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This text is a first introduction to homological algebra, assuming only very basic prerequisites. For instance
we do recall in some detail basic definitions and constructions in the theory of abelian groups and modules,
though of course a prior familiarity with these ingredients will be helpful. Also we use very little category
theory, if it all. Where universal constructions do appear we spell them out explicitly in components and just
mention their category-theoretic names for those readers who want to dig deeper. We do however freely use
the words functor and commuting diagram. The reader unfamiliar with these elementary notions should click
on these keywords and follow the hyperlink to the explanation right now.

1. I) Motivation

The subject of homological algebra may be motivated by its archetypical application, which is the singular
homology of a topological space . This example illustrates homological algebra as being concerned with the
abelianization of what is called the homotopy theory of .

So we begin with some basic concepts in homotopy theory in section 1) Homotopy type of topological
spaces. Then we consider the “abelianization” of this setup in 2) Simplicial and abelian homology.

Together this serves to motivate many constructions in homological algebra, such as centrally chain
complexes, chain maps and homology, but also chain homotopies, mapping cones etc, which we discuss in
detail in chapter II below. In the bulk we develop the general theory of homological algebra in chapter III
and chapter IV. Finally we come back to a systematic discussion of the relation to homotopy theory at the
end in chapter V. A section VI) Outlook is appended for readers interested in the grand scheme of things.

We do use some basic category theory language in the following, but no actual category theory. The reader
should know what a category is, what a functor is and what a commuting diagram is. These concepts are
more elementary than any genuine concept in homological algebra to appear below and of general use.
Where we do encounter universal constructions below we call them by their category-theoretic name but
always spell them out in components explicity.

1) Homotopy type of topological spaces
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This section reviews some basic notions in topology and homotopy theory. These will all serve as blueprints
for corresponding notions in homological algebra.

Definition 1.1. A topological space is a set  equipped with a set of subsets ⊂ , called open sets,
which are closed under

finite intersections1. 

arbitrary unions.2. 

Example 1.2. The Cartesian space ℝ  with its standard notion of open subsets given by unions of open
balls ⊂ ℝ .

Definition 1.3. For ↪  an injection of sets and { ⊂ } ∈  a topology on , the subspace topology on  is

{ ∩ ⊂ } ∈ .

Definition 1.4. For ∈ ℕ, the topological n-simplex is, up to homeomorphism, the topological space
whose underlying set is the subset

≔ {⇀ ∈ ℝ + |
=

= 1 and ∀ . ≥ 0} ⊂ ℝ +

of the Cartesian space ℝ + , and whose topology is the subspace topology induces from the canonical
topology in ℝ + .

Example 1.5. For = 0 this is the point, = * .

For = 1 this is the standard interval object = [0, 1].

For = 2 this is the filled triangle.

For = 3 this is the filled tetrahedron.

Definition 1.6. A homomorphisms between topological spaces : →  is a continuous function:

a function : →  of the underlying sets such that the preimage of every open set of  is an open set of .

Topological spaces with continuous maps between them form the category Top.

Definition 1.7. For ∈ ℕ, n ≥ 1 and 0 ≤ ≤ , the th ( − 1)-face (inclusion) of the topological -simplex,
def. 1.4, is the subspace inclusion

: − ↪

induced under the coordinate presentation of def. 1.4, by the inclusion

ℝ ↪ ℝ +

which “omits” the th canonical coordinate:

( ,⋯, − ) ↦ ( ,⋯, − , 0, , ⋯, − ) .

Example 1.8. The inclusion

: →

is the inclusion

{1} ↪ [0, 1]

of the “right” end of the standard interval. The other inclusion

: →

is that of the “left” end {0} ↪ [0, 1].

Definition 1.9. For ∈ ℕ and 0 ≤ <  the th degenerate ( )-simplex (projection) is the surjective
map

: → −

induced under the barycentric coordinates of def. 1.4 under the surjection

ℝ + → ℝ

which sends

( ,⋯, ) ↦ ( ,⋯, + + ,⋯, ) .
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Definition 1.10. For ∈ Top and ∈ ℕ, a singular -simplex in  is a continuous map

: →

from the topological -simplex, def. 1.4, to .

Write

(Sing ) ≔ Hom ( , )

for the set of singular -simplices of .

As  varies, this forms the singular simplicial complex of . This is the topic of the next section, see def. def.
1.33.

Definition 1.11. For , : →  two continuous functions between topological spaces, a left homotopy
: ⇒  is a commuting diagram in Top of the form

( , ) ↓ ↘

× →

( , ) ↑ ↗

.

Remark 1.12. In words this says that a homotopy between two continuous functions  and  is a
continuous 1-parameter deformation of  to . That deformation parameter is the canonical coordinate along
the interval [0, 1], hence along the “length” of the cylinder × .

Proposition 1.13. Left homotopy is an equivalence relation on Hom ( , ).

The fundamental invariants of a topological space in the context of homotopy theory are its homotopy
groups. We first review the first homotopy group, called the fundamental group of :

Definition 1.14. For  a topological space and : * →  a point. A loop in  based at  is a continuous
function

: →

from the topological 1-simplex, such that (0) = (1) = .

A based homotopy between two loops is a homotopy

↓( , )↘

× →

↑( , )↗

such that (0, −) = (1, −) = .

Proposition 1.15. This notion of based homotopy is an equivalence relation.

Proof. This is directly checked. It is also a special case of the general discussion at homotopy.  ▮

Definition 1.16. Given two loops , : → , define their concatenation to be the loop

⋅ : ↦
ì
í
î
ï
ï

(2 ) (0 ≤ ≤ 1/2)

(2( − 1/2)) (1/2 ≤ ≤ 1)
.

Proposition 1.17. Concatenation of loops respects based homotopy classes where it becomes an
associative, unital binary pairing with inverses, hence the product in a group.

Definition 1.18. For  a topological space and ∈  a point, the set of based homotopy equivalence classes
of based loops in  equipped with the group structure from prop. 1.17 is the fundamental group or first
homotopy group of ( , ), denoted

( , ) ∈ Grp .

Example 1.19. The fundamental group of the point is trivial: ( * ) = * .

Example 1.20. The fundamental group of the circle is the group of integers ( ) ≃ ℤ.

This construction has a fairly straightforward generalizations to “higher dimensional loops”.
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Definition 1.21. Let  be a topological space and : * →  a point. For (1 ≤ ) ∈ ℕ, the th homotopy
group ( , ) of  at  is the group:

whose elements are left-homotopy equivalence classes of maps → ( , ) in Top * /;

composition is given by gluing at the base point (wedge sum) of representatives.

The 0th homotopy group is taken to be the set of connected components.

Example 1.22. For = 1 this reproduces the definition of the fundamental group of def. 1.18.

The homotopy theory of topological spaces is all controled by the following notion. The abelianization of this
notion, the notion of quasi-isomorphism discussed in def. 2.91 below is central to homological algebra.

Definition 1.23. For , ∈ Top two topological spaces, a continuous function : →  between them is
called a weak homotopy equivalence if

 induces an isomorphism of connected components

( ) : ( ) →≃ ( )

in Set;

1. 

for all points ∈  and for all (1 ≤ ) ∈ ℕ  induces an isomorphism on homotopy groups

( , ) : ( , ) →≃ ( , ( ))

in Grp.

2. 

What is called homotopy theory is effectively the study of topological spaces not up to isomorphism (here:
homeomorphism), but up to weak homotopy equivalence. Similarly, we will see that homological algebra is
effectively the study of chain complexes not up to isomorphism, but up to quasi-isomorphism. But this is
slightly more subtle than it may seem, in parts due to the following:

Proposition 1.24. The existence of a weak homotopy equivalence from  to  is a reflexive and transitive
relation on Top, but it is not a symmetric relation.

Proof. Reflexivity and transitivity are trivially checked. A counterexample to symmetry is the weak
homotopy equivalence between the stanard circle and the pseudocircle.  ▮

But we can consider the genuine equivalence relation generated by weak homotopy equivalence:

Definition 1.25. We say two spaces  and  have the same (weak) homotopy type if they are equivalent
under the equivalence relation generated by weak homotopy equivalence.

Remark 1.26. Equivalently this means that  and  have the same (weak) homotopy type if there exists a
zigzag of weak homotopy equivalences

← → ← … → .

One can understand the homotopy type of a topological space just in terms of its homotopy groups and how
they act on each other. (This data is called a Postnikov tower of .) But computing and handling homotopy
groups is in general hard, famously so already for the seemingly simple case of the homotopy groups of
spheres. Therefore we now want to simplify the situation by passing to a “linear/abelian approximation”.

2) Simplicial and singular homology

This section discusses how the “abelianization” of a topological space by singular chains gives rise to the
notion of chain complexes and their homology.

Above in def. 1.10 we saw that to a topological space  is associated a sequence of sets

(Sing ) ≔ Hom ( , )

of singular simplices. Since the topological -simplices  from def. 1.4 sit inside each other by the face
inclusions of def. 1.7

: − →

and project onto each other by the degeneracy maps, def. 1.9

: + →

we dually have functions

≔ Hom ( , ):(Sing ) → (Sing ) −

that send each singular -simplex to its -face and functions
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≔ Hom ( , ): (Sing ) → (Sing ) +

that regard an -simplex as beign a degenerate (“thin”) ( + 1)-simplex. All these sets of simplices and face
and degeneracy maps between them form the following structure.

Definition 1.27. A simplicial set ∈ sSet is

for each ∈ ℕ a set ∈ Set – the set of -simplices;

for each injective map : − 1`̀ `̀ `̀ →̀`  of totally ordered sets ¯ ≔ {0 < 1 < ⋯ < }

a function : → −  – the th face map on -simplices;

for each surjective map : + 1`̀ `̀ `̀ → ¯  of totally ordered sets

a function : → +  – the th degeneracy map on -simplices;

such that these functions satisfy the simplicial identities.

Definition 1.28. The simplicial identities satisfied by face and degeneracy maps as above are (whenever
these maps are composable as indicated):

∘ = − ∘  if < ,1. 

∘ = ∘ −  if > .2. 

∘ =
⎧

⎨
⎩

⎪

⎪

− ∘ if <

id if = or = + 1

∘ − if > + 1

3. 

It is straightforward to check by explicit inspection that the evident injection and restriction maps between
the sets of singular simplices make (Sing )• into a simplicial set. We now briefly indicate a systematic way to

see this using basic category theory, but the reader already satisfied with this statement should jump ahead
to the abelianization of (Sing )  in prop. 1.37 below.

Definition 1.29. The simplex category  is the full subcategory of Cat on the free categories of the form

[0] ≔ {0}

[1] ≔ {0 → 1}

[2] ≔ {0 → 1 → 2}

⋮

.

Remark 1.30. This is called the “simplex category” because we are to think of the object [ ] as being the
“spine” of the -simplex. For instance for = 2 we think of 0 → 1 → 2 as the “spine” of the triangle. This
becomes clear if we don’t just draw the morphisms that generate the category [ ], but draw also all their
composites. For instance for = 2 we have_

[2] =

1

↗ ↘

0 → 2

.

Proposition 1.31. A functor

: → Set

from the opposite category of the simplex category to the category Set of sets is canonically identified with
a simplicial set, def. 1.27.

Proof. One checks by inspection that the simplicial identities characterize precisely the behaviour of the
morphisms in ([ ], [ + 1]) and ([ ], [ − 1]).  ▮

This makes the following evident:

Example 1.32. The topological simplices from def. 1.4 arrange into a cosimplicial object in Top, namely a
functor

•: → Top .

With this now the structure of a simplicial set on the singular simplices (Sing )•, def. 1.10, is manifest: it is

just the nerve of  with respect to •, namely:

Definition 1.33. For  a topological space its simplicial set of singular simplicies (often called the
singular simplicial complex)

(Sing )• : → Set
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(1)

is given by composition of the functor from example 1.32 with the hom functor of Top:

(Sing ):[ ] ↦ Hom ( , ) .

Remark (aside) 1.34. It turns out that homotopy type of the topological space  is entirely captured by its
singular simplicial complex Sing  (this is the content of the homotopy hypothesis-theorem).

Now we abelianize the singular simplicial complex (Sing )• in order to make it simpler and hence more

tractable.

Definition 1.35. A formal linear combination of elements of a set ∈ Set is a function

: → ℤ

such that only finitely many of the values ∈ ℤ are non-zero.

Identifying an element ∈  with the function → ℤ, which sends  to 1 ∈ ℤ and all other elements to 0, this
is written as

=
∈

⋅ .

In this expression one calls ∈ ℤ the coefficient of  in the formal linear combination.

Remark 1.36. For ∈ Set, the group of formal linear combinations ℤ[ ] is the group whose underlying
set is that of formal linear combinations, def. 1.35, and whose group operation is the pointwise addition in
ℤ:

(
∈

⋅ ) + (
∈

⋅ ) =
∈

( + ) ⋅ .

For the present purpose the following statement may be regarded as just introducing different terminology
for the group of formal linear combinations:

Proposition 1.37. The group ℤ[ ] is the free abelian group on .

Definition 1.38. For • a simplicial set, def. 1.27, the free abelian group ℤ[ ] is called the group of
(simplicial) -chains on .

Definition 1.39. For  a topological space, an -chain on the singular simplicial complex Sing  is called a
singular -chain on .

This construction makes the sets of simplices into abelian groups. But this allows to formally add the
different face maps in the simplicial set to one single boundary map:

Definition 1.40. For  a simplicial set, its alternating face map differential in degree  is the linear map

∂ :ℤ[ ] → ℤ[ − ]

defined on basis elements ∈  to be the alternating sum of the simplicial face maps:

∂ ≔
=

(−1) .

Proposition 1.41. The simplicial identity, def. 1.28 part (1), implies that the alternating sum boundary
map of def. 1.40 squares to 0:

∂ ∘ ∂ = 0 .

Proof. By linearity, it is sufficient to check this on a basis element ∈ . There we compute as follows:

∂ ∂ = ∂ ∑ = (−1)

= ∑ = ∑ =
− (−1) +

= ∑ ≤ ≤ (−1) + + ∑ ≤ ≤ (−1) +

= ∑ ≤ ≤ (−1) +
− + ∑ ≤ ≤ (−1) +

= −∑ ≤ ≤ (−1) + + ∑ ≤ ≤ (−1) +

= 0

.

Here

the first equality is (1);1. 

the second is (1) together with the linearity of ;2. 
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the third is obtained by decomposing the sum into two summands;3. 

the fourth finally uses the simplicial identity def. 1.28 (1) in the first summand;4. 

the fifth relabels the summation index  by + 1;5. 

the last one observes that the resulting two summands are negatives of each other.6. 

  ▮

Example 1.42. Let  be a topological space. Let : →  be a singular 1-simplex, regarded as a 1-chain

∈ ( ) .

Then its boundary ∂ ∈ ( ) is

∂ = (0) − (1)

or graphically (using notation as for orientals)

∂ (0) → (1) = ( (0)) − ( (1)) .

In particular  is a 1-cycle precisely if (0) = (1), hence precisely if  is a loop.

Let : →  be a singular 2-chain. The boundary is

∂
⎛

⎝

⎜⎜

(1)

( , ) ↗ ⇓ ↘
,

(0) ⎯⎯⎯
( , )

(2)

⎞

⎠

⎟⎟
= ⎛

⎝

⎜⎜

(1)

( , ) ↗

(0)

⎞

⎠

⎟⎟
− (0) ⎯⎯⎯

( , )
(2) + ⎛

⎝

⎜⎜

(1)

↘
,

(2)

⎞

⎠

⎟⎟
.

Hence the boundary of the boundary is:

∂ ∂ = ∂⎛

⎝

⎜⎜
⎛

⎝

⎜⎜

(1)

( , ) ↗

(0)

⎞

⎠

⎟⎟
− (0) ⎯⎯⎯

( , )
(2) + ⎛

⎝

⎜⎜

(1)

↘
,

(2)

⎞

⎠

⎟⎟
⎞

⎠

⎟⎟

= æ
èçç (0)

ö
ø÷÷
− æ
èçç

(1) ö
ø÷÷
− æ
èçç (0)

ö
ø÷÷
+ æ
èçç (2)

ö
ø÷÷
+ æ
èçç

(1) ö
ø÷÷
− æ
èçç (2)

ö
ø÷÷

= 0

Definition 1.43. For  a simplicial set, we call the collection

of abelian groups of chains ( ) ≔ ℤ[ ], prop. 1.37;1. 

and boundary homomorphisms ∂ : + ( ) → ( ), def. 1.402. 

(for all ∈ ℕ) the alternating face map chain complex of :

•( ) = [⋯ → ℤ[ ] → ℤ[ ] → ℤ[ ]] .

Specifically for = Sing  we call this the singular chain complex of .

This motivates the general definition:

Definition 1.44. A chain complex of abelian groups • is a collection { ∈ Ab}  of abelian groups together

with group homomorphisms {∂ : + → } such that ∂ ∘ ∂ = 0.

We turn to this definition in more detail in the next section. The thrust of this construction lies in the fact
that the chain complex •(Sing ) remembers the abelianized fundamental group of , as well as aspects of
the higher homotopy groups: in its chain homology.

Definition 1.45. For •( ) a chain complex as in def. 1.43, and for ∈ ℕ we say

an -chain of the form ∂ ∈ ( )  is an -boundary;

a chain ∈ ( ) is an -cycle if ∂ = 0

(every 0-chain is a 0-cycle).

By linearity of ∂ the boundaries and cycles form abelian sub-groups of the group of chains, and we write

≔ im(∂ ) ⊂ ( )

for the group of -boundaries, and
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≔ ker(∂ ) ⊂ ( )

for the group of -cycles.

Remark 1.46. This means that a singular chain is a cycle if the formal linear combination of the oriented
boundaries of all its constituent singular simplices sums to 0.

Remark 1.47. More generally, for  any unital ring one can form the degreewise free module [Sing ] over
. The corresponding homology is the singular homology with coefficients in , denoted ( , ). This

generality we come to below in the next section.

Definition 1.48. For •( ) a chain complex as in def. 1.43 and for ∈ ℕ, the degree- chain homology
group ( ( )) ∈ Ab is the quotient group

( ( )) ≔
ker(∂ − )
im(∂ )

=

of the -cycles by the -boundaries – where for = 0 we declare that ∂− ≔ 0 and hence ≔ .

Specifically, the chain homology of •(Sing ) is called the singular homology of the topological space .

One usually writes ( , ℤ) or just ( ) for the singular homology of  in degree .

Remark 1.49. So ( •( )) = ( )/im(∂ ).

Example 1.50. For  a topological space we have that the degree-0 singular homology

( ) ≃ ℤ[ ( )]

is the free abelian group on the set of connected components of .

Example 1.51. For  a connected, orientable manifold of dimension  we have

( ) ≃ ℤ .

The precise choice of this isomorphism is a choice of orientation on . With a choice of orientation, the
element 1 ∈ ℤ under this identification is called the fundamental class

[ ] ∈ ( )

of the manifold .

Definition 1.52. Given a continuous map : →  between topological spaces, and given ∈ ℕ, every
singular -simplex : →  in  is sent to a singular -simplex

*
: → →

in . This is called the push-forward of  along . Accordingly there is a push-forward map on groups of
singular chains

(
*
) : ( ) → ( ) .

Proposition 1.53. These push-forward maps make all diagrams of the form

+ ( ) ⎯⎯⎯⎯⎯
(
*
) +

+ ( )

↓ ↓

( ) ⎯⎯
(
*
)

( )

commute.

Proof. It is in fact evident that push-forward yields a functor of singular simplicial complexes

*
: Sing → Sing .

From this the statement follows since ℤ[−]:sSet → sAb is a functor.  ▮

Therefore we have an “abelianized analog” of the notion of topological space:

Definition 1.54. For • , • two chain complexes, def. 1.44, a homomorphism between them – called a
chain map • : • → • – is for each ∈ ℕ a homomorphism : →  of abelian groups, such that

∘ ∂ = ∂ ∘ + :
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⋮ ⋮

↓ + ↓ +

+ ⎯⎯+ +

↓ ↓

®¾

↓ − ↓ −

⋮ ⋮

.

Composition of such chain maps is given by degreewise composition of their components. Clearly, chain
complexes with chain maps between them hence form a category – the category of chain complexes in
abelian groups, – which we write

Ch•(Ab)) ∈ Cat .

Accordingly we have:

Proposition 1.55. Sending a topological space to its singular chain complex •( ), def. 1.43, and a
continuous map to its push-forward chain map, prop. 1.53, constitutes a functor

•(−):Top → Ch•(Ab)

from the category Top of topological spaces and continuous maps, to the category of chain complexes.

In particular for each ∈ ℕ singular homology extends to a functor

(−):Top → Ab .

We close this section by stating the basic properties of singular homology, which make precise the sense in
which it is an abelian approximation to the homotopy type of . The proof of these statements requires
some of the tools of homological algebra that we develop in the later chapters, as well as some tools in
algebraic topology.

Proposition 1.56. If : →  is a continuous map between topological spaces which is a weak homotopy
equivalence, def, 1.23, then the induced morphism on singular homology groups

( ): ( ) → ( )

is an isomorphism.

(A proof (via CW approximations) is spelled out for instance in (Hatcher, prop. 4.21)).

We therefore also have an “abelian analog” of weak homotopy equivalences:

Definition 1.57. For • , • two chain complexes, a chain map • : • → • is called a quasi-isomorphism if it

induces isomorphisms on all homology groups:

: ( ) →≃ ( ) .

In summary: chain homology sends weak homotopy equivalences to quasi-isomorphisms. Quasi-
isomorphisms of chain complexes are the abelianized analog of weak homotopy equivalences of topological
spaces.

In particular we have the analog of prop. 1.24:

Proposition 1.58. The relation “There exists a quasi-isomorphism from • to •.” is a reflexive and
transitive relation, but it is not a symmetric relation.

Proof. Reflexivity and transitivity are evident. An explicit counter-example showing the non-symmetry is the
chain map

⋯ → 0 → ℤ →
⋅

ℤ → 0 → ⋯

⋯ ↓ ↓ ↓ ↓ ⋯

⋯ → 0 → 0 → ℤ/2ℤ → 0 → ⋯

from the chain complex concentrated on the morphism of multiplication by 2 on integers, to the chain
complex concentrated on the cyclic group of order 2.

This clearly induces an isomorphism on all homology groups. But there is not even a non-zero chain map in
the other direction, since there is no non-zero group homomorphism ℤ/2ℤ → ℤ.  ▮

Accordingly, as for homotopy types of topological spaces, in homological algebra one regards two chain
complexes •, • as essentially equivalent – “of the same weak homology type” – if there is a zigzag of
quasi-isomorphisms
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• ← → ← ⋯ → •

between them. This is made precise by the central notion of the derived category of chain complexes. We
turn to this below in section Derived categories and derived functors.

But quasi-isomorphisms are a little coarser than weak homotopy equivalences. The singular chain functor
•(−) forgets some of the information in the homotopy types of topological spaces. The following series of

statements characterizes to some extent what exactly is lost when passing to singular homology, and which
information is in fact retained.

First we need a comparison map:

Definition 1.59. (Hurewicz homomorphism)

For ( , ) a pointed topological space, the Hurewicz homomorphism is the function

: ( , ) → ( )

from the th homotopy group of ( , ) to the th singular homology group defined by sending

: ( : → )∼ ↦ *
[ ]

a representative singular -sphere  in  to the push-forward along  of the fundamental class [ ] ∈ ( ),
example 1.51.

Proposition 1.60. For  a topological space the Hurewicz homomorphism in degree 0 exhibits an
isomorphism between the free abelian group ℤ[ ( )] on the set of path connected components of  and the
degree-0 singular homlogy:

ℤ[ ( )] ≃ ( ) .

Since a homotopy group in positive degree depends on the homotopy type of the connected component of
the base point, while the singular homology does not depend on a basepoint, it is interesting to compare
these groups only for the case that  is connected.

Proposition 1.61. For  a path-connected topological space the Hurewicz homomorphism in degree 1

: ( , ) → ( )

is surjective. Its kernel is the commutator subgroup of ( , ). Therefore it induces an isomorphism from
the abelianization ( , ) ≔ ( , )/[ , ]:

( , ) →≃ ( ) .

For higher connected  we have the

Theorem 1.62. If  is (n-1)-connected for ≥ 2 then

: ( , ) → ( )

is an isomorphism.

This is known as the Hurewicz theorem.

This gives plenty of motivation for studying

chain complexes1. 

chain homology2. 

quasi-isomorphism3. 

of chain complexes. This is essentially what homological algebra is about. In the next section we start to
develop these notions more systematically.

2. II) Chain complexes

Chain complexes of modules with chain maps between them form a category, the category of chain
complexes, which is where all of homological algebra takes place. We first construct this category and
discuss its most fundamental properties in 3) Categories of chain complexes . Then we consider more
interesting properties of this category: the most elementary and still already profoundly useful is the
phenomenon of exact sequences and specifically of homology exact sequences, discussed in 4) Homology
exact sequences. In 5) Homotopy fiber sequences and mapping cones we explain how these are the shadow
under the homology functor of homotopy fiber sequences of chain complexes constructed using mapping
cones. The construction of the connecting homomorphism obtained this way may be understood as a special
case of the basic diagram chasing lemmas in double complexes, such as the snake lemma, which we discuss
in 6) Double complexes and the diagram chasing lemmas.
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This serves to provide a rich set of tools that is needed when in the next chaper III) Abelian homotopy
theory we turn to the actual category of interest, which is not quite that of chain complexes and chain maps,
but the localization of this at the quasi-isomorphisms: the derived category.

3) Categories of chain complexes

In def. 1.43 we had encountered complexes of singular chains, of formal linear combinations of simplices in
a topological space. Here we discuss such chain complexes in their own right in a bit more depth.

Also, above a singular chain was taken to be a formal sum of singular simplices with coefficients in the
abelian group of integers ℤ. It is just as straightforward, natural and useful to allow the coefficients to be an
arbitrary abelian group , or in fact to be a module over a ring. We have to postpone proper discussion of
motivating examples for this step below in chapter III and chapter IV, but the reader eager to see a deeper
motivation right now might look at Modules – As generalized vector bundles. See also the archetypical
example 2.32 below.

So we start by developing a bit of the theory of abelian groups, rings and modules.

Definition 2.1. Write Ab ∈ Cat for the category of abelian groups and group homomorphisms between
them:

an object is a group  such that for all elements , ∈  we have that the group product of  with 
is the same as that of  with , which we write + ∈  (and the neutral element is denoted by
0 ∈ );

a morphism : →  is a group homomorphism, hence a function of the underlying sets, such that for
all elements as above ( + ) = ( ) + ( ).

Among the basic constructions that produce new abelian groups from given ones are the tensor product of
abelian groups and the direct sum of abelian groups. These we discuss now.

Definition 2.2. For ,  and abelian groups and ×  the cartesian product group, a bilinear map

: × →

is a function of the underlying sets which is linear – hence is a group homomorphism – in each argument
separately.

Remark 2.3. In terms of elements this means that a bilinear map : × →  is a function of sets that
satisfies for all elements , ∈  and , ∈  the two relations

( + , ) = ( , ) + ( , )

and

( , + ) = ( , ) + ( , ) .

Notice that this is not a group homomorphism out of the product group. The product group ×  is the
group whose elements are pairs ( , ) with ∈  and ∈ , and whose group operation is

( , ) + ( , ) = ( + , + ) .

A group homomorphism

: × →

hence satisfies

( + , + ) = ( , ) + ( , )

and hence in particular

( + , ) = ( , ) + ( , 0)
( , + ) = ( , ) + (0, )

which is (in general) different from the behaviour of a bilinear map.

Definition 2.4. For ,  two abelian groups, their tensor product of abelian groups is the abelian group
⊗  which is the quotient group of the free group on the product (direct sum) ×  by the relations

( , ) + ( , ) ∼ ( + , )

( , ) + ( , ) ∼ ( , + )

for all , , ∈  and , , ∈ .

