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Remark: In general A*(X x Y) is not isomorphic to A*(X) @ A*(Y).

13.10. Chow ring of a Hirzebruch surface.

Let 3, = P(O & O(n)) over Py, let £ € A'(P;) = Z be the class of a point an let
n € AY(X,) be the class of the tautological line bundle Og(1) on ¥, which can be
represented by a horizontal divisor (relative hyperplane) H in 3,,. Here O @® O(n) has the
Chern polynomial 1 + nét with ¢;(O @ O(n)) = ¢1(O(n)) = n&. Now the relation of 13.8
is

n° +nén =0,
where we identify & with p*¢. Note that also €2 = 0. The Chowring is now

AX(S,) = AY(P)[t]/(1* + nét) = Z[s, t]/(s%, 12 + snt),

where ¢ < 5 under A'(P;) = Z. This example is already demonstrating the global
flavour of the intersection pairing, because the number n distinguishes the different
surfaces Y,,. However, the Chow groups are the same for all n:

AND,) = Z
AlX,) = ZoL
AX(%,) @ Z.

13.11. Chow ring of P(O(n,) @ ---® O(ng)) over P, .

Let again £ € A'(P,,) be the generating class of A*(P,,) = Z[s]/(s™""). Then the sheaf
& has Chern polynomial

(14 &) (1 + not) - -+ (1 4+ midt),
where £™! = 0. In case kK < m we obtain
1+ ai€t + at? + - - + apsht,

where a, is the v—th elementary symmetric function evaluated at (ny,...,n,). Then the

Chowring of this projective bundle is

Z[s,t]/(s™ T tF 4+ aysth™! 4 ags? TR 4 - ags”)

13.12. Intersection multiplicities.

Let Y be a smooth n-dimensional variety and V,;W C Y be closed subschemes of pure
dimension k,[. Then any irreducible component Z of V N W has dimension > k + 1 — n.
When dim Z equals k 4+ [ — n, Z is called proper. The class

VIV = [V].[W] € Appin(VAW) C Apsrn(Y)

can then be written as a sum

VIV =" az(Z]
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over all (k + [ —n)-dimensional subvarieties of V NW. For proper Z the coefficient ay is

called the intersection multiplicity of V' and W along Z and denoted by
W(Z,VWY).

The following is proved in [7], 8.2 .

13.12.1. Proposition: Let Z be a proper component of VNW. Then

(a) 1 <i(Z,VIWY) <UOzvrw)

(b) If Oz vaw is Cohen-Macaulay, then i(Z, VIW,Y) =1(Ozvaw)

(¢) If V and W are varieties, then i(Z,V.W,Y) = 1 if and only if the mazimal ideal
myy is the sum of the prime ideals Ker(Ozy — Ogzy) and Ker(Ozy — Ozw).

In this case Ozy and Ozw are regular.

13.12.2. Remark: If 7 C V NW is proper, then
WZ,VWY)=i(Z,Ay.(V x W), Y xY).

By this formula the properties of the intersection multiplicities are reduced to the prop-

erties of the multiplicities
iW(Z,X.VY)
for a regular embedding X — Y, see [7], §7.

13.13. Intersections of several subschemes.

Let Vi,...,V, be pure-dimensional closed subschemes of a smooth variety Y, and let Z
be a proper irreducible component of ViN...NV,, dmZ = > dimV; — (r —1)dimY.
Then

W(Z, V..oV, Y)

is the coefficient of Z in Agimz(Vi N ...NV,). Proposition 13.12.1 extends to this case.

13.14. Bezout’s theorem on P,: Because A*(P,) = Z with generator h* = h - ... - h,
h the class of a hyperplane, any class a € A¥(IP,) can be given its degree by

o = deg(a)hF.
Bezout’s theorem states that for classes a; € A%(P,) with dy + ... +d, <n
deg(ay - ... a,) =deg(ay) - ... deg(a;).

This follows directly from the structure of the Chow ring and the definition of the degree.

In particular, let Vi,...,V, be pure-dimensional subschemes such that each component
Z of V1N ...NV, has codimension equal to codim(V;) + ...+ codim(V;). Then

Vieo Vo= i Zu Vi Vi B 2],

p=1
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and taking degree of this:

deg(Vy) - ...-deg(V,) = > i(Z,, Vi-...- V;,P,) deg(Z,,).
"

14. FLAG VARIETIES AND CHERN CLASSES

In this section £ will always denote a rank n vector bundle over a scheme X. In the
formulas for the Chow rings of the flag varieties, X is always assumed to be smooth. In
Lemma 10.10, a scheme F(&) 2, X over X was constructed such that p is proper and
locally trivial with fibres F(£(x)), the full flag varieties of the vector spaces &(x). More
generally, for any sequence 0 < d; < ... < d,, < n of integers there is a flag variety

F(d,€)=F(dy,...,dn,E) 5 X
with the following universal property:

(i) there is a flag of subbundles S; C S, C ... C S,, C p*E of rank S, = d,,.
(ii) For any morphism ¥ % X and any flag of subbundles

FirCcFkhC...CF,Cqg€

of rank 7, = d, there is a unique morphism Y ER F(d,€) such that po f = ¢
and such that there are isomorphisms F, = f*S, fitting into the commutative
diagram
Fi Cc F Cc...c F, C g*¢
~| = = =
'S cCffSc...Cfr S, Cfpé.
(iif) A.(X) L5 A, F(d, €) is injective.

For proofs of (i) and (ii) see [12] or [10]. The proof can be done by induction on m, as in
10.10, starting with a Grassmann bundle G(d, £). For Grassmann bundles, property (iii)
is contained in 16.7. It can then be verified for a flag variety by the induction process.
There are unique morphisms between the various flag bundles, which are defined by the
universal property of the flags, e.g.

F(dy,...,dn,E) = G(d,Sy) — F(ds,...,dn,E).
14.1. The canonical homomorphism
AN X[ty -ty 6y, T — AYF(dy, - di, E)
is defined over the ring homomorphism A*(X) — A*F(d, £) by the substitutions
i — ci(Su/Su-1), 1<i<ky=dy—du,

where 0 =Sy C S§1 C ... C S, C S,p1 = p*€ is the universal flag. Here the indetermi-
nants ¢! have weight ¢ as do the Chern classes ¢;(S,/S,—1) or ¢;(S,/S,—1) N [X]. Because
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of the short exact sequences of the quotient bundles, we have the Whitney decomposition

of Chern polynomials
c(p*E) = ¢(851)c(S2/81) - .. e(Smy1/Sm) -

This is an identity of graded polynomials. The corresponding ideal a in the polynomial

ring is the ideal generated by the homogeneous parts of the equation
Ite+ - te,=0+tp+ty+. . )A+E+t+..) . (L+7T et 40
with e; = ¢;(p*E). So the generators of a in the different degrees are

er = (B4
e — (L + 15+ + 5T £ 30 ).

It follows that there is the induced graded homomorphism
A, Y o 2D ARy, d, ). (CF)

14.2. Theorem: (A. Grothendieck, [4]) Let X be smooth. Then the homomorphism a(d)

s an isomorphism.

