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Introduction to Stable Homotopy

This entry is a detailed introduction to the stable homotopy category and to its
key computational tool, the Adams spectral sequence. To that end we introduce
the modern tools, such as model categories and highly structured ring spectra. In
the accompanying seminar we consider applications to cobordism theory and
complex oriented cohomology such as to converge in the end to a glimpse of the
modern picture of chromatic homotopy theory.
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Basic reading

Further reading

My initial inclination was to call this book The Music of
the Spheres, but I was dissuaded from doing so by my
diligent publisher, who is ever mindful of the sensibilities
of librarians. (Ravenel 86, preface)

1. Survey

We are concerned with the theory of spectra in the sense of algebraic topology:
the proper generalization of abelian groups to homotopy theory.

1) Stable homotopy theory

A group in homotopy theory is equivalently a loop space under concatenation of
loops (“∞-group”). A double loop space is a group with some commutativity
structure (“Eckmann-Hilton argument”), a triple loop space has more
commutativity structure, and so forth. A spectrum is where this progression of
looping and delooping stabilizes (an “∞-abelian group”). Therefore one speaks of
stable homotopy theory:

Spaces ⎯⎯⎯⎯⎯⎯⎯⎯⎯
( )

Spectra .

Most of linear algebra and algebraic geometry passes along as abelian groups are
generalized to spectra and turns into something remarkably rich, called brave
new algebra, higher algebra and spectral geometry. In particular the analog of
the theory of (commutative) rings and their modules exist, given by
(commutative) ring spectra (E-∞ rings, A-∞ rings) and module spectra
(∞-modules).

2) Adams spectral sequences
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Since spectra are considerably richer than abelian groups, stable homotopy is
much concerned with “fracturing” stable homotopy types into more tractable
components:

To that end, notice that from the point of view of arithmetic geometry, an abelian
group  is equivalently a quasicoherent sheaf over Spec(Z).

AbelianGroups ≃ QCoh(Spec(ℤ)) .

This point of view generalizes to homotopy theory and turns out to be very
fruitful there. The analog of the integers ℤ is the sphere spectrum , and this is
naturally the initial commutative ring spectrum (“E-∞ ring”), just as ℤ is the
initial commutative ring. The formal dual Spec(S) of  is hence the terminal
space in E-∞ arithmetic geometry (“spectral geometry”) and spectra are
equivalently the quasicoherent ∞-stacks over Spec( )

Spectra ≃ QCoh(Spec( )) .

Therefore the study of spectra “fractures” into the various localizations and
formal completions of Spec( ). Since this is like the white light of Spec( )
decomposing into various wavelengths, one speaks of chromatic homotopy
theory.

In particular, an E-∞ ring  is dually a morphism of -algebraic spaces
Spec( ) ⟶ Spec( ) and under good conditions the 1-image of this map is the
formal dual of the localization  at :

Spec( ) →⎯⎯ Spec( ) →⎯⎯⎯⎯ Spec( ) .

This means that Spec( ) ⟶ Spec( ) is a cover and that hence -local spectra are
equivalently quasicoherent ∞-stacks on Spec( ) equipped with descent data:
dually they are ∞-modules over  equipped with comodule structure over the
Hopf algebroid (Sweedler coring) ⊗ .

The computation of homotopy groups of spectra that make use of their
decomposition this way into -∞-modules equipped with descent data is the
-Adams spectral sequence, a central tool of the theory.

S) Complex oriented cohomology

For this reason special importance is carried by those E-∞ rings such that
Spec( ) → Spec( ) is already a covering, in a suitable sense, for these the
-∞-modules equipped with descent data give an equivalent, but in general more

tractable, incarnation of the stable homotopy theory of spectra.

Curiously, this way a good bit of differential topology – cobordism theory – arises
within stable homotopy theory: the archetypical Spec( ) which covers Spec( ) in a
suitable sense is = MU, the Thom spectrum representing complex cobordism
cohomology.
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An commutative ring spectrum  over MU, hence a Spec( ) → Spec(MU) is now a
multiplicative “complex oriented cohomology theory”.

2. Prelude) Classical homotopy theory

This section is at: Introduction to Stable homotopy theory -- P

3. Part 1) Stable homotopy theory

This section is at Introduction to Stable homotopy theory -- 1

4. Interlude) Spectral sequences

This section is at Introduction to Stable homotopy theory -- I

5. Part 2) Adams spectral sequences

This section is at Introduction to Stable homotopy theory -- 2

6. Seminar) Complex oriented cohomology
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This section is at Introduction to Stable homotopy theory -- S

7. References

Basic reading

For Prelude) Classical homotopy theory a concise and self-contained re-write
of the proof (Quillen 67) of the classical model structure on topological spaces is
in

Philip Hirschhorn, The Quillen model category of topological spaces
(arXiv:1508.01942).

For general model category theory a decent concise account is in

William Dwyer, J. Spalinski, Homotopy theories and model categories (pdf)
in Ioan Mackenzie James (ed.), Handbook of Algebraic Topology 1995

For the restriction to the convenient category of compactly generated topological
spaces good sources are

Gaunce Lewis, Compactly generated spaces (pdf), appendix A of The Stable
Category and Generalized Thom Spectra PhD thesis Chicago, 1978

Neil Strickland, The category of CGWH spaces, 2009 (pdf)

For section 1) Stable homotopy theory we follow the modern picture of the
stable homotopy category for which an enjoyable survey may be found in

Cary Malkiewich, The stable homotopy category, 2014 (pdf).

The classical account in (Adams 74, part III sections 2, 4-7) is still a good read,
but ignore the “Adams category”-construction of the stable homotopy category in
sections III.2 and III.3. What we actually do follows

Michael Mandell, Peter May, Stefan Schwede, Brooke Shipley, Model
categories of diagram spectra, Proceedings of the London Mathematical
Society, 82 (2001), 441-512 (pdf)

For the discussion of ring spectra we pass to symmetric spectra and orthogonal
spectra. A compendium on the former is in

Stefan Schwede, Symmetric spectra, 2012 (pdf)
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For Interlude: Spectral sequences a discussion streamlined for our purposes
is in (Rognes 12, section 2).

In 2) Adams spectral sequence for the general theory we follow

Frank Adams, Stable homotopy and generalized homology, Chicago Lectures
in mathematics, 1974

Aldridge Bousfield, sections 5 and 6 of The localization of spectra with
respect to homology, Topology 18 (1979), no. 4, 257–281. (pdf)

For the special case of the classical Adams spectral sequence we follow (Kochman
96, chapter V).

For the Seminar on Complex oriented cohomology an excellent textbook to
hold on to is

Stanley Kochman, Bordism, Stable Homotopy and Adams Spectral
Sequences, AMS 1996

Specifically for S.1) Generalized cohomology a neat account is in:

Marcelo Aguilar, Samuel Gitler, Carlos Prieto, section 12 of Algebraic
topology from a homotopical viewpoint, Springer (2002) (toc pdf)

For S.2) Cobordism theory an efficient collection of the highlights is in

Cary Malkiewich, Unoriented cobordism and , 2011 (pdf)

except that it omits proof of the Leray-Hirsch theorem/Serre spectral sequence
and that of the Thom isomorphism, but see the references there and see
(Kochman 96, Aguilar-Gitler-Prieto 02, section 11.7) for details.

For S.3) Complex oriented cohomology besides (Kochman 96, chapter 4)
have a look at Adams 74, part II and

Jacob Lurie, lectures 1-10 of Chromatic Homotopy Theory, 2010

(These overlap, pick the one that seems more inviting on first reading.)

Further reading

The two originals

Daniel Quillen, Axiomatic homotopy theory in Homotopical algebra, Lecture
Notes in Mathematics, No. 43 43, Berlin (1967)

Kenneth Brown, Abstract Homotopy Theory and Generalized Sheaf
Cohomology, Transactions of the American Mathematical Society, Vol. 186
(1973), 419-458 (JSTOR)

are still an excellent source. For further reading on homotopy theory and stable
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homotopy theory a useful collection is

Ioan Mackenzie James, Handbook of Algebraic Topology 1995

The modern chromatic picture originates around

Mike Hopkins, Complex oriented cohomology theories and the language of
stacks, 1999

a useful survey is in

Dylan Wilson section 1.2 of Spectral Sequences from Sequences of Spectra:
Towards the Spectrum of the Category of Spectra lecture at 2013 Pre-Talbot
Seminar, March 2013 (pdf)

a wealth of details is in

Doug Ravenel, Complex cobordism and stable homotopy groups of spheres,
1987/2003 (pdf)

and new foundations have been laid in

Jacob Lurie, Higher Algebra

Revised on May 9, 2017 10:09:31 by Urs Schreiber
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Context

Homotopy theory

nLab

Introduction to Homotopy Theory

This pages gives a detailed introduction to classical homotopy theory, starting with the concept
of homotopy in topological spaces and motivating from this the “abstract homotopy theory” in
general model categories.

For background on basic topology see at Introduction to Topology.

For application to homological algebra see at Introduction to Homological algebra.

For application to stable homotopy theory see at Introduction to Stable homotopy theory.

Contents
1. Topological homotopy theory

Universal constructions

Homotopy

Cell complexes

Fibrations

2. Abstract homotopy theory
Factorization systems

Homotopy

The homotopy category

Derived functors

Quillen adjunctions

3. The model structure on topological spaces
The classical homotopy category

Model structure on pointed spaces

Model structure on compactly generated spaces

Topological enrichment

Model structure on topological functors

4. Homotopy fiber sequences
Mapping cones

Categories of fibrant objects

Homotopy fibers

Homotopy pullbacks

Long sequences

5. The suspension/looping adjunction

6. References

While the field of algebraic topology clearly originates in topology, it is not actually interested in
topological spaces regarded up to topological isomorphism, namely homeomorphism (“point-set
topology”), but only in topological spaces regarded up to weak homotopy equivalence – hence it
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is interested only in the “weak homotopy types” of topological spaces. This is so notably because
ordinary cohomology groups are invariants of the (weak) homotopy type of topological spaces
but do not detect their homeomorphism class.

The category of topological spaces obtained by forcing weak homotopy equivalences to become
isomorphisms is the “classical homotopy category” Ho(Top). This homotopy category however
has forgotten a little too much information: homotopy theory really wants the weak homotopy
equivalences not to become plain isomorphisms, but to become actual homotopy equivalences.
The structure that reflects this is called a model category structure (short for “category of
models for homotopy types”). For classical homotopy theory this is accordingly called the
classical model structure on topological spaces. This we review here.

1. Topological homotopy theory

This section recalls relevant concepts from actual topology (“point-set topology”) and highlights
facts that motivate the axiomatics of model categories below. We prove two technical lemmas
(lemma 1.40 and lemma 1.52) that serve to establish the abstract homotopy theory of
topological spaces further below.

Literature (Hirschhorn 15)

Throughout, let Top denote the category whose objects are topological spaces and whose
morphisms are continuous functions between them. Its isomorphisms are the homeomorphisms.

(Further below we restrict attention to the full subcategory of compactly generated topological
spaces.)

Universal constructions

To begin with, we recall some basics on universal constructions in Top: limits and colimits of
diagrams of topological spaces; exponential objects.

Generally, recall:

Definition 1.1. A diagram in a category  is a small category  and a functor

• : ⟶

( ⟶ ) ↦ ( →⎯⎯⎯
( )

) .

A cone over this diagram is an object  equipped with morphisms : ⟶  for all ∈ , such

that all these triangles commute:

↙ ↘

→⎯⎯⎯
( )

.

Dually, a co-cone under the diagram is  equipped with morphisms : ⟶  such that all

these triangles commute

→⎯⎯⎯
( )

↘ ↙ .

A limit over the diagram is a universal cone, denoted lim←⎯⎯ ∈
, that is: a cone such that every
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other cone uniquely factors through it ⟶ lim←⎯⎯ ∈
, making all the resulting triangles

commute.

Dually, a colimit over the diagram is a universal co-cone, denoted lim
→⎯⎯ ∈

.

We now discuss limits and colimits in = Top. The key for understanding these is the fact that
there are initial and final topologies:

Definition 1.2. Let { = ( , ) ∈ Top} ∈  be a set of topological spaces, and let ∈ Set be a bare

set. Then

For { → } ∈  a set of functions out of , the initial topology ({ } ∈ ) is the

topology on  with the minimum collection of open subsets such that all
: ( , ({ } ∈ )) →  are continuous.

1. 

For { → } ∈  a set of functions into , the final topology ({ } ∈ ) is the topology on

 with the maximum collection of open subsets such that all : → ( , ({ } ∈ )) are

continuous.

2. 

Example 1.3. For  a single topological space, and : ↪ ( ) a subset of its underlying set,
then the initial topology ( ), def. 1.2, is the subspace topology, making

: ( , ( )) ↪

a topological subspace inclusion.

Example 1.4. Conversely, for : ( ) ⟶  an epimorphism, then the final topology ( ) on 

is the quotient topology.

Proposition 1.5. Let  be a small category and let • : ⟶ Top be an -diagram in Top (a functor
from  to Top), with components denoted = ( , ), where ∈ Set and  a topology on .
Then:

The limit of • exists and is given by the topological space whose underlying set is the
limit in Set of the underlying sets in the diagram, and whose topology is the initial
topology, def. 1.2, for the functions  which are the limiting cone components:

lim
←⎯⎯ ∈

↙ ↘

⟶

.

Hence

lim
←⎯⎯ ∈

≃ lim
←⎯⎯ ∈

, ({ } ∈ )

1. 

The colimit of • exists and is the topological space whose underlying set is the colimit in
Set of the underlying diagram of sets, and whose topology is the final topology, def. 1.2
for the component maps  of the colimiting cocone

⟶

↘ ↙

lim→⎯⎯ ∈

.

Hence

2. 
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lim
→⎯⎯ ∈

≃ lim
→⎯⎯ ∈

, ({ } ∈ )

(e.g. Bourbaki 71, section I.4)

Proof. The required universal property of lim
←⎯⎯ ∈

, ({ } ∈ )  (def. 1.1) is immediate: for

( , )

↙ ↘

⟶

any cone over the diagram, then by construction there is a unique function of underlying sets
⟶ lim

←⎯⎯ ∈
 making the required diagrams commute, and so all that is required is that this

unique function is always continuous. But this is precisely what the initial topology ensures.

The case of the colimit is formally dual.  ▮

Example 1.6. The limit over the empty diagram in Top is the point * with its unique topology.

Example 1.7. For { } ∈  a set of topological spaces, their coproduct ⊔
∈

∈ Top is their disjoint

union.

In particular:

Example 1.8. For ∈ Set, the -indexed coproduct of the point, ∐ ∈ *  is the set  itself

equipped with the final topology, hence is the discrete topological space on .

Example 1.9. For { } ∈  a set of topological spaces, their product ∏ ∈ ∈ Top is the Cartesian

product of the underlying sets equipped with the product topology, also called the Tychonoff
product.

In the case that  is a finite set, such as for binary product spaces × , then a sub-basis for
the product topology is given by the Cartesian products of the open subsets of (a basis for)
each factor space.

Example 1.10. The equalizer of two continuous functions , : ⟶⟶  in Top is the equalizer of
the underlying functions of sets

eq( , ) ↪ ⟶⟶

(hence the largets subset of  on which both functions coincide) and equipped with the
subspace topology, example 1.3.

Example 1.11. The coequalizer of two continuous functions , : ⟶⟶  in Top is the coequalizer
of the underlying functions of sets

⟶⟶ ⟶ coeq( , )

(hence the quotient set by the equivalence relation generated by ( ) ∼ ( ) for all ∈ ) and
equipped with the quotient topology, example 1.4.

Example 1.12. For
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⟶

↓

two continuous functions out of the same domain, then the colimit under this diagram is also
called the pushout, denoted

⟶

↓ ↓ *

⟶ ⊔ .

.

(Here 
*

 is also called the pushout of , or the cobase change of  along .)

This is equivalently the coequalizer of the two morphisms from  to the coproduct of  with 
(example 1.7):

⟶⟶ ⊔ ⟶ ⊔ .

If  is an inclusion, one also writes ∪  and calls this the attaching space.

By example 1.11 the
pushout/attaching space is the
quotient topological space

⊔ ≃ ( ⊔ )/ ∼

of the disjoint union of  and 
subject to the equivalence relation
which identifies a point in  with a

point in  if they have the same pre-image in .

(graphics from Aguilar-Gitler-Prieto 02)

Notice that the defining universal property of this colimit means that completing the span

⟶

↓

to a commuting square

⟶

↓ ↓

⟶

is equivalent to finding a morphism

⊔ ⟶ .

Example 1.13. For ↪  a topological subspace inclusion, example 1.3, then the pushout

↪

↓ (po) ↓

* ⟶ /

is the quotient space or cofiber, denoted / .
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Example 1.14. An important special case of example 1.12:

For ∈ ℕ write

≔ {⇀ ∈ ℝ | |⇀| ≤ 1} ↪ ℝ  for the standard topological n-disk (equipped with its
subspace topology as a subset of Cartesian space);

− = ∂ ≔ {⇀ ∈ ℝ | |⇀| = 1} ↪ ℝ  for its boundary, the standard topological n-sphere.

Notice that − = ∅ and that = * ⊔ * .

Let

: − ⟶

be the canonical inclusion of the standard (n-1)-sphere as the boundary of the standard n-disk
(both regarded as topological spaces with their subspace topology as subspaces of the
Cartesian space ℝ ).

Then the colimit in Top under the diagram

⟵ − ⟶ ,

i.e. the pushout of  along itself, is the
n-sphere :

− ⟶

↓ (po) ↓

⟶

.

(graphics from Ueno-Shiga-Morita 95)

Another kind of colimit that will play a role for certain technical constructions is transfinite
composition. First recall

Definition 1.15. A partial order is a set  equipped with a relation ≤ such that for all elements
, , ∈

1) (reflexivity) ≤ ;

2) (transitivity) if ≤  and ≤  then ≤ ;

3) (antisymmetry) if ≤  and b ≤  then = .

This we may and will equivalently think of as a category with objects the elements of  and a
unique morphism →  precisely if ≤ . In particular an order-preserving function between
partially ordered sets is equivalently a functor between their corresponding categories.

A bottom element ⊥ in a partial order is one such that ⊥ ≤  for all a. A top element ⊤ is one
for wich ≤ ⊤ .

A partial order is a total order if in addition

4) (totality) either ≤  or ≤ .

A total order is a well order if in addition

5) (well-foundedness) every non-empty subset has a least element.

An ordinal is the equivalence class of a well-order.
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The successor of an ordinal is the class of the well-order with a top element freely adjoined.

A limit ordinal is one that is not a successor.

Example 1.16. The finite ordinals are labeled by ∈ ℕ, corresponding to the well-orders
{0 ≤ 1 ≤ 2⋯ ≤ − 1}. Here ( + 1) is the successor of . The first non-empty limit ordinal is

= [(ℕ, ≤ )].

Definition 1.17. Let  be a category, and let ⊂ Mor( ) be a class of its morphisms.

For  an ordinal (regarded as a category), an -indexed transfinite sequence of elements in 
is a diagram

• : ⟶

such that

• takes all successor morphisms →
≤

+ 1 in  to elements in 

, + ∈

1. 

• is continuous in that for every nonzero limit ordinal < , • restricted to the
full-subdiagram { | ≤ } is a colimiting cocone in  for • restricted to { | < }.

2. 

The corresponding transfinite composition is the induced morphism

⟶ ≔ lim→⎯⎯ •

into the colimit of the diagram, schematically:

⎯⎯
,

⎯⎯
,

→ ⋯

↘ ↓ ↙ ⋯ .

We now turn to the discussion of mapping spaces/exponential objects.

Definition 1.18. For  a topological space and  a locally compact topological space (in that for
every point, every neighbourhood contains a compact neighbourhood), the mapping space

∈ Top

is the topological space

whose underlying set is the set Hom ( , ) of continuous functions → ,

whose open subsets are unions of finitary intersections of the following subbase elements
of standard open subsets:

the standard open subset ⊂ Hom ( , ) for

↪  a compact topological space subset

↪  an open subset

is the subset of all those continuous functions  that fit into a commuting diagram of the
form
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↪

↓ ↓

↪

.

Accordingly this is called the compact-open topology on the set of functions.

The construction extends to a functor

( −)( −) : Top × Top ⟶ Top .

Proposition 1.19. For  a topological space and  a locally compact topological space (in that
for each point, each open neighbourhood contains a compact neighbourhood), the
topological mapping space  from def. 1.18 is an exponential object, i.e. the functor ( −)

is right adjoint to the product functor × ( −): there is a natural bijection

Hom ( × , ) ≃ Hom ( , )

between continuous functions out of any product topological space of  with any ∈ Top and
continuous functions from  into the mapping space.

A proof is spelled out here (or see e.g. Aguilar-Gitler-Prieto 02, prop. 1.3.1).

Remark 1.20. In the context of prop. 1.19 it is often assumed that  is also a Hausdorff
topological space. But this is not necessary. What assuming Hausdorffness only achieves is
that all alternative definitions of “locally compact” become equivalent to the one that is
needed for the proposition: for every point, every open neighbourhood contains a compact
neighbourhood.

Remark 1.21. Proposition 1.19 fails in general if  is not locally compact. Therefore the plain
category Top of all topological spaces is not a Cartesian closed category.

This is no problem for the construction of the homotopy theory of topological spaces as such,
but it becomes a technical nuisance for various constructions that one would like to perform
within that homotopy theory. For instance on general pointed topological spaces the smash
product is in general not associative.

On the other hand, without changing any of the following discussion one may just pass to a
more convenient category of topological spaces such as notably the full subcategory of
compactly generated topological spaces Top ↪ Top (def. 3.35) which is Cartesian closed. This

we turn to below.

Homotopy

The fundamental concept of homotopy theory is clearly that of homotopy. In the context of
topological spaces this is about contiunous deformations of continuous functions parameterized
by the standard interval:

Definition 1.22. Write

≔ [0, 1] ↪ ℝ

for the standard topological interval, a compact connected topological subspace of the real
line.

Equipped with the canonical inclusion of its two endpoints

* ⊔ * →⎯⎯⎯⎯⎯
( , )

⟶
∃ !

*

this is the standard interval object in Top.
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For ∈ Top, the product topological space × , example 1.9, is called the standard cylinder
object over . The endpoint inclusions of the interval make it factor the codiagonal on 

∇ : ⊔ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
(( , ),( , ))

× ⟶ .

Definition 1.23. For , : ⟶  two continuous functions between topological spaces , , then a
left homotopy

: ⇒

is a continuous function

: × ⟶

out of the standard cylinder object over , def. 1.22, such that this fits into a commuting
diagram of the form

( , ) ↓ ↘

× ⟶

( , ) ↑ ↗

.

(graphics grabbed from J. Tauber here)

Example 1.24. Let  be a topological space
and let , ∈  be two of its points, regarded as functions , : * ⟶  from the point to . Then
a left homotopy, def. 1.23, between these two functions is a commuting diagram of the form

*

↓ ↘

⟶

↑ ↗

*

.

This is simply a continuous path in  whose endpoints are  and .

For instance:

Example 1.25. Let

const : ⟶ * ⟶

be the continuous function from the standard interval = [0, 1] to itself that is constant on the
value 0. Then there is a left homotopy, def. 1.23, from the identity function

: id ⇒ const

given by

( , ) ≔ (1 − ) .

A key application of the concept of left homotopy is to the definition of homotopy groups:

Definition 1.26. For  a topological space, then its set ( ) of connected components, also
called the 0-th homotopy set, is the set of left homotopy-equivalence classes (def. 1.23) of
points : * → , hence the set of path-connected components of  (example 1.24). By
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composition this extends to a functor

:Top ⟶ Set .

For ∈ ℕ, ≥ 1 and for : * →  any point, then the th homotopy group ( , ) of  at  is
the group

whose underlying set is the set of left homotopy-equivalence classes of maps ⟶  that
take the boundary of  to  and where the left homotopies  are constrained to be
constant on the boundary;

whose group product operation takes [ : → ] and [ : → ] to [ ⋅ ] with

⋅ : ⟶≃ ⊔
−

→⎯⎯⎯
( , )

,

where the first map is a homeomorphism from the unit -cube to the -cube with one side
twice the unit length (e.g. ( , , , ⋯) ↦ (2 , , , ⋯)).

By composition, this construction extends to a functor

• ≥ : Top * / ⟶ Grpℕ ≥

from pointed topological spaces to graded groups.

Notice that often one writes the value of this functor on a morphism  as 
*

= •( ).

Remark 1.27. At this point we don’t go further into the abstract reason why def. 1.26 yields
group structure above degree 0, which is that positive dimension spheres are H-cogroup
objects. But this is important, for instance in the proof of the Brown representability theorem.
See the section Brown representability theorem in Part S.

Definition 1.28. A continuous function : ⟶  is called a homotopy equivalence if there
exists a continuous function the other way around, : ⟶ , and left homotopies, def. 1.23,
from the two composites to the identity:

: ∘ ⇒ id

and

: ∘ ⇒ id .

If here  is constant along ,  is said to exhibit  as a deformation retract of .

Example 1.29. For  a topological space and ×  its standard cylinder object of def. 1.22, then
the projection : × ⟶  and the inclusion (id, ) : ⟶ ×  are homotopy equivalences, def.
1.28, and in fact are homotopy inverses to each other:

The composition

→⎯⎯⎯⎯
( , )

× ⟶

is immediately the identity on  (i.e. homotopic to the identity by a trivial homotopy), while
the composite

× ⟶ →⎯⎯⎯⎯
( , )

×

is homotopic to the identity on ×  by a homotopy that is pointwise in  that of example
1.25.
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Definition 1.30. A continuous function : ⟶  is called a weak homotopy equivalence if its
image under all the homotopy group functors of def. 1.26 is an isomorphism, hence if

( ) : ( ) ⟶≃ ( )

and for all ∈  and all ≥ 1

( ) : ( , ) ⟶≃ ( , ( )) .

Proposition 1.31. Every homotopy equivalence, def. 1.28, is a weak homotopy equivalence,
def. 1.30.

In particular a deformation retraction, def. 1.28, is a weak homotopy equivalence.

Proof. First observe that for all ∈ Top the inclusion maps

→⎯⎯⎯⎯
( , )

×

into the standard cylinder object, def. 1.22, are weak homotopy equivalences: by
postcomposition with the contracting homotopy of the interval from example 1.25 all homotopy
groups of ×  have representatives that factor through this inclusion.

Then given a general homotopy equivalence, apply the homotopy groups functor to the
corresponding homotopy diagrams (where for the moment we notationally suppress the choice
of basepoint for readability) to get two commuting diagrams

•( )

•( , ) ↓ ↘ •( ) ∘ •( )

•( × ) →⎯⎯⎯•( )
•( )

•( , ) ↑ ↗
•( )

•( )

,

•( )

•( , ) ↓ ↘ •( ) ∘ •( )

•( × ) →⎯⎯⎯•( )
•( )

•( , ) ↑ ↗
•( )

•( )

.

By the previous observation, the vertical morphisms here are isomorphisms, and hence these
diagrams exhibit •( ) as the inverse of •( ), hence both as isomorphisms.  ▮

Remark 1.32. The converse of prop. 1.31 is not true generally: not every weak homotopy
equivalence between topological spaces is a homotopy equivalence. (For an example with full
details spelled out see for instance Fritsch, Piccinini: “Cellular Structures in Topology”, p.
289-290).

However, as we will discuss below, it turns out that

every weak homotopy equivalence between CW-complexes is a homotopy equivalence
(Whitehead's theorem, cor. 3.8);

1. 

every topological space is connected by a weak homotopy equivalence to a CW-complex
(CW approximation, remark 3.12).

2. 

Example 1.33. For ∈ Top, the projection × ⟶  from the cylinder object of , def. 1.22, is a
weak homotopy equivalence, def. 1.30. This means that the factorization

∇ : ⊔ ↪ × ⟶≃

of the codiagonal ∇  in def. 1.22, which in general is far from being a monomorphism, may be
thought of as factoring it through a monomorphism after replacing , up to weak homotopy
equivalence, by × .

In fact, further below (prop. 1.25) we see that ⊔ → ×  has better properties than the
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generic monomorphism has, in particular better homotopy invariant properties: it has the left

lifting property against all Serre fibrations ⟶  that are also weak homotopy equivalences.

Of course the concept of left homotopy in def. 1.23 is accompanied by a concept of right
homotopy. This we turn to now.

Definition 1.34. For  a topological space, its standard topological path space object is the
topological mapping space , prop. 1.19, out of the standard interval  of def. 1.22.

Example 1.35. The endpoint inclusion into the standard interval, def. 1.22, makes the path
space  of def. 1.34 factor the diagonal on  through the inclusion of constant paths and the
endpoint evaluation of paths:

: →⎯⎯⎯⎯
→ *

→⎯⎯⎯⎯⎯⎯
* ⊔ * →

× .

This is the formal dual to example 1.22. As in that example, below we will see (prop. 3.14)
that this factorization has good properties, in that

→ * is a weak homotopy equivalence;1. 

* ⊔ * →  is a Serre fibration.2. 

So while in general the diagonal  is far from being an epimorphism or even just a Serre
fibration, the factorization through the path space object may be thought of as replacing , up
to weak homotopy equivalence, by its path space, such as to turn its diagonal into a Serre
fibration after all.

Definition 1.36. For , : ⟶  two continuous functions between topological spaces , , then a
right homotopy ⇒  is a continuous function

: ⟶

into the path space object of , def. 1.34, such that this fits into a commuting diagram of the
form

↗ ↑

⟶

↘ ↓

.

Cell complexes

We consider topological spaces that are built consecutively by attaching basic cells.

Definition 1.37. Write

≔ − ↪
∈ ℕ

⊂ Mor(Top)

for the set of canonical boundary inclusion maps of the standard n-disks, example 1.14. This
going to be called the set of standard topological generating cofibrations.

Definition 1.38. For ∈ Top and for ∈ ℕ, an -cell attachment to  is the pushout
(“attaching space”, example 1.12) of a generating cofibration, def. 1.37
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− ⟶

↓ (po) ↓

⟶ ⊔
−

= ∪

along some continuous function .

A continuous function : ⟶  is called a topological relative cell complex if it is exhibited
by a (possibly infinite) sequence of cell attachments to , in that it is a transfinite composition
(def. 1.17) of pushouts (example 1.12)

∐ − ⟶

∐
↓ (po) ↓

∐ ⟶ +

of coproducts (example 1.7) of generating cofibrations (def. 1.37).

A topological space  is a cell complex if ∅ ⟶  is a relative cell complex.

A relative cell complex is called a finite relative cell complex if it is obtained from a finite
number of cell attachments.

A (relative) cell complex is called a (relative) CW-complex if the above transfinite
composition is countable

= ⟶ ⟶ ⟶ ⋯

↘ ↓ ↙ ⋯

= lim→⎯⎯ •

and if  is obtained from −  by attaching cells precisely only of dimension .

Remark 1.39. Strictly speaking a relative cell complex, def. 1.38, is a function : → ,
together with its cell structure, hence together with the information of the pushout diagrams
and the transfinite composition of the pushout maps that exhibit it.

In many applications, however, all that matters is that there is some (relative) cell
decomosition, and then one tends to speak loosely and mean by a (relative) cell complex only
a (relative) topological space that admits some cell decomposition.

The following lemma 1.40, together with lemma 1.52 below are the only two statements of the
entire development here that involve the concrete particular nature of topological spaces
(“point-set topology”), everything beyond that is general abstract homotopy theory.

Lemma 1.40. Assuming the axiom of choice and the law of excluded middle, every compact
subspace of a topological cell complex, def. 1.38, intersects the interior of a finite number of
cells.

(e.g. Hirschhorn 15, section 3.1)

Proof. So let  be a topological cell complex and ↪  a compact subspace. Define a subset

⊂

by choosing one point in the interior of the intersection with  of each cell of  that intersects .

It is now sufficient to show that  has no accumulation point. Because, by the compactness of ,
every non-finite subset of  does have an accumulation point, and hence the lack of such shows
that  is a finite set and hence that  intersects the interior of finitely many cells of .
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To that end, let ∈  be any point. If  is a 0-cell in , write ≔ { }. Otherwise write  for the
unique cell of  that contains  in its interior. By construction, there is exactly one point of  in
the interior of . Hence there is an open neighbourhood ∈ ⊂  containing no further points
of  beyond possibly  itself, if  happens to be that single point of  in .

It is now sufficient to show that  may be enlarged to an open subset ˜  of  containing no
point of , except for possibly  itself, for that means that  is not an accumulation point of .

To that end, let  be the ordinal that labels the stage  of the transfinite composition in the

cell complex-presentation of  at which the cell  above appears. Let  be the ordinal of the full
cell complex. Then define the set

≔ ( , ) | ≤ ≤ , ⊂ , ∩ = , ∩ ∈ {∅, { }} ,

and regard this as a partially ordered set by declaring a partial ordering via

( , ) < ( , ) ⇔ < , ∩ = .

This is set up such that every element ( , ) of  with  the maximum value =  is an extension
˜  that we are after.

Observe then that for ( , ) ∈  a chain in ( , < ) (a subset on which the relation < restricts to a

total order), it has an upper bound in  given by the union ( ∪ , ∪ ). Therefore Zorn's

lemma applies, saying that ( , < ) contains a maximal element ( , ).

Hence it is now sufficient to show that = . We argue this by showing that assuming

<  leads to a contradiction.

So assume < . Then to construct an element of  that is larger than ( , ), consider

for each cell  at stage +  its attaching map ℎ : − →  and the corresponding

preimage open set ℎ − ( ) ⊂ − . Enlarging all these preimages to open subsets of  (such
that their image back in +  does not contain ), then ( , ) < ( + 1, ∪ ). This is

a contradiction. Hence = , and we are done.  ▮

It is immediate and useful to generalize the concept of topological cell complexes as follows.

Definition 1.41. For  any category and for ⊂ Mor( ) any sub-class of its morphisms, a
relative -cell complexes is a morphism in  which is a transfinite composition (def. 1.17) of
pushouts of coproducts of morphsims in .

Definition 1.42. Write

≔ ⎯⎯⎯
( , )

×
∈ ℕ

⊂ Mor(Top)

for the set of inclusions of the topological n-disks, def. 1.37, into their cylinder objects, def.
1.22, along (for definiteness) the left endpoint inclusion.

These inclusions are similar to the standard topological generating cofibrations  of def.
1.37, but in contrast to these they are “acyclic” (meaning: trivial on homotopy classes of maps
from “cycles” given by n-spheres) in that they are weak homotopy equivalences (by prop.
1.31).

Accordingly,  is to be called the set of standard topological generating acyclic

cofibrations.
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Lemma 1.43. For  a CW-complex (def. 1.38), then its inclusion →⎯⎯⎯⎯
( , )

×  into its standard
cylinder (def. 1.22) is a -relative cell complex (def. 1.41, def. 1.42).

Proof. First erect a cylinder over all 0-cells

∐ ∈ ⟶

↓ (po) ↓

∐ ∈ ⟶

.

Assume then that the cylinder over all -cells of  has been erected using attachment from .

Then the union of any ( + 1)-cell  of  with the cylinder over its boundary is homeomorphic to
+  and is like the cylinder over the cell “with end and interior removed”. Hence via attaching

along + → + ×  the cylinder over  is erected.  ▮

Lemma 1.44. The maps ↪ ×  in def. 1.42 are finite relative cell complexes, def. 1.38. In
other words, the elements of  are -relative cell complexes.

Proof. There is a homeomorphism

=
( , ) ↓ ↓

× ≃ +

such that the map on the right is the inclusion of one hemisphere into the boundary n-sphere of
+ . This inclusion is the result of attaching two cells:

− ⟶

↓ (po) ↓

⟶

↓=

⟶

+ ↓ (po) ↓

+ ⟶ +

.

here the top pushout is the one from example 1.14.  ▮

Lemma 1.45. Every -relative cell complex (def. 1.42, def. 1.41) is a weak homotopy

equivalence, def. 1.30.

Proof. Let ⟶ ^ = lim←⎯⎯ ≤
 be a -relative cell complex.

First observe that with the elements ↪ ×  of  being homotopy equivalences for all ∈ ℕ

(by example 1.29), each of the stages ⟶ +  in the relative cell complex is also a homotopy
equivalence. We make this fully explicit:

By definition, such a stage is a pushout of the form

⊔
∈

⟶

⊔
∈

( , )
↓ (po) ↓

⊔
∈

× ⟶ +

.
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Then the fact that the projections : × →  are strict left inverses to the inclusions (id, )

gives a commuting square of the form

⊔
∈

⟶

⊔
∈

( , )
↓ ↓

⊔
∈

×

⊔
∈ ↓ ↓

⊔
∈

⟶

and so the universal property of the colimit (pushout) +  gives a factorization of the identity
morphism on the right through +

⊔
∈

⟶

⊔
∈

( , )
↓ ↓

⊔
∈

× ⟶ +

⊔
∈ ↓ ↓

⊔
∈

⟶

which exhibits + →  as a strict left inverse to → + . Hence it is now sufficient to show
that this is also a homotopy right inverse.

To that end, let

: × ⟶ ×

be the left homotopy that exhibits  as a homotopy right inverse to  by example 1.29. For

each ∈ [0, 1] consider the commuting square

⊔
∈

⟶

↓ ↓

⊔
∈

× +

( −, )
↓ ↓

⊔
∈

× ⟶ +

.

Regarded as a cocone under the span in the top left, the universal property of the colimit
(pushout) +  gives a continuous function

( −, ) : + ⟶ +

for each ∈ [0, 1]. For = 0 this construction reduces to the provious one in that
( −, 0) : + → → +  is the composite which we need to homotope to the identity; while
( −, 1) is the identity. Since (−, ) is clearly also continuous in  it constitutes a continuous

function

: + × ⟶ +

which exhibits the required left homotopy.

So far this shows that each stage → +  in the transfinite composition defining ^ is a
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homotopy equivalence, hence, by prop. 1.31, a weak homotopy equivalence.

This means that all morphisms in the following diagram (notationally suppressing basepoints
and showing only the finite stages)

( ) ⟶≃ ( ) ⟶≃ ( ) ⟶≃ ( ) ⟶≃ ⋯

≃ ↘ ↓≃ ↙≃ ⋯

lim←⎯⎯ ( )

are isomorphisms.

Moreover, lemma 1.40 gives that every representative and every null homotopy of elements in

(^) already exists at some finite stage . This means that also the universally induced
morphism

lim←⎯⎯ ( ) ⟶≃ (^)

is an isomorphism. Hence the composite ( ) ⟶≃ (^) is an isomorphism.  ▮

Fibrations

Given a relative -cell complex : → , def. 1.41, it is typically interesting to study the extension
problem along , i.e. to ask which topological spaces  are such that every continuous function

: ⟶  has an extension ˜  along 

⟶

↓ ↗∃ ˜ .

If such extensions exists, it means that  is sufficiently “spread out” with respect to the maps in
. More generally one considers this extension problem fiberwise, i.e. with both  and  (hence

also ) equipped with a map to some base space :

Definition 1.46. Given a category  and a sub-class ⊂ Mor( ) of its morphisms, then a
morphism : ⟶  in  is said to have the right lifting property against the morphisms in  if
every commuting diagram in  of the form

⟶

↓ ↓

⟶

,

with ∈ , has a lift ℎ, in that it may be completed to a commuting diagram of the form

⟶

↓ ↗ ↓

⟶

.

We will also say that  is a -injective morphism if it satisfies the right lifting property
against .

Definition 1.47. A continuous function : ⟶  is called a Serre fibration if it is a
-injective morphism; i.e. if it has the right lifting property, def. 1.46, against all topological

generating acylic cofibrations, def. 1.42; hence if for every commuting diagram of continuous
functions of the form
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⟶

( , ) ↓ ↓

× ⟶

,

has a lift ℎ, in that it may be completed to a commuting diagram of the form

⟶

( , ) ↓ ↗ ↓

× ⟶

.

Remark 1.48. Def. 1.47 says, in view of the definition of left homotopy, that a Serre fibration
is a map with the property that given a left homotopy, def. 1.23, between two functions into
its codomain, and given a lift of one the two functions through , then also the homotopy
between the two lifts. Therefore the condition on a Serre fibration is also called the homotopy
lifting property for maps whose domain is an n-disk.

More generally one may ask functions  to have such homotopy lifting property for functions
with arbitrary domain. These are called Hurewicz fibrations.

Remark 1.49. The precise shape of  and ×  in def. 1.47 turns out not to actually matter
much for the nature of Serre fibrations. We will eventually find below (prop. 3.5) that what
actually matters here is only that the inclusions ↪ ×  are relative cell complexes (lemma
1.44) and weak homotopy equivalences (prop. 1.31) and that all of these may be generated
from them in a suitable way.

But for simple special cases this is readily seen directly, too. Notably we could replace the
n-disks in def. 1.47 with any homeomorphic topological space. A choice important in the
comparison to the classical model structure on simplicial sets (below) is to instead take the
topological n-simplices . Hence a Serre fibration is equivalently characterized as having lifts
in all diagrams of the form

⟶
( , ) ↓ ↓

× ⟶

.

Other deformations of the -disks are useful in computations, too. For instance there is a
homeomorphism from the -disk to its “cylinder with interior and end removed”, formally:

( × {0}) ∪ ( ∂ × ) ≃

↓ ↓

× ≃ ×

and hence  is a Serre fibration equivalently also if it admits lifts in all diagrams of the form

( × {0}) ∪ ( ∂ × ) ⟶

( , ) ↓ ↓

× ⟶

.

The following is a general fact about closure of morphisms defined by lifting properties which we
prove in generality below as prop. 2.10.

Proposition 1.50. A Serre fibration, def. 1.47 has the right lifting property against all retracts
(see remark 2.12) of -relative cell complexes (def. 1.42, def. 1.38).

The following statement is foreshadowing the long exact sequences of homotopy groups (below)
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induced by any fiber sequence, the full version of which we come to below (example 4.37) after
having developed more of the abstract homotopy theory.

Proposition 1.51. Let : ⟶  be a Serre fibration, def. 1.47, let : * →  be any point and
write

↪ ⟶

for the fiber inclusion over that point. Then for every choice : * →  of lift of the point 
through , the induced sequence of homotopy groups

•( , ) ⟶*
•( , ) ⟶*

•( )

is exact, in that the kernel of 
*
 is canonically identified with the image of *:

ker(
*
) ≃ im( *) .

Proof. It is clear that the image of * is in the kernel of 
*
 (every sphere in ↪  becomes

constant on , hence contractible, when sent forward to ).

For the converse, let [ ] ∈ •( , ) be represented by some : − → . Assume that [ ] is in the
kernel of 

*
. This means equivalently that  fits into a commuting diagram of the form

− ⟶

↓ ↓

⟶

,

where  is the contracting homotopy witnessing that 
*
[ ] = 0.

Now since  is a lift of , there exists a left homotopy

: ⇒ const

as follows:

− ⟶

↓ ↓

⟶

↓( , ) ↓

→⎯⎯⎯⎯
( , )

× ⟶

↓ ↓

* ⟶

(for instance: regard  as embedded in ℝ  such that 0 ∈ ℝ  is identified with the basepoint on
the boundary of  and set (⇀, ) ≔ ( ⇀)).

The pasting of the top two squares that have appeared this way is equivalent to the following
commuting square

− ⟶ ⟶

( , ) ↓ ↓

− × →⎯⎯⎯⎯
( , )

× ⟶

.
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Because  is a Serre fibration and by lemma 1.43 and prop. 1.50, this has a lift

˜ : − × ⟶ .

Notice that ˜  is a basepoint preserving left homotopy from = ˜ |  to some ′ ≔ ˜ | . Being

homotopic, they represent the same element of − ( , ):

[ ′ ] = [ ] .

But the new representative ′  has the special property that its image in  is not just trivializable,
but trivialized: combining ˜  with the previous diagram shows that it sits in the following
commuting diagram

′ : − →⎯⎯⎯⎯
( , ) − × ⟶

˜

↓ ↓( , ) ↓

→⎯⎯⎯⎯
( , )

× ⟶

↓ ↓

* ⟶

.

The commutativity of the outer square says that 
*

′  is constant, hence that ′  is entirely

contained in the fiber . Said more abstractly, the universal property of fibers gives that ′

factors through ↪ , hence that [ ′ ] = [ ] is in the image of *.  ▮

The following lemma 1.52, together with lemma 1.40 above, are the only two statements of the
entire development here that crucially involve the concrete particular nature of topological
spaces (“point-set topology”), everything beyond that is general abstract homotopy theory.

Lemma 1.52. The continuous functions with the right lifting property, def. 1.46 against the set
= { − ↪ } of topological generating cofibrations, def. 1.37, are precisely those which

are both weak homotopy equivalences, def. 1.30 as well as Serre fibrations, def. 1.47.

Proof. We break this up into three sub-statements:

A) -injective morphisms are in particular weak homotopy equivalences

Let : ^ →  have the right lifting property against 

− ⟶ ^

↓ ∃ ↗ ↓

⟶

We check that the lifts in these diagrams exhibit •( ) as being an isomorphism on all homotopy
groups, def. 1.26:

For = 0 the existence of these lifts says that every point of  is in the image of , hence that

(^) → ( ) is surjective. Let then = * ∐ * ⟶ ^ be a map that hits two connected
components, then the existence of the lift says that if they have the same image in ( ) then

they were already the same connected component in ^. Hence (^) → ( ) is also injective and
hence is a bijection.

Similarly, for ≥ 1, if → ^ represents an element in (^) that becomes trivial in ( ), then
the existence of the lift says that it already represented the trivial element itself. Hence

(^) → ( ) has trivial kernel and so is injective.
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Finally, to see that (^) → ( ) is also surjective, hence bijective, observe that every elements
in ( ) is equivalently represented by a commuting diagram of the form

− ⟶ * ⟶ ^

↓ ↓ ↓

⟶ =

and so here the lift gives a representative of a preimage in (^).

B) -injective morphisms are in particular Serre fibrations

By an immediate closure property of lifting problems (we spell this out in generality as prop.
2.10, cor. 2.11 below) an -injective morphism has the right lifting property against all
relative cell complexes, and hence, by lemma 1.44, it is also a -injective morphism, hence a

Serre fibration.

C) Acyclic Serre fibrations are in particular -injective morphisms

(Hirschhorn 15, section 6).

Let : →  be a Serre fibration that induces isomorphisms on homotopy groups. In degree 0
this means that  is an isomorphism on connected components, and this means that there is a
lift in every commuting square of the form

− = ∅ ⟶

↓ ↓

= * ⟶

(this is ( ) being surjective) and in every commuting square of the form

⟶

↓ ↓

= * ⟶

(this is ( ) being injective). Hence we are reduced to showing that for ≥ 2 every diagram of
the form

− ⟶

↓ ↓

⟶

has a lift.

To that end, pick a basepoint on −  and write  and  for its images in  and , respectively

Then the diagram above expresses that 
*
[ ] = 0 ∈ − ( , ) and hence by assumption on  it

follows that [ ] = 0 ∈ − ( , ), which in turn mean that there is ′  making the upper triangle of
our lifting problem commute:

− ⟶

↓ ↗ .

It is now sufficient to show that any such ′  may be deformed to a ′  which keeps making this
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upper triangle commute but also makes the remaining lower triangle commute.

To that end, notice that by the commutativity of the original square, we already have at least
this commuting square:

− ⟶

↓ ↓ ∘

⟶

.

This induces the universal map ( , ∘ ′) from the pushout of its cospan in the top left, which is
the n-sphere (see this example):

− ⟶

↓ (po) ↓ ∘

⟶

↘( , ∘ )

.

This universal morphism represents an element of the th homotopy group:

[( , ∘ ′ )] ∈ ( , ) .

By assumption that  is a weak homotopy equivalence, there is a [ ] ∈ ( , ) with

*
[ ] = [( , ∘ ′)]

hence on representatives there is a lift up to homotopy

↗⇓ ↓

→⎯⎯⎯⎯⎯⎯
( , ∘ )

.

Morever, we may always find  of the form ( ′ , ′ ) for some ′ : → . (“Paste ′  to the reverse
of .”)

Consider then the map

→⎯⎯⎯⎯⎯⎯
( ∘ , )

and observe that this represents the trivial class:

[( ∘ ′ , )] = [( ∘ ′ , ∘ ′ )] + [( ∘ ′ , )]

=
*
[( ′ , ′ )]

= [ ]

+ [( ∘ ′ , )]

= [( , ∘ ′)] + [( ∘ ′ , )]

= 0

.

This means equivalently that there is a homotopy

: ∘ ′ ⇒

fixing the boundary of the -disk.

Hence if we denote homotopy by double arrows, then we have now achieved the following
situation
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− ⟶

↓ ↗
⇓

↓

⟶

and it now suffices to show that  may be lifted to a homotopy of just ′ , fixing the boundary,
for then the resulting homotopic ″  is the desired lift.

To that end, notice that the condition that : × →  fixes the boundary of the -disk means
equivalently that it extends to a morphism

− ⊔
− ×

× →⎯⎯⎯⎯⎯
( ∘ , )

out of the pushout that identifies in the cylinder over  all points lying over the boundary.
Hence we are reduced to finding a lift in

⟶

↓ ↓

− ⊔
− ×

× →⎯⎯⎯⎯⎯
( ∘ , )

.

But inspection of the left map reveals that it is homeomorphic again to → × , and hence
the lift does indeed exist.  ▮

2. Abstract homotopy theory

In the above we discussed three classes of continuous functions between topological spaces

weak homotopy equivalences;1. 

relative cell complexes;2. 

Serre fibrations3. 

and we saw first aspects of their interplay via lifting properties.

A fundamental insight due to (Quillen 67) is that in fact all constructions in homotopy theory are
elegantly expressible via just the abstract interplay of these classes of morphisms. This was
distilled in (Quillen 67) into a small set of axioms called a model category structure (because
it serves to make all objects be models for homotopy types.)

This abstract homotopy theory is the royal road for handling any flavor of homotopy theory, in
particular the stable homotopy theory that we are after in Part 1. Here we discuss the basic
constructions and facts in abstract homotopy theory, then below we conclude section P1) by
showing that the above system of classes of maps of topological spaces is indeed an example.

Literature (Dwyer-Spalinski 95)

Definition 2.1. A category with weak equivalences is

a category ;1. 

a sub-class ⊂ Mor( ) of its morphisms;2. 

such that

 contains all the isomorphisms of ;1. 
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 is closed under two-out-of-three: in every commuting diagram in  of the form

↗ ↘

⟶

if two of the three morphisms are in , then so is the third.

2. 

Remark 2.2. It turns out that a category with weak equivalences, def. 2.1, already determines
a homotopy theory: the one given given by universally forcing weak equivalences to become
actual homotopy equivalences. This may be made precise and is called the simplicial
localization of a category with weak equivalences (Dwyer-Kan 80a, Dwyer-Kan 80b,
Dwyer-Kan 80c). However, without further auxiliary structure, these simplicial localizations are
in general intractable. The further axioms of a model category serve the sole purpose of
making the universal homotopy theory induced by a category with weak equivalences be
tractable:

Definition 2.3. A model category is

a category  with all limits and colimits (def. 1.1);1. 

three sub-classes , Fib, Cof ⊂ Mor( ) of its morphisms;2. 

such that

the class  makes  into a category with weak equivalences, def. 2.1;1. 

The pairs ( ∩ Cof , Fib) and (Cap , ∩ Fib) are both weak factorization systems, def. 2.5.2. 

One says:

elements in  are weak equivalences,

elements in Cof are cofibrations,

elements in Fib are fibrations,

elements in ∩ Cof are acyclic cofibrations,

elements in ∩ Fib are acyclic fibrations.

The form of def. 2.3 is due to (Joyal, def. E.1.2). It implies various other conditions that (Quillen
67) demands explicitly, see prop. 2.10 and prop. 2.14 below.

We now dicuss the concept of weak factorization systems appearing in def. 2.3.

Factorization systems

Definition 2.4. Let  be any category. Given a diagram in  of the form

⟶

↓

then an extension of the morphism  along the morphism  is a completion to a commuting
diagram of the form
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⟶

↓ ↗ ˜ .

Dually, given a diagram of the form

↓

⟶

then a lift of  through  is a completion to a commuting diagram of the form

˜ ↗ ↓

⟶

.

Combining these cases: given a commuting square

⟶

↓ ↓

⟶

then a lifting in the diagram is a completion to a commuting diagram of the form

⟶

↓ ↗ ↓

⟶

.

Given a sub-class of morphisms ⊂ Mor( ), then

a morphism  as above is said to have the right lifting property against  or to be a

-injective morphism if in all square diagrams with  on the right and any ∈  on

the left a lift exists.

dually:

a morphism  is said to have the left lifting property against  or to be a

-projective morphism if in all square diagrams with  on the left and any ∈  on

the left a lift exists.

Definition 2.5. A weak factorization system (WFS) on a category  is a pair (Proj, Inj) of
classes of morphisms of  such that

Every morphism : →  of  may be factored as the composition of a morphism in Proj
followed by one in Inj

: →⎯⎯⎯⎯
∈

→⎯⎯⎯
∈

.

1. 

The classes are closed under having the lifting property, def. 2.4, against each other:

Proj is precisely the class of morphisms having the left lifting property against every
morphisms in Inj;

1. 

2. 
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Inj is precisely the class of morphisms having the right lifting property against every
morphisms in Proj.

2. 

Definition 2.6. For  a category, a functorial factorization of the morphisms in  is a functor

fact : [ ] ⟶ [ ]

which is a section of the composition functor : [ ] → [ ].

Remark 2.7. In def. 2.6 we are using the following standard notation, see at simplex category
and at nerve of a category:

Write [1] = {0 → 1} and [2] = {0 → 1 → 2} for the ordinal numbers, regarded as posets and hence
as categories. The arrow category Arr( ) is equivalently the functor category

[ ] ≔ Funct( [1], ), while [ ] ≔ Funct( [2], ) has as objects pairs of composable morphisms
in . There are three injective functors : [1] → [2], where  omits the index  in its image. By

precomposition, this induces functors : [ ] ⟶ [ ]. Here

 sends a pair of composable morphisms to their composition;

 sends a pair of composable morphisms to the first morphisms;

 sends a pair of composable morphisms to the second morphisms.

Definition 2.8. A weak factorization system, def. 2.5, is called a functorial weak
factorization system if the factorization of morphisms may be chosen to be a functorial
factorization fact, def. 2.6, i.e. such that ∘ fact lands in Proj and ∘ fact in Inj.

Remark 2.9. Not all weak factorization systems are functorial, def. 2.8, although most
(including those produced by the small object argument (prop. 2.17 below), with due care)
are.

Proposition 2.10. Let  be a category and let ⊂ Mor( ) be a class of morphisms. Write Proj
and Inj, respectively, for the sub-classes of -projective morphisms and of -injective
morphisms, def. 2.4. Then:

Both classes contain the class of isomorphism of .1. 

Both classes are closed under composition in .

Proj is also closed under transfinite composition.

2. 

Both classes are closed under forming retracts in the arrow category [ ] (see remark
2.12).

3. 

Proj is closed under forming pushouts of morphisms in  (“cobase change”).

Inj is closed under forming pullback of morphisms in  (“base change”).

4. 

Proj is closed under forming coproducts in [ ].

Inj is closed under forming products in [ ].

5. 

Proof. We go through each item in turn.

containing isomorphisms

Given a commuting square
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→

∈ ↓ ↓

⟶

with the left morphism an isomorphism, then a lift is given by using the inverse of this

isomorphism ∘ −
. Hence in particular there is a lift when ∈  and so ∈ Proj. The other

case is formally dual.

closure under composition

Given a commuting square of the form

⟶

↓ ↓ ∈

∈ ↓ ↓ ∈

⟶

consider its pasting decomposition as

⟶

↓ ↘ ↓ ∈

∈ ↓ ↓ ∈

⟶

.

Now the bottom commuting square has a lift, by assumption. This yields another pasting
decomposition

⟶

∈ ↓ ↓ ∈

↓ ↗ ↓ ∈

⟶

and now the top commuting square has a lift by assumption. This is now equivalently a lift in the
total diagram, showing that ∘  has the right lifting property against  and is hence in Inj.

The case of composing two morphisms in Proj is formally dual. From this the closure of Proj
under transfinite composition follows since the latter is given by colimits of sequential
composition and successive lifts against the underlying sequence as above constitutes a cocone,
whence the extension of the lift to the colimit follows by its universal property.

closure under retracts

Let  be the retract of an ∈ Proj, i.e. let there be a commuting diagram of the form.

id : ⟶ ⟶

↓ ↓ ∈ ↓

id : ⟶ ⟶

.

Then for
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⟶

↓ ↓ ∈

⟶

a commuting square, it is equivalent to its pasting composite with that retract diagram

⟶ ⟶ ⟶

↓ ↓ ∈ ↓ ↓ ∈

⟶ ⟶ ⟶

.

Here the pasting composite of the two squares on the right has a lift, by assumption:

⟶ ⟶ ⟶

↓ ↓ ↗ ↓ ∈

⟶ ⟶ ⟶

.

By composition, this is also a lift in the total outer rectangle, hence in the original square. Hence
 has the left lifting property against all ∈  and hence is in Proj. The other case is formally

dual.

closure under pushout and pullback

Let ∈ Inj and and let

× ⟶

* ↓ ↓

⟶

be a pullback diagram in . We need to show that *  has the right lifting property with respect
to all ∈ . So let

⟶ ×

∈ ↓ ↓
*

⟶

be a commuting square. We need to construct a diagonal lift of that square. To that end, first
consider the pasting composite with the pullback square from above to obtain the commuting
diagram

⟶ × ⟶

↓ ↓
*

↓

⟶ ⟶

.

By the right lifting property of , there is a diagonal lift of the total outer diagram

⟶

↓ ( )^
↗ ↓

⟶

.

By the universal property of the pullback this gives rise to the lift ^ in
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× ⟶

^ ↗ ↓
*

↓

⟶ ⟶

.

In order for ^ to qualify as the intended lift of the total diagram, it remains to show that

⟶ ×

↓ ^ ↗

commutes. To do so we notice that we obtain two cones with tip :

one is given by the morphisms

→ × →1. 

→ →2. 

with universal morphism into the pullback being

→ ×

the other by

→ →
^

× →1. 

→ → .2. 

with universal morphism into the pullback being

→ →
^

× .

The commutativity of the diagrams that we have established so far shows that the first and
second morphisms here equal each other, respectively. By the fact that the universal morphism
into a pullback diagram is unique this implies the required identity of morphisms.

The other case is formally dual.

closure under (co-)products

Let {( → ) ∈ Proj} ∈  be a set of elements of Proj. Since colimits in the presheaf category
[ ] are computed componentwise, their coproduct in this arrow category is the universal

morphism out of the coproduct of objects ∐ ∈  induced via its universal property by the set of

morphisms :

⊔
∈

→⎯⎯⎯⎯⎯
( ) ∈ ⊔

∈
.

Now let

⊔
∈

⟶

( ) ∈ ↓ ↓ ∈

⊔
∈

⟶

be a commuting square. This is in particular a cocone under the coproduct of objects, hence by
the universal property of the coproduct, this is equivalent to a set of commuting diagrams
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⎧

⎨

⎩

⎪

⎪

⟶

∈ ↓ ↓ ∈

⟶

⎫

⎬

⎭

⎪

⎪
∈

.

By assumption, each of these has a lift ℓ . The collection of these lifts

⎧

⎨

⎩

⎪

⎪

⟶

∈ ↓ ℓ ↗ ↓ ∈

⟶

⎫

⎬

⎭

⎪

⎪
∈

is now itself a compatible cocone, and so once more by the universal property of the coproduct,
this is equivalent to a lift (ℓ ) ∈  in the original square

⊔
∈

⟶

( ) ∈ ↓ (ℓ ) ∈ ↗ ↓ ∈

⊔
∈

⟶

.

This shows that the coproduct of the  has the left lifting property against all ∈  and is hence
in Proj. The other case is formally dual.  ▮

An immediate consequence of prop. 2.10 is this:

Corollary 2.11. Let  be a category with all small colimits, and let ⊂ Mor( ) be a sub-class of
its morphisms. Then every -injective morphism, def. 2.4, has the right lifting property, def.
2.4, against all -relative cell complexes, def. 1.41 and their retracts, remark 2.12.

Remark 2.12. By a retract of a morphism ⟶  in some category  we mean a retract of  as

an object in the arrow category [ ], hence a morphism ⟶  such that in [ ] there is a
factorization of the identity on  through 

id : ⟶ ⟶ .

This means equivalently that in  there is a commuting diagram of the form

id : ⟶ ⟶

↓ ↓ ↓

id : ⟶ ⟶

.

Lemma 2.13. In every category  the class of isomorphisms is preserved under retracts in the
sense of remark 2.12.

Proof. For

id : ⟶ ⟶

↓ ↓ ↓

id : ⟶ ⟶

.

a retract diagram and →  an isomorphism, the inverse to →  is given by the composite

⟶

↑
−

⟶

.
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  ▮

More generally:

Proposition 2.14. Given a model category in the sense of def. 2.3, then its class of weak
equivalences is closed under forming retracts (in the arrow category, see remark 2.12).

(Joyal, prop. E.1.3)

Proof. Let

id : ⟶ ⟶

↓ ↓ ↓

id: ⟶ ⟶

be a commuting diagram in the given model category, with ∈  a weak equivalence. We need
to show that then also ∈ .

First consider the case that ∈ Fib.

In this case, factor  as a cofibration followed by an acyclic fibration. Since ∈  and by
two-out-of-three (def. 2.1) this is even a factorization through an acyclic cofibration followed by
an acyclic fibration. Hence we obtain a commuting diagram of the following form:

id : ⟶ →⎯⎯⎯⎯

↓ ↓ ∈ ∩ ↓

id : ′ ⟶ ′ →⎯⎯⎯⎯⎯ ′

∈ ↓ ↓ ∈ ∩ ↓ ∈

id : ⟶ →⎯⎯⎯⎯

,

where  is uniquely defined and where  is any lift of the top middle vertical acyclic cofibration
against . This now exhibits  as a retract of an acyclic fibration. These are closed under retract
by prop. 2.10.

Now consider the general case. Factor  as an acyclic cofibration followed by a fibration and form
the pushout in the top left square of the following diagram

id : ⟶ →⎯⎯⎯⎯

∈ ∩ ↓ (po) ↓ ∈ ∩ ↓ ∈ ∩

id : ′ ⟶ ′ →⎯⎯⎯⎯ ′

∈ ↓ ↓ ∈ ↓ ∈

id : ⟶ →⎯⎯⎯⎯

,

where the other three squares are induced by the universal property of the pushout, as is the
identification of the middle horizontal composite as the identity on ′ . Since acyclic cofibrations
are closed under forming pushouts by prop. 2.10, the top middle vertical morphism is now an
acyclic fibration, and hence by assumption and by two-out-of-three so is the middle bottom
vertical morphism.

Thus the previous case now gives that the bottom left vertical morphism is a weak equivalence,
and hence the total left vertical composite is.  ▮

Lemma 2.15. (retract argument)

Consider a composite morphism
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: ⟶ ⟶ .

If  has the left lifting property against , then  is a retract of .1. 

If  has the right lifting property against , then  is a retract of .2. 

Proof. We discuss the first statement, the second is formally dual.

Write the factorization of  as a commuting square of the form

⟶

↓ ↓

=

.

By the assumed lifting property of  against  there exists a diagonal filler  making a
commuting diagram of the form

⟶

↓ ↗ ↓

=

.

By rearranging this diagram a little, it is equivalent to

=

↓ ↓

id : ⟶ ⟶

.

Completing this to the right, this yields a diagram exhibiting the required retract according to
remark 2.12:

id : = =

↓ ↓ ↓

id : ⟶ ⟶

.

  ▮

Small object argument

Given a set ⊂ Mor( ) of morphisms in some category , a natural question is how to factor any
given morphism : ⟶  through a relative -cell complex, def. 1.41, followed by a -injective
morphism, def. 1.46

: →⎯⎯⎯⎯⎯
∈ ^ →⎯⎯⎯⎯

∈
.

A first approximation to such a factorization turns out to be given simply by forming ^ =  by
attaching all possible -cells to . Namely let

( / ) ≔

⎧

⎨
⎩

⎪

⎪

dom( ) ⟶

∈ ↓ ↓

cod( ) ⟶

⎫

⎬
⎭

⎪

⎪

be the set of all ways to find a -cell attachment in , and consider the pushout ^ of the
coproduct of morphisms in  over all these:
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∐ ∈ ( / ) dom( ) ⟶

∐ ∈ ( / ) ↓ (po) ↓

∐ ∈ ( / ) cod( ) ⟶

.

This gets already close to producing the intended factorization:

First of all the resulting map →  is a -relative cell complex, by construction.

Second, by the fact that the coproduct is over all commuting squres to , the morphism  itself
makes a commuting diagram

∐ ∈ ( / ) dom( ) ⟶

∐ ∈ ( / ) ↓ ↓

∐ ∈ ( / ) cod( ) ⟶

and hence the universal property of the colimit means that  is indeed factored through that
-cell complex ; we may suggestively arrange that factorizing diagram like so:

∐ ∈ ( / ) dom( ) ⟶

↓ ↓

∐ ∈ ( / ) dom( )

∐ ∈ ( / ) ↓ ↗ ↓

∐ ∈ ( / ) cod( ) ⟶

.

This shows that, finally, the colimiting co-cone map – the one that now appears diagonally –
almost exhibits the desired right lifting of →  against the ∈ . The failure of that to hold on
the nose is only the fact that a horizontal map in the middle of the above diagram is missing:
the diagonal map obtained above lifts not all commuting diagrams of ∈  into , but only those
where the top morphism dom( ) →  factors through → .

The idea of the small object argument now is to fix this only remaining problem by iterating the
construction: next factor →  in the same way into

⟶ ⟶

and so forth. Since relative -cell complexes are closed under composition, at stage  the
resulting ⟶  is still a -cell complex, getting bigger and bigger. But accordingly, the failure
of the accompanying ⟶  to be a -injective morphism becomes smaller and smaller, for it
now lifts against all diagrams where dom( ) ⟶  factors through − ⟶ , which intuitively is
less and less of a condition as the −  grow larger and larger.

The concept of small object is just what makes this intuition precise and finishes the small object
argument. For the present purpose we just need the following simple version:

Definition 2.16. For  a category and ⊂ Mor( ) a sub-set of its morphisms, say that these
have small domains if there is an ordinal  (def. 1.15) such that for every ∈  and for every
-relative cell complex given by a transfinite composition (def. 1.17)

: → → → ⋯ → → ⋯ ⟶ ^

every morphism dom( ) ⟶ ^ factors through a stage → ^ of order < :
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↗ ↓

dom( ) ⟶ ^
.

The above discussion proves the following:

Proposition 2.17. (small object argument)

Let  be a locally small category with all small colimits. If a set ⊂ Mor( ) of morphisms has all
small domains in the sense of def. 2.16, then every morphism : ⟶  in  factors through a
-relative cell complex, def. 1.41, followed by a -injective morphism, def. 1.46

: →⎯⎯⎯⎯⎯
∈ ^ →⎯⎯⎯⎯

∈
.

(Quillen 67, II.3 lemma)

Homotopy

We discuss how the concept of homotopy is abstractly realized in model categories, def. 2.3.

Definition 2.18. Let  be a model category, def. 2.3, and ∈  an object.

A path space object Path( ) for  is a factorization of the diagonal : → ×  as

: →⎯⎯
∈

Path( ) →⎯⎯⎯⎯⎯
∈

( , )
× .

where → Path( ) is a weak equivalence and Path( ) → ×  is a fibration.

A cylinder object Cyl( ) for  is a factorization of the codiagonal (or “fold map”)
∇ : ⊔ →  as

∇ : ⊔ →⎯⎯⎯⎯
∈

( , )
Cyl( ) →⎯⎯

∈
.

where Cyl( ) →  is a weak equivalence. and ⊔ → Cyl( ) is a cofibration.

Remark 2.19. For every object ∈  in a model category, a cylinder object and a path space
object according to def. 2.18 exist: the factorization axioms guarantee that there exists

a factorization of the codiagonal as

∇ : ⊔ →⎯⎯⎯
∈

Cyl( ) →⎯⎯⎯⎯⎯⎯
∈ ∩

1. 

a factorization of the diagonal as

: →⎯⎯⎯⎯⎯⎯
∈ ∩

Path( ) →⎯⎯⎯
∈

× .

2. 

The cylinder and path space objects obtained this way are actually better than required by def.
2.18: in addition to Cyl( ) →  being just a weak equivalence, for these this is actually an
acyclic fibration, and dually in addition to → Path( ) being a weak equivalence, for these it is
actually an acyclic cofibrations.

Some authors call cylinder/path-space objects with this extra property “very good”
cylinder/path-space objects, respectively.

One may also consider dropping a condition in def. 2.18: what mainly matters is the weak
equivalence, hence some authors take cylinder/path-space objects to be defined as in def.
2.18 but without the condition that ⊔ → Cyl( ) is a cofibration and without the condition
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that Path( ) →  is a fibration. Such authors would then refer to the concept in def. 2.18 as
“good” cylinder/path-space objects.

The terminology in def. 2.18 follows the original (Quillen 67, I.1 def. 4). With the induced
concept of left/right homotopy below in def. 2.22, this admits a quick derivation of the key
facts in the following, as we spell out below.

Lemma 2.20. Let  be a model category. If ∈  is cofibrant, then for every cylinder object
Cyl( ) of , def. 2.18, not only is ( , ) : ⊔ →  a cofibration, but each

, : ⟶ Cyl( )

is an acyclic cofibration separately.

Dually, if ∈  is fibrant, then for every path space object Path( ) of , def. 2.18, not only is
( , ) : Path( ) → ×  a cofibration, but each

, : Path( ) ⟶

is an acyclic fibration separately.

Proof. We discuss the case of the path space object. The other case is formally dual.

First, that the component maps are weak equivalences follows generally: by definition they have
a right inverse Path( ) →  and so this follows by two-out-of-three (def. 2.1).

