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Introduction to Stable homotopy theory --

We give an introduction to the stable homotopy category and to its key computational tool,
the Adams spectral sequence. To that end we introduce the modern tools, such as model
categories and highly structured ring spectra. In the accompanying seminar we consider
applications to cobordism theory and complex oriented cohomology such as to converge in
the end to a glimpse of the modern picture of chromatic homotopy theory._
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5. References

The Prelude on Classical homotopy theory ended with the following phenomenon:

Definition 0.1. The reduced suspension/looping operation on pointed (def.) compactly
generated topological spaces (def.) is the smash-tensor/hom-adjunction (cor.) for the
standard 1-sphere smash product from the left:

( ⊣ ) : Top * / ⊥⎯⎯⎯⎯⎯⎯⎯⎯
( , −)

*

⎯⎯⎯⎯⎯⎯⎯⎯
∧(−)

Top* / .

Proposition 0.2. With respect to the classical model structure on pointed compactly
generated topological spaces (Top * /)  (thm., prop.)

the adjunction in def. 0.1 is a Quillen adjunction (def.)

( ⊣ ) : (Top */) ⊥ →⎯⎯⎯⎯⎯⎯⎯⎯⎯
( , −)

*

←⎯⎯⎯⎯⎯⎯⎯⎯⎯
∧(−)

(Top* /) ,

1. 

its induced adjoint pair of derived functors on the classical pointed homotopy
category (by this prop.) is the canonical suspension/looping adjunction (according to
this prop.)

( ⊣ ) : Ho(Top* /) ⊥⟶
⟵

Ho(Top * /) .

2. 

See (this prop.).

The stable homotopy category Ho(Spectra) is to be the result of stabilizing the adjunction in
prop. 0.2, in the sense of forcing it to become an equivalence of categories in a compatible
way, i.e. such as to fit into a diagram of categories of the form

Ho(Top* /) ⊥⎯⎯⎯
⎯⎯⎯ Ho(Top* /)

↓ ⊣ ↑ ↓ ⊣ ↑

Ho(Spectra) ≃⎯⎯⎯
⎯⎯⎯ Ho(Spectra)

.

Moreover, for stable homotopy theory proper we are to refine this situation from homotopy
categories to model categories and ask it to be the diagram of derived functors (according to
this prop.) of a diagram of Quillen adjunctions (def.)

(Top* /)
⟶

⟵ (Top* /)

↓ ⊣ ↑ ↓ ⊣ ↑

SeqSpec(Top ) ≃
⟶
⟵ SeqSpec(Top )

,

This we establish in theorem 3.25 below.
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The notation  and  is meant to be suggestive of the intuition behind how this
stabilization will work: The universal way of making a topological space  become stable
under suspension is to pass to its infinite suspension in a suitable sense. That suitable sense
is going to be called the suspension spectrum of  (def. 1.3 below). Conversely, if an object
does not change up to equivalence, by forming its loop spaces, it must give an infinite loop
space.

In contrast to the classical homotopy category, the stable homotopy category is a
triangulated category (a shadow of the fact that the (∞,1)-category of spectra is a stable
(∞,1)-category). As such it may be thought of as a refinement of the derived category of
chain complexes (of abelian groups): every chain complex gives rise to a spectrum and
every chain map to a map between these spectra (the stable Dold-Kan correspondence), but
there are many more spectra and maps between them than arise from chain complexes and
chain maps.

There is a variety of different models for the stable homotopy theory of spectra, some of
which fits into this hierarchy:

sequential spectra with their model structure on sequential spectra1. 

symmetric spectra with their model structure on symmetric spectra2. 

orthogonal spectra with their model structure on orthogonal spectra3. 

excisive functors with their model structure for excisive functors4. 

As one moves down this list, the objects modelling the spectra become richer. This means on
the one hand that their abstract properties become better as one moves down the list, on
the other hand it means that it is more immediate to construct and manipulate examples as
one stays further up in the list.

We start with plain sequential spectra as a transparent means to construct the stable
homotopy category. In order to discuss ring spectra it is convenient to first pass to the richer
model of highly structured spectra, this we do in Part II

The most lighweight model for spectra are sequential spectra. They support most of stable
homotopy theory in a straightforward way, and have the advantage that examples tend to
be immediate (for instance the proof of the Brown representability theorem spits out
sequential spectra).

The key disadvantage of sequential spectra is that they do not support a functorial smash
product of spectra before passing to the stable homotopy category, much less a symmetric
smash product of spectra. This is the structure needed for a decent discussion of the higher
algebra of ring spectra. To accomodate this, further below we enhance sequential spectra to
the more highly structured models given by symmetric spectra and orthogonal spectra. But
all these models are connected by a free-forgetful adjunction and for working with either it
is useful to have the means to pass back and forth between them.

1. Sequential pre-spectra

The following def. 1.1 is the traditional component-wise definition of sequential spectra. It
was first stated in (Lima 58) and became widely appreciated with (Boardman 65).

It is generally supposed that G. W. Whitehead also had something to do with it, but the
latter takes a modest attitude about that. (Adams 74, p. 131)

Below in prop. 1.23 we discuss an equivalent definition of sequential spectra as “topological
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diagram spectra” (Mandell-May-Schwede-Shipley 00), namely as topologically enriched
functors (defn.) on a topologically enriched category of n-spheres, which is useful for
establishing the stable model category structure (below) and for establishing the symmetric
monoidal smash product of spectra (in 1.2).

Throughout, our ambient category of topological spaces is Top , the category of compactly

generated topological space (defn.).

Definition 1.1. A sequential prespectrum in topological spaces, or just sequential
spectrum for short (or even just spectrum), is

an ℕ-graded pointed compactly generated topological space

• = ( ∈ Top* /) ∈ℕ

(the component spaces);

1. 

pointed continuous functions

: ∧ → +

for all ∈ ℕ (the structure maps) from the smash product (defn.) of one component
space with the standard 1-sphere to the next component space.

2. 

A homomorphism : →  of sequential spectra is a sequence • : • → • of base point-

preserving continuous functions between component spaces, such that these respect the
structure maps in that all diagrams of the form

∧ ⎯⎯⎯⎯⎯⎯⎯
∧

∧

↓ ↓

+ ⎯⎯⎯⎯⎯⎯⎯⎯⎯+
+

commute.

Write SeqSpec(Top ) for this category of topological sequential spectra.

Due to the classical adjunction

Top * / ⊥ →⎯⎯⎯⎯⎯⎯⎯⎯⎯
( , −)

*

←⎯⎯⎯⎯⎯⎯⎯⎯⎯
∧(−)

Top* /

from classical homotopy theory (this prop.), the definition of sequential spectra in def. 1.1 is
equivalent to the following definition

Definition 1.2. A sequential prespectrum in topological spaces, or just sequential
spectrum for short (or even just spectrum), is

an ℕ-graded pointed compactly generated topological space

• = ( ∈ Top* /) ∈ℕ

(the component spaces);

1. 

pointed continuous functions

˜ : → Maps( , + )
*

2. 
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for all ∈ ℕ (the adjunct structure maps) from one component space to the
pointed mapping space (def., exmpl.) out of  into the next component space.

A homomorphism : →  of sequential spectra is a sequence •
˜ : • → • of base point-

preserving continuous function, such that all diagrams of the form

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

˜ ↓ ↓ ˜

Maps( , + )
*

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( , + )

*

Maps( , + )
*

commute.

Example 1.3. For ∈ Top* /  a pointed topological space, its suspension spectrum  is
the sequential spectrum , def. 1.1, with

( ) ≔ ∧  (smash product of  with the n-sphere);

: ∧ ∧ ⟶≃ +  (the canonical homeomorphism).

This construction extends to a functor

: Top* / ⟶ SeqSpec(Top ) .

Example 1.4. The suspension spectrum (example 1.3) of the point is the standard
sequential sphere spectrum

≔ .

Its th component space is the standard n-sphere

( ) = .

Example 1.5. A fundamental example of a spectrum that is not just a suspension spectrum
is the universal real Thom spectrum, denoted MO. For details on this see Part S – Thom
spectra.

There are are also the universal complex Thom spectrum denoted MU, and the universal
symplectic Thom spectrum denoted MSp. Their standard construction first yields an
example of a “sequential -spectrum”; which we introduce below in def. 3.17; and then
there is an adjunction (prop. 3.19) that canonically turns this into an ordinary sequential
spectrum.

Definition 1.6. Let ∈ SeqSpec(Top ) be a sequential spectrum (def. 1.1) and ∈ Top* / a

pointed compactly generated topological space. Then

∧  (the smash tensoring of  with ) is the sequential spectrum given by

( ∧ ) ≔ ∧  (smash product on component spaces (defn.))

∧ ≔ ∧ id .

1. 

Maps( , )
*
 (the powering of  into ) is the sequential spectrum with

(Maps( , )
*
) ≔ Maps( , )

*
 (compactly generated pointed mapping space (def.,

def.))

2. 
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( , )
* : ∧ Maps( , ) →⎯⎯⎯⎯⎯⎯⎯

( , )
Maps( , ∧ )

*
→⎯⎯⎯⎯⎯⎯⎯⎯⎯

( , )
* Maps( , + )

*
,

where (const, id) : [ , ] ↦ [const , ].

These operations canonically extend to functors

(−) ∧ (−) : SeqSpec(Top ) × Top * / ⟶ SeqSpec(Top )

and

Maps(−, −)
*
: (Top * /) × SeqSpec(Top ) ⟶ SeqSpec(Top ) .

Example 1.7. The tensoring (def. 1.6) of the standard sphere spectrum  (def. 1.4) with
a space ∈ Top  is isomorphic to the suspension spectrum of  (def. 1.3):

∧ ≃ .

Proposition 1.8. For any ∈ Top* / the functors of smash tensoring and powering with ,
from def. 1.6, constitute a pair of adjoint functors

SeqSpec(Top ) ⊥ →⎯⎯⎯⎯⎯⎯⎯⎯
( , −)

*

←⎯⎯⎯⎯⎯⎯⎯⎯
(−)∧

SeqSpec(Top ) .

Proof. For , ∈ SeqSpec(Top ) and ∈ Top* /, let

∧ ⟶

be a morphism, with component maps fitting into commuting squares of the form

∧ ∧ →⎯⎯⎯⎯⎯
∧

∧

∧ ↓ ↓

+ ∧ →⎯⎯⎯⎯+ +

.

Applying degreewise the adjunction

Top * / ⊥ →⎯⎯⎯⎯⎯⎯⎯⎯
( , −)

*

←⎯⎯⎯⎯⎯⎯⎯⎯
(−)∧

Top* /

from classical homotopy theory (this prop.) gives that these squares are in natural bijection
with squares of the form

∧ →⎯⎯⎯⎯⎯
∧

Maps( , ∧ )
*

↓ ↓ ( , )
*

+ →⎯⎯⎯⎯+ Maps( , + )
*

.

But since the map ∧  is the smash product of two maps, only one of which involves the

smash factor of , one sees that here the top map factors through the map (const, id) from
def. 1.6.

Hence the commuting square above factors as
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∧ →⎯⎯⎯⎯⎯
∧˜

∧ Maps( , )
*

↓ ↓
( , )

*

+ →⎯⎯⎯⎯+ Maps( , + )
*

.

This gives the structure maps for a homomorphism

˜ : ⟶ Maps( , )
*
.

Running this argument backwards shows that the map ↦ ˜  given thereby is a bijection.  ▮

Remark 1.9. For the adjunction of prop. 1.8 it is crucial that the smash tensoring in def. 1.6
is from the right, at least as long as the structure maps in def. 1.1 are defined as they are,
with the circle smash factor on the left. We could change both jointly: take the structure
maps to be from smash products with the circle on the right, and take smash tensoring to
be from the left. But having both on the right or both on the left does not work.

Proposition 1.10. The functor  that forms suspension spectra (def. 1.3) has a right
adjoint functor 

( ⊣ ) : SeqSpec(Top ) ⊥→⎯⎯
←⎯⎯

Top* / ,

given by picking the 0-component space:

( ) = .

Proof. By def. 1.1 the components  of a homomorphism of sequential spectra of the form

⟶

have to make these diagrams commute

∧ →⎯⎯⎯⎯⎯
∧

∧

≃ ↓ ↓

+ ∧ →⎯⎯⎯⎯+ +

for all ∈ ℕ. Since here the left vertical map is an isomorphism by def. 1.3, this uniquely
fixes +  in terms of . Hence the only freedom in specifying  is in the choice of the

component : ⟶ , which is equivalently a morphism

⟶
˜

.

  ▮

Stable homotopy groups

In analogy to how homotopy groups are the fundamental invariants in classial homotopy
theory, the fundamental invariants of stable homtopy theory are stable homtopy groups:

Definition 1.11. The stable homotopy groups of a sequential prespectrum , def. 1.1, is
the ℤ-graded abelian group given by the colimit of homotopy groups of the component
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spaces (def.)

•( ) ≔ lim→⎯⎯ • + ( ) ,

where the colimit is over the sequential diagram whose component morphisms are given
in terms of the structure maps of def. 1.1 by

+ ( ) →≃ [ + , ]
*

→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( ∧(−)) + ,

[ + + , ∧ ]
*

→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
[ + + , ]

[ + + , + ]
*
→≃ + + ( + )

and equivalently are given in terms of the adjunct structure maps of def. 1.2 by

+ ( ) ⟶≃ [ + , ]
*

→⎯⎯⎯⎯⎯⎯⎯
[ + , ˜ ]

[ + ,Maps( , + )
*
]
*
≃ [ ∧ + , + ]

*
≃ + + ( + ) .

The colimit starts at

=
0 if ≥ 0

| | if < 0

This canonically extends to a functor

• : SeqSpec(Top ) ⟶ Abℤ .

Proposition 1.12. The two component morphisms given in def. 1.11 indeed agree.

Proof. Consider the following instance of the defining naturality square of the
( ∧ (−)) ⊣ Maps( , −)

*
-adjunction of prop. 0.2:

[ ∧ , ∧ ]
*
⟶≃ [ ,Maps( , ∧ )

*
]
*

[ ∧ , ] ↓ ↓[ , ( , )
*
]
*

[ ∧ + , + ]
*
⟶
≃

[ + ,Maps( , + )
*
]
*

.

Then consider the identity element in the top left hom-set. Its image under the left vertical
map is the first of the two given component morphisms. Its image under going around the
other way is the second of the two component morphisms. By the commutativity of the
diagram, these two images agree.  ▮

Example 1.13. Given ∈ Top * /, then the stable homotopy groups (def. 1.11) of its
suspension spectrum (example 1.3) are given by

( ) ≔ ( )

= lim→⎯⎯ + ( ∧ )

≃ lim→⎯⎯ ( ( ))

.

Specifically for =  the 0-sphere, with suspension spectrum the standard sphere
spectrum (def. 1.4), its stable homotopy groups are the stable homotopy groups of
spheres:

( ) ≔ ( )

= lim→⎯⎯ + ( )
.

Recall the Freudenthal suspension theorem, which states that if  is an n-connected
pointed CW-complex then the comparison map
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( ) ⟶ + ( )

is an isomorphism for ≤ 2 . This implies first of all that every  is ( − 1)-connected

( ) ≃ *

( ) ≃ ( ) ≃ *

( ) ≃ ( ) ≃ ( ) ≃ *

⋯

and then that the th stable homotopy group of  is attained at stage = + 2 in the
colimit:

( ) ≃ +( + )(
+ ) .

Historically, this fact was one of the motivations for finding a stable homotopy category
(def. 4.1 below).

Definition 1.14. A morphism : ⟶  of sequential spectra, def. 1.1, is called a stable
weak homotopy equivalence, if its image under the stable homotopy group-functor of
def. 1.11 is an isomorphism

•( ) : •( ) ⟶≃ •( ) .

Omega-spectra

In order to motivate Omega-spectra consider the following shadow of the structure they will
carry:

Example 1.15. A ℤ-graded abelian group is equivalently a sequence { } ℤ of ℕ-graded

abelian groups , together with isomorphisms

≃ + [1] ,

(where [1] denotes the operation of shifting all entries in a graded abelian group down in
degree by -1). Because this means that the sequence of ℕ-graded abelian groups is of the
following form

⋮ ⋮

⋯

⋯

− ⋯

− − ⋯

.

This allows to recover the ℤ-graded abelian group { } ∈ℤ from an ℕ-sequence of ℕ-graded

abelian groups.

Then consider the case that the ℕ-graded abelian groups here are homotopy groups of
some topological space. Then shifting the degree of the component groups corresponds to
forming loop spaces, because for any topological space  then

•( ) ≃ • + ( ) .

(This may be seen concretely in point-set topology or abstractly by looking at the long
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exact sequence of homotopy groups for the fiber sequence → Path*( ) → .)

We find this kind of behaviour for the stable homotopy groups of Omega-spectra below in
example 1.18.

Definition 1.16. An Omega-spectrum is a sequential spectrum  of topological spaces,
def. 1.1, such that the (smash product ⊣ pointed mapping space)-adjuncts ˜  of the
structure maps : → +  of  are weak homotopy equivalences (def.), hence classical
weak equivalences (def.):

˜ : →⎯⎯⎯⎯
∈

Maps( , + )
*

for all ∈ ℕ.

Equivalently: an Omega-spectrum is a sequential spectrum in the incarnation of def. 1.2
such that all adjunct structure maps are weak homotopy equivalences.

Example 1.17. The Brown representability theorem (thm.) implies (prop.) that every
generalized (Eilenberg-Steenrod) cohomology theory (def.) is represented by an Omega-
spectrum (def. 1.16).

Applied to ordinary cohomology with coefficients some abelian group , this yields the
Eilenberg-MacLane spectra  (exmpl.). These are the Omega-spectra whose th
component space is an Eilenberg-MacLane space

( ) ≃ ( , ) .

A genuinely generalized (i.e. non-ordinary, hence “extra-ordinary”) cohomology theory is
topological K-theory •(−). Applying the Brown representability theorem to topological
K-theory yields the K-theory spectrum denoted KU.

Omega-spectra are singled out among all sequential pre-spectra as having good behaviour
under forming stable homotopy groups.

Example 1.18. If a sequential spectrum  is an Omega-spectrum, def. 1.16, then its
colimiting stable homotopy groups reduce to the actual homotopy groups of the
component spaces, in that:

Omega-spectrum ⇒ ( ) ≃
if ≥ 0

| | if < 0
.

(Hence the stable homotopy groups of an Omega-spectrum realize the general pattern
discussed in example 1.15.)

Proof. For an Omega-spectrum, the adjunct structure maps ˜  are weak homotopy
equivalences, by definition, hence are classical weak equivalences. Hence [ , ˜ ]

*
 is an

isomorphism (prop.). Therefore, by prop. 1.12, the sequential colimit in def. 1.11 is entirely
over isomorphisms and hence is given already by the first object of the sequence.  ▮

We now show that every sequential pre-spectrum may be completed to an Omega-
spectrum, up to stable weak homotopy equivalence:

Definition 1.19. For ∈ SeqSpec(Top ), define a spectrum ∈ SeqSpec(Top ) and a

morphism

: ⟶
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(to be called the spectrification of ) as follows.

First introduce for the given components  and adjunct structure maps ˜  of  (from def.
1.2) the notation

, ≔ , ˜ , ≔ ˜ .

Now assume, by induction, that sets of objects { , } ∈ℕ and maps { , ⎯
˜ ,

, + } ∈ℕ have

been constructed for some ∈ ℕ.

Then construct + , ∈ Top  by factorizing ˜ , , with respect to the model structure

(Top* /)  (thm.) as a classical cofibration followed by a classical weak equivalence.

More specifically, apply the small object argument (prop.) with respect to the set of
generating cofibrations  (def.) to produce functorial factorizations (def.) into a relative
cell complex followed by a weak homotopy equivalence (just as in the proof of this
lemma):

˜ , : , →⎯⎯⎯⎯⎯⎯⎯⎯
∈

,
+ , →⎯⎯⎯⎯

∈

,
, + .

Then define ˜ + ,  as the composite

˜ + , : + , →⎯⎯
,

, + →⎯⎯⎯⎯⎯⎯⎯
( , + )

+ , + .