In words: it is the group whose elements are presented by pairs of elements in  and  and such that the
group operation for one argument fixed is that of the other group in the other argument.
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Remark 2.5. There is a canonical function of the underlying sets

× →
⊗

⊗ .

On elements this sends ( , ) to the equivalence class that it represents under the above equivalence
relations.

Proposition 2.6. A function of underlying sets : × →  is a bilinear function precisely if it factors by the
morphism of 2.5 through a group homomorphism : ⊗ →  out of the tensor product:

: × →
⊗

⊗ → .

Proposition 2.7. Equipped with the tensor product ⊗ of def. 2.4 Ab becomes a monoidal category.

The unit object in (Ab, ⊗ ) is the additive group of integers ℤ.

This means:

forming the tensor product is a functor in each argument

⊗ (−):Ab → Ab ,

1. 

there is an associativity natural isomorphism ( ⊗ )⊗ →≃ ⊗ ( ⊗ ) which is “coherent” in the sense
that all possible ways of using it to rebracket a given expression are equal.

2. 

There is a unit natural isomorphism ⊗ℤ →≃  which is compatible with the asscociativity isomorphism
in the evident sense.

3. 

Proof. To see that ℤ is the unit object, consider for any abelian group  the map

⊗ℤ →

which sends for ∈ ℕ ⊂ ℤ

( , ) ↦ ⋅ ≔ + +⋯ + .

Due to the quotient relation defining the tensor product, the element on the left is also equal to

( , ) = ( , 1 + 1⋯ + 1 ) = ( , 1) + ( , 1) + ⋯ + ( , 1) .

This shows that ⊗ℤ →  is in fact an isomorphism.

The other properties are similarly direct to check.  ▮

We see simple but useful examples of tensor products of abelian groups put to work below in the context of
example 2.60 and then in many of the applications to follow. An elementary but not entirely trivial example
that may help to illustrate the nature of the tensor product is the following.

Example 2.8. For , ∈ ℕ and positive, we have

ℤ ⊗ ℤ ≃ ℤ ( , ) ,

where LCM(−, −) denotes the least common multiple.

Definition 2.9. Let ∈ Set be a set and { } ∈  an -indexed family of abelian groups. The direct sum

⊕ ∈ ∈ Ab is the coproduct of these objects in Ab.

This means: the direct sum is an abelian group equipped with a collection of homomorphisms

⋯

↘ ⋯ ↙

⊕ ∈

,

which is characterized (up to unique isomorphism) by the following universal property: for every other
abelian group  equipped with maps

⋯

↘ ⋯ ↙

there is a unique homomorphism : ⊕ ∈ →  such that = ∘  for all ∈ .

Explicitly in terms of elements we have:

Proposition 2.10. The direct sum ⊕ ∈  is the abelian group whose ements are formal sums
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+ +⋯+

of finitely many elements of the { }, with addition given by componentwise addition in the corresponding .

Example 2.11. If each = ℤ, then the direct sum is again the free abelian group on 

⊕ ∈ ℤ ≃ ℤ[ ] .

Proposition 2.12. The tensor product of abelian groups distributes over arbitrary direct sums:

⊗ (⊕ ∈ ) ≃ ⊕ ∈ ⊗ .

Example 2.13. For ∈ Set and ∈ Ab, the direct sum of | | copies of  with itself is equivalently the tensor
product of abelian groups of the free abelian group on  with :

⊕ ∈ ≃ (⊕ ∈ ℤ) ⊗ ≃ (ℤ[ ]) ⊗ .

Remark 2.14. Together, tensor product and direct sum of abelian groups make Ab into what is called a
bimonoidal category.

This now gives us enough structure to define rings and consider basic examples of their modules.

Definition 2.15. A ring (unital and not-necessarily commutative) is an abelian group  equipped with

an element 1 ∈1. 

a bilinear operation, hence a group homomorphism

⋅ : ⊗ →

out of the tensor product of abelian groups,

2. 

such that this is associative and unital with respect to 1.

Remark 2.16. The fact that the product is a bilinear map is the distributivity law: for all , , ∈  we
have

⋅ ( + ) = ⋅ + ⋅

and

( + ) ⋅ = ( + ) ⋅ .

Example 2.17.

The integers ℤ are a ring under the standard addition and multiplication operation.

For each , this induces a ring structure on the cyclic group ℤ , given by operations in ℤ modulo .

The rational numbers ℚ, real numbers ℝ and complex numbers are rings under their standard
operations (in fact these are even fields).

Example 2.18. For  a ring, the polynomials

+ + +⋯ +

(for arbitrary ∈ ℕ) in a variable  with coefficients in  form another ring, the polynomial ring denoted [ ].
This is the free -associative algebra on a single generator .

Example 2.19. For  a ring and ∈ ℕ, the set ( , ) of × -matrices with coefficients in  is a ring under
elementwise addition and matrix multiplication.

Example 2.20. For  a topological space, the set of continuous functions ( , ℝ) or ( , ℂ) with values in the
real numbers or complex numbers is a ring under pointwise (points in ) addition and multiplication.

Just as an outlook and a suggestion for how to think geometrically of the objects appearing here, we
mention the following.

Remark 2.21. The Gelfand duality theorem says that if one remembers certain extra structure on the rings
of functions ( , ℂ) in example 2.20 – called the structure of a C-star algebra, then this construction

(−, ℂ):Top →≃ *Alg ⎯⎯⎯ Ring

is an equivalence of categories between that of topological spaces, and the opposite category of *-algebras.
Together with remark 2.33 further below this provides a useful dual geometric way of thinking about the
theory of modules.

From now on and throughout, we take  to be a commutative ring.
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Definition 2.22. A module  over a ring  is

an object ∈ Ab, hence an abelian group;1. 

equipped with a morphism

: ⊗ →

in Ab; hence a function of the underlying sets that sends elements

( , ) ↦ ≔ ( , )

and which is a bilinear function in that it satisfies

( , + ) ↦ +

and

( + , ) ↦ +

for all , , ∈  and , , ∈ ;

2. 

such that the diagram

⊗ ⊗ ⎯⎯⎯⎯⎯
⋅ ⊗

⊗

⊗ ↓ ↓

⊗ →

commutes in Ab, which means that for all elements as before we have

( ⋅ ) = ( ) .

3. 

such that the diagram

1⊗ ⎯⎯⎯⎯
⊗

⊗

↘ ↙

commutes, which means that on elements as above

1 ⋅ = .

4. 

Example 2.23. The ring  is naturally a module over itself, by regarding its multiplication map ⊗ →  as
a module action ⊗ →  with ≔ .

Example 2.24. More generally, for ∈ ℕ the -fold direct sum of the abelian group underlying  is naturally
a module over 

≔ ⊕ ≔ ⊕ ⊕⋯⊕ .

The module action is componentwise:

⋅ ( , , ⋯, ) = ( ⋅ , ⋅ , ⋅ ⋅ ) .

Example 2.25. Even more generally, for ∈ Set any set, the direct sum ⊕ ∈  is an -module.

This is the free module (over ) on the set .

The set  serves as the basis of a free module: a general element ∈ ⊕  is a formal linear combination of
elements of  with coefficients in .

For special cases of the ring , the notion of -module is equivalent to other notions:

Example 2.26. For = ℤ the integers, an -module is equivalently just an abelian group.

Example 2.27. For =  a field, an -module is equivalently a vector space over .

Every finitely-generated free -module is a free module, hence every finite dimensional vector space has a
basis. For infinite dimensions this is true if the axiom of choice holds.

Example 2.28. For  a module and { } ∈  a set of elements, the linear span

⟨ ⟩ ∈ ↪ ,

(hence the completion of this set under addition in  and multiplication by ) is a submodule of .

Example 2.29. Consider example 2.28 for the case that the module is = , the ring itself, as in example

Introduction to Homological algebra in Schreiber https://ncatlab.org/schreiber/print/Introduction+to+Homological+algebra

14 of 83 27.12.2016 13:16



2.23. Then a submodule is equivalently (called) an ideal of .

Definition 2.30. Write Mod for the category or -modules and -linear maps between them.

Example 2.31. For = ℤ we have ℤMod ≃ Ab.

Example 2.32. Let  be a topological space and let

≔ ( , ℂ)

be the ring of continuous functions on  with values in the complex numbers.

Given a complex vector bundle →  on , write ( ) for its set of continuous sections. Since for each point
∈  the fiber  of  over  is a ℂ-module (by example 2.27), ( ) is a ( , ℂ)-module.

Just as an outlook and a suggestion for how to think of modules geometrically, we mention the following.

Remark 2.33. The Serre-Swan theorem says that if  is Hausdorff and compact with ring of functions
( , ℂ) – as in remark 2.21 above – then ( ) is a projective ( , ℂ)-module and indeed there is an

equivalence of categories between projective ( , ℂ)-modules and complex vector bundles over . (We
introduce the notion of projective modules below in Derived categories and derived functors.)

We now discuss a bunch of properties of the category Mod which together will show that there is a
reasonable concept of chain complexes of -modules, in generalization of how there is a good concept of
chain complexes of abelian groups. In a more abstract category theoretical context than we invoke here, all
of the following properties are summarized in the following statement.

Theorem 2.34. Let  be a commutative ring. Then Mod is an abelian category.

But for the moment we ignore this further abstraction and just consider the following list of properties.

Definition 2.35. An object in a category which is both an initial object and a terminal object is called a
zero object.

Remark 2.36. This means that 0 ∈  is a zero object precisely if for every other object  there is a unique
morphism → 0 to the zero object as well as a unique morphism 0 →  from the zero object.

Proposition 2.37. The trivial group is a zero object in Ab.

The trivial module is a zero object in Mod.

Proof. Clearly the 0-module 0 is a terminal object, since every morphism → 0 has to send all elements of
 to the unique element of 0, and every such morphism is a homomorphism. Also, 0 is an initial object

because a morphism 0 →  always exists and is unique, as it has to send the unique element of 0, which is
the neutral element, to the neutral element of .  ▮

Definition 2.38. In a category with an initial object 0 and pullbacks, the kernel ker( ) of a morphism
: →  is the pullback ker( ) →  along  of the unique morphism 0 →

ker( ) → 0

↓ ↓

→

.

Remark 2.39. More explicitly, this characterizes the object ker( ) as the object (unique up to unique
isomorphism) that satisfies the following universal property:

for every object  and every morphism ℎ: →  such that ∘ ℎ = 0 is the zero morphism, there is a unique
morphism : → ker( ) such that ℎ = ∘ .

Example 2.40. In the category Ab of abelian groups, the kernel of a group homomorphism : →  is the
subgroup of  on the set − (0) of elements of  that are sent to the zero-element of .

Example 2.41. More generally, for  any ring, this is true in Mod: the kernel of a morphism of modules is
the preimage of the zero-element at the level of the underlying sets, equipped with the unique sub-module
structure on that set.

Definition 2.42. In a category with zero object, the cokernel of a morphism : →  is the pushout
coker( ) in

→

↓ ↓

0 → coker( )

.

Remark 2.43. More explicitly, this characterizes the object coker( ) as the object (unique up to unique
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isomorphism) that satisfies the following universal property:

for every object  and every morphism ℎ: →  such that ℎ ∘ = 0 is the zero morphism, there is a unique
morphism : coker( ) →  such that ℎ = ∘ .

Example 2.44. In the category Ab of abelian groups the cokernel of a morphism : →  is the quotient
group of  by the image (of the underlying morphism of sets) of .

Proposition 2.45. Mod has all kernels. The kernel of a homomorphism : →  is the set-theoretic
preimage ( )− (0) equipped with the induced -module structure.

Mod has all cokernels. The cokernel of a homomorphism : →  is the quotient abelian group

coker =
im( )

of  by the image of .

The reader unfamiliar with the general concept of monomorphism and epimorphism may take the following
to define these in Ab to be simply the injections and surjections.

Proposition 2.46. : Mod → Set preserves and reflects monomorphisms and epimorphisms:

A homomorphism : →  in Mod is a monomorphism / epimorphism precisely if ( ) is an injection /
surjection.

Proof. Suppose that  is a monomorphism, hence that : →  is such that for all morphisms , : →

such that ∘ = ∘  already = . Let then  and  be the inclusion of submodules generated by a

single element ∈  and ∈ , respectively. It follows that if ( ) = ( ) then already =  and so  is
an injection. Conversely, if  is an injection then its image is a submodule and it follows directly that  is a
monomorphism.

Suppose now that  is an epimorphism and hence that : →  is such that for all morphisms , : →

such that ∘ = ∘  already = . Let then : →
( )

 be the natural projection. and let : → 0 be

the zero morphism. Since by construction ∘ = 0 and ∘ = 0 we have that = 0, which means that

( )
= 0 and hence that = im( ) and so that  is surjective. The other direction is evident on elements.  ▮

Definition 2.47. For , ∈ Mod two modules, define on the hom set Hom ( , ) the structure of an
abelian group whose addition is given by argumentwise addition in : ( + ): ↦ ( ) + ( ).

Proposition 2.48. With def. 2.47 Mod composition of morphisms

∘ :Hom( , ) × Hom( , ) → Hom( , )

is a bilinear map, hence is equivalently a morphism

Hom( , ) ⊗ Hom( , ) → Hom( , )

out of the tensor product of abelian groups.

This makes Mod into an Ab-enriched category.

Proof. Linearity of composition in the second argument is immediate from the pointwise definition of the
abelian group structure on morphisms. Linearity of the composition in the first argument comes down to
linearity of the second module homomorphism.  ▮

Remark 2.49. In fact Mod is even a closed category, but this we do not need for showing that it is abelian.

Prop. 2.37 and prop. 2.48 together say that:

Corollary 2.50. Mod is an pre-additive category.

Proposition 2.51. Mod has all products and coproducts, being direct products and direct sums.

The products are given by cartesian product of the underlying sets with componentwise addition and
-action.

The direct sum is the subobject of the product consisting of tuples of elements such that only finitely many
are non-zero.

Proof. The defining universal properties are directly checked. Notice that the direct product ∏ ∈  consists

of arbitrary tuples because it needs to have a projection map

:
∈

→
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to each of the modules in the product, reproducing all of a possibly infinite number of non-trivial maps
{ → }. On the other hand, the direct sum just needs to contain all the modules in the sum

: → ⊕ ∈

and since, being a module, it needs to be closed only under addition of finitely many elements, so it consists
only of linear combinations of the elements in the , hence of finite formal sums of these.  ▮

Together cor. 2.50 and prop. 2.51 say that:

Corollary 2.52. Mod is an additive category.

Proposition 2.53. In Mod

every monomorphism is the kernel of its cokernel;

every epimorphism is the cokernel of its kernel.

Proof. Using prop. 2.45 this is directly checked on the underlying sets: given a monomorphism ↪ , its

cokernel is → , The kernel of that morphism is evidently ↪ .  ▮

Now cor. 2.50 and prop. 2.53 imply theorem 2.34, by definition.

Now we finally have all the ingredients to talk about chain complexes of -modules. The following definitions
are the direct analogs of the definitions of chain complexes of abelian groups in Simplicial and singular
homology above.

Definition 2.54. A (ℤ-graded) chain complex in Mod is

a collection of objects { } ∈ℤ,

and of morphisms ∂ : → −

⋯ → → → → − ⎯
−

⋯

such that

∂ ∘ ∂ + = 0

(the zero morphism) for all ∈ ℕ.

Definition 2.55. For • a chain complex and ∈ ℕ

the morphisms ∂  are called the differentials or boundary maps;

the elements of  are called the -chains;

for ≥ 1 the elements in the kernel

≔ ker(∂ − )

of ∂ − : → −  are called the -cycles

and for = 0 we say that every 0-chain is a 0-cycle

≔

(equivalently we declare that ∂− = 0).

the elements in the image

≔ im(∂ )

of ∂ : + →  are called the -boundaries;

Notice that due to ∂ ∂ = 0 we have canonical inclusions

0 ↪ ↪ ↪ .

the cokernel

≔ /

is called the degree- chain homology of •.

0 → → → → 0 .

Definition 2.56. A chain map : • → • is a collection of morphism { : → } ∈ℤ in  such that all the

diagrams
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+ ®¾

↓ + ↓

+ ⎯

commute, hence such that all the equations

∘ = + ∘ +

hold.

Proposition 2.57. For : • → • a chain map, it respects boundaries and cycles, so that for all ∈ ℤ it
restricts to a morphism

( ): ( •) → ( •)

and

( ): ( •) → ( •) .

In particular it also respects chain homology

( ): ( •) → ( •) .

Corollary 2.58. Conversely this means that taking chain homology is a functor

(−):Ch•( ) →

from the category of chain complexes in  to  itself.

This establishes the basic objects that we are concerned with in the following. But as before, we are not so
much interested in chain complexes up to chain map isomorphism, rather, we are interested in them up to a
notion of homotopy equivalence. This we begin to study in the next section Homology exact sequences and
homotopy fiber sequences. But in order to formulate that neatly, it is useful to have the tensor product of
chain complexes. We close this section with introducing that notion.

Definition 2.59. For , ∈ Ch•( ) write ⊗ ∈ Ch•( ) for the chain complex whose component in degree 
is given by the direct sum

( ⊗ ) : = ⊕ + = ⊗

over all tensor products of components whose degrees sum to , and whose differential is given on elements
( , ) of homogeneous degree by

∂ ⊗ ( , ) = (∂ , ) + (−1) ( )( , ∂ ) .

Example 2.60. (square as tensor product of interval with itself)

For  some ring, let • ∈ Ch•( Mod) be the chain complex given by

• = ⋯ → 0 → 0 → → ⊕ ,

where ∂ = (−id, id).

This is the normalized chain complex of the simplicial chain complex of the standard simplicial interval, the
1-simplex , which means: we may think of

= ⊕ ≃ [{(0), (1)}]

as the -linear span of two basis elements labelled “(0)” and “(1)”, to be thought of as the two 0-chains on
the endpoints of the interval. Similarly we may think of

= ≃ [{(0 → 1)}]

as the free -module on the single basis element which is the unique non-degenerate 1-simplex (0 → 1) in
.

Accordingly, the differential ∂  is the oriented boundary map of the interval, taking this basis element to

∂ :(0 → 1) ↦ (1) − (0)

and hence a general element ⋅ (0 → 1) for some ∈  to

∂ : ⋅ (0 → 1) ↦ ⋅ (1) − ⋅ (0) .

We now write out in full details the tensor product of chain complexes of • with itself, according to def.
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2.59:

• ≔ • ⊗ • .

By definition and using the above choice of basis element, this is in low degree given as follows:

= ⊕

= ( ⊕ )⊗ ( ⊕ )

≃ ⊕ ⊕ ⊕

= ⋅ ((0), (0)′ ) + ⋅ ((0), (1)′) + ⋅ ((1), (0)′ ) + ⋅ ((1), (1)′) | ⋅ , ⋅ ∈

,

where in the last line we express a general element as a linear combination of the canonical basis elements
which are obtained as tensor products ( , ) ∈ ⊗  of the previous basis elements. Notice that by the
definition of tensor product of modules we have relations like

((0), (1)′) = ( (0), (1)′) = ((0), (1)′)

etc.

Similarly then, in degree-1 the tensor product chain complex is

( ⊗ ) = ( ⊗ )⊕ ( ⊗ )

≃ ⊗ ( ⊕ )⊕ ( ⊕ )⊗

≃ ⊕ ⊕ ⊕

≃ { ⋅ ((0), (0 → 1)′) + ⋅ ((1), (0 → 1)′ ) + ¯ ⋅ ((0 → 1), (0)′) + ¯ ⋅ ((0 → 1), (1)′ ) | ⋅, ¯ ⋅ ∈ }

.

And finally in degree 2 it is

( ⊗ ) ≃ ⊗

≃ ⊗

≃

≃ { ⋅ ((0 → 1), (0 → 1)′ ) | ∈ }

.

All other contributions that are potentially present in ( ⊗ )• vanish (are the 0-module) because all higher

terms in • are.

The tensor product basis elements appearing in the above expressions have a clear geometric
interpretation: we can label a square with them as follows

((0), (1)′) ⎯⎯⎯⎯⎯⎯⎯
(( → ),( ))

((1), (1)′)

(( ),( → ) ) ↑ ⟲(( → ),( → ) ) ↑(( ),( → ) )

((0), (0)′) ⎯⎯⎯⎯⎯⎯⎯⎯
(( → ),( ) )

((1), (0)′)

.

This diagram indicates a cellular square and identifies its canonical singular chains with the elements of
( ⊗ )•. The arrows indicate the orientation. For instance the fact that

∂ ⊗ ((0 → 1), (0)′) = (∂ (0 → 1), (0)′) + (−1) ((0 → 1), ∂ (0))

= ((1) − (0), (0)′ ) − 0

= ((1), (0)′ ) − ((0), (0)′)

says that the oriented boundary of the bottom morphism is the bottom right element (its target) minus the
bottom left element (its source), as indicated. Here we used that the differential of a degree-0 element in •

is 0, and hence so is any tensor product with it.

Similarly the oriented boundary of the square itself is computed to

∂ ⊗ ((0 → 1), (0 → 1)′ ) = (∂ (0 → 1), (0 → 1)′) − ((0 → 1), ∂ (0 → 1))

= ((1) − (0), (0 → 1)′) − ((0 → 1), (1)′ −(0)′ )

= ((1), (0 → 1)′ ) − ((0), (0 → 1)′ ) − ((0 → 1), (1)′ ) + ((0 → 1), (0)′)

,

which can be read as saying that the boundary is the evident boundary thought of as oriented by drawing it
counterclockwise into the plane, so that the right arrow (which points up) contributes with a +1 prefactor,
while the left arrow (which also points up) contributes with a -1 prefactor.

Proposition 2.61. Equipped with the standard tensor product of chain complexes ⊗, def. 2.59 the category
of chain complexes is a monoidal category (Ch•( Mod), ⊗ ). The unit object is the chain complex
concentrated in degree 0 on the tensor unit  of Mod.

Definition 2.62. We write Ch•  for the category of unbounded chain complexes.
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Definition 2.63. For , ∈ Ch• ( ) any two objects, define a chain complex [ , ] ∈ Ch• ( ) to have
components

[ , ] : =
∈ℤ

Hom ( , + )

(the collection of degree-  maps between the underlying graded modules) and whose differential is defined
on homogeneously graded elements ∈ [ , ]  by

: = ∘ − (−1) ∘ .

This defines a functor

[−, −]:Ch• ( ) × Ch• ( ) → Ch• ( ) .

Proposition 2.64. This functor

[−, −]:Ch• × Ch• → Ch•

is the internal hom of the category of chain complexes.

Proposition 2.65. The collection of cycles of the internal hom [ , ]• in degree 0 coincides with the external

hom functor

([ , ]) ≃ Hom
•
( , ) .

The chain homology of the internal hom [ , ] in degree 0 coincides with the homotopy classes of chain
maps.

Proof. By Definition 2.63 the 0-cycles in [ , ] are collections of morphisms { : → } such that

+ ∘ = ∘ .

This is precisely the condition for  to be a chain map.

Similarly, the boundaries in degree 0 are precisely the collections of morphisms of the form

+ ∘ + ∘

for a collection of maps { : → + }. This are precisely the null homotopies.  ▮

Proposition 2.66. The monoidal category (Ch• , ⊗ ) is a closed monoidal category, the internal hom is the
standard internal hom of chain complexes.

4) Homology exact sequences

With the basic definition of the category of chain complexes in hand, we now consider the first application,
which is as simple as it is of ubiquituous use in mathematics: long exact sequences in homology. This is the
“abelianization”, in the sense of the discussion in 2) above, of what in homotopy theory are long exact
sequences of homotopy groups. But both concepts, in turn, are just the shadow on homology
groups/homotopy groups, respectively of homotopy fiber sequences of the underlying chain
complexes/topological spaces themselves. Since these are even more useful, in particular in chapter III)
below, we discuss below in 5) how to construct these using chain homotopy and mapping cones.

First we need the fundamental notion of exact sequences. As before, we fix some commutative ring
throughout and consider the category of modules over , which we will abbreviate

≔ Mod .

Definition 2.67. An exact sequence in  is a chain complex • in  with vanishing chain homology in
each degree:

∀ ∈ ℕ . ( ) = 0 .

Definition 2.68. A short exact sequence is an exact sequence, def. 2.67 of the form

⋯ → 0 → 0 → → → → 0 → 0 → ⋯ .

One usually writes this just “0 → → → → 0” or even just “ → → ”.

Remark 2.69. A general exact sequence is sometimes called a long exact sequence, to distinguish from
the special case of a short exact sequence.

Beware that there is a difference between → →  being exact (at ) and → →  being a “short exact
sequence” in that 0 → → → → 0 is exact at ,  and . This is illustrated by the following proposition.

Proposition 2.70. Explicitly, a sequence of morphisms
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0 → → → → 0

in  is short exact, def. 2.68, precisely if

 is a monomorphism,1. 

 is an epimorphism,2. 

and the image of  equals the kernel of  (equivalently, the coimage of  equals the cokernel of ).3. 

Proof. The third condition is the definition of exactness at . So we need to show that the first two
conditions are equivalent to exactness at  and at .

This is easy to see by looking at elements when ≃ Mod, for some ring  (and the general case can be
reduced to this one using one of the embedding theorems):

The sequence being exact at

0 → →

means, since the image of 0 →  is just the element 0 ∈ , that the kernel of →  consists of just this
element. But since →  is a group homomorphism, this means equivalently that →  is an injection.

Dually, the sequence being exact at

→ → 0

means, since the kernel of → 0 is all of , that also the image of →  is all of , hence equivalently that
→  is a surjection.  ▮

Example 2.71. Let = ℤMod ≃ Ab. For ∈ ℕ with ≥ 1 let ℤ →
⋅
ℤ be the linear map/homomorphism of

abelian groups which acts by the ordinary multiplication of integers by . This is clearly an injection. The
cokernel of this morphism is the projection to the quotient group, which is the cyclic group ℤ ≔ ℤ/ ℤ. Hence
we have a short exact sequence

0 → ℤ →
⋅
ℤ → ℤ .

A typical use of a long exact sequence, notably of the homology long exact sequence to be discussed, is that
it allows to determine some of its entries in terms of others.

The characterization of short exact sequences in prop. 2.70 is one example for this. Another is this:

Proposition 2.72. If part of an exact sequence looks like

⋯ → 0 → + ®¾ → 0 → ⋯ ,

then ∂  is an isomorphism and hence

+ ≃ .

Often it is useful to make the following strengthening of short exactness explicit.

Definition 2.73. A short exact sequence 0 → → → → 0 in  is called split if either of the following
equivalent conditions hold

There exists a section of , hence a homomorphism : →  such that ∘ = id .1. 

There exists a retract of , hence a homomorphism : →  such that ∘ = id .2. 

There exists an isomorphism of sequences with the sequence

0 → → ⊕ → → 0

given by the direct sum and its canonical injection/projection morphisms.

3. 

Proposition 2.74. (splitting lemma)

The three conditions in def. 2.73 are indeed equivalent.

Proof. It is clear that the third condition implies the first two: take the section/retract to be given by the
canonical injection/projection maps that come with a direct sum.

Conversely, suppose we have a retract : →  of : → . Write : → →  for the composite. Notice that
by ∘ = id this is an idempotent: ∘ = , hence a projector.

Then every element ∈  can be decomposed as = ( − ( )) + ( ) hence with − ( ) ∈ ker( ) and
( ) ∈ im( ). Moreover this decomposition is unique since if = ( ) while at the same time ( ) = 0 then

0 = ( ( )) = . This shows that ≃ im( ) ⊕ ker( ) is a direct sum and that : →  is the canonical inclusion of
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im( ). By exactness it then follows that ker( ) ≃ ker( ) and hence that ≃ ⊕  with the canonical inclusion
and projection.