But if  is fibrant, then also the two projection maps out of the product × →  are fibrations,
because they are both pullbacks of the fibration → *

× ⟶

↓ (pb) ↓

⟶ *

.

hence : Path( ) → × →  is the composite of two fibrations, and hence itself a fibration, by

prop. 2.10.  ▮

Path space objects are very non-unique as objects up to isomorphism:

Example 2.21. If ∈  is a fibrant object in a model category, def. 2.3, and for Path ( ) and
Path ( ) two path space objects for , def. 2.18, then the fiber product Path ( ) × Path ( ) is
another path space object for : the pullback square

⟶ ×

↓ ↓

Path ( ) × Path ( ) ⟶ Path ( ) × Path ( )

∈ ↓ (pb) ↓ ∈

× × →⎯⎯⎯⎯⎯⎯⎯
( , , )

× × ×

↓ ∈

( , )
↓( , )

× = ×

gives that the induced projection is again a fibration. Moreover, using lemma 2.20 and
two-out-of-three (def. 2.1) gives that → Path ( ) × Path ( ) is a weak equivalence.

For the case of the canonical topological path space objects of def 1.34, with
Path ( ) = Path ( ) = = [ , ] then this new path space object is ∨ = [ , ], the mapping
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space out of the standard interval of length 2 instead of length 1.

Definition 2.22. Let , : ⟶  be two parallel morphisms in a model category.

A left homotopy : ⇒  is a morphism : Cyl( ) ⟶  from a cylinder object of , def.
2.18, such that it makes this diagram commute:

⟶ Cyl( ) ⟵

↘ ↓ ↙ .

A right homotopy : ⇒  is a morphism : → Path( ) to some path space object of ,
def. 2.18, such that this diagram commutes:

↙ ↓ ↘

⟵ Path( ) ⟶

.

Lemma 2.23. Let , : →  be two parallel morphisms in a model category.

Let  be cofibrant. If there is a left homotopy ⇒  then there is also a right homotopy
⇒  (def. 2.22) with respect to any chosen path space object.

1. 

Let  be fibrant. If there is a right homotopy ⇒  then there is also a left homotopy
⇒  with respect to any chosen cylinder object.

2. 

In particular if  is cofibrant and  is fibrant, then by going back and forth it follows that every
left homotopy is exhibited by every cylinder object, and every right homotopy is exhibited by
every path space object.

Proof. We discuss the first case, the second is formally dual. Let : Cyl( ) ⟶  be the given left
homotopy. Lemma 2.20 implies that we have a lift ℎ in the following commuting diagram

⟶
∘

Path( )

∈ ∩ ↓ ↗ ↓ ∈

,

Cyl( ) →⎯⎯⎯⎯⎯
( ∘ , )

×

,

where on the right we have the chosen path space object. Now the composite ˜ ≔ ℎ ∘  is a right
homotopy as required:

Path( )

↗ ↓ ∈

,

⟶ Cyl( ) →⎯⎯⎯⎯⎯
( ∘ , )

×

.

  ▮

Proposition 2.24. For  a cofibrant object in a model category and  a fibrant object, then the
relations of left homotopy ⇒  and of right homotopy ⇒  (def. 2.22) on the hom set
Hom( , ) coincide and are both equivalence relations.

Proof. That both relations coincide under the (co-)fibrancy assumption follows directly from
lemma 2.23.

The symmetry and reflexivity of the relation is obvious.
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That right homotopy (hence also left homotopy) with domain  is a transitive relation follows
from using example 2.21 to compose path space objects.  ▮

The homotopy category

We discuss the construction that takes a model category, def. 2.3, and then universally forces all
its weak equivalences into actual isomorphisms.

Definition 2.25. Let  be a model category, def. 2.3. Write Ho( ) for the category whose

objects are those objects of  which are both fibrant and cofibrant;

morphisms are the homotopy classes of morphisms of , hence the equivalence classes of
morphism under the equivalence relation of prop. 2.24;

and whose composition operation is given on representatives by composition in .

This is, up to equivalence of categories, the homotopy category of the model category .

Proposition 2.26. Def. 2.25 is well defined, in that composition of morphisms between fibrant-
cofibrant objects in  indeed passes to homotopy classes.

Proof. Fix any morphism →  between fibrant-cofibrant objects. Then for precomposition

( −) ∘ [ ] : Hom ( )( , ) → Hom ( ( , ))

to be well defined, we need that with ( ∼ ℎ) : →  also ( ∼ ℎ) : → . But by prop 2.24 we
may take the homotopy ∼ to be exhibited by a right homotopy : → Path( ), for which case the
statement is evident from this diagram:

↗ ↑

⟶ ⟶ Path( )

↘ ↓

.

For postcomposition we may choose to exhibit homotopy by left homotopy and argue dually.  ▮

We now spell out that def. 2.25 indeed satisfies the universal property that defines the
localization of a category with weak equivalences at its weak equivalences.

Lemma 2.27. (Whitehead theorem in model categories)

Let  be a model category. A weak equivalence between two objects which are both fibrant
and cofibrant is a homotopy equivalence.

Proof. By the factorization axioms in the model category  and by two-out-of-three (def. 2.1),
every weak equivalence : ⟶  factors through an object  as an acyclic cofibration followed by
an acyclic fibration. In particular it follows that with  and  both fibrant and cofibrant, so is ,
and hence it is sufficient to prove that acyclic (co-)fibrations between such objects are homotopy
equivalences.

So let : ⟶  be an acyclic fibration between fibrant-cofibrant objects, the case of acyclic
cofibrations is formally dual. Then in fact it has a genuine right inverse given by a lift −  in the
diagram
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∅ →

∈ ↓
−

↗ ↓ ∈ ∩

=

.

To see that −  is also a left inverse up to left homotopy, let Cyl( ) be any cylinder object on 
(def. 2.18), hence a factorization of the codiagonal on  as a cofibration followed by a an acyclic
fibration

⊔ ⟶ Cyl( ) ⟶

and consider the commuting square

⊔ →⎯⎯⎯⎯⎯⎯⎯⎯
( − ∘ , )

∈ ↓ ↓∈ ∩

Cyl( ) →⎯⎯
∘

,

which commutes due to −  being a genuine right inverse of . By construction, this commuting
square now admits a lift , and that constitutes a left homotopy : − ∘ ⇒ id.  ▮

Definition 2.28. Given a model category , consider a choice for each object ∈  of

a factorization ∅ →⎯⎯⎯
∈

→⎯⎯⎯⎯⎯⎯
∈ ∩

 of the initial morphism, such that when  is already

cofibrant then = id ;

1. 

a factorization →⎯⎯⎯⎯⎯⎯
∈ ∩

→⎯⎯⎯
∈ *  of the terminal morphism, such that when  is already

fibrant then = id .

2. 

Write then

, : ⟶ Ho( )

for the functor to the homotopy category, def. 2.25, which sends an object  to the object 
and sends a morphism : ⟶  to the homotopy class of the result of first lifting in

∅ ⟶

↓ ↗ ↓

→⎯⎯⎯⎯
∘

and then lifting (here: extending) in

→⎯⎯⎯⎯⎯⎯
∘

↓ ↗ ↓

⟶ *

.

Lemma 2.29. The construction in def. 2.28 is indeed well defined.

Proof. First of all, the object  is indeed both fibrant and cofibrant (as well as related by a
zig-zag of weak equivalences to ):
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∅
∈ ↓ ↘ ∈

→⎯⎯⎯⎯⎯⎯
∈ ∩

→⎯⎯⎯
∈ *

∈ ↓

.

Now to see that the image on morphisms is well defined. First observe that any two choices
( )  of the first lift in the definition are left homotopic to each other, exhibited by lifting in

⊔ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
(( ) ,( ) )

∈ ↓ ↓ ∈ ∩

Cyl( ) →⎯⎯⎯⎯⎯⎯⎯⎯
∘ ∘

.

Hence also the composites ∘ ( )  are left homotopic to each other, and since their domain is

cofibrant, then by lemma 2.23 they are also right homotopic by a right homotopy . This implies
finally, by lifting in

⟶ Path( )

∈ ∩ ↓ ↓ ∈

→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( ( ) , ( ) )

×

that also ( )  and ( )  are right homotopic, hence that indeed  represents a well-defined

homotopy class.

Finally to see that the assignment is indeed functorial, observe that the commutativity of the
lifting diagrams for  and  imply that also the following diagram commutes

⟵ →⎯⎯

↓ ↓ ↓

⟵ →⎯⎯

.

Now from the pasting composite

⟵ →⎯⎯

↓ ↓ ↓

⟵ →⎯⎯

↓ ↓ ↓

⟵ →⎯⎯

one sees that ( ) ∘ ( ) is a lift of ∘  and hence the same argument as above gives that it
is homotopic to the chosen ( ∘ ).  ▮

For the following, recall the concept of natural isomorphism between functors: for , : ⟶
two functors, then a natural transformation : ⇒  is for each object ∈ Obj( ) a morphism

: ( ) ⟶ ( ) in , such that for each morphism : →  in  the following is a commuting

square:
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( ) ⟶ ( )

( ) ↓ ↓ ( )

( ) ⟶ ( )

.

Such  is called a natural isomorphism if its  are isomorphisms for all objects .

Definition 2.30. For  a category with weak equivalences, its localization at the weak
equivalences is, if it exists,

a category denoted [ − ]1. 

a functor

: ⟶ [ − ]

2. 

such that

 sends weak equivalences to isomorphisms;1. 

 is universal with this property, in that:

for : ⟶  any functor out of  into any category , such that  takes weak
equivalences to isomorphisms, it factors through  up to a natural isomorphism

⟶

↘ ⇓ ↗ ˜

Ho( )

and this factorization is unique up to unique isomorphism, in that for ( ˜ , ) and ( ˜ , )

two such factorizations, then there is a unique natural isomorphism : ˜ ⇒ ˜  making the
evident diagram of natural isomorphisms commute.

2. 

Theorem 2.31. For  a model category, the functor ,  in def. 2.28 (for any choice of  and )

exhibits Ho( ) as indeed being the localization of the underlying category with weak
equivalences at its weak equivalences, in the sense of def. 2.30:

=

, ↓ ↓

Ho( ) ≃ [ − ]

.

(Quillen 67, I.1 theorem 1)

Proof. First, to see that that ,  indeed takes weak equivalences to isomorphisms: By two-out-

of-three (def. 2.1) applied to the commuting diagrams shown in the proof of lemma 2.29, the
morphism  is a weak equivalence if  is:

⟵
≃

→⎯⎯
≃

↓ ↓ ↓

⟵≃ →⎯⎯≃

With this the “Whitehead theorem for model categories”, lemma 2.27, implies that 
represents an isomorphism in Ho( ).
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Now let : ⟶  be any functor that sends weak equivalences to isomorphisms. We need to
show that it factors as

⟶

↘ ⇓ ↗ ˜

Ho( )

uniquely up to unique natural isomorphism. Now by construction of  and  in def. 2.28, ,  is

the identity on the full subcategory of fibrant-cofibrant objects. It follows that if ˜  exists at all, it

must satisfy for all →  with  and  both fibrant and cofibrant that

˜ ([ ]) ≃ ( ) ,

(hence in particular ˜ ( , ( )) = ( )).

But by def. 2.25 that already fixes ˜  on all of Ho( ), up to unique natural isomorphism. Hence it
only remains to check that with this definition of ˜  there exists any natural isomorphism  filling
the diagram above.

To that end, apply  to the above commuting diagram to obtain

( ) ←⎯⎯⎯⎯
( )

( ) →⎯⎯⎯⎯⎯
( )

( )

( ) ↓ ↓ ( ) ↓ ( )

( ) ←⎯⎯⎯⎯
( )

( ) →⎯⎯⎯⎯⎯
( )

( )

.

Here now all horizontal morphisms are isomorphisms, by assumption on . It follows that
defining ≔ ( ) ∘ ( ) −  makes the required natural isomorphism:

: ( ) →⎯⎯⎯⎯⎯⎯
( ) −

( ) →⎯⎯⎯⎯⎯
( )

( ) = ˜ ( , ( ))

( ) ↓ ↓ ( ) ↓
˜ ( , ( ))

: ( ) →⎯⎯⎯⎯⎯⎯
( ) − ( ) →⎯⎯⎯⎯⎯

( )
( ) = ˜ ( , ( ))

.

  ▮

Remark 2.32. Due to theorem 2.31 we may suppress the choices of cofibrant  and fibrant
replacement  in def. 2.28 and just speak of the localization functor

: ⟶ Ho( )

up to natural isomorphism.

In general, the localization [ − ] of a category with weak equivalences ( , ) (def. 2.30) may
invert more morphisms than just those in . However, if the category admits the structure of a
model category ( , , Cof, Fib), then its localiztion precisely only inverts the weak equivalences.

Proposition 2.33. Let  be a model category (def. 2.3) and let : ⟶ Ho( ) be its localization
functor (def. 2.28, theorem 2.31). Then a morphism  in  is a weak equivalence precisely if

( ) is an isomorphism in Ho( ).

(e.g. Goerss-Jardine 96, II, prop 1.14)

While the construction of the homotopy category in def. 2.25 combines the restriction to good
(fibrant/cofibrant) objects with the passage to homotopy classes of morphisms, it is often useful
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to consider intermediate stages:

Definition 2.34. Given a model category , write

↙ ↘

↘ ↙

for the system of full subcategory inclusions of:

the category of fibrant objects1. 

the category of cofibrant objects ,2. 

the category of fibrant-cofibrant objects ,3. 

all regarded a categories with weak equivalences (def. 2.1), via the weak equivalences
inherited from , which we write ( , ), ( , ) and ( , ).

Remark 2.35. Of course the subcategories in def. 2.34 inherit more structure than just that of
categories with weak equivalences from .  and  each inherit “half” of the factorization
axioms. One says that  has the structure of a “fibration category” called a “Brown-category
of fibrant objects”, while  has the structure of a “cofibration category”.

We discuss properties of these categories of (co-)fibrant objects below in Homotopy fiber
sequences.

The proof of theorem 2.31 immediately implies the following:

Corollary 2.36. For  a model category, the restriction of the localization functor : ⟶ Ho( )

from def. 2.28 (using remark 2.32) to any of the sub-categories with weak equivalences of
def. 2.34

↙ ↘

↘ ↙

↓

Ho( )

exhibits Ho( ) equivalently as the localization also of these subcategories with weak
equivalences, at their weak equivalences. In particular there are equivalences of categories

Ho( ) ≃ [ − ] ≃ [ − ] ≃ [ − ] ≃ [ − ] .

The following says that for computing the hom-sets in the homotopy category, even a mixed
variant of the above will do; it is sufficient that the domain is cofibrant and the codomain is
fibrant:

Lemma 2.37. For , ∈  with  cofibrant and  fibrant, and for ,  fibrant/cofibrant
replacement functors as in def. 2.28, then the morphism

Hom ( )( , ) = Hom ( , )/∼ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( , )

Hom ( , )/∼
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(on homotopy classes of morphisms, well defined by prop. 2.24) is a natural bijection.

(Quillen 67, I.1 lemma 7)

Proof. We may factor the morphism in question as the composite

Hom ( , )/∼ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( , )/∼ Hom ( , )/∼ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

( , )/∼ Hom ( , )/∼ .

This shows that it is sufficient to see that for  cofibrant and  fibrant, then

Hom (id , )/∼ : Hom ( , )/∼ → Hom ( , )/∼

is an isomorphism, and dually that

Hom ( , id )/∼ : Hom ( , )/∼ → Hom ( , )/∼

is an isomorphism. We discuss this for the former; the second is formally dual:

First, that Hom (id , ) is surjective is the lifting property in

∅ ⟶

∈ ↓ ↓∈ ∩

⟶

,

which says that any morphism : →  comes from a morphism ^ : →  under postcomposition

with →⎯ .

Second, that Hom (id , ) is injective is the lifting property in

⊔ →⎯⎯⎯
( , )

∈ ↓ ↓ ∈ ∩

Cyl( ) ⟶

,

which says that if two morphisms , : →  become homotopic after postcomposition with
: → , then they were already homotopic before.  ▮

We record the following fact which will be used in part 1.1 (here):

Lemma 2.38. Let  be a model category (def. 2.3). Then every commuting square in its
homotopy category Ho( ) (def. 2.25) is, up to isomorphism of squares, in the image of the
localization functor ⟶ Ho( ) of a commuting square in  (i.e.: not just commuting up to
homotopy).

Proof. Let

⟶

↓ ↓

′ ⟶ ′

∈ Ho( )

be a commuting square in the homotopy category. Writing the same symbols for fibrant-
cofibrant objects in  and for morphisms in  representing these, then this means that in  there
is a left homotopy of the form
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⟶

↓ ↓

Cyl( ) ⟶ ′

↑ ↑

⟶ ′

.

Consider the factorization of the top square here through the mapping cylinder of 

⟶

↓ (po) ↓ ∈

Cyl( ) ⟶ Cyl( )

↑ ↘ ↓

′

↘ ↑

′

This exhibits the composite → Cyl( ) → Cyl( ) as an alternative representative of  in Ho( ), and
Cyl( ) → ′  as an alternative representative for , and the commuting square

⟶ Cyl( )

↓ ↓

′ ⟶ ′

as an alternative representative of the given commuting square in Ho( ).  ▮

Derived functors

Definition 2.39. For  and  two categories with weak equivalences, def. 2.1, then a functor
: ⟶  is called a homotopical functor if it sends weak equivalences to weak equivalences.

Definition 2.40. Given a homotopical functor : ⟶  (def. 2.39) between categories with
weak equivalences whose homotopy categories Ho( ) and Ho( ) exist (def. 2.30), then its
(“total”) derived functor is the functor Ho( ) between these homotopy categories which is
induced uniquely, up to unique isomorphism, by their universal property (def. 2.30):

⟶

↓ ⇙≃ ↓

Ho( ) →⎯⎯⎯⎯⎯
∃ ( )

Ho( )

.

Remark 2.41. While many functors of interest between model categories are not homotopical in
the sense of def. 2.39, many become homotopical after restriction to the full subcategories
of fibrant objects or of cofibrant objects, def. 2.34. By corollary 2.36 this is just as good for
the purpose of homotopy theory.

Therefore one considers the following generalization of def. 2.40:

Definition 2.42. Consider a functor : ⟶  out of a model category  (def. 2.3) into a
category with weak equivalences  (def. 2.1).

If the restriction of  to the full subcategory  of fibrant object becomes a homotopical
functor (def. 2.39), then the derived functor of that restriction, according to def. 2.40, is

1. 
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called the right derived functor of  and denoted by ℝ :

↪ ⟶

↓ ⇙≃ ↓

ℝ : [ − ] ≃ Ho( ) →⎯⎯⎯⎯
( )

Ho( )

,

where we use corollary 2.36.

If the restriction of  to the full subcategory  of cofibrant object becomes a homotopical
functor (def. 2.39), then the derived functor of that restriction, according to def. 2.40, is
called the left derived functor of  and denoted by :

↪ ⟶

↓ ⇙≃ ↓

: [ − ] ≃ Ho( ) →⎯⎯⎯⎯
( )

Ho( )

,

where again we use corollary 2.36.

2. 

The key fact that makes def. 2.42 practically relevant is the following:

Proposition 2.43. (Ken Brown's lemma)

Let  be a model category with full subcategories , of fibrant objects and of cofibrant
objects respectively (def. 2.34). Let  be a category with weak equivalences.

A functor out of the category of fibrant objects

: ⟶

is a homotopical functor, def. 2.39, already if it sends acylic fibrations to weak
equivalences.

1. 

A functor out of the category of cofibrant objects

: ⟶

is a homotopical functor, def. 2.39, already if it sends acylic cofibrations to weak
equivalences.

2. 

The following proof refers to the factorization lemma, whose full statement and proof we
postpone to further below (lemma 4.9).

Proof. We discuss the case of a functor on a category of fibrant objects , def. 2.34. The other
case is formally dual.

Let : ⟶  be a weak equivalence in . Choose a path space object Path( ) (def. 2.18) and
consider the diagram

Path( ) →⎯⎯⎯⎯⎯⎯
∈ ∩

∈

*
↓ (pb) ↓ ∈

Path( ) →⎯⎯⎯⎯⎯⎯
∈ ∩

∈ ∩ ↓

,
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where the square is a pullback and Path( ) on the top left is our notation for the universal cone
object. (Below we discuss this in more detail, it is the mapping cocone of , def. 4.1).

Here:

 are both acyclic fibrations, by lemma 2.20;1. 

Path( ) →  is an acyclic fibration because it is the pullback of .2. 

*  is a weak equivalence, because the factorization lemma 4.9 states that the composite

vertical morphism factors  through a weak equivalence, hence if  is a weak equivalence,
then *  is by two-out-of-three (def. 2.1).

3. 

Now apply the functor  to this diagram and use the assumption that it sends acyclic fibrations
to weak equivalences to obtain

(Path( )) →⎯⎯
∈

( )

( * )
↓ ↓ ( )

(Path( )) →⎯⎯⎯⎯
∈

( )
( )

∈

( )
↓

.

But the factorization lemma 4.9, in addition says that the vertical composite ∘ *  is a

fibration, hence an acyclic fibration by the above. Therefore also ( ∘ * ) is a weak

equivalence. Now the claim that also ( ) is a weak equivalence follows with applying two-out-
of-three (def. 2.1) twice.  ▮

Corollary 2.44. Let ,  be model categories and consider : ⟶  a functor. Then:

If  preserves cofibrant objects and acyclic cofibrations between these, then its left
derived functor (def. 2.42)  exists, fitting into a diagram

⟶

↓ ⇙≃ ↓

Ho( ) ⟶ Ho( )

1. 

If  preserves fibrant objects and acyclic fibrants between these, then its right derived
functor (def. 2.42) ℝ  exists, fitting into a diagram

⟶

↓ ⇙≃ ↓

Ho( ) ⟶
ℝ

Ho( )

.

2. 

Proposition 2.45. Let : ⟶  be a functor between two model categories (def. 2.3).

If  preserves fibrant objects and weak equivalences between fibrant objects, then the
total right derived functor ℝ ≔ ℝ( ∘ ) (def. 2.42) in

⟶

↓ ⇙≃ ↓

Ho( ) ⟶
ℝ

Ho( )

1. 
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is given, up to isomorphism, on any object ∈ ⟶ Ho( ) by appying  to a fibrant
replacement  of  and then forming a cofibrant replacement ( ( )) of the result:

ℝ ( ) ≃ ( ( )) .

If  preserves cofibrant objects and weak equivalences between cofibrant objects, then
the total left derived functor ≔ ( ∘ ) (def. 2.42) in

⟶

↓ ⇙≃ ↓

Ho( ) ⟶ Ho( )

is given, up to isomorphism, on any object ∈ ⟶ Ho( ) by appying  to a cofibrant
replacement  of  and then forming a fibrant replacement ( ( )) of the result:

1. 

( ) ≃ ( ( )) .

Proof. We discuss the first case, the second is formally dual. By the proof of theorem 2.31 we
have

ℝ ( ) ≃ ( ( ))

≃ ( ( ( )))
.

But since  is a homotopical functor on fibrant objects, the cofibrant replacement morphism
( ( ( ))) → ( ( )) is a weak equivalence in , hence becomes an isomorphism under .

Therefore

ℝ ( ) ≃ ( ( ( ))) .

Now since  is assumed to preserve fibrant objects, ( ( )) is fibrant in , and hence  acts on

it (only) by cofibrant replacement.  ▮

Quillen adjunctions

In practice it turns out to be useful to arrange for the assumptions in corollary 2.44 to be
satisfied by pairs of adjoint functors. Recall that this is a pair of functors  and  going back and
forth between two categories

⟶
⟵

such that there is a natural bijection between hom-sets with  on the left and those with  on
the right:

, : Hom ( ( ), ) ⟶
≃

Hom ( , ( ))

for all objects ∈  and ∈ . This being natural means that : Hom ( ( −), −) ⇒ Hom ( −, ( −)) is
a natural transformation, hence that for all morphisms : →  and : →  the following is a
commuting square:

Hom ( ( ), ) →⎯⎯⎯⎯⎯
≃

,
Hom ( , ( ))

( ) ∘ (−)∘ ↓ ↓ ∘ ( −) ∘ ( )

Hom ( ( ), ) →⎯⎯⎯⎯⎯
,

≃ Hom ( , ( ))

.
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We write ( ⊣ ) to indicate an adjunction and call  the left adjoint and  the right adjoint of the
adjoint pair.

The archetypical example of a pair of adjoint functors is that consisting of forming Cartesian
products × ( −) and forming mapping spaces ( −) , as in the category of compactly generated
topological spaces of def. 3.35.

If : ( ) →  is any morphism, then the image , ( ) : → ( ) is called its adjunct, and

conversely. The fact that adjuncts are in bijection is also expressed by the notation

( ) ⟶

⟶
˜

( )
.

For an object ∈ , the adjunct of the identity on  is called the adjunction unit : ⟶ .

For an object ∈ , the adjunct of the identity on  is called the adjunction counit : ⟶ .

Adjunction units and counits turn out to encode the adjuncts of all other morphisms by the
formulas

( → ) = ( → →⎯ )

( → ) = ( → → ).

Definition 2.46. Let ,  be model categories. A pair of adjoint functors between them

( ⊣ ) :
⟶
⟵

is called a Quillen adjunction (and ,  are called left/right Quillen functors, respectively) if
the following equivalent conditions are satisfied

 preserves cofibrations and  preserves fibrations;1. 

 preserves acyclic cofibrations and  preserves acyclic fibrations;2. 

 preserves cofibrations and acylic cofibrations;3. 

 preserves fibrations and acyclic fibrations.4. 

Proposition 2.47. The conditions in def. 2.46 are indeed all equivalent.

(Quillen 67, I.4, theorem 3)

Proof. First observe that

(i) A left adjoint  between model categories preserves acyclic cofibrations precisely if its
right adjoint  preserves fibrations.

(ii) A left adjoint  between model categories preserves cofibrations precisely if its right
adjoint  preserves acyclic fibrations.

We discuss statement (i), statement (ii) is formally dual. So let : →  be an acyclic cofibration
in  and : →  a fibration in . Then for every commuting diagram as on the left of the
following, its ( ⊣ )-adjunct is a commuting diagram as on the right here:
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⟶ ( )

↓ ↓ ( )

⟶ ( )

,

( ) ⟶

( ) ↓ ↓

( ) ⟶

.

If  preserves acyclic cofibrations, then the diagram on the right has a lift, and so the
( ⊣ )-adjunct of that lift is a lift of the left diagram. This shows that ( ) has the right lifting
property against all acylic cofibrations and hence is a fibration. Conversely, if  preserves
fibrations, the same argument run from right to left gives that  preserves acyclic fibrations.

Now by repeatedly applying (i) and (ii), all four conditions in question are seen to be
equivalent.  ▮

Lemma 2.48. Let ⟶
⟵

 be a Quillen adjunction, def. 2.46.

For ∈  a fibrant object and Path( ) a path space object (def. 2.18), then (Path( )) is a
path space object for ( ).

1. 

For ∈  a cofibrant object and Cyl( ) a cylinder object (def. 2.18), then (Cyl( )) is a
path space object for ( ).

2. 

Proof. Consider the second case, the first is formally dual.

First Observe that ( ⊔ ) ≃ ⊔  because  is left adjoint and hence preserves colimits, hence
in particular coproducts.

Hence

(X ⊔ ⎯⎯
∈

Cyl( )) = ( ( ) ⊔ ( ) ⎯⎯
∈

(Cyl( )))

is a cofibration.

Second, with  cofibrant then also ⊔ Cyl( ) is a cofibrantion, since → ⊔  is a cofibration
(lemma 2.20). Therefore by Ken Brown's lemma (prop. 2.43)  preserves the weak equivalence

Cyl( ) →⎯⎯
∈

.  ▮

Proposition 2.49. For 
⟶

⟵  a Quillen adjunction, def. 2.46, then also the corresponding left

and right derived functors, def. 2.42, via cor. 2.44, form a pair of adjoint functors

Ho( ) ⊥
⟶
ℝ

⟵
Ho( ) .

(Quillen 67, I.4 theorem 3)

Proof. By def. 2.42 and lemma 2.37 it is sufficient to see that for , ∈  with  cofibrant and 
fibrant, then there is a natural bijection

Hom ( , )/∼ ≃ Hom ( , )/∼ .

Since by the adjunction isomorphism for ( ⊣ ) such a natural bijection exists before passing to
homotopy classes ( −)/∼ , it is sufficient to see that this respects homotopy classes. To that end,

use from lemma 2.48 that with Cyl( ) a cylinder object for , def. 2.18, then (Cyl( )) is a
cylinder object for ( ). This implies that left homotopies

( ⇒ ) : ⟶
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given by

: Cyl( ) = Cyl( ) ⟶

are in bijection to left homotopies

( ˜ ⇒ ˜ ) : ⟶

given by

˜ : Cyl( ) ⟶ .

  ▮

Definition 2.50. For ,  two model categories, a Quillen adjunction (def.2.46)

( ⊣ ) : ⊥
⟶
⟵

is called a Quillen equivalence, to be denoted

≃
⟶
⟵ ,

if the following equivalent conditions hold.

The right derived functor of  (via prop. 2.47, corollary 2.44) is an equivalence of
categories

ℝ : Ho( ) ⟶≃ Ho( ) .

1. 

The left derived functor of  (via prop. 2.47, corollary 2.44) is an equivalence of
categories

:Ho( ) ⟶≃ Ho( ) .

2. 

For every cofibrant object ∈ , the “derived adjunction unit”, hence the composite

⟶ ( ( )) →⎯⎯⎯⎯⎯⎯
( ( ))

( ( ( )))

(of the adjunction unit with any fibrant replacement  as in def. 2.28) is a weak
equivalence;

and for every fibrant object ∈ , the “derived adjunction counit”, hence the composite

( ( ( ))) →⎯⎯⎯⎯⎯⎯
( ( ))

( ( )) ⟶

(of the adjunction counit with any cofibrant replacement as in def. 2.28) is a weak
equivalence in .

3. 

For every cofibrant object ∈  and every fibrant object ∈ , a morphism ⟶ ( ) is a
weak equivalence precisely if its adjunct morphism ( ) →  is:

→⎯⎯⎯
∈

( )

( ) →⎯⎯⎯
∈ .

4. 

Poposition 2.51. The conditions in def. 2.50 are indeed all equivalent.

(Quillen 67, I.4, theorem 3)
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Proof. That 1) ⇔ 2) follows from prop. 2.49 (if in an adjoint pair one is an equivalence, then so
is the other).

To see the equivalence 1), 2) ⇔ 3), notice (prop.) that a pair of adjoint functors is an equivalence
of categories precisely if both the adjunction unit and the adjunction counit are natural
isomorphisms. Hence it is sufficient to show that the morphisms called “derived adjunction
(co-)units” above indeed represent the adjunction (co-)unit of ( ⊣ ℝ ) in the homotopy
category. We show this now for the adjunction unit, the case of the adjunction counit is formally
dual.

To that end, first observe that for ∈ , then the defining commuting square for the left derived
functor from def. 2.42

⟶

↓ ⇙≃ ↓ ,

Ho( ) ⟶ Ho( )

(using fibrant and fibrant/cofibrant replacement functors , ,  from def. 2.28 with their

universal property from theorem 2.31, corollary 2.36) gives that

( ) ≃ ≃ ∈ Ho( ) ,

where the second isomorphism holds because the left Quillen functor  sends the acyclic
cofibration : →  to a weak equivalence.

The adjunction unit of ( ⊣ ℝ ) on ∈ Ho( ) is the image of the identity under

Hom ( )(( ) , ( ) ) →≃ Hom ( )( , (ℝ )( ) ) .

By the above and the proof of prop. 2.49, that adjunction isomorphism is equivalently that of
( ⊣ ) under the isomorphism

Hom ( )( , ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯
( , )

Hom ( , )/∼

of lemma 2.37. Hence the derived adjunction unit is the ( ⊣ )-adjunct of

⟶ → ,

which indeed (by the formula for adjuncts) is

⟶ →⎯⎯⎯⎯
( )

.

To see that 4) ⇒ 3):

Consider the weak equivalence →⎯⎯ . Its ( ⊣ )-adjunct is

⟶ →⎯⎯⎯

by assumption 4) this is again a weak equivalence, which is the requirement for the derived unit
in 3). Dually for derived counit.

To see 3) ⇒ 4):

Consider any : →  a weak equivalence for cofibrant , firbant . Its adjunct ˜  sits in a
commuting diagram
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˜ : ⟶ ⟶

= ↓ ↓ ↓

→⎯⎯
∈

→⎯⎯

,

where  is any lift constructed as in def. 2.28.

This exhibits the bottom left morphism as the derived adjunction unit, hence a weak equivalence
by assumption. But since  was a weak equivalence, so is  (by two-out-of-three). Thereby also

 and , are weak equivalences by Ken Brown's lemma 2.43 and the assumed fibrancy of .

Therefore by two-out-of-three (def. 2.1) also the adjunct ˜  is a weak equivalence.  ▮

In certain situations the conditions on a Quillen equivalence simplify. For instance:

Proposition 2.52. If in a Quillen adjunction ⊥
→
←  (def. 2.46) the right adjoint  “creates

weak equivalences” (in that a morphism  in  is a weak equivalence precisly if ( ) is) then
( ⊣ ) is a Quillen equivalence (def. 2.50) precisely already if for all cofibrant objects ∈  the
plain adjunction unit

⟶ ( ( ))

is a weak equivalence.

Proof. By prop. 2.51, generally, ( ⊣ ) is a Quillen equivalence precisely if

for every cofibrant object ∈ , the “derived adjunction unit”

⟶ ( ( )) →⎯⎯⎯⎯⎯⎯
( ( ))

( ( ( )))

is a weak equivalence;

1. 

for every fibrant object ∈ , the “derived adjunction counit”

( ( ( ))) →⎯⎯⎯⎯⎯⎯
( ( ))

( ( )) ⟶

is a weak equivalence.

2. 

Consider the first condition: Since  preserves the weak equivalence ( ), then by two-out-

of-three (def. 2.1) the composite in the first item is a weak equivalence precisely if  is.

Hence it is now sufficient to show that in this case the second condition above is automatic.

Since  also reflects weak equivalences, the composite in item two is a weak equivalence
precisely if its image

( ( ( ( )))) →⎯⎯⎯⎯⎯⎯⎯⎯
( ( ( )))

( ( ( ))) →⎯⎯
( )

( )

under  is.

Moreover, assuming, by the above, that ( ( )) on the cofibrant object ( ( )) is a weak

equivalence, then by two-out-of-three this composite is a weak equivalence precisely if the
further composite with  is

( ( )) →⎯⎯⎯⎯⎯⎯
( ( ))

( ( ( ( )))) →⎯⎯⎯⎯⎯⎯⎯⎯
( ( ( )))

( ( ( ))) →⎯⎯
( )

( ) .
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By the formula for adjuncts, this composite is the ( ⊣ )-adjunct of the original composite,
which is just ( )

( ( ( ))) →⎯⎯⎯⎯⎯⎯
( ( ))

( ( )) ⟶

( ( )) →⎯⎯⎯
( )

( )
.

But ( ) is a weak equivalence by definition of cofibrant replacement.  ▮

3. The model structure on topological spaces

We now discuss how the category Top of topological spaces satisfies the axioms of abstract
homotopy theory (model category) theory, def. 2.3.

Definition 3.1. Say that a continuous function, hence a morphism in Top, is

a classical weak equivalence if it is a weak homotopy equivalence, def. 1.30;

a classical fibration if it is a Serre fibration, def. 1.47;

a classical cofibration if it is a retract (rem. 2.12) of a relative cell complex, def. 1.38.

and hence

a acyclic classical cofibration if it is a classical cofibration as well as a classical weak
equivalence;

a acyclic classical fibration if it is a classical fibration as well as a classical weak
equivalence.

Write

, Fib , Cof ⊂ Mor(Top)

for the classes of these morphisms, respectively.

We first prove now that the classes of morphisms in def. 3.1 satisfy the conditions for a model
category structure, def. 2.3 (after some lemmas, this is theorem 3.7 below). Then we discuss
the resulting classical homotopy category (below) and then a few variant model structures
whose proof follows immediately along the line of the proof of Top :

The model structure on pointed topological spaces Top * / ;

The model structure on compactly generated topological spaces (Top )  and

(Top * /) ;

The model structure on topologically enriched functors [ , (Top ) ]  and

[ , (Top* ) ] .

Proposition 3.2. The classical weak equivalences, def. 3.1, satify two-out-of-three (def. 2.1).

Proof. Since isomorphisms (of homotopy groups) satisfy 2-out-of-3, this property is directly
inherited via the very definition of weak homotopy equivalence, def. 1.30.  ▮

Lemma 3.3. Every morphism : ⟶  in Top factors as a classical cofibration followed by an
acyclic classical fibration, def. 3.1:
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: →⎯⎯⎯⎯⎯
∈ ^ →⎯⎯⎯⎯⎯⎯⎯⎯⎯

∈ ∩
.

Proof. By lemma 1.40 the set = { − ↪ } of topological generating cofibrations, def. 1.37,
has small domains, in the sense of def. 2.16 (the n-spheres are compact). Hence by the small
object argument, prop. 2.17,  factors as an -relative cell complex, def. 1.41, hence just a
plain relative cell complex, def. 1.38, followed by an -injective morphisms, def. 1.46:

: →⎯⎯⎯⎯⎯
∈ ^ →⎯⎯⎯⎯⎯⎯⎯

∈
.

By lemma 1.52 the map ^ →  is both a weak homotopy equivalence as well as a Serre
fibration.  ▮

Lemma 3.4. Every morphism : ⟶  in Top factors as an acyclic classical cofibration followed
by a fibration, def. 3.1:

: →⎯⎯⎯⎯⎯⎯⎯⎯⎯
∈ ∩ ^ →⎯⎯⎯⎯

∈
.

Proof. By lemma 1.40 the set = { ↪ × } of topological generating acyclic cofibrations,

def. 1.42, has small domains, in the sense of def. 2.16 (the n-disks are compact). Hence by the
small object argument, prop. 2.17,  factors as an -relative cell complex, def. 1.41, followed

by a -injective morphisms, def. 1.46:

: →⎯⎯⎯⎯⎯⎯⎯⎯
∈ ^ →⎯⎯⎯⎯⎯⎯⎯

∈
.

By definition this makes ^ →  a Serre fibration, hence a fibration.

By lemma 1.44 a relative -cell complex is in particular a relative -cell complex. Hence

→ ^ is a classical cofibration. By lemma 1.45 it is also a weak homotopy equivalence, hence a
clasical weak equivalence.  ▮

Lemma 3.5. Every commuting square in Top with the left morphism a classical cofibration and
the right morphism a fibration, def. 3.1

⟶
∈

↓ ↓

∈

⟶

admits a lift as soon as one of the two is also a classical weak equivalence.

Proof. A) If the fibration  is also a weak equivalence, then lemma 1.52 says that it has the
right lifting property against the generating cofibrations , and cor. 2.11 implies the claim.

B) If the cofibration  on the left is also a weak equivalence, consider any factorization into a
relative -cell complex, def. 1.42, def. 1.41, followed by a fibration,

: →⎯⎯⎯⎯⎯⎯⎯⎯
∈

→⎯⎯⎯⎯
∈

,

as in the proof of lemma 3.4. By lemma 1.45 the morphism →⎯⎯⎯⎯⎯⎯⎯⎯
∈

 is a weak homotopy
equivalence, and so by two-out-of-three (prop. 3.2) the factorizing fibration is actually an acyclic
fibration. By case A), this acyclic fibration has the right lifting property against the cofibration 
itself, and so the retract argument, lemma 2.15 gives that  is a retract of a relative -cell

complex. With this, finally cor. 2.11 implies that  has the right lifting property against .  ▮

Finally:
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Proposition 3.6. The systems (Cof , ∩ Fib ) and ( ∩ Cof , Fib ) from def. 3.1 are weak
factorization systems.

Proof. Since we have already seen the factorization property (lemma 3.3, lemma 3.4) and the
lifting properties (lemma 3.5), it only remains to see that the given left/right classes exhaust the
class of morphisms with the given lifting property.

For the classical fibrations this is by definition, for the the classical acyclic fibrations this is by
lemma 1.52.

The remaining statement for Cof  and ∩ Cof  follows from a general argument (here) for
cofibrantly generated model categories (def. 3.9), which we spell out:

So let : ⟶  be in ( Inj)Proj, we need to show that then  is a retract (remark 2.12) of a
relative cell complex. To that end, apply the small object argument as in lemma 3.3 to factor 
as

: →⎯⎯⎯⎯⎯⎯ ^ →⎯⎯⎯⎯⎯⎯⎯
∈

.

It follows that  has the left lifting property against ^ → , and hence by the retract argument

(lemma 2.15) it is a retract of ⎯⎯ ^. This proves the claim for Cof .

The analogous argument for ∩ Cof , using the small object argument for , shows that

every ∈ ( Inj)Proj is a retract of a -cell complex. By lemma 1.44 and lemma 1.45 a

-cell complex is both an -cell complex and a weak homotopy equivalence. Retracts of the

former are cofibrations by definition, and retracts of the latter are still weak homotopy
equivalences by lemma 2.13. Hence such  is an acyclic cofibration.  ▮

In conclusion, prop. 3.2 and prop. 3.6 say that:

Theorem 3.7. The classes of morphisms in Mor(Top) of def. 3.1,

= weak homotopy equivalences,

Fib = Serre fibrations

Cof = retracts of relative cell complexes

define a model category structure (def. 2.3) Top , the classical model structure on

topological spaces or Serre-Quillen model structure .

In particular

every object in Top  is fibrant;1. 

the cofibrant objects in Top  are the retracts of cell complexes.2. 

Hence in particular the following classical statement is an immediate corollary:

Corollary 3.8. (Whitehead theorem)

Every weak homotopy equivalence (def. 1.30) between topological spaces that are
homeomorphic to a retract of a cell complex, in particular to a CW-complex (def. 1.38), is a
homotopy equivalence (def. 1.28).

Proof. This is the “Whitehead theorem in model categories”, lemma 2.27, specialized to
Top  via theorem 3.7.  ▮

In proving theorem 3.7 we have in fact shown a bit more that stated. Looking back, all the
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structure of Top  is entirely induced by the set  (def. 1.37) of generating cofibrations and

the set  (def. 1.42) of generating acyclic cofibrations (whence the terminology). This

phenomenon will keep recurring and will keep being useful as we construct further model
categories, such as the classical model structure on pointed topological spaces (def. 3.31), the
projective model structure on topological functors (thm. 3.76), and finally various model
structures on spectra which we turn to in the section on stable homotopy theory.

Therefore we make this situation explicit:

Definition 3.9. A model category  (def. 2.3) is called cofibrantly generated if there exists
two subsets

, ⊂ Mor( )

of its class of morphisms, such that

 and  have small domains according to def. 2.16,1. 

the (acyclic) cofibrations of  are precisely the retracts, of -relative cell complexes
( -relative cell complexes), def. 1.41.

2. 

Proposition 3.10. For  a cofibrantly generated model category, def. 3.9, with generating
(acylic) cofibrations  ( ), then its classes , Fib, Cof of weak equivalences, fibrations and
cofibrations are equivalently expressed as injective or projective morphisms (def. 2.4) this
way:

Cof = ( Inj)Proj1. 

∩ Fib = Inj;2. 

∩ Cof = ( Inj)Proj;3. 

Fib = Inj;4. 

Proof. It is clear from the definition that ⊂ ( Inj)Proj, so that the closure property of prop. 2.10
gives an inclusion

Cof ⊂ ( Inj)Proj .

For the converse inclusion, let ∈ ( Inj)Proj. By the small object argument, prop. 2.17, there is a

factorization : →⎯⎯⎯⎯
∈

→⎯⎯ . Hence by assumption and by the retract argument lemma 2.15,  is a
retract of an -relative cell complex, hence is in Cof.

This proves the first statement. Together with the closure properties of prop. 2.10, this implies
the second claim.

The proof of the third and fourth item is directly analogous, just with  replaced for .  ▮

The classical homotopy category

With the classical model structure on topological spaces in hand, we now have good control over
the classical homotopy category:

Definition 3.11. The Serre-Quillen classical homotopy category is the homotopy category,
def. 2.25, of the classical model structure on topological spaces Top  from theorem 3.7:

we write

Ho(Top) ≔ Ho(Top ) .
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Remark 3.12. From just theorem 3.7, the definition 2.25 (def. 3.11) gives that

Ho(Top ) ≃ (Top ( ))/∼

is the category whose objects are retracts of cell complexes (def. 1.38) and whose morphisms
are homotopy classes of continuous functions. But in fact more is true:

Theorem 3.7 in itself implies that every topological space is weakly equivalent to a retract of a
cell complex, def. 1.38. But by the existence of CW approximations, this cell complex may
even be taken to be a CW complex.

(Better yet, there is Quillen equivalence to the classical model structure on simplicial sets

which implies a functorial CW approximation |Sing | →⎯⎯⎯⎯
∈

 given by forming the geometric
realization of the singular simplicial complex of .)

Hence the Serre-Quillen classical homotopy category is also equivalently the category of just
the CW-complexes whith homotopy classes of continuous functions between them

Ho(Top ) ≃ (Top ( ))/∼

≃ (Top )/∼

.

It follows that the universal property of the homotopy category (theorem 2.31)

Ho(Top ) ≃ Top[ − ]

implies that there is a bijection, up to natural isomorphism, between

functors out of Top  which agree on homotopy-equivalent maps;1. 

functors out of all of Top which send weak homotopy equivalences to isomorphisms.2. 

This statement in particular serves to show that two different axiomatizations of generalized
(Eilenberg-Steenrod) cohomology theories are equivalent to each other. See at Introduction to
Stable homotopy theory -- S the section generalized cohomology functors (this prop.)

Beware that, by remark 1.32, what is not equivalent to Ho(Top ) is the category

hTop ≔ Top/∼

obtained from all topological spaces with morphisms the homotopy classes of continuous
functions. This category is “too large”, the correct homotopy category is just the genuine full
subcategory

Ho(Top ) ≃ (Top ( ))/∼ ≃ Top/∼ = ↪ hTop .

Beware also the ambiguity of terminology: “classical homotopy category” some literature
refers to hTop instead of Ho(Top ). However, here we never have any use for hTop and will

not mention it again.

Proposition 3.13. Let  be a CW-complex, def. 1.38. Then the standard topological cylinder of
def. 1.22

⊔ →⎯⎯⎯⎯
( , )

× ⟶

(obtained by forming the product with the standard topological intervall = [0, 1]) is indeed a
cylinder object in the abstract sense of def. 2.18.

Proof. We describe the proof informally. It is immediate how to turn this into a formal proof, but
the notation becomes tedious. (One place where it is spelled out completely is Ottina 14, prop.
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2.9.)

So let → → → ⋯ →  be a presentation of  as a CW-complex. Proceed by induction on
the cell dimension.

First observe that the cylinder ×  over  is a cell complex: First  itself is a disjoint union of
points. Adding a second copy for every point (i.e. attaching along − → ) yields ⊔ , then
attaching an inteval between any two corresponding points (along → ) yields × .

So assume that for ∈ ℕ it has been shown that ×  has the structure of a CW-complex of
dimension ( + 1). Then for each cell of + , attach it twice to × , once at × {0}, and once
at × {1}.

The result is +  with a hollow cylinder erected over each of its ( + 1)-cells. Now fill these
hollow cylinders (along + → + ) to obtain + × .

This completes the induction, hence the proof of the CW-structure on × .

The construction also manifestly exhibits the inclusion ⊔ →⎯⎯⎯⎯
( , )

 as a relative cell complex.

Finally, it is clear (prop. 1.31) that × →  is a weak homotopy equivalence.  ▮

Conversely:

Proposition 3.14. Let  be any topological space. Then the standard topological path space
object (def. 1.34)

⟶ →⎯⎯⎯⎯⎯⎯⎯
( , )

×

(obtained by forming the mapping space, def. 1.18, with the standard topological intervall
= [0, 1]) is indeed a path space object in the abstract sense of def. 2.18.

Proof. To see that const : →  is a weak homotopy equivalence it is sufficient, by prop. 1.31, to
exhibit a homotopy equivalence. Let the homotopy inverse be : → . Then the composite

→⎯⎯⎯⎯ →⎯⎯

is already equal to the identity. The other we round, the rescaling of paths provides the required
homotopy

× →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( , ) ↦ ( ⋅( −)) .

To see that → ×  is a fibration, we need to show that every commuting square of the form

⟶

↓ ↓

× ⟶ ×

has a lift.

Now first use the adjunction ( × ( −)) ⊣ (−)  from prop. 1.19 to rewrite this equivalently as the
following commuting square:

⊔ →⎯⎯⎯⎯
( , )

( × ) ⊔ ( × )

( , ) ↓ ↓

× ⟶

.
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This square is equivalently (example 1.12) a morphism out of the pushout

× ⊔
⊔

(( × ) ⊔ ( × )) ⟶ .

By the same reasoning, a lift in the original diagram is now equivalently a lifting in

× ⊔
⊔

(( × ) ⊔ ( × )) ⟶

↓ ↓

( × ) × ⟶ *

.

Inspection of the component maps shows that the left vertical morphism here is the inclusion
into the square times  of three of its faces times . This is homeomorphic to the inclusion

+ → + ×  (as in remark 1.49). Therefore a lift in this square exsists, and hence a lift in the
original square exists.  ▮

Model structure on pointed spaces

A pointed object ( , ) is of course an object  equipped with a point : * → , and a morphism of
pointed objects ( , ) ⟶ ( , ) is a morphism ⟶  that takes  to . Trivial as this is in itself, it is
good to record some basic facts, which we do here.

Passing to pointed objects is also the first step in linearizing classical homotopy theory to stable
homotopy theory. In particular, every category of pointed objects has a zero object, hence has
zero morphisms. And crucially, if the original category had Cartesian products, then its pointed
objects canonically inherit a non-cartesian tensor product: the smash product. These ingredients
will be key below in the section on stable homotopy theory.

Definition 3.15. Let  be a category and let ∈  be an object.

The slice category /  is the category whose

objects are morphisms ↓ in ;

morphisms are commuting triangles

⟶

↘ ↙  in .

Dually, the coslice category / is the category whose

objects are morphisms ↓ in ;

morphisms are commuting triangles ↙ ↘

⟶

 in .

There are the canonical forgetful functors

: / , / ⟶

given by forgetting the morphisms to/from .

We here focus on this class of examples:
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Definition 3.16. For  a category with terminal object *, the coslice category (def. 3.15) * / is
the corresponding category of pointed objects: its

objects are morphisms in  of the form * →  (hence an object  equipped with a choice
of point; i.e. a pointed object);

morphisms are commuting triangles of the form

*

↙ ↘

⟶

(hence morphisms in  which preserve the chosen points).

Remark 3.17. In a category of pointed objects * /, def. 3.16, the terminal object coincides with
the initial object, both are given by * ∈  itself, pointed in the unique way.

In this situation one says that * is a zero object and that * / is a pointed category.

It follows that also all hom-sets Hom * / ( , ) of * / are canonically pointed sets, pointed by the

zero morphism

0 : ⟶
∃ !

0 ⟶
∃ !

.

Definition 3.18. Let  be a category with terminal object and finite colimits. Then the forgetful
functor : * / →  from its category of pointed objects, def. 3.16, has a left adjoint

* / ⊥→⎯⎯⎯
←⎯⎯⎯
( −)+

given by forming the disjoint union (coproduct) with a base point (“adjoining a base point”).

Proposition 3.19. Let  be a category with all limits and colimits. Then also the category of
pointed objects * /, def. 3.16, has all limits and colimits.

Moreover:

the limits are the limits of the underlying diagrams in , with the base point of the limit
induced by its universal property in ;

1. 

the colimits are the limits in  of the diagrams with the basepoint adjoined.2. 

Proof. It is immediate to check the relevant universal property. For details see at slice category
– limits and colimits.  ▮

Example 3.20. Given two pointed objects ( , ) and ( , ), then:

their product in * / is simply ( × , ( , ));1. 

their coproduct in * / has to be computed using the second clause in prop. 3.19: since
the point * has to be adjoined to the diagram, it is given not by the coproduct in , but by
the pushout in  of the form:

* ⟶

↓ (po) ↓

⟶ ∨

.

2. 
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This is called the wedge sum operation on pointed objects.

Generally for a set { } ∈  in Top * /

their product is formed in Top as in example 1.9, with the new basepoint canonically
induced;

1. 

their coproduct is formed by the colimit in Top over the diagram with a basepoint
adjoined, and is called the wedge sum ∨ ∈ .

2. 

Example 3.21. For  a CW-complex, def. 1.38 then for every ∈ ℕ the quotient (example 1.13)
of its -skeleton by its ( − 1)-skeleton is the wedge sum, def. 3.20, of -spheres, one for each
-cell of :

/ − ≃ ∨
∈

.

Definition 3.22. For * / a category of pointed objects with finite limits and finite colimits, the
smash product is the functor

( −) ∧ ( −) : * / × * / ⟶ * /

given by

∧ ≔ * ⊔
⊔

( × ) ,

hence by the pushout in 

⊔ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( , ),( , )

×

↓ ↓

* ⟶ ∧

.

In terms of the wedge sum from def. 3.20, this may be written concisely as

∧ =
×
∨

.

Remark 3.23. For a general category  in def. 3.22, the smash product need not be associative,
namely it fails to be associative if the functor ( −) ×  does not preserve the quotients involved
in the definition.

In particular this may happen for = Top.

A sufficient condition for ( −) ×  to preserve quotients is that it is a left adjoint functor. This is
the case in the smaller subcategory of compactly generated topological spaces, we come to
this in prop. 3.44 below.

These two operations are going to be ubiquituous in stable homotopy theory:

symbolname category theory
∨ wedge sum coproduct in * /

∧ smash product tensor product in * /

Example 3.24. For , ∈ Top, with +, + ∈ Top * /, def. 3.18, then

+ ∨ + ≃ ( ⊔ )+;

+ ∧ + ≃ ( × )+.
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Proof. By example 3.20, + ∨ + is given by the colimit in Top over the diagram

*

↙ ↘

* *

.

This is clearly ⊔ * ⊔ . Then, by definition 3.22

+ ∧ + ≃
( ⊔ *)× ( ⊔ *)

( ⊔ *) ∨ ( ⊔ *)

≃
× ⊔ ⊔ ⊔ *

⊔ ⊔ *

≃ × ⊔ * .

  ▮

Example 3.25. Let * / = Top * / be pointed topological spaces. Then

+ ∈ Top * /

denotes the standard interval object = [0, 1] from def. 1.22, with a djoint basepoint adjoined,
def. 3.18. Now for  any pointed topological space, then

∧ ( +) = ( × )/({ } × )

is the reduced cylinder over : the result of forming the ordinary cyclinder over  as in def.
1.22, and then identifying the interval over the basepoint of  with the point.

(Generally, any construction in  properly adapted to pointed objects * / is called the
“reduced” version of the unpointed construction. Notably so for “reduced suspension” which
we come to below.)

Just like the ordinary cylinder ×  receives a canonical injection from the coproduct ⊔
formed in Top, so the reduced cyclinder receives a canonical injection from the coproduct ⊔
formed in Top * /, which is the wedge sum from example 3.20:

∨ ⟶ ∧ ( +) .

Example 3.26. For ( , ), ( , ) pointed topological spaces with  a locally compact topological
space, then the pointed mapping space is the topological subspace of the mapping space of
def. 1.18

Maps(( , ), ( , ))
*

↪ ( , const )

on those maps which preserve the basepoints, and pointed by the map constant on the
basepoint of .

In particular, the standard topological pointed path space object on some pointed  (the
pointed variant of def. 1.34) is the pointed mapping space Maps( +, )

*
.

The pointed consequence of prop. 1.19 then gives that there is a natural bijection

Hom * / (( , ) ∧ ( , ), ( , )) ≃ Hom * / (( , ), Maps(( , ), ( , ))
*
)

between basepoint-preserving continuous functions out of a smash product, def. 3.22, with
pointed continuous functions of one variable into the pointed mapping space.

Example 3.27. Given a morphism : ⟶  in a category of pointed objects * /, def. 3.16, with
finite limits and colimits,
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its fiber or kernel is the pullback of the point inclusion

fib( ) ⟶

↓ (pb) ↓

* ⟶

1. 

its cofiber or cokernel is the pushout of the point projection

⟶

↓ (po) ↓

* ⟶ cofib( )

.

2. 

Remark 3.28. In the situation of example 3.27, both the pullback as well as the pushout are
equivalently computed in . For the pullback this is the first clause of prop. 3.19. The second
clause says that for computing the pushout in , first the point is to be adjoined to the
diagram, and then the colimit over the larger diagram

*

↘

⟶

↓

*

be computed. But one readily checks that in this special case this does not affect the result.
(The technical jargon is that the inclusion of the smaller diagram into the larger one in this
case happens to be a final functor.)

Proposition 3.29. Let  be a model category and let ∈  be an object. Then both the slice
category /  as well as the coslice category /, def. 3.15, carry model structures themselves

– the model structure on a (co-)slice category, where a morphism is a weak equivalence,
fibration or cofibration iff its image under the forgetful functor  is so in .

In particular the category * / of pointed objects, def. 3.16, in a model category  becomes
itself a model category this way.

The corresponding homotopy category of a model category, def. 2.25, we call the pointed
homotopy category Ho( * /).

Proof. This is immediate:

By prop. 3.19 the (co-)slice category has all limits and colimits. By definition of the weak
equivalences in the (co-)slice, they satisfy two-out-of-three, def. 2.1, because the do in .

Similarly, the factorization and lifting is all induced by : Consider the coslice category /, the
case of the slice category is formally dual; then if

↙ ↘

⟶

commutes in , and a factorization of  exists in , it uniquely makes this diagram commute

↙ ↓ ↘

⟶ ⟶

.
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Similarly, if

⟶

↓ ↓

⟶

is a commuting diagram in /, hence a commuting diagram in  as shown, with all objects
equipped with compatible morphisms from , then inspection shows that any lift in the diagram
necessarily respects the maps from , too.  ▮

Example 3.30. For  any model category, with * / its pointed model structure according to
prop. 3.29, then the corresponding homotopy category (def. 2.25) is, by remark 3.17,
canonically enriched in pointed sets, in that its hom-functor is of the form

[ −, −]
*

: Ho( * /) × Ho( * /) ⟶ Set * / .

Definition 3.31. Write Top * /  for the classical model structure on pointed topological
spaces, obtained from the classical model structure on topological spaces Top  (theorem

3.7) via the induced coslice model structure of prop. 3.29.

Its homotopy category, def. 2.25,

Ho(Top * /) ≔ Ho(Top * / )

we call the classical pointed homotopy category.

Remark 3.32. The fibrant objects in the pointed model structure * /, prop. 3.29, are those that
are fibrant as objects of . But the cofibrant objects in * are now those for which the
basepoint inclusion is a cofibration in .

For * / = Top * /  from def. 3.31, then the corresponding cofibrant pointed topological spaces
are tyically referred to as spaces with non-degenerate basepoints or . Notice that the point
itself is cofibrant in Top , so that cofibrant pointed topological spaces are in particular

cofibrant topological spaces.

While the existence of the model structure on Top * / is immediate, via prop. 3.29, for the
discussion of topologically enriched functors (below) it is useful to record that this, too, is a
cofibrantly generated model category (def. 3.9), as follows:

Definition 3.33. Write

* / = +
− →⎯⎯⎯

( )+
+ ⊂ Mor(Top * /)

and

* / = + →⎯⎯⎯⎯⎯⎯
( , )+ ( × )+ ⊂ Mor(Top * /) ,

respectively, for the sets of morphisms obtained from the classical generating cofibrations, def.
1.37, and the classical generating acyclic cofibrations, def. 1.42, under adjoining of basepoints
(def. 3.18).

Theorem 3.34. The sets * /  and * /  in def. 3.33 exhibit the classical model structure on

pointed topological spaces Top * /  of def. 3.31 as a cofibrantly generated model category,
def. 3.9.

(This is also a special case of a general statement about cofibrant generation of coslice model
structures, see this proposition.)
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Proof. Due to the fact that in * /  a basepoint is freely adjoined, lemma 1.52 goes through

verbatim for the pointed case, with  replaced by * / , as do the other two lemmas above

that depend on point-set topology, lemma 1.40 and lemma 1.45. With this, the rest of the proof
follows by the same general abstract reasoning as above in the proof of theorem 3.7.  ▮

Model structure on compactly generated spaces

The category Top has the technical inconvenience that mapping spaces  (def. 1.18) satisfying
the exponential property (prop. 1.19) exist in general only for  a locally compact topological
space, but fail to exist more generally. In other words: Top is not cartesian closed. But cartesian
closure is necessary for some purposes of homotopy theory, for instance it ensures that

the smash product (def. 3.22) on pointed topological spaces is associative (prop. 3.44
below);

1. 

there is a concept of topologically enriched functors with values in topological spaces, to
which we turn below;

2. 

geometric realization of simplicial sets preserves products.3. 

The first two of these are crucial for the development of stable homotopy theory in the next
section, the third is a great convenience in computations.

Now, since the homotopy theory of topological spaces only cares about the CW approximation to
any topological space (remark 3.12), it is plausible to ask for a full subcategory of Top which still
contains all CW-complexes, still has all limits and colimits, still supports a model category
structure constructed in the same way as above, but which in addition is cartesian closed, and
preferably such that the model structure interacts well with the cartesian closure.

Such a full subcategory exists, the category of compactly generated topological spaces. This we
briefly describe now.

Literature (Strickland 09)

Definition 3.35. Let  be a topological space.

A subset ⊂  is called compactly closed (or -closed) if for every continuous function
: ⟶  out of a compact Hausdorff space , then the preimage − ( ) is a closed subset of .

The space  is called compactly generated if its closed subsets exhaust (hence coincide
with) the -closed subsets.

Write

Top ↪ Top

for the full subcategory of Top on the compactly generated topological spaces.

Definition 3.36. Write

Top ⟶ Top ↪ Top

for the functor which sends any topological space = ( , ) to the topological space ( , ) with
the same underlying set , but with open subsets  the collection of all -open subsets with
respect to .

Lemma 3.37. Let ∈ Top ↪ Top and let ∈ Top. Then continuous functions
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⟶

are also continuous when regarded as functions

⟶ ( )

with  from def. 3.36.

Proof. We need to show that for ⊂  a -closed subset, then the preimage − ( ) ⊂  is closed
subset.

Let : ⟶  be any continuous function out of a compact Hausdorff space . Since  is -closed
by assumption, we have that ( ∘ ) − ( ) = − ( − ( )) ⊂  is closed in . This means that − ( )

is -closed in . But by the assumption that  is compactly generated, it follows that − ( ) is
already closed.  ▮

Corollary 3.38. For ∈ Top  there is a natural bijection

Hom ( , ) ≃ Hom ( , ( )) .

This means equivalently that the functor  (def. 3.36) together with the inclusion from def.
3.35 forms an pair of adjoint functors

Top ⊥⟵
⎯

Top .

This in turn means equivalently that Top ↪ Top is a coreflective subcategory with coreflector

. In particular  is idemotent in that there are natural homeomorphisms

( ( )) ≃ ( ) .

Hence colimits in Top  exists and are computed as in Top. Also limits in Top  exists, these are

obtained by computing the limit in Top and then applying the functor  to the result.

The following is a slight variant of def. 1.18, appropriate for the context of Top .

Definition 3.39. For , ∈ Top  (def. 3.35) the compactly generated mapping space

∈ Top  is the compactly generated topological space whose underlying set is the set ( , )

of continuous functions : → , and for which a subbase for its topology has elements ( ),
for ⊂  any open subset and : →  a continuous function out of a compact Hausdorff space

 given by

( ) ≔ { ∈ ( , ) | ( ( )) ⊂ } .

Remark 3.40. If  is (compactly generated and) a Hausdorff space, then the topology on the
compactly generated mapping space  in def. 3.39 agrees with the compact-open topology of
def. 1.18. Beware that it is common to say “compact-open topology” also for the topology of
the compactly generated mapping space when  is not Hausdorff. In that case, however, the
two definitions in general disagree.

Proposition 3.41. The category Top  of def. 3.35 is cartesian closed:

for every ∈ Top  then the operation × ( −) × ( −) ×  of forming the Cartesian product in

Top  (which by cor. 3.38 is  applied to the usual product topological space) together with the

operation ( −)  of forming the compactly generated mapping space (def. 3.39) forms a pair of
adjoint functors
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Top ⊥→⎯⎯⎯⎯⎯
( −)

←⎯⎯⎯⎯⎯
× ( −)

Top .

For proof see for instance (Strickland 09, prop. 2.12).

Corollary 3.42. For , ∈ Top * /, the operation of forming the pointed mapping space (example
3.26) inside the compactly generated mapping space of def. 3.39

Maps( , )
*

≔ fib →⎯⎯ ,

is left adjoint to the smash product operation on pointed compactly generated topological
spaces.

Top * / ⊥
→⎯⎯⎯⎯⎯⎯⎯⎯

( , −)
*

←⎯⎯⎯⎯⎯⎯⎯⎯
∧ (−)

Top * / .

Corollary 3.43. For  a small category and • : → Top * / a diagram, then the compactly
generated mapping space construction from def. 3.39 preserves limits in its covariant
argument and sends colimits in its contravariant argument to limits:

Maps( , lim←⎯⎯ )
*

≃ lim←⎯⎯Maps( , )
*

and

Maps(lim→⎯⎯ , )
*

≃ lim←⎯⎯Maps( , )
*

.

Proof. The first statement is an immediate implication of Maps( , −)
*
 being a right adjoint,

according to cor. 3.42.

For the second statement, we use that by def. 3.35 a compactly generated topological space is
uniquely determined if one knows all continuous functions out of compact Hausdorff spaces into
it. Hence it is sufficient to show that there is a natural isomorphism

Hom * / , Maps(lim→⎯⎯ , )
*

≃ Hom * / , lim←⎯⎯Maps( , )
*

for  any compact Hausdorff space.

With this, the statement follows by cor. 3.42 and using that ordinary hom-sets take colimits in
the first argument and limits in the second argument to limits:

Hom * / , Maps(lim
→⎯⎯

, )
*

≃ Hom * / ∧ lim
→⎯⎯

,

≃ Hom * / lim
→⎯⎯

( ∧ ),

≃ lim←⎯⎯
æ
èçç
Hom * / ( ∧ , )ö

ø÷÷

≃ lim
←⎯⎯

Hom * / ( , Maps( , )
*
)

≃ Hom * / , lim
←⎯⎯

Maps( , )
*

.

  ▮

Moreover, compact generation fixes the associativity of the smash product (remark 3.23):

Proposition 3.44. On pointed (def. 3.16) compactly generated topological spaces (def. 3.35)
the smash product (def. 3.22)
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( −) ∧ ( −) : Top * / × Top * / ⟶ Top * /

is associative and the 0-sphere is a tensor unit for it.

Proof. Since (−) ×  is a left adjoint by prop. 3.41, it presevers colimits and in particular

quotient space projections. Therefore with , , ∈ Top * / then

( ∧ ) ∧ =
×

×{ } ⊔{ } × ×

( ∧ ) × { } ⊔ {[ ] = [ ]}×

≃
× ×

×{ }× ⊔{ }× ×

× × { }

≃
× ×

∨ ∨

.

The analogous reasoning applies to yield also ∧ ( ∧ ) ≃
× ×

∨ ∨
.

The second statement follows directly with prop. 3.41.  ▮

Remark 3.45. Corollary 3.42 together with prop. 3.44 says that under the smash product the
category of pointed compactly generated topological spaces is a closed symmetric monoidal
category with tensor unit the 0-sphere.

(Top * /, ∧ , ), .

Notice that by prop. 3.41 also unpointed compactly generated spaces under Cartesian product
form a closed symmetric monoidal category, hence a cartesian closed category

(Top , × , * ) .

The fact that Top * / is still closed symmetric monoidal but no longer Cartesian exhibits Top * / as
being “more linear” than Top . The “full linearization” of Top  is the closed symmteric

monoidal category of structured spectra under smash product of spectra which we discuss in
section 1.

Due to the idempotency ∘ ≃  (cor. 3.38) it is useful to know plenty of conditions under which
a given topological space is already compactly generated, for then applying  to it does not
change it and one may continue working as in Top.

Example 3.46. Every CW-complex is compactly generated.

Proof. Since a CW-complex is a Hausdorff space, by prop. 3.53 and prop. 3.54 its -closed
subsets are precisely those whose intersection with every compact subspace is closed.

Since a CW-complex  is a colimit in Top over attachments of standard n-disks  (its cells), by
the characterization of colimits in Top (prop.) a subset of  is open or closed precisely if its
restriction to each cell is open or closed, respectively. Since the -disks are compact, this implies
one direction: if a subset  of  intersected with all compact subsets is closed, then  is closed.

For the converse direction, since a CW-complex is a Hausdorff space and since compact
subspaces of Hausdorff spaces are closed, the intersection of a closed subset with a compact
subset is closed.  ▮

For completeness we record further classes of examples:

Example 3.47. The category Top  of compactly generated topological spaces includes

all locally compact topological spaces,1. 

all first-countable topological spaces,2. 
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hence in particular

all metrizable topological spaces,1. 

all discrete topological spaces,2. 

all codiscrete topological spaces.3. 

(Lewis 78, p. 148)

Recall that by corollary 3.38, all colimits of compactly generated spaces are again compactly
generated.

Example 3.48. The product topological space of a CW-complex with a compact CW-complex,
and more generally with a locally compact CW-complex, is compactly generated.

(Hatcher “Topology of cell complexes”, theorem A.6)

More generally:

Proposition 3.49. For  a compactly generated space and  a locally compact Hausdorff space,
then the product topological space ×  is compactly generated.

e.g. (Strickland 09, prop. 26)

Finally we check that the concept of homotopy and homotopy groups does not change under
passing to compactly generated spaces:

Proposition 3.50. For every topological space , the canonical function ( ) ⟶  (the
adjunction unit) is a weak homotopy equivalence.

Proof. By example 3.46, example 3.48 and lemma 3.37, continuous functions → ( ) and
their left homotopies × → ( ) are in bijection with functions →  and their homotopies

× → .  ▮

Theorem 3.51. The restriction of the model category structure on Top  from theorem 3.7

along the inclusion Top ↪ Top of def. 3.35 is still a model category structure, which is

cofibrantly generated by the same sets  (def. 1.37) and  (def. 1.42) The coreflection of

cor. 3.38 is a Quillen equivalence (def. 2.50)

(Top ) ⊥
⟵
⎯

Top .