This produces for each ∈ ℕ a commuting diagram of the form

= , →⎯⎯⎯⎯⎯⎯⎯⎯
∈

,
, →⎯⎯⎯⎯⎯⎯⎯⎯

∈

,
, →⎯⎯⎯⎯⎯⎯⎯⎯

∈

,
⋯

˜ = ˜ , ↓ ˜ , ↓ ˜ , ↓ ⋯

+ = , + →⎯⎯⎯⎯⎯⎯⎯
( , + )

, + →⎯⎯⎯⎯⎯⎯⎯
( , + )

, + →⎯⎯⎯⎯⎯⎯⎯
( , + )

⋯

.

That this indeed commutes is the identity

˜ + , ∘ , = ( ( , + ) ∘ , ) ∘ ,

= ( , + ) ∘ ( , ∘ , )

= ( , + ) ∘ ˜ ,

.

Now let  be the spectrum with component spaces the colimit

( ) ≔ lim→⎯⎯ ,

and with adjunct structure maps (via def. 1.2) given by the map induced under colimits by
the above diagrams

˜ ≔ lim→⎯⎯
˜ , : ⟶ ( ) .

Notice that this is indeed well-defined: since each component map , → + ,  is a relative
cell complex and since the 1-sphere  is compact, it follows (lemma) that
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lim→⎯⎯ , = lim→⎯⎯ Maps( , , )*

≃ Maps( , lim→⎯⎯ , )*

= lim→⎯⎯ ,

≃ ( )

.

Finally, let

: →

be degreewise the inclusion of the first component ( = 0) into the colimit. By construction,
this is a homomorphism of sequential spectra (according to def. 1.2).

Proposition 1.20. Let ∈ SeqSpec(Top ) be a sequential prespectrum with : →  from

def. 1.19. Then:

 is an Omega-spectrum (def. 1.16);1. 

: →  is a stable weak homotopy equivalence (def. 1.14):2. 

 is a level weak equivalence (is in , def. 2.1) precisely if  is an Omega-

spectrum;

3. 

a morphism : →  is a stable weak homotopy equivalence (def. 1.14), precisely if
: →  is a level weak equivalence (is in , def. 2.1).

4. 

(Schwede 97, lemma 2.1.3 and remark before section 2.2)

Proof. Since the colimit defining  is a transfinite composition of relative cell complexes,
each component map → ( )  is itself a relative cell complex. Since n-spheres are

compact topological spaces, it follows (lemma) that each element of a homotopy group in
•(( ) ) is in the image of a finite stage •( , ) for some ∈ ℕ. From this, all statements

follow by inspection at finite stages.

Regarding first statement:

Since each ˜ ,  by construction is a weak homotopy equivalence followed by an inclusion of
stages in the colimit, as any element of (( ) ) is sent along ˜  it passes through one

such ( ˜ , ) at some stage , hence also through all the following, and is hence identically
preserved in the colimit.

Regarding the second statement:

By the previous statement and by example 1.18, the map •( ) : •( ) → •( ) is given in

degree ≥ 0 by

lim→⎯⎯ ∈ℕ
+ ( )

≃
→⎯⎯⎯

⟶ (( ) )

and similarly in degree < 0. Now using the compactness of the spheres and the definition
of  we compute on the right:
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(( ) ) = (lim→⎯⎯ , )

≃ lim→⎯⎯ ( , )

≃ lim→⎯⎯ ( )

,

where the last isomorphism is  applied to the composite of the weak homotopy
equivalences

, →⎯⎯⎯⎯⎯
∈

− ,
− , → ⋯ → , = .

Regarding the third statement:

In one direction:

If  is an Omega-spectrum in that all its adjunct structure maps ˜  are weak homotopy
equivalences, then by two-out-of-three also the maps ,  in def. 1.19 are weak homotopy
equivalences. Hence ( ) : → ( )  is the map into a sequential colimit over acyclic relative

cell complexes, and again by the compactness of the spheres, this means that it is itself a
weak homotopy equivalence.

In the other direction:

If  is degrewise a weak homotopy equivalence, then by applying two-out-of-three (def.) to

the compatibility squares for the adjunct structure morphisms (def. 1.2), using that ˜  is a
weak homotopy equivalence by the first point above

→⎯⎯⎯⎯
∈

( )
( )

˜ ↓ ↓∈
˜

Maps( , + ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( ,( ) + )

∈
Maps( , ( ) + )

implies that also ˜ ∈ , hence that  is an Omega-spectrum.

The fourth statement follows with similar reasoning.  ▮

Remark 1.21. In the case that  is a CW-spectrum (def. 2.7) then the sequence of
resolutions in the definition of spectrification in def. 1.19 is not necessary, and one may
simply consider

( ) ≔ lim→⎯⎯ + .

See for instance (Lewis-May-Steinberger 86, p. 3) and (Weibel 94, 10.9.6 and topology
exercise 10.9.2).

As topological diagrams

In order to conveniently understand the stable model category structure on spectra, we now
consider an equivalent reformulation of the component-wise definition of sequential spectra,
def. 1.1, as topologically enriched functors (defn.).

Definition 1.22. Write

: StdSpheres ⟶ Top* /
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for the non-full topologically enriched subcategory (def.) of that of pointed compactly
generated topological spaces (def.) where:

objects are the standard n-spheres , for ∈ ℕ, identified as the smash product

powers ≔ ( )∧  of the standard circle;

hom-spaces are

StdSpheres( , + ) ≔
* for < 0

otherwise

composition is induced from composition in Top * / by regarding the hom-space
above as its image in Maps( , + )

*
 under the adjunct

→ Maps( , + )
*

of the canonical isomorphism

∧ ⟶≃ + .

This induces the category

[StdSpheres, Top* /]

of topologically enriched functors on StdSpheres with values in Top* / (exmpl.).

Proposition 1.23. There is an equivalence of categories

(−) : [StdSpheres, Top * /] ⟶≃ SeqSpec(Top )

from the category of topologically enriched functors on the category of standard spheres
of def. 1.22 to the category of topological sequential spectra, def. 1.1, which is given on
objects by sending ∈ [StdSpheres, Top* /] to the sequential prespectrum  with
components

≔ ( )

and with structure maps

∧ ⟶

⟶Maps( , + )
*

being the adjunct of the component map of  on spheres of consecutive dimension.

Proof. First observe that from its components on consecutive spheres the functor  is
already uniquely determined. Indeed, by definition the hom-space between non-consecutive
spheres StdSpheres( , + ) is the smash product of the hom-spaces between the consecutive
spheres, for instance:

∧ = StdSpheres( , + ) ∧ StdSpheres( + , + )

≃ ↓ ≃ ↓∘

= StdSpheres( , + )

,

and so functoriality completely fixes the former by the latter.
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This means that we actually have a bijection between classes of objects.

Now observe that a natural transformation : →  between two functors on StdSpheres is
equivalently a collection of component maps : → , such that for each ∈  then the

following squares commute

( ) ⟶

, + ( )
↓ ↓ , + ( )

( + ) →⎯⎯⎯⎯
+

( + )

,

By the smash/hom adjunction, the square equivalently factors as

( ) ⟶

( , ) ↓ ↓( , )

∧ ( ) →⎯⎯⎯⎯
×

∧ ( )

↓ ↓

( + ) underset + ⟶ ( + )

.

Here the top square commutes in any case, and so the total rectangle commutes precisely if
the lower square commutes, hence if under our identification the components { } constitute

a homomorphism of sequential spectra.

Hence we have an isomorphism on all hom-sets, and hence an equivalence of categories.  ▮

Further below we use prop. 1.23 to naturally induce a model structure on the category of
topological sequential spectra.

Remark 1.24. Under the equivalence of prop. 1.23, the general concept of tensoring of
topologically enriched functors over topological spaces (according to this def.) restricts to
the concept of tensoring of sequential spectral over topological spaces according to def.
1.6.

Proposition 1.25. The category SeqSpec(Top ) of sequential spectra (def. 1.1) has all limits

and colimits, and they are computed objectwise:

Given

• : ⟶ SeqSpec(Top )

a diagram of sequential spectra, then:

its colimiting spectrum has component spaces the colimit of the component spaces
formed in Top  (via this prop. and this corollary):

(lim→⎯⎯ ( )) ≃ lim→⎯⎯ ( ) ,

1. 

its limiting spectrum has component spaces the limit of the component spaces
formed in Top  (via this prop. and this corollary):

(lim←⎯⎯ ( )) ≃ lim←⎯⎯ ( ) ;

2. 

moreover:

Introduction to Stable homotopy theory -- 1-1 in nLab https://ncatlab.org/nlab/print/Introduction+to+Stable+homotopy+theor...

15 of 79 09.05.17, 15:47



the colimiting spectrum has structure maps in the sense of def. 1.1 given by

∧ (lim→⎯⎯ ( ) ) ≃ lim→⎯⎯ ( ∧ ( ) ) →⎯⎯⎯⎯⎯⎯⎯
→⎯⎯⎯

( )

lim→⎯⎯ ( ) +

where the first isomorphism exhibits that ∧ (−) preserves all colimits, since it is a
left adjoint by prop. 0.2;

1. 

the limiting spectrum has adjunct structure maps in the sense of def. 1.2 given by

lim←⎯⎯ ( ) →⎯⎯⎯⎯⎯⎯⎯
←⎯⎯⎯

˜ ( )

lim←⎯⎯Maps( , ( ) )
*
≃ Maps( , lim←⎯⎯ ( ) )

*

where the last isomorphism exhibits that Maps( , −)
*
 preserves all limits, since it is a

right adjoint by prop. 0.2.

2. 

Proof. That the limits and colimits exist and are computed objectwise follows via prop. 1.23
from the general statement for categories of topological functors (prop.). But it is also
immediate to directly check the universal property.  ▮

Example 1.26. The initial object and the terminal object in SeqSpec(Top ) agree and are

both given by the spectrum constant on the point, which is also the suspension spectrum

*  (def. 1.3) of the point). We will denote this spectrum * or 0 (since it is hence a zero
object ):

* = *
∧ * ≃ * →

≃
* .

Example 1.27. The coproduct of spectra , ∈ SeqSpec(Top ), called the wedge sum of

spectra

∨ ≔ ⊔

is componentwise the wedge sum of pointed topological spaces (exmpl.)

( ∨ ) = ∨

with structure maps

∨ : ∧ ( ∨ ) ≃ ∧ ∨ ∧ →⎯⎯⎯⎯⎯⎯
( , )

+ ∨ + .

Example 1.28. For ∈ SeqSpec(Top ) a sequential spectrum, def. 1.1, its standard

cylinder spectrum is its smash tensoring ∧ ( +), according to def. 1.6, with the
standard interval (def.) with a basepoint freely adjoined (def.). The component spaces of
the cylinder spectrum are the standard reduced cylinders (def.) of the component spaces
of :

( ∧ ( +)) = ∧ + .

By the functoriality of the smash tensoring, the factoring

∇ : ∨ ⟶ + ⟶

of the codiagonal on the 0-sphere through the standard interval with a base point
adjoined, gives a factoring of the codiagonal of  through its standard cylinder spectrum

∇ : ∨ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
∧( ∨ → +) ∧ ( +) →⎯⎯⎯⎯⎯⎯⎯⎯⎯

∧( + → )
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(where we are using that wedge sum is the coproduct in pointed topological spaces
(exmpl.).)

Suspension and looping

We discuss models for the operation of reduced suspension and forming loop space objects
of sequential spectra.

Definition 1.29. For  a sequential spectrum, then

the standard suspension of  is the smash product-tensoring ∧  according to
def. 1.6;

1. 

the standard looping of  is the smash powering Maps( , )
*
 according to def. 1.6.2. 

Proposition 1.30. For ∈ SeqSpec(Top ), the standard suspension ∧  of def. 1.29 is

equivalently the cofiber (formed via prop. 1.25) of the canonical inclusion of boundaries
into the standard cylinder spectrum ∧ ( +) of example 1.28:

∧ ≃ cofib( ∨ → ∧ ( +)) .

Proof. This is immediate from the componentwise construction of the smash tensoring and
the componentwise computation of colimits of spectra via prop. 1.25.  ▮

This means that once we know that ∨ → ∧ ( +) is suitably a cofibration (to which we turn
below) then the standard suspension is a homotopy-correct model for the suspension
operation. However, some properties of suspension are hard to prove directly with the
standard suspension model. For such there are two other models for suspension and looping
of spectra. These three models are not isomorphic to each other in SeqSpec(Top ), but (this

is lemma 3.22 below) they will become isomorphic in the stable homotopy category (def.
4.1).

Definition 1.31. For  a sequential spectrum (def. 1.1) and ∈ ℤ, the -fold shifted
spectrum of  is the sequential spectrum denoted [ ] given by

( [ ]) ≔
+ for + ≥ 0

* otherwise
;

[ ] ≔
+ for + ≥ 0

0 otherwise
.

Definition 1.32. For  a sequential spectrum, def. 1.1, then

the alternative suspension of  is the sequential spectrum  with

( ) ≔ ∧  (smash product on the left (defn.))1. 

≔ ∧ ( ).2. 

in the sense of def. 1.1;

1. 

the alternative looping of  is the sequential spectrum  with

( ) ≔ Maps( , )
*
;1. 

2. 
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˜ ≔ Maps( , ˜ )
*

2. 

in the sense of def. 1.2.

Remark 1.33. In various references the “alternative suspension” from def. 1.32 is called
the “fake suspension” (e.g. Goerss-Jardine 96, p. 499, Jardine 15, section 10.4).

Remark 1.34. There is no direct natural isomorphism between the standard suspension
(def. 1.29) and the alternative suspension (def. 1.32). This is due to the non-trivial graded
commutativity (braiding) of smash products of spheres. (We discuss braiding of the smash
product more in detail in Part 1.2, this example).

Namely a natural isomorphism : ⟶ ∧  (or alternatively the other way around)
would have to make the following diagrams commute:

∧ ∧ →⎯⎯⎯⎯⎯⎯
∧

∧ ∧

∧ ↓ (nc) ↓ ∧

∧ + →⎯⎯⎯⎯
+

+ ∧

and naturally so in .

The only evident option is to have  be the braiding homomorphisms of the smash product

= , : ∧ →≃ ∧ .

It may superficially look like this makes the above diagram commute, but it does not. To
make this explicit, consider labeling the two copies of the circle appearing here as  and

. Then the diagram we are dealing with looks like this:

∧ ∧ ⟶ ∧ ∧

∧ ↓ (nc) ↓ ∧

∧ + ⟶ + ∧

If we had ∧  on the left and ∧  on the right, then the naturality of the braiding
would indeed give a commuting diagram. But since this is not the case, the only way to
achieve this would be by exchanging in the top left

∧ ⟶ ∧ .

However, this map is non-trivial. It represents −1 in [ , ]
*
= ( ) = ℤ. Hence inserting

this map in the top of the previous diagram still does not make it commute.

But this technical problem points to its own solutions: if we were to restrict to the
homotopy category of spectra which had structure maps only of the form ∧ → + ,
then the braiding required to make the two models of suspension comparable would be

∧ ⟶ ∧

and this map is indeed trivial, up to homotopy. This we make precise as lemma 3.22
below.

More generally, the kind of issue encountered here is taken care of by the concept of
symmetric spectra, to which we turn in Part 1.2.
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Remark 1.35. The looping and suspension operations in def. 1.29 and def. 1.32 commute
with shifting, def. 1.31. Therefore in expressions like ( [1]) etc. we may omit the
parenthesis.

Proposition 1.36. The constructions from def. 1.29, def. 1.31 and def. 1.32 form pairs of
adjoint functors SeqSpec → SeqSpec like so:

(−)[−1] ⊣ (−)[1];1. 

(−) ∧ ⊣ Maps( , −)
*
;2. 

⊣ .3. 

Proof. Regarding the first statement:

A morphism of the form : [−1] ⟶  has components of the form

⋮ ⋮

⟶

⟶

⟶

* →⎯⎯⎯⎯
=

and the compatibility condition with the structure maps in lowest degree is automatically
satisfied

* →⎯⎯⎯⎯⎯⎯⎯⎯
( ∧ )=

∧
[− ]

= ↓ ↓

⟶

.

Therefore this is equivalent to components

⋮ ⋮

⟶

⟶

⟶

hence to a morphism ⟶ [1].

The second statement is a special case of prop. 1.8.

Regarding the third statement:

This follows by applying the (smash product⊣pointed mapping space)-adjunction
isomorphism twice, like so:

Morphisms : →  in the sense of def. 1.1 are in components given by commuting
diagrams of this form:
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∧ ∧ →⎯⎯⎯⎯⎯
∧

∧

∧ ↓ ↓

∧ + →⎯⎯⎯⎯
+

+

.

Applying the adjunction isomorphism diagonally gives a natural bijection to diagrams of this
form:

∧ ⟶

↓ ↓ ˜

+ →⎯⎯⎯⎯
+

Maps( , + )
*

.

(To see this in full detail, for instance for the adjunct of the left and bottom morphism:
chase the identity id ∧ +

 in both ways

Hom( ∧ + , ∧ + ) ⟶≃ Hom( + ,Maps( , ∧ + )
*
)

( ∧ , + ) ↓ ↓ ( , ( , + )
*
)

Hom( ∧ ∧ , + ) ⟶≃ Hom( ∧ ,Maps( , + )
*
)

through the adjunction naturality square. The other cases follow analogously.)

Then applying the adjunction isomorphism diagonally once more gives a further bijection to
commuting diagrams of this form:

⟶
˜

Maps( , )
*

˜ ↓ ↓ ( , ˜ )
*

Maps( , + )
*

→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( , + )

*

Maps ,Maps( , + )
* *

.

This, finally, equivalently exhibits homomorphisms of the form

⟶

in the sense of def. 1.2.  ▮

Proposition 1.37. The following diagram of adjoint pairs of functors commutes:

Top* /

⟶

⟵ Top* /

↓ ⊣ ↑ ↓ ⊣ ↑

SeqSpec(Top ) ⊥⟶
⟵

SeqSpec(Top )

,

Here the top horizontal adjunction is from prop. 0.2, the vertical adjunction is from prop.
1.8 and the bottom adjunction is from prop. 1.36.

Proof. It is sufficient to check

∘ ≃ ∘ .
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From this the statement

∘ ≃ ∘

follows by uniqueness of adjoints.

So let ∈ Top* /. Then

( ) = ∧ ∧ ,

( ) : ∧ ∧ ∧ →⎯⎯⎯⎯
∧

∧ + ∧ ,

while

( ) = ∧ ∧ ,

( ) : ∧ ∧ ∧ →⎯⎯⎯⎯⎯⎯
∧ ∧ + ∧ ∧ ,

where we write “id” for the canonical isomorphism. Clearly there is a natural isomorphism
given by the canonical identifications

∧ ∧ ⟶≃ ( )∧
+
∧ ⟶≃ ∧ ∧ .

(As long as we are not smash-permuting the  factor with the  factor – and here we are
not – then the fact that they get mixed under this isomorphism is irrelevant. The point
where this does become relevant is the content of remark 1.34 below.)  ▮

2. The strict model structure on sequential spectra

The model category structure on sequential spectra which presents stable homotopy theory
is the “stable model structure” discussed below. Its fibrant-cofibrant objects are (in
particular) Omega-spectra, hence are the proper spectrum objects among the pre-spectrum
objects.

But for technical purposes it is useful to also be able to speak of a model structure on
pre-spectra, which sees their homotopy theory as sequences of simplicial sets equipped with
suspension maps, but not their stable structure. This is called the “strict model structure” for
sequential spectra. Its main point is that the stable model structure of interest arises from it
via left Bousfield localization.

Definition 2.1. Say that a homomorphism • : • → • in the category SeqSpec(Top), def. 1.1

is

a strict weak equivalence if each component : →  is a weak equivalence in

the classical model structure on topological spaces (hence a weak homotopy
equivalence);

a strict fibration if each component : →  is a fibration in the classical model

structure on topological spaces (hence a Serre fibration);

a strict cofibration if the maps : →  as well as for all ∈ ℕ the maps

( + , ) : + ⊔
∧

∧ ⟶ +

are cofibrations in the classical model structure on topological spaces (hence retracts
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of relative cell complexes);

We write , Fib  and Cof  for these classes of morphisms, respectively.