The implication that the second condition also implies the third is formally dual to this argument.  ▮

Moreover, of particular interest are exact sequences of chain complexes. We consider this concept in full
beauty below in section 5). In order to motivate the discussion there we here content ourselves with the
following quick definition, which already admits discussion of some of its rich consequences.

Definition 2.75. A sequence of chain maps of chain complexes

0 → • → • → • → 0

is a short exact sequence of chain complexes in  if for each  the component

0 → → → → 0

is a short exact sequence in , according to def. 2.68.

Definition 2.76. Consider a short exact sequence of chain complexes as in def. 2.75. For ∈ ℤ, define a
group homomorphism

: ( ) → − ( ) ,

called the th connecting homomorphism of the short exact sequence, by sending

: [ ] ↦ [∂ ]̂ ,

where

∈ ( ) is a cycle representing the given homology group [ ];1. 

^ ∈ ( ) is any lift of that cycle to an element in , which exists because  is a surjection (but which
no longer needs to be a cycle itself);

2. 

[∂ ^]  is the -homology class of ∂ ^ which is indeed in − ↪ −  by exactness (since

(∂ ^) = ∂ (^) = ∂ = 0) and indeed in − ( ) ↪ −  since ∂ ∂ ^ = ∂ ∂ ^ = 0.

3. 

Proposition 2.77. Def. 2.76 is indeed well defined in that the given map is independent of the choice of lift
^ involved and in that the group structure is respected.

Proof. To see that the construction is well-defined, let ˜ ∈  be another lift. Then (^ − ˜) = 0 and hence
^− ˜ ∈ ↪ . This exhibits a homology-equivalence [∂ ^] ≃ [∂ ˜]  since ∂ (^− ˜) = ∂ ^− ∂ ˜.

To see that  is a group homomorphism, let [ ] = [ ] + [ ] be a sum. Then ^ ≔ ^ +^  is a lift and by

linearity of ∂ we have [∂ ]̂ = [∂ ^ ] + [∂ ^ ].  ▮

Proposition 2.78. Under chain homology •(−) the morphisms in the short exact sequence together with
the connecting homomorphisms yield the homology long exact sequence

⋯ → ( ) → ( ) → ( )®¾ − ( ) → − ( ) → − ( ) → ⋯ .

Proof. Consider first the exactness of ( ) ⎯⎯
( )

( ) ⎯⎯⎯
( )

( ).

It is clear that if ∈ ( ) ↪ ( ) then the image of [ ] ∈ ( ) is [ ( )] = 0 ∈ ( ). Conversely, an element

[ ] ∈ ( ) is in the kernel of ( ) if there is ∈ +  with ∂ = ( ). Since  is surjective let ^ ∈ +  be any

lift, then [ ] = [ − ∂ ^] but ( − ∂ ) = 0 hence by exactness − ∂ ^ ∈ ( ) ↪ ( ) and so [ ] is in the
image of ( ) → ( ).

It remains to see that

the image of ( ) → ( ) is the kernel of ;1. 

the kernel of − ( ) → − ( ) is the image of .2. 

This follows by inspection of the formula in def. 2.76. We spell out the first one:

If [ ] is in the image of ( ) → ( ) we have a lift  ̂with ∂ ^ = 0 and so [ ] = [∂ ]̂ = 0. Conversely, if for

a given lift  ̂we have that [∂ ^] = 0 this means there is ∈  such that ∂ ≔ ∂ = ∂ ^. But then ˜ ≔ ^−

is another possible lift of  for which ∂ ˜ = 0 and so [ ] is in the image of ( ) → ( ).  ▮

Example 2.79. The connecting homomorphism of the long exact sequence in homology induced from short
exact sequences of the form in example 2.71 is called a Bockstein homomorphism.

We now discuss a deeper, more conceptual way of understanding the origin of long exact sequences in
homology and the nature of connecting homomorphisms. This will give first occasion to see some actual
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homotopy theory of chain complexes at work, and hence serves also as a motivating example for the
discussions to follow in chapter III).

For this we need the notion of chain homotopy, which is the abelianized analog of the notion of homotopy of
continuous maps above in def. 1.11. We now first introduce this concept by straightforwardly mimicking the
construction in def. 1.11 with topological spaces replaced by chain complexes. Then we use chain
homotopies to construct mapping cones of chain maps. Finally we explain how these refine the above long
exact sequences in homology groups to homotopy cofiber sequences of the chain complexes themselves.

A chain homotopy is a homotopy in Ch•( ). We first give the explicit definition, the more abstract
characterization is below in prop. 2.84.

Definition 2.80. A chain homotopy : ⇒  between two chain maps , : • → • in Ch•( ) is a sequence of
morphisms

{( : → + ) ∈ | ∈ ℕ}

in  such that

− = ∂ ∘ + − ∂ .

Remark 2.81. It may be useful to illustrate this with the following graphics, which however is not a
commuting diagram:

⋮ ⋮

↓ ↓

+ ⎯⎯⎯⎯⎯⎯⎯⎯⎯+ − +
+

↓ ↗ ↓

⎯⎯⎯⎯
−

↓ − ↗
−

↓ −

− ⎯⎯⎯⎯⎯⎯⎯⎯⎯− − −
−

↓ ↓

⋮ ⋮

.

Instead, a way to encode chain homotopies by genuine diagrammatics is below in prop. 2.84, for which we
introduce the interval object for chain complexes:

Definition 2.82. Let

• ≔ •( ( [1]))

be the normalized chain complex in  of the simplicial chains on the simplicial 1-simplex:

• = [⋯ → 0 → 0 → ⎯⎯⎯⎯
(− , )

⊕ ] .

Remark 2.83. This is the standard interval in chain complexes. Indeed it is manifestly the “abelianization”
of the standard interval object  in sSet/Top: the 1-simplex.

Proposition 2.84. A chain homotopy : ⇒  is equivalently a commuting diagram

•

↓ ↘

• ⊗ • ⎯⎯⎯⎯
( , , )

•

↑ ↗

•

in Ch•( ), hence a genuine left homotopy with respect to the interval object in chain complexes.

Proof. For notational simplicity we discuss this in = Ab.

Observe that •(ℤ( [1])) is the chain complex

(⋯ → 0 → 0 → ℤ ⎯⎯⎯⎯
(− , )

ℤ⊕ ℤ → 0 → 0 → ⋯)

where the term ℤ⊕ ℤ is in degree 0: this is the free abelian group on the set {(0), (1)} of 0-simplices in [1].
The other copy of ℤ is the free abelian group on the single non-degenerate edge (0 → 1) in [1]. (All other
simplices of [1] are degenerate and hence do not contribute to the normalized chain complex which we are
discussing here.) The single nontrivial differential sends 1 ∈ ℤ to (−1, 1) ∈ ℤ⊕ ℤ, reflecting the fact that one of
the vertices is the 0-boundary the other the 1-boundary of the single nontrivial edge.
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It follows that the tensor product of chain complexes • ⊗ • is

( ⊗ ) → ( ⊗ ) → ( ⊗ ) → ⋯

⋯ → ⊕ ⊕ → ⊕ ⊕ → − ⊕ ⊕ → ⋯
.

Therefore a chain map ( , , ): • ⊗ • → • that restricted to the two copies of • is  and , respectively, is
characterized by a collection of commuting diagrams

+ ⊕ + ⊕ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( + , + , )

⊗
↓ ↓

⊕ ⊕ − ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( , , − )

−

.

On the elements (1, 0, 0) and (0, 1, 0) in the top left this reduces to the chain map condition for  and ,
respectively. On the element (0, 0, 1) this is the equation for the chain homotopy

− − − = .

  ▮

Let • , • ∈ Ch•( ) be two chain complexes.

Definition 2.85. Define the relation chain homotopic on Hom( • , •) by

( ∼ ) ⇔ ∃( : ⇒ ) .

Proposition 2.86. Chain homotopy is an equivalence relation on Hom( • , •).

Definition 2.87. Write Hom( • , •)∼ for the quotient of the hom set Hom( • , •) by chain homotopy.

Proposition 2.88. This quotient is compatible with composition of chain maps.

Accordingly the following category exists:

Definition 2.89. Write •( ) for the category whose objects are those of Ch•( ), and whose morphisms are
chain homotopy classes of chain maps:

Hom •( )( • , •) ≔ Hom •( )( • , •)∼ .

This is usually called the (strong) homotopy category of chain complexes in .

Remark 2.90. Beware, as we will discuss in detail below in 8), that another category that would deserve to
carry this name instead is called the derived category of . In the derived category one also quotients out
chain homotopy, but one allows that first the domain of the two chain maps  and  is refined along a quasi-
isomorphism.

Definition 2.91. A chain map • : • → • in Ch•( ) is called a quasi-isomorphism if for each ∈ ℕ the

induced morphisms on chain homology groups

( ) : ( ) → ( )

is an isomorphism.

Remark 2.92. Quasi-isomorphisms are also called, more descriptively, homology isomorphisms or
•-isomorphisms. See at homology localization for more on this.

With the homotopy theoretic notions of chain homotopy and quasi-isomorphism in hand, we can now give a
deeper explanation of long exact sequences in homology. We first give now a heuristic discussion that
means to serve as a guide through the constructions to follow. The reader wishing to skip this may directly
jump ahead to definition 2.95.

While the notion of a short exact sequence of chain complexes is very useful for computations, it does not
have invariant meaning if one considers chain complexes as objects in (abelian) homotopy theory, where
one takes into account chain homotopies between chain maps and takes equivalence of chain complexes not
to be given by isomorphism, but by quasi-isomorphism.

For if a chain map • → • is the degreewise kernel of a chain map • → •, then if ^• →
≃

• is a quasi-

isomorphism (for instance a projective resolution of •) then of course the composite chain map ^• → • is in
general far from being the degreewise kernel of •. Hence the notion of degreewise kernels of chain maps
and hence that of short exact sequences is not meaningful in the homotopy theory of chain complexes in 
(for instance: not in the derived category of ).

That short exact sequences of chain complexes nevertheless play an important role in homological algebra is
due to what might be called a “technical coincidence”:
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Proposition 2.93. If • → • → • is a short exact sequence of chain complexes, then the commuting square

• → 0

↓ ↓

• → •

is not only a pullback square in Ch•( ), exhibiting • as the fiber of • → • over 0 ∈ •, it is in fact also a
homotopy pullback.

This means it is universal not just among commuting such squares, but also among such squares which
commute possibly only up to a chain homotopy :

• → 0

↓ ⇙ ↓

• → •

and with morphisms between such squares being maps • → ′•  correspondingly with further chain
homotopies filling all diagrams in sight.

Equivalently, we have the formally dual result

Proposition 2.94. If • → • → • is a short exact sequence of chain complexes, then the commuting square

• → 0

↓ ↓

• → •

is not only a pushout square in Ch•( ), exhibiting • as the cofiber of • → • over 0 ∈ •, it is in fact also a
homotopy pushout.

But a central difference between fibers/cofibers on the one hand and homotopy fibers/homotopy cofibers on
the other is that while the (co)fiber of a (co)fiber is necessarily trivial, the homotopy (co)fiber of a homotopy
(co)fiber is in general far from trivial: it is instead the looping (−) or suspension (−) of the
codomain/domain of the original morphism: by the pasting law for homotopy pullbacks the pasting
composite of successive homotopy cofibers of a given morphism : • → • looks like this:

• → • → 0

↓ ⇙ ↓ ⇙ ↓

0 → cone( ) → [1]• → 0

↓ ⇙ ↓ [ ] ⇙ ↓

0 → [1] → cone( )[1]• → ⋯

↓ ↓ ⋱

⋮

here

cone( ) is a specific representative of the homotopy cofiber of  called the mapping cone of , whose
construction comes with an explicit chain homotopy  as indicated, hence cone( ) is homology-
equivalence to • above, but is in general a “bigger” model of the homotopy cofiber;

[1] etc. is the suspension of a chain complex of , hence the same chain complex but pushed up in
degree by one.

In conclusion we get from every morphim of chain complexes a long homotopy cofiber sequence

⋯ → • → • → cone( ) → [1]• ⎯
[ ]

[1]• → cone( )[1]• → ⋯ .

And applying the chain homology functor to this yields the long exact sequence in chain homology which is
traditionally said to be associated to the short exact sequence • → • → •.

In conclusion this means that it is not really the passage to homology groups which “makes a short exact
sequence become long”. It’s rather that passing to homology groups is a shadow of passing to chain
complexes regarded up to quasi-isomorphism, and this is what makes every short exact sequence be
realized as but a special presentation of a stage in a long homotopy fiber sequence.

We give a precise account of this story in the next section.

5) Homotopy fiber sequences and mapping cones

We have seen in 4) the long exact sequence in homology implied by a short exact sequence of chain
complexes, constructed by an elementary if somewhat un-illuminating formula for the connecting
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homomorphism. We ended 4) by sketching how this formula arises as the shadow under the homology
functor of a homotopy fiber sequence of chain complexes, constructed using mapping cones. This we now
discuss in precise detail.

In the following we repeatedly mention that certain chain complexes are colimits of certain diagrams of
chain complexes. The reader unfamiliar with colimits may simply ignore them and regard the given chain
complex as arising by definition. However, even a vague intuitive understanding of the indicated colimits as
formalizations of “gluing” of chain complexes along certain maps should help to motivate why these
definitions are what they are. The reader unhappy even with this can jump ahead to prop. 2.105 and take
this and the following propositions up to and including prop. 2.112 as definitions.

The notion of a mapping cone that we introduce now is something that makes sense whenever

there is a notion of cylinder object, such as the topological cylinder [0, 1] ×  over a topological space, or
the chain complex cylinder • ⊗ • of a chain complex from def. 2.82.

1. 

there is a way to glue objects along maps between them, a notion of colimit.2. 

Definition 2.95. For : →  a morphism in a category with cylinder objects cyl(−), the mapping cone or
homotopy cofiber of  is the colimit in the following diagram

→

↓ ↓

→ cyl( )

↓ ↘ ↓

* → → cone( )

in  using any cylinder object cyl( ) for .

Remark 2.96. Heuristically this says that cone( ) is the object obtained by

forming the cylinder over ;1. 

gluing to one end of that the object  as specified by the map .2. 

shrinking the other end of the cylinder to the point.3. 

Heuristically it is clear that this way every cycle in  that happens to be in the image of  can be
“continuously” translated in the cylinder-direction, keeping it constant in , to the other end of the cylinder,
where it becomes the point. This means that every homotopy group of  in the image of  vanishes in the
mapping cone. Hence in the mapping cone the image of  under  in  is removed up to homotopy.
This makes it clear how cone( ) is a homotopy-version of the cokernel of . And therefore the name
“mapping cone”.

Another interpretation of the mapping cone is just as important:

Remark 2.97. A morphism : cyl( ) →  out of a cylinder object is a left homotopy : ⇒ ℎ between its
restrictions ≔ (0) and ℎ ≔ (1) to the cylinder boundaries

↓ ↘

cyl( ) →

↑ ↗

.

Therefore prop. 2.95 says that the mapping cone is the universal object with a morphism  from  and a left
homotopy from ∘  to the zero morphism.

→

↓ ⇙ ↓

* → cone( )

The interested reader can find more on the conceptual background of this construction at factorization
lemma and at homotopy pullback.

Proposition 2.98. This colimit, in turn, may be computed in two stages by two consecutive pushouts in ,
and in two ways by the following pasting diagram:
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→

↓ ↓

→ cyl( ) → cyl( )

↓ ↓ ↓

* → cone( ) → cone( )

.

Here every square is a pushout, (and so by the pasting law is every rectangular pasting composite).

This now is a basic fact in ordinary category theory. The pushouts appearing here go by the following
names:

Definition 2.99. The pushout

→ cyl( )

↓ ↓

* → cone( )

defines the cone cone( ) over  (with respect to the chosen cylinder object): the result of taking the cylinder
over  and identifying one -shaped end with the point.

The pushout

→

↓ ↓

cyl( ) → cyl( )

defines the mapping cylinder cyl( ) of , the result of identifying one end of the cylinder over  with ,
using  as the gluing map.

The pushout

cyl( ) → cyl( )

↓ ↓

cone( ) → cone( )

defines the mapping cone cone( ) of : the result of forming the cyclinder over  and then identifying one
end with the point and the other with , via .

Remark 2.100. As in remark 2.96 all these step have evident heuristic geometric interpretations:

cone( ) is obtained from the cylinder over  by contracting one end of the cylinder to the point;1. 

cyl( ) is obtained from the cylinder over  by gluing  to one end of the cylinder, as specified by the
map ;

2. 

We discuss now this general construction of the mapping cone cone( ) for a chain map  between chain
complexes. The end result is prop. 2.112 below, reproducing the classical formula for the mapping cone.

Definition 2.101. Write *• ∈ Ch•( ) for the chain complex concentrated on  in degree 0

*• 0 = [⋯ → 0 → 0 → ] .

Remark 2.102. This may be understood as the normalized chain complex of chains of simplices on the
terminal simplicial set , the 0-simplex.

Definition 2.103. Let • ∈ Ch•( ) be given by

• = (⋯0 → 0 → ⎯⎯⎯⎯
(− , )

⊕ ) .

Denote by

: *• → •

the chain map which in degree 0 is the canonical inclusion into the second summand of a direct sum and by

: *• → •

correspondingly the canonical inclusion into the first summand.

Remark 2.104. This is the standard interval object in chain complexes.

It is in fact the normalized chain complex of chains on a simplicial set for the canonical simplicial interval,
the 1-simplex:
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• = •( [1]) .

The differential ∂ = (−id, id) here expresses the alternating face map complex boundary operator, which in
terms of the three non-degenerate basis elements is given by

∂(0 → 1) = (1) − (0) .

We decompose the proof of this statement is a sequence of substatements.

Proposition 2.105. For • ∈ Ch• the tensor product of chain complexes

( ⊗ )• ∈ Ch•

is a cylinder object of • for the structure of a category of cofibrant objects on Ch• whose cofibrations are the
monomorphisms and whose weak equivalences are the quasi-isomorphisms (the substructure of the
standard injective model structure on chain complexes).

Example 2.106. In example 2.60 above we saw the cyclinder over the interval itself: the square.

Proposition 2.107. The complex ( ⊗ )• has components

( ⊗ ) = ⊕ ⊕ −

and the differential is given by

+ ⊕ + ⎯⎯⎯⎯⎯
⊕

⊕

⊕ ↗(− , ) ⊕

⎯⎯
−

−

,

hence in matrix calculus by

∂ ⊗ =
æ

è
ç
ç
∂ ⊕ ∂ (−id, id)

0 −∂

ö

ø
÷
÷: ( + ⊕ + ) ⊕ → ( ⊕ )⊕ − .

Proof. By the formula discussed at tensor product of chain complexes the components arise as the direct
sum

( ⊗ ) = ( ( ) ⊗ )⊕ ( ( ) ⊗ )⊕ ( ( → ) ⊗ ( − ))

and the differential picks up a sign when passed past the degree-1 term ( → ):

∂ ⊗ ((0 → 1), ) = ((∂ (0 → 1)), ) − ((0 → 1), ∂ )

= (−(0) + (1), ) − ((0 → 1), ∂ )

= −((0), ) + ((1), ) − ((0 → 1), ∂ )

.

  ▮

Remark 2.108. The two boundary inclusions of • into the cylinder are given in terms of def. 2.103 by

: • ≃ *• ⊗ • ⎯⎯⎯⎯
⊗

( ⊗ )•

and

: • ≃ *• ⊗ • ⎯⎯⎯⎯
⊗

( ⊗ )•

which in components is the inclusion of the second or first direct summand, respectively

↪ ⊕ ⊕ − .

One part of definition 2.99 now reads:

Definition 2.109. For • : • → • a chain map, the mapping cylinder cyl( ) is the pushout

cyl( )• ← •

↑ ↑

• ⊗ • ← •

.

Proposition 2.110. The components of cyl( ) are

cyl( ) = ⊕ ⊕ −

and the differential is given by
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+ ⊕ + ⎯⎯⎯⎯⎯
⊕

⊕

⊕ ↗(− , ) ⊕

⎯⎯
−

−

,

hence in matrix calculus by

∂ ( ) =
∂ ⊕ ∂ (−id, )

0 −∂
:( + ⊕ + ) ⊕ → ( ⊕ )⊕ − .

Proof. The colimits in a category of chain complexes Ch•( ) are computed in the underlying presheaf
category of towers in . There they are computed degreewise in  (see at limits in presheaf categories).
Here the statement is evident:

the pushout identifies one direct summand  with  along  and so where previously a id  appeared on

the diagonl, there is now .  ▮

The last part of definition 2.99 now reads:

Definition 2.111. For • : • → • a chain map, the mapping cone cone( ) is the pushout

cone( ) ← cyl( )

↑ ↑

cone( ) ← ⊗

↑ ↑

0 ←

Proposition 2.112. The components of the mapping cone cone( ) are

cone( ) = ⊕ −

with differential given by

+ ®¾

⊕ ↗ ⊕

⎯⎯
−

−

,

and hence in matrix calculus by

∂ ( ) =
∂

0 −∂
: + ⊕ → ⊕ − .

Proof. As before the pushout is computed degreewise. This identifies the remaining unshifted copy of  with
0.  ▮

Proposition 2.113. For : • → • a chain map, the canonical inclusion : • → cone( )• of • into the mapping

cone of  is given in components

: → cone( ) = ⊕ −

by the canonical inclusion of a summand into a direct sum.

Proof. This follows by starting with remark 2.108 and then following these inclusions through the formation
of the two colimits as discussed above.  ▮

Using these mapping cones of chain maps, we now explain how the long exact sequences of homology
groups, prop. 2.78, are a shadow under homology of genuine homotopy cofiber sequences of the chain
complexes themselves.

Let : • → • be a chain map and write cone( ) ∈ Ch•( ) for its mapping cone as explicitly given in prop.
2.112.

Definition 2.114. Write [1]• ∈ Ch•( ) for the suspension of a chain complex of . Write

: cone( ) → [1]•

for the chain map which in components

: cone( ) → [1]

is given, via prop. 2.112, by the canonical projection out of a direct sum
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: ⊕ − → − .

This defines the mapping cone construction on chain complex. Its definition as a universal left homotopy
should make the following proposition at least plausible, which we cannot prove yet at this point, but which
we state nevertheless to highlight the meaning of the mapping cone construction. The tools for the proof of
propositions like this are discussed further below in 7) Derived categories and derived functors.

Proposition 2.115. The chain map : cone( )• → [1]• represents the homotopy cofiber of the canonical map

: • → cone( )•.

Proof. By prop. 2.113 and def. 2.114 the sequence

• → cone( )• → [1]•

is a short exact sequence of chain complexes (since it is so degreewise, in fact degreewise it is even a split
exact sequence, def. 2.73). In particular we have a cofiber pushout diagram

• ↪ cone( )•

↓ ↓

0 → [1]•

.

Now, in the injective model structure on chain complexes all chain complexes are cofibrant objects and an
inclusion such as : • ↪ cone( )• is a cofibration. By the detailed discussion at homotopy limit this means that

the ordinary colimit here is in fact a homotopy colimit, hence exhibits  as the homotopy cofiber of .  ▮

Accordingly one says:

Corollary 2.116. For • : • → • a chain map, there is a homotopy cofiber sequence of the form

• →
•

• →
• cone( )• →

• [1]• ⎯⎯
[ ]•

• ⎯
[ ]• cone( )• ⎯⎯

[ ]• [2]• → ⋯

In order to compare this to the discussion of connecting homomorphisms, we now turn attention to the case
that • happens to be a monomorphism. Notice that this we can always assume, up to quasi-isomorphism,

for instance by prolonging  by the map into its mapping cylinder

• → • →
≃ cyl( ) .

By the axioms on an abelian category in this case we have a short exact sequence

0 → • →
•

• →
•

• → 0

of chain complexes. The following discussion revolves around the fact that now cone( )• as well as • are

both models for the homotopy cofiber of .

Lemma 2.117. Let

• →
•

• →
•

•

be a short exact sequence of chain complexes.

The collection of linear maps

ℎ : ⊕ − → →

constitutes a chain map

ℎ• : cone( )• → • .

This is a quasi-isomorphism. The inverse of (ℎ•) is given by sending a representing cycle ∈  to

(^ , ∂ ^ ) ∈ ⊕ + ,

where ^  is any choice of lift through  and where ∂ ^  is the formula expressing the connecting

homomorphism in terms of elements, as discussed at Connecting homomorphism – In terms of elements.

Finally, the morphism • : • → cone( )• is eqivalent in the homotopy category (the derived category) to the

zigzag

cone( )•

↓≃

• → •

.

Proof. To see that ℎ• defines a chain map recall the differential ∂ ( ) from prop. 2.112, which acts by
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∂ ( )( − , ^ ) = (−∂ − , ∂ ^ + − )

and use that −  is in the kernel of  by exactness, hence

ℎ − ∂ ( )( − , ^ ) = ℎ − (−∂ − , ∂ ^ + − )

= − (∂ ^ + − )

= − (∂ ^ )

= ∂ ^

= ∂ ℎ ( − , ^ )

.

It is immediate to see that we have a commuting diagram of the form

cone( )•

• ↗ ↓≃

• → •

since the composite morphism is the inclusion of  followed by the bottom morphism on .

Abstractly, this already implies that cone( )• → • is a quasi-isomorphism, for this diagram gives a morphism

of cocones under the diagram defining cone( ) in prop. 2.95 and by the above both of these cocones are
homotopy-colimiting.

But in checking the claimed inverse of the induced map on homology groups, we verify this also explicity:

We first determine those cycles ( − , ) ∈ cone( )  which lift a cycle . By lemma 2.95 a lift of chains is any

pair of the form ( − , ^ ) where ^  is a lift of  through → . So −  has to be found such that this pair
is a cycle. By prop. 2.112 the differential acts on it by

∂ ( )( − , ^ ) = (−∂ − , ∂ ^ + − )

and so the condition is that

− ≔ −∂ ^  (which implies ∂ − = −∂ ∂ ^ = −∂ ∂ ^ = 0 due to the fact that  is assumed to be an

inclusion, hence that ∂  is the restriction of ∂  to elements in ).

This condition clearly has a unique solution for every lift ^  and a lift ^  always exists since : →  is

surjective, by assumption that we have a short exact sequence of chain complexes. This shows that (ℎ•) is
surjective.

To see that it is also injective we need to show that if a cycle (−∂ ^ ,^ ) ∈ cone( )  maps to a cycle

= (^ ) that is trivial in ( ) in that there is +  with ∂ + = , then also the original cycle was trivial

in homology, in that there is ( , + ) with

∂ ( )( , + ) ≔ (−∂ , ∂ + + ) = (−∂ ^ , ^ ) .

For that let ^ + ∈ +  be a lift of +  through , which exists again by surjectivity of + . Observe that

(^ − ∂ ^
+ ) = − ∂ ( ^

+ ) = − ∂ ( + ) = 0

by assumption on  and + , and hence that ^ − ∂ ^
+  is in  by exactness.

Hence ( − ∂ ^
+ , ^ + ) ∈ cone( )  trivializes the given cocycle:

∂ ( )(^ − ∂ ^
+ , ^ + ) = (−∂ (^ − ∂ ^

+ ), ∂ ^
+ + (^ − ∂ ^

+ ))

= (−∂ (^ − ∂ ^
+ ), ^ )

= (−∂ ^ ,^ )

.

  ▮

Theorem 2.118. Let

• →
•

• → •

be a short exact sequence of chain complexes.

Then the chain homology functor

(−):Ch•( ) →

sends the homotopy cofiber sequence of , cor. 2.116, to the long exact sequence in homology induced by
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the given short exact sequence, hence to

( •) → ( •) → ( •) → − ( •) → − ( •) → − ( •) → − ( •) → ⋯ ,

where  is the th connecting homomorphism.