Proof. By example 3.46, the sets  and  are indeed in Mor(Top ). By example 3.48 all

arguments above about left homotopies between maps out of these basic cells go through
verbatim in Top . Hence the three technical lemmas above depending on actual point-set

topology, topology, lemma 1.40, lemma 1.45 and lemma 1.52, go through verbatim as before.
Accordingly, since the remainder of the proof of theorem 3.7 of Top  follows by general

abstract arguments from these, it also still goes through verbatim for (Top )  (repeatedly

use the small object argument and the retract argument to establish the two weak factorization
systems).

Hence the (acyclic) cofibrations in (Top )  are identified with those in Top , and so the

inclusion is a part of a Quillen adjunction (def. 2.46). To see that this is a Quillen equivalence
(def. 2.50), it is sufficient to check that for  a compactly generated space then a continuous
function : ⟶  is a weak homotopy equivalence (def. 1.30) precisely if the adjunct ˜ : → ( )

is a weak homotopy equivalence. But, by lemma 3.37, ˜  is the same function as , just
considered with different codomain. Hence the result follows with prop. 3.50.  ▮
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Compactly generated weakly Hausdorff topological spaces

While the inclusion Top ↪ Top of def. 3.35 does satisfy the requirement that it gives a cartesian

closed category with all limits and colimits and containing all CW-complexes, one may ask for
yet smaller subcategories that still share all these properties but potentially exhibit further
convenient properties still.

A popular choice introduced in (McCord 69) is to add the further restriction to topopological
spaces which are not only compactly generated but also weakly Hausdorff. This was motivated
from (Steenrod 67) where compactly generated Hausdorff spaces were used by the observation
((McCord 69, section 2)) that Hausdorffness is not preserved my many colimit operations,
notably not by forming quotient spaces.

On the other hand, in above we wouldn’t have imposed Hausdorffness in the first place. More
intrinsic advantages of Top  over Top  are the following:

every pushout of a morphism in Top ↪ Top along a closed subspace inclusion in Top is

again in Top

in Top  quotient spaces are not only preserved by cartesian products (as is the case for

all compactly generated spaces due to × ( −) being a left adjoint, according to cor. 3.38)
but by all pullbacks

in Top  the regular monomorphisms are the closed subspace inclusions

We will not need this here or in the following sections, but we briefly mention it for completenes:

Definition 3.52. A topological space  is called weakly Hausdorff if for every continuous
function

: ⟶

out of a compact Hausdorff space , its image ( ) ⊂  is a closed subset of .

Proposition 3.53. Every Hausdorff space is a weakly Hausdorff space, def. 3.52.

Proof. Since compact subspaces of Hausdorff spaces are closed.  ▮

Proposition 3.54. For  a weakly Hausdorff topological space, def. 3.52, then a subset ⊂  is
-closed, def. 3.35, precisely if for every subset ⊂  that is compact Hausdorff with respect

to the subspace topology, then the intersection ∩  is a closed subset of .

e.g. (Strickland 09, lemma 1.4 (c))

Topological enrichment

So far the classical model structure on topological spaces which we established in theorem 3.7,
as well as the projective model structures on topologically enriched functors induced from it in
theorem 3.76, concern the hom-sets, but not the hom-spaces (def. 3.65), i.e. the model
structure so far has not been related to the topology on hom-spaces. The following statements
say that in fact the model structure and the enrichment by topology on the hom-spaces are
compatible in a suitable sense: we have an “enriched model category”. This implies in particular
that the product/hom-adjunctions are Quillen adjunctions, which is crucial for a decent discusson
of the derived functors of the suspension/looping adjunction below.

Definition 3.55. Let : →  and : →  be morphisms in Top , def. 3.35. Their pushout

product
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□ ≔ ((id, ), ( , id))

is the universal morphism in the following diagram

×

( , ) ↙ ↘( , )

× (po) ×

↘ ↙

( × ) ⊔
×

( × )

↓(( , ),( , ))

×

Example 3.56. If : ↪  and : ↪  are inclusions, then their pushout product □  from
def. 3.55 is the inclusion

( × ∪ × ) ↪ × .

For instance

({0} ↪ ) □ ({0} ↪ )

is the inclusion of two adjacent edges of a square into the square.

Example 3.57. The pushout product with an initial morphism is just the ordinary Cartesian
product functor

(∅ → ) □ ( −) ≃ × ( −) ,

i.e.

(∅ → ) □ ( → ) ≃ ( × →⎯⎯⎯
×

× ) .

Proof. The product topological space with the empty space is the empty space, hence the map

∅ × →⎯⎯⎯⎯
( , )

∅ ×  is an isomorphism, and so the pushout in the pushout product is × . From this
one reads off the universal map in question to be × :

∅ ×

↙ ↘≃

× (po) ∅ ×

≃ ↘ ↙

×

↓(( , ), ∃ !)

×

.

  ▮

Example 3.58. With

: { − ↪ } and : { ↪ × }

the generating cofibrations (def. 1.37) and generating acyclic cofibrations (def. 1.42) of
(Top )  (theorem 3.51), then their pushout-products (def. 3.55) are
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□ ≃ +

□ ≃ +

.

Proof. To see this, it is profitable to model n-disks and n-spheres, up to homeomorphism, as
-cubes ≃ [0, 1] ⊂ ℝ  and their boundaries − ≃ ∂[0, 1]  . For the idea of the proof, consider

the situation in low dimensions, where one readily sees pictorially that

□ : ( = ∪ | | ) ↪ □

and

□ : ( = ∪ | ) ↪ □ .

Generally,  may be represented as the space of -tuples of elements in [0, 1], and  as the
suspace of tuples for which at least one of the coordinates is equal to 0 or to 1.

Accordingly, × ↪ +  is the subspace of ( + )-tuples, such that at least one of the
first  coordinates is equal to 0 or 1, while × ↪ +  is the subspace of ( + )-tuples
such that east least one of the last  coordinates is equal to 0 or to 1. Therefore

× ∪ × ≃ + .

And of course it is clear that × ≃ + . This shows the first case.

For the second, use that × ×  is contractible to ×  in × × , and that
×  is a subspace of × .  ▮

Definition 3.59. Let : →  and : →  be two morphisms in Top , def. 3.35. Their pullback

powering is

□ ≔ ( , )

being the universal morphism in

↓( , )

×

↙ ↘

(pb)

↘ ↙

Proposition 3.60. Let , ,  be three morphisms in Top , def. 3.35. Then for their pushout-

products (def. 3.55) and pullback-powerings (def. 3.59) the following lifting properties are
equivalent (“Joyal-Tierney calculus”):

□ has LLP against

⇔ has LLP against □

⇔ has LLP against □

.

Proof. We claim that by the cartesian closure of Top , and carefully collecting terms, one finds

a natural bijection between commuting squares and their lifts as follows:
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⟶

↓ ↓
□

→⎯⎯⎯⎯⎯
( , )

×

↔

× ⊔
×

× →⎯⎯⎯⎯
( ˜ , ˜ )

□ ↓ ↓

× ⟶̃

,

where the tilde denotes product/hom-adjuncts, for instance

⟶

× ⟶
˜

etc.

To see this in more detail, observe that both squares above each represent two squares from the
two components into the fiber product and out of the pushout, respectively, as well as one more
square exhibiting the compatibility condition on these components:

⟶

↓ ↓
□

→⎯⎯⎯⎯⎯
( , )

×

≃

⎧

⎨

⎩

⎪

⎪

⟶

↓ ↓

⟶

,

⟶

↓ ↓

⟶

,

⟶

↓ ↓

⟶

⎫

⎬

⎭

⎪

⎪

↔

⎧

⎨

⎩

⎪

⎪

× ⟶
˜

( , ) ↓ ↓

× ⟶̃

,

× →⎯⎯⎯⎯
( , )

×

( , ) ↓ ↓
˜

× ⟶̃

,

× ⟶
˜

( , ) ↓ ↓

× ⟶̃

⎫

⎬

⎭

⎪

⎪

≃

× ⊔
×

× →⎯⎯⎯⎯
( ˜ , ˜ )

□ ↓ ↓

× ⟶̃

.

  ▮

Proposition 3.61. The pushout-product in Top  (def. 3.35) of two classical cofibrations is a

classical cofibration:

Cof □ Cof ⊂ Cof .

If one of them is acyclic, then so is the pushout-product:

Cof □ ( ∩ Cof ) ⊂ ∩ Cof .

Proof. Regarding the first point:

By example 3.58 we have

□ ⊂

Hence
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□ has LLP against ∩ Fib

⇔ has LLP against ( ∩ Fib )□

⇒ Cof has LLP against ( ∩ Fib )□

⇔ □ Cof has LLP against ∩ Fib

⇔ has LLP against ( ∩ Fib )

⇒ Cof has LLP against ( ∩ Fib )

⇔ Cof □ Cof has LLP against ∩ Fib

,

where all logical equivalences used are those of prop. 3.60 and where all implications appearing
are by the closure property of lifting problems, prop. 2.10.

Regarding the second point: By example 3.58 we moreover have

□ ⊂

and the conclusion follows by the same kind of reasoning.  ▮

Remark 3.62. In model category theory the property in proposition 3.61 is referred to as
saying that the model category (Top )  from theorem \ref{ModelStructureOnTopcg}

is a monoidal model category with respect to the Cartesian product on Top ;1. 

is an enriched model category, over itself.2. 

A key point of what this entails is the following:

Proposition 3.63. For ∈ (Top )  cofibrant (a retract of a cell complex) then the product-

hom-adjunction for  (prop. 3.41) is a Quillen adjunction

(Top ) ⊥→⎯⎯⎯⎯⎯
( −)

←⎯⎯⎯⎯⎯
× ( −)

(Top ) .

Proof. By example 3.57 we have that the left adjoint functor is equivalently the pushout product
functor with the initial morphism of :

× (−) ≃ (∅ → ) □ ( −) .

By assumption (∅ → ) is a cofibration, and hence prop. 3.61 says that this is a left Quillen
functor.  ▮

The statement and proof of prop. 3.63 has a direct analogue in pointed topological spaces

Proposition 3.64. For ∈ (Top * /)  cofibrant with respect to the classical model structure on

pointed compactly generated topological spaces (theorem 3.51, prop. 3.29) (hence a retract
of a cell complex with non-degenerate basepoint, remark 3.32) then the pointed product-
hom-adjunction from corollary 3.42 is a Quillen adjunction (def. 2.46):

(Top * /) ⊥ →⎯⎯⎯⎯⎯⎯⎯⎯
( , −)

*

←⎯⎯⎯⎯⎯⎯⎯⎯
∧ ( −)

(Top * /) .

Proof. Let now □∧ denote the smash pushout product and (−)□( −) the smash pullback
powering defined as in def. 3.55 and def. 3.59, but with Cartesian product replaced by smash
product (def. 3.22) and compactly generated mapping space replaced by pointed mapping
spaces (def. 3.26).

By theorem 3.34 (Top * /)  is cofibrantly generated by * / = ( )+ and * / = ( )+.
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Example 3.24 gives that for ∈  and ∈  then

( )+ □∧ ( )+ ≃ ( + )+

and

( )+ ∧∧ ( )+ ≃ ( + )+ .

Hence the pointed analog of prop. 3.61 holds and therefore so does the pointed analog of the
conclusion in prop. 3.63.  ▮

Model structure on topological functors

With classical topological homotopy theory in hand (theorem 3.7, theorem 3.51), it is
straightforward now to generalize this to a homotopy theory of topological diagrams. This is
going to be the basis for the stable homotopy theory of spectra, because spectra may be
identified with certain topological diagrams (prop.).

Technically, “topological diagram” here means “Top-enriched functor”. We now discuss what this
means and then observe that as an immediate corollary of theorem 3.7 we obtain a model
category structure on topological diagrams.

As a by-product, we obtain the model category theory of homotopy colimits in topological
spaces, which will be useful.

In the following we say Top-enriched category and Top-enriched functor etc. for what often is
referred to as “topological category” and “topological functor” etc. As discussed there, these
latter terms are ambiguous.

Literature (Riehl, chapter 3) for basics of enriched category theory; (Piacenza 91) for the
projective model structure on topological functors.

Definition 3.65. A topologically enriched category  is a Top -enriched category, hence:

a class Obj( ), called the class of objects;1. 

for each , ∈ Obj( ) a compactly generated topological space (def. 3.35)

( , ) ∈ Top ,

called the space of morphisms or the hom-space between  and ;

2. 

for each , , ∈ Obj( ) a continuous function

∘ , , : ( , ) × ( , ) ⟶ ( , )

out of the cartesian product (by cor. 3.38: the image under  of the product topological
space), called the composition operation;

3. 

for each ∈ Obj( ) a point Id ∈ ( , ), called the identity morphism on 4. 

such that the composition is associative and unital.

Similarly a pointed topologically enriched category is such a structure with Top  replaced

by Top * / (def. 3.16) and with the Cartesian product replaced by the smash product (def. 3.22)
of pointed topological spaces.

Remark 3.66. Given a (pointed) topologically enriched category as in def. 3.65, then forgetting

Introduction to Homotopy Theory in nLab https://ncatlab.org/nlab/print/Introduction+to+Homotopy+Theory

75 of 111 09.05.17, 15:41



the topology on the hom-spaces (along the forgetful functor : Top → Set) yields an ordinary

locally small category with

Hom ( , ) = ( ( , )) .

It is in this sense that  is a category with extra structure, and hence “enriched”.

The archetypical example is Top  itself:

Example 3.67. The category Top  (def. 3.35) canonically obtains the structure of a

topologically enriched category, def. 3.65, with hom-spaces given by the compactly generated
mapping spaces (def. 3.39)

Top ( , ) ≔

and with composition

× ⟶

given by the adjunct under the (product⊣ mapping-space)-adjunction from prop. 3.41 of the
evaluation morphisms

× × →⎯⎯⎯⎯
( , )

× ⟶ .

Similarly, pointed compactly generated topological spaces Top * / form a pointed topologically
enriched category, using the pointed mapping spaces from example 3.26:

Top * /( , ) ≔ Maps( , )
*

.

Definition 3.68. A topologically enriched functor between two topologically enriched categories

: ⟶

is a Top -enriched functor, hence:

a function

: Obj( ) ⟶ Obj( )

of objects;

1. 

for each , ∈ Obj( ) a continuous function

, : ( , ) ⟶ ( ( ), ( ))

of hom-spaces,

2. 

such that this preserves composition and identity morphisms in the evident sense.

A homomorphism of topologically enriched functors

: ⇒

is a Top -enriched natural transformation: for each ∈ Obj( ) a choice of morphism

∈ ( ( ), ( )) such that for each pair of objects , ∈  the two continuous functions

∘ ( −) : ( , ) ⟶ ( ( ), ( ))

and

( −) ∘ : ( , ) ⟶ ( ( ), ( ))
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agree.

We write [ , ] for the resulting category of topologically enriched functors.

Remark 3.69. The condition on an enriched natural transformation in def. 3.68 is just that on
an ordinary natural transformation on the underlying unenriched functors, saying that for
every morphisms : →  there is a commuting square

↦

( , ) × ⟶ ( )

( , ) ↓ ↓ ( )

( , ) × ⟶ ( )

.

Example 3.70. For  any topologically enriched category, def. 3.65 then a topologically
enriched functor (def. 3.68)

: ⟶ Top

to the archetical topologically enriched category from example 3.67 may be thought of as a
topologically enriched copresheaf, at least if  is small (in that its class of objects is a proper
set).

Hence the category of topologically enriched functors

[ , Top ]

according to def. 3.68 may be thought of as the (co-)presheaf category over  in the realm of
topological enriched categories.

A functor ∈ [ , Top ] is equivalently

a compactly generated topological space ∈ Top  for each object ∈ Obj( );1. 

a continuous function

× ( , ) ⟶

for all pairs of objects , ∈ Obj( )

2. 

such that composition is respected, in the evident sense.

For every object ∈ , there is a topologically enriched representable functor, denoted ( ) or
( , −) which sends objects to

( )( ) = ( , ) ∈ Top

and whose action on morphisms is, under the above identification, just the composition
operation in .

Proposition 3.71. For  any small topologically enriched category, def. 3.65 then the enriched
functor category [ , Top ] from example 3.70 has all limits and colimits, and they are

computed objectwise:

if

• : ⟶ [ , Top ]

is a diagram of functors and ∈  is any object, then

(lim←⎯⎯ )( ) ≃ lim←⎯⎯( ( )) ∈ Top

Introduction to Homotopy Theory in nLab https://ncatlab.org/nlab/print/Introduction+to+Homotopy+Theory

77 of 111 09.05.17, 15:41



and

(lim→⎯⎯ )( ) ≃ lim→⎯⎯ ( ( )) ∈ Top .

Proof. First consider the underlying diagram of functors ∘ where the topology on the
hom-spaces of  and of Top  has been forgotten. Then one finds

(lim←⎯⎯
∘)( ) ≃ lim←⎯⎯( ∘( )) ∈ Set

and

(lim→⎯⎯
∘)( ) ≃ lim→⎯⎯ ( ∘( )) ∈ Set

by the universal property of limits and colimits. (Given a morphism of diagrams then a unique
compatible morphism between their limits or colimits, respectively, is induced as the universal
factorization of the morphism of diagrams regarded as a cone or cocone, respectvely, over the
codomain or domain diagram, respectively).

Hence it only remains to see that equipped with topology, these limits and colimits in Set become
limits and colimits in Top . That is just the statement of prop. 1.5 with corollary 3.38.  ▮

Definition 3.72. Let  be a topologically enriched category, def. 3.65, with [ , Top ] its category

of topologically enriched copresheaves from example 3.70.

Define a functor

(−) ⋅ ( −) : [ , Top ] × Top ⟶ [ , Top ]

by forming objectwise cartesian products (hence  of product topological spaces)

⋅ : ↦ ( ) × .

This is called the tensoring of [ , Top ] over Top .

1. 

Define a functor

(−)(−) : (Top ) × [ , Top ] ⟶ [ , Top ]

by forming objectwise compactly generated mapping spaces (def. 3.39)

: ↦ ( ) .

This is called the powering of [ , Top ] over Top .

2. 

Analogously, for  a pointed topologically enriched category, def. 3.65, with [ , Top * /] its
category of pointed topologically enriched copresheaves from example 3.70, then:

Define a functor

( −) ∧ ( −) : [ , Top * /] × Top * / ⟶ [ , Top * /]

by forming objectwise smash products (def. 3.22)

∧ : ↦ ( ) ∧ .

This is called the smash tensoring of [ , Top * /] over Top * /.

1. 

Define a functor2. 
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Maps( −, −)
*

: Top * / × [ , Top * /] ⟶ [ , Top * /]

by forming objectwise pointed mapping spaces (example 3.26)

: ↦ Maps( , ( ))
*

.

This is called the pointed powering of [ , Top ] over Top .

There is a full blown Top -enriched Yoneda lemma. The following records a slightly simplified

version which is all that is needed here:

Proposition 3.73. (topologically enriched Yoneda-lemma)

Let  be a topologically enriched category, def. 3.65, write [ , Top ] for its category of

topologically enriched (co-)presheaves, and for ∈ Obj( ) write ( ) = ( , −) ∈ [ , Top ] for the

topologically enriched functor that it represents, all according to example 3.70. Recall the
tensoring operation ( , ) ↦ ⋅  from def. 3.72.

For ∈ Obj( ), ∈ Top  and ∈ [ , Top ], there is a natural bijection between

morphisms ( ) ⋅ ⟶  in [ , Top ];1. 

morphisms ⟶ ( ) in Top .2. 

In short:

( ) ⋅ ⟶
⟶ ( )

Proof. Given a morphism : ( ) ⋅ ⟶  consider its component

: ( , ) × ⟶ ( )

and restrict that to the identity morphism id ∈ ( , ) in the first argument

(id , −) : ⟶ ( ) .

We claim that just this (id , −) already uniquely determines all components

: ( , ) × ⟶ ( )

of , for all ∈ Obj( ): By definition of the transformation  (def. 3.68), the two functions

(−) ∘ : ( , ) ⟶ ( ) ( , ) ×

and

∘ ( , −) × : ( , ) ⟶ ( ) ( , ) ×

agree. This means (remark 3.69) that they may be thought of jointly as a function with values in
commuting squares in Top  of this form:

↦

( , ) × ⟶ ( )

( , ) ↓ ↓ ( )

( , ) × ⟶ ( )

For any ∈ ( , ), consider the restriction of
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∘ ( , ) ∈ ( ) ( , ) ×

to id ∈ ( , ), hence restricting the above commuting squares to

↦

{id } × ⟶ ( )

( , ) ↓ ↓( )

{ } × ⟶ ( )

This shows that  is fixed to be the function

( , ) = ( ) ∘ (id , )

and this is a continuous function since all the operations it is built from are continuous.

Conversely, given a continuous function : ⟶ ( ), define for each  the function

: ( , ) ↦ ( ) ∘ .

Running the above analysis backwards shows that this determines a transformation
: ( ) × → .  ▮

Definition 3.74. For  a small topologically enriched category, def. 3.65, write

≔ ( ) ⋅ ( − ⟶ ) ∈ ℕ,

∈ ( )

and

≔ ( ) ⋅ ( →⎯⎯⎯⎯
( , )

× ) ∈ ℕ,

∈ ( )

for the sets of morphisms given by tensoring (def. 3.72) the representable functors (example
3.70) with the generating cofibrations (def.1.37) and acyclic generating cofibrations (def.
1.42), respectively, of (Top )  (theorem 3.51).

These are going to be called the generating cofibrations and acyclic generating
cofibrations for the projective model structure on topologically enriched functors over .

Analgously, for  a pointed topologically enriched category, write

* / ≔ ( ) ∧ ( +
− →⎯⎯⎯

( )+
+) ∈ ℕ,

∈ ( )

and

* / ≔ ( ) ∧ ( + →⎯⎯⎯⎯⎯⎯
( , )+ ( × )+) ∈ ℕ,

∈ ( )

for the analogous construction applied to the pointed generating (acyclic) cofibrations of def.
3.33.

Definition 3.75. Given a small (pointed) topologically enriched category , def. 3.65, say that a
morphism in the category of (pointed) topologically enriched copresheaves [ , Top ]

([ , Top * /]), example 3.70, hence a natural transformation between topologically enriched
functors, : →  is

a projective weak equivalence, if for all ∈ Obj( ) the component : ( ) → ( ) is a
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weak homotopy equivalence (def. 1.30);

a projective fibration if for all ∈ Obj( ) the component : ( ) → ( ) is a Serre

fibration (def. 1.47);

a projective cofibration if it is a retract (rmk. 2.12) of an -relative cell complex
(def. 1.41, def. 3.74).

Write

[ , (Top ) ]

and

[ , (Top * /) ]

for the categories of topologically enriched functors equipped with these classes of morphisms.

Theorem 3.76. The classes of morphisms in def. 3.75 constitute a model category structure on
[ , Top ] and [ , Top * /], called the projective model structure on enriched functors

[ , (Top ) ]

and

[ , (Top * /) ]

These are cofibrantly generated model category, def. 3.9, with set of generating (acyclic)
cofibrations the sets ,  and * / , * /  from def. 3.74, respectively.

(Piacenza 91, theorem 5.4)

Proof. By prop. 3.71 the category has all limits and colimits, hence it remains to check the
model structure

But via the enriched Yoneda lemma (prop. 3.73) it follows that proving the model structure
reduces objectwise to the proof of theorem 3.7, theorem 3.51. In particular, the technical
lemmas 1.40, 1.45 and 1.52 generalize immediately to the present situation, with the evident
small change of wording:

For instance, the fact that a morphism of topologically enriched functors : →  that has the
right lifting property against the elements of  is a projective weak equivalence, follows by
noticing that for fixed : →  the enriched Yoneda lemma prop. 3.73 gives a natural bijection of
commuting diagrams (and their fillers) of the form

⎛

⎝

⎜⎜

( ) ⋅ − ⟶

( ⋅ ) ↓ ↓

( ) ⋅ ⟶

⎞

⎠

⎟⎟
↔

⎛

⎝

⎜⎜

− ⟶ ( )

↓ ↓

⟶ ( )

⎞

⎠

⎟⎟
,

and hence the statement follows with part A) of the proof of lemma 1.52.

With these three lemmas in hand, the remaining formal part of the proof goes through verbatim
as above: repeatedly use the small object argument (prop. 2.17) and the retract argument
(prop. 2.15) to establish the two weak factorization systems. (While again the structure of a
category with weak equivalences is evident.)  ▮

Example 3.77. Given examples 3.67 and 3.70, the next evident example of a pointed
topologically enriched category besides Top * / itself is the functor category
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[Top * /, Top * /] .

The only technical problem with this is that Top * / is not a small category (it has a proper class
of objects), which means that the existence of all limits and colimits via prop. 3.71 may (and
does) fail.

But so we just restrict to a small topologically enriched subcategory. A good choice is the full
subcategory

Top ,
* / ↪ Top * /

of topological spaces homoemorphic to finite CW-complexes. The resulting projective model
category (via theorem 3.76)

[Top ,
* / , (Top * /) ]

is also also known as the strict model structure for excisive functors. (This terminology is
the special case for = 1 of the terminology “n-excisive functors” as used in “Goodwillie
calculus”, a homotopy-theoretic analog of differential calculus.) After enlarging its class of
weak equivalences while keeping the cofibrations fixed, this will become Quillen equivalent to
a model structure for spectra. This we discuss in part 1.2, in the section on pre-excisive
functors.

One consequence of theorem 3.76 is the model category theoretic incarnation of the theory of
homotopy colimits.

Observe that ordinary limits and colimits (def. 1.1) are equivalently characterized in terms of
adjoint functors:

Let  be any category and let  be a small category. Write [ , ] for the corresponding functor
category. We may think of its objects as -shaped diagrams in , and of its morphisms as
homomorphisms of these diagrams. There is a canonical functor

const : ⟶ [ , ]

which sends each object of  to the diagram that is constant on this object. Inspection of the
definition of the universal properties of limits and colimits on one hand, and of left adjoint and
right adjoint functors on the other hand, shows that

precisely when  has all colimits of shape , then the functor const  has a left adjoint functor,
which is the operation of forming these colimits:

[ , ] ⊥←⎯⎯⎯⎯
→⎯⎯⎯⎯

→⎯⎯⎯

1. 

precisely when  has all limits of shape , then the functor const  has a right adjoint functor,
which is the operation of forming these limits.

[ , ] ⊥
→⎯⎯⎯⎯

←⎯⎯⎯

←⎯⎯⎯⎯

2. 

Proposition 3.78. Let  be a small topologically enriched category (def. 3.65). Then the
(lim→⎯⎯ ⊣ const )-adjunction

[ , (Top ) ] ⊥←⎯⎯⎯⎯
→⎯⎯⎯⎯

→⎯⎯⎯

(Top )
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is a Quillen adjunction (def. 2.46) between the projective model structure on topological
functors on , from theorem 3.76, and the classical model structure on topological spaces from
theorem 3.51.

Similarly, if  is enriched in pointed topological spaces, then for the classical model structure
on pointed topological spaces (prop. 3.29, theorem 3.34) the adjunction

[ , (Top * /) ] ⊥←⎯⎯⎯⎯
→⎯⎯⎯⎯→⎯⎯⎯

(Top * /)

is a Quillen adjunction.

Proof. Since the fibrations and weak equivalences in the projective model structure (def. 3.75)
on the functor category are objectwise those of (Top )  and of (Top * /) , respectively, it

is immediate that the functor const  preserves these. In particular it preserves fibrations and
acyclic fibrations and so the claim follows (prop. 2.47).  ▮

Definition 3.79. In the situation of prop. 3.78 we say that the left derived functor (def. 2.42) of
the colimit functor is the homotopy colimit

hocolim ≔ lim→⎯⎯ : Ho([ , Top]) ⟶ Ho(Top)

and

hocolim ≔ lim
→⎯⎯

: Ho([ , Top * /]) ⟶ Ho(Top * /) .

Remark 3.80. Since every object in (Top )  and in (Top * /)  is fibrant, the homotopy

colimit of any diagram •, according to def. 3.79, is (up to weak homotopy equivalence) the

result of forming the ordinary colimit of any projectively cofibrant replacement ^
• ⎯⎯⎯⎯

∈

•.

Example 3.81. Write ℕ≤ for the poset (def. 1.15) of natural numbers, hence for the small
category (with at most one morphism from any given object to any other given object) that
looks like

ℕ≤ = {0 → 1 → 2 → 3 → ⋯} .

Regard this as a topologically enriched category with the, necessarily, discrete topology on its
hom-sets.

Then a topologically enriched functor

• : ℕ≤ ⟶ Top

is just a plain functor and is equivalently a sequence of continuous functions (morphisms in
Top ) of the form (also called a cotower)

⟶ ⟶ ⟶ ⟶ ⋯ .

It is immediate to check that those sequences • which are cofibrant in the projective model
structure (theorem 3.76) are precisely those for which

all component morphisms  are cofibrations in (Top )  or (Top * /) , respectively,

hence retracts (remark 2.12) of relative cell complex inclusions (def. 1.38);

1. 

the object , and hence all other objects, are cofibrant, hence are retracts of cell
complexes (def. 1.38).

2. 

By example 3.81 it is immediate that the operation of forming colimits sends projective (acyclic)
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cofibrations between sequences of topological spaces to (acyclic) cofibrations in the classical
model structure on pointed topological spaces. On those projectively cofibrant sequences where
every map is not just a retract of a relative cell complex inclusion, but a plain relative cell
complex inclusion, more is true:

Proposition 3.82. In the projective model structures on cotowers in topological spaces,
[ℕ≤, (Top ) ]  and [ℕ≤, (Top * /) ]  from def. 3.81, the following holds:

The colimit functor preserves fibrations between sequences of relative cell complex
inclusions;

1. 

Let  be a finite category, let •( −) : → [ℕ≤, Top ] be a finite diagram of sequences of

relative cell complexes. Then there is a weak homotopy equivalence

lim
→⎯⎯

lim
←⎯⎯

( ) →⎯⎯⎯⎯
∈

lim
←⎯⎯

lim
→⎯⎯

( )

from the colimit over the limit sequnce to the limit of the colimits of sequences.

2. 

Proof. Regarding the first statement:

Use that both (Top )  and (Top * /)  are cofibrantly generated model categories (theorem

3.34) whose generating acyclic cofibrations have compact topological spaces as domains and
codomains. The colimit over a sequence of relative cell complexes (being a transfinite
composition) yields another relative cell complex, and hence lemma 1.40 says that every
morphism out of the domain or codomain of a generating acyclic cofibration into this colimit
factors through a finite stage inclusion. Since a projective fibration is a degreewise fibration, we
have the lifting property at that finite stage, and hence also the lifting property against the
morphisms of colimits.

Regarding the second statement:

This is a model category theoretic version of a standard fact of plain category theory, which says
that in the category Set of sets, filtered colimits commute with finite limits in that there is an
isomorphism of sets of the form which we have to prove is a weak homotopy equivalence of
topological spaces. But now using that weak homotopy equivalences are detected by forming
homotopy groups (def. 1.26), hence hom-sets out of n-spheres, and since -spheres are
compact topological spaces, lemma 1.40 says that homming out of -spheres commutes over
the colimits in question. Moreover, generally homming out of anything commutes over limits, in
particular finite limits (every hom functor is left exact functor in the second variable). Therefore
we find isomorphisms of the form

Hom , lim→⎯⎯ lim←⎯⎯ ( ) ≃ lim→⎯⎯ lim←⎯⎯Hom( , ( )) ⟶∼ lim←⎯⎯ lim→⎯⎯ Hom( ( )) ≃ Hom , lim←⎯⎯ lim→⎯⎯ ( )

and similarly for the left homotopies Hom( × , −) (and similarly for the pointed case). This
implies the claimed isomorphism on homotopy groups.  ▮

4. Homotopy fiber sequences

A key aspect of homotopy theory is that the universal constructions of category theory, such as
limits and colimits, receive a refinement whereby their universal properties hold not just up to
isomorphism but up to (weak) homotopy equivalence. One speaks of homotopy limits and
homotopy colimits.

We consider this here just for the special case of homotopy fibers and homotopy cofibers,
leading to the phenomenon of homotopy fiber sequences and their induced long exact
sequences of homotopy groups which control much of the theory to follow.
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Mapping cones

In the context of homotopy theory, a pullback diagram, such as in the definition of the fiber in
example 3.27

fib( ) ⟶

↓ ↓

* ⟶

ought to commute only up to a (left/right) homotopy (def. 2.22) between the outer composite
morphisms. Moreover, it should satisfy its universal property up to such homotopies.

Instead of going through the full theory of what this means, we observe that this is plausibly
modeled by the following construction, and then we check (below) that this indeed has the
relevant abstract homotopy theoretic properties.

Definition 4.1. Let  be a model category, def. 2.3 with * / its model structure on pointed
objects, prop. 3.29. For : ⟶  a morphism between cofibrant objects (hence a morphism in
( * /) ↪ * /, def. 2.34), its reduced mapping cone is the object

Cone( ) ≔ * ⊔ Cyl( ) ⊔

in the colimiting diagram

⟶

↓ ↓

⟶ Cyl( )

↓ ↘ ↓

* ⟶ ⟶ Cone( )

,

where Cyl( ) is a cylinder object for , def. 2.18.

Dually, for : ⟶  a morphism between fibrant objects (hence a morphism in ( *) ↪ * /, def.

2.34), its mapping cocone is the object

Path*( ) ≔ * × Path( ) ×

in the following limit diagram

Path*( ) ⟶ ⟶

↓ ↘ ↓

Path( ) ⟶

↓ ↓

* ⟶

,

where Path( ) is a path space object for , def. 2.18.

Remark 4.2. When we write homotopies (def. 2.22) as double arrows between morphisms,
then the limit diagram in def. 4.1 looks just like the square in the definition of fibers in
example 3.27, except that it is filled by the right homotopy given by the component map
denoted :
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Path*( ) ⟶

↓ ⇙ ↓

* ⟶

.

Dually, the colimiting diagram for the mapping cone turns to look just like the square for the
cofiber, except that it is filled with a left homotopy

⟶

↓ ⇙ ↓

* ⟶ Cone( )

Proposition 4.3. The colimit appearing in the definition of the reduced mapping cone in def.
4.1 is equivalent to three consecutive pushouts:

⟶

↓ (po) ↓

⟶ Cyl( ) ⟶ Cyl( )

↓ (po) ↓ (po) ↓

* ⟶ Cone( ) ⟶ Cone( )

.

The two intermediate objects appearing here are called

the plain reduced cone Cone( ) ≔ * ⊔ Cyl( );

the reduced mapping cylinder Cyl( ) ≔ Cyl( ) ⊔ .

Dually, the limit appearing in the definition of the mapping cocone in def. 4.1 is equivalent to
three consecutive pullbacks:

Path*( ) ⟶ Path( ) ⟶

↓ (pb) ↓ (pb) ↓

Path*( ) ⟶ Path( ) ⟶

↓ (pb) ↓

* ⟶

.

The two intermediate objects appearing here are called

the based path space object Path*( ) ≔ * ∏ Path( );

the mapping path space or mapping co-cylinder Path( ) ≔ × Path( ).

Definition 4.4. Let ∈ * / be any pointed object.

The mapping cone, def. 4.3, of → *  is called the reduced suspension of , denoted

= Cone( → * ) .

Via prop. 4.3 this is equivalently the coproduct of two copies of the cone on  over their
base:

1. 
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⟶ *

↓ (po) ↓

⟶ Cyl( ) ⟶ Cone( )

↓ (po) ↓ (po) ↓

* ⟶ Cone( ) ⟶

.

This is also equivalently the cofiber, example 3.27 of ( , ), hence (example 3.20) of the
wedge sum inclusion:

∨ = ⊔ →⎯⎯⎯⎯
( , )

Cyl( ) →⎯⎯⎯⎯⎯⎯⎯⎯
( , )

.

The mapping cocone, def. 4.3, of * →  is called the loop space object of , denoted

= Path*( * → ) .

Via prop. 4.3 this is equivalently

⟶ Path*( ) ⟶ *

↓ (pb) ↓ (pb) ↓

Path*( ) ⟶ Path( ) ⟶

↓ (pb) ↓

* ⟶

.

This is also equivalently the fiber, example 3.27 of ( , ):

→⎯⎯⎯⎯⎯⎯⎯
( , )

Path( ) →⎯⎯⎯⎯⎯
( , )

× .

2. 

Proposition 4.5. In pointed topological spaces Top * /,

the reduced suspension objects (def. 4.4) induced from the standard reduced cylinder
( −) ∧ ( +) of example 3.25 are isomorphic to the smash product (def. 3.22) with the
1-sphere, for later purposes we choose to smash on the left and write

cofib( ∨ → ∧ ( +)) ≃ ∧ ,

Dually:

the loop space objects (def. 4.4) induced from the standard pointed path space object
Maps( +, −)

*
 are isomorphic to the pointed mapping space (example 3.26) with the

1-sphere

fib(Maps( +, )
*

→ × ) ≃ Maps( , )
*

.

Proof. By immediate inspection: For instance the fiber of Maps( +, )
*

⟶ ×  is clearly the

subspace of the unpointed mapping space  on elements that take the endpoints of  to the
basepoint of .  ▮

Example 4.6. For = Top with Cyl( ) = ×  the standard cyclinder object, def. 1.22, then by
example 1.12, the mapping cone, def. 4.1, of a continuous function : ⟶  is obtained by

forming the cylinder over ;1. 

attaching to one end of that cylinder the space  as specified by the map .2. 

shrinking the other end of the cylinder to the point.3. 
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Accordingly the
suspension of a
topological space is the
result of shrinking both
ends of the cylinder on
the object two the
point. This is
homeomoprhic to
attaching two copies of
the cone on the space
at the base of the cone.

(graphics taken from
Muro 10)

Below in example 4.19
we find the homotopy-
theoretic interpretation
of this standard
topological mapping cone as a model for the homotopy cofiber.

Remark 4.7. The formula for the mapping cone in prop. 4.3 (as opposed to that of the mapping
co-cone) does not require the presence of the basepoint: for : ⟶  a morphism in  (as
opposed to in * /) we may still define

Cone′ ( ) ≔ ⊔ Cone′( ) ,

where the prime denotes the unreduced cone, formed from a cylinder object in .

Proposition 4.8. For : ⟶  a morphism in Top, then its unreduced mapping cone, remark
4.7, with respect to the standard cylinder object ×  def. 1.22, is isomorphic to the reduced
mapping cone, def. 4.1, of the morphism + : + → + (with a basepoint adjoined, def. 3.18)

with respect to the standard reduced cylinder (example 3.25):

Cone′( ) ≃ Cone( +) .

Proof. By prop. 3.19 and example 3.24, Cone( +) is given by the colimit in Top over the following

diagram:

* ⟶ ⊔ * →⎯⎯⎯
( , )

⊔ *

↓ ↓ ↓

⊔ * ⟶ ( × ) ⊔ *

↓ ↓

* ⟶ ⟶ Cone( +)

.

We may factor the vertical maps to give

* ⟶ ⊔ * →⎯⎯⎯
( , )

⊔ *

↓ ↓ ↓

⊔ * ⟶ ( × ) ⊔ *

↓ ↓

* ⊔ * ⟶ ⟶ Cone′( )+

↓ ↓

* ⟶ ⟶ Cone′ ( )

.
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This way the top part of the diagram (using the pasting law to compute the colimit in two
stages) is manifestly a cocone under the result of applying ( −)+ to the diagram for the

unreduced cone. Since (−)+ is itself given by a colimit, it preserves colimits, and hence gives the

partial colimit Cone′ ( )+ as shown. The remaining pushout then contracts the remaining copy of

the point away.  ▮

Example 4.6 makes it clear that every cycle →  in  that happens to be in the image of  can
be continuously translated in the cylinder-direction, keeping it constant in , to the other end of
the cylinder, where it shrinks away to the point. This means that every homotopy group of ,
def. 1.26, in the image of  vanishes in the mapping cone. Hence in the mapping cone the
image of  under  in  is removed up to homotopy. This makes it intuitively clear how
Cone( ) is a homotopy-version of the cokernel of . We now discuss this formally.

Lemma 4.9. (factorization lemma)

Let  be a category of cofibrant objects, def. 2.34. Then for every morphism : ⟶  the
mapping cylinder-construction in def. 4.3 provides a cofibration resolution of , in that

the composite morphism ⟶ Cyl( ) →⎯⎯⎯⎯
( )

* Cyl( ) is a cofibration;1. 

 factors through this morphism by a weak equivalence left inverse to an acyclic
cofibration

: →⎯⎯⎯⎯⎯⎯
∈

( )
*

∘
Cyl( ) →⎯⎯

∈
,

2. 

Dually:

Let  be a category of fibrant objects, def. 2.34. Then for every morphism : ⟶  the
mapping cocylinder-construction in def. 4.3 provides a fibration resolution of , in that

the composite morphism Path( ) →⎯⎯
*

Path( ) ⟶  is a fibration;1. 

 factors through this morphism by a weak equivalence right inverse to an acyclic
fibration:

: →⎯⎯
∈

Path( ) →⎯⎯⎯⎯⎯⎯
∈

∘ *
,

2. 

Proof. We discuss the second case. The first case is formally dual.

So consider the mapping cocylinder-construction from prop. 4.3

Path( ) →⎯⎯⎯⎯⎯⎯
∈ ∩

*
↓ (pb) ↓

Path( ) →⎯⎯⎯⎯⎯⎯
∈ ∩

∈ ∩ ↓

.

To see that the vertical composite is indeed a fibration, notice that, by the pasting law, the
above pullback diagram may be decomposed as a pasting of two pullback diagram as follows
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Path( ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
∈

( , )*( , )
× ⎯

↓ ↓( , ) ↓

Path( ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯
( , ) ∈

× ⟶

↓ ↙
∈

.

Both squares are pullback squares. Since pullbacks of fibrations are fibrations by prop. 2.10, the
morphism Path( ) → ×  is a fibration. Similarly, since  is fibrant, also the projection map

× →  is a fibration (being the pullback of → *  along → * ).

Since the vertical composite is thereby exhibited as the composite of two fibrations

Path( ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( , )*( , )

× →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
∘( , ) =

,

it is itself a fibration.

Then to see that there is a weak equivalence as claimed:

The universal property of the pullback Path( ) induces a right inverse of Path( ) →  fitting into
this diagram

id : →⎯⎯
∈

∃
Path( ) →⎯⎯⎯⎯⎯⎯

∈ ∩

↓ ↓ ↓

id : →⎯⎯
∈

Path( ) →

↘ ↓

,

which is a weak equivalence, as indicated, by two-out-of-three (def. 2.1).

This establishes the claim.  ▮

Categories of fibrant objects

Below we discuss the homotopy-theoretic properties of the mapping cone- and mapping cocone-
constructions from above. Before we do so, we here establish a collection of general facts that
hold in categories of fibrant objects and dually in categories of cofibrant objects, def. 2.34.

Literature (Brown 73, section 4).

Lemma 4.10. Let : ⟶  be a morphism in a category of fibrant objects, def. 2.34. Then given
any choice of path space objects Path( ) and Path( ), def. 2.18, there is a replacement of

Path( ) by a path space object Path( ) along an acylic fibration, such that Path( ) has a
morphism  to Path( ) which is compatible with the structure maps, in that the following
diagram commutes
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⟶

↙ ↓ ↓

Path( ) ←⎯⎯⎯⎯⎯⎯
∈ ∩

Path( ) ⟶ Path( )

( , )
↘ ↓( , ) ↓( ˜ , ˜ )

× →⎯⎯⎯
( , )

×

.

(Brown 73, section 2, lemma 2)

Proof. Consider the commuting square

⟶ ⟶ Path( )

↓ ↓( , )

Path( ) →⎯⎯⎯⎯⎯⎯
( , )

× →⎯⎯⎯
( , )

×

.

Then consider its factorization through the pullback of the right morphism along the bottom
morphism,

⟶ ( ∘ , ∘ )*Path( ) ⟶ Path( )

∈ ↘ ↓ ∈ ∩ ↓ ∈

( , )

Path( ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( ∘ , ∘ )

×

.

Finally use the factorization lemma 4.9 to factor the morphism → ( ∘ , ∘ )*Path( ) through

a weak equivalence followed by a fibration, the object this factors through serves as the desired
path space resolution

→⎯⎯
∈

Path( ) ⟶ Path( )

∈ ↘ ↓ ∈ ∩ ↓( , )

Path( ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( ∘ , ∘ )

×

.

  ▮

Lemma 4.11. In a category of fibrant objects , def. 2.34, let

⟶

∈ ↘ ↙ ∈

be a morphism over some object  in  and let : ′ →  be any morphism in . Let

* →⎯⎯
*

*

∈ ↘ ↙ ∈

′

be the corresponding morphism pulled back along .

Then

if  is a fibration then also *  is a fibration;
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if  is a weak equivalence then also *  is a weak equivalence.

(Brown 73, section 4, lemma 1)

Proof. For ∈ Fib the statement follows from the pasting law which says that if in

′ × ⟶

↓
* ∈ ↓ ∈

′ × ⟶

↓ ∈ ↓ ∈

′ ⟶

the bottom and the total square are pullback squares, then so is the top square. The same
reasoning applies for ∈ ∩ Fib.

Now to see the case that ∈ :

Consider the full subcategory ( / )  of the slice category /  (def. 3.15) on its fibrant objects,

i.e. the full subcategory of the slice category on the fibrations

↓ ∈

into . By factorizing for every such fibration the diagonal morphisms into the fiber product ×

through a weak equivalence followed by a fibration, we obtain path space objects Path ( )

relative to :

( )/ : →⎯⎯
∈

Path ( ) →⎯⎯⎯
∈

×

∈ ↘ ↓ ↙ ∈
.

With these, the factorization lemma (lemma 4.9) applies in ( / ) .

(Notice that for this we do need the restriction of /  to the fibrations, because this ensures that

the projections : × →  are still fibrations, which is used in the proof of the factorization

lemma (here).)

So now given any

→⎯⎯
∈

∈ ↘ ↙ ∈

apply the factorization lemma in ( / )  to factor it as

→⎯⎯⎯
∈

Path ( ) →⎯⎯⎯⎯⎯⎯
∈ ∩

∈ ↘ ↓ ↙∈
.

By the previous discussion it is sufficient now to show that the base change of  to ′  is still a
weak equivalence. But by the factorization lemma in ( / ) , the morphism  is right inverse to
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another acyclic fibration over :

id : →⎯⎯⎯
∈

Path ( ) →⎯⎯⎯⎯⎯⎯
∈ ∩

∈ ↘ ↓ ↙ ∈
.

(Notice that if we had applied the factorization lemma of  in  instead of ( )/  in ( / ) then

the corresponding triangle on the right here would not commute.)

Now we may reason as before: the base change of the top morphism here is exhibited by the
following pasting composite of pullbacks:

′ × ⟶

↓ (pb) ↓

′ × Path ( ) ⟶ Path ( )

↓ (pb) ↓ ∈ ∩

′ × ⟶

↓ (pb) ↓

′ ⟶

.

The acyclic fibration Path ( ) is preserved by this pullback, as is the identity id : → Path ( ) → .
Hence the weak equivalence → Path ( ) is preserved by two-out-of-three (def. 2.1).

Lemma 4.12. In a category of fibrant objects, def. 2.34, the pullback of a weak equivalence
along a fibration is again a weak equivalence.

(Brown 73, section 4, lemma 2)

Proof. Let : ′ →  be a weak equivalence and : →  be a fibration. We want to show that the
left vertical morphism in the pullback

× ′ ⟶ ′

↓ ⇒ ∈ ↓ ∈

→⎯⎯⎯
∈

is a weak equivalence.

First of all, using the factorization lemma 4.9 we may factor ′ →  as

′ →⎯⎯
∈

Path( ) →⎯⎯⎯⎯⎯
∈ ∩

with the first morphism a weak equivalence that is a right inverse to an acyclic fibration and the
right one an acyclic fibration.

Then the pullback diagram in question may be decomposed into two consecutive pullback
diagrams

× ′ → ′

↓ ↓

⎯⎯
∈

Path( )

↓ ∈ ∩ ↓ ∈ ∩

→⎯⎯⎯
∈

,
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where the morphisms are indicated as fibrations and acyclic fibrations using the stability of these
under arbitrary pullback.

This means that the proof reduces to proving that weak equivalences : ′ ⎯
∈

 that are right

inverse to some acyclic fibration : ⎯⎯⎯⎯
∈ ∩

′  map to a weak equivalence under pullback along a
fibration.

Given such  with right inverse , consider the pullback diagram

( , )

∈ ↓ ↘

≔ × →⎯⎯⎯⎯⎯⎯
∈ ∩

↓ ∈ ↓ ∈

(pb)

↓ ↓ ∈ ∩

→⎯⎯⎯⎯⎯⎯⎯
∈ ∩

′

.

Notice that the indicated universal morphism × Id : ⎯
∈

 into the pullback is a weak
equivalence by two-out-of-three (def. 2.1).

The previous lemma 4.11 says that weak equivalences between fibrations over  are themselves
preserved by base extension along : ′ → . In total this yields the following diagram

* = ′ × ⟶

*( × )

∈ ↓
×

∈ ↓ ↘

* ⟶ →⎯⎯⎯⎯⎯⎯
∈ ∩

↓ ∈ ↓ ∈ ↓ ∈

↓ ↓ ↓ ∈ ∩

′ ⟶ →⎯⎯⎯⎯⎯⎯⎯
∈ ∩

′

so that with × Id: →  a weak equivalence also *( × Id) is a weak equivalence, as indicated.

Notice that * = ′ × →  is the morphism that we want to show is a weak equivalence. By
two-out-of-three (def. 2.1) for that it is now sufficient to show that * →  is a weak
equivalence.

That finally follows now since, by assumption, the total bottom horizontal morphism is the
identity. Hence so is the top horizontal morphism. Therefore * →  is right inverse to a weak
equivalence, hence is a weak equivalence.  ▮

Lemma 4.13. Let ( * /)  be a category of fibrant objects, def. 2.34 in a model structure on

pointed objects (prop. 3.29). Given any commuting diagram in  of the form

′ →⎯⎯
∈

⟶⟶

↓ ∈ ↓ ∈

⟶

Introduction to Homotopy Theory in nLab https://ncatlab.org/nlab/print/Introduction+to+Homotopy+Theory

94 of 111 09.05.17, 15:41



(meaning: both squares commute and  equalizes  with ) then the localization functor

: ( * /) → Ho( * /) (def. 2.28, cor 2.36) takes the morphisms fib( ) ⟶⟶ fib( ) induced by  and

 on fibers (example 3.27) to the same morphism, in the homotopy category.

(Brown 73, section 4, lemma 4)

Proof. First consider the pullback of  along : this forms the same kind of diagram but with

the bottom morphism an identity. Hence it is sufficient to consider this special case.

Consider the full subcategory ( /
* / )  of the slice category /

* /  (def. 3.15) on its fibrant objects,

i.e. the full subcategory of the slice category on the fibrations

↓ ∈

into . By factorizing for every such fibration the diagonal morphisms into the fiber product ×

through a weak equivalence followed by a fibration, we obtain path space objects Path ( )

relative to :

( )/ : →⎯⎯
∈

Path ( ) →⎯⎯⎯
∈

×

∈ ↘ ↓ ↙ ∈
.

With these, the factorization lemma (lemma 4.9) applies in ( /
* / ) .

Let then → Path ( ) ⎯⎯⎯⎯
( , )

×  be a path space object for  in the slice over  and
consider the following commuting square

′ ⟶ Path ( )

∈ ↓ ↓ ∈

( , )

→⎯⎯⎯
( , )

×

.

By factoring this through the pullback ( , )*( , ) and then applying the factorization lemma

4.9 and then two-out-of-three (def. 2.1) to the factoring morphisms, this may be replaced by a
commuting square of the same form, where however the left morphism is an acyclic fibration

″ ⟶ Path ( )

∈ ∩ ↓ ↓ ∈

( , )

→⎯⎯⎯
( , )

×

.

This makes also the morphism ″ →  be a fibration, so that the whole diagram may now be
regarded as a diagram in the category of fibrant objects ( / )  of the slice category over .

As such, the top horizontal morphism now exhibits a right homotopy which under localization
: ( / ) ⟶ Ho( / ) (def. 2.28) of the slice model structure (prop. 3.29) we have

( ) = ( ) .

The result then follows by observing that we have a commuting square of functors
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( /
* / ) ⟶ * /

↓ ⇙ ↓

Ho( /
* / ) ⟶ Ho( * /)

,

because, by lemma 4.11, the top and right composite sends weak equivalences to
isomorphisms, and hence the bottom filler exists by theorem 2.31. This implies the claim.  ▮

Homotopy fibers

We now discuss the homotopy-theoretic properties of the mapping cone- and mapping cocone-
constructions from above.

Literature (Brown 73, section 4).

Remark 4.14. The factorization lemma 4.9 with prop. 4.3 says that the mapping cocone of a
morphism , def. 4.1, is equivalently the plain fiber, example 3.27, of a fibrant resolution ˜  of
:

Path*( ) ⟶ Path( )

↓ (pb) ↓
˜

* ⟶

.

The following prop. 4.15 says that, up to equivalence, this situation is independent of the
specific fibration resolution ˜  provided by the factorization lemma (hence by the prescription for
the mapping cocone), but only depends on it being some fibration resolution.

Proposition 4.15. In the category of fibrant objects ( * /) , def. 2.34, of a model structure on

pointed objects (prop. 3.29) consider a morphism of fiber-diagrams, hence a commuting
diagram of the form

fib( ) ⟶ →⎯⎯⎯
∈

↓ ↓ ↓

fib( ) ⟶ →⎯⎯⎯
∈

.

If  and  weak equivalences, then so is ℎ.

Proof. Factor the diagram in question through the pullback of  along 

fib( ) ⟶

↓ ∈ ↓ ↘

fib( * ) ⟶ * →⎯⎯⎯
∈

*

↓≃ ↓ ∈ ↓ ∈

fib( ) ⟶ →⎯⎯⎯
∈

and observe that

fib( * ) = pt* * = pt* = fib( );1. 

* →  is a weak equivalence by lemma 4.12;2. 

→ *  is a weak equivalence by assumption and by two-out-of-three (def. 2.1);3. 
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Moreover, this diagram exhibits ℎ: fib( ) → fib( * ) = fib( ) as the base change, along * → , of

→ * . Therefore the claim now follows with lemma 4.11.  ▮

Hence we say:

Definition 4.16. Let  be a model category and * / its model category of pointed objects, prop.
3.29. For : ⟶  any morphism in its category of fibrant objects ( * /) , def. 2.34, then its

homotopy fiber

hofib( ) ⟶

is the morphism in the homotopy category Ho( * /), def. 2.25, which is represented by the

fiber, example 3.27, of any fibration resolution ˜  of  (hence any fibration ˜  such that  factors
through a weak equivalence followed by ˜ ).

Dually:

For : ⟶  any morphism in its category of cofibrant objects ( * /) , def. 2.34, then its

homotopy cofiber

⟶ hocofib( )

is the morphism in the homotopy category Ho( ), def. 2.25, which is represented by the

cofiber, example 3.27, of any cofibration resolution of  (hence any cofibration ˜  such that 
factors as ˜  followed by a weak equivalence).

Proposition 4.17. The homotopy fiber in def. 4.16 is indeed well defined, in that for  and 

two fibration replacements of any morphisms  in , then their fibers are isomorphic in
Ho( * /).

Proof. It is sufficient to exhibit an isomorphism in Ho( * /) from the fiber of the fibration
replacement given by the factorization lemma 4.9 (for any choice of path space object) to the
fiber of any other fibration resolution.

Hence given a morphism : ⟶  and a factorization

: →⎯⎯
∈

^ →⎯⎯⎯
∈

consider, for any choice Path( ) of path space object (def. 2.18), the diagram

Path( ) →⎯⎯⎯⎯⎯⎯
∈ ∩

∈ ↓ (pb) ↓ ∈

Path( ) →⎯⎯⎯⎯⎯⎯
∈ ∩ ^

∈ ↓ (pb) ↓ ∈

Path( ) →⎯⎯⎯⎯⎯⎯
∈ ∩

∈ ∩ ↓

as in the proof of lemma 4.9. Now by repeatedly using prop. 4.15:

the bottom square gives a weak equivalence from the fiber of Path( ) → Path( ) to the fiber

of ;

1. 
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The square

Path( ) ⟶ Path( )

↓ ↓

Path( ) ⟶

gives a weak equivalence from the fiber of Path( ) → Path( ) to the fiber of Path( ) → .

2. 

Similarly the total vertical composite gives a weak equivalence via

Path( ) →⎯⎯
∈

Path( )

↓ ↓

⟶

3. 

from the fiber of Path( ) →  to the fiber of Path( ) → .

Together this is a zig-zag of weak equivalences of the form

fib( ) ←⎯⎯
∈

fib(Path( ) → Path( )) →⎯⎯
∈

fib(Path( ) → ) ←⎯⎯
∈

fib(Path( ) → )

between the fiber of Path( ) →  and the fiber of . This gives an isomorphism in the homotopy

category.  ▮

Example 4.18. (fibers of Serre fibrations)

In showing that Serre fibrations are abstract fibrations in the sense of model category theory,
theorem 3.7 implies that the fiber  (example 3.27) of a Serre fibration, def. 1.47

⟶

↓

over any point is actually a homotopy fiber in the sense of def. 4.16. With prop. 4.15 this
implies that the weak homotopy type of the fiber only depends on the Serre fibration up to
weak homotopy equivalence in that if ′ : ′ → ′  is another Serre fibration fitting into a
commuting diagram of the form

→⎯⎯⎯
∈

′

↓ ↓

→⎯⎯⎯
∈

′

then →⎯⎯⎯⎯
∈

′ .

In particular this gives that the weak homotopy type of the fiber of a Serre fibration : →
does not change as the basepoint is moved in the same connected component. For let : ⟶
be a path between two points

, : * →⎯⎯⎯⎯
∈

,
⟶ .

Then since all objects in (Top )  are fibrant, and since the endpoint inclusions ,  are

weak equivalences, lemma 4.12 gives the zig-zag of top horizontal weak equivalences in the
following diagram:
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= * →⎯⎯⎯
∈

* ←⎯⎯⎯
∈

* =

↓ (pb) ↓
*

∈ (pb) ↓

* →⎯⎯⎯
∈

←⎯⎯⎯
∈

*

and hence an isomorphism ≃  in the classical homotopy category (def. 3.11).

The same kind of argument applied to maps from the square  gives that if , : →  are

two homotopic paths with coinciding endpoints, then the isomorphisms between fibers over
endpoints which they induce are equal. (But in general the isomorphism between the fibers
does depend on the choice of homotopy class of paths connecting the basepoints!)

The same kind of argument also shows that if  has the structure of a cell complex (def. 1.38)
then the restriction of the Serre fibration to one cell  may be identified in the homotopy
category with × , and may be canonically identified so if the fundamental group of  is
trivial. This is used when deriving the Serre-Atiyah-Hirzebruch spectral sequence for  (prop.).

Example 4.19. For every continuous function : ⟶  between CW-complexes, def. 1.38, then
the standard topological mapping cone is the attaching space (example 1.12)

∪ Cone( ) ∈ Top

of  with the standard cone Cone( ) given by collapsing one end of the standard topological
cyclinder ×  (def. 1.22) as shown in example 4.6.

Equipped with the canonical continuous function

⟶ ∪ Cone( )

this represents the homotopy cofiber, def. 4.16, of  with respect to the classical model
structure on topological spaces = Top  from theorem 3.7.

Proof. By prop. 3.13, for  a CW-complex then the standard topological cylinder object ×  is
indeed a cyclinder object in Top . Therefore by prop. 4.3 and the factorization lemma 4.9,

the mapping cone construction indeed produces first a cofibrant replacement of  and then the
ordinary cofiber of that, hence a model for the homotopy cofiber.  ▮

Example 4.20. The homotopy fiber of the inclusion of classifying spaces ( ) ↪ ( + 1) is the
n-sphere . See this prop. at Classifying spaces and G-structure.

Example 4.21. Suppose a morphism : ⟶  already happens to be a fibration between fibrant
objects. The factorization lemma 4.9 replaces it by a fibration out of the mapping cocylinder
Path( ), but such that the comparison morphism is a weak equivalence:

fib( ) ⟶ →⎯⎯⎯
∈

↓ ∈ ↓ ∈ ↓

fib( ˜ ) ⟶ Path( ) →⎯⎯⎯
∈

˜

.

Hence by prop. 4.15 in this case the ordinary fiber of  is weakly equivalent to the mapping
cocone, def. 4.1.

We may now state the abstract version of the statement of prop. 1.51:

Proposition 4.22. Let  be a model category. For : →  any morphism of pointed objects,
and for  a pointed object, def. 3.16, then the sequence
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[ , hofib( )]
*

⟶* [ , ]
*

⟶* [ , ]
*

is exact as a sequence of pointed sets.

(Where the sequence here is the image of the homotopy fiber sequence of def. 4.16 under the
hom-functor [ , −]

*
: Ho( * /) ⟶ Set * / from example 3.30.)

Proof. Let ,  and  denote fibrant-cofibrant objects in * / representing the given objects of
the same name in Ho( * /). Moreover, let  be a fibration in * / representing the given morphism
of the same name in Ho( * /).

Then by def. 4.16 and prop. 4.17 there is a representative hofib( ) ∈  of the homotopy fiber
which fits into a pullback diagram of the form

hofib( ) ⟶

↓ ↓

* ⟶

With this the hom-sets in question are represented by genuine morphisms in * /, modulo
homotopy. From this it follows immediately that im( *) includes into ker(

*
). Hence it remains to

show the converse: that every element in ker(
*
) indeed comes from im( *).

But an element in ker(
*
) is represented by a morphism : →  such that there is a left

homotopy as in the following diagram

⟶

↓ ˜ ↗ ↓

⟶ Cyl( ) ⟶

↓ ↓=

* ⟶

.

Now by lemma 2.20 the square here has a lift ˜ , as shown. This means that ∘ ˜  is left
homotopic to . But by the universal property of the fiber, ∘ ˜  factors through : hofib( ) → .  ▮

With prop. 4.15 it also follows notably that the loop space construction becomes well-defined on
the homotopy category:

Remark 4.23. Given an object ∈ * /, and picking any path space object Path( ), def. 2.18 with
induced loop space object , def. 4.4, write Path ( ) = Path( ) × Path( ) for the path space

object given by the fiber product of Path( ) with itself, via example 2.21. From the pullback
diagram there, the fiber inclusion → Path( ) induces a morphism

× ⟶ ( ) .

In the case where * / = Top * / and  is induced, via def. 4.4, from the standard path space
object (def. 1.34), i.e. in the case that

= fib(Maps( +, )
*

⟶ × ) ,

then this is the operation of concatenating two loops parameterized by = [0, 1] to a single loop
parameterized by [0, 2].

Proposition 4.24. Let  be a model category, def. 2.3. Then the construction of forming loop

space objects ↦ , def. 4.4 (which on * / depends on a choice of path space objects, def.

Introduction to Homotopy Theory in nLab https://ncatlab.org/nlab/print/Introduction+to+Homotopy+Theory

100 of 111 09.05.17, 15:41



2.18) becomes unique up to isomorphism in the homotopy category (def. 2.25) of the model
structure on pointed objects (prop. 3.29) and extends to a functor:

: Ho( * /) ⟶ Ho( * /) .

Dually, the reduced suspension operation, def. 4.4, which on * / depends on a choice of
cylinder object, becomes a functor on the homotopy category

: Ho( * /) ⟶ Ho( * /) .

Moreover, the pairing operation induced on the objects in the image of this functor via remark
4.23 (concatenation of loops) gives the objects in the image of group object structure, and
makes this functor lift as

: Ho( * /) ⟶ Grp(Ho( * /)) .

(Brown 73, section 4, theorem 3)

Proof. Given an object ∈ * / and given two choices of path space objects Path( ) and Path( ),
we need to produce an isomorphism in Ho( * /) between  and ˜ .

To that end, first lemma 4.10 implies that any two choices of path space objects are connected
via a third path space by a span of morphisms compatible with the structure maps. By two-out-
of-three (def. 2.1) every morphism of path space objects compatible with the inclusion of the
base object is a weak equivalence. With this, lemma 4.11 implies that these morphisms induce
weak equivalences on the corresponding loop space objects. This shows that all choices of loop
space objects become isomorphic in the homotopy category.

Moreover, all the isomorphisms produced this way are actually equal: this follows from lemma
4.13 applied to

⟶ Path( ) ⟶⟶ Path( )

↓ ↓

× ⟶ ×

.

This way we obtain a functor

: * / ⟶ Ho( * /) .

By prop. 4.15 (and using that Cartesian product preserves weak equivalences) this functor
sends weak equivalences to isomorphisms. Therefore the functor on homotopy categories now
follows with theorem 2.31.

It is immediate to see that the operation of loop concatenation from remark 4.23 gives the
objects ∈ Ho( * /) the structure of monoids. It is now sufficient to see that these are in fact
groups:

We claim that the inverse-assigning operation is given by the left map in the following pasting
composite

′ ⟶ Path′ ( ) ⟶ ×

↓≃ ↓≃ (pb) ↓

⟶ Path( ) →⎯⎯⎯⎯⎯
( , )

×

,

(where Path′( ), thus defined, is the path space object obtained from Path( ) by “reversing the
notion of source and target of a path”).
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To see that this is indeed an inverse, it is sufficient to see that the two morphisms

⟶⟶ ( )

induced from

Path( ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯
( ∘ , ∘ )

→⎯⎯⎯⎯⎯⎯⎯⎯⎯ Path( ) × Path′ ( )

coincide in the homotopy category. This follows with lemma 4.13 applied to the following
commuting diagram:

⟶ Path( ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯
( ∘ , ∘ )

→⎯⎯⎯⎯⎯⎯⎯⎯⎯ Path( ) × Path′( )

( , ) ↓ ↓

× →⎯⎯⎯⎯
∘

×

.

  ▮

Homotopy pullbacks

The concept of homotopy fibers of def. 4.16 is a special case of the more general concept of
homotopy pullbacks.

Definition 4.25. A model category  (def. 2.3) is called a right proper model category if
pullback along fibrations preserves weak equivalences.

Example 4.26. By lemma 4.12, a model category  (def. 2.3) in which all objects are fibrant is
a right proper model category (def. 4.25).

Definition 4.27. Let  be a right proper model category (def. 4.25). Then a commuting square

⟶

↓ ↓

⟶

in  is called a homotopy pullback (of  along  and equivalently of  along ) if the
following equivalent conditions hold:

for some factorization of the form

: →⎯⎯
∈ ^ →⎯⎯⎯

∈

the universally induced morphism from  into the pullback of ^ along  is a weak
equivalence:

⟶

∈ ↓ ↓ ∈

× ^ ⟶ ^

↓ (pb) ↓ ∈

⟶

.

1. 

for some factorization of the form

: →⎯⎯
∈ ^ →⎯⎯⎯

∈

2. 
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the universally induced morphism from  into the pullback of ^ along  is a weak
equivalence:

→⎯⎯
∈ ^ × .

the above two conditions hold for every such factorization.3. 

(e.g. Goerss-Jardine 96, II (8.14))

Proposition 4.28. The conditions in def. 4.27 are indeed equivalent.

Proof. First assume that the first condition holds, in that

⟶

∈ ↓ ↓ ∈

× ^ ⟶ ^

↓ (pb) ↓ ∈

⟶

.

Then let

: →⎯⎯
∈ ^ →⎯⎯⎯

∈

be any factorization of  and consider the pasting diagram (using the pasting law for pullbacks)

⟶ ^ × ⟶

∈ ↓ ↓ ∈ (pb) ↓ ∈

× ^ →⎯⎯
∈ ^ × ^ →⎯⎯⎯

∈ ^

↓ (pb) ↓
∈

(pb) ↓ ∈

→⎯⎯
∈

^ →⎯⎯⎯
∈

,

where the inner morphisms are fibrations and weak equivalences, as shown, by the pullback
stability of fibrations (prop. 2.10) and then since pullback along fibrations preserves weak
equivalences by assumption of right properness (def. 4.25). Hence it follows by two-out-of-three

(def. 2.1) that also the comparison morphism → ^ ×  is a weak equivalence.

In conclusion, if the homotopy pullback condition is satisfied for one factorization of , then it is
satisfied for all factorizations of . Since the argument is symmetric in  and , this proves the
claim.  ▮

Remark 4.29. In particular, an ordinary pullback square of fibrant objects, one of whose edges
is a fibration, is a homotopy pullback square according to def. 4.27.

Proposition 4.30. Let  be a right proper model category (def. 4.25). Given a diagram in  of
the form

⟶ ←⎯⎯⎯
∈

↓ ∈ ↓ ∈ ↓ ∈

⟶ ←⎯⎯⎯
∈

then the induced morphism on pullbacks is a weak equivalence
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× →⎯⎯
∈

× .

Proof. (The reader should draw the 3-dimensional cube diagram which we describe in words
now.)

First consider the universal morphism → ×  and observe that it is a weak equivalence by

right properness (def. 4.25) and two-out-of-three (def. 2.1).

Then consider the universal morphism × → × ( × ) and observe that this is also a weak

equivalence, since ×  is the limiting cone of a homotopy pullback square by remark 4.29, and

since the morphism is the comparison morphism to the pullback of the factorization constructed
in the first step.

Now by using the pasting law, then the commutativity of the “left” face of the cube, then the
pasting law again, one finds that × ( × ) ≃ × ( × ). Again by right properness this implies

that × ( × ) → ×  is a weak equivalence.

With this the claim follows by two-out-of-three.  ▮

Homotopy pullbacks satisfy the usual abstract properties of pullbacks:

Proposition 4.31. Let  be a right proper model category (def. 4.25). If in a commuting square
in  one edge is a weak equivalence, then the square is a homotopy pullback square precisely
if the opposite edge is a weak equivalence, too.

Proof. Consider a commuting square of the form

⟶

↓ ↓

→⎯⎯
∈

.

To detect whether this is a homotopy pullback, by def. 4.27 and prop. 4.28, we are to choose
any factorization of the right vertical morphism to obtain the pasting composite

⟶

↓ ↓ ∈

× ^ →⎯⎯
∈ ^

↓ (pb) ↓ ∈

→⎯⎯
∈

.

Here the morphism in the middle is a weak equivalence by right properness (def. 4.25). Hence it
follows by two-out-of-three that the top left comparison morphism is a weak equivalence (and
so the original square is a homotopy pullback) precisely if the top morphism is a weak
equivalence.  ▮

Proposition 4.32. Let  be a right proper model category (def. 4.25).