Recall the sets

* / ≔ { +
− →⎯⎯⎯

( )+
+} ∈ℕ

* / ≔ { →⎯⎯⎯⎯
( )+ × } ∈ℕ

of standard generating (acyclic) cofibrations (def.) of the classical model structure on
pointed topological spaces (thm.).

Definition 2.2. Write

≔ { ( ) ⋅ +} ∈ ,

+ ∈ * /

∈ [StdSpheres, Top* /] ≃ SeqSpec(Top)

and

≔ ( ) ⋅ + ∈

+ ∈ * /

∈ [StdSpheres, Top* /] ≃ SeqSpec(Top) ,

for the set of morphisms arising as the tensoring (remark 1.24) of a representable
(exmpl.) with a generating acyclic cofibration of the classical model structure on pointed
topological spaces (def.).

Theorem 2.3. The classes of morphisms in def. 2.1 give the structure of a model category
(def.) to be denoted SeqSpec(Top)  and called the strict model structure on

topological sequential spectra (or: level model structure).

Moreover, this is a cofibrantly generated model category with generating (acyclic)
cofibrations the set  (resp. ) from def. 2.2.

Proof. Prop. 1.23 says that the category of sequential spectra is equivalently an enriched
functor category

SeqSpec(Top) ≃ [StdSpheres, Top* /] .

Accordingly, this carries the projective model structure on functors (thm.). This immediately
gives the statement for the fibrations and the weak equivalences.

It only remains to check that the cofibrations are as claimed. To that end, consider a
commuting square of sequential spectra

⟶

↓ ↓

⟶

.

By definition, this is equivalently an ℕ-collection of commuting diagrams in Top  of the form

⟶

↓ ↓

⟶

such that all structure maps are respected.
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∧ ⟶ +

↓ ∧ ↓ +

∧ ⟶ +

↘ ↘

∧ ⟶ +

=

∧ ⟶ +

↘ ∧ ↘ +

∧ ⟶ +

↓ ↓

∧ ⟶ +

.

Hence a lifting in the original diagram is a lifting in each degree , such that the lifting in
degree + 1 makes these diagrams of structure maps commute.

Since components are parameterized over ℕ, this condition has solutions by induction:

First of all there must be an ordinary lifting in degree 0. Since the strict fibrations are
degreewise classical fibrations, this gives the condition that for • to be a strict cofibration,

then  is to be a classical cofibration.

Then assume that a lifting  in degree  has been found

⟶

↓ ↗ ↓

⟶

.

Now the lifting +  in the next degree has to also make the following diagram commute

∧ ⟶ +

↓ ∧ ↓ + ↘ +

∧ ⟶ +

↘ ∧ ↘ + ↓

∧ ⟶ +

.

This is a cocone under the commuting square for the structure maps, and therefore the
outer diagram is equivalently a morphism out of the domain of the pushout product □

(def.), while the compatible lift +  is equivalently a lift against this pushout product:

∧ ⊔
∧

+ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( ∘ ∧ , + )

+

□ ↓ + ↗ ↓

+ ⟶ +

.

This shows that • is a strict cofibration precisely if, in addition to  being a classical

cofibration, all these pushout products are classical cofibrations.  ▮

Suspension and looping

Proposition 2.4. The ( ⊣ )-adjunction from prop. 1.10 is a Quillen adjunction (def.)
between the classical model structure on pointed topological spaces (thm., prop.) and the
strict model structure on topological sequential spectra of theorem 2.3:
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( ⊣ ) : SeqSpec(Top ) ⊥→⎯⎯
←⎯⎯

(Top * /) .

Proof. It is clear that  preserves fibrations and acyclic cofibrations. This is sufficient to
deduce a Quillen adjunction.

Just for the record, we spell out a direct argument that also  preserves cofibrations and
acyclic cofibrations:

Let : ⟶  be a morphism in Top* / and

: ⟶

its image.

Since the structure maps in a suspension spectrum, example 1.3, are all isomorphisms, we
have for all ∈ ℕ an isomorphism

( ) +

∧( )

∧ ( ) ≃ ∧ ( ) .

Therefore  is a strict cofibration, according to def. 2.1, precisely if ( ) =  is a classical

cofibration and all the structure maps of  are classical cofibrations. But the latter are
even isomorphisms, so that this is no extra condition (prop.). Hence  sends classical
cofibrations of spaces to strict cofibrations of sequential spectra.

Furthermore, since ∧ (−):(Top* /) → (Top */)  is a left Quillen functor for all ∈ ℕ

by prop. 0.2 it sends classical acyclic cofibrations to classical acyclic cofibrations. Hence ,
which is degreewise given by ∧ (−), sends classical acyclic cofibrations to degreewise
acyclic cofibrations, hence in particular to degreewise weak equivalences, hence to weak
equivalences in the strict model structure on sequential spectra.

This shows that  is a left Quillen functor.  ▮

Proposition 2.5. The ( ⊣ )-adjunction from prop. 1.36 is a Quillen adjunction (def.) with
respect to the strict model structure on sequential spectra of theorem 2.3.

SeqSpec(Top ) ⊥⟶
⟵

SeqSpec(Top ) .

Proof. Since the (acyclic) fibrations of SeqSpec(Top )  are by definition those morphisms

that are degreewise (acylic) fibrations in (Top */) , the statement follows immediately

from the fact that the right adjoint  is degreewise given by
Maps( , −)

*
:(Top* /) → (Top * /) , which is a right Quillen functor by prop. 0.2.  ▮

In summary, prop. 1.37, prop. 2.4 and prop. 2.5 say that

Corollary 2.6. The commuting square of adjunctions in prop. 1.37 is a square of Quillen
adjunctions with respect to the classical model structure on pointed compactly generated
topological spaces (thm., prop.) and the strict model structure on topological sequential
spectra of theorem 2.3:

Introduction to Stable homotopy theory -- 1-1 in nLab https://ncatlab.org/nlab/print/Introduction+to+Stable+homotopy+theor...

24 of 79 09.05.17, 15:47



(Top* /)
⟶

⟵ (Top * /)

↓ ⊣ ↑ ↓ ⊣ ↑

SeqSpec(Top ) ⊥⟶
⟵

SeqSpec(Top )

,

Further below we pass to the stable model structure in order to make the bottom adjunction
in this diagram become a Quillen equivalence. This stable model structure will have more
weak equivalences than the strict model structure, but will have the same cofibrations.
Therefore we first consider now cofibrancy conditions already in the strict model structure.

CW-spectra

Definition 2.7. A sequential spectrum  (def. 1.1) is called a cell spectrum if

all component spaces  are cell complexes (def.);1. 

all structure maps : ∧ ⟶ +  are relative cell complex inclusions.2. 

A CW-spectrum is a cell spectrum such that all component spaces  are CW-complexes
(def.).

Example 2.8. The suspension spectrum  (example 1.3) for ∈ Top* / a CW-complex is a
CW-spectrum (def. 2.7).

Remark 2.9. Since, by definition 2.7, a -cell of a cell spectrum that appears at stage 
shows up as its -fold suspension at stage + , its attachment to some spectrum  is
reflected by a pushout of spectra of the form

+
− [− ] ⟶ ⟶ *

( )+[− ] ↓ (po) ↓ (po) ↓

+[− ] ⟶ ^ ⟶ [− ]

,

where the left vertical morphism is the image under the − th shift spectrum functor (def.
1.31) of the image under the suspension spectrum functor (example 1.3) of the basic cell
inclusion ( )+ of pointed topological spaces (def.). This is a cofibration by prop. 2.4, and

so also the middle vertical morphism is a cofibration, by theorem 2.3. Using the pasting
law for pushouts, we find that the cofiber of the middle vertical morphisms (hence its
homotopy cofiber (def.) in the strict model structure) is [− ] (not +[− ] (!)). This
is a shift of a trunction of the sphere spectrum.

After having set up the stable model category structure in theorem 3.11 below, we find
that this means that cell attachments to CW-spectra in the stable model structure are by
cofibers of integer shifts of the sphere spectrum  (def. 1.4), in that in the stable
homotopy category (def. 4.1) the above situation is reflected as a homotopy cofiber
sequence of the form

− − ⟶ ⟶ ^ ⟶ − .

Lemma 2.10. Let  be an regular cardinal and let  be a -cell spectrum, hence a cell
spectrum (def. 2.7) obtained from at most  stable cell attachments as in remark 2.9.
Then  is -small (def.) with respect to morphisms of spectra that are degreewise relative
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cell complex inclusions.

Proof. By remark 2.9 the attachment of stable cells is by free spectra (def. 3.26) on
compact topological spaces. By prop. 3.28 maps out of them are equivalently maps of
component spaces in the lowest nontrivial degree. Since compact topological spaces are
small with respect to relative cell complex inclusions (lemma), all these cells are small.

Now notice that -filtered colimits of sets commute with -small limtis of sets (prop.). By
assumption  is a -small transfinite composition of pushouts of -small coproducts, all three
of which are -small colimits; and let  be the codomain of a -small relative cell complex
inclusion, hence itself a -small colimit.

Now if = lim→⎯⎯  is a -small colimit of -small objects , and = lim→⎯⎯  is a -small colimit,

then

Hom( , lim→⎯⎯ ) ≃ Hom(lim→⎯⎯ , lim→⎯⎯ )

≃ lim←⎯⎯ Hom( , lim→⎯⎯ )

≃ lim←⎯⎯ lim→⎯⎯ Hom( , )

≃ lim→⎯⎯ lim←⎯⎯ Hom( , )

≃ lim→⎯⎯ Hom(lim→⎯⎯ , )

≃ lim→⎯⎯ Hom( , )

.

Hence the claim follows.  ▮

Proposition 2.11. The class of CW-spectra is closed under various operations, including

finite wedge sum (def. 1.27)

…

Proposition 2.12. A sequential spectrum ∈ SeqSpec(Top ) is cofibrant in the strict model

structure SeqSpec(Top )  of theorem 2.3 precisely if

 is cofibrant;1. 

each structure map : ∧ → +  is a cofibration2. 

in the classical model structure (Top* /)  on pointed compactly generated topological

spaces (thm., prop.).

In particular cell spectra and specifically CW-spectra (def. 2.7) are cofibrant.

Proof. The initial object in SeqSpec(Top )  is the spectrum * that is constant on the point

(example 1.26). A morphism * →  is a cofibration according to def. 2.1 if

the morphism * →  is a classical cofibration, hence if the object  is a classical
cofibrant object, hence a retract of a cell complex;

1. 

the morphisms

* + ⊔
∧ *

∧ ⟶ +

are classical cofibrations. But since ∧ * ≃ * →
≃
*  is an isomorphism in this case the

2. 
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pushout reduces to just its second summand, and so this is now equivalent to

∧ ⟶ +

being classical cofibrations; hence retracts of relative cell complexes.

  ▮

Proposition 2.13. For ∈ SeqSpec(Top)  a CW-spectrum, def. 2.7, then its standard

cylinder spectrum ∧ ( +) of def. 1.28 satisfies the conditions on an abstract cylinder
object (def.) in that the inclusion

∨ ⟶ ∧ ( +)

(of the wedge sum of  with itself, example 1.27) is a cofibration in SeqSpec(Top) .

Proof. According to def. 2.1 we need to check that for all  the morphism

( ∨ ) + ⊔
∧( ∨ )

∧ ( ∧ ( +)) ⟶ ( ∧ ( +)) +

is a retract of a relative cell complex. After distributing indices and smash products over
wedge sums, this is equivalently

( + ∨ + ) ⊔
( ∧ )∨( ∧ ))

∧ ∧ ( +) ⟶ + ∧ ( +) .

Now by the assumption that  is a CW-spectrum, each  is a CW-complex, and this implies
that ∧ ( +) is a relative cell complex in Top* /. With this, inspection shows that also the
above morphism is a relative cell complex.  ▮

We now turn to discussion of CW-approximation of sequential spectra. First recall the
relative version of CW-approximation for topological spaces.

For the following, recall that a continuous function : →  between topological spaces is
called an n-connected map if the induced morphism on homotopy groups
•( ) : •( , ) → •( , ( )) is

an isomorphism in degree < ;1. 

an epimorphism in degree .2. 

(Hence an weak homotopy equivalence is an “∞-connected map”.)

Lemma 2.14. Let : ⟶  be a continuous function between topological spaces. Then

there exists for each ∈ ℕ a relative CW-complex ^: ↪ ^ together with an extension
: → , i.e.

⟶
^
↓ ↗

^

such that  is n-connected.

Moreover:

if  itself is k-connected, then the relative CW-complex ^ may be chosen to have cells
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only of dimension + 1 ≤ dim ≤ .

if  is already a CW-complex, then ^: →  may be chosen to be a subcomplex
inclusion.

(tomDieck 08, theorem 8.6.1)

Proposition 2.15. For every continuous function : ⟶  out of a CW-complex , there

exists a relative CW-complex ^: ⟶ ^ that factors  followed by a weak homotopy
equivalence

⟶

^ ↘ ↗
∈

^

.

Proof. Apply lemma 2.14 iteratively for ∈ ℕ to produce a sequence with cocone of the form

⟶ ⟶ ⟶ ⋯

↘ ↓ ↙ ⋯ ,

where each  is a relative CW-complex adding cells exactly of dimension , and where  in

n-connected.

Let then ^ be the colimit over the sequence (its transfinite composition) and ^: →  the

induced component map. By definition of relative CW-complexes, this ^ is itself a relative
CW-complex.

By the universal property of the colimit this factors  as

⟶ ⟶ ⟶ ⋯

↘ ↓ ↙ ⋯

^

↓

.

Finally to see that  is a weak homotopy equivalence: since n-spheres are compact

topological spaces, then every map : → ^ factors through a finite stage ∈ ℕ as

→ → ^ (by this lemma). By possibly including further into higher stages, we may choose

> . But then the above says that further mapping along ^ →  is the same as mapping
along , which is ( > )-connected and hence an isomorphism on the homotopy class of

.  ▮

Proposition 2.16. For  any topological sequential spectrum (def.1.1), then there exists a

CW-spectrum ^ (def. 2.7) and a homomorphism

: ^ →⎯⎯⎯⎯⎯⎯⎯
∈

.

which is degreewise a weak homotopy equivalence, hence a weak equivalence in the strict
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model structure of theorem 2.3.

Proof. First let ^ ⟶  be a CW-approximation of the component space in degree 0, via
prop. 2.15. Then proceed by induction: suppose that for ∈ ℕ a CW-approximation

≤ : ^ ≤ → ≤  has been found such that all the structure maps in degrees <  are

respected. Consider then the composite continuous function

∧ ^ →⎯⎯⎯⎯⎯
∧

∧ ⟶ + .

Applying prop. 2.15 to this function factors it as

∧ ^ ↪ ^
+ →⎯⎯⎯⎯+ + .

Hence we have obtained the next stage ^ +  of the CW-approximation. The respect for the
structure maps is just this factorization property:

∧ ^ →⎯⎯⎯⎯⎯
∧

∧

↓ ↓

^
+ →⎯⎯⎯⎯

+
+

.

  ▮

Topological enrichment

We discuss here how the hom-set of homomorphisms between any two sequential spectra is
naturally equipped with a topology, and how these hom-spaces interact well with the strict
model structure on sequential spectra from theorem 2.3. This is in direct analogy to the
compatibility of compactly generated mapping spaces (def.) with the classical model
structure on compactly generated topological spaces discussed at Classical homotopy theory
– Topological enrichment. It gives an improved handle on the analysis of morphisms of
spectra below in the proof of the stable model structure and it paves the way to the
discussion of fully fledge mapping spectra below in part 1.2. There we will give a fully
general account of the principles underlying the following. Here we just consider a pragmatic
minimum that allows us to proceed.

Definition 2.17. For , ∈ SeqSpec(Top ) two sequential spectra (def. 1.1) let

SeqSpec( , ) ∈ Top* /

be the pointed topological space whose underlying set is the hom-set Hom ( )( , )

of homomorphisms from  to , and which is equipped with the final topology (def.)
generated by those functions

: ⟶ Hom ( )( , )

out of compact Hausdorff spaces , for which there exists a homomorphism of spectra

˜ : ∧ ⟶

out of the smash tensoring of  with  (def. 1.6) such that for all ∈ , ∈ ℕ, ∈

( ) ( ) = ˜ ( , ) .
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By construction this makes SeqSpec( , ) indeed into a compactly generated topological
space, and it gives a natural bijection

Hom * / ( , SeqSpec( , )) ≃ Hom
( * /)

( ∧ , ) .

In Prelude -- Classical homotopy theory we discussed, in the section Topological enrichment,
that the classical model structure on topological spaces (when restricted to compactly
generated topological spaces) interacts well with forming smash products and pointed
mapping spaces. Concretely, the smash pushout product of two classical cofibrations is a
classical cofibration, and is acyclic if either of the factors is:

Cof □ Cof ⊂ Cof , (Cof ∩ )□Cof ⊂ Cof ∩ .

We also saw that, by Joyal-Tierney calculus (prop.), this is equivalent to the pullback
powering satisfying the dual relations

Fib□ ⊂ Fib , Fib□( ∩ ) ⊂ Fib ∩ , (Fib ∩ )□ ⊂ Fib ∩ .

Now that we passed from spaces to spectra, def. 1.6 generalizes the smash product of
spaces to the smash tensoring of sequential spectra by spaces, and generalizes the pointed
mapping space construction for spaces to the powering of a space into a sequential
spectrum. Accordingly there is now the analogous concept of pushout product with respect
to smash tensoring, and of pullback powering with respect to smash powering.

From the way things are presented, it is immediate that these operations on spectra satisfy
the analogous compatibility condition with the strict model structure on spectra from
theorem 2.3, in fact this follows generally for topologically enriched functor categories and is
inherited via prop. 1.23. But since this will be important for some of the discussion to follow,
we here make it explicit:

Definition 2.18. Let : →  be a morphism in SeqSpec(Top ) (def. 1.1) and let : →  a

morphism in Top* /.

Their pushout product with respect to smash tensoring is the universal morphism

□ ≔ ((id, ), ( , id))

in

∧
( , ) ↙ ↘( , )

∧ (po) ∧

↘ ↙

( ∧ ) ⊔
∧
( ∧ )

↓(( , ),( , ))

∧

,

where (−) ∧ (−) denotes the smash tensoring from def. 1.6.

Dually, their pullback powering is the universal morphism

□ ≔ (Maps( , )
*
, Maps( , )

*
)

in
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Maps( , )
*

↓( ( , )
*
, ( , )

*
)

Maps( , )
*

×
( , )

*

Maps( , )
*

↙ ↘

Maps( , )
*

(pb) Maps( , )
*

( , )
*
↘ ↙ ( , )

*

Maps( , )
*

,

where Maps(−, −)
*
 denotes the smash powering from def. 1.6.

Similarly, for : →  and : →  both morphisms of sequential spectra, then their
pullback powering is the universal morphism

□ ≔ (SeqSpec( , ), SeqSpec( , ))

in

SeqSpec( , )
*

↓( ( , )
*
, ( , )

*
)

SeqSpec( , )
*

×
( , )

*

SeqSpec( , )
*

↙ ↘

SeqSpec( , )
*

(pb) SeqSpec( , )
*

( , )
*
↘ ↙ ( , )

*

SeqSpec( , )
*

,

where now SeqSpec(−, −) is the hom-space functor from def. 2.17.

Proposition 2.19. The operation of forming pushout products with respect to smash
tensoring in def. 2.18 is compatible with the strict model structure on sequential spectra
from theorem 2.3 and with the classical model structure on compactly generated pointed
topological spaces (thm., prop.) in that it takes two cofibrations to a cofibration, and to an
acyclic cofibration if at least one of the inputs is acyclic:

Cof □Cof ⊂ Cof

Cof □ (Cof □ ) ⊂ Cof ∩

(Cof ∩ )□Cof ⊂ Cof ∩

.

Dually, the pullback powering satisfies

Fib
□

⊂ Fib

Fib□( ∩ ) ⊂ Fib ∩

(Fib ∩ )□ ⊂ Fib ∩

.