Proof. By lemma 2.117 the homotopy cofiber sequence is equivalen to the zigzag

cone( )[1]• → ⋯

↓≃
[ ]•

cone( )• → [1]• ⎯⎯
[ ]• [1]• → [1]•

↓≃
•

• →• • → •

.

Observe that

( [ ]•) ≃ − ( •) .

It is therefore sufficient to check that

⎛

⎝

⎜⎜

cone( )• → [1]•

↓≃

•

⎞

⎠

⎟⎟
: ( •) → (cone( )•) → − ( •)

equals the connecting homomorphism  induced by the short exact sequence.

By prop. 2.117 the inverse of the vertical map is given by choosing lifts and forming the corresponding
element given by the connecting homomorphism. By prop. 2.115 the horizontal map is just the projection,
and hence the assignment is of the form

[ ] ↦ [ − , ] ↦ [ − ] .

So in total the image of the zig-zag under homology sends

[ ] ↦ −[∂ ^ ] .

By the discussion there, this is indeed the action of the connecting homomorphism.  ▮

In summary, the above says that for every chain map • : • → • we obtain maps

• → • ⎯⎯⎯

æ

è
ç
ç •

ö

ø
÷
÷

cone( )• ⎯⎯⎯⎯⎯⎯⎯
[ ]•

[1]•

which form a homotopy fiber sequence and such that this sequence continues by forming suspensions,
hence for all ∈ ℤ we have

[ ]• → [ ]• ⎯⎯⎯⎯⎯⎯
[ ]•

cone( )[ ]• ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
[ + ]•

[ + 1]•

To amplify this quasi-cyclic behaviour one sometimes depicts the situation as follows:

• → •

[ ] ↖ ↙

cone( )•

and hence speaks of a “triangle”, or distinguished triangle or mapping cone triangle of .

distinguished triangle = period of homotopy fiber sequence .

Due to these “triangles” one calls the homotopy category of chain complexes localized at the quasi-
isomorphisms, hence the derived category which we discuss below in 8), a triangulated category.

6) Double complexes and the diagram chasing lemmas

We have seen in the discussion of the connecting homomorphism in the homology long exact sequence in 4)
above that given an exact sequence of chain complexes – hence in particular a chain complex of chain
complexes – there are interesting ways to relate elements on the far right to elements on the far left in
lower degree. In 5) we had given the conceptual explanation of this phenomenon in terms of long homotopy
fiber sequences. But often it is just computationally useful to be able to efficiently establish and compute
these “long diagram chase”-relations, independently of a homotopy-theoretic interpretation. Such
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computational tools we discuss here.

A chain complex of chain complex is called a double complex and so we first introduce this elementary
notion and the corresponding notion notion of total complex. (Total complexes are similarly elementary to
define but will turn out to play a deeper role as models for homotopy colimits, this we indicate further below
in chapter V)).

There is a host of classical diagram-chasing lemmas that relate far-away entries in double complexes that
enjoy suitable exactness properties. These go by names such as the snake lemma or the 3x3 lemma. The
underlying mechanism of all these lemmas is made most transparent in the salamander lemma. This is fairly
trivial to establish, and the notions it induces allow quick transparent proofs of all the other diagram-chasing
lemmas.

The discussion to go here is kept at salamander lemma. See there.

3. III) Abelian homotopy theory

We have seen in section II) that the most interesting properties of the category of chain complexes is all
secretly controled by the phenomenon of chain homotopy and quasi-isomorphism. Strictly speaking these
two phenomena point beyond plain category theory to the richer context of general abstract homotopy
theory. Here we discuss properties of the category of chain complexes from this genuine homotopy-theoretic
point of view. The result of passing the category of chain complexes to genuine homotopy theory is called
the derived category (of the underlying abelian category , say of modules) and we start in 7) with a
motivation of the phenomenon of this “homotopy derivation” and the discussion of the necessary resolutions
of chain complexes. This naturally gives rise to the general notion of derived functors which we discuss in
8). Examples of these are ubiquituous in homological algebra, but as in ordinary enriched category theory
two stand out as being of more fundamental importance, the derived functor “Ext” of the hom-functor and
the derived functor “Tor” of the tensor product functor. Their properties and uses we discuss in 9).

7) Chain homotopy and resolutions

We now come back to the category ( ) of def. 2.89, the “homotopy category of chain complexes” in which
chain-homotopic chain maps are identified. This would seem to be the right context to study the homotopy
theory of chain complexes, but one finds that there are still chain maps which ought to be identified in
homotopy theory, but which are still not identified in ( ). This is our motivating example 3.1 below.

We discuss then how this problem is fixed by allowing to first “resolve” chain complexes quasi-isomorphically
by “good representatives” called projective resolutions or injective resolutions. Many of the computations in
the following sections – and in homological algebra in general – come down to operating on such
resolutions. We end this section by prop. 3.29 below, which shows that the above problem indeed goes away
when allowing chain complexes to be resolved.

In the next section, 8), we discuss how this process of forming resolutions functorially extends to the whole
category of modules.

So we start here with this simple example that shows the problem with bare chain homotopies and indicates
how these have to be resolved:

Example 3.1. In Ch•( ) for = Ab consider the chain map

⋯ → 0 → 0 → 0 → ℤ

↓ ↓ ↓ ↓

⋯ → 0 → ℤ →
⋅

ℤ ⎯⎯⎯ ℤ

.

The codomain of this map is an exact sequence, hence is quasi-isomorphic to the 0-chain complex.
Thereofore in homotopy theory it should behave entirely as the 0-complex itself. In particular, every chain
map to it should be chain homotopic to the zero morphism (have a null homotopy).

But the above chain map is chain homotopic precisely only to itself. This is because the degree-0 component
of any chain homotopy out of this has to be a homomorphism of abelian groups ℤ → ℤ, and this must be the
0-morphism, because ℤ is a free group, but ℤ  is not.

This points to the problem: the components of the domain chain complex are not free enough to admit
sufficiently many maps out of it.

Consider therefore a free resolution of the above domain complex by the quasi-isomorphism

⋯ → 0 → 0 → ℤ →
⋅

ℤ

↓ ↓ ↓ ↓

⋯ → 0 → 0 → 0 → ℤ

,

where now the domain complex consists entirely of free groups. The composite of this with the original
chain map is now
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⋯ → 0 → 0 → ℤ →
⋅

ℤ

↓ ↓ ↓ ↓

⋯ → 0 → ℤ →
⋅

ℤ ⎯⎯⎯ ℤ

.

This is the corresponding resolution of the original chain map. And this indeed has a null homotopy:

⋯ → 0 → 0 → ℤ →
⋅

ℤ

↓ ↙ ↓ ↙− ↓ ↙ ↓

⋯ → 0 → ℤ →
⋅

ℤ ⎯⎯⎯ ℤ

.

So resolving the domain by a sufficiently free complex makes otherwise missing chain homotopies exist.
Below in lemma 3.30 we discuss the general theory behind the kind of situation of this example. But to get
there we first need some basic notions and facts.

Notably, in general it is awkward to insist on actual free resolutions. But it is easy to see, and this we
discuss now, that essentially just as well is a resolution by modules which are direct summands of free
modules.

Definition 3.2. An object  of a category  is a projective object if it has the left lifting property against
epimorphisms.

This means that  is projective if for any morphism : →  and any epimorphism : → ,  factors through
 by some morphism → .

∃ ↗ ↓

→

.

An equivalent way to say this is that:

Definition 3.3. An object  is projective precisely if the hom-functor Hom( , −) preserves epimorphisms.

Remark 3.4. The point of this lifting property will become clear when we discuss the construction of
projective resolutions a bit further below: they are built by applying this property degreewise to obtain
suitable chain maps.

We will be interested in projective objects in the category Mod: projective modules. Before we come to
that, notice the following example (which the reader may on first sight feel is pedantic and irrelevant, but
for the following it is actually good to make this explicit).

Example 3.5. In the category Set of sets the following are equivalent

every object is projective;

the axiom of choice holds.

Remark 3.6. We will assume here throughout the axiom of choice in Set, as usual. The point of the above
example, however, is that one could just as well replace Set by another “base topos” which will behave
essentially precisely like Set, but in general will not validate the axiom of choice. Homological algebra in
such a more general context is the theory of complexes of abelian sheaves/sheaves of abelian groups and
ultimately the theory of abelian sheaf cohomology.

This is a major aspect of homological algebra. While we will not discuss this further here in this introduction,
the reader might enjoy keeping in mind that all of the following discussion of resolutions of -modules goes
through in this wider context of sheaves of modules except for subtleties related to the (partial) failure of
example 3.5 for the category of sheaves.

We now characterize projective modules.

Lemma 3.7. Assuming the axiom of choice, a free module ≃ ( ) is projective.

Proof. Explicitly: if ∈ Set and ( ) = ( ) is the free module on , then a module homomorphism ( ) →  is
specified equivalently by a function : → ( ) from  to the underlying set of , which can be thought of as
specifying the images of the unit elements in ( ) ≃ ⊕ ∈  of the | | copies of .

Accordingly then for ˜ →  an epimorphism, the underlying function ( ˜ ) → ( ) is an epimorphism, and the

axiom of choice in Set says that we have all lifts ˜  in

( ˜ )

˜ ↗ ↓

→ ( )

.
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By adjunction these are equivalently lifts of module homomorphisms

˜

↗ ↓

( ) →

.

  ▮

Lemma 3.8. If ∈ Mod is a direct summand of a free module, hence if there is ′ ∈ Mod and ∈ Set such
that

( ) ≃ ⊕ ′ ,

then  is a projective module.

Proof. Let ˜ →  be a surjective homomorphism of modules and : →  a homomorphism. We need to
show that there is a lift ˜  in

˜

˜ ↗ ↓

→

.

By definition of direct sum we can factor the identity on  as

id : → ⊕ ′ → .

Since ⊕ ′  is free by assumption, and hence projective by lemma 3.7, there is a lift ^ in

˜

^
↗ ↓

→ ⊕ ′ →

.

Hence ˜ : → ⊕ ′ →
^
˜  is a lift of .  ▮

Proposition 3.9. An -module  is projective precisely if it is the direct summand of a free module.

Proof. By lemma 3.8 if  is a direct summand then it is projective. So we need to show the converse.

Let ( ( )) be the free module on the set ( ) underlying , hence the direct sum

( ( )) = ⊕ ∈ ( ) .

There is a canonical module homomorphism

⊕ ∈ ( ) →

given by sending the unit 1 ∈  of the copy of  in the direct sum labeled by ∈ ( ) to ∈ .

(Abstractly this is the counit : ( ( )) →  of the free/forgetful-adjunction ( ⊣ ).)

This is clearly an epimorphism. Thefore if  is projective, there is a section  of . This exhibits  as a direct
summand of ( ( )).  ▮

We discuss next how to build resolutions of chain complexes by projective modules. But before we come to
that it is useful to also introduce the dual notion. So far we have concentrated on chain complexes with
degrees in the natural numbers: non-negative degrees. For a discussion of resolutions we need a more
degree-symmetric perspective, which of course is straightforward to obtain.

Definition 3.10. A cochain complex • in = Mod is a sequence of morphism

®¾ ®¾ → ⋯

in  such that ∘ = 0. A homomorphism of cochain complexes •: • → • is a collection of morphisms
{ : → } such that ∘ = ∘  for all ∈ ℕ.

We write Ch•( ) for the category of cochain complexes.

Example 3.11. Let ∈  be a fixed module and • ∈ Ch•( ) a chain complex. Then applying degreewise the
hom-functor out of the components of • into  yields a cochain complex in ℤMod ≃ Ab:

Hom ( • , ) = Hom ( , ) ⎯⎯⎯⎯⎯⎯⎯⎯⎯
( , )

Hom ( , ) ⎯⎯⎯⎯⎯⎯⎯⎯⎯
( , )

Hom ( , ) ⎯⎯⎯⎯⎯⎯⎯⎯⎯
( , )

⋯ .

Example 3.12. In example 3.11 let = ℤMod = Ab, let = ℤ and let • = ℤ[Sing( )] be the singular
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simplicial complex of a topological space . Write

•( ) ≔ Homℤ[ ],ℤ .

Then •( ( )) is called the singular cohomology of .

Remark 3.13. Example 3.11 is just a special case of the internal hom of def. 2.63: we may regard cochain
complexes in non-negative degree equivalently as chain complexes in positive degree.

Accordingly we say for • a cochain complex that

an element in  is an -cochain

an element in im( − ) is an -coboundary

al element in ker( ) is an -cocycle.

But equivalently we may regard a cochain in degree  as a chain in degree (− ) and so forth. And this is the
perspective used in all of the following.

The role of projective objects, def. 3.2, for chain complexes is played, dually, by injective objects for cochain
complexes:

Definition 3.14. An object  a category is injective if all diagrams of the form

→

↓

with →  a monomorphism admit an extension

→

↓ ↗∃ .

Since we are interested in refining modules by projective or injective modules, we have the following
terminology.

Definition 3.15. A category

has enough projectives if for every object  there is a projective object  equipped with an
epimorphism → ;

has enough injectives if for every object  there is an injective object  equipped with a
monomorphism → .

We have essentially already seen the following statement.

Proposition 3.16. Assuming the axiom of choice, the category Mod has enough projectives.

Proof. Let ( ( )) be the free module on the set ( ) underlying . By lemma 3.7 this is a projective
module.

The canonical morphism

( ( )) = ⊕ ∈ ( ) →

is clearly a surjection, hence an epimorphism in Mod.  ▮

We now show that similarly Mod has enough injectives. This is a little bit more work and hence we proceed
with a few preparatory statements.

The following basic statement of algebra we cite here without proof (but see at injective object for details).

Proposition 3.17. Assuming the axiom of choice, an abelian group  is injective as a ℤ-module precisely if
it is a divisible group, in that for all integers ∈ ℕ we have = .

Example 3.18. By prop. 3.17 the following abelian groups are injective in Ab.

The group of rational numbers ℚ is injective in Ab, as is the additive group of real numbers ℝ and generally
that underlying any field. The additive group underlying any vector space is injective. The quotient of any
injective group by any other group is injective.

Example 3.19. Not injective in Ab are the cyclic groups ℤ/ ℤ.

Proposition 3.20. Assuming the axiom of choice, the category ℤMod ≃ Ab has enough injectives.
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Proof. By prop. 3.17 an abelian group is an injective ℤ-module precisely if it is a divisible group. So we need
to show that every abelian group is a subgroup of a divisible group.

To start with, notice that the group ℚ of rational numbers is divisible and hence the canonical embedding
ℤ ↪ ℚ shows that the additive group of integers embeds into an injective ℤ-module.

Now by the discussion at projective module every abelian group  receives an epimorphism ( ⊕ ∈ ℤ) →

from a free abelian group, hence is the quotient group of a direct sum of copies of ℤ. Accordingly it embeds
into a quotient ˜  of a direct sum of copies of ℚ.

ker →= ker

↓ ↓

( ⊕ ∈ ℤ) ↪ (⊕ ∈ ℚ)

↓ ↓

↪ ˜

Here ˜  is divisible because the direct sum of divisible groups is again divisible, and also the quotient group
of a divisible groups is again divisble. So this exhibits an embedding of any  into a divisible abelian group,
hence into an injective ℤ-module.  ▮

Proposition 3.21. Assuming the axiom of choice, for  a ring, the category Mod has enough injectives.

The proof uses the following lemma.

Write : Mod → Ab for the forgetful functor that forgets the -module structure on a module  and just
remembers the underlying abelian group ( ).

Lemma 3.22. The functor : Mod → Ab has a right adjoint

* :Ab → Mod

given by sending an abelian group  to the abelian group

( *( )) ≔ Ab( ( ), )

equipped with the -module struture by which for ∈  an element ( ( ) → ) ∈ ( *( )) is sent to the
element  given by

: ′ ↦ ( ′ ⋅ ) .

This is called the coextension of scalars along the ring homomorphism ℤ → .

The unit of the ( ⊣ *) adjunction

: → *( ( ))

is the -module homomorphism

: → Hom ( ( ), ( ))

given on ∈  by

( ): ↦ .

Proof. of prop. 3.21

Let ∈ Mod. We need to find a monomorphism → ˜  such that ˜  is an injective -module.

By prop. 3.20 there exists a monomorphism

: ( ) ↪

of the underlying abelian group into an injective abelian group .

Now consider the ( ⊣ *)-adjunct

→ *( )

of , hence the composite

®¾ *( ( )) ⎯⎯*
( )

*( )

with * and  from lemma 3.22. On the underlying abelian groups this is

( ) ⎯⎯⎯
( )

Hom ( ( ), ( )) ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( ( ), )

Hom ( ( ), ( )) .
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Hence this is monomorphism. Therefore it is now sufficient to see that Hom ( ( ), ( )) is an injective
-module.

This follows from the existence of the adjunction isomorphism given by lemma 3.22

Hom ( ( ), ( )) ≃ Hom ( ,Hom ( ( ), ( )))

natural in ∈ Mod and from the injectivity of ∈ Ab.

( ) →

↓ ↗

( )

↔

→ *

↓ ↗ .

  ▮

Now we can state the main definition of this section and discuss its central properties.

Definition 3.23. For ∈  an object, an injective resolution of  is a cochain complex • ∈ Ch•( ) (in
non-negative degree) equipped with a quasi-isomorphism

: →∼ •

such that ∈  is an injective object for all ∈ ℕ.

Remark 3.24. In components the quasi-isomorphism of def. 3.23 is a chain map of the form

→ 0 → ⋯ → 0 → ⋯

↓ ↓ ↓

®¾ ®¾ ⋯ → ®¾ ⋯

.

Since the top complex is concentrated in degree 0, this being a quasi-isomorphism happens to be equivalent
to the sequence

0 → → ®¾ ®¾ → ⋯

being an exact sequence. In this form one often finds the definition of injective resolution in the literature.

Definition 3.25. For ∈  an object, a projective resolution of  is a chain complex • ∈ Ch•( ) (in

non-negative degree) equipped with a quasi-isomorphism

: • →
∼

such that ∈  is a projective object for all ∈ ℕ.

Remark 3.26. In components the quasi-isomorphism of def. 3.25 is a chain map of the form

⋯ ®¾ ⎯⎯
−

⋯ → →

↓ ↓ ↓

⋯ → 0 → ⋯ → 0 →

.

Since the bottom complex is concentrated in degree 0, this being a quasi-isomorphism happens to be
equivalent to the sequence

⋯ → → → → 0

being an exact sequence. In this form one often finds the definition of projective resolution in the literature.

We first discuss the existence of injective/projective resolutions, and then the functoriality of their
constructions.

Proposition 3.27. Let  be an abelian category with enough injectives, such as our Mod for some ring .

Then every object ∈  has an injective resolution, def. 3.23.

Proof. Let ∈  be the given object. By remark 3.24 we need to construct an exact sequence of the form

0 → → ®¾ ®¾ → ⋯ → → ⋯

such that all the ⋅ are injective objects.

This we now construct by induction on the degree ∈ ℕ.

In the first step, by the assumption of enough injectives we find an injective object  and a monomorphism
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↪

hence an exact sequence

0 → → .

Assume then by induction hypothesis that for ∈ ℕ an exact sequence

→ ®¾⋯ → − ⎯⎯⎯
−

has been constructed, where all the ⋅ are injective objects. Forming the cokernel of −  yields the short
exact sequence

0 → − ⎯⎯⎯
−

→ / − → 0 .

By the assumption that there are enough injectives in  we may now again find a monomorphism

/ − ↪ +  into an injective object + . This being a monomorphism means that

− ⎯⎯⎯
−

®¾¾¾
≔ ∘ +

is exact in the middle term. Therefore we now have an exact sequence

0 → → → ⋯ → − ⎯⎯⎯
−

®¾ +

which completes the induction step.  ▮

The following proposition is formally dual to prop. 3.27.

Proposition 3.28. Let  be an abelian category with enough projectives (such as Mod for some ring ).

Then every object ∈  has a projective resolution, def. 3.25.

Proof. Let ∈  be the given object. By remark 3.26 we need to construct an exact sequence of the form

⋯ → → → → → 0

such that all the ⋅ are projective objects.

This we we now construct by induction on the degree ∈ ℕ.

In the first step, by the assumption of enough projectives we find a projective object  and an epimorphism

→

hence an exact sequence

→ → 0 .

Assume then by induction hypothesis that for ∈ ℕ an exact sequence

⎯⎯⎯
−

− → ⋯ → → → 0

has been constructed, where all the ⋅ are projective objects. Forming the kernel of ∂ −  yields the short

exact sequence

0 → ker(∂ − ) → ⎯⎯
−

− → 0 .

By the assumption that there are enough projectives in  we may now again find an epimorphism
: + → ker(∂ − ) out of a projective object + . This being an epimorphism means that

+ ⎯⎯⎯⎯⎯
≔ ∘

⎯⎯
−

is exact in the middle term. Therefore we now have an exact sequence

+ ®¾ ⎯⎯⎯
−

⋯ → → → 0 ,

which completes the induction step.  ▮

To conclude this section we now show that all this work indeed serves to solve the problem indicated above
in example 3.1.

Proposition 3.29. Let •: • → • be a chain map of cochain complexes in non-negative degree, out of an
exact complex 0 ≃ • to a degreewise injective complex •. Then there is a null homotopy

:0 ⇒ •
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Proof. By definition of chain homotopy we need to construct a sequence of morphisms ( + : + → ) ∈ℕ

such that

= + ∘ + − ∘ .

for all . We now construct this by induction over .

It is convenient to start at = −1, take ≤ ≔ 0 and ≔ 0. Then the above condition holds for = −1.

Then in the induction step assume that for given ∈ ℕ we have constructed • ≤  satisfying the above
condition for 

First define now

≔ − − ∘

and observe that by induction hypothesis

∘ − = ∘ − − − ∘ ∘ −

= ∘ − − − ∘ − + − ∘ − ∘ −

= 0 + 0

= 0

.

This means that  factors as

→ /im( − ) ®¾ ,

where the first map is the projection to the quotient.

Observe then that by exactness of • the morphism /im( − ) ®¾ +  is a monomorphism. Together this
gives us a diagram of the form

/im( − ) ®¾ +

↓ ↙ +
,

where the morphism +  may be found due to the defining right lifting property of the injective object
against the top monomorphism.

Observing that the commutativity of this diagram is the chain homotopy condition involving  and + , this
completes the induction step.  ▮

The formally dual statement of prop 3.29 is the following.

Lemma 3.30. Let • : • → • be a chain map of chain complexes in non-negative degree, into an exact

complex 0 ≃ • from a degreewise projective complex •. Then there is a null homotopy

:0 ⇒ •

Proof. This is formally dual to the proof of prop 3.29.  ▮

Hence we have seen now that injective and projective resolutions of chain complexes serve to make chain
homotopy interact well with quasi-isomorphism. In the next section we show that this construction lifts from
single chain complexes to chain maps between chain complexes and in fact to the whole category of chain
complexes. The resulting “resolved” category of chain complexes is the derived category, the true home of
the abelian homotopy theory of chain complexes.

8) The derived category

In the previous section we have seen that every object ∈  admits an injective resolution and a projective
resolution. Here we lift this construction to morphisms and then to the whole category of chain complexes,
up to chain homotopy.

The following proposition says that, when injectively resolving objects, the morphisms between these
objects lift to the resolutions, and the following one, prop. 3.32, says that this lift is unique up to chain
homotopy.

Proposition 3.31. Let : →  be a morphism in . Let

: →∼ •

be an injective resolution of  and
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: →∼ •

any monomorphism that is a quasi-isomorphism (possibly but not necessarily an injective resolution). Then
there is a chain map •: • → • giving a commuting diagram

→∼ •

↓ ↓
•

→∼ •

.

Proof. By definition of chain map we need to construct morphisms ( : → ) ∈ℕ such that for all ∈ ℕ the

diagrams

®¾ +

↓ ↓
+

®¾ +

commute (the defining condition on a chain map) and such that the diagram

→

↓ ↓

→

commutes in  (which makes the full diagram in Ch•( ) commute).

We construct these • = ( ) ∈ℕ by induction.

To start the induction, the morphism  in the last diagram above can be found by the defining right lifting
property of the injective object  against the monomorphism .

Assume then that for some ∈ ℕ component maps • ≤  have been obtained such that ∘ = + ∘  for
all 0 ≤ <  . In order to construct +  consider the following diagram, which we will describe/construct
stepwise from left to right:

→ /im( − ) ⎯ +

↓ ↘ ↓ ↙ +

®¾ +

.

Here the morphism  on the left is given by induction assumption and we define the diagonal morphism to
be the composite

≔ ∘ .

Observe then that by the chain map property of the • ≤  we have

∘ ∘ − = ∘ − ∘ − = 0

and therefore  factors through /im( − ) via some ℎ  as indicated in the middle of the above diagram.
Finally the morphism on the top right is a monomorphism by the fact that • is exact in positive degrees
(being quasi-isomorphic to a complex concentrated in degree 0) and so a lift +  as shown on the far right
of the diagram exists by the defining lifting property of the injective object + .

The total outer diagram now commutes, being built from commuting sub-diagrams, and this is the required
chain map property of • ≤ +  This completes the induction step.  ▮

Proposition 3.32. The morphism • in prop. 3.31 is the unique one up to chain homotopy making the given

diagram commute.

Proof. Given two cochain maps • , • making the diagram commute, a chain homotopy • ⇒ • is

equivalently a null homotopy 0 ⇒ •− • of the difference, which sits in a square of the form

→•
∼ •

↓ ↓
•≔ • − •

→∼ •

with the left vertical morphism being the zero morphism (and the bottom an injective resolution). Hence we
have to show that in such a diagram • is null-homotopic.
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This we may reduce to the statement of prop. 3.29 by considering instead of • the induced chain map of
augmented complexes

0 → ®¾ ®¾ → ⋯

↓
− = ↓

− = ↓ ↓

0 → → ®¾ → ⋯

,

where the second square from the left commutes due to the commutativity of the original square of chain
complexes in degree 0.

Since ℎ• is a quasi-isomorphism, the top chain complex is exact, by remark 3.24. Moreover the bottom
complex consists of injective objects from the second degree on (the former degree 0). Hence the induction
in the proof of prop. 3.29 implies the existence of a null homotopy

0 → → ®¾ → ⋯

↓
− =↙ − =↓

− =↙ =↓ ↙ ↓

0 → → ®¾ → ⋯

starting with − = 0 and = 0 (notice that the proof prop. 3.29 was formulated exactly this way), which
works because − = 0. The de-augmentation { • ≥ } of this is the desired null homotopy of •.  ▮

We now discuss how the injective/projective resolutions constructed above are functorial if regarded in the
homotopy category of chain complexes, def. 2.89. For definiteness, to be able to distinguish chain
complexes from cochain complexes, introduce the following notation.

Definition 3.33. (the derived category)

Write as before

•( ) ∈ Cat

for the strong chain homotopy category of chain complexes, from def. 2.89.

Write similarly now

•( ) ∈ Cat

for the strong chain homotopy category of co-chain complexes.

Write furthermore

•( ) ≔ •( ) ↪ •( )

for the full subcategory on the degreewise projective chain complexes, and

•( ) ≔ •(ℐ ) ↪ •( )

for the full subcategory on the degreewise injective cochain complexes.

These subcategories – or any category equivalent to them – are called the (strictly bounded above/below)
derived category of .

Remark 3.34. Often one defines the derived category by more general abstract means than we have
introduced here, namely as the localization of the category of chain complexes at the quasi-isomorphims. If
one does this, then the simple definition def. 3.33 is instead a theorem. The interested reader can find more
details and further pointers here.