(pasting law) If in a commuting diagram

⟶ ⟶

↓ ↓ ↓

⟶ ⟶

the square on the right is a homotoy pullback (def. 4.27) then the left square is, too,

1. 
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precisely if the total rectangle is;

in the presence of functorial factorization (def. 2.6) through weak equivalences followed
by fibrations:

every retract of a homotopy pullback square (in the category □ of commuting squares in
) is itself a homotopy pullback square.

2. 

Proof. For the first statement: choose a factorization of ⎯
∈ ^ ⎯⎯

∈
, pull it back to a

factorization → ^ ⎯⎯
∈

 and assume that → ^ is a weak equivalence, i.e. that the right square
is a homotopy pullback. Now use the ordinary pasting law to conclude.

For the second statement: functorially choose a factorization of the two right vertical morphisms
of the squares and factor the squares through the pullbacks of the corresponding fibrations
along the bottom morphisms, respectively. Now the statement that the squares are homotopy
pullbacks is equivalent to their top left vertical morphisms being weak equivalences. Factor
these top left morphisms functorially as cofibrations followed by acyclic fibrations. Then the
statement that the squares are homotopy pullbacks is equivalent to those top left cofibrations
being acyclic. Now the claim follows using that the retract of an acyclic cofibration is an acyclic
cofibration (prop. 2.10).  ▮

Long sequences

The ordinary fiber, example 3.27, of a morphism has the property that taking it twice is always
trivial:

* ≃ fib(fib( )) ⟶ fib( ) ⟶ ⟶ .

This is crucially different for the homotopy fiber, def. 4.16. Here we discuss how this comes
about and what the consequences are.

Proposition 4.33. Let  be a category of fibrant objects of a model category, def. 2.34 and let
: ⟶  be a morphism in its category of pointed objects, def. 3.16. Then the homotopy fiber

of its homotopy fiber, def. 4.16, is isomorphic, in Ho( * /), to the loop space object  of 
(def. 4.4, prop. 4.24):

hofib(hofib( → )) ≃ .

Proof. Assume without restriction that : ⟶  is already a fibration between fibrant objects in
 (otherwise replace and rename). Then its homotopy fiber is its ordinary fiber, sitting in a

pullback square

hofib( ) ≃ ⟶

↓ ↓

* ⟶

.

In order to compute hofib(hofib( )), i.e. hofib( ), we need to replace the fiber inclusion  by a
fibration. Using the factorization lemma 4.9 for this purpose yields, after a choice of path space
object Path( ) (def. 2.18), a replacement of the form

→⎯⎯
∈

× Path( )

↘ ↓ ∈

˜ .

Hence hofib( ) is the ordinary fiber of this map:
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hofib(hofib( )) ≃ × Path( ) × * ∈ Ho( * /) .

Notice that

× Path( ) ≃ * × Path( )

because of the pasting law:

× Path( ) ⟶ Path( )

↓ (pb) ↓

⟶

↓ (pb) ↓

* ⟶

.

Hence

hofib(hofib( )) ≃ * × Path( ) × * .

Now we claim that there is a choice of path space objects Path( ) and Path( ) such that this
model for the homotopy fiber (as an object in * /) sits in a pullback diagram of the following
form:

* × Path( ) × * ⟶ Path( )

↓ ↓ ∈ ∩

⟶ Path( ) ×

↓ (pb) ↓

* ⟶ ×

.

By the pasting law and the pullback stability of acyclic fibrations, this will prove the claim.

To see that the bottom square here is indeed a pullback, check the universal property: A
morphism out of any  into * ×

×
Path( ) ×  is a morphism : → Path( ) and a morphism

: →  such that ( ) = * , ( ) = ( ) and = * . Hence it is equivalently just a morphism

: → Path( ) such that ( ) = *  and ( ) = * . This is the defining universal property of

≔ * × Path( ) × * .

Now to construct the right vertical morphism in the top square (Quillen 67, page 3.1): Let
Path( ) be any path space object for  and let Path( ) be given by a factorization

(id , ∘ , id ) : ⎯
∈

Path( ) →⎯⎯⎯
∈

× Path( ) ×

and regarded as a path space object of  by further comoposing with

(pr , pr ) : × Path( ) × →⎯⎯⎯
∈

× .

We need to show that Path( ) → Path( ) ×  is an acyclic fibration.

It is a fibration because × Path( ) × → Path( ) ×  is a fibration, this being the pullback of

the fibration → .

To see that it is also a weak equivalence, first observe that Path( ) × →⎯⎯⎯⎯⎯⎯
∈ ∩

, this being the
pullback of the acyclic fibration of lemma 2.20. Hence we have a factorization of the identity as

id : →⎯⎯
∈

Path( ) ⟶ Path( ) × →⎯⎯⎯⎯⎯⎯
∈ ∩
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and so finally the claim follows by two-out-of-three (def. 2.1).  ▮

Remark 4.34. There is a conceptual way to understand prop. 4.33 as follows: If we draw
double arrows to indicate homotopies, then a homotopy fiber (def. 4.16) is depicted by the
following filled square:

hofib( ) ⟶ *

↓ ⇙ ↓

⟶

just like the ordinary fiber (example 3.27) is given by a plain square

fib( ) ⟶ *

↓ ↓

⟶

.

One may show that just like the fiber is the universal solution to making such a commuting
square (a pullback limit cone def. 1.1), so the homotopy fiber is the universal solution up to
homotopy to make such a commuting square up to homotopy – a homotopy pullback
homotopy limit cone.

Now just like ordinary pullbacks satisfy the pasting law saying that attaching two pullback
squares gives a pullback rectangle, the analogue is true for homotopy pullbacks. This implies
that if we take the homotopy fiber of a homotopy fiber, thereby producing this double
homotopy pullback square

hofib( ) ⟶ hofib( ) ⟶ *

↓ ⇙ ↓ ⇙ ↓

* ⟶ ⟶

then the total outer rectangle here is itself a homotopy pullback. But the outer rectangle
exhibits the homotopy fiber of the point inclusion, which, via def. 4.4 and lemma 4.9, is the
loop space object:

⟶ *

↓ ⇙ ↓

* ⟶

.

Proposition 4.35. Let  be a model category and let : →  be morphism in the pointed
homotopy category Ho( * /) (prop. 3.29). Then:

There is a long sequence to the left in * / of the form

⋯ ⟶ ⟶
̅ ̅ ̅ ̅

⟶ hofib( ) ⟶ ⟶ ,

where each morphism is the homotopy fiber (def. 4.16) of the following one: the
homotopy fiber sequence of . Here ̅ ̅ ̅ ̅  denotes  followed by forming inverses with
respect to the group structure on (−) from prop. 4.24.

1. 

Moreover, for ∈ * / any object, then there is a long exact sequence

⋯ → [ , ]
*

⟶ [ , hofib( )]
*

⟶ [ , ]
*

⟶ [ , ] ⟶ [ , hofib( )]
*

⟶ [ , ]
*

⟶ [ , ]
*

of pointed sets, where [−, −]
*
 denotes the pointed set valued hom-functor of example 3.30.

Dually, there is a long sequence to the right in * / of the form1. 
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⟶ ⟶ hocofib( ) ⟶ ⟶
̅ ̅̅ ̅

→ ⋯ ,

where each morphism is the homotopy cofiber (def. 4.16) of the previous one: the
homotopy cofiber sequence of . Moreover, for ∈ * / any object, then there is a long
exact sequence

⋯ → [ , ]
*

⟶ [ hocofib( ), ]
*

⟶ [ , ]
*

⟶ [ , ] ⟶ [hocofib( ), ]
*

⟶ [ , ]
*

⟶ [ , ]
*

of pointed sets, where [ −, −]
*
 denotes the pointed set valued hom-functor of example

3.30.

(Quillen 67, I.3, prop. 4)

Proof. That there are long sequences of this form is the result of combining prop. 4.33 and
prop. 4.22.

It only remains to see that it is indeed the morphisms ̅ ̅ ̅ ̅  that appear, as indicated.

In order to see this, it is convenient to adopt the following notation: for : →  a morphism,
then we denote the collection of generalized element of its homotopy fiber as

hofib( ) = ( , ( ) ⇝ * )

indicating that these elements are pairs consisting of an element  of  and a “path” (an
element of the given path space object) from ( ) to the basepoint.

This way the canonical map hofib( ) →  is ( , ( ) ⇝ * ) ↦ . Hence in this notation the homotopy
fiber of the homotopy fiber reads

hofib(hofib( )) = (( , ( ) ⇝ * ), ⇝ * ) .

This identifies with  by forming the loops

⋅ ( ̅ ̅ ̅ )̅ ,

where the overline denotes reversal and the dot denotes concatenation.

Then consider the next homotopy fiber

hofib(hofib(hofib( ))) =

⎧

⎨

⎩

⎪
⎪

⎪
⎪

⎛

⎝

⎜
⎜⎜
⎜

(( , ( ) ⇝ * ), ⇝ * ),

⎛

⎝

⎜
⎜⎜
⎜

⇝ *

( ) ⇝
( )

*

↘ ⇒ ↙

*

⎞

⎠

⎟
⎟⎟
⎟

⎞

⎠

⎟
⎟⎟
⎟

⎫

⎬

⎭

⎪
⎪

⎪
⎪

,

where on the right we have a path in hofib( ) from ( , ( ) ⇝ * ) to the basepoint element. This is
a path  together with a path-of-paths which connects  to ( ).

By the above convention this is identified with the loop in  which is

⋅ ( ̅ ̅ ) .

But the map to hofib(hofib( )) sends this data to (( , ( ) ⇝ * ), ⇝ * ), hence to the loop
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⋅ ( ̅ ̅ ̅ )̅ ≃ ( ) ⋅ ( ̅ ̅ ̅ )̅

= ( ⋅ ̅ ̅ ̅ )̅

= ( ⋅ ̅ ̅̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ )̅

= ( ⋅ ̅ ̅ )̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅

,

hence to the reveral of the image under  of the loop in .  ▮

Remark 4.36. In (Quillen 67, I.3, prop. 3, prop. 4) more is shown than stated in prop. 4.35:
there the connecting homomorphism → hofib( ) is not just shown to exist, but is described
in detail via an action of  on hofib( ) in Ho( ). This takes a good bit more work. For our
purposes here, however, it is sufficient to know that such a morphism exists at all, hence that

≃ hofib(hofib( )).

Example 4.37. Let = (Top )  be the classical model structure on topological spaces

(compactly generated) from theorem 3.7, theorem 3.51. Then using the standard pointed
topological path space objects Maps( +, ) from def. 1.34 and example 3.26 as the abstract
path space objects in def. 2.18, via prop. 3.14, this gives that

[ * , ] ≃ ( )

is the th homotopy group, def. 1.26, of  at its basepoint.

Hence using = *  in the first item of prop. 4.35, the long exact sequence this gives is of the
form

⋯ → ( ) ⟶* ( ) ⟶ (hofib( )) ⟶ ( ) →⎯⎯
−

* ( ) ⟶ (hofib( )) ⟶ ( ) ⟶* ( ) ⟶ * .

This is called the long exact sequence of homotopy groups induced by .

Remark 4.38. As we pass to stable homotopy theory (in Part 1)), the long exact sequences in
example 4.37 become long not just to the left, but also to the right. Given then a tower of
fibrations, there is an induced sequence of such long exact sequences of homotopy groups,
which organizes into an exact couple. For more on this see at Interlude -- Spectral sequences
(this remark).

Example 4.39. Let again = (Top )  be the classical model structure on topological spaces

(compactly generated) from theorem 3.7, theorem 3.51, as in example 4.37. For ∈ Top * / any
pointed topological space and : ↪  an inclusion of pointed topological spaces, the exactness
of the sequence in the second item of prop. 4.35

⋯ → [hocofib( ), ] ⟶ [ , ]
*

⟶ [ , ]
*

→ ⋯

gives that the functor

[−, ]
*

: (Top * / ) ⟶ Set * /

behaves like one degree in an additive reduced cohomology theory (def.). The Brown
representability theorem (thm.) implies that all additive reduced cohomology theories are
degreewise representable this way (prop.).

5. The suspension/looping adjunction

We conclude this discussion of classical homotopy theory with the key statement that leads over
to stable homotopy theory in Introduction to Stable homotopy theory -- 1: the suspension and
looping adjunction on the classical pointed homotopy category.

Proposition 5.1. The canonical loop space functor  and reduced suspension functor  from
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prop. 4.24 on the classical pointed homotopy category from def. 3.31 are adjoint functors,
with left adjoint and right adjoint:

( ⊣ ) : Ho(Top * /) ⟶⟵ Ho(Top * /) .

Moreover, this is equivalently the adjoint pair of derived functors, according to prop. 2.49, of
the Quillen adjunction

(Top * /) ⊥
→⎯⎯⎯⎯⎯⎯⎯⎯⎯

( , −)
*

←⎯⎯⎯⎯⎯⎯⎯⎯⎯
∧ ( −)

(Top * /)

of cor. 3.42.

Proof. By prop. 4.24 we may represent  and  by any choice of cylinder objects and path
space objects (def. 2.18).

The standard topological path space ( −)  is generally a path space object by prop. 3.14. With
prop. 4.5 this shows that

≃ ℝ Maps( , −)
*

.

Moreover, by the existence of CW-approximations (remark 3.12) we may represent each object
in the homotopy category by a CW-complex. On such, the standard topological cylinder ( −) ×  is
a cylinder object by prop. 3.13. With prop. 4.5 this shows that

≃ ( ∧ ( −)) .

  ▮

Final remark 5.2. What is called stable homotopy theory is the result of universally forcing the
( ⊣ )-adjunction of prop. 5.1 to become an equivalence of categories.

This is the topic of the next section at Introduction to Stable homotopy theory -- 1.

6. References

A concise and yet self-contained re-write of the proof (Quillen 67) of the classical model
structure on topological spaces is provided in

Philip Hirschhorn, The Quillen model category of topological spaces (arXiv:1508.01942).

For general model category theory a decent review is in

William Dwyer, J. Spalinski, Homotopy theories and model categories (pdf) in Ioan
Mackenzie James (ed.), Handbook of Algebraic Topology 1995

The equivalent definition of model categories that we use here is due to

André Joyal, appendix E of The theory of quasi-categories and its applications (pdf)

The two originals are still a good source to turn to:

Daniel Quillen, Axiomatic homotopy theory in Homotopical algebra, Lecture Notes in
Mathematics, No. 43 43, Berlin (1967)

Kenneth Brown, Abstract Homotopy Theory and Generalized Sheaf Cohomology,
Transactions of the American Mathematical Society, Vol. 186 (1973), 419-458 (JSTOR)
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For the restriction to the convenient category of compactly generated topological spaces good
sources are

Gaunce Lewis, Compactly generated spaces (pdf), appendix A of The Stable Category and
Generalized Thom Spectra PhD thesis Chicago, 1978

Neil Strickland, The category of CGWH spaces, 2009 (pdf)
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nLab

Introduction to Stable homotopy theory --

We give an introduction to the stable homotopy category and to its key computational tool,
the Adams spectral sequence. To that end we introduce the modern tools, such as model
categories and highly structured ring spectra. In the accompanying seminar we consider
applications to cobordism theory and complex oriented cohomology such as to converge in
the end to a glimpse of the modern picture of chromatic homotopy theory._

Lecture notes.

Main page: Introduction to Stable homotopy theory.

Previous section: Prelude -- Classical homotopy theory

This section_ Part 1 -- Stable homotopy theory

This subsection: Part 1.1 – Stable homotopy theory – Sequential spectra

Next subsection: Part 1.2 -- Stable homotopy theory -- Structured Spectra

Next section: Part 2 -- Adams spectral sequences

Stable homotopy theory – Sequential spectra
1. Sequential pre-spectra

Stable homotopy groups

Omega-spectra

As topological diagrams

Suspension and looping

2. The strict model structure on sequential spectra
Suspension and looping

CW-spectra

Topological enrichment

3. The stable model structure on sequential spectra
Bousfield localization

Proof of the stable model structure

Stability of the homotopy theory

Cofibrant generation

4. The stable homotopy category
Additivity

Triangulated structure

Long fiber-cofiber sequences

1-1
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5. References

The Prelude on Classical homotopy theory ended with the following phenomenon:

Definition 0.1. The reduced suspension/looping operation on pointed (def.) compactly
generated topological spaces (def.) is the smash-tensor/hom-adjunction (cor.) for the
standard 1-sphere smash product from the left:

( ⊣ ) : Top * / ⊥⎯⎯⎯⎯⎯⎯⎯⎯
( , −)

*

⎯⎯⎯⎯⎯⎯⎯⎯
∧(−)

Top* / .

Proposition 0.2. With respect to the classical model structure on pointed compactly
generated topological spaces (Top * /)  (thm., prop.)

the adjunction in def. 0.1 is a Quillen adjunction (def.)

( ⊣ ) : (Top */) ⊥ →⎯⎯⎯⎯⎯⎯⎯⎯⎯
( , −)

*

←⎯⎯⎯⎯⎯⎯⎯⎯⎯
∧(−)

(Top* /) ,

1. 

its induced adjoint pair of derived functors on the classical pointed homotopy
category (by this prop.) is the canonical suspension/looping adjunction (according to
this prop.)

( ⊣ ) : Ho(Top* /) ⊥⟶
⟵

Ho(Top * /) .

2. 

See (this prop.).

The stable homotopy category Ho(Spectra) is to be the result of stabilizing the adjunction in
prop. 0.2, in the sense of forcing it to become an equivalence of categories in a compatible
way, i.e. such as to fit into a diagram of categories of the form

Ho(Top* /) ⊥⎯⎯⎯
⎯⎯⎯ Ho(Top* /)

↓ ⊣ ↑ ↓ ⊣ ↑

Ho(Spectra) ≃⎯⎯⎯
⎯⎯⎯ Ho(Spectra)

.

Moreover, for stable homotopy theory proper we are to refine this situation from homotopy
categories to model categories and ask it to be the diagram of derived functors (according to
this prop.) of a diagram of Quillen adjunctions (def.)

(Top* /)
⟶

⟵ (Top* /)

↓ ⊣ ↑ ↓ ⊣ ↑

SeqSpec(Top ) ≃
⟶
⟵ SeqSpec(Top )

,

This we establish in theorem 3.25 below.
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The notation  and  is meant to be suggestive of the intuition behind how this
stabilization will work: The universal way of making a topological space  become stable
under suspension is to pass to its infinite suspension in a suitable sense. That suitable sense
is going to be called the suspension spectrum of  (def. 1.3 below). Conversely, if an object
does not change up to equivalence, by forming its loop spaces, it must give an infinite loop
space.

In contrast to the classical homotopy category, the stable homotopy category is a
triangulated category (a shadow of the fact that the (∞,1)-category of spectra is a stable
(∞,1)-category). As such it may be thought of as a refinement of the derived category of
chain complexes (of abelian groups): every chain complex gives rise to a spectrum and
every chain map to a map between these spectra (the stable Dold-Kan correspondence), but
there are many more spectra and maps between them than arise from chain complexes and
chain maps.

There is a variety of different models for the stable homotopy theory of spectra, some of
which fits into this hierarchy:

sequential spectra with their model structure on sequential spectra1. 

symmetric spectra with their model structure on symmetric spectra2. 

orthogonal spectra with their model structure on orthogonal spectra3. 

excisive functors with their model structure for excisive functors4. 

As one moves down this list, the objects modelling the spectra become richer. This means on
the one hand that their abstract properties become better as one moves down the list, on
the other hand it means that it is more immediate to construct and manipulate examples as
one stays further up in the list.

We start with plain sequential spectra as a transparent means to construct the stable
homotopy category. In order to discuss ring spectra it is convenient to first pass to the richer
model of highly structured spectra, this we do in Part II

The most lighweight model for spectra are sequential spectra. They support most of stable
homotopy theory in a straightforward way, and have the advantage that examples tend to
be immediate (for instance the proof of the Brown representability theorem spits out
sequential spectra).

The key disadvantage of sequential spectra is that they do not support a functorial smash
product of spectra before passing to the stable homotopy category, much less a symmetric
smash product of spectra. This is the structure needed for a decent discussion of the higher
algebra of ring spectra. To accomodate this, further below we enhance sequential spectra to
the more highly structured models given by symmetric spectra and orthogonal spectra. But
all these models are connected by a free-forgetful adjunction and for working with either it
is useful to have the means to pass back and forth between them.

1. Sequential pre-spectra

The following def. 1.1 is the traditional component-wise definition of sequential spectra. It
was first stated in (Lima 58) and became widely appreciated with (Boardman 65).

It is generally supposed that G. W. Whitehead also had something to do with it, but the
latter takes a modest attitude about that. (Adams 74, p. 131)

Below in prop. 1.23 we discuss an equivalent definition of sequential spectra as “topological
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diagram spectra” (Mandell-May-Schwede-Shipley 00), namely as topologically enriched
functors (defn.) on a topologically enriched category of n-spheres, which is useful for
establishing the stable model category structure (below) and for establishing the symmetric
monoidal smash product of spectra (in 1.2).

Throughout, our ambient category of topological spaces is Top , the category of compactly

generated topological space (defn.).

Definition 1.1. A sequential prespectrum in topological spaces, or just sequential
spectrum for short (or even just spectrum), is

an ℕ-graded pointed compactly generated topological space

• = ( ∈ Top* /) ∈ℕ

(the component spaces);

1. 

pointed continuous functions

: ∧ → +

for all ∈ ℕ (the structure maps) from the smash product (defn.) of one component
space with the standard 1-sphere to the next component space.

2. 

A homomorphism : →  of sequential spectra is a sequence • : • → • of base point-

preserving continuous functions between component spaces, such that these respect the
structure maps in that all diagrams of the form

∧ ⎯⎯⎯⎯⎯⎯⎯
∧

∧

↓ ↓

+ ⎯⎯⎯⎯⎯⎯⎯⎯⎯+
+

commute.

Write SeqSpec(Top ) for this category of topological sequential spectra.

Due to the classical adjunction

Top * / ⊥ →⎯⎯⎯⎯⎯⎯⎯⎯⎯
( , −)

*

←⎯⎯⎯⎯⎯⎯⎯⎯⎯
∧(−)

Top* /

from classical homotopy theory (this prop.), the definition of sequential spectra in def. 1.1 is
equivalent to the following definition

Definition 1.2. A sequential prespectrum in topological spaces, or just sequential
spectrum for short (or even just spectrum), is

an ℕ-graded pointed compactly generated topological space

• = ( ∈ Top* /) ∈ℕ

(the component spaces);

1. 

pointed continuous functions

˜ : → Maps( , + )
*

2. 
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for all ∈ ℕ (the adjunct structure maps) from one component space to the
pointed mapping space (def., exmpl.) out of  into the next component space.

A homomorphism : →  of sequential spectra is a sequence •
˜ : • → • of base point-

preserving continuous function, such that all diagrams of the form

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

˜ ↓ ↓ ˜

Maps( , + )
*

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( , + )

*

Maps( , + )
*

commute.

Example 1.3. For ∈ Top* /  a pointed topological space, its suspension spectrum  is
the sequential spectrum , def. 1.1, with

( ) ≔ ∧  (smash product of  with the n-sphere);

: ∧ ∧ ⟶≃ +  (the canonical homeomorphism).

This construction extends to a functor

: Top* / ⟶ SeqSpec(Top ) .

Example 1.4. The suspension spectrum (example 1.3) of the point is the standard
sequential sphere spectrum

≔ .

Its th component space is the standard n-sphere

( ) = .

Example 1.5. A fundamental example of a spectrum that is not just a suspension spectrum
is the universal real Thom spectrum, denoted MO. For details on this see Part S – Thom
spectra.

There are are also the universal complex Thom spectrum denoted MU, and the universal
symplectic Thom spectrum denoted MSp. Their standard construction first yields an
example of a “sequential -spectrum”; which we introduce below in def. 3.17; and then
there is an adjunction (prop. 3.19) that canonically turns this into an ordinary sequential
spectrum.

Definition 1.6. Let ∈ SeqSpec(Top ) be a sequential spectrum (def. 1.1) and ∈ Top* / a

pointed compactly generated topological space. Then

∧  (the smash tensoring of  with ) is the sequential spectrum given by

( ∧ ) ≔ ∧  (smash product on component spaces (defn.))

∧ ≔ ∧ id .

1. 

Maps( , )
*
 (the powering of  into ) is the sequential spectrum with

(Maps( , )
*
) ≔ Maps( , )

*
 (compactly generated pointed mapping space (def.,

def.))

2. 
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( , )
* : ∧ Maps( , ) →⎯⎯⎯⎯⎯⎯⎯

( , )
Maps( , ∧ )

*
→⎯⎯⎯⎯⎯⎯⎯⎯⎯

( , )
* Maps( , + )

*
,

where (const, id) : [ , ] ↦ [const , ].

These operations canonically extend to functors

(−) ∧ (−) : SeqSpec(Top ) × Top * / ⟶ SeqSpec(Top )

and

Maps(−, −)
*
: (Top * /) × SeqSpec(Top ) ⟶ SeqSpec(Top ) .

Example 1.7. The tensoring (def. 1.6) of the standard sphere spectrum  (def. 1.4) with
a space ∈ Top  is isomorphic to the suspension spectrum of  (def. 1.3):

∧ ≃ .

Proposition 1.8. For any ∈ Top* / the functors of smash tensoring and powering with ,
from def. 1.6, constitute a pair of adjoint functors

SeqSpec(Top ) ⊥ →⎯⎯⎯⎯⎯⎯⎯⎯
( , −)

*

←⎯⎯⎯⎯⎯⎯⎯⎯
(−)∧

SeqSpec(Top ) .

Proof. For , ∈ SeqSpec(Top ) and ∈ Top* /, let

∧ ⟶

be a morphism, with component maps fitting into commuting squares of the form

∧ ∧ →⎯⎯⎯⎯⎯
∧

∧

∧ ↓ ↓

+ ∧ →⎯⎯⎯⎯+ +

.

Applying degreewise the adjunction

Top * / ⊥ →⎯⎯⎯⎯⎯⎯⎯⎯
( , −)

*

←⎯⎯⎯⎯⎯⎯⎯⎯
(−)∧

Top* /

from classical homotopy theory (this prop.) gives that these squares are in natural bijection
with squares of the form

∧ →⎯⎯⎯⎯⎯
∧

Maps( , ∧ )
*

↓ ↓ ( , )
*

+ →⎯⎯⎯⎯+ Maps( , + )
*

.

But since the map ∧  is the smash product of two maps, only one of which involves the

smash factor of , one sees that here the top map factors through the map (const, id) from
def. 1.6.

Hence the commuting square above factors as
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∧ →⎯⎯⎯⎯⎯
∧˜

∧ Maps( , )
*

↓ ↓
( , )

*

+ →⎯⎯⎯⎯+ Maps( , + )
*

.

This gives the structure maps for a homomorphism

˜ : ⟶ Maps( , )
*
.

Running this argument backwards shows that the map ↦ ˜  given thereby is a bijection.  ▮

Remark 1.9. For the adjunction of prop. 1.8 it is crucial that the smash tensoring in def. 1.6
is from the right, at least as long as the structure maps in def. 1.1 are defined as they are,
with the circle smash factor on the left. We could change both jointly: take the structure
maps to be from smash products with the circle on the right, and take smash tensoring to
be from the left. But having both on the right or both on the left does not work.

Proposition 1.10. The functor  that forms suspension spectra (def. 1.3) has a right
adjoint functor 

( ⊣ ) : SeqSpec(Top ) ⊥→⎯⎯
←⎯⎯

Top* / ,

given by picking the 0-component space:

( ) = .

Proof. By def. 1.1 the components  of a homomorphism of sequential spectra of the form

⟶

have to make these diagrams commute

∧ →⎯⎯⎯⎯⎯
∧

∧

≃ ↓ ↓

+ ∧ →⎯⎯⎯⎯+ +

for all ∈ ℕ. Since here the left vertical map is an isomorphism by def. 1.3, this uniquely
fixes +  in terms of . Hence the only freedom in specifying  is in the choice of the

component : ⟶ , which is equivalently a morphism

⟶
˜

.

  ▮

Stable homotopy groups

In analogy to how homotopy groups are the fundamental invariants in classial homotopy
theory, the fundamental invariants of stable homtopy theory are stable homtopy groups:

Definition 1.11. The stable homotopy groups of a sequential prespectrum , def. 1.1, is
the ℤ-graded abelian group given by the colimit of homotopy groups of the component
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spaces (def.)

•( ) ≔ lim→⎯⎯ • + ( ) ,

where the colimit is over the sequential diagram whose component morphisms are given
in terms of the structure maps of def. 1.1 by

+ ( ) →≃ [ + , ]
*

→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( ∧(−)) + ,

[ + + , ∧ ]
*

→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
[ + + , ]

[ + + , + ]
*
→≃ + + ( + )

and equivalently are given in terms of the adjunct structure maps of def. 1.2 by

+ ( ) ⟶≃ [ + , ]
*

→⎯⎯⎯⎯⎯⎯⎯
[ + , ˜ ]

[ + ,Maps( , + )
*
]
*
≃ [ ∧ + , + ]

*
≃ + + ( + ) .

The colimit starts at

=
0 if ≥ 0

| | if < 0

This canonically extends to a functor

• : SeqSpec(Top ) ⟶ Abℤ .

Proposition 1.12. The two component morphisms given in def. 1.11 indeed agree.

Proof. Consider the following instance of the defining naturality square of the
( ∧ (−)) ⊣ Maps( , −)

*
-adjunction of prop. 0.2:

[ ∧ , ∧ ]
*
⟶≃ [ ,Maps( , ∧ )

*
]
*

[ ∧ , ] ↓ ↓[ , ( , )
*
]
*

[ ∧ + , + ]
*
⟶
≃

[ + ,Maps( , + )
*
]
*

.

Then consider the identity element in the top left hom-set. Its image under the left vertical
map is the first of the two given component morphisms. Its image under going around the
other way is the second of the two component morphisms. By the commutativity of the
diagram, these two images agree.  ▮

Example 1.13. Given ∈ Top * /, then the stable homotopy groups (def. 1.11) of its
suspension spectrum (example 1.3) are given by

( ) ≔ ( )

= lim→⎯⎯ + ( ∧ )

≃ lim→⎯⎯ ( ( ))

.

Specifically for =  the 0-sphere, with suspension spectrum the standard sphere
spectrum (def. 1.4), its stable homotopy groups are the stable homotopy groups of
spheres:

( ) ≔ ( )

= lim→⎯⎯ + ( )
.

Recall the Freudenthal suspension theorem, which states that if  is an n-connected
pointed CW-complex then the comparison map
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( ) ⟶ + ( )

is an isomorphism for ≤ 2 . This implies first of all that every  is ( − 1)-connected

( ) ≃ *

( ) ≃ ( ) ≃ *

( ) ≃ ( ) ≃ ( ) ≃ *

⋯

and then that the th stable homotopy group of  is attained at stage = + 2 in the
colimit:

( ) ≃ +( + )(
+ ) .

Historically, this fact was one of the motivations for finding a stable homotopy category
(def. 4.1 below).

Definition 1.14. A morphism : ⟶  of sequential spectra, def. 1.1, is called a stable
weak homotopy equivalence, if its image under the stable homotopy group-functor of
def. 1.11 is an isomorphism

•( ) : •( ) ⟶≃ •( ) .

Omega-spectra

In order to motivate Omega-spectra consider the following shadow of the structure they will
carry:

Example 1.15. A ℤ-graded abelian group is equivalently a sequence { } ℤ of ℕ-graded

abelian groups , together with isomorphisms

≃ + [1] ,

(where [1] denotes the operation of shifting all entries in a graded abelian group down in
degree by -1). Because this means that the sequence of ℕ-graded abelian groups is of the
following form

⋮ ⋮

⋯

⋯

− ⋯

− − ⋯

.

This allows to recover the ℤ-graded abelian group { } ∈ℤ from an ℕ-sequence of ℕ-graded

abelian groups.

Then consider the case that the ℕ-graded abelian groups here are homotopy groups of
some topological space. Then shifting the degree of the component groups corresponds to
forming loop spaces, because for any topological space  then

•( ) ≃ • + ( ) .

(This may be seen concretely in point-set topology or abstractly by looking at the long
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exact sequence of homotopy groups for the fiber sequence → Path*( ) → .)

We find this kind of behaviour for the stable homotopy groups of Omega-spectra below in
example 1.18.

Definition 1.16. An Omega-spectrum is a sequential spectrum  of topological spaces,
def. 1.1, such that the (smash product ⊣ pointed mapping space)-adjuncts ˜  of the
structure maps : → +  of  are weak homotopy equivalences (def.), hence classical
weak equivalences (def.):

˜ : →⎯⎯⎯⎯
∈

Maps( , + )
*

for all ∈ ℕ.

Equivalently: an Omega-spectrum is a sequential spectrum in the incarnation of def. 1.2
such that all adjunct structure maps are weak homotopy equivalences.

Example 1.17. The Brown representability theorem (thm.) implies (prop.) that every
generalized (Eilenberg-Steenrod) cohomology theory (def.) is represented by an Omega-
spectrum (def. 1.16).

Applied to ordinary cohomology with coefficients some abelian group , this yields the
Eilenberg-MacLane spectra  (exmpl.). These are the Omega-spectra whose th
component space is an Eilenberg-MacLane space

( ) ≃ ( , ) .

A genuinely generalized (i.e. non-ordinary, hence “extra-ordinary”) cohomology theory is
topological K-theory •(−). Applying the Brown representability theorem to topological
K-theory yields the K-theory spectrum denoted KU.

Omega-spectra are singled out among all sequential pre-spectra as having good behaviour
under forming stable homotopy groups.

Example 1.18. If a sequential spectrum  is an Omega-spectrum, def. 1.16, then its
colimiting stable homotopy groups reduce to the actual homotopy groups of the
component spaces, in that:

Omega-spectrum ⇒ ( ) ≃
if ≥ 0

| | if < 0
.

(Hence the stable homotopy groups of an Omega-spectrum realize the general pattern
discussed in example 1.15.)

Proof. For an Omega-spectrum, the adjunct structure maps ˜  are weak homotopy
equivalences, by definition, hence are classical weak equivalences. Hence [ , ˜ ]

*
 is an

isomorphism (prop.). Therefore, by prop. 1.12, the sequential colimit in def. 1.11 is entirely
over isomorphisms and hence is given already by the first object of the sequence.  ▮

We now show that every sequential pre-spectrum may be completed to an Omega-
spectrum, up to stable weak homotopy equivalence:

Definition 1.19. For ∈ SeqSpec(Top ), define a spectrum ∈ SeqSpec(Top ) and a

morphism

: ⟶
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(to be called the spectrification of ) as follows.

First introduce for the given components  and adjunct structure maps ˜  of  (from def.
1.2) the notation

, ≔ , ˜ , ≔ ˜ .

Now assume, by induction, that sets of objects { , } ∈ℕ and maps { , ⎯
˜ ,

, + } ∈ℕ have

been constructed for some ∈ ℕ.

Then construct + , ∈ Top  by factorizing ˜ , , with respect to the model structure

(Top* /)  (thm.) as a classical cofibration followed by a classical weak equivalence.

More specifically, apply the small object argument (prop.) with respect to the set of
generating cofibrations  (def.) to produce functorial factorizations (def.) into a relative
cell complex followed by a weak homotopy equivalence (just as in the proof of this
lemma):

˜ , : , →⎯⎯⎯⎯⎯⎯⎯⎯
∈

,
+ , →⎯⎯⎯⎯

∈

,
, + .

Then define ˜ + ,  as the composite

˜ + , : + , →⎯⎯
,

, + →⎯⎯⎯⎯⎯⎯⎯
( , + )

+ , + .

This produces for each ∈ ℕ a commuting diagram of the form

= , →⎯⎯⎯⎯⎯⎯⎯⎯
∈

,
, →⎯⎯⎯⎯⎯⎯⎯⎯

∈

,
, →⎯⎯⎯⎯⎯⎯⎯⎯

∈

,
⋯

˜ = ˜ , ↓ ˜ , ↓ ˜ , ↓ ⋯

+ = , + →⎯⎯⎯⎯⎯⎯⎯
( , + )

, + →⎯⎯⎯⎯⎯⎯⎯
( , + )

, + →⎯⎯⎯⎯⎯⎯⎯
( , + )

⋯

.

That this indeed commutes is the identity

˜ + , ∘ , = ( ( , + ) ∘ , ) ∘ ,

= ( , + ) ∘ ( , ∘ , )

= ( , + ) ∘ ˜ ,

.

Now let  be the spectrum with component spaces the colimit

( ) ≔ lim→⎯⎯ ,

and with adjunct structure maps (via def. 1.2) given by the map induced under colimits by
the above diagrams

˜ ≔ lim→⎯⎯
˜ , : ⟶ ( ) .

Notice that this is indeed well-defined: since each component map , → + ,  is a relative
cell complex and since the 1-sphere  is compact, it follows (lemma) that
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lim→⎯⎯ , = lim→⎯⎯ Maps( , , )*

≃ Maps( , lim→⎯⎯ , )*

= lim→⎯⎯ ,

≃ ( )

.

Finally, let

: →

be degreewise the inclusion of the first component ( = 0) into the colimit. By construction,
this is a homomorphism of sequential spectra (according to def. 1.2).

Proposition 1.20. Let ∈ SeqSpec(Top ) be a sequential prespectrum with : →  from

def. 1.19. Then:

 is an Omega-spectrum (def. 1.16);1. 

: →  is a stable weak homotopy equivalence (def. 1.14):2. 

 is a level weak equivalence (is in , def. 2.1) precisely if  is an Omega-

spectrum;

3. 

a morphism : →  is a stable weak homotopy equivalence (def. 1.14), precisely if
: →  is a level weak equivalence (is in , def. 2.1).

4. 

(Schwede 97, lemma 2.1.3 and remark before section 2.2)

Proof. Since the colimit defining  is a transfinite composition of relative cell complexes,
each component map → ( )  is itself a relative cell complex. Since n-spheres are

compact topological spaces, it follows (lemma) that each element of a homotopy group in
•(( ) ) is in the image of a finite stage •( , ) for some ∈ ℕ. From this, all statements

follow by inspection at finite stages.

Regarding first statement:

Since each ˜ ,  by construction is a weak homotopy equivalence followed by an inclusion of
stages in the colimit, as any element of (( ) ) is sent along ˜  it passes through one

such ( ˜ , ) at some stage , hence also through all the following, and is hence identically
preserved in the colimit.

Regarding the second statement:

By the previous statement and by example 1.18, the map •( ) : •( ) → •( ) is given in

degree ≥ 0 by

lim→⎯⎯ ∈ℕ
+ ( )

≃
→⎯⎯⎯

⟶ (( ) )

and similarly in degree < 0. Now using the compactness of the spheres and the definition
of  we compute on the right:
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(( ) ) = (lim→⎯⎯ , )

≃ lim→⎯⎯ ( , )

≃ lim→⎯⎯ ( )

,

where the last isomorphism is  applied to the composite of the weak homotopy
equivalences

, →⎯⎯⎯⎯⎯
∈

− ,
− , → ⋯ → , = .

Regarding the third statement:

In one direction:

If  is an Omega-spectrum in that all its adjunct structure maps ˜  are weak homotopy
equivalences, then by two-out-of-three also the maps ,  in def. 1.19 are weak homotopy
equivalences. Hence ( ) : → ( )  is the map into a sequential colimit over acyclic relative

cell complexes, and again by the compactness of the spheres, this means that it is itself a
weak homotopy equivalence.

In the other direction:

If  is degrewise a weak homotopy equivalence, then by applying two-out-of-three (def.) to

the compatibility squares for the adjunct structure morphisms (def. 1.2), using that ˜  is a
weak homotopy equivalence by the first point above

→⎯⎯⎯⎯
∈

( )
( )

˜ ↓ ↓∈
˜

Maps( , + ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( ,( ) + )

∈
Maps( , ( ) + )

implies that also ˜ ∈ , hence that  is an Omega-spectrum.

The fourth statement follows with similar reasoning.  ▮

Remark 1.21. In the case that  is a CW-spectrum (def. 2.7) then the sequence of
resolutions in the definition of spectrification in def. 1.19 is not necessary, and one may
simply consider

( ) ≔ lim→⎯⎯ + .

See for instance (Lewis-May-Steinberger 86, p. 3) and (Weibel 94, 10.9.6 and topology
exercise 10.9.2).

As topological diagrams

In order to conveniently understand the stable model category structure on spectra, we now
consider an equivalent reformulation of the component-wise definition of sequential spectra,
def. 1.1, as topologically enriched functors (defn.).

Definition 1.22. Write

: StdSpheres ⟶ Top* /
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for the non-full topologically enriched subcategory (def.) of that of pointed compactly
generated topological spaces (def.) where:

objects are the standard n-spheres , for ∈ ℕ, identified as the smash product

powers ≔ ( )∧  of the standard circle;

hom-spaces are

StdSpheres( , + ) ≔
* for < 0

otherwise

composition is induced from composition in Top * / by regarding the hom-space
above as its image in Maps( , + )

*
 under the adjunct

→ Maps( , + )
*

of the canonical isomorphism

∧ ⟶≃ + .

This induces the category

[StdSpheres, Top* /]

of topologically enriched functors on StdSpheres with values in Top* / (exmpl.).

Proposition 1.23. There is an equivalence of categories

(−) : [StdSpheres, Top * /] ⟶≃ SeqSpec(Top )

from the category of topologically enriched functors on the category of standard spheres
of def. 1.22 to the category of topological sequential spectra, def. 1.1, which is given on
objects by sending ∈ [StdSpheres, Top* /] to the sequential prespectrum  with
components

≔ ( )

and with structure maps

∧ ⟶

⟶Maps( , + )
*

being the adjunct of the component map of  on spheres of consecutive dimension.

Proof. First observe that from its components on consecutive spheres the functor  is
already uniquely determined. Indeed, by definition the hom-space between non-consecutive
spheres StdSpheres( , + ) is the smash product of the hom-spaces between the consecutive
spheres, for instance:

∧ = StdSpheres( , + ) ∧ StdSpheres( + , + )

≃ ↓ ≃ ↓∘

= StdSpheres( , + )

,

and so functoriality completely fixes the former by the latter.
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This means that we actually have a bijection between classes of objects.

Now observe that a natural transformation : →  between two functors on StdSpheres is
equivalently a collection of component maps : → , such that for each ∈  then the

following squares commute

( ) ⟶

, + ( )
↓ ↓ , + ( )

( + ) →⎯⎯⎯⎯
+

( + )

,

By the smash/hom adjunction, the square equivalently factors as

( ) ⟶

( , ) ↓ ↓( , )

∧ ( ) →⎯⎯⎯⎯
×

∧ ( )

↓ ↓

( + ) underset + ⟶ ( + )

.

Here the top square commutes in any case, and so the total rectangle commutes precisely if
the lower square commutes, hence if under our identification the components { } constitute

a homomorphism of sequential spectra.

Hence we have an isomorphism on all hom-sets, and hence an equivalence of categories.  ▮

Further below we use prop. 1.23 to naturally induce a model structure on the category of
topological sequential spectra.

Remark 1.24. Under the equivalence of prop. 1.23, the general concept of tensoring of
topologically enriched functors over topological spaces (according to this def.) restricts to
the concept of tensoring of sequential spectral over topological spaces according to def.
1.6.

Proposition 1.25. The category SeqSpec(Top ) of sequential spectra (def. 1.1) has all limits

and colimits, and they are computed objectwise:

Given

• : ⟶ SeqSpec(Top )

a diagram of sequential spectra, then:

its colimiting spectrum has component spaces the colimit of the component spaces
formed in Top  (via this prop. and this corollary):

(lim→⎯⎯ ( )) ≃ lim→⎯⎯ ( ) ,

1. 

its limiting spectrum has component spaces the limit of the component spaces
formed in Top  (via this prop. and this corollary):

(lim←⎯⎯ ( )) ≃ lim←⎯⎯ ( ) ;

2. 

moreover:
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the colimiting spectrum has structure maps in the sense of def. 1.1 given by

∧ (lim→⎯⎯ ( ) ) ≃ lim→⎯⎯ ( ∧ ( ) ) →⎯⎯⎯⎯⎯⎯⎯
→⎯⎯⎯

( )

lim→⎯⎯ ( ) +

where the first isomorphism exhibits that ∧ (−) preserves all colimits, since it is a
left adjoint by prop. 0.2;

1. 

the limiting spectrum has adjunct structure maps in the sense of def. 1.2 given by

lim←⎯⎯ ( ) →⎯⎯⎯⎯⎯⎯⎯
←⎯⎯⎯

˜ ( )

lim←⎯⎯Maps( , ( ) )
*
≃ Maps( , lim←⎯⎯ ( ) )

*

where the last isomorphism exhibits that Maps( , −)
*
 preserves all limits, since it is a

right adjoint by prop. 0.2.

2. 

Proof. That the limits and colimits exist and are computed objectwise follows via prop. 1.23
from the general statement for categories of topological functors (prop.). But it is also
immediate to directly check the universal property.  ▮

Example 1.26. The initial object and the terminal object in SeqSpec(Top ) agree and are

both given by the spectrum constant on the point, which is also the suspension spectrum

*  (def. 1.3) of the point). We will denote this spectrum * or 0 (since it is hence a zero
object ):

* = *
∧ * ≃ * →

≃
* .

Example 1.27. The coproduct of spectra , ∈ SeqSpec(Top ), called the wedge sum of

spectra

∨ ≔ ⊔

is componentwise the wedge sum of pointed topological spaces (exmpl.)

( ∨ ) = ∨

with structure maps

∨ : ∧ ( ∨ ) ≃ ∧ ∨ ∧ →⎯⎯⎯⎯⎯⎯
( , )

+ ∨ + .

Example 1.28. For ∈ SeqSpec(Top ) a sequential spectrum, def. 1.1, its standard

cylinder spectrum is its smash tensoring ∧ ( +), according to def. 1.6, with the
standard interval (def.) with a basepoint freely adjoined (def.). The component spaces of
the cylinder spectrum are the standard reduced cylinders (def.) of the component spaces
of :

( ∧ ( +)) = ∧ + .

By the functoriality of the smash tensoring, the factoring

∇ : ∨ ⟶ + ⟶

of the codiagonal on the 0-sphere through the standard interval with a base point
adjoined, gives a factoring of the codiagonal of  through its standard cylinder spectrum

∇ : ∨ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
∧( ∨ → +) ∧ ( +) →⎯⎯⎯⎯⎯⎯⎯⎯⎯

∧( + → )
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(where we are using that wedge sum is the coproduct in pointed topological spaces
(exmpl.).)

Suspension and looping

We discuss models for the operation of reduced suspension and forming loop space objects
of sequential spectra.

Definition 1.29. For  a sequential spectrum, then

the standard suspension of  is the smash product-tensoring ∧  according to
def. 1.6;

1. 

the standard looping of  is the smash powering Maps( , )
*
 according to def. 1.6.2. 

Proposition 1.30. For ∈ SeqSpec(Top ), the standard suspension ∧  of def. 1.29 is

equivalently the cofiber (formed via prop. 1.25) of the canonical inclusion of boundaries
into the standard cylinder spectrum ∧ ( +) of example 1.28:

∧ ≃ cofib( ∨ → ∧ ( +)) .

Proof. This is immediate from the componentwise construction of the smash tensoring and
the componentwise computation of colimits of spectra via prop. 1.25.  ▮

This means that once we know that ∨ → ∧ ( +) is suitably a cofibration (to which we turn
below) then the standard suspension is a homotopy-correct model for the suspension
operation. However, some properties of suspension are hard to prove directly with the
standard suspension model. For such there are two other models for suspension and looping
of spectra. These three models are not isomorphic to each other in SeqSpec(Top ), but (this

is lemma 3.22 below) they will become isomorphic in the stable homotopy category (def.
4.1).

Definition 1.31. For  a sequential spectrum (def. 1.1) and ∈ ℤ, the -fold shifted
spectrum of  is the sequential spectrum denoted [ ] given by

( [ ]) ≔
+ for + ≥ 0

* otherwise
;

[ ] ≔
+ for + ≥ 0

0 otherwise
.

Definition 1.32. For  a sequential spectrum, def. 1.1, then

the alternative suspension of  is the sequential spectrum  with

( ) ≔ ∧  (smash product on the left (defn.))1. 

≔ ∧ ( ).2. 

in the sense of def. 1.1;

1. 

the alternative looping of  is the sequential spectrum  with

( ) ≔ Maps( , )
*
;1. 

2. 
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˜ ≔ Maps( , ˜ )
*

2. 

in the sense of def. 1.2.

Remark 1.33. In various references the “alternative suspension” from def. 1.32 is called
the “fake suspension” (e.g. Goerss-Jardine 96, p. 499, Jardine 15, section 10.4).

Remark 1.34. There is no direct natural isomorphism between the standard suspension
(def. 1.29) and the alternative suspension (def. 1.32). This is due to the non-trivial graded
commutativity (braiding) of smash products of spheres. (We discuss braiding of the smash
product more in detail in Part 1.2, this example).

Namely a natural isomorphism : ⟶ ∧  (or alternatively the other way around)
would have to make the following diagrams commute:

∧ ∧ →⎯⎯⎯⎯⎯⎯
∧

∧ ∧

∧ ↓ (nc) ↓ ∧

∧ + →⎯⎯⎯⎯
+

+ ∧

and naturally so in .

The only evident option is to have  be the braiding homomorphisms of the smash product

= , : ∧ →≃ ∧ .

It may superficially look like this makes the above diagram commute, but it does not. To
make this explicit, consider labeling the two copies of the circle appearing here as  and

. Then the diagram we are dealing with looks like this:

∧ ∧ ⟶ ∧ ∧

∧ ↓ (nc) ↓ ∧

∧ + ⟶ + ∧

If we had ∧  on the left and ∧  on the right, then the naturality of the braiding
would indeed give a commuting diagram. But since this is not the case, the only way to
achieve this would be by exchanging in the top left

∧ ⟶ ∧ .

However, this map is non-trivial. It represents −1 in [ , ]
*
= ( ) = ℤ. Hence inserting

this map in the top of the previous diagram still does not make it commute.

But this technical problem points to its own solutions: if we were to restrict to the
homotopy category of spectra which had structure maps only of the form ∧ → + ,
then the braiding required to make the two models of suspension comparable would be

∧ ⟶ ∧

and this map is indeed trivial, up to homotopy. This we make precise as lemma 3.22
below.

More generally, the kind of issue encountered here is taken care of by the concept of
symmetric spectra, to which we turn in Part 1.2.
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Remark 1.35. The looping and suspension operations in def. 1.29 and def. 1.32 commute
with shifting, def. 1.31. Therefore in expressions like ( [1]) etc. we may omit the
parenthesis.

Proposition 1.36. The constructions from def. 1.29, def. 1.31 and def. 1.32 form pairs of
adjoint functors SeqSpec → SeqSpec like so:

(−)[−1] ⊣ (−)[1];1. 

(−) ∧ ⊣ Maps( , −)
*
;2. 

⊣ .3. 

Proof. Regarding the first statement:

A morphism of the form : [−1] ⟶  has components of the form

⋮ ⋮

⟶

⟶

⟶

* →⎯⎯⎯⎯
=

and the compatibility condition with the structure maps in lowest degree is automatically
satisfied

* →⎯⎯⎯⎯⎯⎯⎯⎯
( ∧ )=

∧
[− ]

= ↓ ↓

⟶

.

Therefore this is equivalent to components

⋮ ⋮

⟶

⟶

⟶

hence to a morphism ⟶ [1].

The second statement is a special case of prop. 1.8.

Regarding the third statement:

This follows by applying the (smash product⊣pointed mapping space)-adjunction
isomorphism twice, like so:

Morphisms : →  in the sense of def. 1.1 are in components given by commuting
diagrams of this form:
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∧ ∧ →⎯⎯⎯⎯⎯
∧

∧

∧ ↓ ↓

∧ + →⎯⎯⎯⎯
+

+

.

Applying the adjunction isomorphism diagonally gives a natural bijection to diagrams of this
form:

∧ ⟶

↓ ↓ ˜

+ →⎯⎯⎯⎯
+

Maps( , + )
*

.

(To see this in full detail, for instance for the adjunct of the left and bottom morphism:
chase the identity id ∧ +

 in both ways

Hom( ∧ + , ∧ + ) ⟶≃ Hom( + ,Maps( , ∧ + )
*
)

( ∧ , + ) ↓ ↓ ( , ( , + )
*
)

Hom( ∧ ∧ , + ) ⟶≃ Hom( ∧ ,Maps( , + )
*
)

through the adjunction naturality square. The other cases follow analogously.)

Then applying the adjunction isomorphism diagonally once more gives a further bijection to
commuting diagrams of this form:

⟶
˜

Maps( , )
*

˜ ↓ ↓ ( , ˜ )
*

Maps( , + )
*

→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( , + )

*

Maps ,Maps( , + )
* *

.

This, finally, equivalently exhibits homomorphisms of the form

⟶

in the sense of def. 1.2.  ▮

Proposition 1.37. The following diagram of adjoint pairs of functors commutes:

Top* /

⟶

⟵ Top* /

↓ ⊣ ↑ ↓ ⊣ ↑

SeqSpec(Top ) ⊥⟶
⟵

SeqSpec(Top )

,

Here the top horizontal adjunction is from prop. 0.2, the vertical adjunction is from prop.
1.8 and the bottom adjunction is from prop. 1.36.

Proof. It is sufficient to check

∘ ≃ ∘ .
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From this the statement

∘ ≃ ∘

follows by uniqueness of adjoints.

So let ∈ Top* /. Then

( ) = ∧ ∧ ,

( ) : ∧ ∧ ∧ →⎯⎯⎯⎯
∧

∧ + ∧ ,

while

( ) = ∧ ∧ ,

( ) : ∧ ∧ ∧ →⎯⎯⎯⎯⎯⎯
∧ ∧ + ∧ ∧ ,

where we write “id” for the canonical isomorphism. Clearly there is a natural isomorphism
given by the canonical identifications

∧ ∧ ⟶≃ ( )∧
+
∧ ⟶≃ ∧ ∧ .

(As long as we are not smash-permuting the  factor with the  factor – and here we are
not – then the fact that they get mixed under this isomorphism is irrelevant. The point
where this does become relevant is the content of remark 1.34 below.)  ▮

2. The strict model structure on sequential spectra

The model category structure on sequential spectra which presents stable homotopy theory
is the “stable model structure” discussed below. Its fibrant-cofibrant objects are (in
particular) Omega-spectra, hence are the proper spectrum objects among the pre-spectrum
objects.

But for technical purposes it is useful to also be able to speak of a model structure on
pre-spectra, which sees their homotopy theory as sequences of simplicial sets equipped with
suspension maps, but not their stable structure. This is called the “strict model structure” for
sequential spectra. Its main point is that the stable model structure of interest arises from it
via left Bousfield localization.

Definition 2.1. Say that a homomorphism • : • → • in the category SeqSpec(Top), def. 1.1

is

a strict weak equivalence if each component : →  is a weak equivalence in

the classical model structure on topological spaces (hence a weak homotopy
equivalence);

a strict fibration if each component : →  is a fibration in the classical model

structure on topological spaces (hence a Serre fibration);

a strict cofibration if the maps : →  as well as for all ∈ ℕ the maps

( + , ) : + ⊔
∧

∧ ⟶ +

are cofibrations in the classical model structure on topological spaces (hence retracts
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of relative cell complexes);

We write , Fib  and Cof  for these classes of morphisms, respectively.

Recall the sets

* / ≔ { +
− →⎯⎯⎯

( )+
+} ∈ℕ

* / ≔ { →⎯⎯⎯⎯
( )+ × } ∈ℕ

of standard generating (acyclic) cofibrations (def.) of the classical model structure on
pointed topological spaces (thm.).

Definition 2.2. Write

≔ { ( ) ⋅ +} ∈ ,

+ ∈ * /

∈ [StdSpheres, Top* /] ≃ SeqSpec(Top)

and

≔ ( ) ⋅ + ∈

+ ∈ * /

∈ [StdSpheres, Top* /] ≃ SeqSpec(Top) ,

for the set of morphisms arising as the tensoring (remark 1.24) of a representable
(exmpl.) with a generating acyclic cofibration of the classical model structure on pointed
topological spaces (def.).

Theorem 2.3. The classes of morphisms in def. 2.1 give the structure of a model category
(def.) to be denoted SeqSpec(Top)  and called the strict model structure on

topological sequential spectra (or: level model structure).

Moreover, this is a cofibrantly generated model category with generating (acyclic)
cofibrations the set  (resp. ) from def. 2.2.

Proof. Prop. 1.23 says that the category of sequential spectra is equivalently an enriched
functor category

SeqSpec(Top) ≃ [StdSpheres, Top* /] .

Accordingly, this carries the projective model structure on functors (thm.). This immediately
gives the statement for the fibrations and the weak equivalences.

It only remains to check that the cofibrations are as claimed. To that end, consider a
commuting square of sequential spectra

⟶

↓ ↓

⟶

.

By definition, this is equivalently an ℕ-collection of commuting diagrams in Top  of the form

⟶

↓ ↓

⟶

such that all structure maps are respected.
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∧ ⟶ +

↓ ∧ ↓ +

∧ ⟶ +

↘ ↘

∧ ⟶ +

=

∧ ⟶ +

↘ ∧ ↘ +

∧ ⟶ +

↓ ↓

∧ ⟶ +

.

Hence a lifting in the original diagram is a lifting in each degree , such that the lifting in
degree + 1 makes these diagrams of structure maps commute.

Since components are parameterized over ℕ, this condition has solutions by induction:

First of all there must be an ordinary lifting in degree 0. Since the strict fibrations are
degreewise classical fibrations, this gives the condition that for • to be a strict cofibration,

then  is to be a classical cofibration.

Then assume that a lifting  in degree  has been found

⟶

↓ ↗ ↓

⟶

.

Now the lifting +  in the next degree has to also make the following diagram commute

∧ ⟶ +

↓ ∧ ↓ + ↘ +

∧ ⟶ +

↘ ∧ ↘ + ↓

∧ ⟶ +

.

This is a cocone under the commuting square for the structure maps, and therefore the
outer diagram is equivalently a morphism out of the domain of the pushout product □

(def.), while the compatible lift +  is equivalently a lift against this pushout product:

∧ ⊔
∧

+ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( ∘ ∧ , + )

+

□ ↓ + ↗ ↓

+ ⟶ +

.

This shows that • is a strict cofibration precisely if, in addition to  being a classical

cofibration, all these pushout products are classical cofibrations.  ▮

Suspension and looping

Proposition 2.4. The ( ⊣ )-adjunction from prop. 1.10 is a Quillen adjunction (def.)
between the classical model structure on pointed topological spaces (thm., prop.) and the
strict model structure on topological sequential spectra of theorem 2.3:
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( ⊣ ) : SeqSpec(Top ) ⊥→⎯⎯
←⎯⎯

(Top * /) .

Proof. It is clear that  preserves fibrations and acyclic cofibrations. This is sufficient to
deduce a Quillen adjunction.

Just for the record, we spell out a direct argument that also  preserves cofibrations and
acyclic cofibrations:

Let : ⟶  be a morphism in Top* / and

: ⟶

its image.

Since the structure maps in a suspension spectrum, example 1.3, are all isomorphisms, we
have for all ∈ ℕ an isomorphism

( ) +

∧( )

∧ ( ) ≃ ∧ ( ) .

Therefore  is a strict cofibration, according to def. 2.1, precisely if ( ) =  is a classical

cofibration and all the structure maps of  are classical cofibrations. But the latter are
even isomorphisms, so that this is no extra condition (prop.). Hence  sends classical
cofibrations of spaces to strict cofibrations of sequential spectra.

Furthermore, since ∧ (−):(Top* /) → (Top */)  is a left Quillen functor for all ∈ ℕ

by prop. 0.2 it sends classical acyclic cofibrations to classical acyclic cofibrations. Hence ,
which is degreewise given by ∧ (−), sends classical acyclic cofibrations to degreewise
acyclic cofibrations, hence in particular to degreewise weak equivalences, hence to weak
equivalences in the strict model structure on sequential spectra.

This shows that  is a left Quillen functor.  ▮

Proposition 2.5. The ( ⊣ )-adjunction from prop. 1.36 is a Quillen adjunction (def.) with
respect to the strict model structure on sequential spectra of theorem 2.3.

SeqSpec(Top ) ⊥⟶
⟵

SeqSpec(Top ) .

Proof. Since the (acyclic) fibrations of SeqSpec(Top )  are by definition those morphisms

that are degreewise (acylic) fibrations in (Top */) , the statement follows immediately

from the fact that the right adjoint  is degreewise given by
Maps( , −)

*
:(Top* /) → (Top * /) , which is a right Quillen functor by prop. 0.2.  ▮

In summary, prop. 1.37, prop. 2.4 and prop. 2.5 say that

Corollary 2.6. The commuting square of adjunctions in prop. 1.37 is a square of Quillen
adjunctions with respect to the classical model structure on pointed compactly generated
topological spaces (thm., prop.) and the strict model structure on topological sequential
spectra of theorem 2.3:
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(Top* /)
⟶

⟵ (Top * /)

↓ ⊣ ↑ ↓ ⊣ ↑

SeqSpec(Top ) ⊥⟶
⟵

SeqSpec(Top )

,

Further below we pass to the stable model structure in order to make the bottom adjunction
in this diagram become a Quillen equivalence. This stable model structure will have more
weak equivalences than the strict model structure, but will have the same cofibrations.
Therefore we first consider now cofibrancy conditions already in the strict model structure.

CW-spectra

Definition 2.7. A sequential spectrum  (def. 1.1) is called a cell spectrum if

all component spaces  are cell complexes (def.);1. 

all structure maps : ∧ ⟶ +  are relative cell complex inclusions.2. 

A CW-spectrum is a cell spectrum such that all component spaces  are CW-complexes
(def.).

Example 2.8. The suspension spectrum  (example 1.3) for ∈ Top* / a CW-complex is a
CW-spectrum (def. 2.7).

Remark 2.9. Since, by definition 2.7, a -cell of a cell spectrum that appears at stage 
shows up as its -fold suspension at stage + , its attachment to some spectrum  is
reflected by a pushout of spectra of the form

+
− [− ] ⟶ ⟶ *

( )+[− ] ↓ (po) ↓ (po) ↓

+[− ] ⟶ ^ ⟶ [− ]

,

where the left vertical morphism is the image under the − th shift spectrum functor (def.
1.31) of the image under the suspension spectrum functor (example 1.3) of the basic cell
inclusion ( )+ of pointed topological spaces (def.). This is a cofibration by prop. 2.4, and

so also the middle vertical morphism is a cofibration, by theorem 2.3. Using the pasting
law for pushouts, we find that the cofiber of the middle vertical morphisms (hence its
homotopy cofiber (def.) in the strict model structure) is [− ] (not +[− ] (!)). This
is a shift of a trunction of the sphere spectrum.

After having set up the stable model category structure in theorem 3.11 below, we find
that this means that cell attachments to CW-spectra in the stable model structure are by
cofibers of integer shifts of the sphere spectrum  (def. 1.4), in that in the stable
homotopy category (def. 4.1) the above situation is reflected as a homotopy cofiber
sequence of the form

− − ⟶ ⟶ ^ ⟶ − .

Lemma 2.10. Let  be an regular cardinal and let  be a -cell spectrum, hence a cell
spectrum (def. 2.7) obtained from at most  stable cell attachments as in remark 2.9.
Then  is -small (def.) with respect to morphisms of spectra that are degreewise relative
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cell complex inclusions.

Proof. By remark 2.9 the attachment of stable cells is by free spectra (def. 3.26) on
compact topological spaces. By prop. 3.28 maps out of them are equivalently maps of
component spaces in the lowest nontrivial degree. Since compact topological spaces are
small with respect to relative cell complex inclusions (lemma), all these cells are small.

Now notice that -filtered colimits of sets commute with -small limtis of sets (prop.). By
assumption  is a -small transfinite composition of pushouts of -small coproducts, all three
of which are -small colimits; and let  be the codomain of a -small relative cell complex
inclusion, hence itself a -small colimit.

Now if = lim→⎯⎯  is a -small colimit of -small objects , and = lim→⎯⎯  is a -small colimit,

then

Hom( , lim→⎯⎯ ) ≃ Hom(lim→⎯⎯ , lim→⎯⎯ )

≃ lim←⎯⎯ Hom( , lim→⎯⎯ )

≃ lim←⎯⎯ lim→⎯⎯ Hom( , )

≃ lim→⎯⎯ lim←⎯⎯ Hom( , )

≃ lim→⎯⎯ Hom(lim→⎯⎯ , )

≃ lim→⎯⎯ Hom( , )

.

Hence the claim follows.  ▮

Proposition 2.11. The class of CW-spectra is closed under various operations, including

finite wedge sum (def. 1.27)

…

Proposition 2.12. A sequential spectrum ∈ SeqSpec(Top ) is cofibrant in the strict model

structure SeqSpec(Top )  of theorem 2.3 precisely if

 is cofibrant;1. 

each structure map : ∧ → +  is a cofibration2. 

in the classical model structure (Top* /)  on pointed compactly generated topological

spaces (thm., prop.).

In particular cell spectra and specifically CW-spectra (def. 2.7) are cofibrant.

Proof. The initial object in SeqSpec(Top )  is the spectrum * that is constant on the point

(example 1.26). A morphism * →  is a cofibration according to def. 2.1 if

the morphism * →  is a classical cofibration, hence if the object  is a classical
cofibrant object, hence a retract of a cell complex;

1. 

the morphisms

* + ⊔
∧ *

∧ ⟶ +

are classical cofibrations. But since ∧ * ≃ * →
≃
*  is an isomorphism in this case the

2. 
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pushout reduces to just its second summand, and so this is now equivalent to

∧ ⟶ +

being classical cofibrations; hence retracts of relative cell complexes.

  ▮

Proposition 2.13. For ∈ SeqSpec(Top)  a CW-spectrum, def. 2.7, then its standard

cylinder spectrum ∧ ( +) of def. 1.28 satisfies the conditions on an abstract cylinder
object (def.) in that the inclusion

∨ ⟶ ∧ ( +)

(of the wedge sum of  with itself, example 1.27) is a cofibration in SeqSpec(Top) .

Proof. According to def. 2.1 we need to check that for all  the morphism

( ∨ ) + ⊔
∧( ∨ )

∧ ( ∧ ( +)) ⟶ ( ∧ ( +)) +

is a retract of a relative cell complex. After distributing indices and smash products over
wedge sums, this is equivalently

( + ∨ + ) ⊔
( ∧ )∨( ∧ ))

∧ ∧ ( +) ⟶ + ∧ ( +) .

Now by the assumption that  is a CW-spectrum, each  is a CW-complex, and this implies
that ∧ ( +) is a relative cell complex in Top* /. With this, inspection shows that also the
above morphism is a relative cell complex.  ▮

We now turn to discussion of CW-approximation of sequential spectra. First recall the
relative version of CW-approximation for topological spaces.

For the following, recall that a continuous function : →  between topological spaces is
called an n-connected map if the induced morphism on homotopy groups
•( ) : •( , ) → •( , ( )) is

an isomorphism in degree < ;1. 

an epimorphism in degree .2. 

(Hence an weak homotopy equivalence is an “∞-connected map”.)

Lemma 2.14. Let : ⟶  be a continuous function between topological spaces. Then

there exists for each ∈ ℕ a relative CW-complex ^: ↪ ^ together with an extension
: → , i.e.

⟶
^
↓ ↗

^

such that  is n-connected.

Moreover:

if  itself is k-connected, then the relative CW-complex ^ may be chosen to have cells
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only of dimension + 1 ≤ dim ≤ .

if  is already a CW-complex, then ^: →  may be chosen to be a subcomplex
inclusion.

(tomDieck 08, theorem 8.6.1)

Proposition 2.15. For every continuous function : ⟶  out of a CW-complex , there

exists a relative CW-complex ^: ⟶ ^ that factors  followed by a weak homotopy
equivalence

⟶

^ ↘ ↗
∈

^

.

Proof. Apply lemma 2.14 iteratively for ∈ ℕ to produce a sequence with cocone of the form

⟶ ⟶ ⟶ ⋯

↘ ↓ ↙ ⋯ ,

where each  is a relative CW-complex adding cells exactly of dimension , and where  in

n-connected.

Let then ^ be the colimit over the sequence (its transfinite composition) and ^: →  the

induced component map. By definition of relative CW-complexes, this ^ is itself a relative
CW-complex.

By the universal property of the colimit this factors  as

⟶ ⟶ ⟶ ⋯

↘ ↓ ↙ ⋯

^

↓

.

Finally to see that  is a weak homotopy equivalence: since n-spheres are compact

topological spaces, then every map : → ^ factors through a finite stage ∈ ℕ as

→ → ^ (by this lemma). By possibly including further into higher stages, we may choose

> . But then the above says that further mapping along ^ →  is the same as mapping
along , which is ( > )-connected and hence an isomorphism on the homotopy class of

.  ▮

Proposition 2.16. For  any topological sequential spectrum (def.1.1), then there exists a

CW-spectrum ^ (def. 2.7) and a homomorphism

: ^ →⎯⎯⎯⎯⎯⎯⎯
∈

.

which is degreewise a weak homotopy equivalence, hence a weak equivalence in the strict
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model structure of theorem 2.3.

Proof. First let ^ ⟶  be a CW-approximation of the component space in degree 0, via
prop. 2.15. Then proceed by induction: suppose that for ∈ ℕ a CW-approximation

≤ : ^ ≤ → ≤  has been found such that all the structure maps in degrees <  are

respected. Consider then the composite continuous function

∧ ^ →⎯⎯⎯⎯⎯
∧

∧ ⟶ + .

Applying prop. 2.15 to this function factors it as

∧ ^ ↪ ^
+ →⎯⎯⎯⎯+ + .

Hence we have obtained the next stage ^ +  of the CW-approximation. The respect for the
structure maps is just this factorization property:

∧ ^ →⎯⎯⎯⎯⎯
∧

∧

↓ ↓

^
+ →⎯⎯⎯⎯

+
+

.