Proof. The proof is a slight modification of the proof of A. Grothendieck in [4] by induction
on m and n. For that we shall only use the statement for P(£) = G(1,€) = F(1,€), see
13.8. We reformulate first the formula for P(E), then prove it for all full flag bundles
F(&) = F(1,2,...,n — 1,&) by induction on n and then deduce the general case by

descending induction on m.
(1) The formula (CF) is true for projective bundles P(&).

Let 0 = § — p*€ — Q — 0 be the tautological sequence on P(€) with S = Og(—1) and
let

A (X)[s,q1, s quo1]/a — A*P(E)
be defined by the substitutions
s+ ¢1(S) and q, — ¢,(Q) .
Here the generators of a correspond to the homogeneous parts of the graded Whitney
identity
Tter+-ten=(1+a(S)(1+a(Q) +- +ea(Q),
i.e. a is generated by
€1 —S—q1, €2 —Sq1 — Q25 En — Sqp_1 -
By the result13.8, we know that
A*P(E) = A(X)[t]/(t" +eit™ 4+ -+ ep)
where ¢ — ¢ (Og(1)) = ¢1(S*). Tt is now easy to verify that we have an isomorphism

A X)[8,q1s -y Gui)/a — AX(X)H/ (" +ert" 4+ +ey),
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which is defined by s +— —t and

G e+t
G ey ttle; +1) =eg+teg + 12

Q-1+ €n1 Ftep o+ -+ 1" e "L

(2) The formula (CF) is true for any full flag bundle F'(£) = F(1,2,...,n—1,&) — X.
This will be proved by induction on n > 2. When n = 2, we have F(£) = P(&).
Let now n > 3 and let P(E) 2. X be the projective bundle with tautological sequence
0— L —p€— Q—0. Then

F(Q) = P(¢)
is isomorphic to F (&) over X. This follows from the universal properties of the flag
varieties regarding the flags S C S C - C S5, C¢*p*E and Uy CUs C -+ C U, 5 C
q* Q. After identifying, we have the exact diagrams

0 0
0 S S, ul:fl —0
|
0 gL qp€ qQ 0
Qn == Qv
0 0

by which S,, resp. U, _1, may be defined by U, _1, resp. S,,, as inverse image, resp. quotient.
Putting U,_1 = ¢*Q and S,, = ¢*p*E, we have S,/S1 = Uy, S,/S,-1 = U,_1/U,_5 for
v =3,...,n and the Chern class decomposition

c(q*Q) = ¢(83/81)e(83/8s) ... ¢(Sn/Sn-1) -
By induction hypothesis, we have the isomorphism
A*P(E)uy, ..., up_1]/b = A*F(E),
where u, — c1 (U, /U,_1) = c1(S,41/S,) and the ideal b is generated by
ci(q*Q) —oi(ur, .., Up_1)

/

for i = 1,...,n — 1, where o7,...,0,,_; denote the elementary symmetric functions in

n — 1 variables. In order to substitute A*P(E) by A*(X), we consider the diagram

A*(X)[s1, ..., 8] ——— A*F(E)

B
A*(X)[qulv .- -aC.In—l] e A*P(g)
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in which v is defined by s — s; and ¢; — 0}(s2,...,s,) and «a, resp. 3, by s, —

c1(8,/8,-1), resp. s — c1(L), q, — ¢,(Q). This diagram is commutative because

qer(L) =
and qci(Q) =

1(qL) = c1(S)
Z(Q*Q) = 0';(01(2/[1), Cl(UQ/Z/[l), ey cl(L{n_l/L{n_g)) .

Taking into account the ideals, we attain the induced diagram

A*(X)[s1,...,8,]/a - A*F (&)

i T

(A*(X)[S,ql, ce ,qn_l]/ao) [Ul, ce ,un_l]/b —B> A*P(E)[ul, ce ,Un_l]/b .

Here @& and 3 are well-defined because of the Whitney relations. A direct check also shows

that 7 is well-defined by recalling that the ideals are defined as follows:

a :(61—01(31,...,sn),...,en—crn(sl,...,sn))
Ao = (61_5_q1762_5q1_q27"'76n_SQn—q)
b = ((J1 - O'i(uh e ,U,nfl), ey Qpn_1 — O';Lil<ul, Ce ,un,l)) .

Now 3 and ¢* are isomorphisms by the above and 7 is surjective because s — sy, u, —
Sya1- 1t follows that & is an isomorphism.

(3) The formula (CF) is true for arbitrary flag varieties F'(d,£) = F(dy,...,dny,E). This
will be shown by descending induction on m < n. If m =n — 1, then F(d,£) is the full
flag variety and (CF) is true by (2). If 1 < d;, we find that

F(l,dy,...,dpn,E) — F(dy,...,dpn,€E)
is isomorphic to
P(S)) — F(dy,...,dpn,€E),

where S is the first bundle of the flag on F'(d, £). This follows by comparing the universal
properties of both varieties. If 1 = d;, we may choose the first d, with 4 < d, and
consider the variety F(1,...,p — 1,d, — 1,d,,...,d,,E) = P(S,/S,.-1) over F(d) =
F(1,...,u—1,d,,...,dy,E). Therefore, we restrict ourselves to the case 1 < dj.

Let the projections be denoted by
F(1,d) % F(d) & X

and let S C Sy C --- C S, C p*€ be the flag on F(d). On F(1,d) we have the additional
sequence 0 — L — ¢*S§; — Q — 0.

For F'(d) we are given the map (CF)

AN, .2t e S AT F(d)
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where a is the ideal defined by the Whitney relations. Let a C a be the larger ideal such

that a/a is the kernel. The following commutative diagram can be derived as in (2)

AX(X)[s,u1y ..y ug 1,13, ... ]/c A*F(1,4d)

] | i

B
(A (X)[t], ..t /@) [u,vr, e vgy 1] /b —— A*F(d)[u, v, . . ., vg,—1] /b

|

(A (X)[t1, ..., d3,, 13, ...]1/8) [u, vr, ..., vg,-1] /b

X | &

In this diagram also b and ¢ are the Whitney ideals and & and 7 are the homomorphisms
of type (CF) which are isomorphisms by induction hypothesis and (1) because F(1,d) =
P(S1). The homomorphisms 3 and (' are induced by 3. The homomorphism 7 is induced
by the substitutions

ti — S+ uq, tll, — SU,_1 + U,

and u — s, v, — u,, according to the decomposition

cq'S) = (1+ (L)) (L+a(Q) + -+ +ca-1(Q)
Claim: 7 is injective.
This follows from the explicit description of the ideals, and is left to be verified by the
reader. Because 7 is also surjective by its definition, 7 is an isomorphism and then § is

an isomorphism. It follows that a = a because 3 is injective. This proves that ( is an

isomorphism. ]

14.3. Chowring of Grassmann bundles.

Let £ on X be as above and let G4(€) & X be the Grassmann bundle with tautological

sequence 0 — § — p*€ — Q — 0. Then, as a special case,
A*Gd<8) = A*<X)[817 ey Sdy Q1. and]/qw

where s, — ¢,(S) and ¢, — ¢,(Q) and where a is defined by the homogeneous components
of the Whitney identity

l4e+Fe,=04+s1+-+sa)l+qa+-+¢uud)-
The g, may be eliminated and then
A*Gy(E) = A (X)[s1,...,54]/b,
where b is a more complicated ideal. In case G5(€) and n = 4 the ideal a is
a=(s1+q, 2+ 8101 + G2, S1G2 + S2q1, S202)

and then b becomes

3 2 2
b= (s] — 25152, 5752 — 53) .
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14.4. Remark: Even so the formulas (CF) present a beautiful description of the
Chowrings of the relative flag varieties F'(dy,...,d,,£), and in special cases of the flag
varieties F'(dy,...,d,, F) of a vector space, a good concrete geometric interpretation of
cycles underlying the Chern classes is lacking. Such a geometric description will be given
by the relative or absolute Schubert cycles for the Grassmannians in Section 16. In or-
der to prepare the definition of the relative degeneracy classes, we consider the following

identities for the Chern classes of sequences of bundles and subflags of subbundles.