Proof. The statement concering the pullback powering follows directly form the analogous
statement for topological spaces (prop.) by the fact that via theorem 2.3 the fibrations and
weak equivalences in SeqSpec(Top )  are degree-wise those in (Top* /) . From this the

statement about the pushout product follows dually by Joyal-Tierney calculus (prop.).  ▮
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Remark 2.20. In the language of model category-theory, prop. 2.19 says that
SeqSpec(Top )  is an enriched model category, the enrichment being over (Top* /) .

This is often referred to simply as a “topological model category”.

Proposition 2.21. For ∈ SeqSpec(Top ) a sequential spectrum, ∈ Mor(SeqSpec(Top )) any

morphism of sequential spectra, and for ∈ Mor(Top* / ) a morphism of compact Hausdorff
spaces, then the hom-spaces of def. 2.17 interact with the pushout-product and pullback-
powering from def. 2.18 in that there is a natural isomorphism

SeqSpec( □ , ) ≃ SeqSpec( , )□ .

Proposition 2.22. For , ∈ SeqSpec(Top ) two sequential spectra with  a CW-spectrum

(def. 2.7), then there is a natural bijection

SeqSpec( , ) ≃ [ , ]

between the connected components of the hom-space from def. 2.17 and the hom-set in
the homotopy category (def.) of the strict model structure from theorem 2.3.

Proof. By def. 2.17 the path components of the hom-space are the left homotopy classes of
morphisms of spectra with respect to the standard cylinder spectrum of def. 1.28:

+ ⟶ SeqSpec( , )
∧ ( +) ⟶

.

By prop. 2.13, for  a CW-spectrum then the standard cylinder spectrum ∧ ( +) is a good
cyclinder object (def.) on a cofibrant object.

Since moreover every object in SeqSpec(Top )  is fibrant, the statement follows (with this

lemma).  ▮

3. The stable model structure on sequential spectra

The actual spectrum objects of interest in stable homotopy theory are not the pre-spectra of
def. 1.1, but the Omega-spectra of def. 1.16 among them. Hence we need to equip the
category of sequential pre-spectra of def. 1.1 with a model structure (def.) whose fibrant-
cofibrant objects are, in particular Omega-spectra. More in detail, it is plausible to require
that every pre-spectrum is weakly equivalent to a fibrant-cofibrant one which is both an
Omega-spectrum and a CW-spectrum as in def. 2.7. By prop. 2.12 this suggests to construct
a model category structure on SeqSpec(Top ) that has the same cofibrations as the strict

model structure of theorem 2.3, but more weak equivalences (and hence less fibrations),
such as to make every sequential pre-spectrum weakly equivalent to an Omega cell
spectrum.

Such a situation is called a Bousfield localization of a model category.

Bousfield localization

In plain category theory, a localization of a category  is equivalently a full subcategory

: ↪

such that the inclusion functor has a left adjoint
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⊥⟶
⟵

.

The adjunction unit : → ( ) “reflects” every object  of  into one in the , and

therefore this is also called a reflective subcategory inclusion.

It is a classical fact (Gabriel-Zisman 67, prop.) that in this situation

≃ [ − ]

is equivalently the localization (def.) of  at the “ -equivalences”, namely at those
morphisms  such that ( ) is an isomorphism. Hence one also speaks of reflective
localizations.

The following concept of Bousfield localization of model categories is the evident lift of this
concept of reflective localization from the realm of categories to the realm of model
categories (def.), where isomorphism is generealized to weak equivalence and where adjoint
functors are taken to exhibit Quillen adjunctions.

Definition 3.1. A left Bousfield localization  of a model category  (def.) is another
model category structure on the same underlying category with the same cofibrations,

Cof = Cof

but more weak equivalences

⊃ .

Notice that:

Proposition 3.2. Given a left Bousfield localization  of  as in def. 3.1, then

Fib ⊂ Fib;1. 

∩ Fib = ∩ Fib;2. 

the identity functors constitute a Quillen adjunction

⊥⟶
⟵

.

3. 

the induced adjunction of derived functors (prop.) exhibits a reflective subcategory
inclusion of homotopy categories (def.)

Ho( ) ⊥→⎯⎯
ℝ

←⎯⎯
Ho( ) .

4. 

Proof. Regarding the first two items:

Using the properties of the weak factorization systems (def.) of (acyclic cofibrations,
fibrations) and (cofibrations, acyclic fibrations) for both model structures we get

Fib = (Cof ∩ )Inj

⊂ (Cof ∩ )Inj

= Fib

and
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Fib ∩ = Cof Inj

= Cof Inj

= Fib ∩

.

Regarding the third point:

By construction, id : →  preserves cofibrations and acyclic cofibrations, hence is a left
Quillen functor.

Regarding the fourth point:

Since Cof = Cof the notion of left homotopy in  is the same as that in , and hence the
inclusion of the subcategory of local cofibrant-fibrant objects into the homotopy category of
the original cofibrant-fibrant objects is clearly a full inclusion. Since Fib ⊂ Fib by the first
statement, on these cofibrant-fibrant objects the right derived functor of the identity is just
the identity and hence does exhibit this inclusion. The left adjoint to this inclusion is given
by id, by the general properties of Quillen adjunctions (prop).  ▮

In plain category theory, given a reflective subcategory

⊥⟶
⟵

then the composite

≔ ∘ : ⟶

is an idempotent monad on , hence, in particular, an endofunctor equipped with a natural
transformation : →  (the adjunction unit) – which “reflects” every object into one in

the image of  – such that this reflection is a projection in that each ( ) is an isomorphism.

This characterizes the reflective subcategory ↪  as the subcategory of those objects 
for which  is an isomorphism.

The following is the lift of this alternative perspective of reflective localization via idempotent
monads from category theory to model category theory.

Definition 3.3. Let  be a model category (def.) which is right proper (def.), in that
pullback along fibrations preserves weak equivalences.

Say that a Quillen idempotent monad on  is

an endofunctor

: ⟶

1. 

a natural transformation

: id ⟶

2. 

such that

(homotopical functor)  preserves weak equivalences;1. 

(idempotency) for all ∈  the morphisms

( ) : ( ) →⎯⎯
∈

( ( ))

2. 
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and

( ) : ( ) →⎯⎯
∈

( ( ))

are weak equivalences;

(right-properness of the localization) if in a pullback square in 

* →⎯⎯
*

↓ (pb) ↓

⟶

we have that

 is a fibration;1. 

, , and (ℎ) are weak equivalences2. 

then ( *ℎ) is a weak equivalence.

3. 

Definition 3.4. For : ⟶  a Quillen idempotent monad according to def. 3.3, say that a
morphism  in  is

a -weak equivalence if ( ) is a weak equivalence;1. 

a -cofibation if it is a cofibration.2. 

a -fibration if it has the right lifting property against the morphisms that are both
( -)cofibrations as well as -weak equivalences.

3. 

Write

for  equipped with these classes of morphisms.

Since  preserves weak equivalences (by def. 3.3) then if the classes of morphisms in def.
3.4 do constitute a model category structure, then this is a left Bousfield localization of ,
according to def. 3.1.

We establish a couple of lemmas that will prove that the model structure indeed exists
(prop. 3.7 below).

Lemma 3.5. In the situation of def. 3.4, a morphism is an acyclic fibration in  precisely if
it is an acyclic fibration in .

Proof. Let  be a fibration and a weak equivalence. Since  preserves weak equivalences by
condition 1 in def. 3.3,  is also a -weak equivalence. Since -cofibrations are cofibrations,
the acyclic fibration  has right lifting against -cofibrations, hence in particular against
against -acyclic -cofibrations, hence is a -fibration.

In the other direction, let : ⟶  be a -acyclic -fibration. Consider its factorization into
a cofibration followed by an acyclic fibration

: →⎯⎯⎯
∈

→⎯⎯⎯⎯⎯⎯
∈ ∩

.
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Observe that -equivalences satisfy two-out-of-three (def.), by functoriality and since the
plain equivalences do. Now the assumption that  preserves weak equivalences together
with two-out-of-three implies that  is a -weak equivalence, hence a -acyclic -cofibration.
This implies that  has the right lifting property against  (since  is assumed to be a
-fibration, which is defined by this lifting property). Hence the retract argument (prop.)

implies that  is a retract of the acyclic fibration , and so is itself an acyclic fibration.  ▮

Lemma 3.6. In the situation of def. 3.4, if a morphism : ⟶  is a fibration, and if ,

are weak equivalences, then  is a -fibration.

(e.g. Goerss-Jardine 96, chapter X, lemma 4.4)

Proof. We need to show under the given assumptions that for every commuting square of
the form

⟶

∈ ∩ ↓ ↓

⟶

there exists a lifting.

To that end, first consider a factorization of the image under  of this square as follows:

( ) →⎯⎯⎯
( )

( )

( ) ↓ ↓ ( )

( ) →⎯⎯⎯
( )

( )

≃

( ) →⎯⎯⎯⎯⎯⎯
∈ ∩

→⎯⎯⎯
∈

( )

( ) ↓ ↓ ↓ ( )

( ) →⎯⎯⎯⎯⎯⎯
∈ ∩

→⎯⎯⎯
∈

( )

(This exists even without assuming functorial factorization: factor the bottom morphism,
form the pullback of the resulting , observe that this is still a fibration, and then factor

(through ) the universal morpism from the outer square into this pullback.)

Now consider the pullback of the right square above along the naturality square of : id → ,
take this to be the right square in the following diagram

: →⎯⎯⎯⎯⎯⎯⎯
( ∘ , )

×
( )

⟶

↓ ↓( , ) ↓

: →⎯⎯⎯⎯⎯⎯⎯
( ∘ , )

×
( )

⟶

,

where the left square is the universal morphism into the pullback which is induced from the
naturality squares of  on  and .

We claim that ( , ) here is a weak equivalence. This implies that we find the desired lift by
factoring ( , ) into an acyclic cofibration followed by an acyclic fibration and then lifting
consecutively as follows

Introduction to Stable homotopy theory -- 1-1 in nLab https://ncatlab.org/nlab/print/Introduction+to+Stable+homotopy+theor...

36 of 79 09.05.17, 15:47



: →⎯⎯⎯⎯⎯⎯⎯
( ∘ , )

×
( )

⟶

↓ ∈ ∩ ↓ ∃ ↗ ↓∈

⟶ →⎯⎯⎯⎯⎯⎯⎯

∈ ↓ ∃ ↗ ↓ ∈ ∩ ↓

: →⎯⎯⎯⎯⎯⎯⎯
( ∘ , )

×
( )

⟶

.

To see that ( , ) indeed is a weak equivalence:

Consider the diagram

( ) →⎯⎯⎯⎯⎯⎯
∈ ∩

←⎯⎯
∈

×
( )

∈
( )
↓ ↓ ↓( , )

( ) →⎯⎯⎯⎯⎯⎯
∈ ∩

←⎯⎯
∈

×
( )

.

Here the projections are weak equivalences as shown, because by assumption in def. 3.3
the ambient model category is right proper and these projections are the pullbacks along the
fibrations  and  of the morphisms  and , respectively, where the latter are weak

equivalences by assumption. Moreover ( ) is a weak equivalence, since  is a -weak
equivalence.

Hence now it follows by two-out-of-three (def.) that  and then ( , ) are weak
equivalences.  ▮

Proposition 3.7. (Bousfield-Friedlander theorem)

Let  be a right proper model category. Let : ⟶  be a Quillen idempotent monad on ,
according to def. 3.3.

Then the Bousfield localization model category  (def. 3.1) at the -weak equivalences
(def. 3.4) exists, in that the model structure on  with the classes of morphisms in def.
3.4 exists.

(Bousfield-Friedlander 78, theorem 8.7, Bousfield 01, theorem 9.3, Goerss-Jardine 96,
chapter X, lemma 4.5, lemma 4.6, theorem 4.1)

Proof. The existence of limits and colimits is guaranteed since  is already assumed to be a
model category. The two-out-of-three poperty for -weak equivalences is an immediate
consequence of two-out-of-three for the original weak equivalences of . Moreover,
according to lemma 3.5 the pair of classes (Cof , ∩ Fib ) equals the pair (Cof, ∩ Fib), and
this is a weak factorization system by the model structure .

Hence it remains to show that ( ∩ Cof , Fib ) is a weak factorization system. The condition
Fib = RLP( ∩ Cof ) holds by definition of Fib . Once we show that every morphism factors
as ∩ Cof  followed by Fib , then the condition ∩ Cof = LLP(Fib ) follows from the
retract argument (lemma) and the fact that the classes  and Cof  are closed under
retracts, because  and Cof = Cof  are (by this prop. and this prop., respectively).

So we may conclude by showing the existence of ( ∩ Cof , Fib ) factorizations:

First we consider the case of morphisms of the form : ( ) → ( ). These may be factored

Introduction to Stable homotopy theory -- 1-1 in nLab https://ncatlab.org/nlab/print/Introduction+to+Stable+homotopy+theor...

37 of 79 09.05.17, 15:47



with respect to  as

: ( ) →⎯⎯⎯⎯⎯⎯
∈ ∩

∈
→⎯⎯⎯

∈
( ) .

Here  is already a -acyclic -cofibration, since  preserves weak equivalences by the first

clause in def. 3.3. Now apply id →  to obtain

: ( ) →⎯⎯⎯⎯⎯⎯
∈ ∩

→⎯⎯⎯
∈

( )

↓∈
( )

↓ ↓∈
( )

( ( )) →⎯⎯
( )

∈
( ) ⟶ ( ( ))

,

where ( ) and ( ) are weak equivalences by idempotency (the second clause in def. 3.3),

and ( ) is a weak equivalence since  preserves weak equivalences. Hence by two-out-
of-three also  is a weak equivalence. Therefore lemma 3.6 gives that  is a -fibration,

and hence the above factorization is already as desired

: ( ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯
∈ ∩

∈
→⎯⎯⎯⎯

∈
( ) .

Now for an arbitrary morphism : → , form a factorization of ( ) as above and then
decompose the naturality square for  on  into the pullback of the resulting -fibration
along :

: ⟶
˜

×
( )

→⎯⎯⎯⎯⎯
˜ ∈

∈ ↓ ↓ (pb) ↓∈

( ): ( ) →⎯⎯⎯
∈

→⎯⎯⎯⎯
∈

( )

.

This exhibits ′  as the pullback of a -weak equivalence along a fibration between objects on
which  is a weak equivalence. Then the third clause in def. 3.3 says that ′ is itself as a
-weak equivalence. This way, two-out-of-three implies that ˜ is a -weak equivalence.

Observe that ˜  is a -fibration, because it is the pullback of a -fibration and because
-fibrations are defined by a right lifting property (def. 3.4) and hence closed under pullback

(prop.) Finally, apply factorization in (Cof, ∩ Fib) to ˜ to obtain the desired factorization

: →⎯⎯⎯⎯⎯⎯
∩

˜
→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

∩ = ∩

˜
→⎯⎯⎯
˜

.

  ▮

While this establishes the -model structure, so far this leaves open a more explicit
description of the -fibrations. This is provided by the next statement.

Proposition 3.8. For : ⟶  a Quillen idempotent monad according to def. 3.3, then a
morphism : →  in  is a -fibration (def. 3.4) precisely if

 is a fibration;1. 

the -naturality square on 2. 
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⟶ ( )

↓ ( ) ↓ ( )

⟶ ( )

exhibits a homotopy pullback in  (def.), in that for any factorization of ( ) through
a weak equivalence followed by a fibration , then the universally induced morphism

⟶ *

is weak equivalence (in ).

(e.g. Goerss-Jardine 96, chapter X, theorem 4.8)

Proof. First consider the case that  is a fibration and that the square is a homotopy
pullback. We need to show that then  is a -fibration.

Factor ( ) as

( ) : ( ) →⎯⎯⎯⎯⎯⎯
∈ ∩

→⎯⎯⎯
∈

( ) .

By the proof of prop. 3.7, the morphism  is also a -fibration. Hence by the existence of the
-local model structure, also due to prop. 3.7, its pullback ˜  is also a -fibration

⟶ ( )

∈

˜
↓ ↓∈

×
( )

→⎯⎯⎯
*

∈
˜ ↓ (pb) ↓∈

⟶ ( )

.

Here ˜ is a weak equivalence by assumption that the diagram exhibits a homotopy pullback.
Hence it factors as

˜ : →⎯⎯⎯⎯⎯⎯
∈ ∩

^ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
∈ ∩ = ∩

×
( )

.

This yields the situation

⟶=

∈ ∩ ↓ ∃ ↗ ↓∈

^ →⎯⎯⎯⎯
˜ ∘

∈

↔

⟶ ^ ⟶
∃

↓ ↓ ˜ ∘ ↓

= =

.

As in the retract argument (prop.) this diagram exhibits  as a retract (in the arrow
category, rmk.) of the -fibration ˜ ∘ . Hence by the existence of the -model structure
(prop. 3.7) and by the closure properties for fibrations (prop.), also  is a -fibration.

Now for the converse. Assume that  is a -fibration. Since  is a left Bousfield localization
of  (prop. 3.7),  is also a fibration (prop. 3.2). We need to show that the -naturality
square on  exhibits a homotopy pullback.

So factor ( ) as before, and consider the pasting composite of the factorization of the given
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square with the naturality squares of :

→⎯⎯⎯
∈

( ) →⎯⎯⎯⎯⎯⎯
∈ ⊂

( )
( ( ))

∈

˜
↓ ∈ ⊂ ↓ ↓∈

( )

×
( )

→⎯⎯⎯
∈

*
→⎯⎯
∈

( )

∈
˜ ↓ (pb) ↓∈ ⊂ ↓ ( )

→⎯⎯⎯
∈

( ) →⎯⎯⎯⎯⎯⎯
( )

∈ ⊂
( ( ))

.

Here the top and bottom horizontal morphisms are weak ( -)equivalences by the
idempotency of , and ( ) is a weak equivalence since  preserves weak equivalences (first
and second clause in def. 3.3). Hence by two-out-of-three also  is a weak equivalence.

From this, lemma 3.6 gives that  is a -fibration. Then *  is a -weak equivalence since it

is the pullback of a -weak equivalence along a fibration between objects whose  is a weak
equivalence, via the third clause in def. 3.3. Finally two-out-of-three implies that ˜ is a
-weak equivalence.

In particular, the bottom right square is a homotopy pullback (since two opposite edges are
weak equivalences, by this prop.), and since the left square is a genuine pullback of a
fibration, hence a homotopy pullback, the total bottom rectangle here exhibits a homotopy
pullback by the pasting law for homotopy pullbacks (prop.).

Now by naturality of , that total bottom rectangle is the same as the following rectangle

×
( )

→⎯⎯⎯⎯⎯⎯⎯⎯
×
( )

( ×
( )

) →⎯⎯⎯⎯⎯⎯
∈

( * )
( )

∈
˜ ↓ ↓

( ˜ )
↓ ( )

⟶ ( ) →⎯⎯⎯⎯
( )

∈
( ( ))

,

where now ( * ) ∈  since * ∈ , as we had just established. This means again that

the right square is a homotopy pullback (prop.), and since the total rectangle still is a
homotopy pullback itself, by the previous remark, so is now also the left square, by the
other direction of the pasting law for homotopy pullbacks (prop.).

So far this establishes that the -naturality square of ˜  is a homotopy pullback. We still need
to show that also the -naturality square of  is a homotopy pullback.

Factor ˜ as a cofibration followed by an acyclic fibration. Since ˜ is also a -weak equivalence,
by the above, two-out-of-three for -fibrations gives that this factorization is of the form

→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
∈ ∩ = ∩

^ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
∈ ∩ = ∩

×
( )

.

As in the first part of the proof, but now with ( ∩ Cof, Fib) replaced by ( ∩ Cof , Fib ) and
using lifting in the -model structure, this yields the situation
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⟶=

∈ ∩ ↓ ∃ ↗ ↓∈

^ →⎯⎯⎯
˜ ∘

↔

⟶ ^ ⟶
∃

↓ ↓ ˜ ∘ ↓

= =

.

As in the retract argument (prop.) this diagram exhibits  as a retract (in the arrow
category, rmk.) of ˜ ∘ .