Theorem 3.35. If  has enough injectives, def. 3.15, then there exists a functor

: → •( ) = •(ℐ )

together with natural isomorphisms

(−) ∘ ≃ id

and

≥ (−) ∘ ≃ 0 .

Proof. By prop. 3.27 every object • ∈ Ch•( ) has an injective resolution. Proposition 3.31 says that for

→ • and → ˜ • two resolutions there is a morphism • → ˜ • in •( ) and prop. 3.32 says that this
morphism is unique in •( ). In particular it is therefore an isomorphism in •( ) (since the composite with
the reverse lifted morphism, also being unique, has to be the identity).
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So choose one such injective resolution ( )• for each •.

Then for : →  any morphism in , proposition 3.27 again says that it can be lifted to a morphism
between ( )• and ( )• and proposition 3.31 says that there is an image in •( ), unique for morphism
making the given diagram commute.

This implies that this assignment of morphisms is functorial, since then also the composites are unique.  ▮

Dually we have:

Theorem 3.36. If  has enough projectives, def. 3.15, then there exists a functor

: → •( ) = •( )

together with natural isomorphisms

(−) ∘ ≃ id

and

≥ (−) ∘ ≃ 0 .

For actually working with the derived category, the following statement is of central importance, which we
record here without proof (which requires a bit of localization theory). It says that for computing hom-sets
in the derived category, it is in fact sufficient to just resolve the domain or the codomain.

Proposition 3.37. Let • , • ∈ Ch•( ). We have natural isomorphisms

•( ( )• , ( )•) ≃ •( ( )• , •) .

Dually, for •, • ∈ Ch•( ), we have a natural isomorphism

•( ( )• , ( )•) ≃ •( •, ( )•) .

In conclusion we have found that there are resolution functors that embed  in the homotopically correct
context of resolved chain complexes with chain maps up to chain homotopy between them.

In the next section we discuss the general properties of this “homotopically correct context”: the derived
category.

9) Derived functors

In the previous section we have seen how the entire category  (= Mod) embeds into its derived category,
the category of degreewise injective cochain complexes

: → •( ) = •(ℐ )

or degreewise projective chain complexes

: → •( ) = •( )

modulo chain homotopy. This construction of the derived category naturally gives rise to the following notion
of derived functors.

Definition 3.38. For , ℬ two abelian categories (e.g. Mod and ′Mod), a functor

: → ℬ

is called an additive functor if

 maps the zero object to the zero object, (0) ≃ 0 ∈ ℬ;1. 

given any two objects , ∈ , there is an isomorphism ( ⊕ ) ≅ ( ) ⊕ ( ), and this respects the
inclusion and projection maps of the direct sum:

2. 

↘ ↙

⊕

↙ ↘

↦

( ) ( )

( )
↘ ↙

( )

( ⊕ ) ≅ ( ) ⊕ ( )

( ) ↙ ↘ ( )

( ) ( )

Definition 3.39. Given an additive functor : → ′ , it canonically induces a functor

Ch•( ) :Ch•( ) → Ch•( ′ )

between categories of chain complexes (its “prolongation”) by applying it to each chain complex and to all
the diagrams in the definition of a chain map. Similarly it preserves chain homotopies and hence it passes to
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the quotient given by the strong homotopy category of chain complexes

( ) : ( ) → ( ′ ) .

Remark 3.40. If  and ′ have enough projectives, then their derived categories are

•( ) ≃ •( )

and

•( ) ≃ •(ℐ )

etc. One wants to accordingly derive from  a functor •( ) → •( ) between these derived categories. It is
immediate to achieve this on the domain category, there we can simply precompose and form

→ •( ) ≃ •( ) ↪ •( ) ⎯⎯⎯
•( )

•( ′ ) .

But the resulting composite lands in •( ′ ) and in general does not factor through the inclusion

•( ′ ) = •( ) ↪ •( ′ ).

In a more general abstract discussion than we present here, one finds that by applying a projective
resolution functor on chain complexes, one can enforce this factorization. However, by definition of
resolution, the resulting chain complex is quasi-isomorphic to the one obtained by the above composite.

This means that if one is only interested in the “weak chain homology type” of the chain complex in the
image of a derived functor, then forming chain homology groups of the chain complexes in the images of the
above composite gives the desired information. This is what def. 3.44 and def. 3.45 below do.

Definition 3.41. Let , ′  be two abelian categories, for instance = Mod and ′ = ′Mod. Then a functor
: → ′  which preserves direct sums (and hence in particular the zero object) is called

a left exact functor if it preserves kernels;

a right exact functor if it preserves cokernels;

an exact functor if it is both left and right exact.

Here to “preserve kernels” means that for every morphism →  in  we have an isomorphism on the left of
the following commuting diagram

(ker( )) → ( ) ⎯⎯
( )

( )

↓≃ ↓= ↓=

ker( ( )) → ( ) ⎯⎯
( )

( )

,

hence that both rows are exact. And dually for right exact functors.

We record the following immediate consequence of this definition (which in the literature is often taken to be
the definition).

Proposition 3.42. If  is a left exact functor, then for every exact sequence of the form

0 → → →

also

0 → ( ) → ( ) → ( )

is an exact sequence. Dually, if  is a right exact functor, then for every exact sequence of the form

→ → → 0

also

( ) → ( ) → ( ) → 0

is an exact sequence.

Proof. If 0 → → →  is exact then ↪  is a monomorphism by prop. 2.70. But then the statement that
→ →  is exact at  says precisely that  is the kernel of → . So if  is left exact then by definition also
( ) → ( ) is the kernel of ( ) → ( ) and so is in particular also a monomorphism. Dually for right exact

functors.  ▮

Remark 3.43. Proposition 3.42 is clearly the motivation for the terminology in def. 3.41: a functor is left
exact if it preserves short exact sequences to the left, and right exact if it preserves them to the right.

Now we can state the main two definitions of this section.
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Definition 3.44. Let

: → ′

be a left exact functor between abelian categories such that  has enough injectives. For ∈ ℕ the th right
derived functor of  is the composite

: → •(ℐ ) ⎯⎯⎯
•( ) •( ′ ) ⎯⎯⎯

(−)
′ ,

where

 is the injective resolution functor of theorem 3.35;

( ) is the prolongation of  according to def. 3.39;

(−) is the -chain homology functor. Hence

( )( •) ≔ ( ( ( )•)) .

Dually:

Definition 3.45. Let

: → ′

be a right exact functor between abelian categories such that  has enough projectives. For ∈ ℕ the th
left derived functor of  is the composite

: → •( ) ⎯⎯⎯
•( )

•( ′) ⎯⎯⎯
(−)

′ ,

where

 is the projective resolution functor of theorem 3.36;

( ) is the prolongation of  according to def. 3.39;

(−) is the -chain homology functor. Hence

( )( •) ≔ ( ( ( )•)) .

The following proposition says that in degree 0 these derived functors coincide with the original functors.

Proposition 3.46. Let : → ℬ a left exact functor, def. 3.41 in the presence of enough injectives. Then for
all ∈  there is a natural isomorphism

( ) ≃ ( ) .

Dually, if  is a right exact functor in the presence of enough projectives, then

( ) ≃ ( ) .

Proof. We discuss the first statement, the second is formally dual.

By remark 3.24 an injective resolution ⎯
≃

• is equivalently an exact sequence of the form

0 → ↪ → → ⋯ .

If  is left exact then it preserves this excact sequence by definition of left exactness, and hence

0 → ( ) ↪ ( ) → ( ) → ⋯

is an exact sequence. But this means that

( ) ≔ ker( ( ) → ( )) ≃ ( ) .

  ▮

The following immediate consequence of the definition is worth recording:

Proposition 3.47. Let  be an additive functor.

If  is right exact and ∈  is a projective object, then

( ) = 0 ∀ ≥ 1 .

If  is left exact and ∈  is a injective object, then

( ) = 0 ∀ ≥ 1 .

Introduction to Homological algebra in Schreiber https://ncatlab.org/schreiber/print/Introduction+to+Homological+algebra

45 of 83 27.12.2016 13:16



Proof. If  is projective then the chain complex [⋯ → 0 → 0 → ] is already a projective resolution and hence
by definition ( ) ≃ (0) for ≥ 1. Dually if  is an injective object.  ▮

For proving the basic property of derived functors below in prop. 3.50 which continues these basis
statements to higher degree, in a certain way, we need the following technical lemma.

Lemma 3.48. For 0 → → → → 0 a short exact sequence in an abelian category with enough projectives,
there exists a commuting diagram of chain complexes

0 → • → • → • → 0

↓ • ↓ • ↓ •

0 → → → → 0

where

each vertical morphism is a projective resolution;

and in addition

the top row is again a short exact sequence of chain complexes.

Proof. By prop. 3.27 we can choose • and ℎ•. The task is now to construct the third resolution • such as to

obtain a short exact sequence of chain complexes, hence degreewise a short exact sequence, in the two
row.

To construct this, let for each ∈ ℕ

≔ ⊕

be the direct sum and let the top horizontal morphisms be the canonical inclusion and projection maps of
the direct sum.

Let then furthermore (in matrix calculus notation)

= ( ) ( ) : ⊕ →

be given in the first component by the given composite

( ) : ⊕ → → ↪

and in the second component we take

( ) : ⊕ → →

to be given by a lift in

↗ ↓

→

,

which exists by the left lifting property of the projective object  (since • is a projective resolution) against
the epimorphism : →  of the short exact sequence.

In total this gives in degree 0

↪ ⊕ →

↓(( ) ,( ) ) ↓ ↙ ↓

↪ →

.

Let then the differentials of • be given by

• =
æ

è
ç
ç

• (−1)

0 •

ö

ø
÷
÷: + ⊕ + → ⊕ ,

where the { } are constructed by induction as follows. Let  be a lift in

↗ ↓

∘ • : → ↪

which exists since  is a projective object and →  is an epimorphism by • being a projective resolution.
Here we are using that by exactness the bottom morphism indeed factors through  as indicated, because
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the definition of  and the chain complex property of • gives

∘ ∘ • = ℎ ∘ •

= 0 ∘ ℎ

= 0

.

Now in the induction step, assuming that −  has been been found satisfying the chain complex property,
let  be a lift in

↗ ↓ −
•

− ∘ • : + ↪ ker( −
• ) = im( −

• )) → −

,

which again exists since +  is projective. That the bottom morphism factors as indicated is the chain
complex property of −  inside −

• .

To see that the • defines this way indeed squares to 0 notice that

• ∘ +
• =

æ

è
ç
ç
0 (−1) ∘ +

• − • ∘ +

0 0

ö

ø
÷
÷ .

This vanishes by the very commutativity of the above diagram.

This establishes • such that the above diagram commutes and the bottom row is degreewise a short exact

sequence, in fact a split exact sequence, by construction.

To see that • is indeed a quasi-isomorphism, consider the homology long exact sequence associated to the

short exact sequence of cochain complexes 0 → • → • → • → 0. In positive degrees it implies that the chain
homology of • indeed vanishes. In degree 0 it gives the short sequence 0 → → ( •) → → 0 sitting in a
commuting diagram

0 → ↪ ( •) → → 0

↓ ↓= ↓ ↓= ↓

0 → ↪ → → 0 ,

where both rows are exact. That the middle vertical morphism is an isomorphism then follows by the five
lemma.  ▮

The formally dual statement to lemma 3.48 is the following.

Lemma 3.49. For 0 → → → → 0 a short exact sequence in an abelian category with enough injectives,
there exists a commuting diagram of cochain complexes

0 → → → → 0

↓ ↓ ↓

0 → • → • → • → 0

where

each vertical morphism is an injective resolution;

and in addition

the bottom row is again a short exact sequence of cochain complexes.

The central general fact about derived functors to be discussed here is now the following.

Proposition 3.50. Let , ℬ be abelian categories and assume that  has enough injectives.

Let : → ℬ be a left exact functor and let

0 → → → → 0

be a short exact sequence in .

Then there is a long exact sequence of images of these objects under the right derived functors • (−) of
def. 3.44

0 → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ⋯

↓≃ ↓≃ ↓≃

0 → ( ) → ( ) → ( )

in ℬ.
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Proof. By lemma 3.49 we can find an injective resolution

0 → • → • → • → 0

of the given exact sequence which is itself again an exact sequence of cochain complexes.

Since  is an injective object for all , its component sequences 0 → → → → 0 are indeed split exact
sequences (see the discussion there). Splitness is preserved by any functor  (and also since  is additive it
even preserves the direct sum structure that is chosen in the proof of lemma 3.48) and so it follows that

0 → ( ˜
•
) → ( ˜

•
) → ( ˜

•
) → 0

is a again short exact sequence of cochain complexes, now in ℬ. Hence we have the corresponding
homology long exact sequence from prop. 2.78:

⋯ → − ( ( •)) → − ( ( •)) → − ( ( •)) → ( ( •)) → ( ( •)) → ( ( •)) → + ( ( •)) → + ( ( •)) → + ( ( •)

By construction of the resolutions and by def. 3.44, this is equal to

⋯ → − ( ) → − ( ) → − ( ) → ( ) → ( ) → ( ) → + ( ) → + ( ) → + ( ) → ⋯ .

Finally the equivalence of the first three terms with ( ) → ( ) → ( ) is given by prop. 3.46.  ▮

Remark 3.51. Prop. 3.50 implies that one way to interpret ( ) is as a “measure for how a left exact
functor  fails to be an exact functor”. For, with → →  any short exact sequence, this proposition gives
the exact sequence

0 → ( ) → ( ) → ( ) → ( )

and hence 0 → ( ) → ( ) → ( ) → 0 is a short exact sequence itself precisely if ( ) ≃ 0.

Dually, if  is right exact functor, then ( ) “measures how  fails to be exact” for then

( ) → ( ) → ( ) → ( ) → 0

is an exact sequence and hence is a short exact sequence precisely if ( ) ≃ 0.

Notice that in fact we even have the following statement (following directly from the definition).

Proposition 3.52. Let  be an additive functor which is an exact functor. Then

≥ = 0

and

≥ = 0 .

Proof. Because an exact functor preserves all exact sequences. If • →  is a projective resolution then also
( )• is exact in all positive degrees, and hence ≥ ( )) ≥ ( ( )) = 0. Dually for .  ▮

Conversely:

Definition 3.53. Let : → ℬ be a left or right exact additive functor. An object ∈  is called an -acyclic
object if all positive-degree right/left derived functors of  are zero on .

Acyclic objects are useful for computing derived functors on non-acyclic objects. More generally, we now
discuss how the derived functor of an additive functor  may also be computed not necessarily with genuine
injective/projective resolutions, but with (just) “ -injective”/“ -projective resolutions”.

While projective resolutions in  are sufficient for computing every left derived functor on Ch•( ) and
injective resolutions are sufficient for computing every right derived functor on Ch•( ), if one is interested
just in a single functor  then such resolutions may be more than necessary. A weaker kind of resolution
which is still sufficient is then often more convenient for applications. These -projective resolutions and
-injective resolutions, respectively, we discuss now. A special case of both are -acyclic resolutions.

Let , ℬ be abelian categories and let : → ℬ be an additive functor.

Definition 3.54. Assume that  is left exact. An additive full subcategory ℐ ⊂  is called -injective (or:
consisting of -injective objects) if

for every object ∈  there is a monomorphism → ˜  into an object ˜ ∈ ℐ ⊂ ;1. 

for every short exact sequence 0 → → → → 0 in  with , ∈ ℐ ⊂  also ∈ ℐ ⊂ ;2. 

for every short exact sequence 0 → → → → 0 in  with ∈ ℐ ⊂  also 0 → ( ) → ( ) → ( ) → 0 is a
short exact sequence in ℬ.

3. 
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And dually:

Definition 3.55. Assume that  is right exact. An additive full subcategory ⊂  is called -projective
(or: consisting of -projective objects) if

for every object ∈  there is an epimorphism ˜ →  from an object ˜ ∈ ⊂ ;1. 

for every short exact sequence 0 → → → → 0 in  with , ∈ ⊂  also ∈ ⊂ ;2. 

for every short exact sequence 0 → → → → 0 in  with ∈ ℐ ⊂  also 0 → ( ) → ( ) → ( ) → 0 is a
short exact sequence in ℬ.

3. 

With the ℐ, ⊂  as above, we say:

Definition 3.56. For ∈ ,

an -injective resolution of  is a cochain complex • ∈ Ch•(ℐ) ⊂ Ch•( ) and a quasi-isomorphism

⎯
≃

•

an -projective resolution of  is a chain complex • ∈ Ch•( ) ⊂ Ch•( ) and a quasi-isomorphism

• ⎯
≃

.

Let now  have enough projectives / enough injectives, respectively, def. 3.15.

Example 3.57. For : → ℬ an additive functor, let Ac ⊂  be the full subcategory on the -acyclic objects,
def. 3.53. Then

if  is left exact, then ℐ ≔ Ac is a subcategory of -injective objects;

if  is right exact, then ≔ Ac is a subcategory of -projective objects.

Proof. Consider the case that  is right exact. The other case works dually. Then the first condition of def.
3.54 is satisfied because every injective object is an -acyclic object and by assumption there are enough of
these.

For the second and third condition of def. 3.54 use that there is the long exact sequence of derived functors
prop. 3.50

0 → → → → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ⋅ .

For the second condition, by assumption on  and  and definition of -acyclic object we have ( ) ≃ 0

and ( ) ≃ 0 for ≥ 1 and hence short exact sequences

0 → 0 → ( ) → 0

which imply that ( ) ≃ 0 for all ≥ 1, hence that  is acyclic.

Similarly, the third condition is equivalent to ( ) ≃ 0.  ▮

Example 3.58. The -projective/injective resolutions by acyclic objects as in example 3.57 are called
-acyclic resolutions.

Let  be an abelian category with enough injectives. Let : → ℬ be an additive left exact functor with right
derived functor • , def. 3.44. Finally let ℐ ⊂  be a subcategory of -injective objects, def. 3.54.

Lemma 3.59. If a cochain complex • ∈ Ch•(ℐ) ⊂ Ch•( ) is quasi-isomorphic to 0,

• ⎯
≃

0

then also ( •) ∈ Ch•(ℬ) is quasi-isomorphic to 0

( •) ⎯
≃

0 .

Proof. Consider the following collection of short exact sequences obtained from the long exact sequence •:

0 → ®¾ ®¾ im( ) → 0

0 → im( ) → → im( ) → 0

0 → im( ) → → im( ) → 0

and so on. Going by induction through this list and using the second condition in def. 3.54 we have that all
the im( ) are in ℐ. Then the third condition in def. 3.54 says that all the sequences
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0 → (im( )) → ( + 1) → (im( + )) → 0

are exact. But this means that

0 → ( ) → ( ) → ( ) → ⋯

is exact, hence that ( •) is quasi-isomorphic to 0.  ▮

Theorem 3.60. For ∈  an object with -injective resolution ⎯
≃

• , def. 3.56, we have for each ∈ ℕ an
isomorphism

( ) ≃ ( ( •))

between the th right derived functor, def. 3.44 of  evaluated on  and the cochain cohomology of 
applied to the -injective resolution • .

Proof. By prop. 3.27 we can also find an injective resolution ⎯
≃

•. By prop. 3.31 there is a lift of the
identity on  to a chain map • → • such that the diagram

⎯
≃

•

↓ ↓

⎯
≃

•

commutes in Ch•( ). Therefore by the 2-out-of-3 property of quasi-isomorphisms it follows that  is a quasi-
isomorphism

Let Cone( ) ∈ Ch•( ) be the mapping cone of  and let • → Cone( ) be the canonical chain map into it. By the
explicit formulas for mapping cones, we have that

there is an isomorphism (Cone( )) ≃ Cone( ( ));1. 

Cone( ) ∈ Ch•(ℐ) ⊂ Ch•( ) (because -injective objects are closed under direct sum).2. 

The first implies that we have a homology exact sequence

⋯ → ( •) → ( • ) → (Cone( )•) → + ( •) → + ( • ) → + (Cone( )•) → ⋯ .

Observe that with • a quasi-isomorphism Cone( •) is quasi-isomorphic to 0. Therefore the second item
above implies with lemma 3.59 that also (Cone( )) is quasi-isomorphic to 0. This finally means that the
above homology exact sequences consists of exact pieces of the form

0 → ( ( ) ≔ ( •) →≃ ( •) → 0 .

  ▮

This concludes the discussion of the general definition and the general properties of derived functors that we
will consider here. In the next section we discuss the two archetypical examples.

10) Fundamental examples of derived functors

We introduce here the two archetypical examples of derived functors and discuss their basic properties. In
the next chapter IV) The fundamental theorems we discuss how to use these derived functors for obtaining
deeper statements.

Above we have seen the definition and basic general properties of derived functors obtained from left/right
exact functors between abelian categories.

Of all functors, a most fundamental one is the hom-functor of a given category. For categories such as Mod
considered here, it comes with its left adjoint, the tensor product functor, which is hence equally
fundamentally important. Here we discuss the derived functors of these two basic functors in detail.

For simplicity – this here being an introduction – we will discuss various statements only over = ℤ, hence
for abelian groups. The main simplification that this leads to is the following.

Proposition 3.61. Every subgroup of a free abelian group is itself a free group.

This is a classical fact going back to Dedekind, now known (in its generalization to not-necessarily abelian
groups) as the Nielsen-Schreier theorem. For us it is interesting due to the following consequence

Proposition 3.62. Assuming the axiom of choice, every abelian group  admits a projective resolution, def.
3.25, concentrated in degree 0 and degree 1, hence a resolution which under remark 3.26 corresponds to a
short exact sequence

0 → → → → 0
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where  and  are projective, indeed free.

Proof. By the proof of prop. 3.16 there is an epimorphism →  out of a free abelian group (take for
instance = ( ( )), the free abelian group in the underlying set of ). By prop. 3.61 the kernel of this
epimorphism is itself a free group, and hence by prop. 3.9 is itself projective. Take this kernel to be

↪ .  ▮

This fact drastically constrains the complexity of right derived functors on abelian groups:

Proposition 3.63. Let :Ab → Ab be an additive functor which is left exact functor. Then its right derived
functors  vanish for all ≥ 2.

Proof. By prop. 3.62 there is a projective resolution of any ∈ Ab of the form • = [⋯ → 0 → 0 → → ]. This
implies the claim by def. 3.44.  ▮

Remark 3.64. The conclusion of prop. 3.62 holds more generally over every ring which is a principal ideal
domain. This includes in particular =  a field, in which case Mod ≃ Vect. On the other hand, every
-vector space is already projective itself, so that in this case the whole theory of right derived functors

trivializes.

a) The derived Hom functor and group extensions

For  an abelian category, such as Mod, the hom-sets naturally have the structure of an abelian group
themselves. This means that the hom-functor of  is

Hom (−, −): × → Ab ,

where  is the opposite category of . This functor sends a morphism

( , )

( ↑ , ↓ )

( , )

∈ ×

to the linear map which sends a homomorphism ( → ) ∈ Hom( , ) to the composite homomorphism

→

↑ ↓ ∈ Hom( , ) .

In particular if we hold the first argument fixed on an object ∈ , then this yields a functor

Hom( , −): → Ab

and if we keep the second argument fixed on an object ∈ , then this yields a functor

Hom(−, ) : → Ab .

This functor we have already seen above in example 3.11.

A very basic fact is the following.

Proposition 3.65. The functor Hom(−, −): × → Ab is a left exact functor, def. 3.41. In particular for
every ∈  the functor Hom( , −) : → Ab is left exact, and for every ∈  the functor Hom(−, ) : → Ab is
left exact.

Remark 3.66. A kernel in the opposite category  is equivalently a cokernel in . Hence if we regard
Hom(−, ) instead as a contravariant functor from  to Ab, then the statement that it is left exact means
that (on top of preserving direct sums) it sends cokernels in  to kernels in Ab.

We therefore have the corresponding right derived functor:

Definition 3.67. For given ∈ , write

Ext•(−, ) ≔ •Hom(−, ) : → Ab

for the right derived functor, def. 3.44, of the hom-functor in the first argument, according to prop. 3.65.

This is called the Ext-functor.

The basic property of the derived Hom-functor/Ext-functor is that it classifies group extensions by
(suspensions of) . This we now discuss in detail, starting from a basic discussion of group extensions
themselves.

The following definition essentially just repeats that of a short exact sequence above in def. 2.68, but now
we consider it for  a possibly nonabelian group and think of it slightly differently regarding these sequences
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(2)

(3)

(4)

up to homomorphisms as in def. 3.70 below. Equivalently we may think of the following as a discussion of
the classification of short exact sequences when the leftmost and rightmost component are held fixed.

Definition 3.68. Two consecutive homomorphisms of groups

↪ ^ →

are a short exact sequence if

 is monomorphism,1. 

 an epimorphism2. 

the image of  is all of the kernel of : ker( ) ≃ im( ).3. 

We say that such a short exact sequence exhibits ^ as a group extension of  by .

If ↪ ^ factors through the center of ^ we say that this is a central extension.

Remark 3.69. Sometimes in the literature one sees ^ called an extension “of  by ”. This is however in
conflict with terms such as central extension, extension of principal bundles, etc, where the extension is
always regarded of the base, by the fiber.

Definition 3.70. A homomorphism of extensions : ^ → ^  of a given  by a given  is a group
homomorphism of this form which fits into a commuting diagram

^

↗ ↘

↓

↘ ↗

^

.

Proposition 3.71. A morphism of extensions as in def. 3.70 is necessarily an isomorphism.

1 → → ^ → → 1

↓ = ↓ ↓ =

1 → → ^ → → 1

.

Proof. By the short five lemma.  ▮

Definition 3.72. For  and groups, write Ext( , ) for the set of equivalence classes of extensions of  by
, as above and CentrExt( , ) ↪ Ext( , ) for for the central extensions. If  and  are both abelian, write

AbExt( , ) ↪ CentrExt( , )

for the subset of abelian groups ^ that are (necessarily central) extensions of  by .

We discuss now the following two ways that the Ext  knows about such group extensions.

Central extensions of a possibly non-abelian group  are classified by the degree-2 group cohomology
( , ) of  with coefficients in , and this in turn is equivalently computed by Extℤ[ ] (ℤ, ), where

ℤ[ ] is the group ring of .

This is theorem 3.89 below.

1. 

Abelian extensions of an abelian gorup  are classified by Ext ( , ). In fact, generally, in an abelian

category  extensions of ∈  by ∈  (in the sense of short exact sequences → ^ → ) are classified
by Ext ( , ).

2. 

This is prop 3.96 below.

We first discuss now group cohomology:

Definition 3.73. Let  be group and  an abelian group (regarded as being equipped with the trivial
-action).

Then a group 2-cocycle on  with coefficients in  is a function

: × →

such that for all ( , ) ∈ ×  it satisfies the equation

( , ) − ( , ⋅ ) + ( ⋅ , ) − ( , ) = 0 ∈
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(5)

(called the 2-cocycle condition).

For , ˜ two such cocycles, a coboundary ℎ: → ˜ between them is a function

ℎ: →

such that for all ( , ) ∈ ×  the equation

˜( , ) = ( + ℎ)( , ) ,

holds in , where

( ℎ)( , ) ≔ ℎ( ) − ℎ( ) − ℎ( )

is a 2-coboundary.

The degree-2 group cohomology is the set

( , ) = 2Cocycles( , )/Coboundaries( , )

of equivalence classes of group 2-cocycles modulo group coboundaries. This is itself naturally an abelian
group under pointwise addition of cocycles in 

[ ] + [ ] = [ + ]

where

+ :( , ) ↦ ( , ) + ( , ) .

The following says that in the computation of ( , ) one may concentrate on nice representatives that
are called normalized cocycles:

Definition 3.74. A group 2-cocycle : × → , def. 3.73 is called normalized if

∀ , ∈ = or = ⇒ ( , ) = 0 .