14.5. Varieties of subflags

Let 0 g Ay g As g . ; Aqs = A be a flag of vector subbundles on an algebraic scheme
X and let a; be the rank of A;. There is a variety

Fl(A) 5 X
over X together with a flag of vector subbundles
DiCcDyC---CDy;Cp A

such that rank D; = i and such that each D; is a subbundle of p* A;, satisfying the following

universal property. For any morphism S X and any flag of vector subbundles
51C52C...C5dcf*.4

with rank&; = ¢ and & C f*A;, there is a unique morphism S % F [(A) over X such that

E C...Cc & D, C...Cc Dy
N N > p* N N
ffA C...C [f*Ay prA C...C prAy

The construction can be done by induction on the length d. For d = 1 we can simply
define FI(A) = P(A;) with D; = O, (—1). For d > 2, suppose F' = FI(A, ;) - X has

been constructed with the universal flag
Di C-- C Dél—l
N N
q*A1 Cc---C q*Ad,l

Then let F = P(q*Aq4/D)_,) % F' be the projective bundle and let p = g o p. Let Dy be
the rank-d bundle determined by

Da/p" Dy = Opaypy, (=1) C p*(¢"Aa/Dy_y),

d—1

and let D; = p*D. C p*¢* A; = p*A; for i = 1,...d — 1. Then we have the diagram



73

over F. Tt is now straightforward to verify that F 2 X together with this flag has the
universal property. Then FI(A) = F' is unique up to canonical isomorphisms. Note that

the fibres of FI(A) % X consist of flags of vector subspaces

{/'1 cC---C V’d
N N
Ai(z) C---C Ay(z)
with dimV; = 7.

14.6. Notation: Given two locally free sheaves £ and F or vector bundles F and F' on
an algebraic scheme X, we let ¢;(€ — F) or ¢;(E — F') denote the coefficients of the Chern
polynomial

ci(E)e(F)~ L

They can be computed recursively by the formulas

> (€ = F)ej(F) = ai(€).

itj=k

14.7. Proposition: Let 0 ; Ay g g Aq = A be a flag of subbundles on a scheme X

of ranks a; respectively, let My, ..., My be any sequence of locally free sheaves on X and
let iy,...,1q be a sequence of integers > 0. Then

pelciy(PPMy — D) - ... ¢y (p My — Dyg) N p*ar)
= Choar1(Mi1—Ay) - Ciymagra(Ma — Ag) N

for any class o € A, (X), where D, are the sheaves of the universal flag on FI(A) & X

Proof. Let

be the induction diagram of the construction of F1(A) as above. For any j and any class

B € A.(F') we are going to prove the formula

p+(¢j("Ma = Da) 0 p* 6 = ¢jayrald Mo — ¢"Ad) N 5.
Over F' = P(q*A4/D/,_,) we have the exact sequence
0— Dyq/Dy_1 — p*Aq/Dj_1 — Q—0

which is the relative Euler sequence of F' over F’. By the Whitney product formula we
get

c(p*Ag) = ci(Da).cr(Q)
and from that

Ct(p*Md) - Dd) = Ct(p*Md - p*Ad)-Ct(Q)'
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Now the projection formula for p supplies the following identity
ps(cj(p"Ma —Da) N p" )
= p( 22 P Ma—p Ad)c,(Q) N p*B)

ptv=j

= > (@ Mg —q*Ag) N pi(c,(Q) N p*p).

ptv=j
By Exercise 10.9 p.(c,(Q) Np*B) = 0 for v < rank(Q) = a4 — d and = (3 for v = a4 — d.
This implies formula (%) with 4 = j — (aq — d). The proof of the proposition follows by
induction corresponding to the inductive construction of F"

pu(ciy(p"Ma—Dy) - ... - c;,(p"Ma — Da) Np )
= qplci (P g My —p DY) - .- ciy [ (p°q*Da—y — p* D)) .ci)(p** Ma — Dg) N p*¢* )

= q.(ciy (M1 — - Cig (@ Myt — Da1) N pu(ciy(p*¢* Ma — Da) N p*q*ar)

= q*(cil (q*Ml - - Cid—l(q*Md—l -

) )

= qlci (M1 =Dy) ... ciy (@ Ma1 —Da-1) N Ciy—ayra(@Ma — ¢ Aa) N g
) 1) N ¢ (Ciy—a+a(Ma — Aa) N @)
) ).

= Cil—al—l—l(Ml — .-C,d 1—ag_1+d— 1(Md 1 Czd—ad—i—d(Md_Ad)ma- D

Before stating the corollary we introduce the following determinants. Let
01:2011,75”, N cd:ZCgt”
v>0 v>0

be (Chern) polynomials and let A, ..., \q be integers. The coefficients ¢!, are supposed
to have weight or degree . Then let

A)\l...)\d(cla sy Cd)

denote the determinant of the matrix

1 1 1
Cx Cxi+1 7 Cx4d—1
2 2 2
Cro—1 Ca 7 Cgtd—2
d d
Crg—d+1 Oy

If all ¢ are equal to ¢, we denote the determinant by Ay, ,(c) and if also all \; are equal
to A, it is denoted by Af(c).

14.8. Corollary: With the same data as in 14.7 the following formula holds for any
sequence A1, ..., \g of integers and any o € Ag(X).

(A (c(p* My = Dy), ..., c(p"Mq—Dy)) Np*a)
= Ay (cMi—A),...,c(Myg—Dy)) N
where p; = \; —a; + 1.

Proof. Insert the formulas of the proposition for each term of the development of the
determinant. O
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14.9. Proposition: Let £ be locally free on X of rank n,d < n, and G4(€) & X the
Grassmann bundle of d—planes in &, let S denote the universal subbundle of p*E. Then
for any locally free sheaf F of rank f on X and all « € A.(X), the highest Chern class
crq of S* @ p*F satisfies

Pielcq (ST @p*F)Np*a) = Ajﬂrdin(c(}" —-&))Na.

The proof follows from Corollary 14.8 after reducing to the case where £ has a flag of
subbundles by the splitting principle, see [7], proposition 14.2.2 .

15. DEGENERACY CLASSES

15.1. Regular sections. Let £ be a locally free sheaf of rank e over a purely n—
dimensional scheme X and let s be a section of £. The zero scheme Z(s) is then defined

by the exact sequence
£ 250 = Oz — 0.

As a set Z(s) can be described as the set of points z € X with s(x) = 0, where s(z) is
the induced homomorphism k& — £(x). If £|U is isomorphic to O%|U, then s|U is given
by regular functions f,..., fo € Ox(U) which are the generators of Im(s") over U. The
section is called regular, if the functions fi,..., f. form a regular sequence for every local
trivialization. This means that Z(s) is regularly embedded in X of codimension e. Note
however, that the morphism X -+ E induced by s into the bundle space is always a regular

embedding of codimension e because it is locally the graph of a morphism U — A°.