  ▮

Topological enrichment

We discuss here how the hom-set of homomorphisms between any two sequential spectra is
naturally equipped with a topology, and how these hom-spaces interact well with the strict
model structure on sequential spectra from theorem 2.3. This is in direct analogy to the
compatibility of compactly generated mapping spaces (def.) with the classical model
structure on compactly generated topological spaces discussed at Classical homotopy theory
– Topological enrichment. It gives an improved handle on the analysis of morphisms of
spectra below in the proof of the stable model structure and it paves the way to the
discussion of fully fledge mapping spectra below in part 1.2. There we will give a fully
general account of the principles underlying the following. Here we just consider a pragmatic
minimum that allows us to proceed.

Definition 2.17. For , ∈ SeqSpec(Top ) two sequential spectra (def. 1.1) let

SeqSpec( , ) ∈ Top* /

be the pointed topological space whose underlying set is the hom-set Hom ( )( , )

of homomorphisms from  to , and which is equipped with the final topology (def.)
generated by those functions

: ⟶ Hom ( )( , )

out of compact Hausdorff spaces , for which there exists a homomorphism of spectra

˜ : ∧ ⟶

out of the smash tensoring of  with  (def. 1.6) such that for all ∈ , ∈ ℕ, ∈

( ) ( ) = ˜ ( , ) .
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By construction this makes SeqSpec( , ) indeed into a compactly generated topological
space, and it gives a natural bijection

Hom * / ( , SeqSpec( , )) ≃ Hom
( * /)

( ∧ , ) .

In Prelude -- Classical homotopy theory we discussed, in the section Topological enrichment,
that the classical model structure on topological spaces (when restricted to compactly
generated topological spaces) interacts well with forming smash products and pointed
mapping spaces. Concretely, the smash pushout product of two classical cofibrations is a
classical cofibration, and is acyclic if either of the factors is:

Cof □ Cof ⊂ Cof , (Cof ∩ )□Cof ⊂ Cof ∩ .

We also saw that, by Joyal-Tierney calculus (prop.), this is equivalent to the pullback
powering satisfying the dual relations

Fib□ ⊂ Fib , Fib□( ∩ ) ⊂ Fib ∩ , (Fib ∩ )□ ⊂ Fib ∩ .

Now that we passed from spaces to spectra, def. 1.6 generalizes the smash product of
spaces to the smash tensoring of sequential spectra by spaces, and generalizes the pointed
mapping space construction for spaces to the powering of a space into a sequential
spectrum. Accordingly there is now the analogous concept of pushout product with respect
to smash tensoring, and of pullback powering with respect to smash powering.

From the way things are presented, it is immediate that these operations on spectra satisfy
the analogous compatibility condition with the strict model structure on spectra from
theorem 2.3, in fact this follows generally for topologically enriched functor categories and is
inherited via prop. 1.23. But since this will be important for some of the discussion to follow,
we here make it explicit:

Definition 2.18. Let : →  be a morphism in SeqSpec(Top ) (def. 1.1) and let : →  a

morphism in Top* /.

Their pushout product with respect to smash tensoring is the universal morphism

□ ≔ ((id, ), ( , id))

in

∧
( , ) ↙ ↘( , )

∧ (po) ∧

↘ ↙

( ∧ ) ⊔
∧
( ∧ )

↓(( , ),( , ))

∧

,

where (−) ∧ (−) denotes the smash tensoring from def. 1.6.

Dually, their pullback powering is the universal morphism

□ ≔ (Maps( , )
*
, Maps( , )

*
)

in
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Maps( , )
*

↓( ( , )
*
, ( , )

*
)

Maps( , )
*

×
( , )

*

Maps( , )
*

↙ ↘

Maps( , )
*

(pb) Maps( , )
*

( , )
*
↘ ↙ ( , )

*

Maps( , )
*

,

where Maps(−, −)
*
 denotes the smash powering from def. 1.6.

Similarly, for : →  and : →  both morphisms of sequential spectra, then their
pullback powering is the universal morphism

□ ≔ (SeqSpec( , ), SeqSpec( , ))

in

SeqSpec( , )
*

↓( ( , )
*
, ( , )

*
)

SeqSpec( , )
*

×
( , )

*

SeqSpec( , )
*

↙ ↘

SeqSpec( , )
*

(pb) SeqSpec( , )
*

( , )
*
↘ ↙ ( , )

*

SeqSpec( , )
*

,

where now SeqSpec(−, −) is the hom-space functor from def. 2.17.

Proposition 2.19. The operation of forming pushout products with respect to smash
tensoring in def. 2.18 is compatible with the strict model structure on sequential spectra
from theorem 2.3 and with the classical model structure on compactly generated pointed
topological spaces (thm., prop.) in that it takes two cofibrations to a cofibration, and to an
acyclic cofibration if at least one of the inputs is acyclic:

Cof □Cof ⊂ Cof

Cof □ (Cof □ ) ⊂ Cof ∩

(Cof ∩ )□Cof ⊂ Cof ∩

.

Dually, the pullback powering satisfies

Fib
□

⊂ Fib

Fib□( ∩ ) ⊂ Fib ∩

(Fib ∩ )□ ⊂ Fib ∩

.

Proof. The statement concering the pullback powering follows directly form the analogous
statement for topological spaces (prop.) by the fact that via theorem 2.3 the fibrations and
weak equivalences in SeqSpec(Top )  are degree-wise those in (Top* /) . From this the

statement about the pushout product follows dually by Joyal-Tierney calculus (prop.).  ▮
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Remark 2.20. In the language of model category-theory, prop. 2.19 says that
SeqSpec(Top )  is an enriched model category, the enrichment being over (Top* /) .

This is often referred to simply as a “topological model category”.

Proposition 2.21. For ∈ SeqSpec(Top ) a sequential spectrum, ∈ Mor(SeqSpec(Top )) any

morphism of sequential spectra, and for ∈ Mor(Top* / ) a morphism of compact Hausdorff
spaces, then the hom-spaces of def. 2.17 interact with the pushout-product and pullback-
powering from def. 2.18 in that there is a natural isomorphism

SeqSpec( □ , ) ≃ SeqSpec( , )□ .

Proposition 2.22. For , ∈ SeqSpec(Top ) two sequential spectra with  a CW-spectrum

(def. 2.7), then there is a natural bijection

SeqSpec( , ) ≃ [ , ]

between the connected components of the hom-space from def. 2.17 and the hom-set in
the homotopy category (def.) of the strict model structure from theorem 2.3.

Proof. By def. 2.17 the path components of the hom-space are the left homotopy classes of
morphisms of spectra with respect to the standard cylinder spectrum of def. 1.28:

+ ⟶ SeqSpec( , )
∧ ( +) ⟶

.

By prop. 2.13, for  a CW-spectrum then the standard cylinder spectrum ∧ ( +) is a good
cyclinder object (def.) on a cofibrant object.

Since moreover every object in SeqSpec(Top )  is fibrant, the statement follows (with this

lemma).  ▮

3. The stable model structure on sequential spectra

The actual spectrum objects of interest in stable homotopy theory are not the pre-spectra of
def. 1.1, but the Omega-spectra of def. 1.16 among them. Hence we need to equip the
category of sequential pre-spectra of def. 1.1 with a model structure (def.) whose fibrant-
cofibrant objects are, in particular Omega-spectra. More in detail, it is plausible to require
that every pre-spectrum is weakly equivalent to a fibrant-cofibrant one which is both an
Omega-spectrum and a CW-spectrum as in def. 2.7. By prop. 2.12 this suggests to construct
a model category structure on SeqSpec(Top ) that has the same cofibrations as the strict

model structure of theorem 2.3, but more weak equivalences (and hence less fibrations),
such as to make every sequential pre-spectrum weakly equivalent to an Omega cell
spectrum.

Such a situation is called a Bousfield localization of a model category.

Bousfield localization

In plain category theory, a localization of a category  is equivalently a full subcategory

: ↪

such that the inclusion functor has a left adjoint
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⊥⟶
⟵

.

The adjunction unit : → ( ) “reflects” every object  of  into one in the , and

therefore this is also called a reflective subcategory inclusion.

It is a classical fact (Gabriel-Zisman 67, prop.) that in this situation

≃ [ − ]

is equivalently the localization (def.) of  at the “ -equivalences”, namely at those
morphisms  such that ( ) is an isomorphism. Hence one also speaks of reflective
localizations.

The following concept of Bousfield localization of model categories is the evident lift of this
concept of reflective localization from the realm of categories to the realm of model
categories (def.), where isomorphism is generealized to weak equivalence and where adjoint
functors are taken to exhibit Quillen adjunctions.

Definition 3.1. A left Bousfield localization  of a model category  (def.) is another
model category structure on the same underlying category with the same cofibrations,

Cof = Cof

but more weak equivalences

⊃ .

Notice that:

Proposition 3.2. Given a left Bousfield localization  of  as in def. 3.1, then

Fib ⊂ Fib;1. 

∩ Fib = ∩ Fib;2. 

the identity functors constitute a Quillen adjunction

⊥⟶
⟵

.

3. 

the induced adjunction of derived functors (prop.) exhibits a reflective subcategory
inclusion of homotopy categories (def.)

Ho( ) ⊥→⎯⎯
ℝ

←⎯⎯
Ho( ) .

4. 

Proof. Regarding the first two items:

Using the properties of the weak factorization systems (def.) of (acyclic cofibrations,
fibrations) and (cofibrations, acyclic fibrations) for both model structures we get

Fib = (Cof ∩ )Inj

⊂ (Cof ∩ )Inj

= Fib

and
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Fib ∩ = Cof Inj

= Cof Inj

= Fib ∩

.

Regarding the third point:

By construction, id : →  preserves cofibrations and acyclic cofibrations, hence is a left
Quillen functor.

Regarding the fourth point:

Since Cof = Cof the notion of left homotopy in  is the same as that in , and hence the
inclusion of the subcategory of local cofibrant-fibrant objects into the homotopy category of
the original cofibrant-fibrant objects is clearly a full inclusion. Since Fib ⊂ Fib by the first
statement, on these cofibrant-fibrant objects the right derived functor of the identity is just
the identity and hence does exhibit this inclusion. The left adjoint to this inclusion is given
by id, by the general properties of Quillen adjunctions (prop).  ▮

In plain category theory, given a reflective subcategory

⊥⟶
⟵

then the composite

≔ ∘ : ⟶

is an idempotent monad on , hence, in particular, an endofunctor equipped with a natural
transformation : →  (the adjunction unit) – which “reflects” every object into one in

the image of  – such that this reflection is a projection in that each ( ) is an isomorphism.

This characterizes the reflective subcategory ↪  as the subcategory of those objects 
for which  is an isomorphism.

The following is the lift of this alternative perspective of reflective localization via idempotent
monads from category theory to model category theory.

Definition 3.3. Let  be a model category (def.) which is right proper (def.), in that
pullback along fibrations preserves weak equivalences.

Say that a Quillen idempotent monad on  is

an endofunctor

: ⟶

1. 

a natural transformation

: id ⟶

2. 

such that

(homotopical functor)  preserves weak equivalences;1. 

(idempotency) for all ∈  the morphisms

( ) : ( ) →⎯⎯
∈

( ( ))

2. 
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and

( ) : ( ) →⎯⎯
∈

( ( ))

are weak equivalences;

(right-properness of the localization) if in a pullback square in 

* →⎯⎯
*

↓ (pb) ↓

⟶

we have that

 is a fibration;1. 

, , and (ℎ) are weak equivalences2. 

then ( *ℎ) is a weak equivalence.

3. 

Definition 3.4. For : ⟶  a Quillen idempotent monad according to def. 3.3, say that a
morphism  in  is

a -weak equivalence if ( ) is a weak equivalence;1. 

a -cofibation if it is a cofibration.2. 

a -fibration if it has the right lifting property against the morphisms that are both
( -)cofibrations as well as -weak equivalences.

3. 

Write

for  equipped with these classes of morphisms.

Since  preserves weak equivalences (by def. 3.3) then if the classes of morphisms in def.
3.4 do constitute a model category structure, then this is a left Bousfield localization of ,
according to def. 3.1.

We establish a couple of lemmas that will prove that the model structure indeed exists
(prop. 3.7 below).

Lemma 3.5. In the situation of def. 3.4, a morphism is an acyclic fibration in  precisely if
it is an acyclic fibration in .

Proof. Let  be a fibration and a weak equivalence. Since  preserves weak equivalences by
condition 1 in def. 3.3,  is also a -weak equivalence. Since -cofibrations are cofibrations,
the acyclic fibration  has right lifting against -cofibrations, hence in particular against
against -acyclic -cofibrations, hence is a -fibration.

In the other direction, let : ⟶  be a -acyclic -fibration. Consider its factorization into
a cofibration followed by an acyclic fibration

: →⎯⎯⎯
∈

→⎯⎯⎯⎯⎯⎯
∈ ∩

.
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Observe that -equivalences satisfy two-out-of-three (def.), by functoriality and since the
plain equivalences do. Now the assumption that  preserves weak equivalences together
with two-out-of-three implies that  is a -weak equivalence, hence a -acyclic -cofibration.
This implies that  has the right lifting property against  (since  is assumed to be a
-fibration, which is defined by this lifting property). Hence the retract argument (prop.)

implies that  is a retract of the acyclic fibration , and so is itself an acyclic fibration.  ▮

Lemma 3.6. In the situation of def. 3.4, if a morphism : ⟶  is a fibration, and if ,

are weak equivalences, then  is a -fibration.

(e.g. Goerss-Jardine 96, chapter X, lemma 4.4)

Proof. We need to show under the given assumptions that for every commuting square of
the form

⟶

∈ ∩ ↓ ↓

⟶

there exists a lifting.

To that end, first consider a factorization of the image under  of this square as follows:

( ) →⎯⎯⎯
( )

( )

( ) ↓ ↓ ( )

( ) →⎯⎯⎯
( )

( )

≃

( ) →⎯⎯⎯⎯⎯⎯
∈ ∩

→⎯⎯⎯
∈

( )

( ) ↓ ↓ ↓ ( )

( ) →⎯⎯⎯⎯⎯⎯
∈ ∩

→⎯⎯⎯
∈

( )

(This exists even without assuming functorial factorization: factor the bottom morphism,
form the pullback of the resulting , observe that this is still a fibration, and then factor

(through ) the universal morpism from the outer square into this pullback.)

Now consider the pullback of the right square above along the naturality square of : id → ,
take this to be the right square in the following diagram

: →⎯⎯⎯⎯⎯⎯⎯
( ∘ , )

×
( )

⟶

↓ ↓( , ) ↓

: →⎯⎯⎯⎯⎯⎯⎯
( ∘ , )

×
( )

⟶

,

where the left square is the universal morphism into the pullback which is induced from the
naturality squares of  on  and .

We claim that ( , ) here is a weak equivalence. This implies that we find the desired lift by
factoring ( , ) into an acyclic cofibration followed by an acyclic fibration and then lifting
consecutively as follows
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: →⎯⎯⎯⎯⎯⎯⎯
( ∘ , )

×
( )

⟶

↓ ∈ ∩ ↓ ∃ ↗ ↓∈

⟶ →⎯⎯⎯⎯⎯⎯⎯

∈ ↓ ∃ ↗ ↓ ∈ ∩ ↓

: →⎯⎯⎯⎯⎯⎯⎯
( ∘ , )

×
( )

⟶

.

To see that ( , ) indeed is a weak equivalence:

Consider the diagram

( ) →⎯⎯⎯⎯⎯⎯
∈ ∩

←⎯⎯
∈

×
( )

∈
( )
↓ ↓ ↓( , )

( ) →⎯⎯⎯⎯⎯⎯
∈ ∩

←⎯⎯
∈

×
( )

.

Here the projections are weak equivalences as shown, because by assumption in def. 3.3
the ambient model category is right proper and these projections are the pullbacks along the
fibrations  and  of the morphisms  and , respectively, where the latter are weak

equivalences by assumption. Moreover ( ) is a weak equivalence, since  is a -weak
equivalence.

Hence now it follows by two-out-of-three (def.) that  and then ( , ) are weak
equivalences.  ▮

Proposition 3.7. (Bousfield-Friedlander theorem)

Let  be a right proper model category. Let : ⟶  be a Quillen idempotent monad on ,
according to def. 3.3.

Then the Bousfield localization model category  (def. 3.1) at the -weak equivalences
(def. 3.4) exists, in that the model structure on  with the classes of morphisms in def.
3.4 exists.

(Bousfield-Friedlander 78, theorem 8.7, Bousfield 01, theorem 9.3, Goerss-Jardine 96,
chapter X, lemma 4.5, lemma 4.6, theorem 4.1)

Proof. The existence of limits and colimits is guaranteed since  is already assumed to be a
model category. The two-out-of-three poperty for -weak equivalences is an immediate
consequence of two-out-of-three for the original weak equivalences of . Moreover,
according to lemma 3.5 the pair of classes (Cof , ∩ Fib ) equals the pair (Cof, ∩ Fib), and
this is a weak factorization system by the model structure .

Hence it remains to show that ( ∩ Cof , Fib ) is a weak factorization system. The condition
Fib = RLP( ∩ Cof ) holds by definition of Fib . Once we show that every morphism factors
as ∩ Cof  followed by Fib , then the condition ∩ Cof = LLP(Fib ) follows from the
retract argument (lemma) and the fact that the classes  and Cof  are closed under
retracts, because  and Cof = Cof  are (by this prop. and this prop., respectively).

So we may conclude by showing the existence of ( ∩ Cof , Fib ) factorizations:

First we consider the case of morphisms of the form : ( ) → ( ). These may be factored
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with respect to  as

: ( ) →⎯⎯⎯⎯⎯⎯
∈ ∩

∈
→⎯⎯⎯

∈
( ) .

Here  is already a -acyclic -cofibration, since  preserves weak equivalences by the first

clause in def. 3.3. Now apply id →  to obtain

: ( ) →⎯⎯⎯⎯⎯⎯
∈ ∩

→⎯⎯⎯
∈

( )

↓∈
( )

↓ ↓∈
( )

( ( )) →⎯⎯
( )

∈
( ) ⟶ ( ( ))

,

where ( ) and ( ) are weak equivalences by idempotency (the second clause in def. 3.3),

and ( ) is a weak equivalence since  preserves weak equivalences. Hence by two-out-
of-three also  is a weak equivalence. Therefore lemma 3.6 gives that  is a -fibration,

and hence the above factorization is already as desired

: ( ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯
∈ ∩

∈
→⎯⎯⎯⎯

∈
( ) .

Now for an arbitrary morphism : → , form a factorization of ( ) as above and then
decompose the naturality square for  on  into the pullback of the resulting -fibration
along :

: ⟶
˜

×
( )

→⎯⎯⎯⎯⎯
˜ ∈

∈ ↓ ↓ (pb) ↓∈

( ): ( ) →⎯⎯⎯
∈

→⎯⎯⎯⎯
∈

( )

.

This exhibits ′  as the pullback of a -weak equivalence along a fibration between objects on
which  is a weak equivalence. Then the third clause in def. 3.3 says that ′ is itself as a
-weak equivalence. This way, two-out-of-three implies that ˜ is a -weak equivalence.

Observe that ˜  is a -fibration, because it is the pullback of a -fibration and because
-fibrations are defined by a right lifting property (def. 3.4) and hence closed under pullback

(prop.) Finally, apply factorization in (Cof, ∩ Fib) to ˜ to obtain the desired factorization

: →⎯⎯⎯⎯⎯⎯
∩

˜
→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

∩ = ∩

˜
→⎯⎯⎯
˜

.

  ▮

While this establishes the -model structure, so far this leaves open a more explicit
description of the -fibrations. This is provided by the next statement.

Proposition 3.8. For : ⟶  a Quillen idempotent monad according to def. 3.3, then a
morphism : →  in  is a -fibration (def. 3.4) precisely if

 is a fibration;1. 

the -naturality square on 2. 
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⟶ ( )

↓ ( ) ↓ ( )

⟶ ( )

exhibits a homotopy pullback in  (def.), in that for any factorization of ( ) through
a weak equivalence followed by a fibration , then the universally induced morphism

⟶ *

is weak equivalence (in ).

(e.g. Goerss-Jardine 96, chapter X, theorem 4.8)

Proof. First consider the case that  is a fibration and that the square is a homotopy
pullback. We need to show that then  is a -fibration.

Factor ( ) as

( ) : ( ) →⎯⎯⎯⎯⎯⎯
∈ ∩

→⎯⎯⎯
∈

( ) .

By the proof of prop. 3.7, the morphism  is also a -fibration. Hence by the existence of the
-local model structure, also due to prop. 3.7, its pullback ˜  is also a -fibration

⟶ ( )

∈

˜
↓ ↓∈

×
( )

→⎯⎯⎯
*

∈
˜ ↓ (pb) ↓∈

⟶ ( )

.

Here ˜ is a weak equivalence by assumption that the diagram exhibits a homotopy pullback.
Hence it factors as

˜ : →⎯⎯⎯⎯⎯⎯
∈ ∩

^ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
∈ ∩ = ∩

×
( )

.

This yields the situation

⟶=

∈ ∩ ↓ ∃ ↗ ↓∈

^ →⎯⎯⎯⎯
˜ ∘

∈

↔

⟶ ^ ⟶
∃

↓ ↓ ˜ ∘ ↓

= =

.

As in the retract argument (prop.) this diagram exhibits  as a retract (in the arrow
category, rmk.) of the -fibration ˜ ∘ . Hence by the existence of the -model structure
(prop. 3.7) and by the closure properties for fibrations (prop.), also  is a -fibration.

Now for the converse. Assume that  is a -fibration. Since  is a left Bousfield localization
of  (prop. 3.7),  is also a fibration (prop. 3.2). We need to show that the -naturality
square on  exhibits a homotopy pullback.

So factor ( ) as before, and consider the pasting composite of the factorization of the given
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square with the naturality squares of :

→⎯⎯⎯
∈

( ) →⎯⎯⎯⎯⎯⎯
∈ ⊂

( )
( ( ))

∈

˜
↓ ∈ ⊂ ↓ ↓∈

( )

×
( )

→⎯⎯⎯
∈

*
→⎯⎯
∈

( )

∈
˜ ↓ (pb) ↓∈ ⊂ ↓ ( )

→⎯⎯⎯
∈

( ) →⎯⎯⎯⎯⎯⎯
( )

∈ ⊂
( ( ))

.

Here the top and bottom horizontal morphisms are weak ( -)equivalences by the
idempotency of , and ( ) is a weak equivalence since  preserves weak equivalences (first
and second clause in def. 3.3). Hence by two-out-of-three also  is a weak equivalence.

From this, lemma 3.6 gives that  is a -fibration. Then *  is a -weak equivalence since it

is the pullback of a -weak equivalence along a fibration between objects whose  is a weak
equivalence, via the third clause in def. 3.3. Finally two-out-of-three implies that ˜ is a
-weak equivalence.

In particular, the bottom right square is a homotopy pullback (since two opposite edges are
weak equivalences, by this prop.), and since the left square is a genuine pullback of a
fibration, hence a homotopy pullback, the total bottom rectangle here exhibits a homotopy
pullback by the pasting law for homotopy pullbacks (prop.).

Now by naturality of , that total bottom rectangle is the same as the following rectangle

×
( )

→⎯⎯⎯⎯⎯⎯⎯⎯
×
( )

( ×
( )

) →⎯⎯⎯⎯⎯⎯
∈

( * )
( )

∈
˜ ↓ ↓

( ˜ )
↓ ( )

⟶ ( ) →⎯⎯⎯⎯
( )

∈
( ( ))

,

where now ( * ) ∈  since * ∈ , as we had just established. This means again that

the right square is a homotopy pullback (prop.), and since the total rectangle still is a
homotopy pullback itself, by the previous remark, so is now also the left square, by the
other direction of the pasting law for homotopy pullbacks (prop.).

So far this establishes that the -naturality square of ˜  is a homotopy pullback. We still need
to show that also the -naturality square of  is a homotopy pullback.

Factor ˜ as a cofibration followed by an acyclic fibration. Since ˜ is also a -weak equivalence,
by the above, two-out-of-three for -fibrations gives that this factorization is of the form

→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
∈ ∩ = ∩

^ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
∈ ∩ = ∩

×
( )

.

As in the first part of the proof, but now with ( ∩ Cof, Fib) replaced by ( ∩ Cof , Fib ) and
using lifting in the -model structure, this yields the situation
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⟶=

∈ ∩ ↓ ∃ ↗ ↓∈

^ →⎯⎯⎯
˜ ∘

↔

⟶ ^ ⟶
∃

↓ ↓ ˜ ∘ ↓

= =

.

As in the retract argument (prop.) this diagram exhibits  as a retract (in the arrow
category, rmk.) of ˜ ∘ .

Observe that the -naturality square of the weak equivalence  is a homotopy pullback,
since  preserves weak equivalences (first clause of def. 3.3) and since a square with two
weak equivalences on opposite sides is a homotopy pullback (prop.). It follows that also the
-naturality square of ˜ ∘  is a homotopy pullback, by the pasting law for homotopy

pullbacks (prop.).

In conclusion, we have exhibited  as a retract (in the arrow category, rmk.) of a morphism
˜ ∘  whose -naturality square is a homotopy pullback. By naturality of , this means that
the whole -naturality square of  is a retract (in the category of commuting squares in ) of
a homotopy pullback square. This means that it is itself a homotopy pullback square
(prop.).  ▮

Proof of the stable model structure

We show now that the operation of Omega-spectrification of topological sequental spectra,
from def. 1.19, is a Quillen idempotent monad in the sense of def. 3.3. Via the Bousfield-
Friedlander theorem (prop. 3.7) this establishes the stable model structure on topological
sequential spectra in theorem 3.11 below.

Lemma 3.9. The Omega-spectrification ( , ) from def. 1.19 preserves homotopy pullbacks
(def.) in the strict model structure SeqSpec(Top )  from theorem 2.3.

(Schwede 97, lemma 2.1.3 (e))

Proof. Since, by prop. 1.20,  preserves weak equivalences, it is sufficient to show that
every pullback square in SeqSpec(Top ) of a fibration

× ⟶

↓ (pb) ↓ ∈

⟶

is taken by  to a homotopy pullback square. By prop. 1.25 we need to check that this is the
case for the th component space of the sequential spectra in the diagram, for all ∈ ℕ.

Let , , ,  etc. denote the objects appearing in the definition of ( ) ≔ lim→⎯⎯ , ,

( ) ≔ lim→⎯⎯ , , etc. (def. 1.19).

Use the small object argument (prop.) for the set 
( * /)

 of acyclic generating cofibrations in

(Top * /)  (def.) to construct a functorial factorization (def.) through acyclic relative cell

complex inclusions (def.) followed by Serre fibrations (def.) in each degree:

, →⎯⎯⎯⎯⎯⎯⎯⎯
∈

→⎯⎯⎯⎯
∈

, .

Notice that by construction • ,  and • ,  are sequences of relative cell complexes. This
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implies, by the way the small object argument works and by the commutativity of each

, →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
∈

( * /)

∈
( * /)

↓ ↓

+ , →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
∈

( * /)
+

,

that also • is a sequence of relative cell complex inclusions: a cell in  is given by the top
square in the following diagram, and the total rectangle is the image of that cell as a cell in

+ :

− ⟶ −

↓ ↓

, →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
∈

( * /)

∈
( * /)

↓ ↓

+ , →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
∈

( * /)
+

,

Therefore, forming the colimit over ∈  of these sequences sends the degreewise Serre
fibration to a Serre fibration (prop.): because we test for a Serre fibration by lifting against
the morphism in * / , which have compact domain and codomain, and these may be taken

inside the colimit over relative cell complex inclusions (by this lemma)). So we have a Serre
fibration

lim→⎯⎯ →⎯⎯⎯⎯
∈

( )

for each ∈ ℕ.

Consider then the commuting diagrams

, ⟶ , ←⎯⎯⎯⎯
∈

←⎯⎯⎯⎯⎯⎯⎯⎯⎯
∈ ∈

,

↓∈ ↓∈ ∃ ∈ ↘ ↓∈

+ ⟶ + ⟵ ←⎯⎯⎯⎯
∈ +

,

where the vertical morphisms are composites of the weak equivalences , : + , →⎯⎯
,

, +

from def. 1.19.

The diagonal is a chosen lift (where we use that = Maps( , −)
*
 preserves Serre fibrations

by prop. 0.2). This lift is a weak equivalence by two-out-of-three. On the left of the diagram
this exhibits now a weak equivalence of cospan-diagrams with right leg a fibration.
Therefore, since forming the limit over these cospan diagrams is a homotopy pullback (def.,
all objects here being fibrant), this induces a weak equivalence on these limits (prop.)

: , ×
,

→⎯⎯⎯⎯
∈

+ ×
+

+ ≃ ( + ×
+

+ ) .

By universality of the pullback there is a commuting triangle
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,
× ⟶ , ×

,

∈ ↘ ↙ ∈

( + ×
+

+ )

and hence by two-out-of-three also the top morphism is a weak equivalence.

Now observe that colimits over sequences of relative cell inclusions preserve finite limits up
to weak equivalence (prop.). This follows again by using that -spheres may be taken inside
the colimits from the classical fact that filtered colimits preserve finite limits. In conclusion
then, we have a weak equivalence of the form

( ( × )) = lim→⎯⎯ ,
× →⎯⎯⎯⎯

∈

→⎯⎯⎯
lim→⎯⎯ , ×

,

→⎯⎯⎯⎯
∈

lim→⎯⎯ , ×
→⎯⎯⎯ ,

lim→⎯⎯ = ( ) ×
( )

lim→⎯⎯ .

This exhibits (degreewise and hence globally) the homotopy pullback property to be
show.  ▮

Proposition 3.10. The Omega-spectrification ( , ) from def. 1.19 is a Quillen idempotent
monad in the sense of def. 3.3 on the strict model structre theorem 2.3:

: SeqSpec(Top ) ⟶ SeqSpec(Top ) .

(Schwede 97, prop. 2.1.5)

Proof. First notice that the strict model structure is indeed right proper, as demanded in def.
3.3: Since every object in SeqSpec(Top ) is fibrant (this being so degreewise in (Top* /) )

this follows from this lemma.

The first two conditions required on a Quillen idempotent monad in def. 3.3 are explicit in
prop. 1.20.

The third condition follows from lemma 3.9: A pullback of a -equivalence along a fibration
is a homotopy pullback and is hence sent by  to another homotopy pullback square.

* →⎯⎯
*

↓ (pb) ↓ ∈

→⎯⎯⎯⎯
∈

⇒

( * ) →⎯⎯⎯⎯⎯⎯⎯⎯
( * )∈

( )

↓ (pb) ↓ ( )

( ) →⎯⎯⎯⎯⎯⎯
( )∈

( )

.

By definition of -equivalence that resulting homotopy pullback square has the bottom edge
a weak equivalence, and hence also the top edge is a weak equivalence (prop.).  ▮

Theorem 3.11. The left Bousfield localization of the strict model structure on sequential
spectra (theorem 2.3) at the class of stable weak homotopy equivalences (def. 1.14)
exists, called the stable model structure on topological sequential spectra

SeqSpec(Top ) ⊥⟶
⟵

SeqSpec(Top ) .

Moreover, its fibrant objects are precisely the Omega-spectra (def.1.16).

Proof. Let ( , ) be the Omega-spectrification operation from def. 1.19. According to prop.
3.10 this is a Quillen-idempotent monad (def. 3.3) on SeqSpec(Top ) . Hence the
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Bousfield-Friedlander theorem (prop. 3.7) asserts that the Bousfield localization of the strict
model structure at the -equivalences exists. By prop. 1.20 these are precisely the stable
weak homotopy equivalences.

Finally, by prop. 3.8 an object ∈ SeqSpec(Top )  is fibrant in SeqSpec(Top )  precisely

if

⟶ ( )

↓ ↓

* ⟶ *

exhibits a homotopy pullback in SeqSpec(Top ) . Since every object in SeqSpec(Top )  is

fibrant, the vertical morphisms here are fibrations. The pullback of ( ) along id* is just ( )
itself, and the universally induced morphism into this pullback is just  itself. Hence the

square is a homotopy pullback precisely if  is a weak equivalence in SeqSpec(Top ) ,

hence degreewise a weak homotopy equivalence. Since ( ) is an Omega-spectrum by prop.
1.20, this means precisely that  is an Omega-spectrum.  ▮

Stability of the homotopy theory

We discuss that the stable model structure SeqSpec(Top )  of theorem 3.11 is indeed a

stable model category, in that the canonical reduced suspension operation is an equivalence
of categories from the stable homotopy category (def. 4.1) to itself. This is theorem 3.23
below.

Definition 3.12. A pointed model category  (exmpl.) is called a stable model category if
the canonically induced reduced suspension and loop space object-functors (prop.) on its
homotopy category (defn.) constitute an equivalence of categories

( ⊣ ) : Ho( ) ≃⟶
⟵ Ho( ) .

Literature (Jardine 15, sections 10.3 and 10.4)

First we observe that the alternative suspension induces an equivalence of homotopy
categories:

Lemma 3.13. With  and  the alternative suspension and alternative looping functors from
def. 1.32:

 preserves Omega-spectra (def. 1.16);1. 

 preserves stable weak homotopy equivalences (def. 1.14).2. 

Proof. Regarding the first statement:

By prop. 0.2,  acts on component spaces and adjunct structure maps as the right Quillen
functor

Maps( , −)
*
: (Top* /) ⟶ (Top * /)

on the classical model structure on pointed compactly generated topological spaces (thm.,
prop.). Since in this model structure all objects are fibrant, Ken Brown's lemma (prop.)
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implies that with ˜  a weak homotopy equivalence, so is ˜ = Maps( , ˜ ).

Regarding the second point:

Let : →  be a stable weak homotopy equivalence. By the existence of the model structure
SeqSpec(Top )  from theorem 3.11,  is a stable weak homotopy equivalence precisely if

its image in the homotopy category Ho(SeqSpec(Top ) ) is an isomorphism (prop.). By the

Yoneda lemma (fully faithfulness of the Yoneda embedding), this is the case if for all
∈ Ho(SeqSpec(Top ) ) the function

[ , ] : [ , ] ⟶ [ , ]

is a bijection. By the fact that the stable model structure is a left Bousfield localization of the
strict model structure with fibrant objects the Omega-spectra, this is the case equivalently
(using this lemma) if

[ , ] : [ , ] ⟶ [ , ]

is a bijection for all Omega-spectra . Now by the Quillen adjunction ⊣  on the strict
model category (prop. 2.5) this is equivalent to

[ , ] : [ , ] ⟶ [ , ]

being a bijection for all Omega-spectra . But since  preserves Omega-spectra by the first
point above, this is still maps into a fibrant objects, hence is again equivalent (using again
the property of the left Bousfield localization) to the hom in the strict model structure

[ , ] : [ , ] ⟶ [ , ]

being a bijection for all . But this is indeed a bijection, since  is a stable weak homotopy
equivalence, hence an isomorphism in the homotopy category.  ▮

Lemma 3.14. For  a sequential spectrum, then (using remark 1.35 to suppress
parenthesis)

the structure maps constitute a homomorphism

[−1] ⟶

(from the shift, def. 1.31, of the alternative suspension, def. 1.32) and this is a stable
weak homotopy equivalence,

1. 

the adjunct structure maps constitute a homomorphism

⟶ [1]

(to the shift, def. 1.31, of the alternative looping, def. 1.32)

If  is an Omega-spectrum (def. 1.16) then this is a weak equivalence in the strict
model structure (def. 2.1), hence in particular a stable weak homotopy equivalence.

2. 

Proof. The diagrams that need to commute for the structure maps to give a homomorphism
as claimed are in degree 0 this one
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∧ ∧ * ⟶

∧ ↓ ↓

∧ ⟶

and in degree ≥ 1 these:

∧ ∧ − →⎯⎯⎯⎯⎯⎯⎯
∧ −

∧ − ↓ ↓

∧ ⟶ +

.

But in all these cases commutativity it trivially satisfied.

That the adjunct structure maps constitute a morphism → [1] follows dually.

If  is an Omega-spectrum, then by definition this last morphism is already a weak
equivalence in the strict model structure, hence in particular a weak equivalence in the
stable model structure.

From this it follows that also [−1] →  is a stable weak homotopy equivalence, because for
every Omega-spectrum  then by the adjunctions in prop. 1.36 we have a commuting
diagram of the form

[ , ] ⟶ [ [−1], ]

↓ ↓≃

[ , ] ⟶
≃

[ , [1]]

.

(To see the commutativity of this diagram in detail, consider for any [ ] ∈ [ , ]  chasing

the element  in the two possible ways through the natural adjunction isomorphism:

[ ∧ − , ] ≃ [ − , ]

[ ∧ − , ] ↓ ↓[ − , ]

[ ∧ − , ] ≃ [ − , ]

.

Sending  down gives ∘ ∧ −  which equals (by the homomorphism property) ∘ .

Instead sending  to the right yields ˜  and then down yields ˜ ∘ − . By commutativity

this is adjunct to ∘ .)

Hence

[ , ] ⟶ [ [−1], ]

is a bijection for all Omega-spectra , and so the conclusion that [−1] →  is a stable weak
homotopy equivalence follows as in the proof of lemma 3.13.  ▮

Lemma 3.15. The total derived functor of the alternative suspension operation  of def.
1.32 exists and constitutes an equivalence of categories from the stable homotopy
category to itself:

: Ho(SeqSpec(Top) ) ⟶≃ Ho(SeqSpec(Top) ) .

Proof. The total derived functor of  exists, because by lemma 3.13  preserves stable
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weak homotopy equivalences. Also the shift functor [−1] from def. 1.31 clearly preserves
stable equivalences, hence both descend to the homotopy category. There, by prop. 3.14
and remark 1.35, they are inverses of each other, up to isomorphism.  ▮

Lemma 3.16. The canonical suspension functor on the homotopy category of any model
category (from this prop.) in the case of the stable homotopy category (def. 4.1)
Ho(Spectra) = Ho(SeqSpec(Top ) ) is represented by the “standard suspension” operation

of def. 1.29.

Proof. By CW-approximation (prop. 2.16), every object in the stable homotopy category is
represented by a CW-spectrum. By prop. 2.13, on CW-spectra the canonical suspension
functor on the homotopy category (from this prop.) is represented by the “standard
suspension” operation of def. 1.29.  ▮

The combination of lemma 3.15 with lemma 3.16 gives that in order to show that
SeqSpec(Top )  is indeed a stable model category according to def. 3.12, we are reduced

to showing that in the homotopy category the alternative suspension operation (which we
know gives an equivalence) is naturally isomorphic to the standard suspension operation
(which we know is the correct suspension operation). This we turn to now.

According to remark 1.34, both should be directly comparable and isomorphic in the
homotopy category “in even degrees”, but non-comparable in odd degree. In order to make
this precise, we now introduce the concept of sequential spectra with components only in
even degree and then use an adjunction back to ordinary sequential spectra.

Observe that the definition of the category SeqSpec(Top ) of sequential spectra in def. 1.1

does not require anything specific of the circle : the same kind of definition may be
considered for any other pointed topological space  in place of . The construction of the
stable model structure SeqSpec(Top )  in theorem 3.11 does depend on the nature of ,

but only in that it uses that the n-spheres = ( )∧

co-represent homotopy groups in the classical pointed homotopy category:
[ , −]

*
≃ (−);

1. 

are compact, so that maps out of them factor through finite stages of transfinite
compositions of relative cell complex inclusions.

2. 

Both points still hold with  replaced by ∧ +, for  any contractible compact topological
space. Moreover, since only the stable homotopy groups matter for the construction of the
stable model category, one could replace  by any : While the smash powers ( ) ∧

co-represent only every th homotopy group, this is still sufficient for co-represent all the
stable homotopy groups.

The following is an immediate variant of the definition 1.1 of sequential spectra:

Definition 3.17. Let = + ∈ Top *
/ be a compact contractible topological space with a

basepoint freely adjoined, and let ∈ ℕ, ≥ 1.

A sequential ∧ -spectrum is a sequence of component spaces ∈ Top  for ∈ ℕ,

and a sequence of structure maps of the form

, : ∧ ∧ ⟶ ( + ) .

A homomorphism of sequential ∧ -spectra : →  is a sequence of component maps
: →  such that all these diagrams commute:
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∧ ∧ →⎯⎯⎯⎯⎯⎯⎯⎯
∧ ∧

∧ ∧

, ↓ ↓ ,

( + ) →⎯⎯⎯⎯⎯⎯
( + )

( + )

.

Write

Seq ∧ Spec(Top )

for the resulting category of sequential ∧ -spectra.

Proposition 3.18. For any ∧  as in def. 3.17, there exists a model category structure

Seq ∧ Spec(Top )

on the category of sequential ∧ -spectra, where

the weak equivalences are the morphisms that induce isomorphisms under
lim→⎯⎯ ∈ ℕ

(−);

the fibrations are the morphisms whose -naturality square is a homotopy pullback,

where : id →  is the ∧ -spectrification functor defined as in def. 1.19 but with

 replaced by ∧  throughout.

Proof. The proof is verbatim that of theorem 3.11, with  replaced by ∧  throughout.  ▮

Lemma 3.19. For ∈ ℕ, ≥ 1, there is a pair of adjoint functors

SeqSpec(Top ) ⊥⟶
⟵

Seq Spec(Top )

between sequential spectra (def. 1.1) and sequential -spectra (def. 3.17)

where ( ) ≔  and

: ≃ − ∧ ∧ →⎯⎯⎯⎯⎯⎯
∧

− ∧ + ⟶ ⋯⟶ ∧ +( − ) →⎯⎯⎯⎯⎯⎯⎯⎯
+( − )

( + )

and where

( ) ≔
if ∈ ℕ

∧ − if < and − ∈ ℕ

and

=
−( − ) if + 1 ∈ ℕ

id ∧ otherwise .

Moreover, for each ∈ SeqSpec(Top ), the adjunction unit

⟶

is a stable weak homotopy equivalence (def. 1.14).
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Proof. For ease of notation we discuss this for = 2. The general case is directly analogous.
To see that we have an adjunction, consider a homomorphism

: ⟶ .

Given its even-graded component maps, then its odd-graded component maps +  need to

fit into commuting squares of the form

∧ →⎯⎯⎯⎯⎯⎯
∧

∧

↓ ↓

∧ →⎯⎯⎯⎯⎯
+

+

.

Since here the left map is an identity, this uniquely fixes the odd-graded components +

in terms of the even-graded components. Moreover, these components then make the
following pasting rectangles comute

∧ →⎯⎯⎯⎯⎯⎯
∧

∧

≃ ↓ ↓ ∧

∧ →⎯⎯⎯⎯⎯⎯⎯⎯
∧ + ∧ +

↓ ↓ +

+ →⎯⎯⎯⎯⎯+ +

.

This equivalently exhibits  as a homomorphism of the form

˜ : ⟶

and hence establishes the adjunction isomorphism.

Finally to see that the adjunction unit is a stable weak homotopy equivalence: for
∈ SeqSpec(Top ) then the morphism of stable homotopy groups induced from

⟶

is in degree  given by

lim→⎯⎯ (⋯ → + ( ) ⟶ + + ( + + ) → ⋯) = ( )

≃ ↓ ≃ ↓ ↓

lim→⎯⎯ (⋯ → + ( ) ⟶ + + ( + ) ⟶ + + ( + + ) → ⋯) = ( )

.

From this it is clear by inspection that the induced vertical map on the right is an
isomorphism. Stated more abstractly: the inclusion of partially ordered sets ℕ≤ ↪ ℕ≤ is a
cofinal functor and hence restriction along it preserves colimits.  ▮

Definition 3.20. For

: ∧ ⟶ ∧

any morphism, write

* : Seq ∧ Spect(Top ) ⟶ Seq ∧ Spect(Top )
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for the functor from the category of sequential ∧ -spectra (def. 3.17) to that of
∧ -spectra which sends any  to *  with

( * ) ≔

and

,
* : ∧ ∧ →⎯⎯⎯

∧
∧ ∧ →⎯⎯⎯

,
( + ) .

Lemma 3.21. For ≔ + a compact contractible topological space with base point adjoined,
and for ∈ ℕ, write : ⟶ ∧  for the canonical inclusion. Then the induced functor *

from def. 3.20 is the right adjoint in a Quillen equivalence (def.)

Seq ∧ Spec(Top ) ≃
→⎯⎯⎯
*

←⎯⎯⎯ SeqSpec(Top )

between the stable model structures of sequential -spectra and of sequential
∧ -spectra (prop. 3.18), respectively.

(Jardine 15, theorem 10.40)

Proof. Write : ∧ →  for the canonical projection.

A morphism

: ⟶ *

is given by components fitting into commuting squares of the form

∧ →⎯⎯⎯⎯⎯
∧

∧

↓ ↓ ∧

∧ ∧ ∧

↓ ↓

+ →⎯⎯⎯⎯
+

+

.

Since ∘ = id, every such diagram factors as

∧ →⎯⎯⎯⎯⎯
∧

∧

∧ ↓ ↓ ∧

∧ ∧ →⎯⎯⎯⎯⎯⎯⎯
∧ ∧

∧ ∧
∧ ↓ ↓

∧

↓ ↓

+ →⎯⎯⎯⎯
+

+

.

Here the bottom square exhibits the components of a morphism

˜ : * ⟶

and this correspondence is clearly naturally bijective
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This establishes the adjunction * ⊣ *. This is a Quillen equivalence because for every
∈ Top* / then by the contractibility of  there is an equivalence

[ ∧ , ]
*
≃ [ , ]

*

and hence the concept of stable weak homotopy equivalences in both categories agrees.
Hence any ˜ : * →  is a stable weak homotopy equivalence precisely if : → *  is.  ▮

With this in hand, we now finally state the comparison between standard and alternative
suspension:

Lemma 3.22. There is a natural isomorphism in the homotopy category
Ho(SeqSpec(Top ) ) of the stable model structure, between the total derived functors

(prop.) of the standard suspension (def. 1.29) and of the alternative suspension (def.
1.32):

(−) ≃ (−) ∧ ∈ Ho(SeqSpec(Top ) )

Notice that we agreed in Part P to suppress the notation  for left derived functors of the
suspension functor, not to clutter the notation. If we re-instantiate this then the above
says that there is a natural isomorphism

≃ ((−) ∧ ) .

(Jardine 15, corollary 10.42, prop. 10.53)

Proof. Consider the adjunction ( ⊣ ):SeqSpec(Top) ↔ Seq Spec(Top) from lemma 3.19. We

claim that there is a natural isomorphism

: ( (−)) ≃ ((−) ∧ ) ,

in Ho(Seq Spec(Top ) ).

This implies the statement, since by lemma 3.19 the adjunction unit is a stable weak
equivalence, so that we get natural isomorphisms

≃ ( ) ⟶
≃

( ∧ ) ≃ ∧

in Ho(SeqSpec(Top ) ) (where we are using that  evidently preserves cofibrant spectra,

so that  applied to  represents the correct derived functor of  and hence preserves this
isomorphism).

Now to see that the isomorphism  exists. Write

, : ∧ ⟶≃ ∧

for the braiding isomorphism, which swaps the first two canonical coordinates with the third.
Since the homotopy class of this map is trivial in that

[ , ] = 1 ∈ ℤ ≃ ( )

is the trivial element in the homotopy groups of spheres (and that is the point of passing to
-spectra here, because for -spectra the analogous map ,  has non-trivial class,

remark 1.34) it follows that there is a left homotopy (def.) of the form
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⟶ ( +) ∧ ⟵

↘ ↓ ↙
,
.

By forming the smash product of the entire diagram with  and pasting on the right the
naturality square for the braiding with 

∧ ∧ ←⎯⎯⎯⎯⎯⎯⎯⎯⎯
∧ ,

∧ ∧

∧( + ∘( ∧ )) ↓ ↓( + ∘( ∧ ))∧

∧ ( + ) ←⎯⎯⎯⎯⎯⎯
,

∧

this yields the diagram

∧ ⟶ ( +) ∧ ∧ ⟵ ∧ ←⎯⎯⎯⎯⎯⎯⎯⎯⎯
≃

∧
,

∧ ∧

↘ ↓ ↙
,

∧ ↓

∧ ↓( + ∘( ∧ ))∧

∧( + ∘( ∧ ))
↘ ↓

∧ ←⎯⎯⎯⎯⎯⎯
,

≃ ∧

.

Here the left diagonal composite is the structure map of ( ) in degree , while the right
vertical morphism is the structure map of ( ∧ ) in degree . In the middle we have the
structure map of an auxiliary ( +) ∧ -spectrum (def. 3.17)

∈ Seq
+∧

Spec(Top ) ,

and the horizontal morphisms exhibit the functors of def. 3.20 from ( +) ∧ -spectra to
-spectra with

* = ( ) , * = ( ∧ ) .

By lemma 3.21 and since  is contractible, these functors are equivalences of categories on
the Ho(Seq Spec(Top )), and moreover they have the same inverse, namely * for

: + ∧ →  the canonical projection. This implies the isomorphism.

Explicitly, due to the equivalence there exists  with ≃ *  and with this we may form the
composite isomorphism

( ) ≃ * ≃ * * ≃ ≃ * * ≃ * ≃ ( ∧ ) .

  ▮

We conclude:

Theorem 3.23. The stable model structure SeqSpec(Top)  from theorem 3.11 indeed

gives a stable model category in the sense of def. 3.12, in that the canonically induced
reduced suspension functor (prop.) on its homotopy category is an equivalence of
categories
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: Ho(SeqSpec(Top) ) ⟶≃ Ho(SeqSpec(Top) ) .

Proof. By lemma 3.16, the canonical suspension functor is represented, on fibrant-cofibrant
objects, by the standard suspension functor of def. 1.29. By prop. 3.22 this is naturally
isomorphic – on the level of the homotopy category – to the alternative suspension
operation of def. 1.32. Therefore the claim follows with prop. 3.15.  ▮

In fact this lifts to a Quillen equivalence:

Proposition 3.24. The ( ⊣ )-adjunction from prop. 1.36 is a Quillen equivalence (def.)
with respect to the stable model structure of theorem 3.11:

SeqSpec(Top ) ≃
⟶
⟵ SeqSpec(Top ) .

Its derived functors (prop.) exhibit the canonical reduced suspension and looping
operation as an adjoint equivalence on the stable homotopy category

Ho(Spectra) ≃⟶
⟵ Ho(Spectra) .

Proof. By prop. 2.5 and the fact that the stable model structure has the same cofibrations
as the strict model structure,  preserves stable cofibrations. Moreover, by lemma 3.13
preserves in fact all stable weak equivalences. Hence  is a left Quillen functor and so ( ⊣ )
is a Quillen adjunction. Finally lemma 3.15 gives that this Quillen adjunction is a Quillen
equivalence.  ▮

In summary, this concludes the characterization of the stable homotopy category as the
result of stabilizing the canonical ( ⊣ )-adjunction on the classical homotopy category:

Theorem 3.25. The classical model structure (Top* /)  on pointed compactly generated

topological spaces (thm., prop.) and the stable model structure on topological sequential
spectra SeqSpec(Top ) (theorem 3.11) sit in a commuting diagram of Quillen adjunctions of

the form

(Top * /)
⟶

⟵ (Top * /)

↓ ⊣ ↑ ↓ ⊣ ↑

SeqSpec(Top ) ⊥⟶
⟵

SeqSpec(Top )

↓ ⊣ ↑ ↓ ⊣ ↑

SeqSpec(Top ) ≃
⟶
⟵ SeqSpec(Top )

,

where the top parts is from corollary 2.6, the bottom vertical Quillen adjunction is the
Bousfield localization of theorem 3.11 and the bottom horizontal adjunction is the Quillen
equivalence of prop. 3.24.

Hence (by this prop.) the derived functors of the functors in this diagram yield a
commuting square of adjoint functors between the classical homotopy category (def.) and
the stable homotopy category (def. 4.1) of the form
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Ho(Top* /) ⊥⟶
⟵

Ho(Top* /)

↓ ⊣ ↑ ↓ ⊣ ↑

Ho(Spectra) ≃⟶
⟵ Ho(Spectra)

,

where the horizontal adjunctions are the canonically induced (via this
prop.)suspension/looping functors by prop. 0.2 and by lemma 3.16 and theorem 3.23.

Cofibrant generation

We show that the stable model structure SeqSpec(Top )  from theorem 3.11 is a

cofibrantly generated model category (def.).

We will not use the result of this section in the remainder of part 1.1, but the following
argument is the blueprint for the proof of the model structure on orthogonal spectra that we
consider in part 1.2, in the section The stable model structure on structured spectra, and it
will be used in the proof of the Quillen equivalence of SeqSpec(Top )  to the stable model

structure on orthogonal spectra (thm.).

Moreover, that SeqSpec(Top )  is cofibrantly generated means that for  any topologically

enriched category (def.) then there exists a projective model structure on functors
[ , SeqSpec(Top ) ]  on the category of topologically enriched functors → SeqSpec(Top )

(def.), in direct analogy to the projective model structure [ , (Top* /) ]  (thm.). This is

the model structure for parameterized stable homotopy theory. Just as the stable homotopy
theory discussed here is the natural home of generalized (Eilenberg-Steenrod) cohomology
theories (example 4.6) so parameterized stable homotopy theory is the natural home of
twisted cohomology theories.

In order to express the generating (acyclic) cofibrations, we need the following simple but
important concept.

Definition 3.26. For ∈ Top* /, and ∈ ℕ, write ∈ SeqSpec(Top ) for the free spectrum

on  at , with components

( ) ≔
* for <

− ∧ for ≥

and with structure maps  the canonical identifications for ≥

: ∧ ( ) = ∧ − ∧ ⟶≃ + − ∧ = ( ) + .

For ∈ ℕ, write

: + ⟶

for the canonical morphisms of free sequential spectra with the following components
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⋮ ⋮

( ) + ⟶

( ) + ⟶

( ) + ⟶

( ) : * ⟶

* ⟶ *

⋮ ⋮

* ⟶ *
⏟ ⏟

: + ⟶

Example 3.27. The free spectrum  (def. 3.26) is the standard sequential sphere
spectrum from def. 1.4

≃ .

Generally the free spectrum  is the suspension spectrum (def. 1.3) on :

≃ .

Just as forming suspension spectra is left adjoint to extracting the 0th component space of a
sequential spectrum (prop. 1.10), so forming the th free spectrum is left adjoint to
extracting the th component space:

Proposition 3.28. For ∈ ℕ, let

Ev : SeqSpec(Top ) ⟶ Top*/

be the functor from sequential spectra (def. 1.1) to pointed topological spaces given by
extracting the th component space

Ev ( ) ≔ .

Then this functor is right adjoint to forming th free spectra (def. 3.26):

( ⊣ Ev ) : SeqSpec(Top ) ⊥→⎯⎯
←⎯⎯

Top* / .

Proof. The proof is verbatim as that of prop. 1.10, just with  zeros inserted at the bottom
of the sequences of components maps.  ▮

Definition 3.29. Write

≔ ∈ SeqSpec(Top)

for the set of morphisms appearing already in def. 2.2, and write

≔ ⊔ { □ +}
∈ℕ, + ∈ * /

for the disjoint union of the other set of morphisms appearing in def. 2.2 with the set
{ □ +} , +

 of pushout-products under smash tensoring (according to def. 2.18) of the
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morphisms  from def. 3.26 with the generating cofibrations of the classical model
structure on pointed topological spaces (def.).

Theorem 3.30. The stable model structure SeqSpec(Top )  from theorem 3.11 is

cofibrantly generated (def.) with generating (acyclic) cofibrations the sets  (and
) from def. 3.29.

This is one of the cofibrantly model categories considered in (Mandell-May-Schwede-Shipley
01) .

Proof. It is clear (as in theorem 2.3) that the two classes have small domains (def.).
Moreover, since =  and Cof = Cof  by definition, the fact that the
ccofibrations are the retracts of relative -cell complexes is part of theorem 2.3. It only
remains to show that the stable acyclic cofibrations are precisely the retracts of relative

-cell complexes. This we is the statement of lemma 3.35 below.  ▮

Lemma 3.31. The morphisms of free spectra { } ∈ℕ from def. 3.26 co-represent the

adjunct structure maps of sequential spectra from def. 1.2, in that for ∈ SeqSpec(Top ),

then

SeqSpec( , ) ≃

( , ) ↓ ↓ ˜

SeqSpec( + , ) ≃ +

,

where on the left we have the hom-spaces of def. 2.21, and where the horizontal
equivalences are via prop. 3.28.

Proof. Recall that we are precomposing with

⋮ ⋮

( ) + ⟶

( ) + ⟶

( ) + ⟶

( ) : * ⟶

* ⟶ *

⋮ ⋮

* ⟶ *
⏟ ⏟

: + ⟶

Now for  any sequential spectrum, then a morphism : →  is uniquely determined by
its th component : → : the compatibility with the structure maps forces the next

component, in particular, to be ∘ :

⟶

↓≃ ↓

→⎯⎯⎯⎯⎯
∘

.
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But that ( + 1)st component is just the component that similarly determines the
precompositon of  with , hence ∘  is uniquely determined by the map ∘ .
Therefore SeqSpec( , −) is the function

SeqSpec( , −) : = SeqSpec( , ) →⎯⎯⎯⎯⎯⎯⎯⎯
↦ ∘

Maps ( , + )
*
= + .

It remains to see that this is indeed the ( ⊣ )-adjunct of . By the general formula for
adjuncts, this is

˜ : ⟶ →⎯⎯⎯ + .

To compare to the above, we check what this does on points: ⟶  is sent to the
composite

⟶ ⟶ →⎯⎯⎯ + .

To identify this as a map → + , we use the adjunction isomorphism once more to throw
all the -s on the right back to -s the left, to finally find that this is indeed

∘ : = ⟶ ⟶ + .

  ▮

Lemma 3.32. Every element in  (def. 3.29) is an acyclic cofibration in the model

structure SeqSpec(Top )  from theorem 3.11.

Proof. For the elements in  this is part of theorem 2.3. It only remains to see that the

morphisms □ + are stable acyclic cofibrations.

To see that they are stable cofibrations, hence strict cofibrations:

By Joyal-Tierney calculus (prop.) □ + has left lifting against any strict acyclic fibration 
precisely if  has left lifting against the pullback powering □ + (def. 2.18). By prop. 2.19
the latter is still a strict acyclic fibration. Since  is evidently a strict cofibration, the lifting
follows and hence also □ + is a strict cofibration, hence a stable cofibration.

To see that they are stable weak equivalences: For each  the morphisms ∧ −  are
stable acyclic cofibrations, and since stable acyclic cofibrations are preserved under pushout,
it follows by two-out-of-three that also □ + is a stable weak equivalence.  ▮

The reason for considering the set { □ +} is to make the following true:

Lemma 3.33. A morphism : →  in SeqSpec(Top) is a -injective morphism (def.)

precisely if

it is fibration in the strict model structure (hence degreewise a fibration);1. 

for all ∈ ℕ the commuting squares of structure map compatibilities on the
underlying sequential spectra

⟶
˜

+

↓ ↓ +

⟶
˜

+

2. 
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exhibit homotopy pullbacks (def.) in SeqSpec(Top ) , in that the comparison map

⟶ ×
+

−

is a weak homotopy equivalence (notice that +  is a fibration by the previous item

and since = Maps( , −)
*
 is a right Quillen functor by prop. 0.2).

In particular, the -injective objects are precisely the Omega-spectra, def. 1.16.

Proof. By theorem 2.3, lifting against  alone characterizes strict fibrations, hence

degreewise fibrations. Lifting against the remaining pushout product morphism □ + is, by
Joyal-Tierney calculus (prop.), equivalent to left lifting + against the pullback powering □

from def. 2.18. Since the { +} are the generating cofibrations in Top* / such lifting means that
□  is a weak equivalence in the strict model sructure. But by lemma 3.31, □  is precisely

the comparison morphism in question.  ▮

Lemma 3.34. A morphism in SeqSpec(Top) which is both

a stable weak homotopy equivalence (def. 1.14);1. 

a -injective morphism (def. 3.29, def.)2. 

is an acyclic fibration in the strict model structure, hence is degreewise a weak homotopy
equivalence and Serre fibration of topological spaces;

Proof. Let : →  be both a stable weak homotopy equivalence as well as a -injective
morphism. Since  contains the generating acyclic cofibrations for the strict model structure,
 is in particular a strict fibration, hence a degreewise fibration.

Consider the fiber  of , hence the morphism → *  which is the pullback of  along * → .
Notice that since  is a strict fibration, this is the homotopy fiber (def.) of  in the strict
model structure.

We claim that

 is an Omega-spectrum;1. 

→ *  is a stable weak homotopy equivalence.2. 

The first item follows since , being the pullback of a -injective morphisms, is a -injective
object (prop.), so that, by lemma 3.33,  it is an Omega-spectrum.

For the second item:

Since → →  is degreewise a homotopy fiber sequence, there are degreewise its long
exact sequences of homotopy groups (exmpl.)

⋯ → •+ ( ) ⟶ •( ) ⟶ •( ) →⎯⎯⎯
( )

*
•( ) → ⋯ → ( ) ⟶ ( ) ⟶ ( ) ⟶ ( )

Since in the category Ab of abelian group forming filtered colimits is an exact functor
(prop.), it follows that after passing to stable homotopy groups the resulting sequence

⋯ •+ ( ) ⟶* • + ( ) ⟶ •( ) ⟶ •( ) ⟶
(
*

•( ) → ⋯

is still a long exact sequence.
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Since, by assumption, 
*
 is an isomorphism, this exactness implies that •( ) = 0, and hence

that → *  is a stable weak homotopy equivalence. But since, by the first item above,  is an
Omega-spectrum, it follows (via example 1.18) that → *  is even a degreewise weak
homotopy equivalence, hence that •( ) ≃ 0 for all ∈ ℕ.

Feeding this back into the above degreewise long exact sequence of homotopy groups now
implies that • ≥ ( ) is a weak homotopy equivalence for all  and for each homotopy group

in positive degree.

To deduce the remaining case that also ( ) is an isomorphism, observe that by

assumption of -injectivity, lemma 3.33 gives that  is the pullback (in topological spaces)

of ( ). But by the above  is a weak homotopy equivalence, and since = Maps( , −)
*
 is

a right Quillen functor (prop. 0.2) it is also a Serre fibration. Therefore  is the pullback of

an acyclic Serre fibration and hence itself a weak homotopy equivalence.  ▮

Lemma 3.35. The retracts (rmk.) of -relative cell complexes are precisely the stable

acyclic cofibrations.

Proof. Since all elements of  are stable weak equivalences and strict cofibrations by

lemma 3.32, it follows that every retract of a relative -cell complex has the same

property.

In the other direction, let  be a stable acyclic cofibration. Apply the small object argument
(prop.) to factor it

: ⎯⎯⎯⎯⎯⎯⎯ ⎯⎯⎯⎯⎯⎯

as a -relative cell complex  followed by a -injective morphism . By the previous

statement  is a stable weak homotopy equivalence, and hence by assumption and by
two-out-of-three so is . Therefore lemma 3.34 implies that  is a strict acyclic fibration. But
then the assumption that  is a strict cofibration means that it has the left lifting property
against , and so the retract argument (prop.) implies that  is a retract of the relative

-cell complex .  ▮

This completes the proof of theorem 3.30.

4. The stable homotopy category

Definition 4.1. Write

Ho(Spectra) ≔ Ho(SeqSpec(Top ) )

for the homotopy category (defn.) of the stable model structure on topological sequential
spectra from theorem 3.11.

This is called the stable homotopy category.

The stable homotopy category of def. 4.1 inherits particularly nice properties that are
usefully axiomatized for themselves. This axiomatics is called triangulated category structure
(def. 4.15 below) where the “triangles” are referring to the structure of the long fiber
sequences and long cofiber sequences (prop.) which happen to coincide in stable homotopy
theory.

Additivity
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The stable homotopy category Ho(Spectra) is the analog in homotopy theory of the category
Ab of abelian groups in homological algebra. While the stable homotopy category is not an
abelian category, as Ab is, but a homotopy-theoretic version of that to which we turn below,
it is an additive category.

Lemma 4.2. The stable homotopy category (def. 4.1) has finite coproducts. They are
represented by wedge sums (example 1.27) of CW-spectra (def. 2.7).

Proof. Having finite coproducts means

having empty coproducts, hence initial objects,1. 

and having binary coproducts.2. 

Regarding the initial object:

The spectrum *  (suspension spectrum (example 1.3) on the point) is both an initial
object and a terminal object in SeqSpec(Top ). This implies in particular that it is both fibrant

and cofibrant. Finally its standard cylinder spectrum (example 1.28) is trivial
( * ) ∧ ( +) ≃ * . All together with means that for  any fibrant-cofibrant spectrum, then

Hom ( )( * , ) ≃ Hom ( * , )/∼ ≃ *

and so *  also represents the initial object in the stable homotopy category.

Now regarding binary coproducts:

By prop. 2.16 and prop. 2.12, every spectrum has a cofibrant replacement by a
CW-spectrum. By prop. 2.11 the wedge sum ∨  of two CW-spectra is still a CW-spectrum,
hence still cofibrant.

Let  and  be fibrant and cofibrant replacement functors, respectively, as in the
section_Classical homotopy theory – The homotopy category.

We claim now that ( ∨ ) ∈ Ho(Spectra) is the coproduct of  with  in Ho(Spectra). By
definition of the homotopy category (def.) this is equivalent to claiming that for  any stable
fibrant spectrum (hence an Omega-spectrum by theorem 3.11) then there is a natural
isomorphism

Hom ( ( ∨ ), )/∼ ≃ Hom ( , )/∼ × Hom ( , )/∼

between left homotopy-classes of morphisms of sequential spectra.

But since ∨  is cofibrant and  is fibrant, there is a natural isomorphism (prop.)

Hom ( ( ∨ ), )/∼ ⟶≃ Hom ( ∨ , )/∼ .

Now the wedge sum ∨  is the coproduct in SeqSpec(Top ), and hence morphisms out of it

are indeed in natural bijection with pairs of morphisms out of the two summands. But we
need this property to hold still after dividing out left homotopy. The key is that smash
tensoring (def. 1.6) distributes over wedge sum

( ∨ ) ∧ ( +) ≃ ( ∧ ( +)) ∨ ( ∧ ( +))

(due to the fact that the smash product of compactly generated pointed topological spaces
distributes this way over wedge sum of pointed spaces). This means that also left
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homotopies out of ∨  are in natural bijection with pairs of left homotopies out of the
summands separately, and hence that there is a natural isomorphism

Hom ( ∨ , )/∼ ⟶≃ Hom ( , )/∼ × Hom ( , )/∼ .

Finally we may apply the inverse of the natural isomorphism used before (prop.) to obtain in
total

Hom ( , )/∼ × Hom ( , )/∼ ⟶≃ Hom ( , )/∼ × Hom ( , )/∼ .

The composite of all these isomorphisms proves the claim.  ▮

Definition 4.3. Define group structure on the pointed hom-sets of the stable homotopy
category (def. 4.1)

[ , ] ∈ Grp

induced from the fact (prop.) that the hom-sets of any homotopy category into an object
in the image of the canonical loop space functor  inherit group structure, together with
the fact (theorem 3.23) that on the stable homotopy category  and  are inverse to each
other, so that

[ , ] ≃ [ , ] ,

Lemma 4.4. The group structure on [ , ] in def. 4.3 is abelian and composition in
Ho(Spectra) is bilinear with respect to this group structure. (Hence this makes Ho(Spectra) an
Ab-enriched category.)

Proof. Recall (prop, rmk.) that the group structure is given by concatenation of loops

→⎯⎯ × →⎯⎯⎯
( , )

× ⟶ .

That the group structure is abelian follows via the Eckmann-Hilton argument from the fact
that there is always a compatible second (and indeed arbitrarily many compatible) further
group structures, since, by stability

[ , ] ≃ [ , ] ≃ [ , ∘ ( ) ∘ ] = [ , ] .

That composition of morphisms distributes over the operation in this group is evident for
precomposition. Let : →  then clearly

* : [ , ] ⟶ [ , ]

preserves the group structure induced by the group structure on . That the same holds
for postcomposition may be immediately deduced from noticing that this group structure is
also the same as that induced by the cogroup structure on , so that with : →  then

*
: [ , ] ⟶ [ , ]

preserves group structure.

More explicitly, we may see the respect for groupstructure structure of the postcomposition
opeation from the naturality of the loop composition map which is manifest when
representing loop spectra via the standard topological loop space object

= fib(Maps( +, ) → × ) (rmk.) under smash powering (def. 1.6).

To make this fully explicit, consider the following diagram in Ho(Spectra):

Introduction to Stable homotopy theory -- 1-1 in nLab https://ncatlab.org/nlab/print/Introduction+to+Stable+homotopy+theor...

61 of 79 09.05.17, 15:47



× ⟶≃ × ⟶≃ (Maps( , )
*
× Maps( , )

*
) ⟶ (Maps( [ , ], ))

*
≃ ≃

× ↓ ↓ × ↓ ( ( , )
*
× ( , )

*
) ↓

( ( [ , ] , )
*
)
↓ ↓

× ⟶≃ × ⟶≃ (Maps( , )
*
× Maps( , )

*
) ⟶ (Maps( [ , ], )

*
) ≃ ≃

,

where [ , ] denotes the sphere of length 2.

Here the leftmost square and the rightmost square are the naturality squares of the
equivalence of categories ( ⊣ ) (theorem 3.23).

The second square from the left and the second square from the right exhibit the equivalent
expression of  as the right derived functor of (either the standard or the alternative, by
lemma 3.22) degreewise loop space functor. Here we let  denote any fibrant
representative, for notational brevity, and use that the derived functor of a right Quillen
functor is given on fibrant objects by the original functor followed by cofibrant replacement
(prop.).

The middle square is the image under  of the evident naturality square for concatenation of
loops. This is where we use that we have the standard model for forming loop spaces and
concatenation of loops (rmk.): the diagram commutes because the loops are always
poinwise pushed forward along the map .  ▮

It is conventional (Adams 74, p. 138) to furthermore make the following definition:

Definition 4.5. For , ∈ Ho(Spectra) two spectra, define the ℤ-graded abelian group

[ , ]• ∈ Abℤ

to be in degree  the abelian hom group of lemma 4.4 out of  into the -fold suspension
of  (lemma 3.22):

[ , ] ≔ [ , − ] .

Defining the composition of ∈ [ , ]  with ∈ [ , ]  to be the composite

⟶ − →⎯⎯⎯⎯⎯⎯⎯
− ( ) − ( − ) ≃ − −

gives the stable homotopy category the structure of an Abℤ-enriched category.