Observe that the -naturality square of the weak equivalence  is a homotopy pullback,
since  preserves weak equivalences (first clause of def. 3.3) and since a square with two
weak equivalences on opposite sides is a homotopy pullback (prop.). It follows that also the
-naturality square of ˜ ∘  is a homotopy pullback, by the pasting law for homotopy

pullbacks (prop.).

In conclusion, we have exhibited  as a retract (in the arrow category, rmk.) of a morphism
˜ ∘  whose -naturality square is a homotopy pullback. By naturality of , this means that
the whole -naturality square of  is a retract (in the category of commuting squares in ) of
a homotopy pullback square. This means that it is itself a homotopy pullback square
(prop.).  ▮

Proof of the stable model structure

We show now that the operation of Omega-spectrification of topological sequental spectra,
from def. 1.19, is a Quillen idempotent monad in the sense of def. 3.3. Via the Bousfield-
Friedlander theorem (prop. 3.7) this establishes the stable model structure on topological
sequential spectra in theorem 3.11 below.

Lemma 3.9. The Omega-spectrification ( , ) from def. 1.19 preserves homotopy pullbacks
(def.) in the strict model structure SeqSpec(Top )  from theorem 2.3.

(Schwede 97, lemma 2.1.3 (e))

Proof. Since, by prop. 1.20,  preserves weak equivalences, it is sufficient to show that
every pullback square in SeqSpec(Top ) of a fibration

× ⟶

↓ (pb) ↓ ∈

⟶

is taken by  to a homotopy pullback square. By prop. 1.25 we need to check that this is the
case for the th component space of the sequential spectra in the diagram, for all ∈ ℕ.

Let , , ,  etc. denote the objects appearing in the definition of ( ) ≔ lim→⎯⎯ , ,

( ) ≔ lim→⎯⎯ , , etc. (def. 1.19).

Use the small object argument (prop.) for the set 
( * /)

 of acyclic generating cofibrations in

(Top * /)  (def.) to construct a functorial factorization (def.) through acyclic relative cell

complex inclusions (def.) followed by Serre fibrations (def.) in each degree:

, →⎯⎯⎯⎯⎯⎯⎯⎯
∈

→⎯⎯⎯⎯
∈

, .

Notice that by construction • ,  and • ,  are sequences of relative cell complexes. This
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implies, by the way the small object argument works and by the commutativity of each

, →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
∈

( * /)

∈
( * /)

↓ ↓

+ , →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
∈

( * /)
+

,

that also • is a sequence of relative cell complex inclusions: a cell in  is given by the top
square in the following diagram, and the total rectangle is the image of that cell as a cell in

+ :

− ⟶ −

↓ ↓

, →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
∈

( * /)

∈
( * /)

↓ ↓

+ , →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
∈

( * /)
+

,

Therefore, forming the colimit over ∈  of these sequences sends the degreewise Serre
fibration to a Serre fibration (prop.): because we test for a Serre fibration by lifting against
the morphism in * / , which have compact domain and codomain, and these may be taken

inside the colimit over relative cell complex inclusions (by this lemma)). So we have a Serre
fibration

lim→⎯⎯ →⎯⎯⎯⎯
∈

( )

for each ∈ ℕ.

Consider then the commuting diagrams

, ⟶ , ←⎯⎯⎯⎯
∈

←⎯⎯⎯⎯⎯⎯⎯⎯⎯
∈ ∈

,

↓∈ ↓∈ ∃ ∈ ↘ ↓∈

+ ⟶ + ⟵ ←⎯⎯⎯⎯
∈ +

,

where the vertical morphisms are composites of the weak equivalences , : + , →⎯⎯
,

, +

from def. 1.19.

The diagonal is a chosen lift (where we use that = Maps( , −)
*
 preserves Serre fibrations

by prop. 0.2). This lift is a weak equivalence by two-out-of-three. On the left of the diagram
this exhibits now a weak equivalence of cospan-diagrams with right leg a fibration.
Therefore, since forming the limit over these cospan diagrams is a homotopy pullback (def.,
all objects here being fibrant), this induces a weak equivalence on these limits (prop.)

: , ×
,

→⎯⎯⎯⎯
∈

+ ×
+

+ ≃ ( + ×
+

+ ) .

By universality of the pullback there is a commuting triangle
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,
× ⟶ , ×

,

∈ ↘ ↙ ∈

( + ×
+

+ )

and hence by two-out-of-three also the top morphism is a weak equivalence.

Now observe that colimits over sequences of relative cell inclusions preserve finite limits up
to weak equivalence (prop.). This follows again by using that -spheres may be taken inside
the colimits from the classical fact that filtered colimits preserve finite limits. In conclusion
then, we have a weak equivalence of the form

( ( × )) = lim→⎯⎯ ,
× →⎯⎯⎯⎯

∈

→⎯⎯⎯
lim→⎯⎯ , ×

,

→⎯⎯⎯⎯
∈

lim→⎯⎯ , ×
→⎯⎯⎯ ,

lim→⎯⎯ = ( ) ×
( )

lim→⎯⎯ .

This exhibits (degreewise and hence globally) the homotopy pullback property to be
show.  ▮

Proposition 3.10. The Omega-spectrification ( , ) from def. 1.19 is a Quillen idempotent
monad in the sense of def. 3.3 on the strict model structre theorem 2.3:

: SeqSpec(Top ) ⟶ SeqSpec(Top ) .

(Schwede 97, prop. 2.1.5)

Proof. First notice that the strict model structure is indeed right proper, as demanded in def.
3.3: Since every object in SeqSpec(Top ) is fibrant (this being so degreewise in (Top* /) )

this follows from this lemma.

The first two conditions required on a Quillen idempotent monad in def. 3.3 are explicit in
prop. 1.20.

The third condition follows from lemma 3.9: A pullback of a -equivalence along a fibration
is a homotopy pullback and is hence sent by  to another homotopy pullback square.

* →⎯⎯
*

↓ (pb) ↓ ∈

→⎯⎯⎯⎯
∈

⇒

( * ) →⎯⎯⎯⎯⎯⎯⎯⎯
( * )∈

( )

↓ (pb) ↓ ( )

( ) →⎯⎯⎯⎯⎯⎯
( )∈

( )

.

By definition of -equivalence that resulting homotopy pullback square has the bottom edge
a weak equivalence, and hence also the top edge is a weak equivalence (prop.).  ▮

Theorem 3.11. The left Bousfield localization of the strict model structure on sequential
spectra (theorem 2.3) at the class of stable weak homotopy equivalences (def. 1.14)
exists, called the stable model structure on topological sequential spectra

SeqSpec(Top ) ⊥⟶
⟵

SeqSpec(Top ) .

Moreover, its fibrant objects are precisely the Omega-spectra (def.1.16).

Proof. Let ( , ) be the Omega-spectrification operation from def. 1.19. According to prop.
3.10 this is a Quillen-idempotent monad (def. 3.3) on SeqSpec(Top ) . Hence the
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Bousfield-Friedlander theorem (prop. 3.7) asserts that the Bousfield localization of the strict
model structure at the -equivalences exists. By prop. 1.20 these are precisely the stable
weak homotopy equivalences.

Finally, by prop. 3.8 an object ∈ SeqSpec(Top )  is fibrant in SeqSpec(Top )  precisely

if

⟶ ( )

↓ ↓

* ⟶ *

exhibits a homotopy pullback in SeqSpec(Top ) . Since every object in SeqSpec(Top )  is

fibrant, the vertical morphisms here are fibrations. The pullback of ( ) along id* is just ( )
itself, and the universally induced morphism into this pullback is just  itself. Hence the

square is a homotopy pullback precisely if  is a weak equivalence in SeqSpec(Top ) ,

hence degreewise a weak homotopy equivalence. Since ( ) is an Omega-spectrum by prop.
1.20, this means precisely that  is an Omega-spectrum.  ▮

Stability of the homotopy theory

We discuss that the stable model structure SeqSpec(Top )  of theorem 3.11 is indeed a

stable model category, in that the canonical reduced suspension operation is an equivalence
of categories from the stable homotopy category (def. 4.1) to itself. This is theorem 3.23
below.

Definition 3.12. A pointed model category  (exmpl.) is called a stable model category if
the canonically induced reduced suspension and loop space object-functors (prop.) on its
homotopy category (defn.) constitute an equivalence of categories

( ⊣ ) : Ho( ) ≃⟶
⟵ Ho( ) .

Literature (Jardine 15, sections 10.3 and 10.4)

First we observe that the alternative suspension induces an equivalence of homotopy
categories:

Lemma 3.13. With  and  the alternative suspension and alternative looping functors from
def. 1.32:

 preserves Omega-spectra (def. 1.16);1. 

 preserves stable weak homotopy equivalences (def. 1.14).2. 

Proof. Regarding the first statement:

By prop. 0.2,  acts on component spaces and adjunct structure maps as the right Quillen
functor

Maps( , −)
*
: (Top* /) ⟶ (Top * /)

on the classical model structure on pointed compactly generated topological spaces (thm.,
prop.). Since in this model structure all objects are fibrant, Ken Brown's lemma (prop.)
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implies that with ˜  a weak homotopy equivalence, so is ˜ = Maps( , ˜ ).

Regarding the second point:

Let : →  be a stable weak homotopy equivalence. By the existence of the model structure
SeqSpec(Top )  from theorem 3.11,  is a stable weak homotopy equivalence precisely if

its image in the homotopy category Ho(SeqSpec(Top ) ) is an isomorphism (prop.). By the

Yoneda lemma (fully faithfulness of the Yoneda embedding), this is the case if for all
∈ Ho(SeqSpec(Top ) ) the function

[ , ] : [ , ] ⟶ [ , ]

is a bijection. By the fact that the stable model structure is a left Bousfield localization of the
strict model structure with fibrant objects the Omega-spectra, this is the case equivalently
(using this lemma) if

[ , ] : [ , ] ⟶ [ , ]

is a bijection for all Omega-spectra . Now by the Quillen adjunction ⊣  on the strict
model category (prop. 2.5) this is equivalent to

[ , ] : [ , ] ⟶ [ , ]

being a bijection for all Omega-spectra . But since  preserves Omega-spectra by the first
point above, this is still maps into a fibrant objects, hence is again equivalent (using again
the property of the left Bousfield localization) to the hom in the strict model structure

[ , ] : [ , ] ⟶ [ , ]

being a bijection for all . But this is indeed a bijection, since  is a stable weak homotopy
equivalence, hence an isomorphism in the homotopy category.  ▮

Lemma 3.14. For  a sequential spectrum, then (using remark 1.35 to suppress
parenthesis)

the structure maps constitute a homomorphism

[−1] ⟶

(from the shift, def. 1.31, of the alternative suspension, def. 1.32) and this is a stable
weak homotopy equivalence,

1. 

the adjunct structure maps constitute a homomorphism

⟶ [1]

(to the shift, def. 1.31, of the alternative looping, def. 1.32)

If  is an Omega-spectrum (def. 1.16) then this is a weak equivalence in the strict
model structure (def. 2.1), hence in particular a stable weak homotopy equivalence.

2. 

Proof. The diagrams that need to commute for the structure maps to give a homomorphism
as claimed are in degree 0 this one
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∧ ∧ * ⟶

∧ ↓ ↓

∧ ⟶

and in degree ≥ 1 these:

∧ ∧ − →⎯⎯⎯⎯⎯⎯⎯
∧ −

∧ − ↓ ↓

∧ ⟶ +

.

But in all these cases commutativity it trivially satisfied.

That the adjunct structure maps constitute a morphism → [1] follows dually.

If  is an Omega-spectrum, then by definition this last morphism is already a weak
equivalence in the strict model structure, hence in particular a weak equivalence in the
stable model structure.

From this it follows that also [−1] →  is a stable weak homotopy equivalence, because for
every Omega-spectrum  then by the adjunctions in prop. 1.36 we have a commuting
diagram of the form

[ , ] ⟶ [ [−1], ]

↓ ↓≃

[ , ] ⟶
≃

[ , [1]]

.

(To see the commutativity of this diagram in detail, consider for any [ ] ∈ [ , ]  chasing

the element  in the two possible ways through the natural adjunction isomorphism:

[ ∧ − , ] ≃ [ − , ]

[ ∧ − , ] ↓ ↓[ − , ]

[ ∧ − , ] ≃ [ − , ]

.

Sending  down gives ∘ ∧ −  which equals (by the homomorphism property) ∘ .

Instead sending  to the right yields ˜  and then down yields ˜ ∘ − . By commutativity

this is adjunct to ∘ .)

Hence

[ , ] ⟶ [ [−1], ]

is a bijection for all Omega-spectra , and so the conclusion that [−1] →  is a stable weak
homotopy equivalence follows as in the proof of lemma 3.13.  ▮

Lemma 3.15. The total derived functor of the alternative suspension operation  of def.
1.32 exists and constitutes an equivalence of categories from the stable homotopy
category to itself:

: Ho(SeqSpec(Top) ) ⟶≃ Ho(SeqSpec(Top) ) .

Proof. The total derived functor of  exists, because by lemma 3.13  preserves stable
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weak homotopy equivalences. Also the shift functor [−1] from def. 1.31 clearly preserves
stable equivalences, hence both descend to the homotopy category. There, by prop. 3.14
and remark 1.35, they are inverses of each other, up to isomorphism.  ▮

Lemma 3.16. The canonical suspension functor on the homotopy category of any model
category (from this prop.) in the case of the stable homotopy category (def. 4.1)
Ho(Spectra) = Ho(SeqSpec(Top ) ) is represented by the “standard suspension” operation

of def. 1.29.

Proof. By CW-approximation (prop. 2.16), every object in the stable homotopy category is
represented by a CW-spectrum. By prop. 2.13, on CW-spectra the canonical suspension
functor on the homotopy category (from this prop.) is represented by the “standard
suspension” operation of def. 1.29.  ▮

The combination of lemma 3.15 with lemma 3.16 gives that in order to show that
SeqSpec(Top )  is indeed a stable model category according to def. 3.12, we are reduced

to showing that in the homotopy category the alternative suspension operation (which we
know gives an equivalence) is naturally isomorphic to the standard suspension operation
(which we know is the correct suspension operation). This we turn to now.

According to remark 1.34, both should be directly comparable and isomorphic in the
homotopy category “in even degrees”, but non-comparable in odd degree. In order to make
this precise, we now introduce the concept of sequential spectra with components only in
even degree and then use an adjunction back to ordinary sequential spectra.

Observe that the definition of the category SeqSpec(Top ) of sequential spectra in def. 1.1

does not require anything specific of the circle : the same kind of definition may be
considered for any other pointed topological space  in place of . The construction of the
stable model structure SeqSpec(Top )  in theorem 3.11 does depend on the nature of ,

but only in that it uses that the n-spheres = ( )∧

co-represent homotopy groups in the classical pointed homotopy category:
[ , −]

*
≃ (−);

1. 

are compact, so that maps out of them factor through finite stages of transfinite
compositions of relative cell complex inclusions.

2. 

Both points still hold with  replaced by ∧ +, for  any contractible compact topological
space. Moreover, since only the stable homotopy groups matter for the construction of the
stable model category, one could replace  by any : While the smash powers ( ) ∧

co-represent only every th homotopy group, this is still sufficient for co-represent all the
stable homotopy groups.

The following is an immediate variant of the definition 1.1 of sequential spectra:

Definition 3.17. Let = + ∈ Top *
/ be a compact contractible topological space with a

basepoint freely adjoined, and let ∈ ℕ, ≥ 1.

A sequential ∧ -spectrum is a sequence of component spaces ∈ Top  for ∈ ℕ,

and a sequence of structure maps of the form

, : ∧ ∧ ⟶ ( + ) .

A homomorphism of sequential ∧ -spectra : →  is a sequence of component maps
: →  such that all these diagrams commute:
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∧ ∧ →⎯⎯⎯⎯⎯⎯⎯⎯
∧ ∧

∧ ∧

, ↓ ↓ ,

( + ) →⎯⎯⎯⎯⎯⎯
( + )

( + )

.

Write

Seq ∧ Spec(Top )

for the resulting category of sequential ∧ -spectra.

Proposition 3.18. For any ∧  as in def. 3.17, there exists a model category structure

Seq ∧ Spec(Top )

on the category of sequential ∧ -spectra, where

the weak equivalences are the morphisms that induce isomorphisms under
lim→⎯⎯ ∈ ℕ

(−);

the fibrations are the morphisms whose -naturality square is a homotopy pullback,

where : id →  is the ∧ -spectrification functor defined as in def. 1.19 but with

 replaced by ∧  throughout.

Proof. The proof is verbatim that of theorem 3.11, with  replaced by ∧  throughout.  ▮

Lemma 3.19. For ∈ ℕ, ≥ 1, there is a pair of adjoint functors

SeqSpec(Top ) ⊥⟶
⟵

Seq Spec(Top )

between sequential spectra (def. 1.1) and sequential -spectra (def. 3.17)

where ( ) ≔  and

: ≃ − ∧ ∧ →⎯⎯⎯⎯⎯⎯
∧

− ∧ + ⟶ ⋯⟶ ∧ +( − ) →⎯⎯⎯⎯⎯⎯⎯⎯
+( − )

( + )

and where

( ) ≔
if ∈ ℕ

∧ − if < and − ∈ ℕ

and

=
−( − ) if + 1 ∈ ℕ

id ∧ otherwise .

Moreover, for each ∈ SeqSpec(Top ), the adjunction unit

⟶

is a stable weak homotopy equivalence (def. 1.14).
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Proof. For ease of notation we discuss this for = 2. The general case is directly analogous.
To see that we have an adjunction, consider a homomorphism

: ⟶ .

Given its even-graded component maps, then its odd-graded component maps +  need to

fit into commuting squares of the form

∧ →⎯⎯⎯⎯⎯⎯
∧

∧

↓ ↓

∧ →⎯⎯⎯⎯⎯
+

+

.

Since here the left map is an identity, this uniquely fixes the odd-graded components +

in terms of the even-graded components. Moreover, these components then make the
following pasting rectangles comute

∧ →⎯⎯⎯⎯⎯⎯
∧

∧

≃ ↓ ↓ ∧

∧ →⎯⎯⎯⎯⎯⎯⎯⎯
∧ + ∧ +

↓ ↓ +

+ →⎯⎯⎯⎯⎯+ +

.

This equivalently exhibits  as a homomorphism of the form

˜ : ⟶

and hence establishes the adjunction isomorphism.

Finally to see that the adjunction unit is a stable weak homotopy equivalence: for
∈ SeqSpec(Top ) then the morphism of stable homotopy groups induced from

⟶

is in degree  given by

lim→⎯⎯ (⋯ → + ( ) ⟶ + + ( + + ) → ⋯) = ( )

≃ ↓ ≃ ↓ ↓

lim→⎯⎯ (⋯ → + ( ) ⟶ + + ( + ) ⟶ + + ( + + ) → ⋯) = ( )

.

From this it is clear by inspection that the induced vertical map on the right is an
isomorphism. Stated more abstractly: the inclusion of partially ordered sets ℕ≤ ↪ ℕ≤ is a
cofinal functor and hence restriction along it preserves colimits.  ▮

Definition 3.20. For

: ∧ ⟶ ∧

any morphism, write

* : Seq ∧ Spect(Top ) ⟶ Seq ∧ Spect(Top )
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for the functor from the category of sequential ∧ -spectra (def. 3.17) to that of
∧ -spectra which sends any  to *  with

( * ) ≔

and

,
* : ∧ ∧ →⎯⎯⎯

∧
∧ ∧ →⎯⎯⎯

,
( + ) .

Lemma 3.21. For ≔ + a compact contractible topological space with base point adjoined,
and for ∈ ℕ, write : ⟶ ∧  for the canonical inclusion. Then the induced functor *

from def. 3.20 is the right adjoint in a Quillen equivalence (def.)

Seq ∧ Spec(Top ) ≃
→⎯⎯⎯
*

←⎯⎯⎯ SeqSpec(Top )

between the stable model structures of sequential -spectra and of sequential
∧ -spectra (prop. 3.18), respectively.

(Jardine 15, theorem 10.40)

Proof. Write : ∧ →  for the canonical projection.