15.2. The class ((s). Let £ on X and a section s of £ be as above, let E be the bundle
space of £, and let sy denote the zero section X — FE. Then we have the pull-back

diagram
Z(s) )1(
X(s—()) E
and from that the refined Gysin homomorphism
AR(X) = Apo(2(s))

because sq is a regular embedding of codimension e. If s is a regular section, then ¢ is a
regular embedding of codimension e and we have sj, = i*. For the fundamental class [X]

we obtain the class

C(s) = 59| X] € Ane(Z(5))-
This is defined even if Z(s) is quite irregular. The following proposition describes its
plausible properties.
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15.3. Proposition: Let £, X, s be as above. Then

() 1.C(5) = co(€) N[X] in Ay_o(X).

(b) Fach irreducible component of Z(s) has codimension < e.

(c) If codim(Z(s), X) = e, then ((s) is a "positive” cycle whose support is Z(s), i.e.
C(s) = > wilZ;] where Z; are the components of Z(s) and yu; > 0.

(d) If s is a regular section (then Z(s) is a locally complete intersection of codimension
e), then ((s) = [Z(s)] is the fundamental class of Z(s).

(e) For any morphism'Y END' from a pure—dimensional scheme, let t = f*s be the
induced section of f*€ and Z(t) L Z(s) be the restriction of f. Then
(i) If f is flat, then g*((s) = ().
(ii) If f is proper, and both X and Y are varieties, then g.((t) = deg(Y/X)((s).

For the proof see §6 of [7].

15.4. Remark: One can generalize the notion of a regular embedding to that of a local
complete intersection morphism. A morphism Y I, X is called an lc.i. morphism
of codimension d if it admits a factorization Y <= P % X into a regular embedding of
some codimension e and a smooth morphism of (constant) fibre dimension n such that
d = e —n. This number is independent of the factorization (using the fibre product of
two P’s). If X is smooth, any morphism to X is l.c.i. because then the graph morphism
¢ is a regular embedding into Y x X, and d = dim X —dim Y. If f is a l.c.i. morphism

of codimension d, there is a refined Gysin homomorphism
A(xy LA, (7))

for any pull-back diagram

Y/ N X/ Y/( 3 P/ p N X/

l l with factorization l : J
f i +

Y — X Yye—P—X,

defined by f' = i'p’", the composition
Ap(X') = Apyn(P) = Apyno(Y).

It is shown in [7], prop. 4.1, that (e), (i) of the above proposition is still valid for a l.c.i.
morphism with ¢* replaced by f'.

15.5. Degeneracy classes of homomorphisms

Let £ % F be a homomorphism of locally free sheaves of ranks e and f on a purely
n—dimensional scheme X. Its zero—scheme Z (o) can be defined as the zero—scheme of the

corresponding section of £* ® F. The zero scheme of the induced homomorphism

Ak+1lg

Ak+15 AkJrlf-
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is denoted by
Di(0) = Z(A* o).
For any point let o(z) be the induced homomorphism of the vector spaces £(x), F(x).
Then as a set
Dy(o) ={x € X | rank o(x) < k}.
We are going to define the more refined degeneracy loci of o with respect to a flag of
subbundles

0OcA Cc...Cc A;C€&.
# # #

Let
QA,0) :={x € X | dimKer(o(x)) N A;(x) > i for any i}.
If o; denotes the restriction of o to A;, we have

AA, o) =NZ(A"Hay),

where a; is the rank of A;. This defines the scheme structure of (A,o). The
scheme Q(A, o) may be quite arbitrary, neither equi-dimensional nor reduced. Its ex-
pected dimension is m = dim FI(A) — df. We are going to replace it by a class
w(A, o) € A, (A, 0)). For that the scheme Q(A), o) can be related to the zero scheme
of the induced homomorphism Dy — p*F on the flag variety FI1(A) 2, X as follows. Let

D, C---C Dy
N N
p*A, C---C prAy
be the universal flag of subbundles and let s, be the section of D} ® p*F corresponding
to the composition Dy — p*E o, p*F. Then p maps Z(s,) onto Q(A, o), i.e. we have a
diagram
FlI(4) 2 X
U U
Z(ss) = QA 0)
with ¢ proper. This follows from the definition of the universal flag: If p(y) = = and
y € Z(S,), then D;(y) C A;(x) is contained in the kernel of o;(x), and conversely, if the

kernel of each o;(x) contains an i—dimensional subspace V;, we obtain a flag

Vi c...c V
N N
Ai(z) C...C Ay(x)

which is a point y of the flag variety over x which belongs to Z(s,). Now the class
((s5) € An(Z(s5))
with

d
m = dimFIA) —df =n+ Y (a; —1i) — df
1
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is well-defined as the class of the section s, of D} ® p*F by 15.2. We denote its proper
image as

w(A, 0) = ¢.(ss) € An(Q(A, 0)).
This class has similar natural properties as ((s) even so the scheme (A, o) may have a
complicated structure in general.

15.6. Proposition: Let &€ = F be a homomorphism of locally free sheaves of ranks e
and f on a purely n—dimensional scheme X, and let 0 C A; C ... C Ay C & be a flag of
subbundles of ranks 0 < a; < --- < aq. Let

N=f—ai+i and h=) N=df > (a;—1)

and suppose that \y > 0. Let m = n — h = dim FI(A) — df, such that w(A,o) €
An(QA,0)). Let i denote the inclusion of Q(A, o) into X. Then

(a) i*W(A, U) = A)\l...)\d(c<f - A1)7 s 7C<f - Ad)) N [X]
(b) Each component of Q(A, o) has codimension < h.

(c) If codim Q(A, o) = h, then Q(A, o) is pure—dimensional and w(A, o) is a positive
cycle with support Q(A, o).

(¢") Ifcodim Q(A, o) = h and X is Cohen-Macaulay, then Q(A, o) is Cohen Macaulay
and w(A, o) = [QA,0)].

(d) The formation of w commutes with Gysin maps and proper push—forwards: Let
X' L X bea morphism and let &' s Foand A be the pull-backs of the
corresponding objects on X, suppose that also X' is pure—dimensional and let
QA ") L Q(A, o) denote the restriction of f. Then

(i) If f is flat of constant relative dimension, then g*w(A, o) = w(A’, o).
(i) If f is proper and X', X are varieties, then
gsw(A, 0') = deg(X'/ X)w(A, o).

Proof. We only sketch a proof. For (d) we are given the pull-back diagram

FI(AY) — FI(A) Zs9) —2—s Z(s,)
L
X — X QA 0") — Q(A, o)

where f*(sa) = s, and q, ¢, g, g are the restrictions of p,p’, f, f By 15.3 we have

:QV*C(SU> = C(SU/>
in case (i). Then, using 7.17,
w(Aa OJ) = quC(‘SU/)

= ¢.9°C(s0)
= §°¢((s,) = g'w(A4, o).
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In case (ii) we have
gw(A, o) = g.q.((s5)
= Q*g*g<50’)
= %C(SJ) = W<A7 J)'

This proves (d). For (a) we use the formula
ixC(sq) = cap(Dg @ p"F) N [FI(A)]
of 15.3, which is a class in A,,(F1(A)). By the appendix A.9.1 in [7]

.....

using Chern roots. Now corollary 14.8 yields

Lw(A o) = i.q.((so)
= pain((s0)
= 2l (e F =Dy, c(p"F — Da)) N [FI(A)]
= Ay c(F=A),. .. coF—-Ay))N[X].