Example 4.6. (generalized cohomology groups)

Let ∈ SeqSpec(Top ) be an Omega-spectrum (def. 1.16) and let ∈ Top * / be a pointed

topological space with  its suspension spectrum (example 1.3). Then the graded
abelian group (by prop. 4.4, def. 4.5)

˜ •( ) ≔ [ , ]−•

= [ , • ]

≃ [ , • ]
*

≃ [ , •]*

is also called the reduced cohomology of  in the generalized (Eilenberg-Steenrod)
cohomology theory that is represented by .

Here the equivalences used are
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the adjunction isomorphism of ( ⊣ ) from theorem 3.25;1. 

the isomorphism ≃ [1] of suspension with the shift spectrum (def. 1.31) on
Ho(Spectra) of lemma 3.14, together with the nature of  from prop. 1.10.

2. 

The latter expression

˜ ( ) ≃ [ , ]
*

(on the right the hom in in the classical homotopy category Ho(Top */) of pointed
topological spaces) is manifestly the definition of reduced generalized (Eilenberg-
Steenrod) cohomology as discussed in part S in the section on the Brown representability
theorem.

Suppose  here is not necessarily given as an Omega-spectrum. In general the
hom-groups [ , ] = [ , ]  in the stable homotopy category are given by the naive

homotopy classes of maps out of a cofibrant resolution of  into a fibrant resolution of 
(by this lemma). By theorem 3.11 a fibrant replacement of  is given by Omega-
spectrification  (def. 1.19). Since the stable model structure of theorem 3.11 is a left
Bousfield localization of the strict model structure from theorem 2.3, and since for the
latter all objects are fibrant, it follows that

[ , ] ≃ [ , ] ,

and hence

( ) ≔ [ , ]

≃ [ , ]

≃ [ , ]
*

= [ , ( ) ]
*

,

where the last two hom-sets are again those of the classical homotopy category. Now if 
happens to be a CW-spectrum, then by remark 1.21 its Omega-spectrification is given
simply by ( ) ≃ lim→⎯⎯ + ) and hence in this case

( ) ≃ [ , lim→⎯⎯ ]
*
.

If  here is moreover a compact topological space, then it may be taken inside the colimit
(e.g. Weibel 94, topology exercise 10.9.2), and using the ( ⊣ )-adjunction this is
rewritten as

( ) ≃ lim→⎯⎯ [ , ]
*

≃ lim→⎯⎯ [ , ]
*

.

(e.g. Adams 74, prop. 2.8).

This last expression is sometimes used to define cohomology with coefficients in an
arbitrary spectrum. For examples see in the part S the section Orientation in generalized
cohomology.

More generally, it is immediate now that there is a concept of -cohomology not only for
spaces and their suspension spectra, but also for general spectra: for ∈ Ho(Spectra) be
any spectrum, then
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˜ •( ) ≔ [ , • ]

is called the reduced -cohomology of the spectrum .

Beware that here one usually drops the tilde sign.

In summary, lemma 4.2 and lemma 4.4 state that the stable homotopy category is an
Ab-enriched category with finite coproducts. This is called an additive category:

Definition 4.7. An additive category is a category which is

an Ab-enriched category;

(sometimes called a pre-additive category–this means that each hom-set carries the
structure of an abelian group and composition is bilinear)

1. 

which admits finite coproducts

(and hence, by prop. 4.8 below, finite products which coincide with the coproducts,
hence finite biproducts).

2. 

Proposition 4.8. In an Ab-enriched category, a finite product is also a coproduct, and
dually.

This statement includes the zero-ary case: any terminal object is also an initial object,
hence a zero object (and dually), hence every additive category (def. 4.7) has a zero
object.

More precisely, for { } ∈  a finite set of objects in an Ab-enriched category, then the

unique morphism

∈

⟶
∈

,

whose components are identities for =  and are zero otherwise, is an isomorphism.

Proof. Consider first the zero-ary case. Given an initial object ∅ and a terminal object *,
observe that since the hom-sets Hom(∅, ∅) and Hom( * , * ) by definition contain a single
element, this element has to be the zero element in the abelian group structure. But it also
has to be the identity morphism, and hence id∅ = 0 and id* = 0. It follows that the 0-element
in Hom( * , ∅) is a left and right inverse to the unique element in Hom(∅, * ), and so this is an
isomorphism

0 : ∅ ⟶≃ * .

Consider now the case of binary (co-)products. Using the existence of the zero object, hence
of zero morphisms, then in addition to its canonical projection maps : × → , any

binary product also receives “injection” maps → × , and dually for the coproduct:

↘( , ) ( , ) ↙

↓ × ↓

↙ ↘

,

↘ ↙

↓ ⊔ ↓

↙( , ) ( , ) ↘

.

Observe some basic compatibility of the Ab-enrichment with the product:
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First, for ( , ), ( , ) : → ×  then

( ⋆ ) ( , ) + ( , ) = ( + , + )

(using that the projections  and  are linear and by the universal property of the

porduct).

Second, (id, 0) ∘  and (0, id) ∘  are two projections on ×  whose sum is the identity:

( ⋆ ⋆ ) (id, 0) ∘ + (0, id) ∘ = id × .

(We may check this, via the Yoneda lemma on generalized elements: for ( , ) : → ×
any morphism, then (id, 0) ∘ ∘ ( , ) = ( , 0) and (0, id) ∘ ∘ ( , ) = (0, ), so the statement

follows with equation ( ⋆ ).)

Now observe that for : →  any two morphisms, the sum

≔ ∘ + ∘ : × ⟶

gives a morphism of cocones

↘( , ) ( , ) ↙

↓ × ↓

↓

↘ ↙

.

Moreover, this is unique: suppose ′ is another morphism filling this diagram, then, by using
equation ( ⋆ ⋆ ), we get

( − ′) = ( − ′) ∘ id ×

= ( − ′) ∘ ((id , 0) ∘ + (0, id ) ∘ )

= ( − ′) ∘ (id , 0)
=

∘ + ( − ′) ∘ (0, id )
=

∘

= 0

and hence = ′ . This means that ×  satisfies the universal property of a coproduct.

By a dual argument, the binary coproduct ⊔  is seen to also satisfy the universal
property of the binary product. By induction, this implies the statement for all finite
(co-)products.  ▮

Remark 4.9. Finite coproducts coinciding with products as in prop. 4.8 are also called
biproducts or direct sums, denoted

⊕ ≔ ⊔ ≃ × .

The zero object is denoted “0”, of course.

Conversely:

Definition 4.10. A semiadditive category is a category that has all finite products which,
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moreover, are biproducts in that they coincide with finite coproducts as in def. 4.8.

Proposition 4.11. In a semiadditive category, def. 4.10, the hom-sets acquire the structure
of commutative monoids by defining the sum of two morphisms , : ⟶  to be

+ ≔ →⎯⎯ × ≃ ⊕ →⎯⎯⎯
⊕

⊕ ≃ ⊔ →⎯⎯
∇

.

With respect to this operation, composition is bilinear.

Proof. The associativity and commutativity of + follows directly from the corresponding
properties of ⊕. Bilinearity of composition follows from naturality of the diagonal  and
codiagonal ∇ :

⟶ × ⟶≃ ⊕

↓ ↓ × ↓ ⊕

→⎯⎯ × ≃ ⊕ →⎯⎯⎯
⊕

⊕ ≃ ⊔ →⎯⎯
∇

↓ ⊕ ↓ ⊔ ↓

⊕ ≃ ⊔ →⎯
∇

  ▮

Proposition 4.12. Given an additive category according to def. 4.7, then the enrichement
in commutative monoids which is induced on it via prop. 4.8 and prop. 4.11 from its
underlying semiadditive category structure coincides with the original enrichment.

Proof. By the proof of prop. 4.8, the codiagonal on any object in an additive category is the
sum of the two projections:

∇ : ⊕ →⎯⎯⎯⎯⎯
+

.

Therefore (checking on generalized elements, as in the proof of prop. 4.8) for all morphisms
, : →  we have commuting squares of the form

→⎯⎯⎯
+

↓ ↑ +

∇ =

⊕ →⎯⎯⎯
⊕

⊕

.

  ▮

Remark 4.13. Prop. 4.12 says that being an additive category is an extra property on a
category, not extra structure. We may ask whether a given category is additive or not,
without specifying with respect to which abelian group structure on the hom-sets.

In conclusion we have:

Proposition 4.14. The stable homotopy category (def. 4.1) is an additive category (def.
4.7).

Hence prop. 4.8 implies that in the stable homotopy category finite coproducts (wedge
sums) and finite products agree, in that they are finite biproducts (direct sums).

∨ ≃ × ≃ ⊕ ∈ Ho(Spectra) .

Proof. By lemma 4.2 and lemma 4.4.  ▮
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Triangulated structure

We have seen above that the stable homotopy category Ho(Spectra) is an additive category.
In the context of homological algebra, when faced with an additive category one next asks
for the existence of kernels (fibers) and cokernels (cofibers) to yield a pre-abelian category,
and then asks that these are suitably compatible, to yield an abelian category.

Now here in stable homotopy theory, the concept of kernels and cokernels is replaced by
that of homotopy fibers and homotopy cofibers. That these certainly exist for homotopy
theories presented by model categories was the topic of the general discussion in the section
Homotopy theory – Homotopy fibers. Various of the properties they satisfy was the topic of
the sections Homotopy theory – Long sequences and Homotopy theory – Homotopy
pullbacks.. For the special case of stable homotopy theory we will find a crucial further
property relating homotopy fibers to homotopy cofibers.

The axiomatic formulation of a subset of these properties of stable homotopy fibers and
stable homotopy cofibers is called a triangulated category structure. This is the analog in
stable homotopy theory of abelian category structure in homological algebra.

category of abelian
groups

stable homotopy category

direct sums and hom-abelian
groups

additive category additive category

(homotopy) fibers and cofibers
exist

pre-additive category
homotopy category of a model
category

(homotopy) fibers and cofibers are
compatible

abelian category triangulated category

Literature (Hubery, Schwede 12, II.2)

Definition 4.15. A triangulated category is

an additive category Ho (def. 4.7);1. 

a functor, called the suspension functor or shift functor

: Ho ⟶≃ Ho

which is required to be an equivalence of categories;

2. 

a sub-class CofSeq ⊂ Mor(Ho [ ]) of the class of triples of composable morphisms, called
the class of distinguished triangles, where each element that starts at  ends at

; we write these as

⟶ ⟶ / ⟶ ,

or

⟶

[ ] ↖ ↙

/

(whence the name triangle);

3. 
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such that the following conditions hold:

T0 For every morphism : → , there does exist a distinguished triangle of the form

⟶ ⟶ / ⟶ .

If ( , , ℎ) is a distinguished triangle and there is a commuting diagram in Ho of the
form

⟶ ⟶ / ⟶

↓∈ ↓ ∈ ↓ ∈ ↓ ∈

′ ⟶ ′ ⟶ ′ / ′ ⟶ ′

(with all vertical morphisms being isomorphisms) then ( ′ , ′ , ℎ′ ) is also a
distinguished triangle.

T1 For every object ∈ Ho then (0, id , 0) is a distinguished triangle

0 ⟶ ⟶ ⟶ 0;

T2 If ( , , ℎ) is a distinguished triangle, then so is ( , ℎ, − ); hence if

⟶ ⟶ / ⟶

is, then so is

⟶ / ⟶ →⎯⎯⎯
−

.

T3 Given a commuting diagram in Ho of the form

⟶ ⟶ / ⟶

↓ ↓

′ ⟶ ′ ⟶ ′ / ′ ⟶ ′

where the top and bottom are distinguished triangles, then there exists a morphism
/ → ′ / ′  such as to make the completed diagram commute

⟶ ⟶ / ⟶

↓ ↓ ↓∃ ↓

′ ⟶ ′ ⟶ ′ / ′ ⟶ ′

T4 (octahedral axiom) For every pair of composable morphisms : →  and
′ : →  then there is a commutative diagram of the form
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⟶ ⟶ / ⟶

= ↓ ↓ ↓ ↓=

→⎯⎯⎯
∘

⟶ / ⟶

↓ ↓

/ ⟶
≃

/

↓ ↓( )∘

⟶ /

such that the two top horizontal sequences and the two middle vertical sequences
each are distinguished triangles.

Proposition 4.16. The stable homotopy category Ho(Spectra) from def. 4.1, equipped with
the canonical suspension functor :Ho(Spectra) ⟶≃ Ho(Spectra) (according to this prop.) is a
triangulated category (def. 4.15) for the distinguished triangles being the closure under
isomorphism of triangles of the images (under localization SeqSpec(Top ) → Ho(Spectra)

(prop.) of the stable model category of theorem 3.11) of the canonical long homotopy
cofiber sequences (prop.)

⟶ ⟶ hocofib( ) ⟶ .

(e.g. Schwede 12, chapter II, theorem 2.9)

Proof. By prop. 4.14 the stable homotopy category is additive, by theorem 3.23 the functor
 is an equivalence.

The axioms T0 and T1 are immediate from the definition of homotopy cofiber sequences.

The axiom T2 is the very characterization of long homotopy cofiber sequences (from this
prop.).

Regarding axiom T3:

By the factorization axioms of the model category we may represent the morphisms → ′
and → ′ in the homotopy category by cofibrations in the model category. Then → /
and ′ → ′ / ′  are represented by their ordinary cofibers (def., prop.).

We may assume without restriction (lemma) that the commuting square

⟶

↓ ↓

′ ⟶ ′

in the homotopy category is the image of a commuting square (not just commuting up to
homotopy) in SeqSpec(Top ). In this case then the morphism / → ′ / ′  is induced by the

universal property of ordinary cofibers. To see that this also completes the last vertical
morphism, observe that by the small object argument (prop.) we have functorial
factorization (def.).

With this, again the universal property of the ordinary cofiber gives the fourth vertical
morphism needed for T3.

Axiom T4 follows in the same fashion: we may represent all spectra by CW-spectra and
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represent  and ′ , hence also ′ ∘ , by cofibrations. Then forming the functorial mapping
cones as above produces the commuting diagram

⟶ ⟶ / ⟶

= ↓ (1) ↓ (2) ↓ ↓=

→⎯⎯⎯
∘

⟶ / ⟶

↓ (3) ↓

/ ⟶
≃

/

↓ ↓( )∘

⟶ /

The fact that the second horizontal morphism from below is indeed an isomorphism follows
by applying the pasting law for homotopy pushouts twice (prop.):

Draw all homotopy cofibers as homotopy
pushout squares (def.) with one edge
going to the point. Then assemble the
squares (1)-(3) in the pasting composite
of two cubes on top of each other: (1) as
the left face of the top cube, (2) as the
middle face where the two cubes touch,
and (3) as the front face of the bottom
cube. All remaining edges are points. This
way the rear and front face of the top
cube and the left and right face of the
bottom cube are homotopy pushouts by
construction. Also the top face

⟶ *
≃ ↓ ↓

⟶ *

is a homotopy pushout, since two
opposite edges of it are weak
equivalences (prop.). From this the
pasting law for homotopy pushouts
(prop.) gives that also the middle square
(2) is a homotopy pushout. Applying the

pasting law once more this way, now for the bottom cube, gives that the bottom square

* ⟶ *

↓ ↓

/ ⟶ ( / )/( / )

is a homotopy pushout. Since here the left edge is a weak equivalence, necessarily, so is the
right edge (prop.), which hence exhibits the claimed identification

/ ≃ ( / )/( / ) .

  ▮

Remark 4.17. All we used in the proof (of prop. 4.16) of the octahedral axiom (T4) is the
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existence and nature of homotopy pushouts. In fact one may show that the octahedral
axiom is equivalent to the existence of homotopy pushouts, in the sense of axiom B in
(Hubery).

Long fiber-cofiber sequences

In homotopy theory there are generally long homotopy fiber sequences to the left and long
homotopy cofiber sequences to the right, as discussed in the section Homotopy theory –
Long sequences. We prove now, in the generality of the axiomatics of triangulated
categories (since the stable homotopy category is triangulated by prop. 4.16), that in stable
homotopy theory both these sequences are long in both directions, and in fact coincide.

Literature (Schwede 12, II.2)

Lemma 4.18. For (Ho, , CofSeq) a triangulated category, def. 4.15, and

⟶ ⟶ / ⟶

a distinguished triangle, then

∘ = 0

is the zero morphism.

Proof. Consider the commuting diagram

⟶ ⟶ 0 ⟶

↓ ↓

⟶ ⟶ / ⟶

.

Observe that the top part is a distinguished triangle by axioms T1 and T2 in def. 4.15. Hence
by T3 there is an extension to a commuting diagram of the form

⟶ ⟶ 0 ⟶

↓ ↓ ↓ ↓

⟶ ⟶ / ⟶

.

Now the commutativity of the middle square proves the claim.  ▮

Proposition 4.19. Let (Ho, , CofSeq) be a triangulated category, def. 4.15, with hom-functor
denoted by [−, −]

*
:Ho × Ho → Ab. For ∈ Ho any object, and for ∈ CofSeq any

distinguished triangle

= ( ⟶ ⟶ / ⟶ )

then the sequences of abelian groups

(long cofiber sequence)

[ , ]
*

→⎯⎯⎯⎯
[ , ]

* [ / , ]
*

→⎯⎯⎯⎯
[ , ]

* [ , ]
*

→⎯⎯⎯⎯
[ , ]

* [ , ]
*

1. 

(long fiber sequence)2. 
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[ , ]
*

→⎯⎯⎯⎯
[ , ]

* [ , ]
*

→⎯⎯⎯⎯
[ , ]

* [ , / ]
*

→⎯⎯⎯⎯
[ , ]

* [ , ]
*

are long exact sequences.

Proof. Regarding the first case:

Since ∘ = 0 by lemma 4.18, we have an inclusion im([ , ]
*
) ⊂ ker([ , ]

*
). Hence it is

sufficient to show that if : →  is in the kernel of [ , ]
*
 in that ∘ = 0, then there is

: / →  with ∘ = . To that end, consider the commuting diagram

⟶ ⟶ / ⟶

↓ ↓

0 ⟶ ⟶ ⟶ 0

,

where the commutativity of the left square exhibits our assumption.

The top part of this diagram is a distinguished triangle by assumption, and the bottom part
is by condition 1 in def. 4.15. Hence by condition T3 there exists  fitting into a commuting
diagram of the form

⟶ ⟶ / ⟶

↓ ↓ ↓ ↓

0 ⟶ ⟶ ⟶ 0

.

Here the commutativity of the middle square exhibits the desired conclusion.

This shows that the first sequence in question is exact at [ , ]
*
. Applying the same

reasoning to the distinguished triangle ( , ℎ, − ) provided by T2 yields exactness at
[ / , ]

*
.

Regarding the second case:

Again, from lemma 4.18 it is immediate that

im([ , ]
*
) ⊂ ker([ , ]

*
)

so that we need to show that for : →  in the kernel of [ , ]
*
, hence such that ∘ = 0,

then there exists : →  with ∘ = .

To that end, consider the commuting diagram

⟶ 0 ⟶ →⎯⎯⎯
−

↓ ↓

⟶ / ⟶ →⎯⎯
−

,

where the commutativity of the left square exhibits our assumption.

Now the top part of this diagram is a distinguished triangle by conditions T1 and T2 in def.
4.15, while the bottom part is a distinguished triangle by applying T2 to the given
distinguished triangle. Hence by T3 there exists ˜ : →  such as to extend to a
commuting diagram of the form
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⟶ 0 ⟶ →⎯⎯⎯
−

↓ ↓ ↓
˜

↓

⟶ / ⟶ →⎯⎯
−

,

At this point we appeal to the condition in def. 4.15 that :Ho → Ho is an equivalence of
categories, so that in particular it is a fully faithful functor. It being a full functor implies that
there exists : →  with ˜ = . It being faithful then implies that the whole commuting
square on the right is the image under  of a commuting square

⟶
−

↓ ↓

⟶
−

.

This concludes the exactness of the second sequence at [ , ]
*
. As before, exactness at

[ , / ]
*
 follows with the same argument applied to the shifted triangle, via T2.  ▮

Lemma 4.20. Consider a morphism of distinguished triangles in a triangulated category
(def. 4.15):

⟶ ⟶ / ⟶

↓ ↓ ↓ ↓

′ ⟶ ′ ⟶ ′ / ′ ⟶ ′

.

If two out of { , , } are isomorphisms, then so is the third.

Proof. Consider the image of the situation under the hom-functor [ , −]
*
 out of any object

:

[ , ]
*

⟶ [ , ]
*

⟶ [ , / ]
*

⟶ [ , ]
*

⟶ [ , ]
*

↓ * ↓ * ↓ * ↓( )
* ↓( )

*

[ , ′ ]
*
⟶ [ , ′ ]

*
⟶ [ , ′ / ′ ]

*
⟶ [ , ′ ]

*
⟶ [ , ′ ]

*

,

where we extended one step to the right using axiom T2 (def. 4.15).

By prop. 4.19 here the top and bottom are exact sequences.

So assume the case that  and  are isomorphisms, hence that *, *, ( )
*
 and ( )

*
 are

isomorphisms. Then by exactness of the horizontal sequences, the five lemma implies that *

is an isomorphism. Since this holds naturally for all , the Yoneda lemma (fully faithfulness
of the Yoneda embedding) then implies that  is an isomorphism.

If instead  and  are isomorphisms, apply this same argument to the triple ( , , ) to
conclude that  is an isomorphism. Since  is an equivalence of categories, this implies
then that  is an isomorphism.

Analogously for the third case.  ▮

Lemma 4.21. If ( , ℎ, − ) is a distinguished triangle in a triangulated category (def. 4.15),
then so is ( , , ℎ).

Proof. By T0 there is some distinguished triangle of the form ( , ′ , ℎ′). By T2 this gives a
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distinguished triangle (− , − ′ , − ℎ′). By T3 there is a morphism ′ giving a commuting
diagram

→⎯⎯
−

→⎯⎯
−

→⎯⎯
−

= ↓ = ↓ ↓ = ↓

→⎯⎯
−

→⎯⎯⎯
−

→⎯⎯⎯
−

.

Now lemma 4.20 gives that ′  is an isomorphism. Since  is an equivalence of categories,
there is an isomorphism  such that ′ = . Since  is in particular a faithful functor, this 
exhibits an isomorphism between ( , , ℎ) and ( , ′ , ℎ′ ). Since the latter is distinguished, so is
the former, by T0.  ▮

In conclusion:

Proposition 4.22. Let

⟶ ⟶

be a homotopy cofiber sequence (def.) of spectra in the stable homotopy category (def.
4.1) Ho(Spectra). Let ∈ Ho(Spectra) be any other spectrum. Then the abelian hom-groups
of the stable homotopy category (def. 4.3, lemma 4.4) sit in long exact sequences of the
form

⋯⟶ [ , ] →⎯⎯⎯⎯⎯
−( )

* [ , ] ⟶ [ , ] ⟶* [ , ] ⟶* [ , ] ⟶ [ , ] →⎯⎯⎯⎯⎯
−( )

* [ , ] ⟶ ⋯ .

Proof. By prop. 4.16 the above abstract reasoning in triangulated categories applies. By
prop. 4.19 we have long exact sequences to the right as shown. By lemma 4.21 these also
extend to the left as shown.  ▮

This suggests that homotopy cofiber sequences coincide with homotopy fiber sequence in
the stable homotopy category. This is indeed the case:

Proposition 4.23. In the stable homotopy category, a sequence of morphisms is a
homotopy cofiber sequence precisely if it is a homotopy fiber sequence.

Specifically for : ⟶  any morphism in Ho(Spectra), then there is an isomorphism

: hofib( ) ⟶≃ hocof( )

between the homotopy fiber and the looping of the homotopy cofiber, which fits into a
commuting diagram in the stable homotopy category Ho(Spectra) of the form

⟶ hofib( ) ⟶

= ↓ ↓≃ ↓≃

⟶ hocof( ) ⟶

,

where the top row is the homotopy fiber sequence of , while the bottom row is the image
under the looping functor  of the homotopy cofiber sequence of .

(Lewis-May-Steinberger 86, chapter III, theorem 2.4)

Proof. Label the diagram in question as follows
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⟶ hofib( ) ⟶

= ↓ (1) ↓≃ (2) ↓≃

⟶ hocof( ) ⟶

.

Let  be represented by a CW-spectrum (by prop. 2.16), hence in particular by a cofibrant
sequential spectrum (by prop. 2.12). By prop. 2.13 and the factorization lemma (lemma)
this implies that the standard mapping cone construction on  (def.) is a model for the
homotopy cofiber of  (exmpl.):

hocof( ) ≃ Cone( ) .

By construction of mapping cones, this sits in the following commuting squares in
SeqSpec(Top ).

⟶ Cone( )

↓ (po) ↓

⟶ Cone( )

↓ (po) ↓

* ⟶

.

Consider then the commuting diagram

⟶ hofib( ) ⟶ hocof( ) ⟶ ≃

↓ ↓ ↓ ↓

* ⟶ ⟶ Cone( ) ⟶ Cone( )

↓ ↓ ↓ ↓

⟶
=

⟶ Cone( ) ⟶

,

in the stable homotopy category Ho(Spectra) (def. 4.1). Here the bottom commuting squares
are the images under localization : SeqSpec(Top ) ⟶ Ho(Spectra) (thm.) of the above

commuting squares in the definition of the mapping cone, and the top row of squares are
the morphisms induced via the universal property of fibers by forming homotopy fibers of
the bottom vertical morphisms (fibers of fibration replacements, which may be chosen
compatibly, either by pullback or by invoking the small object argument).

First of all, this exhibits the composition of the left two horizontal morphisms ∘ ≃  in the
above diagram as the left part (1) of the commuting diagram to be proven.

Now observe that the pasting composite of the two rectangles on the right of the previous
diagram is isomorphic, in Ho(Spectra), to the following pasting composite:

hofib( ) ⟶ ⟶
≃

≃

↓ ↓ ↓

⟶ ⟶ Cone( )

↓ ↓ ↓

⟶ * ⟶

.

This is because the pasting composite of the bottom squares is isomorphic already in
SeqSpec(Top ) by the above commuting diagrams for the mapping cone and the suspension,
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and then using again the universal property of homotopy fibers.

Hence the top composite morphisms coincide, by universality of homotopy fibers, with the
previous top composite:

∘ ≃ ∘ .

This is the commutativity of the right part (2) of the diagram to be proven.

So far we have shown that

⟶ hofib( ) ⟶

= ↓ ↓ ↓=

⟶ hocof( ) ⟶

commutes in the stable homotopy category. It remains to see that  is an isomorphism.

To that end, consider for any ∈ Ho(Spectra) the image of this commuting diagram,
prolonged to the left and right, under the hom-functor [ , −]

*
 of the stable homotopy

category:

[ , ] ⟶ [ , ] ⟶ [ , hofib( )] ⟶ [ , ] ⟶ [ , ]

= ↓ = ↓ ↓
[ , ]

↓≃ ↓≃

[ , ] ⟶ [ , ] ⟶ [ , hocof( )] ⟶ [ , ] ⟶ [ , ]

.

Here the top row is long exact, since it is the long homotopy fiber sequence to the left that
holds in the homotopy category of any model catgeory (prop.). Moreover, the bottom
sequence is long exact by prop. 4.22. Hence the five lemma implies that [ , ]

*
 is an

isomorphism. Since this is the case for all , the Yoneda lemma (faithfulness of the Yoneda
embedding) implies that  itself is an isomorphism.  ▮

Remark 4.24. Prop. 4.23 is the homotopy theoretic analog of the clause that makes a
pre-abelian category into an abelian category:

A pre-abelian category is an additive category in which fibers (kernels) and cofibers
(cokernels) exist. This is an abelian category if the cofiber of the fiber of any morphism
equals coincides with the fiber of the cofiber of that morphism.

Here we see that in stable homotopy theory, whose homotopy category is additive, and in
which homotopy fibers and homotopy cofibers exist, the analogous statement is true even
in a stronger form: the homotopy cofiber projection of the homotopy fiber inclusion of any
morphism coincides with that morphism, and so does the homotopy fiber projection of the
homotopy cofiber inclusion.

In particular there are long exact sequences of stable homotopy groups extending in both
directions:

Lemma 4.25. Let ∈ SeqSpec(Top ) be any sequential spectrum, then there is an

isomorphism

( ) ≃ [ , ]

between its stable homotopy group in degree 0 (def. 1.11) and the hom-group (according
to def. 4.7, prop. 4.14) in the stable homotopy category (def. 4.1) from the sphere
spectrum (def. 1.4) into .
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Generally, with respect to the graded hom-groups of def. 4.5 we have

•( ) ≃ [ , ]• .

Proof. The hom-set in the homotopy category is equivalently given by the left homotopy-
equivalence classes out of a cofibrant representative of  into a fibrant representative of 
(lemma).

The standard sphere spectrum ≔  is a CW-spectrum and hence cofibrant, by prop.
2.12. Moreover, this implies by prop. 2.13 that left homotopies out of  are represented by
the standard sequential cylinder spectrum

∧ ( +) ≃ ( +) .

By theorem 3.11, fibrant replacement for  is provided by its spectrification  according to
def. 1.19.

So it follows that [ , ]
*
 is given by left homotopy classes of morphisms

= ⟶

in SeqSpec(Top ). By the ( ⊣ )-adjunction (prop. 1.10) these are equivalently morphisms

⟶ ( )

in Top * /. Hence equivalently morphisms

* ⟶ ( )

in Top , hence equivalently points in ( ) . Analogously, a left homotopy

( +) ⟶ ( )

in SeqSpec(Top ) is equivalently a path

⟶ ( )

in Top .

In conclusion this establishes an isomorphism

[ , ]
*
≃ (( ) )

with  of the 0-component of . With this the statement follows with example 1.18, since
 is an Omega-spectrum, by prop. 1.20.

From this the last statement follows from the identity

( − (−)) ≃ (−) .

  ▮

As a consequence:

Proposition 4.26. Let

⟶ ⟶
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be a homotopy cofiber sequence (def.) in the stable homotopy category (def. 4.1). Then
there is induced a long exact sequence of stable homotopy groups (def. 1.11) of the form

⋯⟶ •+ ( ) ⟶ •( ) ⟶* •( ) ⟶*
•( ) ⟶ •− ( ) ⟶ ⋯ .

Proof. Via lemmma 4.25 this is a special case of prop. 4.22.  ▮

As an example, we check explicitly what we already deduced abstractly in prop. 4.14, that in
the stable homotopy category wedge sum and Cartesian product of spectra agree and
constitute a biproduct/direct sum:

Example 4.27. For , ∈ SeqSpec(Top ), then the canonical morphism

∨ ⟶ ×

out of the coproduct (wedge sum, example 1.27) into the product (via prop. 1.25), given
by

↘ ↙

↓ ⊔ ↓

↙( , ) ( , ) ↘

↘( , ) ( , ) ↙

↓ × ↓

↙ ↘

represents an isomorphism in the stable homotopy category.

Proof. By prop. 2.16, we may represent both  and  by CW-spectra (def. 2.7) in
(SeqSpec(Top ) ) [ − ]. Then the canonical morphism

: ⟶ ∨

is a cofibration according to theorem 2.3, because + ⊔
∧

( ∨ ) ≃ + ∨ ∧ .

Hence its ordinary cofiber, which is , is its homotopy cofiber (def.), and so we have a
homotopy cofiber sequence

⟶ ∨ ⟶ .

Moreover, under forming stable homotopy groups (def. 1.11), the inclusion map evidently
gives an injection, and the projection map gives a surjection. Hence the long exact sequence
of stable homotopy groups from prop. 4.26 gives the short exact sequence

0 → •( ) ⟶ •( ∨ ) ⟶ •( ) → 0 .

Finally, due to the fact that the inclusion and projection for one of the two summands
constitute a retraction, this is a split exact sequence, hence exhibits an isomorphism

( ∨ ) ⟶≃ ( ) ⊕ ( ) ≃ ( ) × ( ) ≃ ( × )

for all . But this just says that ∨ → ×  is a stable weak homotopy equivalence.  ▮
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Final Remark 4.28. For a tower of fibrations of spectra, the long sequences of stable
homotopy groups associated with any (co-)fiber sequence of spectra, from prop. 4.26,
combine to an exact couple. The induced spectral sequence of a tower of fibrations is the
central tool of computation in stable homotopy theory.

We discuss how these spectral sequences arise in the section Interlude -- Spectral
sequences.

We discuss in detail the special case of the Adams spectral sequences in the section Part 2
-- Adams spectral sequences.

But for handling any of these spectral sequences it is convenient, or, in many cases,
necessary to have multiplicative structure available, induced from a symmetric monoidal
smash product of spectra. This we turn to in part 1.2 -- Structured spectra.

5. References

We give the modern picture of the stable homotopy category, for which a quick survey may
be found in

Cary Malkiewich, The stable homotopy category, 2014 (pdf).

A classical textbook on stable homotopy theory for “unstructured” spectra is

Frank Adams, part III sections 2, 4-7 of Stable homotopy and generalized homology,
Chicago Lectures in mathematics, 1974

For establishing the stable model structure on spectra we use the Bousfield-Friedlander
theorem as discussed in

Paul Goerss, Rick Jardine, section X.4 of Simplicial homotopy theory, (1996)

and as applied for general Omega-spectrification functors in

Stefan Schwede, Spectra in model categories and applications to the algebraic
cotangent complex, Journal of Pure and Applied Algebra 120 (1997) 77-104 (pdf)

For the discussion of the stability of the homotopy theory of sequential spectra we follow

John F. Jardine, sections 10.3 and 10.4 of Local homotopy theory, 2016

For the definition of triangulated categories and a discussion of various equivalent versions
of the octahedral axiom the following brief note is useful:

Andrew Hubery, Notes on the octahedral axiom, (pdf)

For the discussion of the triangulated structure of the stable homotopy category we follow

Stefan Schwede, section II.2 of Symmetric spectra, 2012 (pdf)
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nLab

Introduction to Stable homotopy theory -- 1-2

We give an introduction to the stable homotopy category and to its key computational tool, the Adams
spectral sequence. To that end we introduce the modern tools, such as model categories and highly
structured ring spectra. In the accompanying seminar we consider applications to cobordism theory and
complex oriented cohomology such as to converge in the end to a glimpse of the modern picture of
chromatic homotopy theory.

Lecture notes.

Main page: Introduction to Stable homotopy theory.

Previous section: Prelude -- Classical homotopy theory

This section: Part 1 -- Stable homotopy theory

Previous subsection: Part 1.1 -- Stable homotopy theory -- Sequential spectra

This subsection: Part 1.2 - Stable homotopy theory – Structured spectra

Next section: Part 2 -- Adams spectral sequences

Stable homotopy theory – Structured spectra
1. Categorical algebra

Monoidal topological categories

Algebras and modules

Topological ends and coends

Topological Day convolution

Functors with smash product

2. -Modules
Pre-Excisive functors

Symmetric and orthogonal spectra

As diagram spectra

Stable weak homotopy equivalences

Free spectra and Suspension spectra

3. The strict model structure on structured spectra
Topological enrichment

Monoidal model structure

Suspension and looping

4. The stable model structure on structured spectra
Proof of the model structure

Stability of the homotopy theory

Monoidal model structure

5. The monoidal stable homotopy category
Tensor triangulated structure

Homotopy ring spectra

6. Examples
Sphere spectrum

Eilenberg-MacLane spectra

Thom spectra

7. Conclusion

8. References

The key result of part 1.1 was (thm.) the construction of a stable homotopy theory of spectra, embodied by
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a stable model structure on topological sequential spectra SeqSpec(Top )  (thm.) with its corresponding

stable homotopy category Ho(Spectra), which stabilizes the canonical looping/suspension adjunction on
pointed topological spaces in that it fits into a diagram of (Quillen-)adjunctions of the form

(Top * /)
⟶

⟵ (Top * /)

↓ ⊣ ↑ ↓ ⊣ ↑

SeqSpec(Top ) ≃
⟶
⟵ SeqSpec(Top )

⟶

Ho(Top * /) ⊥⟶
⟵

Ho(Top * /)

↓ ⊣ ↑ ↓ ⊣ ↑

Ho(Spectra) ≃⟶
⟵ Ho(Spectra)

.

But fitting into such a diagram does not yet uniquely characterize the stable homotopy category. For
instance the trivial category on a single object would also form such a diagram. On the other hand, there is
more canonical structure on the category of pointed topological spaces which is not yet reflected here.

Namely the smash product

∧ : Ho(Top * /) ⟶ Ho(Top * /)

of pointed topological spaces gives it the structure of a monoidal category (def. 1.1 below), and so it is
natural to ask that the above stabilization diagram reflects and respects that extra structure. This means
that there should be a smash product of spectra

∧ : Ho(Spectra) ⟶ Ho(Spectra)

such that ( ⊣ ) is compatible, in that

( ∧ ) ≃ ( ) ∧ ( )

(a “strong monoidal functor”, def. 1.47 below).

We had already seen in part 1.1 that Ho(Spectra) is an additive category, where wedge sum of spectra is a
direct sum operation ⊕. We discuss here that the smash product of spectra is the corresponding operation
analogous to a tensor product of abelian groups.

abelian groups spectra
⊕ direct sum ∨ wedge sum

⊗ tensor product∧ smash product

This further strenghtens the statement that spectra are the analog in homotopy theory of abelian groups. In
particular, with respect to the smash product of spectra, the sphere spectrum becomes a ring spectrum that
is the coresponding analog of the ring of integers.

With the analog of the tensor product in hand, we may consider doing algebra – the theory of rings and
their modules – internal to spectra. This “higher algebra” accordingly is the theory of ring spectra and
module spectra.

algebra homological algebrahigher algebra
abelian group chain complex spectrum
ring dg-ring ring spectrum
module dg-module module spectrum

Where a ring is equivalently a monoid with respect to the tensor product of abelian groups, we are after a
corresponding tensor product of spectra. This is to be the smash product of spectra, induced by the smash
product on pointed topological spaces.

In particular the sphere spectrum becomes a ring spectrum with respect to this smash product and plays the
role analogous to the ring of integers in abelian groups

abelian groupsspectra
ℤ integers sphere spectrum

Using this structure there is finally a full characterization of stable homotopy theory, we state (without
proof) this Schwede-Shipley uniqueness as theorem 5.13 below.

There is a key point to be dealt with here: the smash product of spectra has to exhibit a certain graded
commutativity. Informally, there are two ways to see this:

First, we have seen above that under the Dold-Kan correspondence chain complexes yield examples of
spectra. But the tensor product of chain complexes is graded commutative.
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Second, more fundamentally, we see in the discussion of the Brown representability theorem (here) that
every (sequential) spectrum  induces a generalized homology theory given by the formula ↦ •( ∧ )
(where the smash product is just the degreewise smash of pointed objects). By the suspension isomorphism
this is such that for =  the n-sphere, then • ≥ ( ∧ ) ≃ • ≥ ( ). This means that instead of thinking of
a sequential spectrum (def.) as indexed on the natural numbers equipped with addition (ℕ, +), it may be
more natural to think of sequential spectra as indexed on the n-spheres equipped with their smash product
of pointed spaces ({ } , ∧ ).

Proposition 0.1. There are homeomorphisms between n-spheres and their smash products

, : ∧ ⟶≃ +

such that in Ho(Top) there are commuting diagrams like so:

( ∧ ) ∧ ⟶≃ ∧ ( ∧ )

, ∧
↓ ↓

∧ ,

+ ∧ ∧ +

+ ,
↘ ↙

, +

+ +

.

and

∧ →⎯⎯⎯⎯⎯
,

∧

, ↓ ↓ ,

+ →⎯⎯⎯⎯⎯⎯⎯
(− ) +

,

where here (−1) : →  denotes the homotopy class of a continuous function of degree
(−1) ∈ ℤ ≃ [ , ].

Proof. With the n-sphere  realized as the one-point compactification of the Cartesian space ℝ , then ,

is given by the identity on coordinates and the braiding homeomorphism

, : ∧ ⟶ ∧

is given by permuting the coordinates:

( ,⋯, , ,⋯, ) ↦ ( ,⋯, , ,⋯, ) .

This has degree (−1)  .  ▮

This phenomenon suggests that as we “categorify” the natural numbers to the n-spheres, hence the integers
to the sphere spectrum, and as we think of the th component space of a sequential spectrum as being the
value assigned to the n-sphere

≃ ( )

then there should be a possibly non-trivial action of the symmetric group  on , due to the fact that there
is such an action of  which is non-trivial according to prop. 0.1.

We discuss two ways of making this precise below in Symmetric and orthogonal spectra, and we discuss
how these are unified by a concept of module objects over a monoid object representing the sphere
spectrum below in S-modules.

The general abstract theory for handling this is monoidal and enriched category theory. We first develop the
relevant basics in Categorical algebra.

1. Categorical algebra

When defining a commutative ring as an abelian group  equipped with an associative, commutative and
untial bilinear pairing

⊗ℤ →⎯⎯⎯⎯⎯
(−)⋅ (−)

one evidently makes crucial use of the tensor product of abelian groups ⊗ℤ. That tensor product itself gives
the category Ab of all abelian groups a structure similar to that of a ring, namely it equips it with a pairing

Ab × Ab →⎯⎯⎯⎯⎯⎯⎯⎯
(−)⊗ℤ (−) Ab
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that is a functor out of the product category of Ab with itself, satisfying category-theoretic analogs of the
properties of associativity, commutativity and unitality.

One says that a ring  is a commutative monoid in the category Ab of abelian groups, and that this concept
makes sense since Ab itself is a symmetric monoidal category.

Now in stable homotopy theory, as we have seen above, the category Ab is improved to the stable
homotopy category Ho(Spectra) (def. \ref{TheStableHomotopyCategory}), or rather to any stable model
structure on spectra presenting it. Hence in order to correspondingly refine commutative monoids in Ab
(namely commutative rings) to commutative monoids in Ho(Spectra) (namely commutative ring spectra),
there needs to be a suitable symmetric monoidal category structure on the category of spectra. Its analog of
the tensor product of abelian groups is to be called the symmetric monoidal smash product of spectra. The
problem is how to construct it.

The theory for handling such a problem is categorical algebra. Here we discuss the minimum of categorical
algebra that will allow us to elegantly construct the symmetric monoidal smash product of spectra.

Monoidal topological categories

We want to lift the concepts of ring and module from abelian groups to spectra. This requires a general idea
of what it means to generalize these concepts at all. The abstract theory of such generalizations is that of
monoid in a monoidal category.

We recall the basic definitions of monoidal categories and of monoids and modules internal to monoidal
categories. We list archetypical examples at the end of this section, starting with example 1.9 below. These
examples are all fairly immediate. The point of the present discussion is to construct the non-trivial example
of Day convolution monoidal stuctures below.

Definition 1.1. A (pointed) topologically enriched monoidal category is a (pointed) topologically
enriched category  (def.) equipped with

a (pointed) topologically enriched functor (def.)

⊗ : × ⟶

out of the (pointed) topologival product category of  with itself (def. 1.26), called the tensor
product,

1. 

an object

1 ∈

called the unit object or tensor unit,

2. 

a natural isomorphism (def.)

: ((−) ⊗ (−))⊗ (−) ⟶≃ (−)⊗ ((−)⊗ (−))

called the associator,

3. 

a natural isomorphism

ℓ : (1⊗ (−)) ⟶≃ (−)

called the left unitor, and a natural isomorphism

: (−)⊗ 1⟶≃ (−)

called the right unitor,

4. 

such that the following two kinds of diagrams commute, for all objects involved:

triangle identity:

( ⊗ 1)⊗ →⎯⎯⎯⎯
, ,

⊗(1⊗ )

⊗ ↘ ↙ ⊗

⊗

1. 

the pentagon identity:2. 
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( ⊗ )⊗ ( ⊗ )

⊗ , , ↗ ↘ , , ⊗

(( ⊗ )⊗ )⊗ ( ⊗ ( ⊗ ( ⊗ )))

, , ⊗ ↓ ↑ ⊗ , ,

( ⊗ ( ⊗ ))⊗ →⎯⎯⎯⎯⎯⎯⎯
, ⊗ ,

⊗ (( ⊗ )⊗ )

Lemma 1.2. (Kelly 64)

Let ( , ⊗ , 1) be a monoidal category, def. 1.1. Then the left and right unitors ℓ and  satisfy the following
conditions:

ℓ = : 1⊗ 1⟶≃ 1;1. 

for all objects , ∈  the following diagrams commutes:

(1⊗ )⊗

, , ↓ ↘ℓ ⊗

1⊗ ( ⊗ ) →⎯⎯⎯⎯
ℓ ⊗

⊗

;

and

⊗ ( ⊗ 1)

, ,
−

↓ ↘ ⊗

( ⊗ )⊗ 1 →⎯⎯⎯⎯
⊗

⊗

;

2. 

For proof see at monoidal category this lemma and this lemma.

Remark 1.3. Just as for an associative algebra it is sufficient to demand 1 =  and 1 =  and ( ) = ( )
in order to have that expressions of arbitrary length may be re-bracketed at will, so there is a coherence
theorem for monoidal categories which states that all ways of freely composing the unitors and associators
in a monoidal category (def. 1.1) to go from one expression to another will coincide. Accordingly, much as
one may drop the notation for the bracketing in an associative algebra altogether, so one may, with due
care, reason about monoidal categories without always making all unitors and associators explicit.

(Here the qualifier “freely” means informally that we must not use any non-formal identification between
objects, and formally it means that the diagram in question must be in the image of a strong monoidal
functor from a free monoidal category. For example if in a particular monoidal category it so happens that
the object ⊗ ( ⊗ ) is actually equal to ( ⊗ )⊗ , then the various ways of going from one expression
to another using only associators and this equality no longer need to coincide.)

Definition 1.4. A (pointed) topological braided monoidal category, is a (pointed) topological monoidal
category  (def. 1.1) equipped with a natural isomorphism

, : ⊗ → ⊗

called the braiding, such that the following two kinds of diagrams commute for all objects involved
(“hexagon identities”):

( ⊗ )⊗ ⎯⎯⎯
, ,

⊗( ⊗ ) ⎯⎯⎯⎯
, ⊗

( ⊗ )⊗

↓ , ⊗ ↓ , ,

( ⊗ )⊗ ⎯⎯⎯
, ,

⊗( ⊗ ) ⎯⎯⎯⎯⎯
⊗ ,

⊗ ( ⊗ )

and

⊗ ( ⊗ ) ⎯⎯⎯
, ,
−

( ⊗ )⊗ ⎯⎯⎯⎯
⊗ ,

⊗ ( ⊗ )

↓ ⊗ , ↓ , ,
−

⊗ ( ⊗ ) ⎯⎯⎯
, ,
−

( ⊗ )⊗ ⎯⎯⎯⎯⎯
, ⊗

( ⊗ )⊗

,

where , , : ( ⊗ )⊗ → ⊗ ( ⊗ ) denotes the components of the associator of ⊗.

Definition 1.5. A (pointed) topological symmetric monoidal category is a (pointed) topological
braided monoidal category (def. 1.4) for which the braiding

, : ⊗ → ⊗
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satisfies the condition:

, ∘ , = 1 ⊗

for all objects ,

Remark 1.6. In analogy to the coherence theorem for monoidal categories (remark 1.3) there is a
coherence theorem for symmetric monoidal categories (def. 1.5), saying that every diagram built freely
(see remark 1.6) from associators, unitors and braidings such that both sides of the diagram correspond
to the same permutation of objects, coincide.

Definition 1.7. Given a (pointed) topological symmetric monoidal category  with tensor product ⊗ (def.
1.5) it is called a closed monoidal category if for each ∈  the functor ⊗ (−) ≃ (−)⊗  has a right
adjoint, denoted hom( , −)

⊥ →⎯⎯⎯⎯⎯⎯⎯
( , −)

←⎯⎯⎯⎯⎯⎯⎯
(−)⊗

,

hence if there are natural bijections

Hom ( ⊗ , ) ≃ Hom ( , hom( , ))

for all objects , ∈ .

Since for the case that = 1 is the tensor unit of  this means that

Hom (1, hom( , )) ≃ Hom ( , ) ,

the object hom( , ) ∈  is an enhancement of the ordinary hom-set Hom ( , ) to an object in .
Accordingly, it is also called the internal hom between  and .

In a closed monoidal category, the adjunction isomorphism between tensor product and internal hom even
holds internally:

Proposition 1.8. In a symmetric closed monoidal category (def. 1.7) there are natural isomorphisms

hom( ⊗ , ) ≃ hom( , hom( , ))

whose image under Hom (1, −) are the defining natural bijections of def. 1.7.

Proof. Let ∈  be any object. By applying the defining natural bijections twice, there are composite natural
bijections

Hom ( , hom( ⊗ , )) ≃ Hom ( ⊗ ( ⊗ ), )

≃ Hom (( ⊗ )⊗ , )

≃ Hom ( ⊗ , hom( , ))

≃ Hom ( , hom( , hom( , )))

.

Since this holds for all , the Yoneda lemma (the fully faithfulness of the Yoneda embedding) says that there
is an isomorphism hom( ⊗ , ) ≃ hom( , hom( , )). Moreover, by taking = 1 in the above and using the left
unitor isomorphisms ⊗( ⊗ ) ≃ ⊗  and ⊗ ≃  we get a commuting diagram

Hom (1, hom( ⊗ , )) ⟶≃ Hom (1, hom( , hom( , )))

≃ ↓ ↓≃

Hom ( ⊗ , ) ⟶≃ Hom ( , hom( , ))

.

  ▮

Example 1.9. The category Set of sets and functions between them, regarded as enriched in discrete
topological spaces, becomes a symmetric monoidal category according to def. 1.5 with tensor product the
Cartesian product × of sets. The associator, unitor and braiding isomorphism are the evident (almost
unnoticable but nevertheless nontrivial) canonical identifications.

Similarly the category Top  of compactly generated topological spaces (def.) becomes a symmetric

monoidal category with tensor product the corresponding Cartesian products, hence the operation of
forming k-ified (cor.) product topological spaces (exmpl.). The underlying functions of the associator,
unitor and braiding isomorphisms are just those of the underlying sets, as above.

Symmetric monoidal categories, such as these, for which the tensor product is the Cartesian product are
called Cartesian monoidal categories.
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Both examples are closed monoidal categories (def. 1.7), with internal hom the mapping spaces (prop.).

Example 1.10. The category Top * / of pointed compactly generated topological spaces with tensor product
the smash product ∧ (def.)

∧ ≔
×
∨

is a symmetric monoidal category (def. 1.5) with unit object the pointed 0-sphere .

The components of the associator, the unitors and the braiding are those of Top as in example 1.9,
descended to the quotient topological spaces which appear in the definition of the smash product. This
works for pointed compactly generated spaces (but not for general pointed topological spaces) by this
prop..

The category Top * / is also a closed monoidal category (def. 1.7), with internal hom the pointed mapping
space Maps(−, −)

*
 (exmpl.)

Example 1.11. The category Ab of abelian groups, regarded as enriched in discrete topological spaces,
becomes a symmetric monoidal category with tensor product the actual tensor product of abelian groups
⊗ℤ and with tensor unit the additive group ℤ of integers. Again the associator, unitor and braiding
isomorphism are the evident ones coming from the underlying sets, as in example 1.9.

This is a closed monoidal category with internal hom hom( , ) being the set of homomorphisms
Hom ( , ) equipped with the pointwise group structure for , ∈ Hom ( , ) then

( + )( ) ≔ ( ) + ( ) ∈ .

This is the archetypical case that motivates the notation “⊗” for the pairing operation in a monoidal
category:

Example 1.12. The category category of chain complexes Ch•, equipped with the tensor product of chain
complexes is a symmetric monoidal category (def. 1.5).

In this case the braiding has a genuinely non-trivial aspect to it, beyond just the swapping of coordinates
as in examples 1.9, 1.10 and def. 1.11, namely for , ∈ Ch• then

( ⊗ ) = ⊗
+ =

⊗ℤ

and in these components the braiding isomorphism is that of Ab, but with a minus sign thrown in whener
two odd-graded components are commuted.

This is a first shadow of the graded-commutativity that also exhibited by spectra.

(e.g. Hovey 99, prop. 4.2.13)

Algebras and modules

Definition 1.13. Given a (pointed) topological monoidal category ( , ⊗ , 1), then a monoid internal to
( , ⊗ , 1) is

an object ∈ ;1. 

a morphism : 1 ⟶  (called the unit)2. 

a morphism : ⊗ ⟶  (called the product);3. 

such that

(associativity) the following diagram commutes

( ⊗ )⊗ →⎯⎯⎯⎯
≃

, ,
⊗ ( ⊗ ) →⎯⎯⎯⎯

⊗
⊗

⊗ ↓ ↓

⊗ ⟶ ⟶

,

where  is the associator isomorphism of ;

1. 

(unitality) the following diagram commutes:2. 
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1⊗ →⎯⎯⎯⎯
⊗

⊗ ←⎯⎯⎯⎯
⊗

⊗1

ℓ ↘ ↓ ↙ ,

where ℓ and  are the left and right unitor isomorphisms of .

Moreover, if ( , ⊗ , 1) has the structure of a symmetric monoidal category (def. 1.5) ( , ⊗ , 1, ) with
symmetric braiding , then a monoid ( , , ) as above is called a commutative monoid in ( , ⊗ , 1, ) if in
addition

(commutativity) the following diagram commutes

⊗ →⎯⎯⎯
≃

,
⊗

↘ ↙ .

A homomorphism of monoids ( , , ) ⟶ ( , , ) is a morphism

: ⟶

in , such that the following two diagrams commute

⊗ →⎯⎯⎯
⊗

⊗

↓ ↓

⟶

and

1 ⟶

↘ ↓ .

Write Mon( , ⊗ , 1) for the category of monoids in , and CMon( , ⊗ , 1) for its subcategory of
commutative monoids.

Example 1.14. Given a (pointed) topological monoidal category ( , ⊗ , 1), then the tensor unit 1 is a monoid
in  (def. 1.13) with product given by either the left or right unitor

ℓ = : 1⊗ 1⟶≃ 1 .

By lemma 1.2, these two morphisms coincide and define an associative product with unit the identity
id :1 → 1.

If ( , ⊗ , 1) is a symmetric monoidal category (def. 1.5), then this monoid is a commutative monoid.

Example 1.15. Given a symmetric monoidal category ( , ⊗ , 1) (def. 1.5), and given two commutative
monoids ( , , ) ∈ {1, 2} (def. 1.13), then the tensor product ⊗  becomes itself a commutative

monoid with unit morphism

: 1 ⟶≃ 1⊗ 1 →⎯⎯⎯⎯⎯
⊗

⊗

(where the first isomorphism is, ℓ− = −  (lemma 1.2)) and with product morphism given by

⊗ ⊗ ⊗ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
⊗ , ⊗

⊗ ⊗ ⊗ →⎯⎯⎯⎯⎯
⊗

⊗

(where we are notationally suppressing the associators and where  denotes the braiding of ).

That this definition indeed satisfies associativity and commutativity follows from the corresponding
properties of ( , , ), and from the hexagon identities for the braiding (def. 1.4) and from symmetry of

the braiding.

Similarly one checks that for = =  then the unit maps

≃ ⊗ 1 →⎯⎯⎯⎯
⊗

⊗

≃ 1⊗ →⎯⎯⎯
⊗

⊗

and the product map
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: ⊗ ⟶

and the braiding

, : ⊗ ⟶ ⊗

are monoid homomorphisms, with ⊗  equipped with the above monoid structure.

Definition 1.16. Given a (pointed) topological monoidal category ( , ⊗ , 1) (def. 1.1), and given ( , , ) a
monoid in ( , ⊗ , 1) (def. 1.13), then a left module object in ( , ⊗ , 1) over ( , , ) is

an object ∈ ;1. 

a morphism : ⊗ ⟶  (called the action);2. 

such that

(unitality) the following diagram commutes:

1⊗ →⎯⎯⎯⎯
⊗

⊗

ℓ ↘ ↓ ,

where ℓ is the left unitor isomorphism of .

1. 

(action property) the following diagram commutes

( ⊗ )⊗ →⎯⎯⎯⎯⎯
≃

, ,
⊗ ( ⊗ ) →⎯⎯⎯

⊗
⊗

⊗ ↓ ↓

⊗ ⟶ ⟶

,

2. 

A homomorphism of left -module objects

( , ) ⟶ ( , )

is a morphism

: ⟶

in , such that the following diagram commutes:

⊗ →⎯⎯⎯
⊗

⊗

↓ ↓

⟶

.

For the resulting category of modules of left -modules in  with -module homomorphisms between
them, we write

Mod( ) .

This is naturally a (pointed) topologically enriched category itself.

Example 1.17. Given a monoidal category ( , ⊗ , 1) (def. 1.1) with the tensor unit 1 regarded as a monoid
in a monoidal category via example 1.14, then the left unitor

ℓ : 1⊗ ⟶

makes every object ∈  into a left module, according to def. 1.16, over . The action property holds due
to lemma 1.2. This gives an equivalence of categories

≃ 1Mod( )

of  with the category of modules over its tensor unit.

Example 1.18. The archetypical case in which all these abstract concepts reduce to the basic familiar ones
is the symmetric monoidal category Ab of abelian groups from example 1.11.

A monoid in (Ab, ⊗ℤ , ℤ) (def. 1.13) is equivalently a ring.1. 

A commutative monoid in in (Ab, ⊗ℤ , ℤ) (def. 1.13) is equivalently a commutative ring .2. 
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An -module object in (Ab, ⊗ℤ , ℤ) (def. 1.16) is equivalently an -module;3. 

The tensor product of -module objects (def. 1.21) is the standard tensor product of modules.4. 

The category of module objects Mod(Ab) (def. 1.21) is the standard category of modules Mod.5. 

Example 1.19. Closely related to the example 1.18, but closer to the structure we will see below for
spectra, are monoids in the category of chain complexes (Ch• , ⊗ , ℤ) from example 1.12. These monoids
are equivalently differential graded algebras.

Proposition 1.20. In the situation of def. 1.16, the monoid ( , , ) canonically becomes a left module over
itself by setting ≔ . More generally, for ∈  any object, then ⊗  naturally becomes a left -module
by setting:

: ⊗ ( ⊗ ) →⎯⎯⎯⎯
≃

, ,
−

( ⊗ )⊗ →⎯⎯⎯⎯
⊗

⊗ .

The -modules of this form are called free modules.

The free functor  constructing free -modules is left adjoint to the forgetful functor  which sends a
module ( , ) to the underlying object ( , ) ≔ .

Mod( ) ⊥⟶
⟵

.

Proof. A homomorphism out of a free -module is a morphism in  of the form

: ⊗ ⟶

fitting into the diagram (where we are notationally suppressing the associator)

⊗ ⊗ →⎯⎯⎯
⊗

⊗

⊗ ↓ ↓

⊗ ⟶

.

Consider the composite

˜ : ⟶
≃

ℓ
1⊗ →⎯⎯⎯⎯

⊗
⊗ ⟶ ,

i.e. the restriction of  to the unit “in” . By definition, this fits into a commuting square of the form (where
we are now notationally suppressing the associator and the unitor)

⊗ →⎯⎯⎯⎯
⊗ ˜

⊗

⊗ ⊗ ↓ ↓=

⊗ ⊗ →⎯⎯⎯⎯
⊗

⊗

.

Pasting this square onto the top of the previous one yields

⊗ →⎯⎯⎯⎯
⊗ ˜

⊗

⊗ ⊗ ↓ ↓=

⊗ ⊗ →⎯⎯⎯
⊗

⊗

⊗ ↓ ↓

⊗ ⟶

,

where now the left vertical composite is the identity, by the unit law in . This shows that  is uniquely
determined by ˜  via the relation

= ∘ (id ⊗ ˜) .

This natural bijection between  and ˜  establishes the adjunction.  ▮

Definition 1.21. Given a (pointed) topological closed symmetric monoidal category ( , ⊗ , 1) (def. 1.5, def.
1.7), given ( , , ) a commutative monoid in ( , ⊗ , 1) (def. 1.13), and given ( , ) and ( , ) two left

-module objects (def.1.13), then

the tensor product of modules ⊗  is, if it exists, the coequalizer1. 
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⊗ ⊗ →⎯⎯⎯⎯⎯
∘( , ⊗ )

→⎯⎯⎯⎯⎯
⊗

⊗ →⎯⎯⎯ ⊗

and if ⊗ (−) preserves these coequalizers, then this is equipped with the left -action induced from
the left -action on 

the function module hom ( , ) is, if it exists, the equalizer

hom ( , ) →⎯⎯ hom( , ) →⎯⎯⎯⎯⎯⎯⎯⎯
( ⊗ , )∘( ⊗(−))

→⎯⎯⎯⎯⎯⎯⎯⎯
( , )

hom( ⊗ , ) .

equipped with the left -action that is induced by the left -action on  via

⊗hom( , ) ⟶ hom( , )

⊗ hom( , ) ⊗ →⎯⎯⎯⎯⎯
⊗

⊗ ⟶
.

2. 

(e.g. Hovey-Shipley-Smith 00, lemma 2.2.2 and lemma 2.2.8)

Proposition 1.22. Given a (pointed) topological closed symmetric monoidal category ( , ⊗ , 1) (def. 1.5,
def. 1.7), and given ( , , ) a commutative monoid in ( , ⊗ , 1) (def. 1.13). If all coequalizers exist in ,
then the tensor product of modules ⊗  from def. 1.21 makes the category of modules Mod( ) into a
symmetric monoidal category, ( Mod, ⊗ , ) with tensor unit the object  itself, regarded as an -module
via prop. 1.20.

If moreover all equalizers exist, then this is a closed monoidal category (def. 1.7) with internal hom given
by the function modules hom  of def. 1.21.

(e.g. Hovey-Shipley-Smith 00, lemma 2.2.2, lemma 2.2.8)

Proof sketch. The associators and braiding for ⊗  are induced directly from those of ⊗ and the universal
property of coequalizers. That  is the tensor unit for ⊗  follows with the same kind of argument that we
give in the proof of example 1.23 below.  ▮

Example 1.23. For ( , , ) a monoid (def. 1.13) in a symmetric monoidal category ( , ⊗ , 1) (def. 1.1), the
tensor product of modules (def. 1.21) of two free modules (def. 1.20) ⊗  and ⊗  always exists and
is the free module over the tensor product in  of the two generators:

( ⊗ )⊗ ( ⊗ ) ≃ ⊗ ( ⊗ ) .

Hence if  has all coequalizers, so that the category of modules is a monoidal category ( Mod, ⊗ , )

(prop. 1.22) then the free module functor (def. 1.20) is a strong monoidal functor (def. 1.47)

: ( , ⊗ , 1) ⟶ ( Mod, ⊗ , ) .

Proof. It is sufficient to show that the diagram

⊗ ⊗ →⎯⎯⎯⎯⎯
⊗

→⎯⎯⎯⎯⎯
⊗

⊗ ⟶

is a coequalizer diagram (we are notationally suppressing the associators), hence that ⊗ ≃ , hence
that the claim holds for = 1 and = 1.

To that end, we check the universal property of the coequalizer:

First observe that  indeed coequalizes id ⊗  with ⊗ id, since this is just the associativity clause in def.
1.13. So for : ⊗ ⟶  any other morphism with this property, we need to show that there is a unique
morphism : ⟶  which makes this diagram commute:

⊗ ⟶

↓ ↙ .

We claim that

: →⎯⎯
≃

−

⊗1 →⎯⎯⎯⎯
⊗

⊗ ⟶ ,

where the first morphism is the inverse of the right unitor of .

First to see that this does make the required triangle commute, consider the following pasting composite of

Introduction to Stable homotopy theory -- 1-2 in nLab https://ncatlab.org/nlab/print/Introduction+to+Stable+homotopy+theor...

11 of 75 09.05.17, 15:55



commuting diagrams

⊗ ⟶

≃
⊗ −

↓ ↓≃
−

⊗ ⊗1 →⎯⎯⎯⎯
⊗

⊗1

⊗ ↓ ↓ ⊗

⊗ ⊗ →⎯⎯⎯⎯
⊗

⊗

⊗ ↓ ↓

⊗ ⟶

.

Here the the top square is the naturality of the right unitor, the middle square commutes by the functoriality
of the tensor product ⊗ : × ⟶  and the definition of the product category (def. 1.26), while the
commutativity of the bottom square is the assumption that  coequalizes id ⊗  with ⊗ id.

Here the right vertical composite is , while, by unitality of ( , , ), the left vertical composite is the identity
on , Hence the diagram says that ∘ = , which we needed to show.

It remains to see that  is the unique morphism with this property for given . For that let : →  be any
other morphism with ∘ = . Then consider the commuting diagram

⊗1 ⟵≃

⊗ ↓ ↘≃ ↓=

⊗ ⟶

↓ ↙

,

where the top left triangle is the unitality condition and the two isomorphisms are the right unitor and its
inverse. The commutativity of this diagram says that = .  ▮

Definition 1.24. Given a monoidal category of modules ( Mod, ⊗ , ) as in prop. 1.22, then a monoid
( , , ) in ( Mod, ⊗ , ) (def. 1.13) is called an -algebra.

Propposition 1.25. Given a monoidal category of modules ( Mod, ⊗ , ) in a monoidal category ( , ⊗ , 1)

as in prop. 1.22, and an -algebra ( , , ) (def. 1.24), then there is an equivalence of categories

Alg ( ) ≔ CMon( Mod) ≃ CMon( ) /

between the category of commutative monoids in Mod and the coslice category of commutative monoids
in  under , hence between commutative -algebras in  and commutative monoids  in  that are
equipped with a homomorphism of monoids ⟶ .

(e.g. EKMM 97, VII lemma 1.3)

Proof. In one direction, consider a -algebra  with unit : ⟶  and product / : ⊗ ⟶ . There is

the underlying product 

⊗ ⊗ →⎯⎯⎯⎯
→⎯⎯⎯⎯

⊗ →⎯⎯⎯ ⊗

↘ ↓ / .

By considering a diagram of such coequalizer diagrams with middle vertical morphism ∘ , one find that
this is a unit for  and that ( , , ∘ ) is a commutative monoid in ( , ⊗ , 1).

Then consider the two conditions on the unit : ⟶ . First of all this is an -module homomorphism, which
means that

( ⋆ )

⊗ →⎯⎯⎯⎯⎯
⊗

⊗

↓ ↓

⟶

commutes. Moreover it satisfies the unit property
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⊗ →⎯⎯⎯⎯⎯
⊗

⊗

≃ ↘ ↓ / .

By forgetting the tensor product over , the latter gives

⊗ →⎯⎯⎯⎯
⊗

⊗

↓ ↓

⊗ →⎯⎯⎯⎯⎯
⊗

⊗

≃ ↓ ↓ /

=

≃

⊗ →⎯⎯⎯⎯⎯
⊗

⊗

↓ ↓

⟶

,

where the top vertical morphisms on the left the canonical coequalizers, which identifies the vertical
composites on the right as shown. Hence this may be pasted to the square ( ⋆ ) above, to yield a commuting
square

⊗ →⎯⎯⎯⎯⎯
⊗

⊗ →⎯⎯⎯⎯⎯
⊗

⊗

↓ ↓ ↓

⟶ ⟶

=

⊗ →⎯⎯⎯⎯⎯
⊗

⊗

↓ ↓

⟶

.

This shows that the unit  is a homomorphism of monoids ( , , ) ⟶ ( , , ∘ ).

Now for the converse direction, assume that ( , , ) and ( , , ′ ) are two commutative monoids in

( , ⊗ , 1) with : →  a monoid homomorphism. Then  inherits a left -module structure by

: ⊗ →⎯⎯⎯⎯⎯
⊗

⊗ ⟶ .

By commutativity and associativity it follows that  coequalizes the two induced morphisms

⊗ ⊗ →⎯⎯
→⎯⎯

⊗ . Hence the universal property of the coequalizer gives a factorization through some

/ : ⊗ ⟶ . This shows that ( , / , ) is a commutative -algebra.

Finally one checks that these two constructions are inverses to each other, up to isomorphism.  ▮

Topological ends and coends

For working with pointed topologically enriched functors, a certain shape of limits/colimits is particularly
relevant: these are called (pointed topological enriched) ends and coends. We here introduce these and then
derive some of their basic properties, such as notably the expression for topological left Kan extension in
terms of coends (prop. 1.38 below). Further below it is via left Kan extension along the ordinary smash
product of pointed topological spaces (“Day convolution”) that the symmetric monoidal smash product of
spectra is induced.

Definition 1.26. Let ,  be pointed topologically enriched categories (def.), i.e. enriched categories over
(Top * / , ∧ , ) from example 1.10.

The pointed topologically enriched opposite category  is the topologically enriched category
with the same objects as , with hom-spaces

( , ) ≔ ( , )

and with composition given by braiding followed by the composition in :

( , ) ∧ ( , ) = ( , ) ∧ ( , ) ⟶
≃

( , ) ∧ ( , ) →⎯⎯⎯⎯
∘ , ,

( , ) = ( , ) .

1. 

the pointed topological product category ×  is the topologically enriched category whose
objects are pairs of objects ( , ) with ∈  and ∈ , whose hom-spaces are the smash product of
the separate hom-spaces

( × )(( , ), ( , )) ≔ ( , ) ∧ ( , )

and whose composition operation is the braiding followed by the smash product of the separate
composition operations:

2. 
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( × )(( , ), ( , )) ∧ ( × )(( , ), ( , ))
= ↓

( ( , ) ∧ ( , )) ∧ ( ( , ) ∧ ( , ))

↓≃

( ( , ) ∧ ( , )) ∧ ( ( , ) ∧ ( , )) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( ∘ , , )∧( ∘ , , )

( , ) ∧ ( , )

↓=

( × )(( , ), ( , ))

.

Example 1.27. A pointed topologically enriched functor (def.) into Top * / (exmpl.) out of a pointed
topological product category as in def. 1.26

: × ⟶ Top * /

(a “pointed topological bifunctor”) has component maps of the form

( , ),( , ) : ( , ) ∧ ( , ) ⟶ Maps( (( , )), (( , )))
*
.

By functoriality and under passing to adjuncts (cor.) this is equivalent to two commuting actions

, ( ) : ( , ) ∧ (( , )) ⟶ (( , ))

and

, ( ) : ( , ) ∧ (( , )) ⟶ (( , )) .