Lemma 3.75. For : × →  a group 2-cocycle, we have for all ∈  that

( , ) = ( , ) = ( , ) .

Proof. The cocycle condition (4) evaluated on

( − , , ) ∈

says that

( − , ) + ( , ) = ( , ) + ( − , )

hence that

( , ) = ( , ) .

Similarly the 2-cocycle condition applied to

( , , − ) ∈

says that

( , ) + ( , − ) = ( , − ) + ( , )

hence that

( , ) = ( , ) .

  ▮

Proposition 3.76. Every group 2-cocycle : × →  is cohomologous to a normalized one, def. 3.74.

Proof. By lemma 3.75 it is sufficient to show that  is cohomologous to a cocycle ˜ satisfying ˜( , ) = . Now
given , let ℎ : →  be given by

ℎ( ) ≔ ( , ) .

Then ˜ ≔ +  has the desired property, with (5):

˜( , ) ≔ ( + ℎ)( , )

= ( , ) + ( ⋅ , ⋅ ) − ( , ) − ( , )

= 0

.
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The fundamental classification theorem is now the following. This does not yet involve the Ext-functor
explicitly.

Theorem 3.77. There is a natural equivalence

CentrExt( , ) ≃ ( , ) .

We prove this below as prop. 3.82. Here we first introduce stepwise the ingredients that go into the proof.

Definition 3.78. (central extension associated to group 2-cocycle)

Let [ ] ∈ ( , ) be a group 2-cocycle. Choose : × →  to be a representative of the cohomology class
by a normalized cocycle, def. 3.74, which can always be done by prop. 3.76.

Define a group

× ∈ Grpd

as follows.

Let the underlying set of ×  be the cartesian product ( ) × ( ) of the underlying sets of  and . The
group operation on this is given by

( , ) ⋅ ( , ) ≔ ( ⋅ , + + ( , )) .

Proposition 3.79. This defines indeed a group: the cocycle condition on  gives precisely the associativity
of the product on × . Moreover, the construction extends to a homomorphism

Rec: ( , ) → Ext( , ) .

Proof. Forming the product of three elements of ×  bracketed to the left is, according to def. 3.78,

, ⋅ , ⋅ , = , + + + ( , ) + , .

Bracketing the same three elements to the right yields

, ⋅ , ⋅ , = , + + + ( , ) + , .

The difference between the two expressions is read off to be precisely

(1, ( )( , , )) ,

where  denotes the group cohomology differential of . Hence this vanishes precisely if  is a group
2-cocycle, hence we have an associative product.

To see that it has inverses, notice that for all ( , ) we have

( , ) ⋅ ( − , − − ( , − )) = ( , − − ( , − ) + ( , − ))

and hence inverses in ×  are given by

( , )− = ( − , − − ( , − )) .

Therefore ×  is indeed a group.

Using that  is a normalized cocycle by assumption, we find that the inclusion

: → ×

given by ↦ ( , ) is a group homomorphism. Moreover, the projection on the underlying sets evidently
yields a group homomorphism : × →  given by ( , ) ↦ . The kernel of this is , and hence

↪ × →

is indeed a group extension. It is a central extension again using the assumption that  is normalized
( , ) = ( , ) = 0:

( , ) ⋅ ( , ˜ ) = ( , + ˜ + 0) = ( , ˜ ) ⋅ ( , ) .

To see that the construction is independent of the choice of coycle  representing [ ], let ˜ be another
representative which differs by a coboundary ℎ: →  with

˜( , ) ≔ ( , ) − ℎ( ) − ℎ( ) + ℎ( ) .

We claim that then we have a homomorphism of central extensions (hence an isomorphism) of the form

Introduction to Homological algebra in Schreiber https://ncatlab.org/schreiber/print/Introduction+to+Homological+algebra

54 of 83 27.12.2016 13:16



→ × →

↓= ↓( , − ∘ )↓=

→ × ˜ →

.

To see this we check for all elements that

( , − ℎ( )) ⋅ ( , − ℎ( )) = ( , + − ℎ( ) − ℎ( ) + ( , ))

= ( , + + ˜( , ) − ℎ( ))
.

Hence the construction of ×  indeed defines a function ( , ) → CentrExt( , ).  ▮

Assume the axiom of choice in the ambient foundations.

Definition 3.80. (2-cocycle extracted from central extension)

Given a central extension → ^ →  define a group 2-cocycle : × →  as follows.

Choose a section : ( ) → (^) of the underlying sets (which exists by the axiom of choice and the fact that

: ^ →  is by definition an epimorphism). Then define  by

: ( , ) ↦ − ( )− ( )− ( ) ∈ ,

where on the right we are using that by the section-property of  and the group homomorphism property of

( ( )− ( )− ( )) = 1

and hence by the exactness of the extension the argument is in ↪ ^.

Proposition 3.81. The construction of prop. 3.80 indeed yields a 2-cocycle in group cohomology. It extends
to a morphism

Extr :Ext( , ) → ( , ) .

Proof. The cocycle condition to be checked is that

( , ) − ( , ) + ( , ) − ( , ) = 1

for all , , ∈ . Writing this out with def. 3.80 yields

( )− ( )− ( ) ( )− ( )− ( )
−

( )− ( )− ( ) ( )− ( )− ( )
−

.

Here it is sufficient to observe that for every term also the inverse term appears.

To see that this is a well-defined map to ( , ) we need to check that for ˜ : → ^ a different choice of
section, the corresponding cocycles differ by a group coboundary ˜ − = ℎ. Clearly this is obtained by
setting

ℎ: ↦ ˜ ( ) ( )− ,

where we use that the right hand side is in ↪ ^ since because both  and ˜  are sections of , the image of
the right hand under  is the neutral element in .  ▮

Proposition 3.82. The two morphisms of def. 3.78 and def. 3.80 exhibit an bijection

( , ) →
⎯⎯
≃ CentrExt( , ) .

Proof. Let [ ] ∈ ( , ). Then by construction of ^ ≔ ×  there is a canonical section of the underlying
function of sets ( × ) → ( ) given by (id ( ) , 0) ( ) → ( ) × ( ). The cocycle induced by this section

sends

( , ) ↦ ( , 0)( , 0)( , 0)−

= ( , 0)( , 0)(( )− , − ( , ( )− ))

= ( , ( , ))(( )− , − ( , ( )− ))

= ( , ( , ) − ( , ( )− ) + ( , ( )− ))

= ( , ( , ))

,

which is ( , ) ∈ ↪ × , and hence this recovers the 2-cocycle that we started with.

This shows that Extr ∘ Rec = id and in particular that Rec is a surjection. It is readily seen that the kernel of
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Rec is trivial, and so it is an equivalence.  ▮

Remark 3.83. The central extension of an abelian group  by an abelian group  need not itself be abelian.

But from the above classification we can read off the condition for the extension to be central.

Proposition 3.84. The central extension of an abelian group  is itself abelian if the coresponding cocycle
: × →  is symmetric, in that

( , ) = ( , )

for all , ∈ .

With the general classification of group extensions in hand, we now turn back to the Ext-functor. First we
discuss a choice of projective resolution that yields group cocycles.

Definition 3.85. For  a group, the group ring ℤ[ ] is the ring

whose underlying abelian group is the free abelian group on the underlying set of ;1. 

whose multiplication is given on basis elements by the group operation.2. 

Definition 3.86. Write

:ℤ[ ] → ℤ

for the homomorphism of abelian groups which forms the sum of -coefficients of the formal linear
combinations that constitute the group ring

: ↦
∈

.

This is called the augmentation map.

Definition 3.87. For ∈ ℕ let

≔ ( ( )× )

be the free module over the group ring ℤ[ ] on -tuples of elements of  (hence ≃ ℤ[ ] is the free module

on a single generator).

For ≥ 1 let ∂ − : → −  be given on basis elements by

∂ − ( ,⋯, ) ≔ [ ,⋯, ] +
=

−

(−1) [ ,⋯, + , + , ⋯, ] + (−1) [ ,⋯, − ] ,

where in the first summand we have the coefficient ∈ ↪ ℤ[ ] times the basis element [ ,⋯, ] in

( ( ) − ).

In particular

∂ : [ ] ↦ [ * ] − [ * ] = − ∈ ℤ[ ] . .

Write furthermore  for the quotient module →  which is the cokernel of the inclusion of those

elements for which one of the  is the unit element.

Proposition 3.88. The construction in def. 3.87 defines chain complexes •  and • of ℤ[ ]-modules.

Moreover, with the augmentation map of def. 3.86 these are projective resolutions

: • ⎯
≃

ℤ

: • ⎯
≃

ℤ

of ℤ equipped with the trivial ℤ[ ]-module structure in ℤ[ ]Mod.

Proof. The proof that we have indeed a chain complex is much like the proof of the existence of the
alternating face map complex of a simplicial group, because writing

∂ [ ,⋯, ] ≔ [ ,⋯, ]

∂ [ ,⋯, ] ≔ [ ,⋯, + , + , ⋯, ] for1 ≤ ≤ − 1
∂ [ ,⋯, ] ≔ [ ,⋯, − ]

one finds that these satisfy the simplicial identities and that ∂ = ∑ = (−1) ∂ .

That the augmentation map is a quasi-isomorphism is equivalent, by remark 3.26, to the augmentation
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⋯ → ℤ[ ] → ℤ[ ] → ℤ → 0

being an exact sequence. In fact we show that it is a split exact sequence by constructing for the canonical
chain map to the 0-complex a null homotopy •. To that end, let

− :ℤ →

be given by sending 1 ∈ ℤ to the single basis element in ≔ ℤ[ ][ * ] ≃ ℤ[ ], and let for ∈ ℕ

: → +

be given on basis elements by

( [ , ⋯, ]) ≔ [ , ,⋯, ] .

In the lowest degrees we have

∘ − = idℤ

because

( − (1)) = ([ * ]) = ( ) = 1

and

∂ ∘ + − ∘ = id

because for all ∈  we have

∂ ( ( [ * ])) + − ( ( [ * ])) = ∂ ([ ]) + − (1)

= [ * ] − [ * ] + [ * ]

= [ * ]

.

For all remaining ≥ 1 we find

∂ ∘ + − ∘ ∂ − = id

by a lengthy but straightforward computation. This shows that every cycle is a boundary, hence that we
have a resolution.

Finally, since the chain complex •  consists by construction degreewise of free modules hence of a

projective modules, it is a projective resolution.  ▮

Theorem 3.89. For  an abelian group equipped with a linear -action and for ∈ ℕ, the degree- group
cohomology ( , ) of  with coefficients in  is equivalently given by

( , ) ≃ Extℤ[ ](ℤ, )

≃ (Homℤ[ ]( , ))

≃ (Homℤ[ ]( , )) .

,

where on the right we canonically regard ∈ ℤ[ ]Mod.

Proof. By the free functor adjunction we have that

Homℤ[ ]( , ) ≃ Hom ( ( )× , ( ))

is the set of functions from -tuples of elements of  to elements of . It is immediate to check that these
are in the kernel of Homℤ[ ](∂ , ) precisely if they are cocycles in the group cohomology (by comparison with

the explicit formulas there) and that they are gorup cohomology coboundaries precisely if they are in the
image of Homℤ[ ](∂ − , ). This establishes the first equivalences.

Similarly one finds that (Hom( , ))) is the sub-group of normalized cocycles. By the discussion at group
cohomology these already support the entire group cohomology (every cocycle is comologous to a
normalized one).  ▮

This finishes the discussion of the classification of central extensions of groups by Extℤ[ ].

Now we discuss the general statement that Ext  classifies extensions in , hence in particular abelian
extension of abelian groups if = Ab.

Definition 3.90. Given , ∈ , an extension of  by  is a short exact sequence of the form

0 → → ^ → → 0 .

Two extensions ^  and ^  are called equivalent if there is a morphism : ^ → ^  in  such that we have a
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commuting diagram

^

↗ ↘

↓

↘ ↗

^

.

Write Ext( , ) for the set of equivalence classes of extensions of  by .

Remark 3.91. By the short five lemma a morphism  as above is necessarily an isomorphism and hence we
indeed have an equivalence relation.

Definition 3.92. If  has enough projectives, define a function

Extr :Ext( , ) → Ext ( , )

from the group of extensions, def. 3.90, to the first Ext functor group as follows. Choose any projective

resolution • ⎯
≃

, which exists by prop. 3.27. Regard then → ^ → → 0 as a resolution

⋯ → 0 → 0 → → ^

↓ ↓ ↓ ↓

⋯ → 0 → 0 → 0 →

of , by remark 3.26. By prop. 3.31 there exists then a commuting diagram of the form

→ 0

↓ ↓

→

↓ ↓

→ ^

↓ ↓

→

lifting the identity map on  two a chain map between the two resolutions.

By the commutativity of the top square, the morphism  is 1-cocycle in Hom( • , ), hence defines an element
in Ext ( , ) ≔ (Hom( • , )).

Proposition 3.93. The construction of def. 3.92 is indeed well defined in that it is independent of the choice
of projective resolution as well as of the choice of chain map between the projective resolutions.

Proof. First consider the same projective resolution but another lift ˜ of the identity. By prop. 3.32 any other
choice ˜ fitting into a commuting diagram as above is related by a chain homotopy to .

→ 0

↓ ↗ = ↓

⎯
− ˜

↓ ↗ ↓

→ ^

↓ ↗ ↓

→

.

The chain homotopy condition here says that

− ˜ = ∘ ∂

and hence that in Hom( • , ) we have that = − ˜ is a coboundary. Therefore for the given choice of

resolution • we have obtained a well-defined map

Ext( , ) → Ext ( , ) .

If moreover ′• ⎯
≃

 is another projective resolution, with respect to which we define such a map as above,
then lifting the identity map on  to a chain map between these resolutions in both directions, by prop.
3.31, establishes an isomorphism between the resulting maps, and hence the construction is independent
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also of the choice of resolution.  ▮

Definition 3.94. Define a function

Rec :Ext ( , ) → Ext( , )

as follows. For • →  a projective resolution of  and [ ] ∈ Ext ( , ) ≃ (Hom ( • , )) an element of the
Ext-group, let

→ 0

↓ ↓

→

↓

↓

be a representative. By the commutativity of the top square this restricts to a morphism

/ →

↓

↓

,

where now the left column is itself an extension of  by the cokernel /  (because by exactness the kernel
of →  is the image of  so that the kernel of / →  is zero). Form then the pushout of the
horizontal map along the two vertical maps. This yields

/ →

↓ ↓

→ ∐ /

↓ ↓

→

.

Here the top right is indeed , by the pasting law for pushouts and using that the left vertical composite is
the zero morphism. Moreover, the top right morphism is indeed a monomorphism as it is the pushout of a
map of modules along an injection. Similarly the top right morphism is an epimorphism.

Hence → ∐ / →  is an element in Ext( , ) which we assign to .

Proposition 3.95. The construction of def. 3.94 is indeed well defined in that it is independent of the choice
of projective resolution as well as of the choice of representative of the Ext-element.

Proof. The coproduct ∐ /  is equivalently

coker( / ⎯⎯⎯⎯⎯
( , − )

⊕ ) .

For a different representative ˜ of [ ] there is by construction a

⎯
˜ −

↓ ↗ .

Define from this a map between the two cokernels induced by the commuting diagram

/ → /

↓( , − ) ↓( , − ˜)

⊕ ⎯⎯⎯⎯ ⊕

.

By construction this respects the inclusion of ⎯⎯⎯
( , )

⊕ → ∐ / . It also manifestly respects the

projection to . Therefore this defines a morphism and hence by remark 3.91 even an isomorphism of
extensions.  ▮

Proposition 3.96. The functions
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Extr :Ext( , ) ↔ Ext ( , ) :Rec

from def. 3.92 to def. 3.94 are inverses of each other and hence exhibit a bijection between extensions of 
by  and Ext ( , ).

Proof. By straightforward unwinding of the definitions.

In one direction, starting with a ∈ Ext ( , ) and constructing the extension by pushout, the resulting
pushout diagram

→

↓ ↓

→ ∐ /

↓ ↓

→

at the same time exhibits  as the cocycle extracted from the extension → ∐ / → .

Conversely, when starting with an extension → ^ →  then extracting a  by a choice of projective
resolution and constructing from that another extension by pushout, the universal property of the pushout
yields a morphism of exensions, which by remark 3.91 is an isomorphism of extensions, hence an equality
in Ext( , ).  ▮

This concludes our discussion of the derived Hom-functor and its relation to extensions and group
extensions in low degree. Of course also the higher Ext-groups classify higher extensions, but this we will
not discuss here. Instead we turn now to the left adjoint of Hom-functor, the functor that forms tensor
product of modules.

b) The derived tensor product functor and torsion subgroups

We discuss now the construction and the basic properties of the derived functors of the following tensor
product functors.

Let  be a commutative ring. Above in def. 2.4 we considered the tensor product of abelian groups, hence of
ℤ-modules. This directly generalizes to a tensor product of -modules as follows.

Definition 3.97. For , ′ ∈ Mod two -modules, their tensor product of modules over 

⊗ ′ ∈ Mod

is defined to be the -module

whose underlying abelian group is the quotient of the free abelian group on ( ) × ( ′ ), hence on the
set of pairs {( , ′ ) | ∈ , ′ ∈ ′ }, by the bilinearity relations (for all tuples of elements for which these
expressions makes sense)

( + , ′) = ( , ′ ) + ( , ′)

and

( , ′ + ′ ) = ( , ′ ) + ( , ′ )

(as for tensor products of abelian groups)

and

( , ′ ) = ( , ′) .

whose -action is given by

( , ′ ) = ( , ′) ∼ ( , ′ ) .

We then have statements analog to those for tensor products of abelian groups. or instance as in prop. 2.7
we have:

Example 3.98. For ∈ Mod any module and for  regarded as a module over itself, example 2.23, there is
an isomorphism

⊗ →≃

given by sending

( , ) ∼ (1 , ) ∼ (1, ) ↦ .

Definition 3.99. Let ∈ Mod be an -module. The operation of forming the tensor product of modules
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with  extends to a functor

(−) ⊗ : Mod → Mod

by sending a homomorphism : →  of -modules to the homomorphism

⊗ : ⊗ → ⊗

given by

( , ) ↦ ( ( ), ) .

This is well-defined precisely by the fact that  is a homomorphism of -modules by assumption.

Proposition 3.100. For every ∈ Mod, the functor (−) ⊗  from def. 3.99

is an additive functor;

is a right exact functor.

Therefore we may consider its left derived functor, according to def. 3.45.

Definition 3.101. For ∈ Mod and ∈ ℕ, write

Tor (−, ) ≔ ((−)⊗ ): Mod → Mod

for the left derived functor of the tensor product of modules-functor – the Tor-functor.

Remark 3.102. We could just as well consider deriving the tensor product functor in the second variable.
Indeed both choices give the same result. We postpone the proof of this until we have developed the tool of
spectral sequences below in 12). See prop. 4.68 below.

The name “Tor” derives from the basic relation of this functor to torsion subgroups. This we discuss now.

Definition 3.103. An abelian group is called torsion if its elements are “nilpotent”, hence if all its elements
have finite order.

Definition 3.104. For ∈ Ab and ∈ ℕ, write

≔ { ∈ | ⋅ = 0}

for the -torsion subgroup consisting of all those elements whose -fold sum with themselves gives 0.

Proposition 3.105. For ∈ ℕ, ≥ 1, for ℤ ≔ ℤ/ ℤ the cyclic group and for ∈ Ab ≃ ℤMod any abelian
group, we have an isomorphism

Torℤ(ℤ , ) ≃ .

For = 0 we have

Torℤ(ℤ, ) ≃ 0 .

Proof. For the first statement, the short exact sequence

0 → ℤ →
⋅
ℤ ⎯⎯⎯ ℤ/ ℤ → 0

constitutes a projective resolution (even a free resolution) of ℤ/ ℤ. Accordingly we have

Torℤ(ℤ/ ℤ, ) ≃ ([⋯ → 0 → ℤ⊗ ⎯⎯⎯⎯
( ⋅ )⊗

ℤ⊗ )

≃ ker(( ⋅ ) ⊗ )

≃ { ∈ | ⋅ = 0}

.

Here in the last step we use that ( ⋅ ) ⊗  acts as

(1, ) ↦ ( , )

= ⋅ (1, )

= (1, ⋅ )

.

The second statement follows since ℤ is already free so that [⋯ → 0 → 0 → ℤ] is a projective resolution.  ▮

Proposition 3.106. For ∈ Mod, the functor Tor (−, ) respects direct sums.

Proof. Let ∈ Set and let { } ∈  be an -family of -modules. Observe that

if {( )•} ∈  is a family of projective resolutions, then their degreewise direct sum ( ⊕ ∈ )• is a

projective resolution of ⊕ ∈ .

1. 
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the tensor product functor distributes over direct sums, by prop. 2.12;2. 

the chain homology functor preserves direct sums.3. 

Using this we have

Tor ( ⊕ ∈ , ) ≃ ⊕ ∈ ⊗
•

≃ ⊕ ∈ ( ⊗ )•
≃ ⊕ ∈ (( ⊗ )•)

≃ ⊕ ∈ Tor ( , )

.

  ▮

Proposition 3.107. Let  be a finite abelian group and  any abelian group. Then Tor ( , ) is a torsion
group. Specifically, Tor ( , ) is a direct sum of torsion subgroups of .

Proof. By a fundamental fact about finite abelian groups (see this theorem),  is a direct sum of cyclic
groups ≃ ⊕ ℤ . By prop. 3.106 Tor  respects this direct sum, so that

Tor ( , ) ≃ ⊕ Tor (ℤ , ) .

By prop. 3.105 every direct summand on the right is a torsion group and hence so is the whole direct
sum.  ▮

In fact this statement is true without assuming finiteness. The full statement is theorem 3.115 below, which
we come to after preparing a few more properties of Tor.

One aspect here is that the order of  and  does not matter:

Proposition 3.108. For , ∈ Ab and ∈ ℕ there is a natural isomorphism

Tor ( , ) ≃ Tor ( , ) .

Proof. By prop. 3.50 there is always a short exact sequence

0 → → → → 0

exhibiting a projective resolution of any module . It follows that Tor ≥ (−, −) = 0.

Let then 0 → → → → 0 be such a short resolution for . Then by the long exact sequence of a derived
functor, prop. 3.50, this induces an exact sequence of the form

0 → Tor ( , ) → Tor ( , ) → Tor ( , ) → ⊗ → ⊗ → ⊗ → 0 .

By prop. 3.47, since by construction  and  are already projective modules themselves this collapses to
an exact sequence

0 → Tor ( , ) ↪ ⊗ → ⊗ → ⊗ → 0 .

To the last three terms we apply the natural symmetric braiding in ( Mod, ⊗ ) isomorphism to get

0 → Tor ( , ) ↪ ⊗ → ⊗ → ⊗ → 0

↓ ↓≃ ↓≃ ↓≃

0 → Tor ( , ) ↪ ⊗ → ⊗ → ⊗ → 0

.

This exhibits a morphism Tor ( , ) → Tor ( , ) as the morphism induced on kernels from an
isomorphism between two morphisms. Hence this is itself an isomorphism. (This is just by the universal
property of the kernel, but one may also think of it as a simple application of the four lemma/five
lemma.)  ▮

In order to understand more of theorem 3.115 we need to understand the acyclic objects of the tensor
product functor, def. 3.53. These are called the flat modules.

Definition 3.109. An -module  is flat if tensoring with  over  as a functor from Mod to itself

(−)⊗ : Mod → Mod

is an exact functor, def. 3.41.

Remark 3.110. The condition in def. 3.109 has the following immediate equivalent reformulations:

 is flat precisely if (−) ⊗  is a left exact functor,

because tensoring with any module is generally already a right exact functor;

1. 

 is flat precisely if (−)⊗  sends monomorphisms (injections) to monomorphisms,2. 
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because for a right exact functor to also be left exact the only remaining condition is that it preserves
the monomorphisms on the left of a short exact sequence;

 is flat precisely if the degree-1 Tor-functor Tor (−, ) is zero,

because by remark 3.51  is the obstruction to a right exact functor  being left exact;

3. 

 is flat precisely if all higher Tor functors Tor≥ ( Mod)(−, ) are zero,

by prop. 3.52;

4. 

 is flat precisely if  is an acyclic object with respect to the tensor product functor;

because the Tor functor is symmetric in both arguments by prop. 3.108 and by definition of acyclic
object, def. 3.53.

5. 

A particularly simple kind of injection of -modules are the injections of finitely generated ideals ↪  into
the ring , regarded as a module over itself, by example 2.23. According to remark 3.110  being flat
implies that also ⊗ → ⊗ ≃  is a monomorphism. The following theorem says that this is indeed
already sufficient to imply that (−)⊗  preserves also all other monomorphisms.

Theorem 3.111. An -module  is flat already if for all inclusions ↪  of a finitely generated ideal into ,
regarded as a module over itself, the induced morphism

⊗ → ⊗ ≃

is an injection.

We will not prove this here. But this does imply the following explicit element-wise characterization of flat
modules.

Proposition 3.112. A module  is flat precisely if for every finite linear combination of zero, ∑ = 0 ∈

with { ∈ } , { ∈ } there are elements { ˜ ∈ }  and linear combinations

= ˜ ∈

with { ∈ } ,  such that for all  we have linear combinations of 0 in 

= 0 ∈ .

Proof. A finite set { ∈ }  corresponds to the inclusion of a finitely generated ideal ↪ .

By theorem 3.111  is flat precisely if ⊗ →  is an injecton. This in turn is the case precisely if the only
element of the tensor product ⊗  that is 0 in ⊗ =  is already 0 on ⊗ .

Now by definition of tensor product of modules an element of ⊗  is of the form ∑ ( , ) for some

{ ∈ }. Under the inclusion ⊗ →  this maps to the actual linear combination ∑ . This map is

injective if whenever this linear combination is 0, already ∑ ( , ) is 0.

But the latter is the case precisely if this is equal to a combination ∑ (˜ , ˜ ) where all the ˜  are 0. This

implies the claim.  ▮

By the same kind of reasoning as in the proof of prop. 3.112 one finds:

Proposition 3.113. (Lazard's criterion)

A module is flat if and only if it is a filtered colimit of free modules.

Using this we can now show the following.

Proposition 3.114. For ∈ Mod a module and ∈ ℕ, the functor

Tor (−, ) : Mod → Mod

respects filtered colimits.

Proof. Let hence : → Mod be a filtered diagram of modules. For each , ∈  we may find a projective

resolution and in fact a free resolution ( )• ⎯
≃

. Since chain homology commutes with filtered colimits (this

is discussed at chain homology - respect for filtered colimits), this means that

( lim
⎯

)• →

is still a quasi-isomorphism. Moreover, by Lazard's criterion, def. 3.113 the degreewise filtered colimits of
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projective modules lim
⎯
( )  for each ∈ ℕ are flat modules. This means that lim

⎯
( )• →  is flat resolution of

. By remark 3.110 this means that it is a (−)⊗ -acyclic resolution. Then by example 3.57 and theorem
3.60 it follows that

Torℤ( , ) ≃ (( lim⎯ ) ⊗ ) .

Now the tensor product of modules is a left adjoint functor (the right adjoint being the internal hom of
modules) and so it commutes over the filtered colimit to yield, using again that chain homology commutes
with filtered colimits,

⋯ ≃ (lim⎯ ( ⊗ ))

≃ lim⎯ ( ⊗ )

≃ lim
⎯
Tor ( , )

.

  ▮

Using this we now can now proof the generalization of prop. 3.107.

Theorem 3.115. For , ∈ Ab, Tor ( , ) is a torsion group which is a filtered colimit of direct sums of
torsion subgroups of either  or .

Proof. The group  may be expressed as a filtered colimit

≃ lim
⎯

of all its finitely generated subgroups (this is discussed at Mod - Limits and colimits). Each of these is a
direct sum of cyclic groups.