This proves (a). For (b), (c), (¢’) we consider first the special case where X = A%/ & and
F are trivial and o is the (universal) homomorphism given by the coordinate functions
x;;, and we let A4; be the trivial subbundle of £ spanned by the first a; standard basis
sections of & = O%, for given 0 < a; < --- < ag < e. Then 2 = Q(A, o) is the scheme

where Zj, is the zero scheme of the (ay — k + 1)-minors of the first a;, columns of (z;;). In
this situation one can prove that

e O(A, o) is irreducible of codimension h
e Q(A, o) is Cohen-Macaulay

® s, is a regular section of D ® p*F,

codim Z(s,) = d- f in the non-singular variety FI1(.A)
Z(ss) — Q(A, o) is birational

see [7], appendix A.7 and [14], Ch. II.

Now (b) is satisfied and (c) and (c¢’) follow immediately from 15.3, (d), because ¢ is
birational and
w(A, o) = 4.((s0) = ¢:[Z(50)] = [AA, 0)].

For (b), (¢), (¢’) in the general situation we may replace X by one of its open affine subsets
on which £, F and the A; are trivial, because the statement (b) is local and in case (c),
(¢’) the subvariety € is purely m—dimensional such that A,,(2) = A,,(2NU) for an open
subset. Then o is a matrix (f;;) of regular functions and defines a morphism X %, A® such
that £ % F, any A; and Q = Q(A, o) is the pull-back of the corresponding generic objects
on A% denoted by a tilde. It follows that Q = f*IQ has codimension < h = codimfl,
which proves (b). If codim) = h and X is Cohen—Macaulay, then the local rings of 2 are
also Cohen—Macaulay, see e.g. [6], prop. 18.13.
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In order to obtain (c) and (c¢’) we consider the diagram

FI(A) «—Z(sy) —» Q— X

o]

FI(A) «——Z(s5) —» q—— Aef

A

with ¢ = (z;;). Because ¢ is a l.c.i. morphism, it follows from 15.4 that

((s5) = ¢'C(s5).
Now q.¢0' = ¢©'q., see [7], thm. 6.2 and prop. 6.6 . Therefore,

W(Aa U) = gplw(g, 5) = 90![62]'

;From this (c) and (c’) follow with [Q] = ¢'[Q2] in case (¢’), using remarks on the inter-
section multiplicities in [7], §7 and example 14.3.1 . O

15.7. One can obtain the class w(A, o) alternatively from the universal space of homo-
morphisms as follows. Let H = Hom(FE, F) with projection H 2 X. On H there is a
universal or tautological homomorphism p*€ = p*F. It is easy to prove that Q(p*A,u)
has codimension h. Now & 2 F determines a section t, of H such that t:u = o, and we

have the pull-back diagram
QA 0)— Q(p"A,u)

I

X%H.

Then Q(A, o) =t [Q(p* A, u)] by (c) and (d) of the proposition.

15.8. Specialized degeneracy loci of sections.

Let £ be a rank r locally free sheaf on an n—dimensional variety X and let s1,...,sy be
sections of £, 2r < N. Let A = (A1,...,\,) be a partition, i.e. a sequence of integers
satisfying A\y > Xy > --- > A\, > 0, and suppose r > \;. Let

O\ ={z € X | dimSpan(s;(x),...,Syix(x)) <r—2X  forall i}.
Then Q) is a closed subscheme of codimension < h = >  \; and there is a class
w)y € An,h(Q)\)
with
iwwy = Ax(e(€)) N [X].
If codim Q) = h and X is Cohen—Macaulay, then wy = [©2,]. All this is a special case
of proposition 15.6: The sections correspond to a homomorphism O % £ and one can

consider the flag A; C --- C A, where A; is spanned by the first standard basis sections
€l,...,€Eq of O with a; = r +i — \;. Then

Q)\ = Q(A, O').
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If A= (p,0,...,0), then
Q= {z € X | dimSpan(si(x),...,s11-p(z)) <r—p)
and then the above determinant formula becomes
wy = ¢ (E) N[X].
IfA=(1,...,1,0,...,0) with p times a 1, then
Q) ={z € X | dimSpan(s;(x),..., s, () <r—1 foral0<wv<p}

In that case we obtain
o = (—1s,(€) N [X]
where s, denotes the p-th Segre class.

Remark: It is shown in [7], example 14.3.2, that codim Q) = h and wy = [Q,], if € is
globally generated and sy, ..., sy are generic sections.

15.9. Thom—Porteous—Formula.

Let as before £ = F be a homomorphism of locally free sheaves of ranks e and f on a
scheme of pure dimension n, and let

0<k<ef and m=n—(e—k)(f—k)>0,d=ec—k.
The k—th degeneracy locus had been defined as
Di(0) = Z(A* o) = {z € X | rank o(z) < k}.

We are going to define a class of Dy(0) using the Grassmann bundle G4(E) ZX.If
S denotes the universal subbundle of p*&, we obtain an induced homomorphism & —
p*& — p*F and by that a section s, of §* ® p*F over the Grassmann bundle. Then we
have the diagram

Gy€) &> X

U U

Z(ss) = Dul0)

and the class ((s,) belongs to A,,(Z(s,)) because dim G4(€) = m + df. Now the class

Ui(0) = 4.C(55) € Am(Di(0))

is well-defined. The properties of these classes are analogous to those of the classes

w(A, o). We have

a) i,0x(0) = AN (c(F =€) N [X]

b) codimDy (o) < (e — k)(f — k)

(c) If codimDy (o) = (e—k)(f — k), then ¥, (o) is a positive cycle with support D (o).
) e—

(¢") If codimDy (o) = (e — k)(f — k) and X is Cohen—Macaulay, then Dy (o) is Cohen—
Macaulay and (o) = [Dg(0)].

(
(

(d) The formation of ¥} commutes with Gysin maps as in 15.6.
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Remark: If Dy (o) has codimension (e—k)(f—k), we have the fundamental cycle [Dy(0)] =
> -m;[D;] and Yg(0) = > e;D; with 0 < e; < m;. Then depth Di(o) < (e — k)(f — k) iff
Ux(0) = [Di(0)]-

The proofs of these properties are analogous or special cases of those for the classes
w(A,o): (d) with same proof. (a) follows from 15.3 and 14.9:

iC(s0) = cq(SY @ pF)N[Ga(E)]
BUk(0) = 4.q:C(Sy) = puinC(so)
= pecg(SY @ p*F) N [Ga(E)]
= AT((F - &) nX],

which is the Thom—Porteous formula. If £ contains a flag A; C --- C Ay = £ of ranks
a; = k + i, then Dig(o) = Q(A,0) and (b), (c), (¢’) follow from 15.6 by comparing
FI(A) — G4(€). If there is no such flag on X, one can use the splitting principle for a
proper and flat morphism Y L, X such that (o) = 9(f*o) by (d).