A morphism

: ⟶ *

is given by components fitting into commuting squares of the form

∧ →⎯⎯⎯⎯⎯
∧

∧

↓ ↓ ∧

∧ ∧ ∧

↓ ↓

+ →⎯⎯⎯⎯
+

+

.

Since ∘ = id, every such diagram factors as

∧ →⎯⎯⎯⎯⎯
∧

∧

∧ ↓ ↓ ∧

∧ ∧ →⎯⎯⎯⎯⎯⎯⎯
∧ ∧

∧ ∧
∧ ↓ ↓

∧

↓ ↓

+ →⎯⎯⎯⎯
+

+

.

Here the bottom square exhibits the components of a morphism

˜ : * ⟶

and this correspondence is clearly naturally bijective
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This establishes the adjunction * ⊣ *. This is a Quillen equivalence because for every
∈ Top* / then by the contractibility of  there is an equivalence

[ ∧ , ]
*
≃ [ , ]

*

and hence the concept of stable weak homotopy equivalences in both categories agrees.
Hence any ˜ : * →  is a stable weak homotopy equivalence precisely if : → *  is.  ▮

With this in hand, we now finally state the comparison between standard and alternative
suspension:

Lemma 3.22. There is a natural isomorphism in the homotopy category
Ho(SeqSpec(Top ) ) of the stable model structure, between the total derived functors

(prop.) of the standard suspension (def. 1.29) and of the alternative suspension (def.
1.32):

(−) ≃ (−) ∧ ∈ Ho(SeqSpec(Top ) )

Notice that we agreed in Part P to suppress the notation  for left derived functors of the
suspension functor, not to clutter the notation. If we re-instantiate this then the above
says that there is a natural isomorphism

≃ ((−) ∧ ) .

(Jardine 15, corollary 10.42, prop. 10.53)

Proof. Consider the adjunction ( ⊣ ):SeqSpec(Top) ↔ Seq Spec(Top) from lemma 3.19. We

claim that there is a natural isomorphism

: ( (−)) ≃ ((−) ∧ ) ,

in Ho(Seq Spec(Top ) ).

This implies the statement, since by lemma 3.19 the adjunction unit is a stable weak
equivalence, so that we get natural isomorphisms

≃ ( ) ⟶
≃

( ∧ ) ≃ ∧

in Ho(SeqSpec(Top ) ) (where we are using that  evidently preserves cofibrant spectra,

so that  applied to  represents the correct derived functor of  and hence preserves this
isomorphism).

Now to see that the isomorphism  exists. Write

, : ∧ ⟶≃ ∧

for the braiding isomorphism, which swaps the first two canonical coordinates with the third.
Since the homotopy class of this map is trivial in that

[ , ] = 1 ∈ ℤ ≃ ( )

is the trivial element in the homotopy groups of spheres (and that is the point of passing to
-spectra here, because for -spectra the analogous map ,  has non-trivial class,

remark 1.34) it follows that there is a left homotopy (def.) of the form
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⟶ ( +) ∧ ⟵

↘ ↓ ↙
,
.

By forming the smash product of the entire diagram with  and pasting on the right the
naturality square for the braiding with 

∧ ∧ ←⎯⎯⎯⎯⎯⎯⎯⎯⎯
∧ ,

∧ ∧

∧( + ∘( ∧ )) ↓ ↓( + ∘( ∧ ))∧

∧ ( + ) ←⎯⎯⎯⎯⎯⎯
,

∧

this yields the diagram

∧ ⟶ ( +) ∧ ∧ ⟵ ∧ ←⎯⎯⎯⎯⎯⎯⎯⎯⎯
≃

∧
,

∧ ∧

↘ ↓ ↙
,

∧ ↓

∧ ↓( + ∘( ∧ ))∧

∧( + ∘( ∧ ))
↘ ↓

∧ ←⎯⎯⎯⎯⎯⎯
,

≃ ∧

.

Here the left diagonal composite is the structure map of ( ) in degree , while the right
vertical morphism is the structure map of ( ∧ ) in degree . In the middle we have the
structure map of an auxiliary ( +) ∧ -spectrum (def. 3.17)

∈ Seq
+∧

Spec(Top ) ,

and the horizontal morphisms exhibit the functors of def. 3.20 from ( +) ∧ -spectra to
-spectra with

* = ( ) , * = ( ∧ ) .

By lemma 3.21 and since  is contractible, these functors are equivalences of categories on
the Ho(Seq Spec(Top )), and moreover they have the same inverse, namely * for

: + ∧ →  the canonical projection. This implies the isomorphism.

Explicitly, due to the equivalence there exists  with ≃ *  and with this we may form the
composite isomorphism

( ) ≃ * ≃ * * ≃ ≃ * * ≃ * ≃ ( ∧ ) .

  ▮

We conclude:

Theorem 3.23. The stable model structure SeqSpec(Top)  from theorem 3.11 indeed

gives a stable model category in the sense of def. 3.12, in that the canonically induced
reduced suspension functor (prop.) on its homotopy category is an equivalence of
categories
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: Ho(SeqSpec(Top) ) ⟶≃ Ho(SeqSpec(Top) ) .

Proof. By lemma 3.16, the canonical suspension functor is represented, on fibrant-cofibrant
objects, by the standard suspension functor of def. 1.29. By prop. 3.22 this is naturally
isomorphic – on the level of the homotopy category – to the alternative suspension
operation of def. 1.32. Therefore the claim follows with prop. 3.15.  ▮

In fact this lifts to a Quillen equivalence:

Proposition 3.24. The ( ⊣ )-adjunction from prop. 1.36 is a Quillen equivalence (def.)
with respect to the stable model structure of theorem 3.11:

SeqSpec(Top ) ≃
⟶
⟵ SeqSpec(Top ) .

Its derived functors (prop.) exhibit the canonical reduced suspension and looping
operation as an adjoint equivalence on the stable homotopy category

Ho(Spectra) ≃⟶
⟵ Ho(Spectra) .

Proof. By prop. 2.5 and the fact that the stable model structure has the same cofibrations
as the strict model structure,  preserves stable cofibrations. Moreover, by lemma 3.13
preserves in fact all stable weak equivalences. Hence  is a left Quillen functor and so ( ⊣ )
is a Quillen adjunction. Finally lemma 3.15 gives that this Quillen adjunction is a Quillen
equivalence.  ▮

In summary, this concludes the characterization of the stable homotopy category as the
result of stabilizing the canonical ( ⊣ )-adjunction on the classical homotopy category:

Theorem 3.25. The classical model structure (Top* /)  on pointed compactly generated

topological spaces (thm., prop.) and the stable model structure on topological sequential
spectra SeqSpec(Top ) (theorem 3.11) sit in a commuting diagram of Quillen adjunctions of

the form

(Top * /)
⟶

⟵ (Top * /)

↓ ⊣ ↑ ↓ ⊣ ↑

SeqSpec(Top ) ⊥⟶
⟵

SeqSpec(Top )

↓ ⊣ ↑ ↓ ⊣ ↑

SeqSpec(Top ) ≃
⟶
⟵ SeqSpec(Top )

,

where the top parts is from corollary 2.6, the bottom vertical Quillen adjunction is the
Bousfield localization of theorem 3.11 and the bottom horizontal adjunction is the Quillen
equivalence of prop. 3.24.

Hence (by this prop.) the derived functors of the functors in this diagram yield a
commuting square of adjoint functors between the classical homotopy category (def.) and
the stable homotopy category (def. 4.1) of the form
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Ho(Top* /) ⊥⟶
⟵

Ho(Top* /)

↓ ⊣ ↑ ↓ ⊣ ↑

Ho(Spectra) ≃⟶
⟵ Ho(Spectra)

,

where the horizontal adjunctions are the canonically induced (via this
prop.)suspension/looping functors by prop. 0.2 and by lemma 3.16 and theorem 3.23.

Cofibrant generation

We show that the stable model structure SeqSpec(Top )  from theorem 3.11 is a

cofibrantly generated model category (def.).

We will not use the result of this section in the remainder of part 1.1, but the following
argument is the blueprint for the proof of the model structure on orthogonal spectra that we
consider in part 1.2, in the section The stable model structure on structured spectra, and it
will be used in the proof of the Quillen equivalence of SeqSpec(Top )  to the stable model

structure on orthogonal spectra (thm.).

Moreover, that SeqSpec(Top )  is cofibrantly generated means that for  any topologically

enriched category (def.) then there exists a projective model structure on functors
[ , SeqSpec(Top ) ]  on the category of topologically enriched functors → SeqSpec(Top )

(def.), in direct analogy to the projective model structure [ , (Top* /) ]  (thm.). This is

the model structure for parameterized stable homotopy theory. Just as the stable homotopy
theory discussed here is the natural home of generalized (Eilenberg-Steenrod) cohomology
theories (example 4.6) so parameterized stable homotopy theory is the natural home of
twisted cohomology theories.

In order to express the generating (acyclic) cofibrations, we need the following simple but
important concept.

Definition 3.26. For ∈ Top* /, and ∈ ℕ, write ∈ SeqSpec(Top ) for the free spectrum

on  at , with components

( ) ≔
* for <

− ∧ for ≥

and with structure maps  the canonical identifications for ≥

: ∧ ( ) = ∧ − ∧ ⟶≃ + − ∧ = ( ) + .

For ∈ ℕ, write

: + ⟶

for the canonical morphisms of free sequential spectra with the following components
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⋮ ⋮

( ) + ⟶

( ) + ⟶

( ) + ⟶

( ) : * ⟶

* ⟶ *

⋮ ⋮

* ⟶ *
⏟ ⏟

: + ⟶

Example 3.27. The free spectrum  (def. 3.26) is the standard sequential sphere
spectrum from def. 1.4

≃ .

Generally the free spectrum  is the suspension spectrum (def. 1.3) on :

≃ .

Just as forming suspension spectra is left adjoint to extracting the 0th component space of a
sequential spectrum (prop. 1.10), so forming the th free spectrum is left adjoint to
extracting the th component space:

Proposition 3.28. For ∈ ℕ, let

Ev : SeqSpec(Top ) ⟶ Top*/

be the functor from sequential spectra (def. 1.1) to pointed topological spaces given by
extracting the th component space

Ev ( ) ≔ .

Then this functor is right adjoint to forming th free spectra (def. 3.26):

( ⊣ Ev ) : SeqSpec(Top ) ⊥→⎯⎯
←⎯⎯

Top* / .

Proof. The proof is verbatim as that of prop. 1.10, just with  zeros inserted at the bottom
of the sequences of components maps.  ▮

Definition 3.29. Write

≔ ∈ SeqSpec(Top)

for the set of morphisms appearing already in def. 2.2, and write

≔ ⊔ { □ +}
∈ℕ, + ∈ * /

for the disjoint union of the other set of morphisms appearing in def. 2.2 with the set
{ □ +} , +

 of pushout-products under smash tensoring (according to def. 2.18) of the
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morphisms  from def. 3.26 with the generating cofibrations of the classical model
structure on pointed topological spaces (def.).

Theorem 3.30. The stable model structure SeqSpec(Top )  from theorem 3.11 is

cofibrantly generated (def.) with generating (acyclic) cofibrations the sets  (and
) from def. 3.29.

This is one of the cofibrantly model categories considered in (Mandell-May-Schwede-Shipley
01) .

Proof. It is clear (as in theorem 2.3) that the two classes have small domains (def.).
Moreover, since =  and Cof = Cof  by definition, the fact that the
ccofibrations are the retracts of relative -cell complexes is part of theorem 2.3. It only
remains to show that the stable acyclic cofibrations are precisely the retracts of relative

-cell complexes. This we is the statement of lemma 3.35 below.  ▮

Lemma 3.31. The morphisms of free spectra { } ∈ℕ from def. 3.26 co-represent the

adjunct structure maps of sequential spectra from def. 1.2, in that for ∈ SeqSpec(Top ),

then

SeqSpec( , ) ≃

( , ) ↓ ↓ ˜

SeqSpec( + , ) ≃ +

,

where on the left we have the hom-spaces of def. 2.21, and where the horizontal
equivalences are via prop. 3.28.

Proof. Recall that we are precomposing with

⋮ ⋮

( ) + ⟶

( ) + ⟶

( ) + ⟶

( ) : * ⟶

* ⟶ *

⋮ ⋮

* ⟶ *
⏟ ⏟

: + ⟶

Now for  any sequential spectrum, then a morphism : →  is uniquely determined by
its th component : → : the compatibility with the structure maps forces the next

component, in particular, to be ∘ :

⟶

↓≃ ↓

→⎯⎯⎯⎯⎯
∘

.
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But that ( + 1)st component is just the component that similarly determines the
precompositon of  with , hence ∘  is uniquely determined by the map ∘ .
Therefore SeqSpec( , −) is the function

SeqSpec( , −) : = SeqSpec( , ) →⎯⎯⎯⎯⎯⎯⎯⎯
↦ ∘

Maps ( , + )
*
= + .

It remains to see that this is indeed the ( ⊣ )-adjunct of . By the general formula for
adjuncts, this is

˜ : ⟶ →⎯⎯⎯ + .

To compare to the above, we check what this does on points: ⟶  is sent to the
composite

⟶ ⟶ →⎯⎯⎯ + .

To identify this as a map → + , we use the adjunction isomorphism once more to throw
all the -s on the right back to -s the left, to finally find that this is indeed

∘ : = ⟶ ⟶ + .

  ▮

Lemma 3.32. Every element in  (def. 3.29) is an acyclic cofibration in the model

structure SeqSpec(Top )  from theorem 3.11.

Proof. For the elements in  this is part of theorem 2.3. It only remains to see that the

morphisms □ + are stable acyclic cofibrations.

To see that they are stable cofibrations, hence strict cofibrations:

By Joyal-Tierney calculus (prop.) □ + has left lifting against any strict acyclic fibration 
precisely if  has left lifting against the pullback powering □ + (def. 2.18). By prop. 2.19
the latter is still a strict acyclic fibration. Since  is evidently a strict cofibration, the lifting
follows and hence also □ + is a strict cofibration, hence a stable cofibration.

To see that they are stable weak equivalences: For each  the morphisms ∧ −  are
stable acyclic cofibrations, and since stable acyclic cofibrations are preserved under pushout,
it follows by two-out-of-three that also □ + is a stable weak equivalence.  ▮

The reason for considering the set { □ +} is to make the following true:

Lemma 3.33. A morphism : →  in SeqSpec(Top) is a -injective morphism (def.)

precisely if

it is fibration in the strict model structure (hence degreewise a fibration);1. 

for all ∈ ℕ the commuting squares of structure map compatibilities on the
underlying sequential spectra

⟶
˜

+

↓ ↓ +

⟶
˜

+

2. 
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exhibit homotopy pullbacks (def.) in SeqSpec(Top ) , in that the comparison map

⟶ ×
+

−

is a weak homotopy equivalence (notice that +  is a fibration by the previous item

and since = Maps( , −)
*
 is a right Quillen functor by prop. 0.2).

In particular, the -injective objects are precisely the Omega-spectra, def. 1.16.

Proof. By theorem 2.3, lifting against  alone characterizes strict fibrations, hence

degreewise fibrations. Lifting against the remaining pushout product morphism □ + is, by
Joyal-Tierney calculus (prop.), equivalent to left lifting + against the pullback powering □

from def. 2.18. Since the { +} are the generating cofibrations in Top* / such lifting means that
□  is a weak equivalence in the strict model sructure. But by lemma 3.31, □  is precisely

the comparison morphism in question.  ▮

Lemma 3.34. A morphism in SeqSpec(Top) which is both

a stable weak homotopy equivalence (def. 1.14);1. 

a -injective morphism (def. 3.29, def.)2. 

is an acyclic fibration in the strict model structure, hence is degreewise a weak homotopy
equivalence and Serre fibration of topological spaces;

Proof. Let : →  be both a stable weak homotopy equivalence as well as a -injective
morphism. Since  contains the generating acyclic cofibrations for the strict model structure,
 is in particular a strict fibration, hence a degreewise fibration.

Consider the fiber  of , hence the morphism → *  which is the pullback of  along * → .
Notice that since  is a strict fibration, this is the homotopy fiber (def.) of  in the strict
model structure.

We claim that

 is an Omega-spectrum;1. 

→ *  is a stable weak homotopy equivalence.2. 

The first item follows since , being the pullback of a -injective morphisms, is a -injective
object (prop.), so that, by lemma 3.33,  it is an Omega-spectrum.

For the second item:

Since → →  is degreewise a homotopy fiber sequence, there are degreewise its long
exact sequences of homotopy groups (exmpl.)

⋯ → •+ ( ) ⟶ •( ) ⟶ •( ) →⎯⎯⎯
( )

*
•( ) → ⋯ → ( ) ⟶ ( ) ⟶ ( ) ⟶ ( )

Since in the category Ab of abelian group forming filtered colimits is an exact functor
(prop.), it follows that after passing to stable homotopy groups the resulting sequence

⋯ •+ ( ) ⟶* • + ( ) ⟶ •( ) ⟶ •( ) ⟶
(
*

•( ) → ⋯

is still a long exact sequence.
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Since, by assumption, 
*
 is an isomorphism, this exactness implies that •( ) = 0, and hence

that → *  is a stable weak homotopy equivalence. But since, by the first item above,  is an
Omega-spectrum, it follows (via example 1.18) that → *  is even a degreewise weak
homotopy equivalence, hence that •( ) ≃ 0 for all ∈ ℕ.

Feeding this back into the above degreewise long exact sequence of homotopy groups now
implies that • ≥ ( ) is a weak homotopy equivalence for all  and for each homotopy group

in positive degree.

To deduce the remaining case that also ( ) is an isomorphism, observe that by

assumption of -injectivity, lemma 3.33 gives that  is the pullback (in topological spaces)

of ( ). But by the above  is a weak homotopy equivalence, and since = Maps( , −)
*
 is

a right Quillen functor (prop. 0.2) it is also a Serre fibration. Therefore  is the pullback of

an acyclic Serre fibration and hence itself a weak homotopy equivalence.  ▮

Lemma 3.35. The retracts (rmk.) of -relative cell complexes are precisely the stable

acyclic cofibrations.

Proof. Since all elements of  are stable weak equivalences and strict cofibrations by

lemma 3.32, it follows that every retract of a relative -cell complex has the same

property.

In the other direction, let  be a stable acyclic cofibration. Apply the small object argument
(prop.) to factor it

: ⎯⎯⎯⎯⎯⎯⎯ ⎯⎯⎯⎯⎯⎯

as a -relative cell complex  followed by a -injective morphism . By the previous

statement  is a stable weak homotopy equivalence, and hence by assumption and by
two-out-of-three so is . Therefore lemma 3.34 implies that  is a strict acyclic fibration. But
then the assumption that  is a strict cofibration means that it has the left lifting property
against , and so the retract argument (prop.) implies that  is a retract of the relative

-cell complex .  ▮

This completes the proof of theorem 3.30.

4. The stable homotopy category

Definition 4.1. Write

Ho(Spectra) ≔ Ho(SeqSpec(Top ) )

for the homotopy category (defn.) of the stable model structure on topological sequential
spectra from theorem 3.11.

This is called the stable homotopy category.

The stable homotopy category of def. 4.1 inherits particularly nice properties that are
usefully axiomatized for themselves. This axiomatics is called triangulated category structure
(def. 4.15 below) where the “triangles” are referring to the structure of the long fiber
sequences and long cofiber sequences (prop.) which happen to coincide in stable homotopy
theory.

Additivity
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The stable homotopy category Ho(Spectra) is the analog in homotopy theory of the category
Ab of abelian groups in homological algebra. While the stable homotopy category is not an
abelian category, as Ab is, but a homotopy-theoretic version of that to which we turn below,
it is an additive category.

Lemma 4.2. The stable homotopy category (def. 4.1) has finite coproducts. They are
represented by wedge sums (example 1.27) of CW-spectra (def. 2.7).

Proof. Having finite coproducts means

having empty coproducts, hence initial objects,1. 

and having binary coproducts.2. 