By prop. 3.114 Torℤ(−, ) preserves these colimits. By prop. 3.105 every summand is sent to a torsion
subgroup (of either  or ). Therefore by prop. 3.105 Tor ( , ) is a filtered colimit of direct sums of torsion
groups. This is itself a torsion group.  ▮

This concludes our discussion of the basic properties of the Tor-functor. In the next chapter The fundamental
theorems we see Ext and Tor put to work to yield deeper statements.

4. IV) The fundamental theorems

We have tried to indicate in the motivation chapter I) that homological algebra arises from homotopy theory
by “abelianization”, a strict form of stabilization. Accordingly a central question is, how and to which extent
this process respects basic universal constructions. This is what the “fundamental theorems” of homological
algebra are about:

The Künneth theorem, discussed in 10) below, says how passing to singular homology commutes with
taking products of spaces. The spectral sequence of a double complex describes how passing to homology
commutes with taking homotopy colimits producing either total simplicial sets or total complexes. This we
discuss in 12). The constructions and computation going into this involve the fundamentals of iterative
relative homology, which is expressed by the spectral sequence of a filtered complex which we discuss in
detail in 11).

There are more and tighter relation between homotopy theory and homological algebra, which however
require a bit more background in simplicial homotopy theory. This we finally turn to in chapter V) below.

11) Universal coefficient theorem and Künneth theorem

We discuss the following three theorems which put the Ext- and Tor-construction of the previous section 10)
to use. All three are closely related, the first two are roughly dual to each other, the third is a generalization
of the first:

The universal coefficient theorem in homology, theorem 4.6;1. 

the universal coefficient theorem in cohomology, theorem 4.9;2. 

the Künneth theorem, theorem 4.11.3. 

We state these here first, as is traditional, in a version that is not the most general possible, but which is
still convenient to use and as general as the standard applications require. (The fully general version
requires the technology of spectral sequences, which we turn to below in the next section 12).) In this
version these theorems all require an assumption on the base ring : that it is the ring of integers, or, more
generally, that it is a principal ideal domain, for instance also a field or the polynomial ring with coefficients
in a field. Or rather, they rely on the following consequence of this assumption on :

Proposition 4.1. For  a principal ideal domain, every submodule of a free module over  is itself a free
module.
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A detailed proof of this fact can be found at Principal ideal domain - structure theory of modules.

Remark 4.2. Over  a field an -module is a vector space and (assuming the axiom of choice) every vector
space has a basis, hence is free on that basis.

Indeed, for all of the following three theorems the situation where  is a field is special in that in this case
an Ext- or Tor-correction term vanishes and instead of just a short exact sequence with such a term the
theorems produce an isomorphism.

The following theorems relate homology/cohomology with basic coefficients to those with coefficients. To
make this notion fully explicit:

Definition 4.3. Let • ∈ Ch•( Mod) be a chain complex which is degreewise a free module. Let ∈ Mod be
any module. Then we say that

the chain homology of with coefficients in  is the chain homology

•( • ⊗ )

of the chain complex obtained degreewise by the tensor product of modules with ;

the cochain cohomology of with coefficients in  in the cochain cohomology

•(Hom ( • , ))

of the cochain complex, example 3.11, obtained forming degreewise the hom-object into .

Remark 4.4. Since for each  the module  is free by assumption, hence a direct sum = ⊕ ∈ , since

the tensor product of modules distributes over direct sums, prop. 2.12, and since  is the tensor unit for the
tensor product over , it follows that

⊗ ≃ ⊕ ∈ .

Our archetypical and motivating example, introduced in section 2), is still the following:

Example 4.5. For  a topological space and • ≔ •( [Sing ]) the singular chain complex over , hence for
≔ [(Sing )]  the free module on the set of sincular k-simplices for each ∈ ℕ we have that

•( •( [Sing ]) ⊗ ) is the singular homology of  with coefficients in ;

•(Hom ( •( [Sing ]), )) as in example 3.11, is the singular cohomology of  with coefficients in .

Now the universal coefficient theorem below says, roughly, that the basic coefficient ring  is already
“universal” in that

homology with any other coefficients is determined by homology with basic coefficients corrected by a
Tor-module;

1. 

cohomology with any other coefficient is determined by cohomology with basic coefficients corrected by
an Ext-module.

2. 

After these preliminaries, we finally state and prove the theorems. So

let  be a ring which is a principal ideal domain,

let • ∈ Ch•( Mod) be a chain complex of free modules over ,

let ∈ Mod be any -module,

write ⊗  for the tensor product of modules over .

Theorem 4.6. (universal coefficient theorem in ordinary homology)

For each ∈ ℕ there is a short exact sequence

0 → ( •) ⊗ → ( • ⊗ ) → Tor ( − ( •), ) → 0

where on the right we have the first Tor-module, def. 3.101, of the chain homology − ( •) with .

Remark 4.7. This means in particular that when the Tor-module Tor ( − ( •), ) vanishes, then there is an
isomorphism

( • ⊗ ) ≃ ( •) ⊗

which identifies the homology of • with coefficients in , def. 4.3, with the bare homology of • tensored
with .

Before we give the proof we state the following lemma.
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Lemma 4.8. For • a chain complex of free modules and ∈ Mod any module, there is a long exact
sequence of the form

⋯ → ⊗ ⎯⎯⎯
⊗

⊗ → ( • ⊗ ) → − ⊗ ⎯⎯⎯⎯⎯
− ⊗

− ⊗ → ⋯ ,

where  are the boundaries and  the cycles of • in degree  and where : ↪  is the canonical
inclusion.

Proof. Since, by prop. 4.1, every submodule of a free module over our ring  is itself free, such as the
submodule of cycles ↪ , it follows that for each ∈ ℕ we have a splitting, def. 2.73, of the short exact
sequence 0 → → → /  and hence, by prop. 2.74, a direct sum decomposition

≃ ⊕ − .

Here the second direct summand on the right is identified, as indicated, under the differential ∂  with the
boundaries in one degree lower, since by construction ∂  is injective on / .

Accordingly, if we regard the graded modules • and • of boundaries and cycles as chain complexes with
vanishing differential, then we have a sequence of chain maps

0 → • ↪ • → • − → 0

which is degreewise a short exact sequence, hence is a short exact sequence of chain complexes. Now since
the tensor product of modules distributes over direct sum, the image of this sequence under (−) ⊗

0 → • ⊗ ↪ • ⊗ → • − ⊗ → 0

is still a split exact sequence hence in particular still a short exact sequence. The induced homology long
exact sequence, as discussed there, is the long exact sequence to be shown: one reads off that it has the
right terms and it is straightforward to check that the connecting homomorphisms are indeed given by  as
stated.  ▮

Proof. of theorem 4.6

By lemma 4.8 we have short exact sequences

0 → coker( ⊗ ) → ( • ⊗ ) → ker( ⊗ ) → 0 .

Since the tensor product of modules is a right exact functor it preserves cokernels and hence

coker( ⊗ ) ≃ coker( ) ⊗ = ( ) ⊗ ,

which is what we needed to show on the left.

The dual statement were true if (−)⊗  were also a left exact functor. In general it is not, and the failure is
measured by the Tor-group:

Notice that with prop. 4.1 the defining short exact sequence

0 → → → ( •) → 0

exhibits [⋯ → 0 → → ] ⎯
≃

( ) as a projective resolution of ( •), by remark 3.26. Therefore by
definition of Tor the group Tor ( ( •), ) is the chain homology in degree 1 of

[⋯ → 0 → ⊗ ⎯⎯⎯
⊗

⊗ ] ,

which is

Tor ( ( •), ) ≃ ker( ⊗ )

and this is indeed what we have to show on the right hand side.  ▮

The following statement is a kind of dualization of the previous one. Instead of tensor products of modules it
involves the Hom of modules, and instead of Tor-modules it involves Ext-modules as corrections.

Theorem 4.9. (universal coefficient theorem in ordinary cohomology)

Let • ∈ Ch•( Mod) be a chain complex of modules over a principal ideal domain , which is degreewise a free
module. Let ∈ Mod be an module. Then there is a short exact sequence

0 → Ext ( − ( ), ) → (Hom ( • , )) → Hom ( ( ), ) → 0

with the Ext-module on the left.

Lemma 4.10. Given a homomorphism → →  of modules together with a retract : →  of , there
is a short exact sequence of cokernels
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(6)

(7)

(8)

0 → coker → coker( ∘ ) → coker( ) → 0 .

Proof. Since we work in Mod, all the cokernels appearing here (as discussed there) may be expressed as
quotients, e.g coker( ) ≃ /im( ).

The sequence of inclusions im( ∘ ) ↪ im( ) ↪  induces the canonical short exact sequence

0 →
im( )

im( ∘ )
→
im( ∘ )

→
im( )

→ 0

and we claim that this is already isomorphic to the one stated in the lemma. This is manifestly true for the
two terms on the right. For the term on the left observe that  induces a morphism
′ : /im( ) → /im( ∘ ). By the existence of the retract  this has itself a retract. Moreover it factors as

′ : /im( ) → im( )/im( ∘ ) ↪ /im( ∘ ) .

Therefore the first morphism here on the left has to be an isomorphism, too.  ▮

Proof (of theorem 12). Write

0 → → → → 0

for the short exact sequence of boundaries, cycles, and homology groups of • in degree . Since  is
assumed to be a free module and since  and  are submodules, it follows that these are also free, by
prop. 4.1. Therefore this sequence exhibits a projective resolution of the group . It follows that the
Ext-group Ext ( , ) is characterized by the short exact sequence

Hom( , ) → Hom( , ) → Ext ( , ) → 0 .

Notice also that the short exact sequence

0 → → → − → 0

is split because, as before, −  is free abelian. Using these two exact sequences on the left and right of the
short exact sequence

0 → / → / → / → 0

shows that this is equivalent to

0 → → / → − .

Again this splits as −  is free abelian.

In addition to these exact sequence consider the decomposition

∂ : → / → / →≃ − ↪ − ↪ −

and apply Hom(−, ) to obtain the diagram

0

↑

Hom( , )

↑

Hom( , ) ← Hom( , ) ← Hom( / , ) ← 0 0

↑ ( ¯ , ) ↑

0 ← Ext ( , ) ← Hom( − , ) ← Hom( − , )

↑ ↖ ↑

0 Hom( − , )

Here the right vertical sequence is exact, because (7) splits, and the left vertical sequence is exact because
(8) splits. The upper horizontal sequence is exact because the hom functor takes cokernels to kernels and
finally the lower horizontal sequence is the exact sequence (6).

Since therefore  and Hom(∂̄, ) are monomorphisms, it follows that the degree -cocycles are

− ≔ ker(Hom( − , ) → Hom( , )) ≃ ker(Hom( − , ) → Hom( − , )) .

Using this for − 1 replaced by  shows by the upper horizontal exact sequence that

= Hom( / , ) .

Similarly the coboundaries are seen to be
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(9)

≔ imHom(∂, ) ≃ im(Hom( − , ) → Hom( / ), ) .

Together this gives the cochain cohomology as

( , ) ≔ / ≃ coker(Hom( , ) → Hom( / , )) .

Now the universal coefficient theorem follows by going into lemma 4.10 with the identifications
= Hom( − , ), = Hom( − , ), = Hom( / , ).  ▮

The universal coefficient theorem in homology, theorem, 4.6 involves the tensor product of modules. The
following generalizes this to the tensor product of chain complexes, def. 2.59.

Theorem 4.11. For  a principal ideal domain, given a chain complex • ∈ Ch•( Mod) of free modules over 
and given any other chain complex ′• ∈ Ch•( Mod), then for each ∈ ℕ there is a short exact sequence of
the form

0 → ⊕ ( •)⊗ − ( ′• ) → • ⊗ ′• → ⊕ Tor ( ( •), − − ( ′• )) → 0 .

Remark 4.12. In the special case that ′  is concentrated in degree 0, this is the universal coefficient
theorem in ordinary homology, theorem 4.6.

Remark 4.13. In particular if all the Tor-groups on the right vanish, then the theorem asserts an
isomorphism

• ⊗ ′• ≃ ⊕ ( •) ⊗ − ( ′• ) ,

which identifies the homology of a tensor product with the tensor product of the separate homologies.

This is the case (assuming the axiom of choice) notably if  is a field (since every module over a field is a
free module – every vector space has a basis – and every free module is a flat module).

Proof. of theorem 4.11

Notice that since  is assumed to be free, hence a direct sum of  with itself, since the tensor product of
modules distributes over direct sums, and since chain homology respects direct sums, we have

( ⊗ ′) ≃ ⊗ − ( ′• ) .

First consider now the special case that all the differentials of • are zero, so that ( •) = . In this case
(9) yields ( ⊗ ′) ≃ ( •) ⊗ − ( ′• ) and therefore

( ⊗ ′) ≃ (⊕ ⊗ ′))

≃ ⊕ ( ⊗ ′)

≃ ⊕ ( •) ⊗ − ( ′• )

.

Since ( ) =  is a free module by assumption, it has no Tor-terms (by the discussion there) and hence
this is the statement to be shown.

Now let • be a general chain complex of free modules. Notice that for each  the cycle-chain-
boundary-short exact sequence

0 → − ↪ − ⎯⎯⎯⎯⎯− −
− → 0

splits due to the assumption that  is a free module, and hence (as discussed at split exact sequence) that
it exhibits a direct sum decomposition ≃ ⊕ − . Since the tensor product of modules distributes over
direct sum, it follows that tensoring with any ′  yields another short exact sequence

0 → − ⊗ ′ → − ⊗ ′ → − − ⊗ ′ → 0 .

This means that if we regard the graded modules • and • of chains and of boundaries as chain complexes
with zero-differentials, then we have a short exact sequence of chain complexes

0 → • ⊗ ′• → • ⊗ ′• → • − ⊗ ′• → 0 .

This induces its homology long exact sequence, prop. 2.78, of the form

⋯ → ( ⊗ ′) → ( × ′) → − ( ⊗ ′) → − ( ⊗ ′) → ⋯ .

Here the terms involving the complexes  and  of boundaries and cycles may be evalutated, since these
have zero differentials, via the special case discussed at the beginning of this proof to yield the long exact
sequence

⋯ ⎯⎯⎯⎯⎯
⊗

⊕ ( ⊗ − ( ′)) → ( ⊗ ′) → ⊕ ( ⊗ − − ( ′)) ⎯⎯
−

⊕ ( ⊗ − − ( ′)) → ⋯ ,

where ≔ ( ⊗ ′) is the morphism induced from the inclusion : • ↪ • of boundaries into cycles.
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This means that by quotienting out an image on the left and a kernel on the right, we obtain a short exact
sequence

0 → coker( ) → ( ⊗ ′) → ker( − ) → 0 .

Since the tensor product of modules is a right exact functor it commutes with the cokernel on the left, as
does the formation of direct sums, and so we have

coker ⊕ ⊗ − ( ′ ) ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
⊗ − ( )

⊗ − ( ′ ) ≃ ⊕ coker → ⊗ − ( ′ ) ≃ ⊕ ( )⊗ − ( ′) .

This is the left term in the short exact sequence to be shown. For the right term the analogous argument
does not quite go through, because tensoring is not in addition a left exact functor, in general. The failure to
be so is precisely measured by the Tor-module:

Notice that by the assumption that  is free and using prop. 4.1 that over our  the submodules , ↪

are themselves free modules, the defining short exact sequence 0 → → → ( ) → 0 exhibits a projective
resolution of ( ). Therefore by definition of Tor we have

Tor ( ( ), − ( ′)) ≃ ker( ⊗ − ( ′)) .

This identifies the term on the right of the exact sequence to be shown.  ▮

These theorems are of particular use in the computation of singular cohomology, due to the following fact.

Proposition 4.14. Let , ∈ Top two topological spaces. The singular cohomology of their product
topological space ×  is isomorphic to that of the tensor product of chain complexes of their singular chain
complexes separately

(ℤ[Sing( × )]•) ≃ (ℤ[Sing ]• ⊗ℤ[Sing ]•) .

This is a consequence of the Eilenberg-Zilber theorem, which we discuss below in section 14).

Corollary 4.15. Let , ∈ Top be two topological spaces. Let =  be a field. Then the singular homology of
their product topological space in some degree  is the direct sum of the tensor products of the singular
homologies of the spaces separately, whose degrees add up to .

( × , ) ≃ ⊕ + = ( , ) ⊗ ( , ) .

This finishes the statements and proofs of the universal coefficient theorem and the Künneth theorem. We
turn now to a tool that allows to produce more refined theorems of this kind.

12) Relative homology and Spectral sequences

We have motivated – in chapter 2) – chain complexes and their homological algebra from the singular chain
complexes of topological spaces. While these do enjoy many nice formal properties, as we have discussed,
they are not well-adapted to explicit computations of homology groups: there are in general “too many
singular chains” in a topological space to say anything useful about them without further information.

The canonical piece of extra information needed to do explicit computations of homology groups for concrete
topological spaces  is a filtering of  – a decomposition of  into “layers” – in the form of a sequence of
subspaces ↪ ↪ ↪ ⋯ ↪  such that in each step there is some information on the structure that is
added. In such a situation we can refine the notion of homology to relative homology, where one studies
relative cycles in +  whose boundary does not necessarily vanish, but is constrained to be one step lower
in filtering degree − ↪ . Such relative homology of filtered topological spaces often allows to compute
genuine singular homology by induction over the filtering degree. A particularly explicit realization of this
idea is applicable when +  is obtained from  by specifically attaching sets of ( + 1)-disks – the basic
cells in homotopy theory. We begin this section below by explaining the resulting cellular homology of such
topological spaces, which are called CW-complexes. The central fact about this cellular homology defined in
terms of boundaries relative to filtering degree ±1 is that it does coincide with the genuine singular
homology and hence provides an efficient means for computing the latter, when available.

But the argument that shows this directly generalizes to homology relative to higher shifts in filtering
degree: one finds immediately – and we discuss this in detail below – that for ∈ ℕ the ( + 1)-relative cycles
are themselves the homology of -relative cycles in the filtered complex in a natural sense. The resulting
tower of relative cycles of arbitrary relative degree is called (for no good reason, unfortunately, but ever
since the notion was conceived) the spectral sequence of the filtered complex.

Via the motivating example of cellular homology we introduce this general notion of spectral sequences, see
what it has to say about cellular homology and indicate in an outlook how with the same kind of simple
argument a plethora of questions in homological algebra can be answered. In particular, given a double
complex (as we discussed in section 6)) its total complex is naturally filtered either by row- or by column-
degree and hence there is a spectral sequence of a double complex which helps with computing its total
homology.

Such total homologies of double complexes are of interest notably whenever one computes the value of a
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derived functor not on a single object, but on a chain complex of objects. A plethora of applications of
spectral sequences arises this way. At the end of this section we provide some pointers to further reading on
this.

We now begin with introducing basics of relative homology and then eventually and hopefully seamlessly
derive the notion of spectral sequences from that.

Let  be a topological space and ↪  a topological subspace. Write •( ) for the chain complex of singular
homology on , def. 1.43 and •( ) ↪ •( ) for the chain map induced by the subspace inclusion according to
def. 1.52.

Definition 4.16. The (degreewise) cokernel of this inclusion, hence the quotient •( )/ •( ) of •( ) by the
image of •( ) under the inclusion, is the chain complex of -relative singular chains.

A boundary in this quotient is called an -relative singular boundary,

a cycle is called an -relative singular cycle.

The chain homology of the quotient is the -relative singular homology of 

( , ) ≔ ( •( )/ •( )) .

Remark 4.17. This means that a singular ( + 1)-chain ∈ + ( ) is an -relative cycle precisely if its
boundary ∂ ∈ ( ) is, while not necessarily 0, contained in the -chains of : ∂ ∈ ( ) ↪ ( ). So the
boundary vanishes possibly only “up to contributions coming from ”.

We record two evident but important classes of long exact sequences that relative homology groups sit in:

Proposition 4.18. Let ↪  be a topological subspace inclusion. The corresponding relative singular
homology, def. 4.16, sits in a long exact sequence of the form

⋯ → ( ) ⎯⎯
( )

( ) → ( , ) ⎯⎯− − ( ) ⎯⎯⎯⎯⎯− ( )
− ( ) → − ( , ) → ⋯ .

The connecting homomorphism : + ( , ) → ( ) sends an element [ ] ∈ + ( , ) represented by an
-relative cycle ∈ + ( ), to the class represented by the boundary ∂ ∈ ( ) ↪ ( ).

Proof. This is the homology long exact sequence, prop. 2.78, induced by the defining short exact sequence

0 → •( ) ↪ •( ) → coker( ) ≃ •( )/ •( ) → 0 of chain complexes.  ▮

Proposition 4.19. Let ↪ ↪  be a sequence of two topological subspace inclusions. Then there is a long
exact sequence of relative singular homology groups of the form

⋯ → ( , ) → ( , ) → ( , ) → − ( , ) → ⋯ .

Proof. Observe that we have a short exact sequence of chain complexes, def. 2.75

0 → •( )/ •( ) → •( )/ •( ) → •( )/ •( ) → 0 .

The corresponding homology long exact sequence, prop. 2.78, is the long exact sequence in question.  ▮

We look at some concrete fundamental examples in a moment. But first it is useful to make explicit the
following general sub-notion of relative homology.

Let  still be a given topological space.

Definition 4.20. The augmentation map for the singular homology of  is the homomorphism of abelian
groups

: ( ) → ℤ

which adds up all the coefficients of all 0-chains:

: : ↦ .

Since the boundary of a 1-chain is in the kernel of this map, by example 1.42, it constitutes a chain map

: •( ) → ℤ ,

where now ℤ is regarded as a chain complex concentrated in degree 0.

Definition 4.21. The reduced singular chain complex ˜
•( ) of  is the kernel of the augmentation map,

the chain complex sitting in the short exact sequence

0 → ˜
•( ) → •( ) → ℤ → 0 .
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The reduced singular homology ˜ •( ) of  is the chain homology of the reduced singular chain complex

˜
•( ) ≔ •( ˜ •( )) .

Equivalently:

Definition 4.22. The reduced singular homology of , denoted ˜ •( ), is the chain homology of the
augmented chain complex

⋯ → ( ) → ( ) → ( ) → ℤ → 0 .

Let  be a topological space, •( ) its singular homology and ˜ •( ) its reduced singular homology, def. 4.21.

Proposition 4.23. For ∈ ℕ there is an isomorphism

( ) ≃
˜ ( ) for ≥ 1

˜ ( ) ⊕ ℤ for = 0

Proof. The homology long exact sequence, prop. 2.78, of the defining short exact sequence
˜
•( ) → •( ) → ℤ is, since ℤ here is concentrated in degree 0, of the form

⋯ → ˜ ( ) → ( ) → 0 → ⋯ → 0 → ⋯ → ˜ ( ) → ( ) → 0 → ˜ ( ) → ( ) → ℤ → 0 .

Here exactness says that all the morphisms ˜ ( ) → ( ) for positive  are isomorphisms. Moreover, since ℤ
is a free abelian group, hence a projective object, the remaining short exact sequence

0 → ˜ ( ) → ( ) → ℤ → 0

is split, by prop. 2.74, and hence ( ) ≃ ˜ ( ) ⊕ ℤ.  ▮

Proposition 4.24. For = *  the point, the morphism

( ) : ( ) → ℤ

is an isomorphism. Accordingly the reduced homology of the point vanishes in every degree:

˜
•( * ) ≃ 0 .

Proof. By the discussion in section 2) we have that

( * ) ≃
ℤ for = 0

0 otherwise
.

Moreover, it is clear that : ( * ) → ℤ is the identity map.  ▮

Now we can discuss the relation between reduced homology and relative homology.

Proposition 4.25. For  an inhabited topological space, its reduced singular homology, def. 4.21, coincides
with its relative singular homology relative to any base point : * → :

˜ •( ) ≃ •( , * ) .

Proof. Consider the sequence of topological subspace inclusions

∅ ↪ * ↪ .

By prop. 4.19 this induces a long exact sequence of the form

⋯ → + ( * ) → + ( ) → + ( , * ) → ( * ) → ( ) → ( , * ) → ⋯ → ( ) → ( , * ) → ( * ) ⎯⎯⎯
( )

( ) → ( , * ) → 0 .

Here in positive degrees we have ( * ) ≃ 0 and therefore exactness gives isomorphisms

( ) →≃ ( , * ) ∀ ≥

and hence with prop. 4.23 isomorphisms

˜ ( ) →≃ ( , * ) ∀ ≥ .

It remains to deal with the case in degree 0. To that end, observe that ( ) : ( * ) → ( ) is a
monomorphism: for this notice that we have a commuting diagram

( * ) → ( * )

( ) ↓ ( ) ↗ ↓≃
( )

( ) ⎯⎯
( )

ℤ

,
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where : → *  is the terminal map. That the outer square commutes means that ( ) ∘ ( ) = ( ) and
hence the composite on the left is an isomorphism. This implies that ( ) is an injection.

Therefore we have a short exact sequence as shown in the top of this diagram

0 → ( * ) ⎯⎯⎯
( )

( ) → ( , * ) → 0

≃ ↘ ↓ ( )

ℤ

.

Using this we finally compute

˜ ( ) ≔ ker ( )

≃ coker( ( ))

≃ ( , * )

.

  ▮

With this understanding of homology relative to a point in hand, we can now characterize relative homology
more generally. From its definition in def. 4.16, it is plausible that the relative homology group ( , )

provides information about the quotient topological space / . This is indeed true under mild conditions:

Definition 4.26. A topological subspace inclusion ↪  is called a good pair if

 is closed inside ;1. 

 has an neighbourhood ↪ ↪  such that ↪  has a deformation retract.2. 

Proposition 4.27. If ↪  is a topological subspace inclusion which is good in the sense of def. 4.26, then
the -relative singular homology of  coincides with the reduced singular homology, def. 4.21, of the
quotient space / :

( / ) ≃ ˜ ( , ) .

The proof of this is spelled out at Relative homology – relation to quotient topological spaces. It needs the
proof of the Excision property of relative homology. While important, here we will not further dwell on this.
The interested reader can find more information behind the above links.

With the general definition of relative homology in hand, we now consider the basic cells such that cell
complexes built from such cells have tractable relative homology groups. Actually, up to weak homotopy
equivalence, every Hausdorff topological space is given by such a cell complex and hence its relative
homology, then called cellular homology, is a good tool for computing singular homology rather generally.

Definition 4.28. For ∈ ℕ write

↪ ℝ ∈ Top for the standard -disk;

− ↪ ℝ ∈ Top for the standard ( − 1)-sphere;

(notice that the 0-sphere is the disjoint union of two points, = * ∐ * , and by definition the
(−1)-sphere is the empty set)

− ↪  for the continuous function that includes the ( − 1)-sphere as the boundary of the -disk.

Example 4.29. The reduced singular homology of the -sphere  equals the − -relative homology of the
-disk with respect to the canonical boundary inclusion − ↪ : for all ∈ ℕ

˜ •( ) ≃ •( , − ) .

Proof. The -sphere is homeomorphic to the -disk with its entire boundary identified with a point:

≃ / − .

Moreover the boundary inclusion is a good pair in the sense of def. 4.26. Therefore the example follows with
prop. 4.27.  ▮

When forming cell complexes from disks, then each relative dimension will be a wedge sum of disks:

Definition 4.30. For { : * → }  a set of pointed topological spaces, their wedge sum ∨  is the result of

identifying all base points in their disjoint union, hence the quotient

/ * .

Example 4.31. The wedge sum of two pointed circles is the “figure 8”-topological space.
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Proposition 4.32. Let { * → }  be a set of pointed topological spaces. Write ∨ ∈ Top for their wedge sum

and write : → ∨  for the canonical inclusion functions.