0.\/

Remark on dual classes: If F* — £* is the dual of ¢, then V(") = Jx(0) and we have

the formula

Al (e(&F = F)) N [X] = AT (o(F - €)) N [X].

15.10. Dependency loci of sections

Let £ be locally free of rank r on an n—dimensional variety X, let £ < r and let
S1,--.,Sr_kt1 be sections of £. The dependency locus is defined by

D(s1y. s Sppr1) ={x € X | s1(x),...,S—ps1(x) linearly dependent in £(x)}.
If (’);{k“ Z, £ is the homomorphism defined by the sections, then
D(s1,...,8r—ps1) = Dyr_i(0).

By the previous result there is a class

V(S1y vy Sr—pr1) € Anr(D(s1,- -, Sr—kr1)),
where now m = n((r — k+ 1) — (r — k))(r — (r — k)) = n — k. In this case
codimD(sy, ..., S,—kt+1) < k and the Thom—Porteous formula reduces to

00081, oy Sp_py1) = () N [X]

because of the identity Ai(c(€)) = cr(E).

Note that D(sq,...,S-_x11) can have codimension < 1 and may be empty if the sections
are independent everywhere. In that case ¢x(£) = 0. If the codimension is k£ and X is
Cohen-Macaulay, then ¥(s) = [D(s)].
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15.11. Geometric definition of Chern classes:

The last result leads to the following geometric construction of the Chern classes. Let &
be locally free of rank r on a quasi—projective variety of dimension n over an algebraically
closed field. Then there is an invertible sheaf £ such that £ ® L is generated by sections
and admits r + 1 sections s1,...,S.41. For k < r let

Dy={x e X |s1(x),...,8_k+1(x) linearly dependent }.

We may assume that Dy has pure dimension k for any £ or is empty, after choosing a
suitable £. Then
[Di] = (€ @ L£) N [X].
Now the Chern classes are determined by the formula
k

(®) = 3o () )t e 0 0)

=0

15.12. Giambelli formula. For the degeneracy locus of the universal matrix of size

m X n,m < n, the Thom—Porteous formula implies degree—formulas. Let P,,,_.1 =
g

PHom(k™, k™), k algebraically closed, and let O™ — O(1)"™ be the tautological homo-
morphism, given by the homogeneous coordinates of P,,,, 1. Let

Vk(m, n) = Dk<0')

in this case. Here Vj(m,n) has the expected codimension (m — k)(n — k) and is Cohen—

Macaulay. Therefore, its class in Agimin—r)—1(Pmn-1) = Z is
Vilm,m)] = ATHEAO1) = O™) 1 [P

= A;n—_kk(c(o(l)n) N [Pmn—l]-

The computation of this number gives

deg(Vi(m, n) = 11 o E”Z)T(i)'_ R

15.13. Degeneracy loci of morphisms.

The formula for the degeneracy classes of homomorphism between vector bundles can
be applied to the tangent maps of morphisms. Let X L Y be a morphism between
smooth varieties of dimensions m and n and let 7 = T'f be the induced homomorphism
TX — f*TY. Define Si(f) := Dy(1) for k < m,n. Then codimSk(f) < (m — k)(n — k)
and there is the class

or(f) € An(Sk(f)), N =m —(m —k)(n— k).
with
Lop(f) = A7 (e(fTY = TX)) N [X].
If codimSy(f) = (m — k)(n — k), then Si(f) is Cohen—-Macaulay and oy (f) = [Sk(f)]-
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16. INTERSECTIONS ON GRASSMANNIANS

In this section the intersections of the determinantal classes of the previous section will
be studied. They are defined as

AA(C) - A>\1 ..... Ad (Ca ceey C) = det(c)\i-f-j—i)

for a power series ¢ = 1 + ¢t + cot? + -+ (of Chern classes) and are called Schur
polynomials. We suppose that Ay > ... > Ay > 0. Such tuples A = (\q,...,\;) will be
called partitions of [A\| = A\; + -+ + Ay, or simply partitions. A partition corresponds
to a Young diagram consisting of \; boxes in the i—th row. The following is the Young

diagram of the partition (5,3,3,1).

The conjugate partition A¢ is defined by the transposed Young diagram of A. Thus
(4,3,3,1,1) is the conjugate of (5,3,3,1).

If ¢1,cq,... and sq, S, ... are series of commuting variables related by
(1+Clt2+02t2+"')(1 —81t+$2t2:}:"') = ]_,
and if A and p are conjugate partitions, then

An(0) = Au(s)]. (S1)

see [7], appendix A.9.2. For example, ¢; = ¢;(E) and s; = s;(E*) the Chern and Segre
classes of a vector bundle and its dual, or ¢; = ¢;(F — E) and s; = ¢;(E* — F*). Special

cases of (SI) are:

(a) A=(1,...,1) and p = (d) with

1 Cy ... €4
1 ¢

sg=det | 0 1 . ¢

L e

0 0 1

(b) A= (e,...,e) and (d,...,d) with
T ——

AZ(c) = Agls) = (=1)* AL ().

16.1. The Littlewood—Richardson rule for determinants.

Let A = (Aq,...,Ag) and g = (p1, - - -, fte) be two partitions and (¢, ) a series of commuting
variables. Then

Ax(e) - Aule) = D N, (€)
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where the sum is over all partitions p with |p| = || + |p| which arise as strict expansions
from A\ and p by the following recipe, and where the coefficients are the number of Young
tableaus arising in the construction and defining the same partition p, see [7], Lemma
14.5.3 :

Let A be given and let © = (m). The partition A = (Xl, . ,Xdﬂ) is called a simple

m—expansion if

and || = [A| +m. If u = (ju1,...,pe) is arbitrary, a p—expansion A of A is obtained
with a Young—diagram Y as follows. Construct Y from Y of \ as a simple p;—expansion,
and insert the integer 1 into each of the new p; boxes, then construct a Young diagram
Y5 from Y] by a simple ps—expansion with new entry 2 etc. to obtain a Young diagram
Y, = Y with entries in the new boxes. A Young diagram with entries is called a Young
tableau. The resulting partition \ is called strict if, when the integers in the new boxes
are listed from right to left, starting with the top row and going down, for any 1 <t < |u|
and each 1 < k < e — 1 the integer k occurs at least as many times as the next integer
k+1 among the first ¢ integers in the list. The Littlewood—Richardson rule states that the
number Ny,, is the number of different Young tableaus occuring as strict p—expansions
of A\, which define the same Young diagram p. If u = (m), the Littlewood—Richardson

rule becomes
Axem =) A,
P
with the sum over all simple m—expansions of A. This formula is called Pieri’s formula.

16.1.1. Lemma: Let ¢ and s be related as above.
(i) If s; =0 fori > d, then Ax(c) = 0 for any partition A with g1 > 0
(i) If ¢; =0 fori >k, then Ax(c) =0 if Ay > k.

Proof. Let pu be the conjugate of A. If A\j11 > 0, then p; > d and then the first row of the
matrix of the determinant Ay(c) = A,(s) vanishes. This proves (i). Case (ii) is dual to
(i). In that case 41 > 0 and by (i) A,(s) = 0. O

16.1.2. Corollary: Let ¢ and s be related as above and let s; = 0 for i > d. Then for all
partitions X = (A1, ..., \g) and = (u1, ..., p1q) of length d,

AN(E)Au(e) = Y Nagpd ()

where the sum is over all p = (p1,...,pa) of length d with |p| = |\ + |u|, and which are

strict p—expansions of .