Regarding the initial object:

The spectrum *  (suspension spectrum (example 1.3) on the point) is both an initial
object and a terminal object in SeqSpec(Top ). This implies in particular that it is both fibrant

and cofibrant. Finally its standard cylinder spectrum (example 1.28) is trivial
( * ) ∧ ( +) ≃ * . All together with means that for  any fibrant-cofibrant spectrum, then

Hom ( )( * , ) ≃ Hom ( * , )/∼ ≃ *

and so *  also represents the initial object in the stable homotopy category.

Now regarding binary coproducts:

By prop. 2.16 and prop. 2.12, every spectrum has a cofibrant replacement by a
CW-spectrum. By prop. 2.11 the wedge sum ∨  of two CW-spectra is still a CW-spectrum,
hence still cofibrant.

Let  and  be fibrant and cofibrant replacement functors, respectively, as in the
section_Classical homotopy theory – The homotopy category.

We claim now that ( ∨ ) ∈ Ho(Spectra) is the coproduct of  with  in Ho(Spectra). By
definition of the homotopy category (def.) this is equivalent to claiming that for  any stable
fibrant spectrum (hence an Omega-spectrum by theorem 3.11) then there is a natural
isomorphism

Hom ( ( ∨ ), )/∼ ≃ Hom ( , )/∼ × Hom ( , )/∼

between left homotopy-classes of morphisms of sequential spectra.

But since ∨  is cofibrant and  is fibrant, there is a natural isomorphism (prop.)

Hom ( ( ∨ ), )/∼ ⟶≃ Hom ( ∨ , )/∼ .

Now the wedge sum ∨  is the coproduct in SeqSpec(Top ), and hence morphisms out of it

are indeed in natural bijection with pairs of morphisms out of the two summands. But we
need this property to hold still after dividing out left homotopy. The key is that smash
tensoring (def. 1.6) distributes over wedge sum

( ∨ ) ∧ ( +) ≃ ( ∧ ( +)) ∨ ( ∧ ( +))

(due to the fact that the smash product of compactly generated pointed topological spaces
distributes this way over wedge sum of pointed spaces). This means that also left
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homotopies out of ∨  are in natural bijection with pairs of left homotopies out of the
summands separately, and hence that there is a natural isomorphism

Hom ( ∨ , )/∼ ⟶≃ Hom ( , )/∼ × Hom ( , )/∼ .

Finally we may apply the inverse of the natural isomorphism used before (prop.) to obtain in
total

Hom ( , )/∼ × Hom ( , )/∼ ⟶≃ Hom ( , )/∼ × Hom ( , )/∼ .

The composite of all these isomorphisms proves the claim.  ▮

Definition 4.3. Define group structure on the pointed hom-sets of the stable homotopy
category (def. 4.1)

[ , ] ∈ Grp

induced from the fact (prop.) that the hom-sets of any homotopy category into an object
in the image of the canonical loop space functor  inherit group structure, together with
the fact (theorem 3.23) that on the stable homotopy category  and  are inverse to each
other, so that

[ , ] ≃ [ , ] ,

Lemma 4.4. The group structure on [ , ] in def. 4.3 is abelian and composition in
Ho(Spectra) is bilinear with respect to this group structure. (Hence this makes Ho(Spectra) an
Ab-enriched category.)

Proof. Recall (prop, rmk.) that the group structure is given by concatenation of loops

→⎯⎯ × →⎯⎯⎯
( , )

× ⟶ .

That the group structure is abelian follows via the Eckmann-Hilton argument from the fact
that there is always a compatible second (and indeed arbitrarily many compatible) further
group structures, since, by stability

[ , ] ≃ [ , ] ≃ [ , ∘ ( ) ∘ ] = [ , ] .

That composition of morphisms distributes over the operation in this group is evident for
precomposition. Let : →  then clearly

* : [ , ] ⟶ [ , ]

preserves the group structure induced by the group structure on . That the same holds
for postcomposition may be immediately deduced from noticing that this group structure is
also the same as that induced by the cogroup structure on , so that with : →  then

*
: [ , ] ⟶ [ , ]

preserves group structure.

More explicitly, we may see the respect for groupstructure structure of the postcomposition
opeation from the naturality of the loop composition map which is manifest when
representing loop spectra via the standard topological loop space object

= fib(Maps( +, ) → × ) (rmk.) under smash powering (def. 1.6).

To make this fully explicit, consider the following diagram in Ho(Spectra):
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× ⟶≃ × ⟶≃ (Maps( , )
*
× Maps( , )

*
) ⟶ (Maps( [ , ], ))

*
≃ ≃

× ↓ ↓ × ↓ ( ( , )
*
× ( , )

*
) ↓

( ( [ , ] , )
*
)
↓ ↓

× ⟶≃ × ⟶≃ (Maps( , )
*
× Maps( , )

*
) ⟶ (Maps( [ , ], )

*
) ≃ ≃

,

where [ , ] denotes the sphere of length 2.

Here the leftmost square and the rightmost square are the naturality squares of the
equivalence of categories ( ⊣ ) (theorem 3.23).

The second square from the left and the second square from the right exhibit the equivalent
expression of  as the right derived functor of (either the standard or the alternative, by
lemma 3.22) degreewise loop space functor. Here we let  denote any fibrant
representative, for notational brevity, and use that the derived functor of a right Quillen
functor is given on fibrant objects by the original functor followed by cofibrant replacement
(prop.).

The middle square is the image under  of the evident naturality square for concatenation of
loops. This is where we use that we have the standard model for forming loop spaces and
concatenation of loops (rmk.): the diagram commutes because the loops are always
poinwise pushed forward along the map .  ▮

It is conventional (Adams 74, p. 138) to furthermore make the following definition:

Definition 4.5. For , ∈ Ho(Spectra) two spectra, define the ℤ-graded abelian group

[ , ]• ∈ Abℤ

to be in degree  the abelian hom group of lemma 4.4 out of  into the -fold suspension
of  (lemma 3.22):

[ , ] ≔ [ , − ] .

Defining the composition of ∈ [ , ]  with ∈ [ , ]  to be the composite

⟶ − →⎯⎯⎯⎯⎯⎯⎯
− ( ) − ( − ) ≃ − −

gives the stable homotopy category the structure of an Abℤ-enriched category.

Example 4.6. (generalized cohomology groups)

Let ∈ SeqSpec(Top ) be an Omega-spectrum (def. 1.16) and let ∈ Top * / be a pointed

topological space with  its suspension spectrum (example 1.3). Then the graded
abelian group (by prop. 4.4, def. 4.5)

˜ •( ) ≔ [ , ]−•

= [ , • ]

≃ [ , • ]
*

≃ [ , •]*

is also called the reduced cohomology of  in the generalized (Eilenberg-Steenrod)
cohomology theory that is represented by .

Here the equivalences used are

Introduction to Stable homotopy theory -- 1-1 in nLab https://ncatlab.org/nlab/print/Introduction+to+Stable+homotopy+theor...

62 of 79 09.05.17, 15:47



the adjunction isomorphism of ( ⊣ ) from theorem 3.25;1. 

the isomorphism ≃ [1] of suspension with the shift spectrum (def. 1.31) on
Ho(Spectra) of lemma 3.14, together with the nature of  from prop. 1.10.

2. 

The latter expression

˜ ( ) ≃ [ , ]
*

(on the right the hom in in the classical homotopy category Ho(Top */) of pointed
topological spaces) is manifestly the definition of reduced generalized (Eilenberg-
Steenrod) cohomology as discussed in part S in the section on the Brown representability
theorem.

Suppose  here is not necessarily given as an Omega-spectrum. In general the
hom-groups [ , ] = [ , ]  in the stable homotopy category are given by the naive

homotopy classes of maps out of a cofibrant resolution of  into a fibrant resolution of 
(by this lemma). By theorem 3.11 a fibrant replacement of  is given by Omega-
spectrification  (def. 1.19). Since the stable model structure of theorem 3.11 is a left
Bousfield localization of the strict model structure from theorem 2.3, and since for the
latter all objects are fibrant, it follows that

[ , ] ≃ [ , ] ,

and hence

( ) ≔ [ , ]

≃ [ , ]

≃ [ , ]
*

= [ , ( ) ]
*

,

where the last two hom-sets are again those of the classical homotopy category. Now if 
happens to be a CW-spectrum, then by remark 1.21 its Omega-spectrification is given
simply by ( ) ≃ lim→⎯⎯ + ) and hence in this case

( ) ≃ [ , lim→⎯⎯ ]
*
.

If  here is moreover a compact topological space, then it may be taken inside the colimit
(e.g. Weibel 94, topology exercise 10.9.2), and using the ( ⊣ )-adjunction this is
rewritten as

( ) ≃ lim→⎯⎯ [ , ]
*

≃ lim→⎯⎯ [ , ]
*

.

(e.g. Adams 74, prop. 2.8).

This last expression is sometimes used to define cohomology with coefficients in an
arbitrary spectrum. For examples see in the part S the section Orientation in generalized
cohomology.

More generally, it is immediate now that there is a concept of -cohomology not only for
spaces and their suspension spectra, but also for general spectra: for ∈ Ho(Spectra) be
any spectrum, then
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˜ •( ) ≔ [ , • ]

is called the reduced -cohomology of the spectrum .

Beware that here one usually drops the tilde sign.

In summary, lemma 4.2 and lemma 4.4 state that the stable homotopy category is an
Ab-enriched category with finite coproducts. This is called an additive category:

Definition 4.7. An additive category is a category which is

an Ab-enriched category;

(sometimes called a pre-additive category–this means that each hom-set carries the
structure of an abelian group and composition is bilinear)

1. 

which admits finite coproducts

(and hence, by prop. 4.8 below, finite products which coincide with the coproducts,
hence finite biproducts).

2. 

Proposition 4.8. In an Ab-enriched category, a finite product is also a coproduct, and
dually.

This statement includes the zero-ary case: any terminal object is also an initial object,
hence a zero object (and dually), hence every additive category (def. 4.7) has a zero
object.

More precisely, for { } ∈  a finite set of objects in an Ab-enriched category, then the

unique morphism

∈

⟶
∈

,

whose components are identities for =  and are zero otherwise, is an isomorphism.

Proof. Consider first the zero-ary case. Given an initial object ∅ and a terminal object *,
observe that since the hom-sets Hom(∅, ∅) and Hom( * , * ) by definition contain a single
element, this element has to be the zero element in the abelian group structure. But it also
has to be the identity morphism, and hence id∅ = 0 and id* = 0. It follows that the 0-element
in Hom( * , ∅) is a left and right inverse to the unique element in Hom(∅, * ), and so this is an
isomorphism

0 : ∅ ⟶≃ * .

Consider now the case of binary (co-)products. Using the existence of the zero object, hence
of zero morphisms, then in addition to its canonical projection maps : × → , any

binary product also receives “injection” maps → × , and dually for the coproduct:

↘( , ) ( , ) ↙

↓ × ↓

↙ ↘

,

↘ ↙

↓ ⊔ ↓

↙( , ) ( , ) ↘

.

Observe some basic compatibility of the Ab-enrichment with the product:
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First, for ( , ), ( , ) : → ×  then

( ⋆ ) ( , ) + ( , ) = ( + , + )

(using that the projections  and  are linear and by the universal property of the

porduct).

Second, (id, 0) ∘  and (0, id) ∘  are two projections on ×  whose sum is the identity:

( ⋆ ⋆ ) (id, 0) ∘ + (0, id) ∘ = id × .

(We may check this, via the Yoneda lemma on generalized elements: for ( , ) : → ×
any morphism, then (id, 0) ∘ ∘ ( , ) = ( , 0) and (0, id) ∘ ∘ ( , ) = (0, ), so the statement

follows with equation ( ⋆ ).)

Now observe that for : →  any two morphisms, the sum

≔ ∘ + ∘ : × ⟶

gives a morphism of cocones

↘( , ) ( , ) ↙

↓ × ↓

↓

↘ ↙

.

Moreover, this is unique: suppose ′ is another morphism filling this diagram, then, by using
equation ( ⋆ ⋆ ), we get

( − ′) = ( − ′) ∘ id ×

= ( − ′) ∘ ((id , 0) ∘ + (0, id ) ∘ )

= ( − ′) ∘ (id , 0)
=

∘ + ( − ′) ∘ (0, id )
=

∘

= 0

and hence = ′ . This means that ×  satisfies the universal property of a coproduct.

By a dual argument, the binary coproduct ⊔  is seen to also satisfy the universal
property of the binary product. By induction, this implies the statement for all finite
(co-)products.  ▮

Remark 4.9. Finite coproducts coinciding with products as in prop. 4.8 are also called
biproducts or direct sums, denoted

⊕ ≔ ⊔ ≃ × .

The zero object is denoted “0”, of course.

Conversely:

Definition 4.10. A semiadditive category is a category that has all finite products which,
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moreover, are biproducts in that they coincide with finite coproducts as in def. 4.8.

Proposition 4.11. In a semiadditive category, def. 4.10, the hom-sets acquire the structure
of commutative monoids by defining the sum of two morphisms , : ⟶  to be

+ ≔ →⎯⎯ × ≃ ⊕ →⎯⎯⎯
⊕

⊕ ≃ ⊔ →⎯⎯
∇

.

With respect to this operation, composition is bilinear.

Proof. The associativity and commutativity of + follows directly from the corresponding
properties of ⊕. Bilinearity of composition follows from naturality of the diagonal  and
codiagonal ∇ :

⟶ × ⟶≃ ⊕

↓ ↓ × ↓ ⊕

→⎯⎯ × ≃ ⊕ →⎯⎯⎯
⊕

⊕ ≃ ⊔ →⎯⎯
∇

↓ ⊕ ↓ ⊔ ↓

⊕ ≃ ⊔ →⎯
∇

  ▮

Proposition 4.12. Given an additive category according to def. 4.7, then the enrichement
in commutative monoids which is induced on it via prop. 4.8 and prop. 4.11 from its
underlying semiadditive category structure coincides with the original enrichment.

Proof. By the proof of prop. 4.8, the codiagonal on any object in an additive category is the
sum of the two projections:

∇ : ⊕ →⎯⎯⎯⎯⎯
+

.

Therefore (checking on generalized elements, as in the proof of prop. 4.8) for all morphisms
, : →  we have commuting squares of the form

→⎯⎯⎯
+

↓ ↑ +

∇ =

⊕ →⎯⎯⎯
⊕

⊕

.

  ▮

Remark 4.13. Prop. 4.12 says that being an additive category is an extra property on a
category, not extra structure. We may ask whether a given category is additive or not,
without specifying with respect to which abelian group structure on the hom-sets.

In conclusion we have:

Proposition 4.14. The stable homotopy category (def. 4.1) is an additive category (def.
4.7).

Hence prop. 4.8 implies that in the stable homotopy category finite coproducts (wedge
sums) and finite products agree, in that they are finite biproducts (direct sums).

∨ ≃ × ≃ ⊕ ∈ Ho(Spectra) .

Proof. By lemma 4.2 and lemma 4.4.  ▮
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Triangulated structure

We have seen above that the stable homotopy category Ho(Spectra) is an additive category.
In the context of homological algebra, when faced with an additive category one next asks
for the existence of kernels (fibers) and cokernels (cofibers) to yield a pre-abelian category,
and then asks that these are suitably compatible, to yield an abelian category.

Now here in stable homotopy theory, the concept of kernels and cokernels is replaced by
that of homotopy fibers and homotopy cofibers. That these certainly exist for homotopy
theories presented by model categories was the topic of the general discussion in the section
Homotopy theory – Homotopy fibers. Various of the properties they satisfy was the topic of
the sections Homotopy theory – Long sequences and Homotopy theory – Homotopy
pullbacks.. For the special case of stable homotopy theory we will find a crucial further
property relating homotopy fibers to homotopy cofibers.

The axiomatic formulation of a subset of these properties of stable homotopy fibers and
stable homotopy cofibers is called a triangulated category structure. This is the analog in
stable homotopy theory of abelian category structure in homological algebra.

category of abelian
groups

stable homotopy category

direct sums and hom-abelian
groups

additive category additive category

(homotopy) fibers and cofibers
exist

pre-additive category
homotopy category of a model
category

(homotopy) fibers and cofibers are
compatible

abelian category triangulated category

Literature (Hubery, Schwede 12, II.2)

Definition 4.15. A triangulated category is

an additive category Ho (def. 4.7);1. 

a functor, called the suspension functor or shift functor

: Ho ⟶≃ Ho

which is required to be an equivalence of categories;

2. 

a sub-class CofSeq ⊂ Mor(Ho [ ]) of the class of triples of composable morphisms, called
the class of distinguished triangles, where each element that starts at  ends at

; we write these as

⟶ ⟶ / ⟶ ,

or

⟶

[ ] ↖ ↙

/

(whence the name triangle);

3. 
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such that the following conditions hold:

T0 For every morphism : → , there does exist a distinguished triangle of the form

⟶ ⟶ / ⟶ .

If ( , , ℎ) is a distinguished triangle and there is a commuting diagram in Ho of the
form

⟶ ⟶ / ⟶

↓∈ ↓ ∈ ↓ ∈ ↓ ∈

′ ⟶ ′ ⟶ ′ / ′ ⟶ ′

(with all vertical morphisms being isomorphisms) then ( ′ , ′ , ℎ′ ) is also a
distinguished triangle.

T1 For every object ∈ Ho then (0, id , 0) is a distinguished triangle

0 ⟶ ⟶ ⟶ 0;

T2 If ( , , ℎ) is a distinguished triangle, then so is ( , ℎ, − ); hence if

⟶ ⟶ / ⟶

is, then so is

⟶ / ⟶ →⎯⎯⎯
−

.

T3 Given a commuting diagram in Ho of the form

⟶ ⟶ / ⟶

↓ ↓

′ ⟶ ′ ⟶ ′ / ′ ⟶ ′

where the top and bottom are distinguished triangles, then there exists a morphism
/ → ′ / ′  such as to make the completed diagram commute

⟶ ⟶ / ⟶

↓ ↓ ↓∃ ↓

′ ⟶ ′ ⟶ ′ / ′ ⟶ ′

T4 (octahedral axiom) For every pair of composable morphisms : →  and
′ : →  then there is a commutative diagram of the form
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⟶ ⟶ / ⟶

= ↓ ↓ ↓ ↓=

→⎯⎯⎯
∘

⟶ / ⟶

↓ ↓

/ ⟶
≃

/

↓ ↓( )∘

⟶ /

such that the two top horizontal sequences and the two middle vertical sequences
each are distinguished triangles.

Proposition 4.16. The stable homotopy category Ho(Spectra) from def. 4.1, equipped with
the canonical suspension functor :Ho(Spectra) ⟶≃ Ho(Spectra) (according to this prop.) is a
triangulated category (def. 4.15) for the distinguished triangles being the closure under
isomorphism of triangles of the images (under localization SeqSpec(Top ) → Ho(Spectra)

(prop.) of the stable model category of theorem 3.11) of the canonical long homotopy
cofiber sequences (prop.)

⟶ ⟶ hocofib( ) ⟶ .

(e.g. Schwede 12, chapter II, theorem 2.9)

Proof. By prop. 4.14 the stable homotopy category is additive, by theorem 3.23 the functor
 is an equivalence.

The axioms T0 and T1 are immediate from the definition of homotopy cofiber sequences.

The axiom T2 is the very characterization of long homotopy cofiber sequences (from this
prop.).

Regarding axiom T3:

By the factorization axioms of the model category we may represent the morphisms → ′
and → ′ in the homotopy category by cofibrations in the model category. Then → /
and ′ → ′ / ′  are represented by their ordinary cofibers (def., prop.).

We may assume without restriction (lemma) that the commuting square

⟶

↓ ↓

′ ⟶ ′

in the homotopy category is the image of a commuting square (not just commuting up to
homotopy) in SeqSpec(Top ). In this case then the morphism / → ′ / ′  is induced by the

universal property of ordinary cofibers. To see that this also completes the last vertical
morphism, observe that by the small object argument (prop.) we have functorial
factorization (def.).

With this, again the universal property of the ordinary cofiber gives the fourth vertical
morphism needed for T3.