Then for each ∈ ℕ the homomorphism

( ˜ ( )) : ⊕ ˜ ( ) → ˜ ( ∨ )

is an isomorphism.

Proof. By prop. 4.27 the reduced homology of the wedge sum is equivalently the relative homology of the
disjoint union of spaces relative to their disjoint union of basepoints

˜ ( ∨ ) ≃ ( , * ) .

The relative homology preserves these coproducts (sends them to direct sums) and so

( , * ) ≃ ⊕ ( , * ) .

  ▮

The following defines topological spaces which are inductively built by gluing disks to each other.

Definition 4.33. A CW complex of dimension (−1) is the empty topological space.

By induction, for ∈ ℕ a CW complex of dimension  is a topological space  obtained from

a CW-complex −  of dimension − 1;1. 

an index set Cell( ) ∈ Set;2. 

a set of continuous maps (the attaching maps) { : − → − } ∈ ( )3. 

as the pushout

≃
∈ ( ) ∈ ( ) −

in

∐ ∈ ( )
− ⎯

( )

−

↓ ↓

∐ ∈ ( ) →

,

hence as the topological space obtained from −  by gluing in -disks  for each ∈ Cell( )  along the

given boundary inclusion : − → − .

By this construction, an -dimensional CW-complex is canonically a filtered topological space, hence a
sequence of topological subspace inclusions of the form

∅ ↪ ↪ ↪ ⋯ ↪ − ↪

which are the right vertical morphisms in the above pushout diagrams.

A general CW complex  then is a topological space which is the limiting space of a possibly infinite such
sequence, hence a topological space given as the sequential colimit over a tower diagram each of whose
morphisms is such a filter inclusion

∅ ↪ ↪ ↪ ⋯ ↪ .

The following basic facts about the singular homology of CW complexes are important.

Now we can state a variant of singular homology adapted to CW complexes which admits a more systematic
way of computing its homology groups. First we observe the following.

Proposition 4.34. The relative singular homology, def. 4.16, of the filtering degrees of a CW complex ,
def. 4.33, is

( , − ) ≃
ℤ[Cells( ) ] if =

0 otherwise
,

where ℤ[Cells( ) ] denotes the free abelian group on the set of -cells.

Proof. The inclusion − ↪  is a good pair in the sense of def. 4.26. The quotient / −  is by definition
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of CW-complexes a wedge sum, def. 4.30, of -spheres, one for each element in Cell( ) . Therefore by prop.

4.27 we have an isomorphism ( , − ) ≃ ˜ ( / − ) with the reduced homology of this wedge sum. The
statement then follows by the respect of reduced homology for wedge sums, prop. 4.32.  ▮

Proposition 4.35. For  a CW complex with skeletal filtration { }  as above, and with , ∈ ℕ we have for

the singular homology of  that

( > ) ⇒ ( ( ) ≃ 0) .

In particular if  is a CW-complex of finite dimension dim  (the maximum degree of cells), then

( > dim ) ⇒ ( ( ) ≃ 0) .

Moreover, for <  the inclusion

( ) →≃ ( )

is an isomorphism and for =  we have an isomorphism

image( ( ) → ( )) ≃ ( ) .

Proof. By the long exact sequence in relative homology, prop. 4.18 we have an exact sequence of the form

+ ( , − ) → ( − ) → ( ) → ( , − ) .

Now by prop. 4.34 the leftmost and rightmost homology groups here vanish when ≠  and ≠ − 1 and
hence exactness implies that

( − ) →≃ ( )

is an isomorphism for ≠ , − 1. This implies the first claims by induction on .

Finally for the last claim use that the above exact sequence gives

− + ( , − ) → − ( − ) → − ( ) → 0

and hence that with the above the map − ( − ) → − ( ) is surjective.  ▮

We can now discuss the cellular homology of a CW complex.

Definition 4.36. For  a CW-complex, def. 4.33, its cellular chain complex • ( ) ∈ Ch• is the chain
complex such that for ∈ ℕ

the abelian group of chains is the relative singular homology group, def. 4.16, of ↪  relative to

− ↪ :

( ) ≔ ( , − ) ,

the differential ∂ + : + ( ) → ( ) is the composition

∂ : + ( + , )®¾ ( ) → ( , − ) ,

where ∂  is the boundary map of the singular chain complex and where  is the morphism on relative
homology induced from the canonical inclusion of pairs ( , ∅) → ( , − ).

Proposition 4.37. The composition ∂ ∘ ∂ +  of two differentials in def. 4.36 is indeed zero, hence • ( )

is indeed a chain complex.

Proof. On representative singular chains the morphism  acts as the identity and hence ∂ ∘ ∂ +  acts as
the double singular boundary, ∂ ∘ ∂ + = 0.  ▮

Remark 4.38. This means that

a cellular -chain is a singular -chain required to sit in filtering degree , hence in ↪ ;

a cellular -cycle is a singular -chain whose singular boundary is not necessarily 0, but is contained
in filtering degree ( − 2), hence in − ↪ .

a cellular -boundary is a singular -chain which is the boundary of a singular ( + 1)-chain coming
from filtering degree ( + 1).

This kind of situation – chains that are cycles only up to lower filtering degree and boundaries that come
from specified higher filtering degree – has an evident generalization to higher relative filtering degrees. And
in this greater generality the concept is of great practical relevance. Therefore before discussing cellular
homology further now, we consider this more general “higher-order relative homology” that it suggests
(namely the formalism of spectral sequences). After establishing a few fundamental facts about that we will
come back in prop. 4.61 below to analyse the above cellular situation using this conceptual tool.
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First we abstract the structure on chain complexes that in the above example was induced by the
CW-complex structure on the singular chain complex.

Definition 4.39. The structure of a filtered chain complex in a chain complex • is a sequence of chain
map inclusions

⋯ ↪ − • ↪ • ↪ ⋯ ↪ • .

The associated graded complex of a filtered chain complex, denoted • •, is the collection of quotient
chain complexes

• ≔ •/ − • .

We say that element of • are in filtering degree .

Remark 4.40. In more detail this means that

[⋯®¾ ⎯⎯
−

− → ⋯] is a chain complex, hence { } are objects in  ( -modules) and {∂ } are
morphisms (module homomorphisms) with ∂ + ∘ ∂ = 0;

1. 

For each ∈ ℤ there is a filtering •  on  and all these filterings are compatible with the differentials
in that

∂( ) ⊂ −

2. 

The grading associated to the filtering is such that the -graded elements are those in the quotient

≔
−

.

Since the differentials respect the grading we have chain complexes • in each filtering degree .

3. 

Hence elements in a filtered chain complex are bi-graded: they carry a degree as elements of • as usual,
but now they also carry a filtering degree: for , ∈ ℤ we therefore also write

, ≔ +

and call this the collection of ( , )-chains in the filtered chain complex.

Accordingly we have ( , )-cycles and -boundaries. But for these we may furthermore refine to a notion
where also the filtering degree of the boundaries is constrained:

Definition 4.41. Let • • be a filtered chain complex. Its associated graded chain complex is the set of
chain complexes

• ≔ •/ − •

for all .

Then for , , ∈ ℤ we say that

+  is the module of ( , )-chains or of ( + )-chains in filtering degree ;1. 

, ≔ ∈ + | ∂ = 0mod − •

= ∈ + | ∂( ) ∈ − + − / − +

is the module of -almost ( , )-cycles (the ( + )-chains whose differential vanishes modulo terms of
filtering degree − );

2. 

, ≔ ∂( + − + + ) ,

is the module of -almost ( , )-boundaries.

3. 

Similarly we set

, ≔ { ∈ + | ∂ = 0}/ − + = ( + )

, ≔ ∂( + + ) .

From this definition we immediately have that the differentials ∂ : + → + −  restrict to the -almost
cycles as follows:

Proposition 4.42. The differentials of • restrict on -almost cycles to homomorphisms of the form

∂ : , → − , + − .

These are still differentials: ∂ = 0.
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Proof. By the very definition of ,  it consists of elements in filtering degree  on which ∂ decreases the
filtering degree to − . Also by definition of differential on a chain complex, ∂ decreases the actual degree
+  by one. This explains that ∂ restricted to ,  lands in − , + −

• . Now the image constists indeed of
actual boundaries, not just -almost boundaries. But since actual boundaries are in particular -almost
boundaries, we may take the codomain to be − , + − .  ▮

As before, we will in general index these differentials by their codomain and hence write in more detail

∂ : , → − , + − .

Proposition 4.43. We have a sequence of canonical inclusions

, ↪ , ↪ ⋯ , ↪ , ↪ ⋯ ↪ , ↪ , .

The following observation is elementary, and yet this is what drives the theory of spectral sequences, as it
shows that almost cycles may be computed iteratively by homological means themselves.

Proposition 4.44. The ( + 1)-almost cycles are the ∂ -kernel inside the -almost cycles:

,
+ ≃ ker( , ®¾ − , + − ) .

Proof. An element ∈ +  represents

an element in ,  if ∂ ∈ − + −1. 

an element in ,
+  if even ∂ ∈ − − + − ↪ − + − .2. 

The second condition is equivalent to ∂  representing the 0-element in the quotient

− + − / − − + − . But this is in turn equivalent to ∂  being 0 in

− , + − ⊂ − + − / − − + − .  ▮

With a definition of almost-cycles and almost-boundaries, of course we are now interested in the
corresponding homology groups:

Definition 4.45. For , , ∈ ℤ define the -almost ( , )-chain homology of the filtered complex to be the
quotient of the -almost ( , )-cycles by the -almost ( , )-boundaries, def. 4.41:

, ≔ ,

,

=
∈ + | ∈ − + −

( + − + + )⊕ − +

By prop. 4.42 the differentials of • restrict on the -almost homology groups to maps

∂ : , → − , + − .

The central property of these -almost homology groups now is their following iterative homological
characterization.

Proposition 4.46. With definition 4.45 we have that • , •
+  is the ∂ -chain homology of • , • :

,
+ =

ker(∂ : , → − , + − )

im(∂ : + , − + → , )
.

Proof. By prop. 4.44.  ▮

This structure on the collection of -almost cycles of a filtered chain complex thus obtained is called a
spectral sequence:

Definition 4.47. A spectral sequence of -modules is

a set { , } , , ∈ℤ of -modules;1. 

a set {∂ , : , → − , + − } , , ∈ℤ of homomorphisms2. 

such that

the ∂ s are differentials: ∀ , , (∂ − , + − ∘ ∂ , = 0);1. 

the modules ,
+  are the ∂ -homology of the modules in relative degree :

∀ , , ,
+ ≃

ker(∂ − , + − )

im(∂ , )
.

2. 

One says that • , •  is the -page of the spectral sequence.

Since this turns out to be a useful structure to make explicit, as the above motivation should already
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indicate, one introduces the following terminology and basic facts to talk about spectral sequences.

Definition 4.48. Let { , } , ,  be a spectral sequence, def. 4.47, such that for each ,  there is ( , ) such

that for all ≥ ( , ) we have

,
≥ ( , ) ≃ ,

( , ) .

Then one says that

the bigraded object

≔ { , } , ≔ { ,
( , )} ,

is the limit term of the spectral sequence;

1. 

the spectral sequence abuts to .

Example 4.49. If for a spectral sequence there is  such that all differentials on pages after  vanish,
∂ ≥ = 0, then { } ,  is a limit term for the spectral sequence. One says in this cases that the spectral

sequence degenerates at .

Proof. By the defining relation

,
+ ≃ ker(∂ − , + − )/im(∂ , ) =

the spectral sequence becomes constant in  from  on if all the differentials vanish, so that ker(∂ , ) = ,

for all , .  ▮

Example 4.50. If for a spectral sequence { , } , ,  there is ≥ 2 such that the th page is concentrated in

a single row or a single column, then the spectral sequence degenerates on this pages, example 4.49, hence
this page is a limit term, def. 4.48. One says in this case that the spectral sequence collapses on this page.

Proof. For ≥ 2 the differentials of the spectral sequence

∂ : , → − , + −

have domain and codomain necessarily in different rows an columns (while for = 1 both are in the same
row and for = 0 both coincide). Therefore if all but one row or column vanish, then all these differentials
vanish.  ▮

Definition 4.51. A spectral sequence { , } , ,  is said to converge to a graded object • with filtering • •,

traditionally denoted

, ⇒ • ,

if the associated graded complex { + } , ≔ { + / − + } of  is the limit term of , def. 4.48:

, ≃ + ∀ , .

Remark 4.52. In practice spectral sequences are often referred to via their first non-trivial page, often also
the page at which it collapses, def. 4.50, often already the second page. Then one tends to use notation
such as

, ⇒ •

to be read as “There is a spectral sequence whose second page is as shown on the left and which converges
to a filtered object as shown on the right.”

Definition 4.53. A spectral sequence { , } is called a bounded spectral sequence if for all , ∈ ℤ the
number of non-vanishing terms of total degree , hence of the form , − , is finite.

Example 4.54. A spectral sequence { , } is called

a first quadrant spectral sequence if all terms except possibly for , ≥ 0 vanish;

a third quadrant spectral sequence if all terms except possibly for , ≤ 0 vanish.

Such spectral sequences are bounded, def. 4.53.

Proposition 4.55. A bounded spectral sequence, def. 4.53, has a limit term, def. 4.48.

Proof. First notice that if a spectral sequence has at most  non-vanishing terms of total degree  on page
, then all the following pages have at most at these positions non-vanishing terms, too, since these are the

homologies of the previous terms.

Therefore for a bounded spectral sequence for each  there is ( ) ∈ ℤ such that , − = 0 for all ≤ ( ) and
all . Similarly there is ( ) ∈ ℤ such − , = 0 for all ≤ ( ) and all .
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We claim then that the limit term of the bounded spectral sequence is in position ( , ) given by the value

,  for

> max( − ( + − 1), + 1 − ( + + 1)) .

This is because for such  we have

− , + − = 0 because − < ( + − 1), and hence the kernel ker(∂ − , + − ) = 0 vanishes;1. 

+ , − + = 0 because − + 1 < ( + + 1), and hence the image im(∂ , ) = 0 vanishes.2. 

Therefore

,
+ = ker(∂ − , + − )/im(∂ , )

≃ , /0

≃ ,

.

  ▮

The central statement about the notion of the spectral sequence of a filtered chain complex then is the
following proposition. It says that the iterative computation of higher order relative homology indeed in the
limit computes the genuine homology.

Definition 4.56. For • • a filtered complex, write for ∈ ℤ

•( ) ≔ image( •( ) → •( )) .

This defines a filtering • •( ) of the homology, regarded as a graded object.

Proposition 4.57. If the spectral sequence of a filtered complex • • of prop. 4.46 has a limit term, def.
4.48 then it converges, def. 4.51, to the chain homology of •

, ⇒ + ( •) ,

i.e. for sufficiently large  we have

, ≃ + ( ) ,

where on the right we have the associated graded object of the filtering of def. 4.56.

Proof. By assumption, there is for each ,  an ( , ) such that for all ≥ ( , ) the -almost cycles and
-almost boundaries, def. 4.41, in +  are the ordinary cycles and boundaries. Therefore for ≥ ( , )

def. 4.45 gives , ≃ + ( ).  ▮

This says what these spectral sequences are converging to. For computations it is also important to know
how they start out for low . We can generally characterize ,  for very low values of  simply as follows:

Proposition 4.58. We have

, = + = + / − +

is the associated p-graded piece of + ;

, = + ( •)

Proof. For = 0 def. 4.45 restricts to

, = +

− +
= +

because for ∈ +  we automatically also have ∂ ∈ +  since the differential respects the filtering
degree by assumption.

For = 1 def. 4.45 gives

, =
{ ∈ + | ∂ = 0 ∈ + }

∂( + )
= + ( •) .

  ▮

Remark 4.59. There is, in general, a decisive difference between the homology of the associated graded
complex + ( •) and the associated graded piece of the genuine homology + ( •): in the former the
differentials of cycles are required to vanish only up to terms in lower degree, but in the latter they are
required to vanish genuinely. The latter expression is instead the value of the spectral sequence for → ∞,
see prop. 4.57 below.

These general facts now allow us, as a first simple example for the application of spectral sequences to see
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transparently that the cellular homology of a CW complex, def. 4.36, coincides with its genuine singular
homology.

First notice that of course the structure of a CW-complex on a topological space , def. 4.33 naturally
induces on its singular simplicial complex •( ) the structure of a filtered chain complex, def. 4.39:

Definition 4.60. For ↪ ↪ ⋯ ↪  a CW complex, and ∈ ℕ, write

•( ) ≔ •( )

for the singular chain complex of ↪ . The given topological subspace inclusions ↪ +  induce chain
map inclusions •( ) ↪ + •( ) and these equip the singular chain complex •( ) of  with the structure
of a bounded filtered chain complex

0 ↪ •( ) ↪ •( ) ↪ •( ) ↪ ⋯ ↪ •( ) ≔ •( ) .

(If  is of finite dimension dim  then this is a bounded filtration.)

Write { , ( )} for the spectral sequence of a filtered complex corresponding to this filtering.

Proposition 4.61. The spectral sequence { , ( )} of singular chains in a CW complex , def. 4.60
converges, def. 4.51, to the singular homology of :

, ( ) ⇒ •( ) .

Proof. The spectral sequence { , ( )} is clearly a first-quadrant spectral sequence, def. 4.54. Therefore it is
a bounded spectral sequence, def. 4.53 and hence has a limit term, def. 4.55. So the statement follows with
prop. 4.57.  ▮

We now identify the low-degree pages of { , ( )} with structures in singular homology theory.

Proposition 4.62.

= 0 – , ( ) ≃ + ( )/ + ( − ) is the group of − -relative (p+q)-chains, def. 4.16, in ;

= 1 – , ( ) ≃ + ( , − ) is the − -relative singular homology, def. 4.16, of ;

= 2 – , ( ) ≃
( ) for = 0

0 otherwise

= ∞ – , ( ) ≃ + ( )/ − + ( ).

Proof. By straightforward and immediate analysis of the definitions.  ▮

As a result of these general considerations we now obtain the promised isomorphism between the cellular
homology and the singular homology of a CW-complex :

Corollary 4.63. For ∈ Top a CW complex, def. 4.33, its cellular homology, def. 4.36 • ( ) coincides
with its singular homology •( ), def. 1.48:

• ( ) ≃ •( ) .

Proof. By the third item of prop. 4.62 the ( = 2)-page of the spectral sequence { , ( )} is concentrated in
the ( = 0)-row and hence it collapses there, def. 4.50. Accordingly we have

, ( ) ≃ , ( )

for all , . By the third and fourth item of prop. 4.62 this non-trivial only for = 0 and there it is equivalently

( ) ≃ ( ) .

Finally observe that ( ) ≃ ( ) by the definition of the filtering on the homology, def. 4.56, and using
prop. 4.35.  ▮

This concludes our discussion of how relative homology theory of cellularly filtered objects allows to
efficiently compute the genuine homology of these objects, and how this motivates the general concept of
spectral sequences as organizing higher order relative homology groups. In the next section we consider an
important special special class of filtered objects – the total complexes of double complexes – and apply
these tools to analyze them.

13) Total complexes of double complexes

In 6) we had discussed basic properties of double complexes. A central aspect of double complexes is that
by a kind fo amalgamation they induce an ordinary chain complex, called their total complex. The
conceptual relevance of this construction rests in the fact, which we indate below in V, that a double
complex is a diagram of complex and its total complex is the correspoding homotopy colimit of this diagram,
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hence the universal way of “gluing” the rows in the double complex to a single complex. Here we just focus
on examples of the explicit construction and analyse the homology of total chain complexes using the tool of
spectral sequences introduced above.

Definition 4.64. For • , • ∈ Ch•(Ch•( Mod)) a double chain complex, the corresponding total chain complex
is the chain complex Tot( )• ∈ Ch•( Mod) whose degree-  module is the direct sum of all entries of total

degree :

Tot( ) ≔ ⊕ + = , ,

and whose differential is the sum, with column-degree-weighted sign, of the horizontal and vertical
differentials of the double complex, hence on a direct summand ,  given by

∂ ≔ ∂ + (−1) ∂ .

One important example of this we have already seen.

Example 4.65. Let • , • ∈ Ch•( Mod) be two chain complexes. Write • ⊗ • for the double complex which

in degree ( , ) is the tensor product of modules ⊗ , whose horizontal differential is ∂ ⊗ id  and

whose vertical differential is id ⊗ ∂ .

Then the corresponding total complex Tot( • ⊗ •)•, def. 4.64, is the tensor product of chain complexes

( ⊗ )• of def. 2.59:

( ⊗ )• ≃ Tot( • ⊗ •)• .

Proposition 4.66. The total complex Tot( )• of a double complex • , • , def. 4.64, becomes a filtered chain

complex, def. 4.39 either by filtering by row degree

Tot( ) ≔ ⊕
+ =

≤

,

or by column degree

Tot( ) ≔ ⊕
+ =

≤

, .

The spectral sequence of a filtered complex induced by either  or  on the total complex of a double
complex is accordingly called the spectral sequence of a double complex.

Proposition 4.67. Let { , } , ,  be the spectral sequence of a double complex • , • , according to def.

\ref{SpectralSequenceOfDoubleComplex}, with respect to the horizontal filtration. Then the first few pages
are for all , ∈ ℤ given by

, ≃ , ;

, ≃ ( , • );

, ≃ ( ( )).

Moreover, if • , •  is concentrated in the first quadrant (0 ≤ , ), then the spectral sequence converges to the
chain homology of the total complex:

, ≃ + (Tot( )•) .

Proof. This is a matter of unwinding the definition, using prop. 4.58. We display equations for the horizontal
filtering, the other case works analogously.

The 0th page is by definition the associated graded piece

, ≔ Tot( ) +

≔ Tot( ) + / − Tot( ) +

≔

⊕ + = +
≤

,

⊕ + = + ,

≃ , .

The first page is the chain homology of the associated graded chain complex:

, ≃ + ( Tot( )•)

≃ + ( , • )

≃ ( , • )

.
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In particular this means that representatives of [ ] ∈ ,  are given by ∈ ,  such that ∂ = 0. It follows
that ∂ : , → − , , which by the definition of a total complex acts as ∂ ± ∂ , acts on these
representatives just as ∂  and this gives the second page

, ≃ ker(∂ − , )/im(∂ , ) ≃ ( ( • , • )) .

Finally, for • , •  concentrated in 0 ≤ ,  the corresponding filtered chain complex Tot( )• is a non-negatively

graded chain complex with filtration bounded below. Therefore the spectral sequence converges as claimed
by prop. 4.57.  ▮

As a first example application we can tie up a loose end of section 10 b) (remark 3.102): we show that
forming the derived functor of the tensor product in the first argument yields the same result as deriving in
the second argument.

Proposition 4.68. Let  be a commutative ring. For , ∈ Mod, the two ways of computing the Tor left
derived functor coincide

( ((−)⊗ ))( ) ≃ ( ( ⊗ (−)))( )

and hence we can consistently write Tor ( , ) for either.

Proof. Let • ⎯
≃

 and • ⎯
≃

 be projective resolutions of  and , respectively, def. 3.25. The

corresponding tensor product of chain complexes Tot( • ⊗ • ), hence by prop. \ref{AsTotalComplex} the

total complex of the degreewise tensor product of modules double complex carries the filtration by
horizontal degree as well as that by vertical degree.

Accordingly there are the corresponding two spectral sequences of a double complex, to be denoted here
{ , } , ,  (for the filtering by -degree) and { , } , ,  (for the filtering by -degree). By the discussion

there, both converge to the chain homology of the total complex.

We find the value of both spectral sequences on low degree pages according to prop. 4.67:

The 0th page for both is

, = , ≔ ⊗ .

For the first page we have

, ≃ ( , • )

≃ ( ⊗ • )

and

, ≃ ( • , )

≃ ( • ⊗ )
.

Now using the universal coefficient theorem in homology, theorem 4.6, and the fact that •  and •  is a

resolution by projective objects, by construction, hence of tensor acyclic objects for which all Tor-modules
vanish, this simplifies to

, ≃ ⊗ ( • )

≃
⊗ if = 0

0 otherwise

and similarly

, ≃ ( • ) ⊗

≃
⊗ if = 0

0 otherwise

.

It follows for the second pages that

, ≃ ( ( • ⊗ • ))

≃
( ((−)⊗ ))( ) if = 0

0 otherwise

and

, ≃ ( ( • ⊗ • ))

≃
( ( ⊗ (−)))( ) if = 0

0 otherwise

.
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Now both of these second pages are concentrated in a single row and hence have converged on that page
already. Therefore, since they both converge to the same value:

((−)⊗ )( ) ≃ , ≃ , ≃ , ≃ ( ⊗ (−))( ) .

  ▮

The total complexes of double complexes are ubiquituous in homological algebra for a general abstract
reason, and hence so are their spectral sequences. Accordingly there are many names for many spectral
sequences of particular filtered and notably of total complexes. The interested reader may find further
pointers at Spectral sequences - list of examples.

5. V) Outlook

It turns out that the chain complexes in homological algebra discussed here are a shadow of the richer
concept of spectra in stable homotopy theory. For an introduction to this subject see

Introduction to Stable homotopy theory.

Under this generalization the spectral sequence of a filtered complex discussed here generalizes to the
spectral sequence of a filtered spectrum. Important examples of these are the Atiyah-Hirzebruch spectral
sequence and the Adams spectral sequence. These are discussed in

Introduction to Stable homotpy theory -- Applications: Complex oriented cohomology

and

Introduction to Stable homotopy theory -- Part 2: Adams spectral sequence,

respectively.

6. Notation index

: the basis abelian category, assumed (without serious restriction of generality) to be ≃ Mod,
throughout, for some commutative ring ;

Ch•( ) category of chain complexes in  in degrees 0, 1, 2,⋯ with differential decreasing the degree;

Ch•( ) category of cochain complexes in degrees 0, 1, 2,⋯ with differential increasing the degree;

Ch• ( ) category of chain complexes with degree in ℤ and differential decreasing the degree.

•( ) homotopy category of chain complexes, obtained from Ch•( ) by quotienting out chain homotopy

•( ) homotopy category of cochain complexes, obtained from Ch•( ) by quotienting out cochain
homotopy

•( ) derived category, obtained from •( ) as the full subcategory on the degreewise projective
objects;

•( ) derived category, obtained from •( ) as the full subcategory on the degreewise injective
objects;

7. References

Here are some recommended further references to go with the above material. (For a fairly comprehensive
list of related literature see also at homological algebra - References.)

From our chapter II on we follow material in outline as in chapters 1, 2, 3 and 5 of the classical textbook:

Charles Weibel, An Introduction to Homological Algebra, Cambridge University Press (1994).

This book focuses on explicit component constructions. The novice reader happy with such can entirely stick
to this book as parallel reading and safely ignore all of the following pointers.

The more systematic theory which we briefly allude to in chapter III is well exposed for instance in the
textbook

Masaki Kashiwara, Pierre Schapira, Categories and Sheaves, Grundlehren der Mathematischen
Wissenschaften 332, Springer (2006)

Therefore the ambitious novice desiring more conceptual background might profit from at least browsing
through the following lecture notes that accompany this book:

Pierre Schapira, Categories and homological algebra (2011) (pdf)

The basic algebraic topology that we use in chapter I) for motivational purposes is nicely discussed in
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Alan Hatcher, Algebraic Topology

Similarly, a good place to look up the notions that we mention in chapter I and chapter V is

Paul Goerss, Rick Jardine, Simplicial homotopy theory, Progress in Mathematics, Birkhäuser (1996)

A homological algebra textbook which amplifies the relation to homotopy theory as in our chapters I) and V)
is

Sergei Gelfand, Yuri Manin, Methods of homological algebra, Springer (1997)

For the refinement of homological algebra to stable homotopy theory see

Urs Schreiber, Introduction to Stable homotopy theory
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