16.2. Chern class rules for Grassmann bundles.
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Let now again £ be a locally free sheaf of rank n on a scheme X and let d < n. Denote
G = G4(€) the Grassmann bundle of d—planes in the fibres of £ with projection G L X.
On G we have the exact sequence

0—-8S—p¢€&—0—0.
We let ¢; = ¢;(Q — p*E) such that the corresponding s; in the formula (ST) are
s;=ci(pr&* — Q%) = ci(S*) = (—1)'¢cs(S).
Because s; = 0 for i > d, the Littlewood—Richardson rule for
Ay = A,\(C) = A\ ,\d(C(Q _p*é‘))

becomes

MDA =) Na,A,
P

where all the partitions have length < d. The following proposition is the key for the
intersection theory on Grassmannians and Grassmann bundles. Note that Ay and each

summand of this determinant is an operator Ay(G) — Ap_x(G).

16.3. Proposition: (Duality) With the above notation let X and p be partitions of length
d with |\ + |p| < d(n —d). Then for any a € A,(X),

a if N+ pg_i1=n—dforl<i<d
0 otherwise

Po(ANA, Npta) = {

Proof. Because p* and p, are compatible with inclusions, we may assume that o = [V] for
a subvariety of dimension k and in addition that V' = X is a variety. Then p*[X| = [G]. If
Al +|u] < d(n—d), then p. (A A, NI[G]) is in Apyn—a)—a—u(X) = 0. Therefore, we can
assume that |\ 4 |u| = d(n—d). Now for the highest degree we can replace X by an open
affine subset and thus £ can be assumed trivial. In that situation ¢; = 0 for ¢ > n —d and
then A, = 0 in the Littlewood-Richardson formula if p; > n — d, see 16.1.1, (ii). Now it
is easy to combine that

0 otherwise

A\A, = { Apy A+ pig—iy1 =mn —d for all i
where pg = (n —d,...,n —d) of length d. Now we prove that

P+(8p N[G]) = [X]

as follows. Because & is trivial of rank n, we can choose a flag A; C Ay C ---C Ay C &
of trivial subbundles of rank A; = i. Let o denote the homomorphism p*€ — Q. Then

Q=Q(p*A,0) = {LeG|dmLNA(x)>i for1 <i<d, x=p(L)}
Ga(Ag) = X,

so that p maps {2 isomorphically onto X. Since we may also assume that X is smooth,

12

the formula 15.6, (a), (¢’), implies
[2] = Ao (c(@)) N [G]
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and so p.(AyA, N [G]) = [X] in the case A + p = po. O

16.3.1. Duality in Grassmannians. In the case of the absolute Grassmannian G4(E)

of an n—dimensional vector space, the formula becomes
1 it N+ pgr=n—dforl1 <i:<d
DD, N [GalB)] = o
0 otherwise
if [\ 4+ || = d(n — d). For the proof note that p. # 0 only on AyG4(FE) and that
p*{pt} = G4(FE). The duality condition for the partitions A and p means that p in revised
order fills the Young diagram of A to a rectangle of size d x (n — d), e.g.

A RN 2
A b
A3 SRS S A o
7 S S O I
s Do m

16.4. Giambelli’s formula for relative Schubert varieties

Let £ and X be as above in 16.2, let A; C --- C Ay C € be a flag of subbundles of ranks
O<a1 <...<ag<n,let \;=n—d+1— a; and let

Q(A) = Q(p*A,0) C Ga(€)

be the degeneracy locus of the canonical homomorphism p*€ % Q on the Grassmann

bundle. By its definition it can be described as
QA ={LeGy) | dimLNA(x) >iforl <i<d,x=p(L)}
By 15.6 the corresponding class is given by
w(A) =w(p A, o) = Ay, 5, (c(Q—p Ar), ..., c(Q —p"Ad)) N[Ga(E)].
16.4.1. Lemma:

(i) If ¢;(€ — A;) =0 fori >0 and all j, then w(A) = A\ N [Ga(E)].
(ii) If X is pure-dimensional, then QU(A) has pure codimension |\| in G4(E) and

[AA)] = B2 ((Q =P AL, -, e(Q = " Aa)) N [Ga(E)]-

Proof. The assumption (i) implies that
(Q—p'Aj) =c(Q—p E)c(p’€ —p'Aj) = ¢(Q—pE).

For (ii) we show that w(A) equals the fundamental class [2(A)]. This can be verified
locally w.r.t. X. Therefore, we may assume that X is smooth and affine and £ is trivial.

Then Q(A) is Cohen-Macaulay and w(A) = [Q2(A)], by 15.6, (¢). O
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16.4.2. Remark: Note, that even when X is smooth, the class w(A) need not equal
Ay N [G4(E)] because there are global obstructions arising from the classes ¢;(Q — p*A;).
We have, however, the special cases

Ay=1c,(Q—pE) for (Ai,..., ) =(g,0,...,0)

and
A)\I(—l)ch(S) for (Al,...,)\d)z(l,...,l, O,...,O),
where A\ = ... = A\, = 1 and A\,1; = 0. In the smooth case, all the 2(A) are Cohen-

Macaulay and the ring structure of A*G4(E), see 14.1, may be described by the intersec-
tions of the classes [Q2(A)].

16.5. Schubert varieties.

The varieties €2(A) of the previous proposition are the relative versions of the classical
Schubert varieties Q(a) in the usual Grassmannians G4(E) of a vector space F of dimen-
sion n. In that case the varieties {2(A) are defined by

QA) = {U € Ga(E) | dmUN A, >i, 1<i<d},

where A C Ay C -+ C Ay C E is a flag of vector subspaces of dimensions 0 < a; < ... <
aq < n. Because now the Chern classes ¢;(€ — A;) disappear, Giambelli’s formula states
that each €2(A) is irreducible and Cohen—Macaulay of codimension |A| and that

w(d) = [QA4)] = AxNGa(E),

where as before \; = n—d+1i7—q; suchthat n —d > X > --- > X; > 0. We can also

write
wy =w(a) =w(4)
because the classes do not depend on the choice of the flag.

If ey, ..., e, is a basis of F, the spaces A; may be chosen as the spans of the first a; vectors
and we put Q(a) = Q(A) in that case. In the following we suppose that such a basis is
given, and we consider the intersection of {2(a) with a suitable standard affine chart of
G4(F) defined as follows. Let k" — k% be the projection 7(a) given by a; < ay < -+ < ag
such that for any linear map k¢ % k", det(m(a) o u) is the d-minor determined by the

columns of u with indices a; < - -+ < a4. Then
G(a) = {Im(u) | det(r(a)ou) # 0}.
Let then
Q%(a) = Q(a) N G(a).