Axiom T4 follows in the same fashion: we may represent all spectra by CW-spectra and
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represent  and ′ , hence also ′ ∘ , by cofibrations. Then forming the functorial mapping
cones as above produces the commuting diagram

⟶ ⟶ / ⟶

= ↓ (1) ↓ (2) ↓ ↓=

→⎯⎯⎯
∘

⟶ / ⟶

↓ (3) ↓

/ ⟶
≃

/

↓ ↓( )∘

⟶ /

The fact that the second horizontal morphism from below is indeed an isomorphism follows
by applying the pasting law for homotopy pushouts twice (prop.):

Draw all homotopy cofibers as homotopy
pushout squares (def.) with one edge
going to the point. Then assemble the
squares (1)-(3) in the pasting composite
of two cubes on top of each other: (1) as
the left face of the top cube, (2) as the
middle face where the two cubes touch,
and (3) as the front face of the bottom
cube. All remaining edges are points. This
way the rear and front face of the top
cube and the left and right face of the
bottom cube are homotopy pushouts by
construction. Also the top face

⟶ *
≃ ↓ ↓

⟶ *

is a homotopy pushout, since two
opposite edges of it are weak
equivalences (prop.). From this the
pasting law for homotopy pushouts
(prop.) gives that also the middle square
(2) is a homotopy pushout. Applying the

pasting law once more this way, now for the bottom cube, gives that the bottom square

* ⟶ *

↓ ↓

/ ⟶ ( / )/( / )

is a homotopy pushout. Since here the left edge is a weak equivalence, necessarily, so is the
right edge (prop.), which hence exhibits the claimed identification

/ ≃ ( / )/( / ) .

  ▮

Remark 4.17. All we used in the proof (of prop. 4.16) of the octahedral axiom (T4) is the
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existence and nature of homotopy pushouts. In fact one may show that the octahedral
axiom is equivalent to the existence of homotopy pushouts, in the sense of axiom B in
(Hubery).

Long fiber-cofiber sequences

In homotopy theory there are generally long homotopy fiber sequences to the left and long
homotopy cofiber sequences to the right, as discussed in the section Homotopy theory –
Long sequences. We prove now, in the generality of the axiomatics of triangulated
categories (since the stable homotopy category is triangulated by prop. 4.16), that in stable
homotopy theory both these sequences are long in both directions, and in fact coincide.

Literature (Schwede 12, II.2)

Lemma 4.18. For (Ho, , CofSeq) a triangulated category, def. 4.15, and

⟶ ⟶ / ⟶

a distinguished triangle, then

∘ = 0

is the zero morphism.

Proof. Consider the commuting diagram

⟶ ⟶ 0 ⟶

↓ ↓

⟶ ⟶ / ⟶

.

Observe that the top part is a distinguished triangle by axioms T1 and T2 in def. 4.15. Hence
by T3 there is an extension to a commuting diagram of the form

⟶ ⟶ 0 ⟶

↓ ↓ ↓ ↓

⟶ ⟶ / ⟶

.

Now the commutativity of the middle square proves the claim.  ▮

Proposition 4.19. Let (Ho, , CofSeq) be a triangulated category, def. 4.15, with hom-functor
denoted by [−, −]

*
:Ho × Ho → Ab. For ∈ Ho any object, and for ∈ CofSeq any

distinguished triangle

= ( ⟶ ⟶ / ⟶ )

then the sequences of abelian groups

(long cofiber sequence)

[ , ]
*

→⎯⎯⎯⎯
[ , ]

* [ / , ]
*

→⎯⎯⎯⎯
[ , ]

* [ , ]
*

→⎯⎯⎯⎯
[ , ]

* [ , ]
*

1. 

(long fiber sequence)2. 
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[ , ]
*

→⎯⎯⎯⎯
[ , ]

* [ , ]
*

→⎯⎯⎯⎯
[ , ]

* [ , / ]
*

→⎯⎯⎯⎯
[ , ]

* [ , ]
*

are long exact sequences.

Proof. Regarding the first case:

Since ∘ = 0 by lemma 4.18, we have an inclusion im([ , ]
*
) ⊂ ker([ , ]

*
). Hence it is

sufficient to show that if : →  is in the kernel of [ , ]
*
 in that ∘ = 0, then there is

: / →  with ∘ = . To that end, consider the commuting diagram

⟶ ⟶ / ⟶

↓ ↓

0 ⟶ ⟶ ⟶ 0

,

where the commutativity of the left square exhibits our assumption.

The top part of this diagram is a distinguished triangle by assumption, and the bottom part
is by condition 1 in def. 4.15. Hence by condition T3 there exists  fitting into a commuting
diagram of the form

⟶ ⟶ / ⟶

↓ ↓ ↓ ↓

0 ⟶ ⟶ ⟶ 0

.

Here the commutativity of the middle square exhibits the desired conclusion.

This shows that the first sequence in question is exact at [ , ]
*
. Applying the same

reasoning to the distinguished triangle ( , ℎ, − ) provided by T2 yields exactness at
[ / , ]

*
.

Regarding the second case:

Again, from lemma 4.18 it is immediate that

im([ , ]
*
) ⊂ ker([ , ]

*
)

so that we need to show that for : →  in the kernel of [ , ]
*
, hence such that ∘ = 0,

then there exists : →  with ∘ = .

To that end, consider the commuting diagram

⟶ 0 ⟶ →⎯⎯⎯
−

↓ ↓

⟶ / ⟶ →⎯⎯
−

,

where the commutativity of the left square exhibits our assumption.

Now the top part of this diagram is a distinguished triangle by conditions T1 and T2 in def.
4.15, while the bottom part is a distinguished triangle by applying T2 to the given
distinguished triangle. Hence by T3 there exists ˜ : →  such as to extend to a
commuting diagram of the form
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⟶ 0 ⟶ →⎯⎯⎯
−

↓ ↓ ↓
˜

↓

⟶ / ⟶ →⎯⎯
−

,

At this point we appeal to the condition in def. 4.15 that :Ho → Ho is an equivalence of
categories, so that in particular it is a fully faithful functor. It being a full functor implies that
there exists : →  with ˜ = . It being faithful then implies that the whole commuting
square on the right is the image under  of a commuting square

⟶
−

↓ ↓

⟶
−

.

This concludes the exactness of the second sequence at [ , ]
*
. As before, exactness at

[ , / ]
*
 follows with the same argument applied to the shifted triangle, via T2.  ▮

Lemma 4.20. Consider a morphism of distinguished triangles in a triangulated category
(def. 4.15):

⟶ ⟶ / ⟶

↓ ↓ ↓ ↓

′ ⟶ ′ ⟶ ′ / ′ ⟶ ′

.

If two out of { , , } are isomorphisms, then so is the third.

Proof. Consider the image of the situation under the hom-functor [ , −]
*
 out of any object

:

[ , ]
*

⟶ [ , ]
*

⟶ [ , / ]
*

⟶ [ , ]
*

⟶ [ , ]
*

↓ * ↓ * ↓ * ↓( )
* ↓( )

*

[ , ′ ]
*
⟶ [ , ′ ]

*
⟶ [ , ′ / ′ ]

*
⟶ [ , ′ ]

*
⟶ [ , ′ ]

*

,

where we extended one step to the right using axiom T2 (def. 4.15).

By prop. 4.19 here the top and bottom are exact sequences.

So assume the case that  and  are isomorphisms, hence that *, *, ( )
*
 and ( )

*
 are

isomorphisms. Then by exactness of the horizontal sequences, the five lemma implies that *

is an isomorphism. Since this holds naturally for all , the Yoneda lemma (fully faithfulness
of the Yoneda embedding) then implies that  is an isomorphism.

If instead  and  are isomorphisms, apply this same argument to the triple ( , , ) to
conclude that  is an isomorphism. Since  is an equivalence of categories, this implies
then that  is an isomorphism.

Analogously for the third case.  ▮

Lemma 4.21. If ( , ℎ, − ) is a distinguished triangle in a triangulated category (def. 4.15),
then so is ( , , ℎ).

Proof. By T0 there is some distinguished triangle of the form ( , ′ , ℎ′). By T2 this gives a
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distinguished triangle (− , − ′ , − ℎ′). By T3 there is a morphism ′ giving a commuting
diagram

→⎯⎯
−

→⎯⎯
−

→⎯⎯
−

= ↓ = ↓ ↓ = ↓

→⎯⎯
−

→⎯⎯⎯
−

→⎯⎯⎯
−

.

Now lemma 4.20 gives that ′  is an isomorphism. Since  is an equivalence of categories,
there is an isomorphism  such that ′ = . Since  is in particular a faithful functor, this 
exhibits an isomorphism between ( , , ℎ) and ( , ′ , ℎ′ ). Since the latter is distinguished, so is
the former, by T0.  ▮

In conclusion:

Proposition 4.22. Let

⟶ ⟶

be a homotopy cofiber sequence (def.) of spectra in the stable homotopy category (def.
4.1) Ho(Spectra). Let ∈ Ho(Spectra) be any other spectrum. Then the abelian hom-groups
of the stable homotopy category (def. 4.3, lemma 4.4) sit in long exact sequences of the
form

⋯⟶ [ , ] →⎯⎯⎯⎯⎯
−( )

* [ , ] ⟶ [ , ] ⟶* [ , ] ⟶* [ , ] ⟶ [ , ] →⎯⎯⎯⎯⎯
−( )

* [ , ] ⟶ ⋯ .

Proof. By prop. 4.16 the above abstract reasoning in triangulated categories applies. By
prop. 4.19 we have long exact sequences to the right as shown. By lemma 4.21 these also
extend to the left as shown.  ▮

This suggests that homotopy cofiber sequences coincide with homotopy fiber sequence in
the stable homotopy category. This is indeed the case:

Proposition 4.23. In the stable homotopy category, a sequence of morphisms is a
homotopy cofiber sequence precisely if it is a homotopy fiber sequence.

Specifically for : ⟶  any morphism in Ho(Spectra), then there is an isomorphism

: hofib( ) ⟶≃ hocof( )

between the homotopy fiber and the looping of the homotopy cofiber, which fits into a
commuting diagram in the stable homotopy category Ho(Spectra) of the form

⟶ hofib( ) ⟶

= ↓ ↓≃ ↓≃

⟶ hocof( ) ⟶

,

where the top row is the homotopy fiber sequence of , while the bottom row is the image
under the looping functor  of the homotopy cofiber sequence of .

(Lewis-May-Steinberger 86, chapter III, theorem 2.4)

Proof. Label the diagram in question as follows
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⟶ hofib( ) ⟶

= ↓ (1) ↓≃ (2) ↓≃

⟶ hocof( ) ⟶

.

Let  be represented by a CW-spectrum (by prop. 2.16), hence in particular by a cofibrant
sequential spectrum (by prop. 2.12). By prop. 2.13 and the factorization lemma (lemma)
this implies that the standard mapping cone construction on  (def.) is a model for the
homotopy cofiber of  (exmpl.):

hocof( ) ≃ Cone( ) .

By construction of mapping cones, this sits in the following commuting squares in
SeqSpec(Top ).

⟶ Cone( )

↓ (po) ↓

⟶ Cone( )

↓ (po) ↓

* ⟶

.

Consider then the commuting diagram

⟶ hofib( ) ⟶ hocof( ) ⟶ ≃

↓ ↓ ↓ ↓

* ⟶ ⟶ Cone( ) ⟶ Cone( )

↓ ↓ ↓ ↓

⟶
=

⟶ Cone( ) ⟶

,

in the stable homotopy category Ho(Spectra) (def. 4.1). Here the bottom commuting squares
are the images under localization : SeqSpec(Top ) ⟶ Ho(Spectra) (thm.) of the above

commuting squares in the definition of the mapping cone, and the top row of squares are
the morphisms induced via the universal property of fibers by forming homotopy fibers of
the bottom vertical morphisms (fibers of fibration replacements, which may be chosen
compatibly, either by pullback or by invoking the small object argument).

First of all, this exhibits the composition of the left two horizontal morphisms ∘ ≃  in the
above diagram as the left part (1) of the commuting diagram to be proven.

Now observe that the pasting composite of the two rectangles on the right of the previous
diagram is isomorphic, in Ho(Spectra), to the following pasting composite:

hofib( ) ⟶ ⟶
≃

≃

↓ ↓ ↓

⟶ ⟶ Cone( )

↓ ↓ ↓

⟶ * ⟶

.

This is because the pasting composite of the bottom squares is isomorphic already in
SeqSpec(Top ) by the above commuting diagrams for the mapping cone and the suspension,
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and then using again the universal property of homotopy fibers.

Hence the top composite morphisms coincide, by universality of homotopy fibers, with the
previous top composite:

∘ ≃ ∘ .

This is the commutativity of the right part (2) of the diagram to be proven.

So far we have shown that

⟶ hofib( ) ⟶

= ↓ ↓ ↓=

⟶ hocof( ) ⟶

commutes in the stable homotopy category. It remains to see that  is an isomorphism.

To that end, consider for any ∈ Ho(Spectra) the image of this commuting diagram,
prolonged to the left and right, under the hom-functor [ , −]

*
 of the stable homotopy

category:

[ , ] ⟶ [ , ] ⟶ [ , hofib( )] ⟶ [ , ] ⟶ [ , ]

= ↓ = ↓ ↓
[ , ]

↓≃ ↓≃

[ , ] ⟶ [ , ] ⟶ [ , hocof( )] ⟶ [ , ] ⟶ [ , ]

.

Here the top row is long exact, since it is the long homotopy fiber sequence to the left that
holds in the homotopy category of any model catgeory (prop.). Moreover, the bottom
sequence is long exact by prop. 4.22. Hence the five lemma implies that [ , ]

*
 is an

isomorphism. Since this is the case for all , the Yoneda lemma (faithfulness of the Yoneda
embedding) implies that  itself is an isomorphism.  ▮

Remark 4.24. Prop. 4.23 is the homotopy theoretic analog of the clause that makes a
pre-abelian category into an abelian category:

A pre-abelian category is an additive category in which fibers (kernels) and cofibers
(cokernels) exist. This is an abelian category if the cofiber of the fiber of any morphism
equals coincides with the fiber of the cofiber of that morphism.

Here we see that in stable homotopy theory, whose homotopy category is additive, and in
which homotopy fibers and homotopy cofibers exist, the analogous statement is true even
in a stronger form: the homotopy cofiber projection of the homotopy fiber inclusion of any
morphism coincides with that morphism, and so does the homotopy fiber projection of the
homotopy cofiber inclusion.

In particular there are long exact sequences of stable homotopy groups extending in both
directions:

Lemma 4.25. Let ∈ SeqSpec(Top ) be any sequential spectrum, then there is an

isomorphism

( ) ≃ [ , ]

between its stable homotopy group in degree 0 (def. 1.11) and the hom-group (according
to def. 4.7, prop. 4.14) in the stable homotopy category (def. 4.1) from the sphere
spectrum (def. 1.4) into .
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Generally, with respect to the graded hom-groups of def. 4.5 we have

•( ) ≃ [ , ]• .

Proof. The hom-set in the homotopy category is equivalently given by the left homotopy-
equivalence classes out of a cofibrant representative of  into a fibrant representative of 
(lemma).

The standard sphere spectrum ≔  is a CW-spectrum and hence cofibrant, by prop.
2.12. Moreover, this implies by prop. 2.13 that left homotopies out of  are represented by
the standard sequential cylinder spectrum

∧ ( +) ≃ ( +) .

By theorem 3.11, fibrant replacement for  is provided by its spectrification  according to
def. 1.19.

So it follows that [ , ]
*
 is given by left homotopy classes of morphisms

= ⟶

in SeqSpec(Top ). By the ( ⊣ )-adjunction (prop. 1.10) these are equivalently morphisms

⟶ ( )

in Top * /. Hence equivalently morphisms

* ⟶ ( )

in Top , hence equivalently points in ( ) . Analogously, a left homotopy

( +) ⟶ ( )

in SeqSpec(Top ) is equivalently a path

⟶ ( )

in Top .

In conclusion this establishes an isomorphism

[ , ]
*
≃ (( ) )

with  of the 0-component of . With this the statement follows with example 1.18, since
 is an Omega-spectrum, by prop. 1.20.

From this the last statement follows from the identity

( − (−)) ≃ (−) .

  ▮

As a consequence:

Proposition 4.26. Let

⟶ ⟶
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be a homotopy cofiber sequence (def.) in the stable homotopy category (def. 4.1). Then
there is induced a long exact sequence of stable homotopy groups (def. 1.11) of the form

⋯⟶ •+ ( ) ⟶ •( ) ⟶* •( ) ⟶*
•( ) ⟶ •− ( ) ⟶ ⋯ .

Proof. Via lemmma 4.25 this is a special case of prop. 4.22.  ▮

As an example, we check explicitly what we already deduced abstractly in prop. 4.14, that in
the stable homotopy category wedge sum and Cartesian product of spectra agree and
constitute a biproduct/direct sum:

Example 4.27. For , ∈ SeqSpec(Top ), then the canonical morphism

∨ ⟶ ×

out of the coproduct (wedge sum, example 1.27) into the product (via prop. 1.25), given
by

↘ ↙

↓ ⊔ ↓

↙( , ) ( , ) ↘

↘( , ) ( , ) ↙

↓ × ↓

↙ ↘

represents an isomorphism in the stable homotopy category.

Proof. By prop. 2.16, we may represent both  and  by CW-spectra (def. 2.7) in
(SeqSpec(Top ) ) [ − ]. Then the canonical morphism

: ⟶ ∨

is a cofibration according to theorem 2.3, because + ⊔
∧

( ∨ ) ≃ + ∨ ∧ .

Hence its ordinary cofiber, which is , is its homotopy cofiber (def.), and so we have a
homotopy cofiber sequence

⟶ ∨ ⟶ .

Moreover, under forming stable homotopy groups (def. 1.11), the inclusion map evidently
gives an injection, and the projection map gives a surjection. Hence the long exact sequence
of stable homotopy groups from prop. 4.26 gives the short exact sequence

0 → •( ) ⟶ •( ∨ ) ⟶ •( ) → 0 .

Finally, due to the fact that the inclusion and projection for one of the two summands
constitute a retraction, this is a split exact sequence, hence exhibits an isomorphism

( ∨ ) ⟶≃ ( ) ⊕ ( ) ≃ ( ) × ( ) ≃ ( × )

for all . But this just says that ∨ → ×  is a stable weak homotopy equivalence.  ▮
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Final Remark 4.28. For a tower of fibrations of spectra, the long sequences of stable
homotopy groups associated with any (co-)fiber sequence of spectra, from prop. 4.26,
combine to an exact couple. The induced spectral sequence of a tower of fibrations is the
central tool of computation in stable homotopy theory.

We discuss how these spectral sequences arise in the section Interlude -- Spectral
sequences.

We discuss in detail the special case of the Adams spectral sequences in the section Part 2
-- Adams spectral sequences.

But for handling any of these spectral sequences it is convenient, or, in many cases,
necessary to have multiplicative structure available, induced from a symmetric monoidal
smash product of spectra. This we turn to in part 1.2 -- Structured spectra.

5. References

We give the modern picture of the stable homotopy category, for which a quick survey may
be found in

Cary Malkiewich, The stable homotopy category, 2014 (pdf).

A classical textbook on stable homotopy theory for “unstructured” spectra is

Frank Adams, part III sections 2, 4-7 of Stable homotopy and generalized homology,
Chicago Lectures in mathematics, 1974

For establishing the stable model structure on spectra we use the Bousfield-Friedlander
theorem as discussed in

Paul Goerss, Rick Jardine, section X.4 of Simplicial homotopy theory, (1996)

and as applied for general Omega-spectrification functors in

Stefan Schwede, Spectra in model categories and applications to the algebraic
cotangent complex, Journal of Pure and Applied Algebra 120 (1997) 77-104 (pdf)

For the discussion of the stability of the homotopy theory of sequential spectra we follow

John F. Jardine, sections 10.3 and 10.4 of Local homotopy theory, 2016

For the definition of triangulated categories and a discussion of various equivalent versions
of the octahedral axiom the following brief note is useful:

Andrew Hubery, Notes on the octahedral axiom, (pdf)

For the discussion of the triangulated structure of the stable homotopy category we follow

Stefan Schwede, section II.2 of Symmetric spectra, 2012 (pdf)
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