In the special case of a functor out of the product category of some  with its opposite category (def.
1.26)

: × ⟶ Top * /

then this takes the form of a “pullback action” in the first variable

, ( ) : ( , ) ∧ (( , )) ⟶ (( , ))

and a “pushforward action” in the second variable

, ( ) : ( , ) ∧ (( , )) ⟶ (( , )) .

Definition 1.28. Let  be a small pointed topologically enriched category (def.), i.e. an enriched category
over (Top * / , ∧ , ) from example 1.10. Let

: × ⟶ Top * /

be a pointed topologically enriched functor (def.) out of the pointed topological product category of  with
its opposite category, according to def. 1.26.

The coend of , denoted ∫
∈

( , ), is the coequalizer in Top*  (prop., exmpl., prop., cor.) of the two

actions encoded in  via example 1.27:

, ∈

( , ) ∧ ( , ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
⊔
, ( , )( )

→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
⊔
, ( , )( )

∈

( , ) →⎯⎯⎯

∈

( , ) .

1. 

The end of , denoted ∫
∈

( , ), is the equalizer in Top * / (prop., exmpl., prop., cor.) of the adjuncts

of the two actions encoded in  via example 1.27:

∈

( , ) →⎯⎯⎯⎯
∈

( , ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
⊔
,

˜ ( , )( )

→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
⊔
,

˜ , ( )

∈

Maps( ( , ), ( , ))
*
.

2. 

Example 1.29. Let  be a topological group. Write ( +) for the pointed topologically enriched category
that has a single object *, whose single hom-space is + (  with a basepoint freely adjoined (def.))

( +)( * , * ) ≔ +

and whose composition operation is the product operation (−) ⋅ (−) in  under adjoining basepoints
(exmpl.)
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+ ∧ + ≃ ( × )+ →⎯⎯⎯⎯⎯⎯⎯⎯
((−)⋅ (−))+

+ .

Then a topologically enriched functor

( , ) : ( +) ⟶ Top * /

is a pointed topological space ≔ (* ) equipped with a continuous function

: + ∧ ⟶

satisfying the action property. Hence this is equivalently a continuous and basepoint-preserving left action
(non-linear representation) of  on .

The opposite category (def. 1.26) ( ( +))  comes from the opposite group

( ( +)) = ( + ) .

(The canonical continuous isomorphism ≃  induces a canonical euqivalence of topologically enriched
categories ( ( +)) ≃ ( +).)

So a topologically enriched functor

( , ) : ( ( +)) ⟶ Top*

is equivalently a basepoint preserving continuous right action of .

Therefore the coend of two such functors (def. 1.28) coequalizes the relation

( , ) ∼ ( , )

(where juxtaposition denotes left/right action) and hence is equivalently the canonical smash product of a
right -action with a left -action, hence the quotient of the plain smash product by the diagonal action of
the group :

* ∈ ( +)

( , )( * ) ∧ ( , )( * ) ≃ ∧ .

Example 1.30. Let  be a small pointed topologically enriched category (def.). For , : ⟶ Top * / two
pointed topologically enriched functors, then the end (def. 1.28) of Maps( (−), (−))

*
 is a topological space

whose underlying pointed set is the pointed set of natural transformations →  (def.):

∈

Maps( ( ), ( ))
*

≃ Hom
[ , * /]

( , ) .

Proof. The underlying pointed set functor :Top * / → Set * / preserves all limits (prop., prop., prop.). Therefore

there is an equalizer diagram in Set * / of the form

∈

Maps( ( ), ( ))
*

→⎯⎯
∈

Hom * /( ( ), ( )) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
⊔
,

( ˜ ( , )( ))

→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
⊔
,

( ˜ , ( ))

, ∈

Hom * /( ( , ), Maps( ( ), ( ))
*
) .

Here the object in the middle is just the set of collections of component morphisms ( ) → ( )
∈

. The two

parallel maps in the equalizer diagram take such a collection to the functions which send any →  to the
result of precomposing

( )

( ) ↓

( ) ⟶ ( )

and of postcomposing

( ) ⟶ ( )

↓ ( )

( )

each component in such a collection, respectively. These two functions being equal, hence the collection
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{ } ∈  being in the equalizer, means precisley that for all ,  and all : →  the square

( ) ⟶ ( )

( ) ↓ ↓ ( )

( ) ⟶ ( )

is a commuting square. This is precisley the condition that the collection { } ∈  be a natural

transformation.  ▮

Conversely, example 1.30 says that ends over bifunctors of the form Maps( (−), (−)))
*
 constitute

hom-spaces between pointed topologically enriched functors:

Definition 1.31. Let  be a small pointed topologically enriched category (def.). Define the structure of a
pointed topologically enriched category on the category [ , Top * /] of pointed topologically enriched functors

to Top * / (exmpl.) by taking the hom-spaces to be given by the ends (def. 1.28) of example 1.30:

[ , Top * /]( , ) ≔

∈

Maps( ( ), ( ))
*

The composition operation on these is defined to be the one induced by the composite maps

∈

Maps( ( ), ( ))
*
∧

∈

Maps( ( ), ( ))
*
⟶

∈

Maps( ( ), ( ))
*
∧ Maps( ( ), ( ))

*
→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

( ∘ ( ), ( ), ( ) ) ∈

∈

Maps( ( ), (

where the first, morphism is degreewise given by projection out of the limits that defined the ends. This
composite evidently equalizes the two relevant adjunct actions (as in the proof of example 1.30) and
hence defines a map into the end

∈

Maps( ( ), ( ))
*
∧

∈

Maps( ( ), ( ))
*
⟶

∈

Maps( ( ), ( ))
*
.

The resulting pointed topologically enriched category [ , Top * /] is also called the Top * /-enriched functor

category over  with coefficients in Top * /.

This yields an equivalent formulation in terms of ends of the pointed topologically enriched Yoneda lemma
(prop.):

Proposition 1.32. (topologically enriched Yoneda lemma)

Let  be a small pointed topologically enriched categories (def.). For : → Top * / a pointed topologically
enriched functor (def.) and for ∈  an object, there is a natural isomorphism

[ , Top * /]( ( , −), ) ≃ ( )

between the hom-space of the pointed topological functor category, according to def. 1.31, from the
functor represented by  to , and the value of  on .

In terms of the ends (def. 1.28) defining these hom-spaces, this means that

∈

Maps( ( , ), ( ))
*
≃ ( ) .

In this form the statement is also known as Yoneda reduction.

The proof of prop. 1.32 is formally dual to the proof of the next prop. 1.33.

Now that natural transformations are expressed in terms of ends (example 1.30), as is the Yoneda lemma
(prop. 1.32), it is natural to consider the dual statement involving coends:

Proposition 1.33. (co-Yoneda lemma)

Let  be a small pointed topologically enriched category (def.). For : → Top * / a pointed topologically
enriched functor (def.) and for ∈  an object, there is a natural isomorphism
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(−) ≃

∈

( , −) ∧ ( ) .

Moreover, the morphism that hence exhibits ( ) as the coequalizer of the two morphisms in def. 1.28 is
componentwise the canonical action

( , ) ∧ ( ) ⟶ ( )

which is adjunct to the component map ( , ) → Maps( ( ), ( ))
*
 of the topologically enriched functor .

(e.g. MMSS 00, lemma 1.6)

Proof. The coequalizer of pointed topological spaces that we need to consider has underlying it a
coequalizer of underlying pointed sets (prop., prop., prop.). That in turn is the colimit over the diagram of
underlying sets with the basepointe adjoined to the diagram (prop.). For a coequalizer diagram adding that
extra point to the diagram clearly does not change the colimit, and so we need to consider the plain
coequalizer of sets.

That is just the set of equivalence classes of pairs

( → , ) ∈ ( , ) ∧ ( ) ,

where two such pairs

( → , ∈ ( )) , ( → , ∈ ( ))

are regarded as equivalent if there exists

→

such that

= ∘ , and = ( ) .

(Because then the two pairs are the two images of the pair ( , ) under the two morphisms being
coequalized.)

But now considering the case that =  and = id , so that =  shows that any pair

( → , ∈ ( ))

is identified, in the coequalizer, with the pair

(id , ( ) ∈ ( )) ,

hence with ( ) ∈ ( ).

This shows the claim at the level of the underlying sets. To conclude it is now sufficient (prop.) to show that
the topology on ( ) ∈ Top * / is the final topology (def.) of the system of component morphisms

( , ) ∧ ( ) ⟶ ( , ) ∧ ( )

which we just found. But that system includes

( , ) ∧ ( ) ⟶ ( )

which is a retraction

id : ( ) ⟶ ( , ) ∧ ( ) ⟶ ( )

and so if all the preimages of a given subset of the coequalizer under these component maps is open, it
must have already been open in ( ).  ▮

Remark 1.34. The statement of the co-Yoneda lemma in prop. 1.33 is a kind of categorification of the
following statement in analysis (whence the notation with the integral signs):

For  a topological space, : → ℝ a continuous function and (−, ) denoting the Dirac distribution, then

∈

( , ) ( ) = ( ) .
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It is this analogy that gives the name to the following statement:

Proposition 1.35. (Fubini theorem for (co)-ends)

For  a pointed topologically enriched bifunctor on a small pointed topological product category ×
(def. 1.26), i.e.

: ( × ) × ( × ) ⟶ Top * /

then its end and coend (def. 1.28) is equivalently formed consecutively over each variable, in either order:

( , )

(( , ), ( , )) ≃ (( , ), ( , )) ≃ (( , ), ( , ))

and

( , )

(( , ), ( , )) ≃ (( , ), ( , )) ≃ (( , ), ( , )) .

Proof. Because limits commute with limits, and colimits commute with colimits.  ▮

Remark 1.36. Since the pointed compactly generated mapping space functor (exmpl.)

Maps(−, −)
*
: Top * / × Top * / ⟶Top * /

takes colimits in the first argument and limits in the second argument to limits (cor.), it in particular takes
coends in the first argument and ends in the second argument, to ends (def. 1.28):

Maps( , ( , ))
*
≃ Maps( , ( , )

*
)

and

Maps( ( , ), )
*
≃ Maps( ( , ), )

*
.

With this coend calculus in hand, there is an elegant proof of the defining universal property of the smash
tensoring of topologically enriched functors [ , Top* ] (def.)

Proposition 1.37. For  a pointed topologically enriched category, there are natural isomorphisms

[ , Top * /]( ∧ , ) ≃ Maps( , [ , Top * /]( , ))
*

and

[ , Top * /]( , Maps( , )
*
) ≃ Maps( , [ , Top * /]( , ))

for all , ∈ [ , Top * /] and all ∈ Top * /.

In particular there is the combined natural isomorphism

[ , Top * /]( ∧ , ) ≃ [ , Top * /]( , Maps( , )
*
)

exhibiting a pair of adjoint functors

[ , Top * /] ⊥ →⎯⎯⎯⎯⎯⎯⎯⎯
( , −)

*

←⎯⎯⎯⎯⎯⎯⎯⎯
(−)∧

[ , Top* ] .

Proof. Via the end-expression for [ , Top * /](−, −) from def. 1.31 and the fact (remark 1.36) that the pointed
mapping space construction Maps(−, −)

*
 preserves ends in the second variable, this reduces to the fact that

Maps(−, −)
*
 is the internal hom in the closed monoidal category Top * / (example 1.10) and hence satisfies the

internal tensor/hom-adjunction isomorphism (prop. 1.8):
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[ , Top * /]( ∧ , ) = ∫Maps(( ∧ )( ), ( ))
*

≃ ∫Maps( ( ) ∧ , ( ))
*

≃ ∫Maps( ,Maps( ( ), ( ))
*
)
*

≃ Maps( , ∫Maps( ( ), ( )))
*

= Maps( , [ , Top * /]( , ))
*

and

[ , Top * /]( , Maps( , )
*
) = ∫Maps( ( ), (Maps( , )

*
)( ))

*

≃ ∫Maps( ( ),Maps( , ( ))
*
)
*

≃ ∫Maps( ( ) ∧ , ( ))
*

≃ ∫Maps( ,Maps( ( ), ( ))
*
)
*

≃ Maps( , ∫Maps( ( ), ( ))
*
)
*

≃ Maps( , [ , Top * /]( , ))
*
.

  ▮

Proposition 1.38. (left Kan extension via coends)

Let ,  be small pointed topologically enriched categories (def.) and let

: ⟶

be a pointed topologically enriched functor (def.). Then precomposition with  constitutes a functor

* : [ , Top * /] ⟶ [ , Top * /]

↦ ∘ . This functor has a left adjoint Lan , called left Kan extension along 

[ , Top * /] ⊥→⎯⎯⎯
*

←⎯⎯⎯
[ , Top * /]

which is given objectwise by a coend (def. 1.28):

(Lan ) : ↦

∈

( ( ), ) ∧ ( ) .

Proof. Use the expression of natural transformations in terms of ends (example 1.30 and def. 1.31), then
use the respect of Maps(−, −)

*
 for ends/coends (remark 1.36), use the smash/mapping space adjunction

(cor.), use the Fubini theorem (prop. 1.35) and finally use Yoneda reduction (prop. 1.32) to obtain a
sequence of natural isomorphisms as follows:

[ , Top * /](Lan , ) = ∫
∈
Maps((Lan )( ), ( ))

*

= ∫
∈
Maps ∫

∈

( ( ), ) ∧ ( ), ( )
*

≃ ∫
∈

∫
∈
Maps( ( ( ), ) ∧ ( ) , ( ))

*

≃ ∫
∈

∫
∈
Maps( ( ),Maps( ( ( ), ), ( ))

*
)
*

≃ ∫
∈
Maps( ( ), ∫

∈
Maps( ( ( ), ), ( ))

*
)
*

≃ ∫
∈
Maps( ( ), ( ( )))

*

= [ , Top * /]( , * )

.

  ▮

Topological Day convolution

Given two functions , : ⟶ ℂ on a group (or just a monoid) , then their convolution product is,
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whenever well defined, given by the sum

⋆ : ↦
⋅ =

( ) ⋅ ( ) .

The operation of Day convolution is the categorification of this situation where functions are replaced by
functors and monoids by monoidal categories. Further below we find the symmetric monoidal smash product
of spectra as the Day convolution of topologically enriched functors over the monoidal category of finite
pointed CW-complexes, or over sufficiently rich subcategories thereof.

Definition 1.39. Let ( , ⊗ , 1) be a small pointed topological monoidal category (def. 1.1).

Then the Day convolution tensor product on the pointed topological enriched functor category [ , Top * /]

(def. 1.31) is the functor

⊗ : [ , Top * /] × [ , Top * /] ⟶ [ , Top * /]

out of the pointed topological product category (def. 1.26) given by the following coend (def. 1.28)

⊗ : ↦

( , )∈ ×

( ⊗ , ) ∧ ( ) ∧ ( ) .

Example 1.40. Let Seq denote the category with objects the natural numbers, and only the zero morphisms
and identity morphisms on these objects (we consider this in a braoder context below in def. 2.4):

Seq( , ) ≔
if =

* otherwise
.

Regard this as a pointed topologically enriched category in the unique way. The operation of addition of
natural numbers ⊗ = + makes this a monoidal category.

An object • ∈ [Seq, Top *
/] is an ℕ-sequence of pointed topological spaces. Given two such, then their Day

convolution according to def. 1.39 is

( ⊗ ) = ∫
( , )

Seq( + , ) ∧ ∧

= ∐ +

=

∧
.

We observe now that Day convolution is equivalently a left Kan extension (def. 1.38). This will be key for
understanding monoids and modules with respect to Day convolution.

Definition 1.41. Let  be a small pointed topologically enriched category (def.). Its external tensor
product is the pointed topologically enriched functor

∧̅̅ : [ , Top * /] × [ , Top * /] ⟶ [ × , Top * /]

from pairs of topologically enriched functors over mmathcal  to topologically enriched functors over the
product category ×  (def. 1.26) given by

∧̅̅ ≔ ∧ ∘ ( , ) ,

i.e.

( ∧̅̅ )( , ) = ( ) ∧ ( ) .

Proposition 1.42. For ( , ⊗ 1) a pointed topologically enriched monoidal category (def. 1.1) the Day
convolution product (def. 1.39) of two functors is equivalently the left Kan extension (def. 1.38) of their
external tensor product (def. 1.41) along the tensor product ⊗ : × : there is a natural isomorphism

⊗ ≃ Lan⊗( ∧̅̅ ) .

Hence the adjunction unit is a natural transformation of the form

× →⎯⎯⎯
∧̅̅̅

Top * /

⊗ ↘ ⇓ ↗ ⊗
.

This perspective is highlighted in (MMSS 00, p. 60).

Proof. By prop. 1.38 we may compute the left Kan extension as the following coend:
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Lan⊗ ( ∧̅̅ )( ) ≃ ∫
( , )

( ⊗ , ) ∧ ( ∧̅̅ )( , )

= ∫
( , )

( ⊗ , ) ∧ ( ) ∧ ( )

.

  ▮

Proposition 1.42 implies the following fact, which is the key for the identification of “functors with smash
product” below and then for the description of ring spectra further below.

Corollary 1.43. The operation of Day convolution ⊗  (def. 1.39) is universally characterized by the
property that there are natural isomorphisms

[ , Top * /]( ⊗ , ) ≃ [ × , Top * /]( ∧̅̅ , ∘ ⊗ ) ,

where ∧̅̅ is the external product of def. 1.41, hence that natural transformations of functors on  of the
form

( ⊗ )( ) ⟶ ( )

are in natural bijection with natural transformations of functors on the product category mmathcal ×
(def. 1.26) of the form

( ) ∧ ( ) ⟶ ( ⊗ ) .

Write

: ⟶ [ , Top * /]

for the Top * /-Yoneda embedding, so that for ∈  any object, ( ) is the corepresented functor
( ) : ↦ ( , ).

Proposition 1.44. For ( , ⊗ , 1) a small pointed topological monoidal category (def. 1.1), the Day
convolution tensor product ⊗  of def. 1.39 makes the pointed topologically enriched functor category

([ , Top * /], ⊗ , (1))

into a pointed topological monoidal category (def. 1.1) with tensor unit (1) co-represented by the tensor
unit 1 of .

Moreover, if ( , ⊗ , 1) is equipped with a (symmetric) braiding  (def. 1.4), then so is

([ , Top * /], ⊗ , (1)).

Proof. Regarding associativity, observe that

( ⊗ ( ⊗ ))( ) ≃ ∫
( , )

( ⊗ , ) ∧ ( ) ∧ ∫
( , )

( ⊗ , )( ( ) ∧ ( ))

≃ ∫
, ,

∫ ( ⊗ , ) ∧ ( ⊗ , )
≃ ( ⊗( ⊗ ), )

∧ ( ( ) ∧ ( ( ) ∧ ( )))

≃ ∫
, ,

( ⊗ ( ⊗ ), ) ∧ ( ( ) ∧ ( ( ) ∧ ( )))

≃ ∫
, ,

( ⊗ ( ⊗ ), ) ∧ ( ( ) ∧ ( ( ) ∧ ( )))

,

where we used the Fubini theorem for coends (prop. 1.35) and then twice the co-Yoneda lemma (prop.
1.33). Similarly

(( ⊗ )⊗ )( ) ≃ ∫
( , )

( ⊗ , ) ∧ ∫
( , )

( ⊗ , ) ∧ ( ( ) ∧ ( )) ∧ ( )

≃ ∫
, ,

∫ ( ⊗ , ) ∧ ( ⊗ , )
≃ (( ⊗ )⊗ )

∧ (( ( ) ∧ ( )) ∧ ( ))

≃ ∫
, ,

(( ⊗ )⊗ ) ∧ (( ( ) ∧ ( )) ∧ ( ))

≃ ∫
, ,

(( ⊗ )⊗ ) ∧ (( ( ) ∧ ( )) ∧ ( ))

.

So we obtain an associator by combining, in the integrand, the associator  of ( , ⊗ , 1) and 
* /

 of

(Top * /, ∧ , ) (example 1.10):
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(( ⊗ )⊗ )( ) ≃ ∫
, ,

(( ⊗ )⊗ ) ∧ (( ( ) ∧ ( )) ∧ ( ))

, , ( ) ↓ ↓
∫

, ,
( , , , )∧ ( ), ( ), ( )

* /

( ⊗ ( ⊗ ))( ) ≃ ∫
, ,

( ⊗ ( ⊗ ), ) ∧ ( ( ) ∧ ( ( ) ∧ ( )))

.

It is clear that this satisfies the pentagon identity, since  and 
* /

 do.

To see that (1) is the tensor unit for ⊗ , use the Fubini theorem for coends (prop. 1.35) and then twice

the co-Yoneda lemma (prop. 1.33) to get for any ∈ [ , Top * /] that

⊗ (1) = ∫
, ∈

( ⊗ , −) ∧ ( ) ∧ (1, )

≃ ∫
∈

∫
∈

( ⊗ , −) ∧ (1, ) ∧ ( )

≃ ∫
∈

( ⊗ 1, −) ∧ ( )

≃ ∫
∈

( , −) ∧ ( )

≃ (−)

≃

.

Hence the right unitor of Day convolution comes from the unitor of  under the integral sign:

( ⊗ (1))( ) ≃ ∫ ( ⊗ 1, ) ∧ ( )

( ) ↓ ↓
∫ ( , )∧ ( )

( ) ≃ ∫ ( , ) ∧ ( )

.

Analogously for the left unitor. Hence the triangle identity for ⊗  follows from the triangle identity in 
under the integral sign.

Similarly, if  has a braiding , it induces a braiding  under the integral sign:

( ⊗ )( ) = ∫
,

( ⊗ , ) ∧ ( ) ∧ ( )

, ( ) ↓ ↓
∫
,

( , , )∧ ( ( )), ( )
* /

( ⊗ )( ) = ∫
,

( ⊗ , ) ∧ ( ) ∧ ( )

and the hexagon identity for  follows from that for  and 
* /

  ▮

Moreover:

Proposition 1.45. For ( , ⊗ , 1) a small pointed topological symmetric monoidal category (def. 1.5), the

monoidal category with Day convolution ([ , Top * /], ⊗ , (1)) from def. 1.44 is a closed monoidal
category (def. 1.7). Its internal hom [−, −]  is given by the end (def. 1.28)

[ , ] ( ) ≃

,

Maps( ( ⊗ , ), Maps( ( ), ( ))
*
)
*
.

Proof. Using the Fubini theorem (def. 1.35) and the co-Yoneda lemma (def. 1.33) and in view of definition
1.31 of the enriched functor category, there is the following sequence of natural isomorphisms:

[ , ]( , [ , ] ) ≃ ∫Maps ( ), ∫
,
Maps( ( ⊗ , ),Maps( ( ), ( ))

*
)
*
*

≃ ∫ ∫
,
Maps( ( ⊗ , ) ∧ ( ) ∧ ( ), ( ))

*

≃ ∫Maps ∫
,

( ⊗ , ) ∧ ( ) ∧ ( ), ( )
*

≃ ∫Maps ( ⊗ )( ), ( )
*

≃ [ , ]( ⊗ , )

.

  ▮
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Proposition 1.46. In the situation of def. 1.44, the Yoneda embedding ↦ ( , −) constitutes a strong
monoidal functor (def. 1.47)

( , ⊗ , 1) ↪ ([ , ], ⊗ , (1)) .

Proof. That the tensor unit is respected is part of prop. 1.44. To see that the tensor product is respected,
apply the co-Yoneda lemma (prop. 1.33) twice to get the following natural isomorphism

( ( ) ⊗ ( ))( ) ≃ ∫
,

( ⊗ , ) ∧ ( , ) ∧ ( , )

≃ ( ⊗ , )

= ( ⊗ )( )

.

  ▮

Functors with smash product

Since the symmetric monoidal smash product of spectra discussed below is an instance of Day convolution
(def. 1.39), and since ring spectra are going to be the monoids (def. 1.13) with respect to this tensor
product, we are interested in characterizing the monoids with respect to Day convolution. These turn out to
have a particularly transparent expression as what is called functors with smash product, namely lax
monoidal functors from the base monoidal category to Top * /. Their components are pairing maps of the form

∧ ⟶ +

satisfying suitable conditions. This is the form in which the structure of ring spectra usually appears in
examples. It is directly analogous to how a dg-algebra, which is equivalently a monoid with respect to the
tensor product of chain complexes (example 1.19), is given in components .

Here we introduce the concepts of monoidal functors and of functors with smash product and prove that
they are equivalently the monoids with respect to Day convolution.

Definition 1.47. Let ( , ⊗ , 1 ) and ( , ⊗ , 1 ) be two (pointed) topologically enriched monoidal categories
(def. 1.1). A topologically enriched lax monoidal functor between them is

a topologically enriched functor

: ⟶ ,

1. 

a morphism

: 1 ⟶ (1 )

2. 

a natural transformation

, : ( ) ⊗ ( ) ⟶ ( ⊗ )

for all , ∈

3. 

satisfying the following conditions:

(associativity) For all objects , , ∈  the following diagram commutes

( ( ) ⊗ ( ))⊗ ( ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
≃

( ), ( ), ( )
( ) ⊗ ( ( )⊗ ( ))

, ⊗ ↓ ↓ ⊗ ,

( ⊗ )⊗ ( ) ( ) ⊗ ( ( ⊗ ))

⊗ , ↓ ↓ , ⊗

(( ⊗ )⊗ ) →⎯⎯⎯⎯⎯⎯
( , , )

( ⊗ ( ⊗ ))

,

where  and  denote the associators of the monoidal categories;

1. 

(unitality) For all ∈  the following diagrams commutes

1 ⊗ ( ) →⎯⎯⎯⎯
⊗

(1 )⊗ ( )

ℓ ( ) ↓ ↓ ,

( ) ←⎯⎯⎯⎯
(ℓ )

(1⊗ )

and

2. 
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( ) ⊗ 1 →⎯⎯⎯⎯
⊗

( ) ⊗ (1 )

( ) ↓ ↓ ,

( ) ←⎯⎯⎯⎯
( )

( ⊗ 1)

,

where ℓ , ℓ , ,  denote the left and right unitors of the two monoidal categories, respectively.

If  and alll ,  are isomorphisms, then  is called a strong monoidal functor.

If moreover ( , ⊗ , 1 ) and ( , ⊗ , 1 ) are equipped with the structure of braided monoidal categories
(def. 1.4) with braidings  and , respectively, then the lax monoidal functor  is called a braided
monoidal functor if in addition the following diagram commutes for all objects , ∈

( ) ⊗ ( ) →⎯⎯⎯⎯⎯⎯⎯
( ), ( )

( ) ⊗ ( )

, ↓ ↓ ,

( ⊗ ) →⎯⎯⎯⎯⎯
( , )

( ⊗ )

.

A homomorphism : ( , , ) ⟶ ( , , ) between two (braided) lax monoidal functors is a monoidal

natural transformation, in that it is a natural transformation : ( ) ⟶ ( ) of the underlying

functors

compatible with the product and the unit in that the following diagrams commute for all objects , ∈ :

( ) ⊗ ( ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯
( ) ⊗ ( )

( ) ⊗ ( )

( ) , ↓ ↓( ) ,

( ⊗ ) →⎯⎯⎯⎯⎯⎯⎯
( ⊗ )

( ⊗ )

and

1

↙ ↘

(1 ) →⎯⎯⎯⎯
( )

(1 )

.

We write MonFun( , ) for the resulting category of lax monoidal functors between monoidal categories 
and , similarly BraidMonFun( , ) for the category of braided monoidal functors between braided monoidal
categories, and SymMonFun( , ) for the category of braided monoidal functors between symmetric
monoidal categories.

Remark 1.48. In the literature the term “monoidal functor” often refers by default to what in def. 1.47 is
called a strong monoidal functor. But for the purpose of the discussion of functors with smash product
below, it is crucial to admit the generality of lax monoidal functors.

If ( , ⊗ , 1 ) and ( , ⊗ , 1 ) are symmetric monoidal categories (def. 1.5) then a braided monoidal
functor (def. 1.47) between them is often called a symmetric monoidal functor.

Proposition 1.49. For ⟶ ⟶ ℰ two composable lax monoidal functors (def. 1.47) between monoidal
categories, then their composite ∘  becomes a lax monoidal functor with structure morphisms

∘ : 1ℰ ⟶ (1 ) →⎯⎯⎯⎯
( )

( (1 ))

and

,
∘ : ( ( )) ⊗ℰ ( ( )) →⎯⎯⎯⎯⎯⎯⎯⎯⎯

( ), ( )
( ( ) ⊗ ( )) →⎯⎯⎯⎯⎯⎯⎯

( , )
( ( ⊗ )) .

Proposition 1.50. Let ( , ⊗ , 1 ) and ( , ⊗ , 1 ) be two monoidal categories (def. 1.1) and let : ⟶  be
a lax monoidal functor (def. 1.47) between them.

Then for ( , , ) a monoid in  (def. 1.13), its image ( ) ∈  becomes a monoid ( ( ), ( ) , ( )) by

setting

( ) : ( ) ⊗ ( ) ⟶ ( ⊗ ) →⎯⎯⎯⎯
( )

( )

(where the first morphism is the structure morphism of ) and setting
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( ) : 1 ⟶ (1 ) →⎯⎯⎯⎯
( )

( )

(where again the first morphism is the corresponding structure morphism of ).

This construction extends to a functor

Mon( ) : Mon( , ⊗ , 1 ) ⟶ Mon( , ⊗ , 1 )

from the category of monoids of  (def. 1.13) to that of .

Moreover, if  and  are symmetric monoidal categories (def. 1.5) and  is a braided monoidal functor
(def. 1.47) and  is a commutative monoid (def. 1.13) then so is ( ), and this construction extends to a
functor

CMon( ) : CMon( , ⊗ , 1 ) ⟶ CMon( , ⊗ , 1 ) .

Proof. This follows immediately from combining the associativity and unitality (and symmetry) constraints
of  with those of .  ▮

Definition 1.51. Let ( , ⊗ , 1 ) and ( , ⊗ , 1 ) be two (pointed) topologically enriched monoidal categories
(def. 1.1), and let : ⟶  be a topologically enriched lax monoidal functor between them, with product
operation .

Then a left module over the lax monoidal functor is

a topologically enriched functor

: ⟶ ;

1. 

a natural transformation

, : ( ) ⊗ ( ) ⟶ ( ⊗ )

2. 

such that

(action property) For all objects , , ∈  the following diagram commutes

( ( ) ⊗ ( ))⊗ ( ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
≃

( ), ( ), ( )
( ) ⊗ ( ( )⊗ ( ))

, ⊗ ↓ ↓ ⊗ ,

( ⊗ )⊗ ( ) ( ) ⊗ ( ( ⊗ ))

⊗ , ↓ ↓ , ⊗

(( ⊗ )⊗ ) →⎯⎯⎯⎯⎯⎯
( , , )

( ⊗ ( ⊗ ))

,

A homomorphism : ( , ) ⟶ ( , ) between two modules over a monoidal functor ( , , ) is

a natural transformation : ( ) ⟶ ( ) of the underlying functors

compatible with the action in that the following diagram commutes for all objects , ∈ :

( ) ⊗ ( ) →⎯⎯⎯⎯⎯⎯⎯⎯
⊗ ( )

( ) ⊗ ( )

( ) , ↓ ↓( ) ,

( ⊗ ) →⎯⎯⎯⎯⎯⎯⎯
( ⊗ )

( ⊗ )

We write Mod for the resulting category of modules over the monoidal functor .

Now we may finally state the main proposition on functors with smash product:

Proposition 1.52. Let ( , ⊗ , 1) be a pointed topologically enriched (symmetric) monoidal category (def.

1.1). Regard (Top * /, ∧ , ) as a topological symmetric monoidal category as in example 1.10.

Then (commutative) monoids in (def. 1.13) the Day convolution monoidal category ([ , Top * /], ⊗ , (1 ))

of prop. 1.44 are equivalent to (braided) lax monoidal functors (def. 1.47) of the form

( , ⊗ , 1) ⟶ (Top* , ∧ , ) ,

called functors with smash products on , i.e. there are equivalences of categories of the form
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Mon([ , Top * /], ⊗ , (1 )) ≃ MonFunc( , Top * /)

CMon([ , Top * /], ⊗ , (1 )) ≃ SymMonFunc( , Top * /)
.

Moreover, module objects over these monoid objects are equivalent to the corresponding modules over
monoidal functors (def. 1.51).

This is stated in some form in (Day 70, example 3.2.2). It is highlighted again in (MMSS 00, prop. 22.1).

Proof. By definition 1.47, a lax monoidal functor : → Top * / is a topologically enriched functor equipped
with a morphism of pointed topological spaces of the form

⟶ (1 )

and equipped with a natural system of maps of pointed topological spaces of the form

( ) ∧ ( ) ⟶ ( ⊗ )

for all , ∈ .

Under the Yoneda lemma (prop. 1.32) the first of these is equivalently a morphism in [ , Top * /] of the form

( ) ⟶ .

Moreover, under the natural isomorphism of corollary 1.43 the second of these is equivalently a morphism in
[ , Top * /] of the form

⊗ ⟶ .

Translating the conditions of def. 1.47 satisfied by a lax monoidal functor through these identifications gives
precisely the conditions of def. 1.13 on a (commutative) monoid in object  under ⊗ .

Similarly for module objects and modules over monoidal functors.  ▮

Proposition 1.53. Let : ⟶  be a lax monoidal functor (def. 1.47) between pointed topologically
enriched monoidal categories (def. 1.1). Then the induced functor

* : [ , Top * /] ⟶ [ , Top* ]

given by ( * )( ) ≔ ( ( )) preserves monoids under Day convolution

* : Mon([ , Top * /], ⊗ , (1 )) ⟶ Mon([ , Top* ], ⊗ , (1 )

Moreover, if  and  are symmetric monoidal categories (def. 1.5) and  is a braided monoidal functor
(def. 1.47), then * also preserves commutative monoids

* : CMon([ , Top * /], ⊗ , (1 )) ⟶ CMon([ , Top* ], ⊗ , (1 ) .

Similarly, for

∈ Mon([ , Top * /], ⊗ , (1 ))

any fixed monoid, then * sends -modules to *( )-modules

* : Mod( ) ⟶ ( * )Mod( ) .

Proof. This is an immediate corollary of prop. 1.52, since the composite of two (braided) lax monoidal
functors is itself canonically a (braided) lax monoidal functor by prop. 1.49.  ▮

2. -Modules

We give a unified discussion of the categories of

sequential spectra1. 

symmetric spectra2. 

orthogonal spectra3. 

pre-excisive functors4. 

(all in topological spaces) as categories of modules with respect to Day convolution monoidal structures on
Top-enriched functor categories over restrictions to faithful sub-sites of the canonical representative of the
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sphere spectrum as a pre-excisive functor on Top * /.

This approach is due to (Mandell-May-Schwede-Shipley 00) following (Hovey-Shipley-Smith 00).

Pre-Excisive functors

We consider an almost tautological construction of a pointed topologically enriched category equipped with a
closed symmetric monoidal product: the category of pre-excisive functors. Then we show that this
tautological category restricts, in a certain sense, to the category of sequential spectra. However, under this
restriction the symmetric monoidal product breaks, witnessing the lack of a functorial smash product of
spectra on sequential spectra. However from inspection of this failure we see that there are categories of
structured spectra “in between” those of all pre-excisive functors and plain sequential spectra, notably the
categories of orthogonal spectra and of symmetric spectra. These intermediate categories retain the
concrete tractable nature of sequential spectra, but are rich enough to also retain the symmetric monoidal
product inherited from pre-excisive functors: this is the symmetric monoidal smash product of spectra that
we are after.

Literature (MMSS 00, Part I and Part III)

Definition 2.1. Write

: Top ,
* / ↪ Top * /

for the full subcategory of pointed compactly generated topological spaces (def.) on those that admit the
structure of a finite CW-complex (a CW-complex (def.) with a finite number of cells).

We say that the pointed topological enriched functor category (def. 1.31)

Exc(Top ) ≔ [Top ,
* / , Top * /]

is the category of pre-excisive functors. (We had previewed this in Part P, this example).

Write

≔ ( ) ≔ Top ,
* / ( , −)

for the functor co-represented by 0-sphere. This is equivalently the inclusion  itself:

= : ↦ .

We call this the standard incarnation of the sphere spectrum as a pre-excisive functor.

By prop. 1.44 the smash product of pointed compactly generated topological spaces induces the structure
of a closed (def. 1.7) symmetric monoidal category (def. 1.5)

Exc(Top ), ∧ ≔ ⊗ ,

with

tensor unit the sphere spectrum ;1. 

tensor product the Day convolution product ⊗  from def. 1.39,

called the symmetric monoidal smash product of spectra for the model of pre-excisive functors;

2. 

internal hom the dual operation [−, −]  from prop. 1.45,

called the mapping spectrum construction for pre-excisive functors.

3. 

Remark 2.2. By example 1.14 the sphere spectrum incarnated as a pre-excisive functor  (according to
def. 2.1) is canonically a commutative monoid in the category of pre-excisive functors (def. 1.13).

Moreover, by example 1.17, every object of Exc(Top ) (def. 2.1) is canonically a module object over .

We may therefore tautologically identify the category of pre-excisive functors with the module category
over the sphere spectrum:

Exc(Top ) ≃ Mod .

Lemma 2.3. Identified as a functor with smash product under prop. 1.52, the pre-excisive sphere spectrum
 from def. 2.1 is given by the identity natural transformation
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( , ) : ( ) ∧ ( ) = ∧ ⟶= ∧ = ( ∧ ) .

Proof. We claim that this is in fact the unique structure of a monoidal functor that may be imposed on the
canonical inclusion : Top ,

* / ↪ Top * /, hence it must be the one in question. To see the uniqueness, observe
that naturality of the matural transformation  in particular says that there are commuting squares of the
form

∧ ⟶= ∧
, ↓ ↓ ,

∧ →⎯⎯⎯⎯⎯
,

∧

,

where the vertical morphisms pick any two points in  and , respectively, and where the top morphism is
necessarily the canonical identification since there is only one single isomorphism → , namely the
identity. This shows that the bottom horizontal morphism has to be the identity on all points, hence has to
be the identity.  ▮

We now consider restricting the domain of the pre-excisive functors of def. 2.1.

Definition 2.4. Define the following pointed topologically enriched (def.) symmetric monoidal categories
(def. 1.5):

Seq is the category whose objects are the natural numbers and which has only identity morphisms
and zero morphisms on these objects, hence the hom-spaces are

Seq( , ) ≔
for =

* otherwise

The tensor product is the addition of natural numbers, ⊗ = +, and the tensor unit is 0. The braiding
is, necessarily, the identity.

1. 

Sym is the standard skeleton of the core of FinSet with zero morphisms adjoined: its objects are the
finite sets ̅ ̅ ≔ {1,⋯, } for ∈ ℕ (hence 0̅̅ is the empty set), all non-zero morphisms are
automorphisms and the automorphism group of {1,⋯, } is the symmetric group ( ) on  elements,
hence the hom-spaces are the following discrete topological spaces:

Sym( , ) ≔
( ( ))+ for =

* otherwise

The tensor product is the disjoint union of sets, tensor unit is the empty set. The braiding

, : ̅ ̅ ̅ ̅ ∪ ̅ ̅ ̅ ̅ ⟶ ̅ ̅ ̅ ̅ ∪ ̅ ̅ ̅ ̅

is given by the canonical permutation in ( + ) that shuffles the first  elements past the
remaining  elements.

(MMSS 00, example 4.2)

2. 

Orth has as objects the finite dimenional real linear inner product spaces (ℝ , ⟨−, −⟩) and as non-zero
morphisms the linear isometric isomorphisms between these; hence the automorphism group of the
object (ℝ , ⟨−, −⟩) is the orthogonal group ( ); the monoidal product is direct sum of linear spaces,

the tensor unit is the 0-vector space; again we turn this into a Top * /-enriched category by adjoining a
basepoint to the hom-spaces;

Orth( , ) ≔
( )+ for dim( ) = dim( )

* otherwise

The tensor product is the direct sum of linear inner product spaces, tensor unit is the 0-vector space.
The braiding

, : ⊕ ⟶ ⊕

is the canonical orthogonal transformation that switches the summands.

(MMSS 00, example 4.4)

3. 

Notice that in the notation of example 1.29

the full subcategory of Orth on  is ( ( )+);1. 

the full subcategory of Sym on {1,⋯, } is ( ( )+);2. 
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the full subcategory of Seq on  is (1+).3. 

Moreover, after discarding the zero morphisms, then these categories are the disjoint union of categories
of the form ( ), ( ) and 1 = * , respectively.

There is a sequence of canonical faithful pointed topological subcategory inclusions

Seq ⎯ Sym ⎯ Orth ⎯⎯ Top ,
* /

↦ {1,⋯, } ↦ ℝ ↦
,

into the pointed topological category of pointed compactly generated topological spaces of finite CW-type
(def. 2.1).

Here  denotes the one-point compactification of . On morphisms sym:( )+ ↪ ( ( ))+ is the canonical

inclusion of permutation matrices into orthogonal matrices and orth: ( )+ ↪ Aut( ) is on ( ) the

topological subspace inclusions of the pointed homeomorphisms →  that are induced under forming
one-point compactification from linear isometries of  (“representation spheres”).

Below we will often use these identifications to write just “ ” for any of these objects, leaving implicit the
identifications ↦ {1,⋯, } ↦ .

Consider the pointed topological diagram categries (def. 1.31, exmpl.) over these categories:

[Seq, Top * /] is called the category of sequences of pointed topological spaces (e.g. HSS 00, def.
2.3.1);

[Sym,Top * /] is called the category of symmetric sequences (e.g. HSS 00, def. 2.1.1);

[Orth, Top * /] is called the category of orthogonal sequences.

Consider the sequence of restrictions of topological diagram categories, according to prop. 1.53 along the
above inclusions:

Exc(Top ) →⎯⎯⎯
*
[Orth, Top * /] →⎯⎯⎯

*
[Sym, Top * /] →⎯⎯⎯

*
[Seq, Top * /] .

Write

≔ orth* , ≔ sym* , ≔ seq*

for the restriction of the excisive functor incarnation of the sphere spectrum (from def. 2.1) along these
inclusions.

Proposition 2.5. The functors seq, sym and orth in def. 2.4 become strong monoidal functors (def. 1.47)
when equipped with the canonical isomorphisms

seq( ) ∪ seq( ) = {1,⋯, } ∪ {1,⋯, } ≃ {1,⋯, + } = seq( + )

and

sym({1,⋯, })⊕ sym({1,⋯, }) = ℝ ⊕ℝ ≃ ℝ + = sym({1,⋯, } ∪ {1,⋯, })

and

orth( ) ∧ orth( ) = ∧ ≃ ⊕ = orth( ⊕ ) .

Moreover, orth and sym are braided monoidal functors (def. 1.47) (hence symmetric monoidal functors,
remark 1.48). But seq is not braided monoidal.

Proof. The first statement is clear from inspection.

For the second statement it is sufficient to observe that all the nontrivial braiding of n-spheres in Top * / is
given by the maps induced from exchanging coordinates in the realization of -spheres as one-point
compactifications of Cartesian spaces ≃ (ℝ )*. This corresponds precisely to the action of the symmetric
group inside the orthogonal group acting via the canonical action of the orthogonal group on ℝ . This shows
that sym and orth are braided, for they include precisely these objects (the -spheres) with these braidings
on them. Finally it is clear that seq is not braided, because the braiding on Seq is trivial, while that on Sym is
not, so seq necessrily fails to preserve precisely these non-trivial isomorphisms.  ▮

Remark 2.6. Since the standard excisive incarnation  of the sphere spectrum (def. 2.1) is the tensor
unit with repect to the Day convolution product on pre-excisive functors, and since it is therefore
canonically a commutative monoid, by example 1.14, prop. 1.53 says that the restricted sphere spectra
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,  and  are still monoids, and that under restriction every pre-excisive functor, regarded as a
-module via remark 2.2, canonically becomes a module under the restricted sphere spectrum:

orth* : Exc(Top ) ≃ Mod ⟶ Mod

sym* : Exc(Top ) ≃ Mod ⟶ Mod

seq* : Exc(Top ) ≃ Mod ⟶ Mod

.

Since all three functors orth, sym and seq are strong monoidal functors by prop. 2.5, all three restricted
sphere spectra ,  and  canonically are monoids, by prop. 1.53. Moreover, according to prop.
2.5, orth and sym are braided monoidal functors, while functor seq is not braided, therefore prop. 1.53
furthermore gives that  and  are commutative monoids, while  is not commutative:

sphere spectrum

monoid yes yes yes yes
commutative monoid yes yes yes no
tensor unit yes no no no

Explicitly:

Lemma 2.7. The monoids  from def. 2.4 are, when identified as functors with smash product via prop.
1.52 given by assigning

: ↦
: ̅ ̅ ↦
: ↦ ,

respectively, with product given by the canonical isomorphisms

∧ ⟶ ⊕ .

Proof. By construction these functors with smash products are the composites, according to prop. 1.49, of
the monoidal functors seq, sym, orth, respectively, with the lax monoidal functor corresponding to . The
former have as structure maps the canonical identifications by definition, and the latter has as structure
map the canonical identifications by lemmma 2.3.  ▮

Proposition 2.8. There is an equivalence of categories

(−) : Mod⟶ SeqSpec(Top )

which identifies the category of modules (def. 1.16) over the monoid  (remark 2.6) in the Day
convolution monoidal structure (prop. 1.44) over the topological functor category [Seq, Top * /] from def. 2.4
with the category of sequential spectra (def.)

Under this equivalence, an -module  is taken to the sequential pre-spectrum  whose component
spaces are the values of the pre-excisive functor  on the standard n-sphere = ( ) ∧

( ) ≔ (seq( )) = ( )

and whose structure maps are the images of the action morphisms

⊗ ⟶

under the isomorphism of corollary 1.43

( ) ∧ ( ) ⟶ +

evaluated at = 1

(1) ∧ ( ) ⟶ +

≃ ↓ ↓≃

∧ ⟶ +

.

(Hovey-Shipley-Smith 00, prop. 2.3.4)

Proof. After unwinding the definitions, the only point to observe is that due to the action property,

⊗ ⊗ →⎯⎯⎯⎯⎯⎯⎯
⊗

⊗

⊗ ↓ ↓

⊗ ⟶
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any -action

: ⊗ ⟶

is indeed uniquely fixed by the components of the form

(1) ∧ ( ) ⟶ ( ) .

This is because under corollary 1.43 the action property is identified with the componentwise property

∧ ∧ →⎯⎯⎯⎯⎯⎯⎯⎯
∧ ,

∧ +

≃ ↓ ↓ , +

+ ∧ →⎯⎯⎯⎯⎯⎯⎯⎯
+ ,

+ +

,

where the left vertical morphism is an isomorphism by the nature of . Hence this fixes the components

,  to be the ′-fold composition of the structure maps ≔ (1, ).  ▮

However, since, by remark 2.8,  is not commutative, there is no tensor product induced on SeqSpec(Top )

under the identification in prop. 2.8. But since  and  are commutative monoids by remark 2.8, it
makes sense to consider the following definition.

Definition 2.9. In the terminology of remark 2.6 we say that

OrthSpec(Top ) ≔ Mod

is the category of orthogonal spectra; and that

SymSpec(Top ) ≔ Mod

is the category of symmetric spectra.

By remark 2.6 and by prop. 1.22 these categories canonically carry a symmetric monoidal tensor product
⊗  and ⊗ , respectively. This we call the symmetric monoidal smash product of spectra. We

usually just write for short

∧ ≔ ⊗ : OrthSpec(Top ) × OrthSpec(Top ) ⟶ OrthSpec(Top )

and

∧ ≔ ⊗ : SymSpec(Top ) × SymSpec(Top ) ⟶ SymSpec(Top )

In the next section we work out what these symmetric monoidal categories of orthogonal and of symmetric
spectra look like more explicitly.

Symmetric and orthogonal spectra

We now define symmetric spectra and orthogonal spectra and their symmetric monoidal smash product. We
proceed by giving the explicit definitions and then checking that these are equivalent to the abstract
definition 2.9 from above.

Literature. ( Hovey-Shipley-Smith 00, section 1, section 2, Schwede 12, chapter I)

Definition 2.10. A topological symmetric spectrum  is

a sequence { ∈ Top * / | ∈ ℕ} of pointed compactly generated topological spaces;1. 

a basepoint preserving continuous right action of the symmetric group ( ) on ;2. 

a sequence of morphisms : ∧ ⟶ +3. 

such that

for all , ∈ ℕ the composite

∧ ≃ − ∧ ∧ →⎯⎯⎯⎯
∧ − ∧ + ≃ − ∧ ∧ + →⎯⎯⎯⎯⎯⎯

∧ + ⋯ →⎯⎯⎯⎯⎯⎯+ −
+

intertwines the ( ) × ( )-action.

A homomorphism of symmetric spectra : ⟶  is
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a sequence of maps : ⟶

such that

each intetwines the ( )-action;1. 

the following diagrams commute

∧ →⎯⎯⎯⎯
∧

∧

↓ ↓

+ →⎯⎯⎯⎯+ +

.

2. 

We write SymSpec(Top ) for the resulting category of symmetric spectra.

(Hovey-Shipley-Smith 00, def. 1.2.2, Schwede 12, I, def. 1.1)

The definition of orthogonal spectra has the same structure, just with the symmetric groups replaced by the
orthogonal groups.

Definition 2.11. A topological orthogonal spectrum  is

a sequence { ∈ Top * / | ∈ ℕ} of pointed compactly generated topological spaces;1. 

a basepoint preserving continuous right action of the orthogonal group ( ) on ;2. 

a sequence of morphisms : ∧ ⟶ +3. 

such that

for all , ∈ ℕ the composite

∧ ≃ − ∧ ∧ →⎯⎯⎯⎯
∧ − ∧ + ≃ − ∧ ∧ + →⎯⎯⎯⎯⎯⎯

∧ + ⋯ →⎯⎯⎯⎯⎯⎯+ −
+

intertwines the ( ) × Ok()-action.

A homomorphism of orthogonal spectra : ⟶  is

a sequence of maps : ⟶

such that

each intetwines the ( )-action;1. 

the following diagrams commute

∧ →⎯⎯⎯⎯
∧

∧

↓ ↓

+ →⎯⎯⎯⎯+ +

.

2. 

We write OrthSpec(Top ) for the resulting category of orthogonal spectra.

(e.g. Schwede 12, I, def. 7.2)

Proposition 2.12. Definitions 2.10 and 2.11 are indeed equivalent to def. 2.9:

orthogonal spectra are euqivalently the module objects over the incarnation  of the sphere spectrum

OrthSpec(Top ) ≃ Mod

and symmetric spectra sre equivalently the module objects over the incarnation  of the sphere
spectrum

SymSpec(Top ) ≃ Mod .

(Hovey-Shipley-Smith 00, prop. 2.2.1)

Proof. We discuss this for symmetric spectra. The proof for orthogonal spectra is of the same form.

First of all, by example 1.29 an object in [Sym, Top * /] is equivalently a “symmetric sequence”, namely a
sequence of pointed topological spaces , for ∈ ℕ, equipped with an action of ( ) (def. 2.4).
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By corollary 1.43 and lemma 2.7, the structure morphism of an -module object on 

⊗ ⟶

is equivalently (as a functor with smash products) a natural transformation

∧ ⟶ +

over Sym × Sym. This means equivalently that there is such a morphism for all , ∈ ℕ and that it is
( ) × ( )-equivariant.

Hence it only remains to see that these natural transformations are uniquely fixed once the one for = 1 is
given. To that end, observe that lemma 2.7 says that in the following commuting squares (exhibiting the
action property on the level of functors with smash product, where we are notationally suppressing the
associators) the left vertical morphisms are isomorphisms:

∧ ∧ ⟶ ∧ +

≃ ↓ ↓
+ ∧ ⟶ + +

.

This says exactly that the action of +  has to be the composite of the actions of  followed by that of
. Hence the statement follows by induction.

Finally, the definition of homomorphisms on both sides of the equivalence are just so as to preserve
precisely this structure, hence they conincide under this identification.  ▮

Definition 2.13. Given , ∈ SymSpec(Top ) two symmetric spectra, def. 2.10, then their smash product of

spectra is the symmetric spectrum

∧ ∈ SymSpec(Top )

with component spaces the coequalizer

+ + =

( + 1 + )+ ∧
× ×

∧ ∧ →⎯⎯⎯⎯⎯
→⎯⎯⎯⎯⎯

ℓ

+ =

( + )+ ∧
×

∧ →⎯⎯⎯ ( ∧ )( )

where ℓ has components given by the structure maps

∧ ∧ →⎯⎯⎯⎯
∧

∧

while  has components given by the structure maps conjugated by the braiding in Top * / and the
permutation action ,  (that shuffles the element on the right to the left)

∧ ∧ →⎯⎯⎯⎯⎯⎯⎯⎯
,

* /

∧

∧ ∧ →⎯⎯⎯⎯
∧

+ ∧ →⎯⎯⎯⎯⎯⎯
, ∧

+ ∧ .

Finally The structure maps of ∧  are those induced under the coequalizer by

∧ ( ∧ ∧ ) ≃ ( ∧ ) ∧ →⎯⎯⎯⎯
∧

+ ∧ .

Analogously for orthogonal spectra.

(Schwede 12, p. 82)

Proposition 2.14. Under the identification of prop. 2.12, the explicit smash product of spectra in def. 2.13
is equivalent to the abstractly defined tensor product in def. 2.9:

in the case of symmetric spectra:

∧ ≃ ⊗

in the case of orthogonal spectra:

∧ ≃ ⊗ .

(Schwede 12, E.1.16)

Proof. By def. 1.21 the abstractly defined tensor product of two -modules  and  is the coequalizer
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⊗ ⊗ →⎯⎯⎯⎯⎯
∘( , ⊗ )

→⎯⎯⎯⎯⎯
⊗

⊗ →⎯⎯⎯ ⊗ .

The Day convolution product appearing here is over the category Sym from def. 2.4. By example 1.29 and
unwinding the definitions, this is for any two symmetric spectra  and  given degreewise by the wedge sum
of component spaces summing to that total degree, smashed with the symmetric group with basepoint
adjoined and then quotiented by the diagonal action of the symmetric group acting on the degrees
separately:

( ⊗ )( ) = ∫
,

( + , )

=
( + , )+ + =

* +

∧ ∧

≃ ⋁ + = ( + )+ ∧
( )× ( )

∧

.

This establishes the form of the coequalizer diagram. It remains to see that under this identification the two
abstractly defined morphisms are the ones given in def. 2.13.

To see this, we apply the adjunction isomorphism between the Day convolution product and the external
tensor product (cor. 1.43) twice, to find the following sequence of equivalent incarnations of morphisms:

( ⊗ ( ⊗ ))( ) ⟶ ( ⊗ )( ) ⟶

∧ ( ⊗ )( ′ ) ⟶ ∧ ( ′ ) ⟶ +

( ⊗ )( ′ ) ⟶ ( ′ ) ⟶ Maps( , + )

∧ ⟶ + ⟶ Maps( , + + )

∧ ∧ ⟶ ∧ + ⟶ + +

.

This establishes the form of the morphism ℓ. By the same reasoning as in the proof of prop. 2.12, we may
restrict the coequalizer to = 1 without changing it.

The form of the morphism  is obtained by the analogous sequence of identifications of morphisms, now

with the parenthesis to the left. That it involves 
* /

 and the permutation action  as shown above
follows from the formula for the braiding of the Day convolution tensor product from the proof of prop. 1.44:

, ( ) =

,

Sym( , , ) ∧ ,

* /

by translating it to the components of the precomposition

⊗ →⎯⎯⎯⎯⎯⎯
,

⊗ ⟶

via the formula from the proof of prop. 1.38 for the left Kan extension ⊗ ≃ Lan⊗ ∧̅̅  (prop. 1.42):

[Sym, Top * /]( , , ) ≃ ∫Maps( ∫
,

Sym( , , ) ∧ ,

* /

, ( ))
*

≃ ∫
,
Maps(

,

* /

, ( , ))
*

.

This last expression is the function on morphisms which precomposes components under the coend with the

braiding 
,

* /

 in topological spaces and postcomposes them with the image of the functor  of the

braiding in Sym. But the braiding in Sym is, by def. 2.4, given by the respective shuffle permutations

, = , , and by prop. 2.12 the image of these under  is via the given + -action on + .

Finally to see that the structure map is as claimed: By prop. 2.12 the structure morphisms are the degree-1
components of the -action, and by prop. 1.21 the -action on a tensor product of -modules is
induced via the action on the left tensor factor.  ▮

Definition 2.15. A commutative symmetric ring spectrum  is

a sequence of component spaces ∈ Top * / for ∈ ℕ;1. 

a basepoint preserving continuous left action of the symmetric group ( ) on ;2. 

for all , ∈ ℕ a multiplication map3. 
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, : ∧ ⟶ +

(a morphism in Top * /)

two unit maps

: ⟶
: ⟶

4. 

such that

(equivariance) , intertwines the ( ) × ( )-action;1. 

(associativity) for all , , ∈ ℕ the following diagram commutes (where we are notationally
suppressing the associators of (Top * /, ∧ , ))

∧ ∧ →⎯⎯⎯⎯⎯⎯⎯⎯
∧ ,

∧ +

, ∧
↓ ↓ , +

+ ∧ →⎯⎯⎯⎯⎯⎯⎯⎯
+ ,

+ +

;

2. 

(unitality) for all ∈ ℕ the following diagram commutes

∧ →⎯⎯⎯⎯
∧

∧

ℓ
* / ↘ ↓ ,

and

∧ →⎯⎯⎯⎯
∧

∧

* / ↘ ↓ ,
,

where the diagonal morphisms ℓ and  are the left and right unitors in (Top * / , ∧ , ), respectively.

3. 

(commutativity) for all , ∈ ℕ the following diagram commutes

∧ →⎯⎯⎯⎯⎯⎯⎯
,

* /

∧

, ↓ ↓ ,

+ →⎯⎯⎯⎯⎯
,

+

,

where the top morphism  is the braiding in (Top * / , ∧ , ) (def. 1.10) and where , ∈ ( + )

denotes the permutation action which shuffles the first  elements past the last  elements.

4. 

A homomorphism of symmetric commutative ring spectra : ⟶ ′  is a sequence : ⟶ ′  of

( )-equivariant pointed continuous functions such that the following diagrams commute for all , ∈ ℕ

∧ →⎯⎯⎯⎯⎯⎯⎯
∧

′ ∧ ′

, ↓ ↓ ,

+ →⎯⎯⎯⎯⎯
,

+

and ∘ =  and ∘ = .

Write

CRing(SymSpec(Top ))

for the resulting category of symmetric commutative ring spectra.

We regard a symmetric ring spectrum in particular as a symmetric spectrum (def. 2.10) by taking the
structure maps to be
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: ∧ →⎯⎯⎯⎯
∧

∧ →⎯⎯⎯
,

+ .

This defines a forgetful functor

CRing(SymSpec(Top )) ⟶ SymSpec(Top )

There is an analogous definition of orthogonal ring spectrum and we write

CRing(OrthSpec(Top ))

for the category that these form.

(e.g. Schwede 12, def. 1.3)

We discuss examples below in a dedicated section Examples.

Proposition 2.16. The symmetric (orthogonal) commutative ring spectra in def. 2.15 are equivalently the
commutative monoids in (def. 1.13) the symmetric monoidal category Mod ( Mod) of def. 2.9 with
respect to the symmetric monoidal smash product of spectra ∧ = ⊗  ( ∧ = ⊗ ). Hence there are

equivalences of categories

CRing(SymSpec(Top )) ≃ CMon( Mod, ⊗ , )

and

CRing(OrthSpec(Top )) ≃ CMon( Mod, ⊗ , ) .

Moreover, under these identifications the canonical forgetful functor

CMon( Mod, ⊗ , ) ⟶ SymSpec(Top )

and

CMon( Mod, ⊗ , ) ⟶ OrthSpec(Top )

coincides with the forgetful functor defined in def. 2.15.

Proof. We discuss this for symmetric spectra. The proof for orthogonal spectra is directly analogous.

By prop. 1.25 and def. 2.9, the commutative monoids in Mod are equivalently commtutative monoids 

in ([Sym,Top * /], ⊗ , (0)) equipped with a homomorphism of monoids ⟶ . In turn, by prop. 1.52 this
are equivalently braided lax monoidal functors (which we denote by the same symbols, for convenience) of
the form

: (Sym, +, 0) ⟶ (Top * /, ∧ , )

equipped with a monoidal natural transformation (def. 1.47)

: ⟶ .

The structure morphism of such a lax monoidal functor  has as components precisely the morphisms

, : ∧ → + . In terms of these, the associativity and braiding condition on the lax monoidal

functor are manifestly the above associativity and commutativity conditions.

Moreover, by the proof of prop. 1.25 the -module structure on an an -algebra  has action given by

∧ →⎯⎯⎯
∧

∧ ⟶ ,

which shows, via the identification in prop 2.12, that the forgetful functors to underlying symmetric spectra
coincide as claimed.

Hence it only remains to match the nature of the units. The above unit morphism  has components

: ⟶

for all ∈ ℕ, and the unitality condition for  and  is manifestly as in the statement above.

We claim that the other components are uniquely fixed by these:

By lemma 2.7, the product structure in  is by isomorphisms ∧ ≃ + , so that the commuting
square for the coherence condition of this monoidal natural transformation
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∧ →⎯⎯⎯⎯⎯⎯
∧

∧

≃ ↓ ↓ ,

+ →⎯⎯⎯⎯⎯
+

+

says that + = , ∘ ( ∧ ). This means that ≥  is uniquely fixed once  and  are given.

Finally it is clear that homomorphisms on both sides of the equivalence precisely respect all this structure
under both sides of the equivalence.  ▮

Similarly:

Definition 2.17. Given a symmetric (orthogonal) commutative ring spectrum  (def. 2.15), then a left
symmetric (orthogonal) module spectrum  over  is

a sequence of component spaces ∈ Top * / for ∈ ℕ;1. 

a basepoint preserving continuous left action of the symmetric group ( ) on ;2. 

for all , ∈ ℕ an action map

, : ∧ ⟶ +

(a morphism in Top * /)

3. 

such that

(equivariance) ,  intertwines the ( ) × ( )-action;1. 

(action property) for all , , ∈ ℕ the following diagram commutes (where we are notationally
suppressing the associators of (Top * /, ∧ , ))

∧ ∧ →⎯⎯⎯⎯⎯⎯⎯⎯
∧ ,

∧ +

, ∧
↓ ↓ , +

+ ∧ →⎯⎯⎯⎯⎯⎯⎯⎯
+ ,

+ +

;

2. 

(unitality) for all ∈ ℕ the following diagram commutes

∧ →⎯⎯⎯⎯
∧

∧

ℓ
* / ↘ ↓ ,

.

3. 

A homomorphism of left -module spectra : ⟶ ′  is a sequence of pointed continuous functions
: ⟶ ′  such that for all , ∈ ℕ the following diagrams commute:

∧ →⎯⎯⎯⎯⎯
∧

∧ ′

, ↓ ↓ ,

+ →⎯⎯⎯⎯⎯⎯
+

′ +

.

We write

Mod(SymSpec(Top )) , Mod(OrthSpec(Top ))

for the resulting category of symmetric (orthogonal) -module spectra.

(e.g. Schwede 12, I, def. 1.5)

Proposition 2.18. Under the identification, from prop. 2.16, of commutative ring spectra with commutative
monoids with respect to the symmetric monoidal smash product of spectra, the -module spectra of def.
2.17 are equivalently the left module objects (def. 1.16) over the respective monoids, i.e. there are
equivalences of categories

Mod(SymSpec(Top )) ≃ Mod([Sym, Top * /], ⊗ , (0))

and
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Mod(OrthSpec(Top )) ≃ Mod([Orth, Top * /], ⊗ , (0)) ,

where on the right we have the categories of modules from def. 1.16.

Proof. The proof is directly analogous to that of prop. 2.16. Now prop. 1.25 and prop. 1.52 give that the
module objects in question are equivalently modules over a monoidal functor (def. 1.51) and writing these
out in components yields precisely the above structures and properties.  ▮

As diagram spectra

In Introduction to Stable homotopy theory -- 1-1 we obtained the strict/level model structure on topological
sequential spectra by identifying the category SeqSpec(Top ) of sequential spectra with a category of

topologically enriched functors with values in Top * / (prop.) and then invoking the general existence of the
projective model structure on functors (thm.).

Here we discuss the analogous construction for the more general structured spectra from above.

Proposition 2.19. Let ( , ⊗ , 1 ) be a topologically enriched monoidal category (def. 1.1), and let

∈ Mon([ , Top * /], ⊗ , (1 )) be a monoid in (def. 1.13) the pointed topological Day convolution monoidal
category over  from prop. 1.44.

Then the category of left A-modules (def. 1.16) is a pointed topologically enriched functor category
category (exmpl.)

Mod ≃ [ Free Mod , Top * /] ,

over the category of free modules over  (prop. 1.20) on objects in  (under the Yoneda embedding
: → [ , Top * /]). Hence the objects of Free Mod are identified with those of , and its hom-spaces are

Free Mod( , ) = Mod( ⊗ ( ), ⊗ ( )) .

(MMSS 00, theorem 2.2)

Proof. Use the identification from prop. 1.52 of  with a lax monoidal functor and of any -module object
as a functor with the structure of a module over a monoidal functor, given by natural transformations

( ) ⊗ ( ) →⎯⎯⎯⎯
,

( ⊗ ) .

Notice that these transformations have just the same structure as those of the enriched functoriality of 
(def.) of the form

( , ) ⊗ ( ) ⟶ ( ) .

Hence we may unify these two kinds of transformations into a single kind of the form

( ⊗ , ) ⊗ ( )⊗ ( ) →⎯⎯⎯⎯⎯⎯⎯⎯
⊗ ,

( ⊗ , ) ⊗ ( ⊗ ) ⟶ ( )

and subject to certain identifications.

Now observe that the hom-objects of Free Mod have just this structure:

Free Mod( , ) = Mod( ⊗ ( ), ⊗ ( ))

≃ [ , Top * /]( ( ), ⊗ ( ))

≃ ( ⊗ ( ))( )

≃ ∫
,

( ⊗ , ) ∧ ( ) ∧ ( , )

≃ ∫ ( ⊗ , ) ∧ ( )

.

Here we used first the free-forgetful adjunction of prop. 1.20, then the enriched Yoneda lemma (prop. 1.32),
then the coend-expression for Day convolution (def. 1.39) and finally the co-Yoneda lemma (prop. 1.33).

Then define a topologically enriched category  to have objects and hom-spaces those of Free Mod  as
above, and whose composition operation is defined as follows:
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( , 3) ∧ ( , ) ≃ ∫ ( ⊗ , ) ∧ ( ) ∧ ∫ ( ⊗ , ) ∧ ( )

≃ ∫
,

( ⊗ , ) ∧ ( ⊗ , ) ∧ ( ) ∧ ( )

⟶ ∫
,

( ⊗ , ) ∧ ( ⊗ ⊗ , ⊗ ) ∧ ( ⊗ )

⟶ ∫
,

( ⊗ ⊗ , ⊗ ) ∧ ( ⊗ )

⟶ ∫ ( ⊗ , )⊗ ( )

,

where

the equivalence is braiding in the integrand (and the Fubini theorem, prop. 1.35);1. 

the first morphism is, in the integrand, the smash product of

forming the tensor product of hom-objects of  with the identity morphism on ;1. 

the monoidal functor incarnation ( ) ∧ ( ) ⟶ ( ⊗ ) of the monoid structure on ;2. 

2. 

the second morphism is, in the integrand, given by composition in ;3. 

the last morphism is the morphism induced on coends by regarding extranaturality in  and 
separately as a special case of extranaturality in ≔ ⊗  (and then renaming).

4. 

With this it is fairly straightforward to see that

Mod ≃ [ , Top * /] ,

because, by the above definition of composition, functoriality over  manifestly encodes the -action
property together with the functoriality over .

This way we are reduced to showing that actually ≃ Free Mod .

But by construction, the image of the objects of  under the Yoneda embedding are precisely the free
-modules over objects of :

( , −) ≃ Free Mod(−, ) ≃ ( ⊗ ( ))(−) .

Since the Yoneda embedding is fully faithful, this shows that indeed

≃ Free Mod ↪ Mod .

  ▮

Example 2.20. For the sequential case Dia = Seq in def. 2.4, then the opposite category of free modules on
objects in Seq over  (def.) is identified as the category StdSpheres (def.):

Free Mod ≃ StdSpheres

Accordingly, in this case prop. 2.19 reduces to the identification (prop.) of sequential spectra as
topological diagrams over StdSpheres:

[ Free Mod , Top * /] ≃ [StdSpheres, Top * /] ≃ SeqSpec(Top ) .

Proof. There is one object ( ) for each ∈ ℕ. Moreover, from the expression in the proof of prop. 2.19 we
compute the hom-spaces between these to be

Free Mod( ⊗ , ⊗ ) ≃ ∫Seq( + , ) ∧ ( )

≃
− if ≥

* otherwise

.

These are the objects and hom-spaces of the category StdSpheres. It is straightforward to check that the
definition of composition agrees, too.  ▮

Stable weak homotopy equivalences

We consider the evident version of stable weak homotopy equivalences for structured spectra and prove a
few technical lemmas about them that are needed in the proof of the stable model structure below

Definition 2.21. For Dia ∈ {Top ,
* / , Orth, Sym, Seq} one of the shapes of structured spectra from def. 2.4, let
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Mod be the corresponding category of structured spectra (def. 2.1, prop. 2.8, def. 2.9).

The stable homotopy groups of an object ∈ Mod are those of the underlying sequential spectrum
(def.):

•( ) ≔ •(seq* ) .

1. 

An object ∈ Mod is a structured Omega-spectrum if the underlying sequential spectrum seq*

(def. 2.4) is a sequential Omega spectrum (def.)
2. 

A morphism  in Mod is a stable weak homotopy equivalence (or: •-isomorphism) if the
underlying morphism of sequential spectra seq*( ) is a stable weak homotopy equivalence of
sequential spectra (def.);

3. 

a morphism  is a stable cofibration if it is a cofibration in the strict model structure
OrthSpec(Top )  from prop. 3.1.

4. 