It is easy to check that Q°(a) is isomorphic to a linear subspace of Hom(k? k"~%) of
dimension Y (a; — i) by presenting a subspace U € G(a) as the span of the unique d x n—
matrix, whose columns with index ay, . .., aq form the unit matrix. Such an 2°(a) is called
a Schubert cell.
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Example: d =4, n =12, (a1, az,a3,a4) = (2,5,7,10). Any U € Q°(a) is the span of the

rows of a unique matrix

*x 1 000 0 0O0O0O0O0O0
* 0 x x 1 0000 O0O0O0
*+ 00« x 0 x 1 00 0O00O0
* 0 x x 0 « 0 « x 1 0 0

G(a) = Hom(k*, k*) has the coordinate functions z;;, j # a;. The condition dim UNA; > i
means that the entries in the ¢th row after z;,, = 1 are zero, whereas the rest of the entries
are free. For U € Q°(a) we have dim U N A; = i. The free entries in that case fill a linear
subspace of Hom(k*, k®) of dimension (a; — 1) + (ay — 2) + (a3 — 3) + (aq — 4) = 14.
In general, a unique matrix for U € 2°(a) is obtained by putting z;,, = 1 and z;; = 0 in
the hook determined by z;,, as in the above matrix.
Moreover, by this consideration we find that
Qa) Q%) = | Qb) with Q°(b) N QO(¥) =0 for b £ V.
b<a
M

It follows that each Q(a) is cellular, see 6.5, and that A.(£2(a)) is generated by the classes
[2(b)] with b < a. If a; =n — d + i, then

Q(a) = Ga(E),

because for any U € G4(FE) we have dimU N A; > d+a; —n = i. In particular A,(G4(FE))
is generated by the classes [Q(a)], see 6.5.

16.5.1. The Schubert varieties of G5(k?) are indexed by pairs (a1, as) with 0 < a; <
a9 S 4.

We find
21,2) = {UeG|U=A4} a point
2L,3) = {UeG|A CUCcCAy} a projective line
Q1,4 = {UeG| A CU}
22,3) = {UeG|UCA}
22,3) = {UeG| dmUnA >1}

Q3,4) = Ga(kY).
In the projective interpretation these are the varieties described in 6.6. In the following

we determine their intersections and the Chow ring of Ga(k*).

16.6. Chow groups of Schubert varieties.
With the same notation as in 16.5 Giambelli’s formulas read
wy = w(a) = [Qa)] = AN [Ga(E)],

where now Ay = A, (c(Q)) and where as before the partition A and the dimension tuple
a are related by \; = n —d + i — a;. Note that Ay = ¢,(Q) for A = (¢,0,...,0) and
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Ay = (—1)%¢,(S) for X = (1,...,1,0,...,0) such that the Chern classes ¢,(Q) resp.
¢q(S) are represented by the Schubert varieties Q(n —d+1—¢, n —d+2,...,n), resp.
Qn—-d,n—d+1,....n—d+q—1,n—d+q+1,...,n). For any index k we consider
the set of partitions
Ap={A|n—d>X\>--->X2>0, [N =d(n—d)—k}

and the homomorphism

ZM = A(Ga(E))
defined by

(OQ\) — ZOQ\A)\ N [Gd(E)] = ZOQ\[Q(G,)]

If b; < a; for all i, we have Q(b) C Q(a). Therefore, if

Apla) ={p € Ay | i =2 Ait,
we have the restriction
2@ 29, 4,((a)) — A(Ga(E))
of the homomorphism O, given by
() = X, [Q(b)],

where p and b are related by the same formula p; = (n — d) + i — b;.

16.6.1. Proposition: For any k and any a = (ay,...,aq), 0 < a3 < -+ < aqg < n, the
homomorphism

(a) @(a

2N == A(Q(a))

s an isomorphism. In particular
ZM 2 AuGu(E))

18 an isomorphism.

Proof. The injectivity of © will be shown in the proof of the more general relative version
16.7 of this proposition using 16.3. Then also the restrictions ©(a) are injective. The
surjectivity of each ©(a) follows from the remarks in 16.5 or directly from the exact
sequences

A4(QB) ~ QD)) — A(QAB)) — A(Q(B)) — 0

by induction on |b| for b < a. O

16.6.2. Remark: The isomorphisms © can, of course, also be derived from the isomor-
phism

A*Gy(E) =Z[s1,..,Sdy @1, -+, qn—d]/0
in 14.3 using

=¢ for A = (i,0,...,0 d =(=1)'¢(S) for A= (1,...,1,0,...,0).
wy=¢(Q) for (1 ) an wy = (—=1)'¢(S) for ( )
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The ring structure is then described by the Littlewood-Richardson rule. Moreover, the g;
or the s; may be replaced by each other and eliminated from the formula by the relations

defined by the graded formula

I+s14+-4sq) I+qa+-+gua)=1.

Example: dim £/ =4 and d = 2. Then
wio =w(2,4) and wy = w(1,4)
generate A*Gy(FE), and we have the graded identity

(1 — W0 + wn) (]_ + ) + w20) = 1 and Wo1 = det (w%o wom) = W1oW20-

Explicitly:
wi = wy +wn  with  wywi =0
WipwW2o = W21 = WipWi1
wi’o = wy +wiowi1 = 2wa
WipwWa1 = W%() = Wy = wfl
wf‘o = 2(,()10(,()21 = 2(4)22 .

An analogous result for a Grassmann bundle G4(€) over an arbitrary scheme X can be
obtained using the determinants Ay, whereas the relative Schubert classes w(.A) may be

more complicated, see 16.4.

16.7. Theorem: Let £ be a locally free sheaf of rank n on an algebraic scheme X. Then
for each k > 0 there is an isomorphism

P Arsir-dm-a(X) % Ap(Ga(€))

where the sum is over all partitions A = (A1,...,A\g) withn —d > Xy >--->X\; >0 and

O(ay) = ZAA Npan,
)
whereas in 16.2 Ay = Ay, .\, (C(Q — p*éf)).

Proof. The injectivity of © follows from the formula in 16.3. Let O(«,) = 0 and assume
that () # 0. Choose any A with ay # 0 and |A| maximal and let x4 be complementary,
Wi + j\d,iJrl =n —d. Then

ay A= 5\

0 otherwise.

P(ApAxNpion) = {
Since Y A, A\ Np*ay =0, we get a5 = 0, a contradiction.
)

In order to show that © is also surjective, we may assume that X is irreducible and affine,
and £ is trivial on X as in the case d =1, see 11.1. Now we can reduce the proof to the

absolute case because £ = O% and therefore

Gd<5) =~ X x Gd(k}n)
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For any sequence 0 < a; < --- < ag <nwelet Ay C --- C Ay C & be the flag of trivial

subbundles defined by the first a; basis sections of O% and we have
Q(A),0) = X x Ofa)
with the Giambelli’s formulas
AN [Ga(E)] = [X x Q(a)].
For any fixed a we have the restrictions

D Ar-p(X) =% Au(X x Q(a) — A4(Gu(€)),

b<a

where here |b| denotes > (b; — 7).

Using the decompositions of Q(a) \ Q°(a) described in 16.5 and A;_gim o) (X) = Ay(X X
0°(b)), the surjectivity of ©(a) follows by induction as in 16.6.1. O

16.8. Exercise

Find the Schubert varieties 2 in a flag variety F' = F(dy,...,dny, E) in analogy to a
Grassmannian and prove that the corresponding classes form bases of the groups A (F')
and Ai(Q2) as in 16.6.

Try to find a Giambelli formula relating the Schubert classes of I’ to polynomials in the
Chern classes defined by the quotients of the tautological flag.

Script to be continued
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