(MMSS 00, def. 8.3 with the notation from p. 21, Mandell-May 02, III, def. 3.1, def. 3.2)

Lemma 2.22. Given a morphism : ⟶  in Mod, then there are long exact sequences of stable
homotopy groups (def. 2.21) of the form

⋯⟶ • + ( ) ⟶ •(Path*( )) ⟶ •( ) ⟶*
•( ) ⟶ • − (Path*( )) ⟶ ⋯

and

⋯⟶ • + ( ) ⟶ • + (Cone( )) ⟶ •( ) ⟶*
•( ) ⟶ •(Cone( )) ⟶ ⋯ ,

where Cone( ) denotes the mapping cone and Path*( ) the mapping cocone of  (def.) formed with respect
to the standard cylinder spectrum ∧ ( +) hence formed degreewise with respect to the standard reduced
cylinder of pointed topological spaces.

(MMSS 00, theorem 7.4 (vi))

Proof. Since limits and colimits in the diagram category Mod are computed objectwise, the functor seq*

that restricts -modules to their underlying sequential spectra preserves both limits and colimits, hence it
is sufficient to consider the statement for sequential spectra.

For the first case, there is degreewise the long exact sequence of homotopy groups to the left of pointed
topological spaces (exmpl.)

⋯ → ( ) ⟶ (Path*( )) ⟶ ( ) ⟶* ( ) ⟶ (Path*( )) ⟶ ( ) ⟶* ( ) .

Observe that the sequential colimit that defines the stable homotopy groups (def.) preserves exact
sequences of abelian groups, because generally filtered colimits in Ab are exact functors (prop.). This
implies that by taking the colimit over  in the above sequences, we obtain a long exact sequence of stable
homotopy groups as shown.

Now use that in sequential spectra the canonical morphism morphism Path*( ) ⟶ Cone( ) is a stable weak
homotopy equivalence and is compatible with the map  (prop.) so that there is a commuting diagram of the
form

⋯ ⟶ • + ( ) ⟶ •(Path*( )) ⟶ •( ) ⟶* •( ) ⟶ • − (Path*( )) ⟶ ⋯

↓= ↓≃ ↓= ↓= ↓≃

⋯ ⟶ • + ( ) ⟶ • + (Cone( )) ⟶ •( ) ⟶* •( ) ⟶ •(Cone( )) ⟶ ⋯

.

Since the top sequence is exact, and since all vertical morphisms are isomorphisms, it follows that also the
bottom sequence is exact.  ▮

Lemma 2.23. For ∈ Top ,
* /  a CW-complex then the operation of smash tensoring (−) ∧  preserves stable

weak homotopy equivalences in Mod.

Proof. Since limits and colimits in the diagram category Mod are computed objectwise, the functor seq*

that restricts -modules to their underlying sequential spectra preserves both limits and colimits, and it
also preserves smash tensoring. Hence it is sufficient to consider the statement for sequential spectra.

Fist consider the case of a finite cell complex .

Write

* = ↪ ⋯ ↪ ↪ + ↪ ⋯ ↪
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for the stages of the cell complex , so that for each  there is a pushout diagram in Top  of the form

− ⟶ ⟶ *

↓ (po) ↓ (po) ↓

− ⟶ + ⟶

.

Equivalently these are pushoutdiagrams in Top * / of the form

+
− ⟶ ⟶ *

↓ (po) ↓ (po) ↓

+
− ⟶ + ⟶

.

Notice that it is indeed  that appears in the top right, not + .

Now forming the smash tensoring of any morphism : ⟶  in Mod(Top ) by the morphisms in the

pushout on the right yields a commuting diagram in Mod of the form

∧ ⟶ ∧ + ⟶ ∧

↓ ↓ ↓

∧ ⟶ ∧ + ⟶ ∧

.

Here the horizontal morphisms on the left are degreewise cofibrations in Top * /, hence the morphism on the
right is degreewise their homotopy cofiber. This way lemma 2.22 implies that there are commuting diagrams

• + ( ∧ ) ⟶ •( ∧ ) ⟶ •( ∧ + ) ⟶ •( ∧ ) ⟶ • − ( ∧ )

↓ ↓ ↓ ∧ + ↓ ↓

• + ( ∧ ) ⟶ •( ∧ ) ⟶ •( ∧ + ) ⟶ •( ∧ ) ⟶ • − ( ∧ )

,

where the top and bottom are long exact sequences of stable homotopy groups.

Now proceed by induction. For = 0 then clearly smash tensoring with = *  preserves stable weak
homotopy equivalences. So assume that smash tensoring with  does, too. Observe that (−) ∧  preserves
stable weak homotopy equivalences, since [1] →  is a stable weak homotopy equivalence (lemma). Hence
in the above the two vertical morphisms on the left and the two on the right are isomorphism. Now the five
lemma implies that also ∧ +  is an isomorphism.

Finally, the statement for a non-finite cell complex follows with these arguments and then using that spheres
are compact and hence maps out of them into a transfinite composition factor through some finite stage
(prop.).  ▮

Lemma 2.24. The pushout in Mod of a stable weak homotopy equivalence along a morphism that is

degreewise a cofibration in (Top * /)  is again a stable weak homotopy equivalence.

Proof. Given a pushout square

⟶

↓ (po) ↓

⟶ ⊔

observe that the pasting law implies an isomorphism between the horizontal cofibers

⟶ ⟶ cofib( )

↓ (po) ↓ ↓≃

⟶ ⊔ ⟶ cofib( )

.

Moreover, since cofibrations in (Top * /)  are preserves by pushout, and since pushout of spectra are

computed degreewise, both the top and the bottom horizontal sequences here are degreewise homotopy
cofiber sequence in (Top * /) . Hence lemma 2.22 applies and gives a commuting diagram

• + (cofib( )) ⟶ •( ) ⟶ •( ) ⟶ •(cofib( )) ⟶ • − ( )

↓≃ ≃
•( )

↓ ↓ ↓≃ ↓≃

• + (cofib( )) ⟶ •( ) ⟶ •( ⊔ ) ⟶ •(cofib( )) ⟶ • − ( )

,

where the top and the bottom row are both long exact sequences of stable homotopy groups. Hence the
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claim now follows by the five lemma.  ▮

Free spectra and Suspension spectra

The concept of free spectrum is a generalization of that of suspension spectrum. In fact the stable homotopy
types of free spectra are precisely those of iterated loop space objects of suspension spectra. But for the
development of the theory what matters is free spectra before passing to stable homotopy types, for as
such they play the role of the basic cells for the stable model structures on spectra analogous to the role of
the n-spheres in the classical model structure on topological spaces (def. 3.2 below).

Moreover, while free sequential spectra are just re-indexed suspension spectra, free symmetric spectra and
free orthogonal spectra in addition come with suitably freely generated actions of the symmetric group and
the orthogonal group. It turns out that this is not entirely trivial; it leads to a subtle issue (lemma 2.33
below) where the adjuncts of certain canonical inclusions of free spectra are stable weak homotopy
equivalences for sequential and orthogonal spectra, but not for symmetric spectra.

Definition 2.25. For Dia ∈ {Top * / , Orth, Sym, Seq} any one of the four diagram shapes of def. 2.4, and for each
∈ ℕ, the functor

(−) : Mod →⎯⎯⎯
*

Mod ≃ SeqSpec(Top ) →⎯⎯⎯
(−)

Top * /

that sends a structured spectrum to the th component space of its underlying sequential spectrum has,
by prop. 1.38, a left adjoint

: Top * / ⟶ Mod .

This is called the free structured spectrum-functor.

For the special case = 0 it is also called the structured suspension spectrum functor and denoted

≔

(Hovey-Shipley-Smith 00, def. 2.2.5, MMSS 00, section 8)

Lemma 2.26. Let Dia ∈ {Top * / , Orth, Sym, Seq} be any one of the four diagram shapes of def. 2.4. Then

the free spectrum on ∈ Top * / (def. 2.25) is equivalently the smash tensoring with  (def.) of the

free module (def. 1.20) over  (remark 2.6) on the representable ( ) ∈ [Dia, Top * /]

≃ ( ⊗ ( )) ∧

≃ ⊗ ( ( ) ∧ )
;

1. 

on ′ ∈ Dia ↪ [Dia, Top * /] its value is given by the following coend expression (def. 1.28)2. 

( )( ′ ) ≃

∈

Dia( ⊗ , ′) ∧ ∧ .

In particular the structured sphere spectrum is the free spectrum in degree 0 on the 0-sphere:

≃

and generally for ∈ Top * / then

≃ ∧

is the smash tensoring of the strutured sphere spectrum with .

(Hovey-Shipley-Smith 00, below def. 2.2.5, MMSS00, p. 7 with theorem 2.2)

Proof. Under the equivalence of categories

Mod ≃ [ Free Mod , Top * /]

from prop. 2.19, the expression for  is equivalently the smash tensoring with  of the functor that 
represents over Free Mod:

≃ ( ) ∧

≃ Free Mod(−, ∧ ( )) ∧

(by fully faithfulness of the Yoneda embedding).
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This way the first statement is a special case of the following general fact: For  a pointed topologically
enriched category, and for ∈  any object, then there is an adjunction

[ , Top * /] ⊥ →⎯⎯⎯⎯⎯⎯
(−)

←⎯⎯⎯⎯⎯⎯
( )∧(−)

Top * /

(saying that evaluation at  is right adjoint to smash tensoring the functor represented by ) witnessed by
the following composite natural isomorphism:

[ , Top * /]( ( ) ∧ , ) ≃ Maps( , [ , Top * /]( ( ), ))
*
≃ Maps( , ( ))

*
= Top * /( , ( )) .

The first is the characteristic isomorphism of tensoring from prop. 1.37, while the second is the enriched
Yoneda lemma of prop. 1.32.

From this, the second statement follows by the proof of prop. 2.19.

For the last statement it is sufficient to observe that (0) is the tensor unit under Day convolution by prop.
1.44 (since 0 is the tensor unit in Dia), so that

= ⊗ ( (0) ∧ )

≃ ⊗ ( )

≃

.

  ▮

Proposition 2.27. Explicitly, the free spectra according to def. 2.25, look as follows:

For sequential spectra:

( ) ≃
− ∧ if ≥

* otherwise

for symmetric spectra:

( ) ≃
( )+ ∧ ( − )

− ∧ if ≥

* otherwise

for orthogonal spectra:

( ) ≃
( )+ ∧ ( − ) ∧

− ∧ if ≥

* otherwise
,

where “∧ ” is as in example 1.29.

(e.g. Schwede 12, example 3.20)

Proof. With the formula in item 2 of lemma 2.26 we have for the case of orthogonal spectra

( )(ℝ ) ≃ ∫
∈

Orth( + , )

=
( )+ + =

*

∧ ∧

≃
∫

= * ∈ ( ( − ))

( )+ ∧
( − )

− ∧ if ≥

* otherwise

,

where in the second line we used that the coend collapses to = −  ranging in the full subcategory

( ( − )+) ↪ Orth

on the object ℝ −  and then we applied example 1.29. The case of symmetric spectra is verbatim the same,
with the symmetric group replacing the orthogonal group, and the case of sequential spectra is again
verbatim the same, with the orthogonal group replaced by the trivial group.  ▮

Lemma 2.28. For Dia ∈ {Orth, Sym, Seq} the diagram shape for orthogonal spectra, symmetric spectra or
sequential spectra, then the free structured spectra

∈ Mod

from def. 2.25 have component spaces that admit the structure of CW-complexes.
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Proof. We consider the case of orthogonal spectra. The case of symmetric spectra works verbatim the
same, and the case of sequential spectra is tivial.

By prop. 2.27 we have to show that for all ≥ ∈ ℕ the topological spaces of the form

( )+ ∧ ( − )
− ∈ Top * /

admit the structure of CW-complexes.

To that end, use the homeomorphism

− ≃ − / ∂ −

which is a diffeomorphism away from the basepoint and hence such that the action of the orthogonal group
( − ) induces a smooth action on −  (which happens to be constant on ∂ − ).

Also observe that we may think of the above quotient by the group action

( , ) ≃ ( , )

as being the quotient by the diagonal action

( − ) × ( ( )+ ∧
− ) ⟶ ( ( )+ ∧

− )

given by

( , ( , )) ↦ ( − , ) .

Using this we may rewrite the space in question as

( ( )+ ∧ ( − )
− ) ≃ ( ( )+ ∧

− )/ ( − )

≃
( )× −

( )× − / ( − )

≃
( )× −

( ( )× − )
/ ( − )

≃
( ( )× − )/ ( − )

( ( ( )× − ))/ ( − )

.

Here ( ) × −  has the structure of a smooth manifold with boundary and equipped with a smooth action
of the compact Lie group ( − ). Under these conditions (Illman 83, corollary 7.2) states that ( ) × −

admits the structure of a G-CW complex for = ( − ), and moreover (Illman 83, line above theorem 7.1)
states that this may be chosen such that the boundary is a -CW subcomplex.

Now the quotient of a -CW complex by  is a CW complex, and so the last expression above exhibits the
quotient of a CW-complex by a subcomplex, hence exhibits CW-complex structure.  ▮

Proposition 2.29. Let Dia ∈ {Top ,
* / , Orth, Sym} be the diagram shape of either pre-excisive functors,

orthogonal spectra or symmetric spectra. Then under the symmetric monoidal smash product of spectra
(def. 2.1, def. 2.1, def.2.9) the free structured spectra of def. 2.25 behave as follows

( ) ⊗ ( ) ≃ + ( ∧ ) .

In particular for structured suspension spectra ≔  (def. 2.25) this gives isomorphisms

( ) ⊗ ( ) ≃ ( ∧ ) .

Hence the structured suspension spectrum functor  is a strong monoidal functor (def. 1.47) and in fact
a braided monoidal functor (def. \ref{braided monoidal functor}) from pointed topological spaces
equipped with the smash product of pointed objects, to structured spectra equipped with the symmetric
monoidal smash product of spectra

: (Top * /, ∧ , ) ⟶ ( Mod, ⊗ , ) .

More generally, for ∈ Mod then

⊗ ( ) ≃ ∧ ,

where on the right we have the smash tensoring of  with ∈ Top * /.

(MMSS 00, lemma 1.8 with theorem 2.2, Mandell-May 02, prop. 2.2.6)

Proof. By lemma 2.26 the free spectra are free modules over the structured sphere spectrum  of the

Introduction to Stable homotopy theory -- 1-2 in nLab https://ncatlab.org/nlab/print/Introduction+to+Stable+homotopy+theor...

44 of 75 09.05.17, 15:55



form ( ) ≃ ⊗ ( ( ) ∧ ). By example 1.23 the tensor product of such free modules is given by

⊗ ( ( ) ∧ ) ⊗ ⊗ ( ( ) ∧ ) ≃ ⊗ ( ( ) ∧ )⊗ ( ( ) ∧ ) .

Using the co-Yoneda lemma (prop. 1.33) the expression on the right is

( ( ) ∧ )⊗ ( ( ) ∧ ) ( ) = ∫
,

Dia( + , ) ∧ ( )( ) ∧ ∧ ( )( ) ∧

≃ ∫
,

Dia( + , ) ∧ Dia( , ) ∧ Dia( , ) ∧ ∧

≃ Dia( + , ) ∧ ∧

≃ ( ( + ) ∧ ( ∧ ))( )

.

For the last statement we may use that ≃ ∧ , by lemma 2.26), and that  is the tensor unit for
⊗  by prop. 1.22.

To see that  is braided, write ≃ ∧ . We need to see that

( ∧ )⊗ ( ∧ ) ⟶ ( ∧ )⊗ ( ∧ )

↓ ↓

∧ ( ∧ ) ⟶ ∧ ( ∧ )

commutes. Chasing the smash factors through this diagram and using symmetry (def. 1.5) and the hexagon
identities (def. 1.4) shows that indeed it does.  ▮

One use of free spectra is that they serve to co-represent adjuncts of structure morphisms of spectra. To
this end, first consider the following general existence statement.

Lemma 2.30. For each ∈ ℕ there exists a morphism

: + ⟶

between free spectra (def. 2.25) such that for every structured spectrum ∈ Mod precomposition *

forms a commuting diagram of the form

Mod( , ) ≃ Top * /( , ) ≃

↓
*

↓ ˜

Mod( + , ) ≃ Top * /( , + ) ≃ +

,

where the horizontal equivalences are the adjunction isomorphisms and the canonical identification, and
where the right morphism is the ( ⊣ )-adjunct of the structure map  of the sequential spectrum seq*

underlying  (def. 2.4).

Proof. Since all prescribed morphisms in the diagram are natural transformations, this is in fact a diagram
of copresheaves on Mod

Mod( , −) ≃ Top * /( , (−) ) ≃ (−)

↓ ↓ ˜
(−)

Mod( + , −) ≃ Top * /( , (−) + ) ≃ (−) +

.

With this the statement follows by the Yoneda lemma.  ▮

Now we say explicitly what these maps are:

Definition 2.31. For ∈ ℕ, write

: + ⟶

for the adjunct under the (free structured spectrum ⊣ -component)-adjunction in def. 2.25 of the
composite morphism

→= ( ( )) + ⎯⎯⎯⎯⎯⎯⎯
( ) +

( ) + ,

where the first morphism is via prop. 2.27 and the second comes from the adjunction units according to
def. 2.25.

(MMSS 00, def. 8.4, Schwede 12, example 4.26)

Introduction to Stable homotopy theory -- 1-2 in nLab https://ncatlab.org/nlab/print/Introduction+to+Stable+homotopy+theor...

45 of 75 09.05.17, 15:55



Lemma 2.32. The morphisms of def. 2.31 are those whose existence is asserted by prop. 2.30.

(MMSS 00, lemma 8.5, following Hovey-Shipley-Smith 00, remark 2.2.12)

Proof. Consider the case Dia = Seq and = 0. All other cases work analogously.

By lemma 2.27, in this case the morphism  has components like so:

⋮ ⋮

⟶

⟶

⟶

* ⟶

⏟ ⏟

⟶

.

Now for  any sequential spectrum, then a morphism : →  is uniquely determined by its 0th
components : →  (that’s of course the very free property of ); as the compatibility with the

structure maps forces the first component, in particular, to be ∘ :

⟶

↓≃ ↓

→⎯⎯⎯⎯⎯
∘

But that first component is just the component that similarly determines the precompositon of  with ,
hence *  is fully fixed as being the map ∘ . Therefore *  is the function

* : = Maps( , ) →⎯⎯⎯⎯⎯⎯⎯⎯
↦ ∘

Maps ( , ) = .

It remains to see that this is the ( ⊣ )-adjunct of . By the general formula for adjuncts, this is

˜ : ⟶ →⎯⎯⎯ .

To compare to the above, we check what this does on points: ⟶  is sent to the composite

⟶ ⟶ →⎯⎯⎯ .

To identify this as a map →  we use the adjunction isomorphism once more to throw all the -s on the
right back to -s the left, to finally find that this is indeed

∘ : = ⟶ ⟶ .

  ▮

Lemma 2.33. The maps : + ⟶  in def. 2.31 are

stable weak homotopy equivalences for sequential spectra, orthogonal spectra and pre-excisive
functors, i.e. for Dia ∈ {Top * / , Orth, Seq};

1. 

not stable weak homotopy equivalences for the case of symmetric spectra Dia = Sym.2. 

(Hovey-Shipley-Smith 00, example 3.1.10, MMSS 00, lemma 8.6, Schwede 12, example 4.26)

Proof. This follows by inspection of the explicit form of the maps, via prop. 2.27. We discuss each case
separately:

sequential case

Here the components of the morphism eventually stabilize to isomorphisms
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⋮ ⋮

( ) + ⟶

( ) + ⟶

( ) + ⟶

( ) : * ⟶

* ⟶ *

⋮ ⋮

* ⟶ *
⏟ ⏟

: + ⟶

and this immediately gives that  is an isomorphism on stable homotopy groups.

orthogonal case

Here for ≥ + 1 the -component of  is the quotient map

( ) : ( )+ ∧ ( − − )
− ≃ ( )+ ∧ ( − − ) ∧ − − ⟶ ( )+ ∧ ( − )

− .

By the suspension isomorphism for stable homotopy groups,  is a stable weak homotopy equivalence
precisely if any of its suspensions is. Hence consider instead ≔ ∧ , whose -component is

( ) : ( )+ ∧ ( − − ) ⟶ ( )+ ∧ ( − ) .

Now due to the fact that ( − )-action on  lifts to an ( )-action, the quotients of the diagonal action of
( − ) equivalently become quotients of just the left action. Formally this is due to the existence of the

commuting diagram

( )+ ∧ ⟶ ( )+ ∧ ⟶ ( )+ ∧

↓ ↓ ↓

( )+ ∧ ( − ) ⟶ ( )+ ∧ ( ) ⟶≃

which says that the image of any ( , ) ∈ ( )+ ∧  in the quotient ( )+ ∧ ( − )  is labeled by ([ ], ).

It follows that ( )  is the smash product of a projection map of coset spaces with the identity on the

sphere:

( ) ≃ proj+ ∧ id : ( )/ ( − − 1)+ ∧ ⟶ ( )/ ( − )+ ∧ .

Now finally observe that this projection function

proj : ( )/ ( − − 1) ⟶ ( )/ ( − )

is ( − − 1)-connected (see here). Hence its smash product with  is (2 − − 1)-connected.

The key here is the fast growth of the connectivity with . This implies that for each  there exists  such
that + (( ) ) becomes an isomorphism. Hence  is a stable weak homotopy equivalence and

therefore so is .

symmetric case

Here the morphism  has the same form as in the orthogonal case above, except that all occurences of
orthogonal groups are replaced by just their sub-symmetric groups.

Accordingly, the analysis then proceeds entirely analogously, with the key difference that the projection

( )/ ( − − 1) ⟶ ( )/ ( − )

does not become highly connected as  increases, due to the discrete topological space underlying the
symmetric group. Accordingly the conclusion now is the opposite:  is not a stable weak homotopy
equivalence in this case.  ▮

Another use of free spectra is that their pushout products may be explicitly analyzed, and checking the
pushout-product axiom for general cofibrations may be reduced to checking it on morphisms between free
spectra.

Lemma 2.34. The symmetric monoidal smash product of spectra of the free spectrum constructions (def.
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2.25) on the generating cofibrations { − ↪ } ∈  of the classical model structure on topological spaces

is given by addition of indices

( )□ ( ℓ ) ≃ +ℓ( + ) .

Proof. By lemma 2.29 the commuting diagram defining the pushout product of free spectra

+
− ∧ ℓ +

−

↙ ↘

+ ∧ ℓ +
−

+
− ∧ ℓ +

−

↘ ↙

+
− ∧ +

−

is equivalent to this diagram:

+ℓ((
− × − )+)

↙ ↘

+ℓ(( × − )+) +ℓ((
− × )+)

↘ ↙

+ℓ(( × )+)

.

Since the free spectrum construction is a left adjoint, it preserves pushouts, and so

( )□ ( ℓ ) ≃ +ℓ( □ ) ≃ +ℓ( + ) ,

where in the second step we used this lemma.  ▮

3. The strict model structure on structured spectra

Theorem 3.1. The four categories of

pre-excisive functors Exc(Top );1. 

orthogonal spectra OrthSpec(Top ) = Mod;2. 

symmetric spectra SymSpec(Top ) = Mod;3. 

sequential spectra SeqSpec(Top ) = Mod4. 

(from def. 2.1, prop. 2.8, def. 2.9) each admit a model category structure (def.) whose weak equivalences
and fibrations are those morphisms which induce on all component spaces weak equivalences or
fibrations, respectively, in the classical model structure on pointed topological spaces (Top * /) . (thm.,

prop.). These are called the strict model structures (or level model structures) on structured spectra.

Moreover, under the equivalences of categories of prop. 2.8 and prop. 2.12, the restriction functors in def.
2.4 constitute right adjoints of Quillen adjunctions (def.) between these model structures:

Exc(Top ) OrthSpec(Top ) SymSpec(Top ) SeqSpec(Top )

↓≃ ↓≃ ↓≃ ↓≃

Mod ⊥→⎯⎯⎯
*

←⎯⎯⎯!
Mod ⊥→⎯⎯⎯

*

←⎯⎯⎯!
Mod ⊥→⎯⎯⎯

*

←⎯⎯⎯!
Mod

.

(MMSS 00, theorem 6.5)

Proof. By prop. 2.19 all four categories are equivalently categories of pointed topologically enriched
functors

Mod ≃ [ Free Mod, Top * /]

and hence the existence of the model structures with componentwise weak equivalences and fibrations is a
special case of the general existence of the projective model structure on enriched functors (thm.).

The three restriction functors dia* each have a left adjoint dia! by topological left Kan extension (prop. 1.38).

Moreover, the three right adjoint restriction functors are along inclusions of objects, hence evidently
preserve componentwise weak equivalences and fibrations. Hence these are Quillen adjunctions.  ▮
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Definition 3.2. Recall the sets

* / ≔ { +
− ⎯⎯⎯

( )+
+} ∈ℕ

* / ≔ { + ⎯⎯⎯
( )+

( × )+} ∈ℕ

of generating cofibrations and generating acyclic cofibrations, respectively, of the classical model structure
on pointed topological spaces (def.)

Write

≔ (( )+) ∈ , ∈ℕ

for the set of images under forming free spectra, def. 2.25, on the morphisms in * /  from above.

Similarly, write

≔ (( )+) ,

for the set of images under forming free spectra of the morphisms in * / .

Proposition 3.3. The sets  and  from def. 3.2 are, respectively sets of generating cofibrations and

generating acyclic cofibrations that exhibit the strict model structure Mod  from theorem 3.1 as a
cofibrantly generated model category (def.).

(MMSS 00, theorem 6.5)

Proof. By theorem 3.1 the strict model structure is equivalently the projective pointed model structure on
topologically enriched functors

Mod ≃ [ Free Mod , Top * /]

of the opposite of the category of free spectra on objects in ↪ [ , Top * /].

By the general discussion in Part P -- Classical homotopy theory (this theorem) the projective model
structure on functors is cofibrantly generated by the smash tensoring of the representable functors with the
elements in * /  and * / . By the proof of lemma 2.26, these are precisely the morphisms of free spectra

in  and , respectively.  ▮

Topological enrichment

By the general properties of the projective model structure on topologically enriched functors, theorem 3.1
implies that the strict model category of structured spectra inherits the structure of an enriched model
category, enriched over the classical model structure on pointed topological spaces. This proceeds verbatim
as for sequential spectra (in part 1.1 – Topological enrichement), but for ease of reference we here make it
explicit again.

Definition 3.4. Let Dia ∈ {Top ,
* / , Orth, Sym, Seq} one of the shapes for structured spectra from def. 2.4.

Let : →  be a morphism in Mod (as in prop. 3.1) and let : →  a morphism in Top * /.

Their pushout product with respect to smash tensoring is the universal morphism

□ ≔ ((id, ), ( , id))

in

∧

( , ) ↙ ↘( , )

∧ (po) ∧

↘ ↙

( ∧ ) ⊔
∧
( ∧ )

↓(( , ),( , ))

∧

,

where

(−) ∧ (−) : Mod × Top * / ≃ [ Fre Mod , Top * /] × Top * / ⟶ [ Fre Mod , Top * /] ≃ Mod

denotes the smash tensoring of pointed topologically enriched functors with pointed topological spaces
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(def.)

Dually, their pullback powering is the universal morphism

□ ≔ (Maps( , )
*
, Maps( , )

*
)

in

Maps( , )
*

↓( ( , )
*
, ( , )

*
)

Maps( , )
*

×
( , )

*

Maps( , )
*

↙ ↘

Maps( , )
*

(pb) Maps( , )
*

( , )
*
↘ ↙ ( , )

*

Maps( , )
*

,

where

Maps(−, −)
*
: (Top* ) × Mod ≃ (Top * /) × [ Free Mod , Top * /] ⟶ [ Free Mod , Top * /] ≃ Mod

denotes the smash powering (def.).

Finally, for : →  and : →  both morphisms in Mod, then their pullback powering is the universal
morphism

□ ≔ ( Mod( , ), Mod( , ))

in

Mod( , )

↓( ( , ), ( , ))

Mod( , ) ×
( , )

Mod( , )

↙ ↘

Mod( , ) (pb) Mod( , )

( , ) ↘ ↙ ( , )

Mod( , )

,

where now Mod(−, −) is the hom-space functor of Mod ≃ [ Free Mod , Top * /] from def. 1.31.

Proposition 3.5. The operations of forming pushout products and pullback powering with respect to smash
tensoring in def. 3.4 is compatible with the strict model structure Mod  on structured spectra from
theorem 3.1 and with the classical model structure on pointed topological spaces (Top * /)  (thm.,

prop.) in that pushout product takes two cofibrations to a cofibration, and to an acyclic cofibration if at
least one of the inputs is acyclic, and pullback powering takes a fibration and a cofibration to a fibration,
and to an acylic one if at least one of the inputs is acyclic:

Cof □ Cof ⊂ Cof

Cof □ (Cof □ ) ⊂ Cof ∩

(Cof ∩ )□ Cof ⊂ Cof ∩

.

Dually, the pullback powering (def. 3.4) satisfies

Fib
□

⊂ Fib

Fib
□( ∩ )

⊂ Fib ∩

(Fib ∩ )□ ⊂ Fib ∩

.

Proof. The statement concering the pullback powering follows directly from the analogous statement for
topological spaces (prop.) by the fact that, via theorem 3.1, the fibrations and weak equivalences in

Mod  are degree-wise those in (Top * /) , and since smash tensoring and powering is defined

degreewise. From this the statement about the pushout product follows dually by Joyal-Tierney calculus
(prop.).  ▮

Remark 3.6. In the language of model category-theory, prop. 3.5 says that Mod  is an enriched
model category, the enrichment being over (Top * /) . This is often referred to simply as a “topological
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model category”.

We record some immediate consequences of prop. 3.5 that will be useful.

Proposition 3.7. Let ∈ Top*  be a retract of a cell complex (def.), then the smash-tensoring/powering

adjunction from prop. 1.37 is a Quillen adjunction (def.) for the strict model structure from theorem 3.1

Mod(Top ) ⊥ →⎯⎯⎯⎯⎯⎯⎯⎯
( , −)

*

←⎯⎯⎯⎯⎯⎯⎯⎯
(−)∧

Mod(Top ) .

Proof. By assumption,  is a cofibrant object in the classical model structure on pointed topological spaces
(thm., prop.), hence * →  is a cofibration in (Top * /) . Observe then that the the pushout product of any

morphism  with * →  is equivalently the smash tensoring of  with :

□( * → ) ≃ ∧ .

This way prop. 3.5 implies that (−) ∧  preserves cofibrations and acyclic cofibrations, hence is a left Quillen
functor.  ▮

Lemma 3.8. Let ∈ Mod  be a structured spectrum, regarded in the strict model structure of theorem
3.1.

The smash powering of  with the standard topological interval + (exmpl.) is a good path space
object (def.)

: →⎯⎯⎯⎯⎯⎯
∈

+ →⎯⎯⎯⎯⎯⎯⎯
∈

× .

1. 

If  is cofibrant, then its smash tensoring with the standard topological interval + (exmpl.) is a good
cylinder object (def.)

∇ : ∨ →⎯⎯⎯⎯⎯⎯⎯⎯
∈

∧ ( +) →⎯⎯⎯⎯⎯⎯
∈

.

2. 

Proof. It is clear that we have weak equivalences as shown ( → *  is even a homotopy equivalence), what
requires proof is that the path object is indeed good in that ( +) → ×  is a fibration, and the cylinder
object is indeed good in that ∨ → ∧ ( +) is indeed a cofibration.

For the first statement, notice that the pullback powering (def. 3.4) of * ⊔ * →⎯⎯⎯⎯
( , )

 into the terminal
morphism → *  is the same as the powering ( , ):

(( → * )
□( , )) ≃ ( , ) , .

But since every object in Mod  is fibrant, so that → *  is a fibration, and since ( , ) is a relative cell

complex inclusion and hence a cofibration in (Top * /) , prop. 3.5 says that ( , ) : + → ×  is a fibration.

Dually, observe that

( * → )□ ( , ) ≃ ∧ ( , ) .

Hence if  is assumed to be cofibrant, so that * →  is a cofibration, then prop. 3.5 implies that
∧ ( , ) : ∧ → ∧ ( +) is a cofibration.  ▮

Proposition 3.9. For ∈ Mod a structured spectrum, ∈ Mor( Mod) any morphism of structured

spectra, and for ∈ Mor(Top * / ) a morphism of pointed topological spaces, then the hom-spaces of def.
1.31 (via prop. 2.19) interact with the pushout-product and pullback-powering from def. 3.4 in that there
is a natural isomorphism

Mod( □ , ) ≃ ( Mod( , ))□ .

Proof. Since the pointed compactly generated mapping space functor (exmpl.)

Maps(−, −)
*
: Top * / × Top * / ⟶Top * /

takes colimits in the first argument to limits (cor.) and ends in the second argument to ends (remark 1.36),
and since limits and colimits in Mod are computed objectswise (this prop. via prop. 2.19) this follows
with the end-formula for the mapping space (def. 1.31):

Introduction to Stable homotopy theory -- 1-2 in nLab https://ncatlab.org/nlab/print/Introduction+to+Stable+homotopy+theor...

51 of 75 09.05.17, 15:55



Mod( □ , ) = ∫Maps(( □ )( ), ( ))
*

≃ ∫Maps( ( )□ , ( ))
*

≃ ∫Maps( ( ), ( ))
*
□

≃ ∫Maps( ( ), ( ))
*

□

≃ ( Mod( , ))□

.

  ▮

Proposition 3.10. For , ∈ Mod(Top ) two structured spectra with  cofibrant in the strict model

structure of def. 3.1, then there is a natural bijection

Mod( , ) ≃ [ , ]

between the connected components of the hom-space (def. 1.31 via prop. 2.19) and the hom-set in the
homotopy category (def.) of the strict model structure from theorem 3.1.

Proof. By prop. 1.37 the path components of the hom-space are the left homotopy classes of morphisms of
structured spectra with respect to the standard cylinder spectrum ∧ ( +):

+ ⟶ SeqSpec( , )
∧ ( +) ⟶

.

Moreover, by lemma 3.8 the degreewise standard reduced cylinder ∧ ( +) of structured spectra is a good
cylinder object on  in Mod . Hence hom-sets in the strict homotopy category out of a cofibrant into a
fibrant object are given by standard left homotopy classes of morphisms

[ , ] ≃ Hom ( , )/ ∼

(this lemma). Since  is cofibrant by assumption and since every object is fibrant in Mod , this is the
case. Hence the notion of left homotopy here is that seen by the standard interval, and so the claim
follows.  ▮

Monoidal model structure

We now combine the concepts of model category (def.) and monoidal category (def. 1.1).

Given a category  that is equipped both with the structure of a monoidal category and of a model category,
then one may ask whether these two structures are compatible, in that the left derived functor (def.) of the
tensor product exists to equip also the homotopy category with the structure of a monoidal category. If so,
then one may furthermore ask if the localization functor : ⟶ Ho( ) is a monoidal functor (def. 1.47).

The axioms on a monoidal model category (def. 3.11 below) are such as to ensure that this is the case.

A key consequence is that, via prop. 1.50, for a monoidal model category the localization functor  carries
monoids to monoids. Applied to the stable model category of spectra established below, this gives that
structured ring spectra indeed represent ring spectra in the homotopy category. (In fact much more is true,
but requires further proof: there is also a model structure on monoids in the model structure of spectra, and
with respect to that the structured ring spectra represent A-infinity rings/E-infinity rings.)

Definition 3.11. A (symmetric) monoidal model category is a model category  (def.) equipped with the
structure of a closed (def. 1.7) symmetric (def. 1.5) monoidal category ( , ⊗ , ) (def. 1.1) such that the
following two compatibility conditions are satisfied

(pushout-product axiom) For every pair of cofibrations : →  and ′ : ′ → ′, their pushout-
product, hence the induced morphism out of the cofibered coproduct over ways of forming the tensor
product of these objects

□⊗ ≔ ( ⊗ ′) ⊔
⊗

( ⊗ ′) ⟶ ⊗ ′ ,

is itself a cofibration, which, furthermore, is acyclic if at least one of  or ′ is.

(Equivalently this says that the tensor product ⊗ : × →  is a left Quillen bifunctor.)

1. 

(unit axiom) For every cofibrant object  and every cofibrant resolution ∅ →⎯⎯⎯
∈

1 →⎯⎯
∈

1 of the tensor

unit 1, the resulting morphism

1⊗ →⎯⎯⎯⎯
⊗

1⊗ →⎯⎯⎯⎯⎯⎯
ℓ

∈ ⊂

2. 
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is a weak equivalence.

(Hovey 99, def. 4.2.6 Schwede-Shipley 00, def. 3.1, remark 3.2)

Observe some immediate consequences of these axioms:

Remark 3.12. Since a monoidal model category (def. 3.11) is assumed to be closed monoidal (def. 1.7), for
every object  the tensor product ⊗ (−) ≃ (−)⊗  is a left adjoint and hence preserves all colimits. In
particular it preserves the initial object ∅ (which is the colimit over the empty diagram).

If follows that the tensor-pushout-product axiom in def. 3.11 implies that for  a cofibrant object, then the
functor ⊗(−) preserves cofibrations and acyclic cofibrations, since

□⊗ (∅ → ) ≃ ⊗ .

This implies that if the tensor unit 1 happens to be cofibrant, then the unit axiom in def. 3.11 is already
implied by the pushout-product axiom. This is because then we have a lift in

∅ ⟶ 1

∈ ↓ ↗ ↓∈

1 = 1

.

This lift is a weak equivalence by two-out-of-three (def.). Since it is hence a weak equivalence between
cofibrant objects, it is preserved by the left Quillen functor (−)⊗  (for any cofibrant ) by Ken Brown's
lemma (prop.). Hence now ⊗  is a weak equivalence by two-out-of-three.

Since for all the categories of spectra that we are interested in here the tensor unit is always cofibrant (it
is always a version of the sphere spectrum, being the image under the left Quillen functor  of the
cofibrant pointed space , prop. 3.18), we may ignore the unit axiom.

Proposition 3.13. Let ( , ⊗ , ) be a monoidal model category (def. 3.11) with cofibrant tensor unit 1.

Then the left derived functor ⊗  (def.) of the tensor product ⊗ exsists and makes the homotopy category
(def.) into a monoidal category (Ho( ), ⊗ , (1)) (def. 1.1) such that the localization functor : → Ho( )
(thm.) on the category of cofibrant objects (def.) carries the structure of a strong monoidal functor (def.
1.47)

: ( , ⊗ , 1) ⟶ (Ho( ), ⊗ , (1)) .

The first statement is also for instance in (Hovey 99, theorem 4.3.2).

Proof. For the left derived functor (def.) of the tensor product

⊗ × ⟶

to exist, it is sufficient that its restriction to the subcategory

( × ) ≃ ×

of cofibrant objects preserves acyclic cofibrations (by Ken Brown's lemma, here).

Every morphism ( , ) in the product category ×  (def. 1.26) may be written as a composite of a pairing
with an identity morphisms

( , ) : ( , ) →⎯⎯⎯⎯⎯⎯
( , )

( , ) →⎯⎯⎯⎯⎯
( , )

( , ) .

Now since the pushout product (with respect to tensor product) with the initial morphism ( * → ) is
equivalently the tensor product

( * → )□⊗ ≃ id ⊗

and

□⊗ ( * → ) ≃ ⊗ id

the pushout-product axiom (def. 3.11) implies that on the subcategory of cofibrant objects the functor ⊗
preserves acyclic cofibrations. (This is why one speaks of a Quillen bifunctor, see also Hovey 99, prop.
4.3.1).

Hence ⊗  exists.

By the same decomposition and using the universal property of the localization of a category (def.) one finds
that for  and  any two categories with weak equivalences (def.) then the localization of their product
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category is the product category of their localizations:

( × )[( × )− ] ≃ ( [ − ]) × ( [ − ]) .

With this, the universal property as a localization (def.) of the homotopy category of a model category
(thm.) induces associators  and unitors ℓ ,  on (Ho( , ⊗ )):

First write

: (−)⊗ (−) ⟶≃ ((−)⊗ (−))

for (the inverse of) the corresponding natural isomorphism in the localization diagram

× ⟶
⊗

× ↓ ⇙
−

↓

Ho( ) × Ho( ) ⟶
⊗

Ho( )

.

Then consider the associators:

The essential uniqueness of derived functors shows that the left derived functor of (−)⊗ ((−)⊗ (−)) and of
((−)⊗ (−))⊗ (−) is the composite of two applications of ⊗ , due to the factorization

× × →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
(−)⊗((−)⊗(−))

× × ↓ ⇙ ↓

Ho( ) × Ho( ) × Ho( ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
((−)⊗((−)⊗(−)))

Ho( )

≃

× × →⎯⎯⎯⎯
×⊗

× ⟶
⊗

× × ↓ ⇙ × −
× ↓ ⇙ − ↓

Ho( ) × Ho( ) × Ho( ) →⎯⎯⎯⎯⎯
× ⊗

Ho( ) × Ho( ) ⟶
⊗

Ho( )

and similarly for the case with the parenthesis to the left.

So let

× × →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
((−)⊗(−))⊗(−)

× × ↓ ⇙ − ⋅ ( − × ) ↓

Ho( ) × Ho( ) × Ho( ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
((−) ⊗ (−)) ⊗ (−)

Ho( )

,

× × →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
(−)⊗((−)⊗(−))

× × ↓ ⇙ − ⋅ ( × − ) ↓

Ho( ) × Ho( ) × Ho( ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
(−)⊗ ((−) ⊗ (−))

Ho( )

be the natural isomorphism exhibiting the derived functors of the two possible tensor products of three
objects, as shown at the top. By pasting the second with the associator natural isomorphism of  we obtain
another such factorization for the first, as shown on the left below,

( ⋆ )

× × →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
((−)⊗(−))⊗(−)

= ↓ ⇙ ↓=

× × →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
(−)⊗((−)⊗(−))

× × ↓ ⇙ − ⋅ ( × − ) ↓

Ho( ) × Ho( ) × Ho( ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
(−) ⊗ ((−) ⊗ (−))

Ho( )

=

× × →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
((−)⊗(−))⊗(−)

× × ↓ ⇙ − ⋅ ( × ) ↓

Ho( ) × Ho( ) × Ho( ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
((−) ⊗ (−)) ⊗ (−)

Ho( )

= ↓ ⇙ ↓=

Ho( ) × Ho( ) × Ho( ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
(−) ⊗ ((−)⊗ (−))

Ho( )

and hence by the universal property of the factorization through the derived functor, there exists a unique
natural isomorphism  such as to make this composite of natural isomorphisms equal to the one shown on
the right. Hence the pentagon identity satisfied by  implies a pentagon identity for , and so  is an
associator for ⊗ .

Moreover, this equation of natural isomorphisms says that on components the following diagram commutes

( ( ) ⊗ ( ))⊗ ( ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( ), ( ), ( )

( ) ⊗ ( ( )⊗ ( ))

− ⋅ ( − × ) ↑ ↑
− ⋅ ( × − )

(( ⊗ )⊗ ) →⎯⎯⎯
( )

( ⊗ ( ⊗ ))

.

This is just the coherence law for the the compatibility of the monoidal functor  with the associators.

Similarly consider now the unitors.
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The essential uniqueness of the derived functors gives that the left derived functor of 1⊗ (−) is (1) ⊗ (−)

→⎯⎯⎯⎯⎯
⊗(−)

↓ ↓

Ho( ) →⎯⎯⎯⎯⎯⎯⎯
( ⊗(−))

Ho( )

≃

→⎯⎯⎯
( , )

× ⟶
⊗

↓ × ↓ ⇙ − ↓

Ho( ) →⎯⎯⎯⎯⎯⎯
( ( ), )

Ho( ) × Ho( ) ⟶
⊗

Ho( )

.

Hence the left unitor ℓ of  induces a derived unitor ℓ  by the following factorization

→⎯⎯⎯⎯⎯
⊗(−)

↓ ⇙ℓ ↓

⟶

↓ ↓

Ho( ) ⟶ Ho( )

=

→⎯⎯⎯⎯⎯
⊗(−)

↓ ⇙
, (−)
− ↓

Ho( ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯
( ) ⊗ (−)

Ho( )

= ↓ ⇙ℓ ↓=

Ho( ) ⟶ Ho( )

.

Moreover, in components this equation of natural isomorphism expresses the coherence law stating the
compatibility of the monoidal functor  with the unitors.

Similarly for the right unitors.  ▮

The restriction to cofibrant objects in prop. 3.13 serves the purpose of giving explicit expressions for the
associators and unitors of the derived tensor product ⊗  and hence to establish the monoidal category
structure (Ho( ), ⊗ , (1)) on the homotopy category of a monoidal model category. With that in hand, it is
natural to ask how the localization functor on all of  interacts with the monoidal structure:

Proposition 3.14. For ( , ⊗ , 1) a monoidal model category (def. 3.11) then the localization functor to its
monoidal homotopy category (prop. 3.13) is a lax monoidal functor

: ( , ⊗ , 1) ⟶ (Ho( ), ⊗ , (1)) .

The explicit proof of prop. 3.14 is tedious. An abstract proof using tools from homotopical 2-category theory
is here.

Definition 3.15. Given monoidal model categories ( , ⊗ , 1 ) and ( , ⊗ , 1 ) (def. 3.11) with cofibrant
tensor units 1  and 1 , then a strong monoidal Quillen adjunction between them is a Quillen
adjunction

⊥⟶
⟵

such that  (hence equivalently ) has the structure of a strong monoidal functor.

Proposition 3.16. Given a strong monoidal Quillen adjunction (def. 3.15)

⊥⟶
⟵

between monoidal model categories ( , ⊗ , 1 ) and ( , ⊗ , 1 ) with cofibrant tensor units 1  and 1 , then
the left derived functor of  canonically becomes a strong monoidal functor between homotopy categories

: (Ho( ), ⊗ , (1) ) ⟶ (Ho( ), ⊗ , (1) ) .

Proof. As in the proof of prop. 3.13, consider the following pasting composite of commuting diagams:

× ⟶
⊗

⟶

= ↓ ⇙≃ ↓=

× →⎯⎯
×

× ⟶
⊗

× ↓ ↓ × ↓

Ho( ) × Ho( ) →⎯⎯⎯⎯
×

Ho( ) × Ho( ) ⟶
⊗

Ho( )

≃

× ⟶
⊗

⟶

× ↓ ↓ ↓

Ho( ) × Ho( ) ⟶
⊗

Ho( ) ⟶ Ho( )

= ↓ ⇙≃ ↓=

Ho( ) × Ho( ) →⎯⎯⎯⎯
×

Ho( ) × Ho( ) ⟶
⊗

Ho( )

.

On the top left we have the natural transformation that exhibits  as a strong monoidal functor. By
universality of localization and derived functors (def.) this induces the unique factorization through the
natural transformation on the bottom right. This exhibits strong monoidal structure on the left derived
functor .  ▮
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With some general monoidal homotopy theory established, we now discuss that structured spectra indeed
constitute an example. The version of the following theorem for the stable model structure of actual interest
is theorem 4.14 further below.

Theorem 3.17.

The classical model structure on pointed topological spaces equipped with the smash product is a
monoidal model category

((Top * /) , ∧ , ) .

1. 

Let Dia ∈ {Top ,
* / , Orth, Sym}. The strict model structures on structured spectra modeled on Dia from

theorem 3.1 equipped with the symmetric monoidal smash product of spectra (def. 2.1, def. 2.9) is a
monoidal model category (def. 3.11)

Mod , ∧ = ⊗ , .

2. 

(MMSS 00, theorem 12.1 (iii) with prop. 12.3)

Proof. By cofibrant generation of both model structures (this theorem and prop. 3.3) it is sufficient to check
the pushout-product axiom on generating (acylic) cofibrations (this is as in the proof of this proposition).

Those of Top * / are as recalled in def. 4.4. These satisfy (exmpl.) the relations

□ = +

and

□ = + .

This shows that

* / □⊗ * / ⊂ * /

and

* / □⊗ * / ⊂ * /

which implies the pushout-product axiom for Top * /. (However the monoid axiom (def.\ref{MonoidAxiom}) is
problematic.)

Now by def. 3.2 the generating (acyclic) cofibrations of Mod  are of the form ( )+ and ( )+,

respectively. By prop. 2.29 these satisfy

( )+ □∧ ( )+ ≃ + ( □∧ )+

and

( )+ □ ( )+ ≃ + ( □ )+ .

Hence with the previous set of relations this shows that

□⊗ ⊂

and

□⊗ ⊂

and so the pushout-product axiom follows also for Mod .

It is clear that in both cases the tensor unit is cofibrant: for Top * / the tensor unit is the 0-sphere, which
clearly is a CW-complex and hence cofibrant. For Mod the tensor unit is the standard sphere spectrum,
which, by prop. 2.26 is the free structured spectrum (def. 2.25) on the 0-sphere

≃ ( ) .

Now the free structured spectrum functor is a left Quillen functor (prop. 3.18) and hence  is cofibrant.  ▮

Suspension and looping

For the strict model structure on topological sequential spectra, forming suspension spectra consitutes a
Quillen adjunction ( ⊣ ) with the classical model structure on pointed topological spaces (prop.) which is
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the precursor of the stabilization adjunction involving the stable model structure (thm.). Here we briefly
discuss the lift of this strict adjunction to structured spectra.

Proposition 3.18. Let Dia ∈ {Top ,
* / , Orth, Sym, Seq} be one of the shapes of structured spectra from def. 2.4.

For every ∈ ℕ, the functors Ev  of extracting the th component space of a structured spectrum, and
the functors  of forming the free structured spectrum in degree  (def. 2.25) constitute a Quillen
adjunction (def.) between the strict model structure on structured spectra from theorem 3.1 and the
classical model structure on pointed topological spaces (thm., prop.):

Mod ⊥→⎯⎯⎯⎯
←⎯⎯⎯⎯

(Top * /) .

For = 0 and writing ≔  and ≔ Ev ,  this yields a strong monoidal Quillen adjunction (def.
3.15)

Mod ⊥→⎯⎯⎯
←⎯⎯⎯

(Top * /) .

Moreover, these Quillen adjunctions factor as

( ⊣ ) : Mod(Top ) ⊥→⎯⎯⎯
*

←⎯⎯⎯!
SeqSpec(Top ) ⊥→⎯⎯

←⎯⎯
(Top * /)

where the Quillen adjunction (seq! ⊣ seq*) is that from theorem 3.1 and where ( ⊣ ) is the suspension

spectrum adjunction for sequential spectra (prop.).

Proof. By the very definition of the projective model structure on functors (thm.) it is immediate that Ev
preserves fibrations and weak equivalences, hence it is a right Quillen functor.  is its left adjoint by
definition.

That  is a strong monoidal functor is part of the statement of prop. 2.29.

Moreover, it is clear from the definitions that

≃ ∘ seq* ,

hence the last statement follows by uniqueness of adjoints.  ▮

Remark 3.19. In summary, we have established the following situation. There is a commuting diagram of
Quillen adjunctions of the form

(Top * /) ⊥⟶
⟵

(Top * /)

↓ ⊣ ↑ ↓ ⊣ ↑

SeqSpec(Top ) ⊥⟶
⟵

SeqSpec(Top )

! ↓ ⊣ ↑
*

! ↓ ⊣ ↑
*

Mod Mod

.

The top square stabilizes to the actual stable homotopy theory (thm.). On the other hand, the top square
does not reflect the symmetric monoidal smash product of spectra (by remark 2.6). But the total vertical
composite = dia!  does, in that it is a strong monoidal Quillen adjunction (def. 3.15) by prop. 3.18.

Hence to obtain a stable model category which is also a monoidal model category with respect to the
symmetric monoidal smash product of spectra, it is now sufficient to find such a monoidal model structure
on Mod such that (seq! ⊣ seq*) becomes a Quillen equivalence (def.)

This we now turn to in the section The stable model structure on structured spectra.

4. The stable model structure on structured spectra

Theorem 4.1. The category OrthSpec(Top ) of orthogonal spectra carries a model category structure (def.)

where

the weak equivalences  are the stable weak homotopy equivalences (def. 2.21);
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the cofibrations Cof  are the cofibrations of the strict model stucture of prop. 3.1;

the fibrant objects are precisely the Omega-spectra (def. 2.21).

Moreover, this is a cofibrantly generated model category (def.) with generating (acyclic) cofibrations the
sets  ( ) from def. 3.2.

(Mandell-May 02, theorem 4.2)

We give the proof below, after

Proof of the model structure

The generating cofibrations and acylic cofibrations are going to be the those induced via tensoring of
representables from the classical model structure on topological spaces (giving the strict model structure),
together with an additional set of morphisms to the generating acylic cofibrations that will force fibrant
objects to be Omega-spectra. To that end we need the following little preliminary.

Definition 4.2. For ∈ ℕ let

: + ⟶ Cyl( ) ⟶

be the factorization as in the factorization lemma of the morphism  of lemma 2.30 through its mapping
cylinder (prop.) formed with respect to the standard cylinder spectrum ( + ) ∧ ( +):

Notice that:

Lemma 4.3. The factorization in def. 4.2 is through a cofibration followed followed by a left homotopy
equivalence in Mod(Top )

Proof. Since the cell  is cofibrant in (Top * /) , and since + (−) is a left Quillen functor by prop. 3.18,

the free spectrum +  is cofibrant in Mod(Top ) . Therefore lemma 3.8 says that its standard

cylinder spectrum is a good cylinder object and then the factorization lemma (lemma) says that  is a
cofibration. Moreover, the morphism out of the standard mapping cylinder is a homotopy equivalence, with
homotopies induced under tensoring from the standard homotopy contracting the standard cylinder.  ▮

With this we may state the classes of morphisms that are going to be shown to be the classes of generating
(acyclic) cofibrations for the stable model structures:

Definition 4.4. Recall the sets of generating (acyclic) cofibrations of the strict model structre def. 3.2. Set

( ) ≔ ( )

and

( ) ≔ ( ) ⊔ { □ +} ∈ℕ

∈

for the disjoint union of the strict acyclic generating cofibration with the pushout products under smash
tensoring of the resolved maps  from def. 4.2 with the elements in .

(MMSS 00, def.6.2, def. 9.3)

Lemma 4.5. Let Dia ∈ {Top ,
* / , Orth, Seq} (but not Sym). Then every element in ( ) (def. 4.4) is

both:

a cofibration with respect to the strict model structure (prop. 3.1);1. 

a stable weak homotopy equivalence (def. 2.21).2. 

Proof. First regarding strict cofibrations:

By the Yoneda lemma, the elements in  have right lifting property against the strict fibrations, hence in
particular they are strict cofibrations. Moreover, by Joyal-Tierney calculus (prop.), □ + has left lifting
against any acyclic strict fibration  precisely if  has left lifting against □ . By prop. 3.5 the latter is still a
strict acyclic fibration. Since  by construction is a strict cofibration, the lifting follows and hence also □ +

is a strict cofibration.

Now regarding stable weak homotopy equivalences:

The morphisms in  by design are strict weak equivalences, hence they are in particular stable weak
homotopy equivalences. The morphisms  are stable weak homotopy equivalences by lemma 2.33 and by
two-out-of-three.
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To see that also the pushout products □( )+ are stable weak homotopy equivalences. (e.g. Mandell-May

02, p.46):

First ∧ ( − )+ is still a stable weak homotopy equivalence, by lemma. 2.23.

Moreover, observe that dom( ) ∧ + is degreewise a relative cell complex inclusion, hence degreewise a
cofibration in the classical model structure on pointed topological spaces. This follows from lemma 2.28,
which says that dom( ) ∧ + is degreewise the smash product of a CW complex with +, and from the fact

that smashing with CW-complexes is a left Quillen functor (Top * /) ⟶ (Top * /)  (prop.) and hence

preserves cofibrations.

Altogether this implies by lemma 2.24 that the pushout of the stable weak homotopy equivalence
∧ ( − )+ along the degreewise cofibration dom( ) ∧ + is still a stable weak homtopy equivalence, and so

the pushout product □ + is, too, by two-out-of-three.  ▮

The point of the class  in def. 3.2 is to make the following true:

Lemma 4.6. A morphism : →  in Mod is a -injective morphism (for  from def. 4.4) precisely if

it is a fibration in the strict model structure (hence degreewise a fibration);1. 

for all ∈ ℕ the commuting squares of structure map compatibility on the underlying sequential
spectra

⟶
˜

+

↓ ↓

⟶̃ +

are homotopy pullbacks (def.).

2. 

(MMSS 00, prop. 9.5)

Proof. By prop 3.3, lifting against  alone characterizes strict fibrations, hence degreewise fibrations.
Lifting against the remaining pushout product morphism □ + is, by Joyal-Tierney calculus, equivalent to
left lifting + against the dual pullback product of □ , which means that □  is a weak homotopy
equivalence. But by construction of  and by lemma 2.30, □  is the comparison morphism into the
homotopy pullback under consideration.  ▮

Corollary 4.7. The -injective objects are precisely the Omega-spectra (def. 2.21).

Lemma 4.8. A morphism in Mod which is both

a stable weak homotopy equivalence (def. 2.21);1. 

a -injective morphisms2. 

is an acyclic fibration in the strict model structure of prop. 3.1, hence is degreewise a weak homotopy
equivalence and Serre fibration of topological spaces;

(MMSS 00, corollary 9.8)

Proof. Let : →  be both a stable weak homotopy equivalence as well as a -injective morphism.
Since  contains, by prop. 3.3, the generating acyclic cofibrations for the strict model structure of prop.
3.1,  is in particular a strict fibration, hence a degreewise fibration. Therefore the fiber  of  is its
homotopy fiber in the strict model structure.

Hence by lemma 2.22 there is an exact sequence of stable homotopy groups of the form

• + ( ) →⎯⎯⎯⎯⎯⎯• + ( )
• + ( ) ⟶ •( ) ⟶ •( ) →⎯⎯⎯•

( )
•( ) .

By exactness and by the assumption that •( ) is an isomorphism, this implies that •( ) ≃ 0, hence that
→ *  is a stable weak homotopy equivalence.

Observe also that , being the pullback of a -injective morphisms (by the standard closure properties)
is a -injective object, so that by corollary 4.7  is an Omega-spectrum. Since stable weak homotopy
equivalences between Omega-spectra are already degreewise weak homotopy equivalences, together this
says that → *  is a weak equivalence in the strict model structure, hence degreewise a weak homotopy
equivalence. From this the long exact sequence of homotopy groups implies that • ≥ ( ) is a weak

homotopy equivalence for all  and for each homotopy group in positive degree.

To deduce the remaining case that also ( ) is an isomorphism, observe that, by assumption of
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-injectivity, lemma 4.6 gives that  is a homotopy pullback (in topological spaces) of ( + ). But, by

the above, ( + ) is a weak homotopy equivalence, since •( (−)) = • + (−). Therefore  is the homotopy

pullback of a weak homotopy equivalence and hence itself a weak homotopy equivalence.  ▮

Lemma 4.9. The retracts of -relative cell complexes are precisely the morphisms which are

stable weak homotopy equivalences (def. 2.21),1. 

as well as cofibrations with respect to the strict model structure of prop. 3.1.2. 

(MMSS 00, prop. 9.9 (i))

Proof. Since all elements of  are stable weak homotopy equivalences as well as strict cofibrations by
lemma 4.5, it follows that every retract of a relative -cell complex has the same property.

In the other direction, if  is a stable weak homotopy equivalence and a strict cofibration, by the small

object argument it factors : → →  as a relative -cell complex  followed by a -injective morphism
. By the previous statement  is a stable weak homotopy equivalence, and so by assumption and by

two-out-of-three so is . Therefore lemma 4.8 implies that  is a strict acyclic fibration. But then the
assumption that  is a strict cofibration means that it has the left lifting property against , and so the
retract argument implies that  is a retract of the relative -cell complex .  ▮

Corollary 4.10. The -injective morphisms are precisely those which are injective with respect to the
cofibrations of the strict model structure that are also stable weak homotopy equivalences.

(MMSS 00, prop. 9.9 (ii))

Lemma 4.11. A morphism in Mod (for Diq ≠ Sym) is both

a stable weak homotopy equivalence (def. \ref{StableEquivalencesForDiagramSpectra})1. 

injective with respect to the cofibrations of the strict model structure that are also stable weak
homotopy equivalences;

2. 

precisely if it is an acylic fibration in the strict model structure of theorem 3.1.

(MMSS 00, prop. 9.9 (iii))

Proof. Every acyclic fibration in the strict model structure is injective with respect to strict cofibrations by
the strict model structure; and it is a clearly a stable weak homotopy equivalence.

Conversely, a morphism injective with respect to strict cofibrations that are stable weak homotopy
equivalences is a -injective morphism by corollary 4.10, and hence if it is also a stable equivalence
then by lemma 4.8 it is a strict acylic fibration.  ▮

Proof. (of theorem 4.1)

The non-trivial points to check are the two weak factorization systems.

That (cof ∩ weq , fib ) is a weak factorization system follows from lemma 4.9 and the small object

argument.

By lemma 4.11 the stable acyclic fibrations are equivalently the strict acyclic fibrations and hence the weak
factorization system (cof , fib ∩ we ) is identified with that of the strict model structure
(cof , fib ∩ we ).  ▮

Stability of the homotopy theory

We show now that the model structure on orthogonal spectra OrthSpec(Top )  from theorem 4.1 is Quillen

equivalent (def.) to the stable model structure on topological sequential spectra SeqSpec(Top )  (thm.),

hence that they model the same stable homotopy theory.

Theorem 4.12. The free-forgetful adjunction (seq! ⊣ seq*) of def. 2.4 and theorem 3.1 is a Quillen

equivalence (def.) between the stable model structure on topological sequential spectra (thm.) and the
stable model structure on orthogonal spectra from theorem 4.1.

OrthSpec(Top ) ≃
→⎯⎯⎯⎯⎯⎯
*

←⎯⎯⎯⎯⎯⎯!

SeqSpec(Top )

(MMSS 00, theorem 10.4)

Proof. Since the forgetful functor seq* “creates weak equivalences”, in that a morphism of orthogonal
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spectra is a weak equivalence precisely if the underlying morphism of sequential spectra is (by def. 2.21) it
is sufficient to show (by this prop.) that for every cofibrant sequential spectrum , the adjunction unit

⟶ seq*seq!

is a stable weak homotopy equivalence.

By cofibrant generation of the stable model structure on topological sequential spectra SeqSpec(Top )

(thm.) every cofibrant sequential spectrum is a retract of an -relative cell complex (def., def.), where

= +
− →⎯⎯⎯⎯⎯⎯⎯⎯

( )+
+ .

Since seq! and seq* both preserve colimits (seq* because it evaluates at objects and colimits in the diagram

category OrthSpec are computed objectwise, and seq! because it is a left adjoint) we have for ≃ lim→⎯⎯  a

relative -decompositon of , that : → seq*seq!  is equivalently

lim→⎯⎯ : lim→⎯⎯ ⟶ lim→⎯⎯ seq!seq* .

Now observe that the colimits involved in a relative -complex (the coproducts, pushouts, transfinite
compositions) are all homotopy colimits (def.): First, all objects involved are cofibrant. Now for the
transfinite composition all the morphisms involved are cofibrations, so that their colimit is a homotopy
colimit by this example, while for the pushout one of the morphisms out of the “top” objects is a cofibration,
so that this is a homotopy pushout by (def.).

It follows that if all  are weak equivalences, then so is = lim→⎯⎯ .

Unwinding this, one finds that it is sufficient to show that

: + ⟶ seq*seq!

is a stable weak homotopy equivalence for all , ∈ ℕ.

Consider this for ≥ . Then there are canonical morphisms

⟶ −

whose components in degree ≥  are the identity. These are the composites of the maps ∧ + −  for
<  with  from def. \reg{CorepresentationOfAdjunctsOfStructureMaps}. By prop. 2.33 also seq*seq!

are weak homotopy equivalences. Hence we have commuting diagrams of the form

⟶ −

↓ ↓≃

seq* − ⟶ seq* −

,

where the horizontal maps are stable weak homotopy equivalences by the previous argument and the right
vertical morphism is an isomorphism by the formula in prop. 2.27.Hence the left vertical morphism is a
stable weak homotopy equivalence by two-out-of-three.

If <  then one reduces this to the above case by smashing with − .  ▮

Remark 4.13. Theorem 4.12 means that the homotopy categories of SeqSpec(Top )  and

OrthSpec(Top )  are equivalent (prop.) via

Ho(OrthSpec(Top ) ) ≃→⎯⎯⎯⎯
ℝ *

←⎯⎯⎯⎯! Ho(SeqSpec(Top ) ) .

Since SeqSpec(Top )  is a stable model category (thm.) in that the derived suspension looping

adjunction is an equivalence of categories, and and since this is a condition only on the homotopy
categories, and since ℝseq  manifestly preserves the construction of loop space objects, this implies that
we have a commuting square of adjoint equivalences of homotopy categories

Ho(SeqSpec(Top ) ) ≃⟶
⟵ Ho(SeqSpec(Top ) )

! ↓ ≃ ↑ℝ
* ! ↓ ≃ ↑ℝ

*

Ho(OrthSpec(Top ) ) ≃⟶
⟵ Ho(OrthSpec(Top ) )
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and so in particular also OrthSpec(Top )  is a stable model category.

Due to the vertical equivalences here we will usually not distinguish between these homotopy categories
and just speak of the stable homotopy category (def.)

Ho(Spectra) ≔ Ho(SeqSpec(Top ) ) ≃ Ho(OrthSpec(Top ) ) .

Monoidal model structure

We now discuss that the monoidal model category structure of the strict model structure on orthogonal
spectra OrthSpec(Top )  (theorem 3.17) remains intact as we pass to the stable model structure

OrthSpec(Top )  of theorem 4.1.

Theorem 4.14. The stable model structure OrthSpec(Top )  of theorem 4.1 equipped with the symmetric

monoidal smash product of spectra (def. 2.9) is a monoidal model category (def. 3.11) with cofibrant
tensor unit

(OrthSpec(Top ), ∧ = ⊗ , ) .

(MMSS 00, prop. 12.6)

Proof. Since Cof = Cof , the fact that the pushout product of two stable cofibrations is again a stable
cofibration is part of theorem 3.17.

It remains to show that if at least one of them is a stable weak homotopy equivalence (def. 2.21), then so is
the pushout-product.

Since OrthSpec(Top ) is a cofibrantly generated model category by theorem 4.1 and since it has internal

homs (mapping spectra) with respect to ⊗  (prop. 1.45), it suffices (as in the proof of this prop.) to check

this on generating (acylic) cofibrations, i.e. to check that

□⊗ ⊂ ∩ Cof .

Now =  and = ⊔ { □ +} so that the special case

□⊗ = □⊗

⊂ ∩ Cof

⊂ ∩ Cof

follows again from the monoidal stucture on the strict model category of theorem 3.17.

It hence remains to see that

□⊗ ( □ ( )+) ⊂ ∩ Cof

for all , ∈ ℕ.

By lemma 4.5 □ + is in Cof  and hence

□⊗ ( □ ( )+) ⊂ Cof

follows, once more, from the monoidalness of the strict model structure.

Hence it only remains to show that

□⊗ ( □ ( )+) ⊂ .

This we now prove by inspection:

By two-out-of-three applied to the definition of the pushout product, it is sufficient to show that for every
( )+ in , the right vertical morphism in the pushout diagram

→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( )+⊗ ( □( )+)

( ( )⊗( □( )+) ↓ (po) ↓

⟶

is a stable weak homotopy equivalence. Since seq* preserves pushouts, we may equivalently check this on
the underlying sequential spectra.

Consider first the top horizontal morphism in this square.
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We may rewrite it as

( )+ ⊗(dom( )□ ( )+) ≃ ( )+ ⊗ ∧ +
− ⊔

+ ∧ +
− + ∧ +

≃ ( )+ ⊗ ∧ +
− ⊔

( )+⊗ + ∧ +
−

( )+ ⊗ + ∧ +

≃ + ( )+ ∧ +
− ⊔

+ + ( )+ ∧ +
− + + ( )+ ∧ ∧ +

,

where we used that ⊗ (−) is a left adjoint and hence preserves colimits, and we used prop. 2.29 to
evaluate the smash product of free spectra.

Now by lemma 2.28 the morphism

+ + +
− ∧ ∧ +

− ⟶ + + +
− ∧ ∧ +

is degreewise the smash product of a CW-complex with a relative cell complex inclusion, hence is itself
degreewise a relative cell complex inclusion, and therefore its pushout

+ + +
− ⊗ ∧ +

− ⟶ ( − )+ ⊗dom( □ ( )+)

is degreewise a retract of a relative cell complex inclusion. But since it is the identity on the smash factor

+
−  in the argument of the free spectra as above, the morphism is degreewise the smash tensoring with
−  of a retract of a relative cell complex inclusion. Since the domain is degreewise a CW-complex by

lemma 2.28, ( − )+ ⊗dom( □ ( )+) is degreewise the smash tensoring with +
−  of a retract of a

cell complex.

The same argument applies to the domain of ( )+ ⊗ (dom( )□ ( )+), and so in conclusion this morphism

is degreewise the smash product of a cofibration with a cofibrant object in (Top * /) , and hence is itself

degreewise a cofibration.

Now consider the vertical morphism in the above square

The same argument that we just used shows that this is the smash tensoring of the stable weak homotopy
equivalence □( )+ with a CW-complex. Hence by lemma 2.23 the left vertical morphism is a stable

weak homotopy equivalence.

In conclusion, the right vertical morphism is the pushout of a stable weak homotopy equivalence along a
degreewise cofibration of pointed topological spaces. Hence lemma 2.24 implies that it is itself a stable weak
homotopy equivalence.  ▮

Corollary 4.15. The strong monoidal Quillen adjunction (def. 3.15) ( ⊣ ) on the strict model
structure (prop. 3.18) descends to a strong monoidal Quillen adjunction on the stable monoidal model
category from theorem 4.14:

OrthSpec(Top ) ⊥→⎯⎯⎯⎯
←⎯⎯⎯⎯

(Top * / , ∧ , ) .

Proof. The stable model structure OrthSpec(Top )  is a left Bousfield localization of the strict model

structure (def.) in that it has the same cofibrations and a larger class of acyclic cofibrations. Hence  is
still a left Quillen functor also to the stable model structure.  ▮

5. The monoidal stable homotopy category

We discuss now the consequences for the stable homotopy category (def.) of the fact that by theorem 4.12
and theorem 4.14 it is equivalently the homotopy category of a stable monoidal model category. This makes
the stable homotopy category become a tensor triangulated category (def. 5.3) below. The abstract
structure encoded by this governs much of stable homotopy theory (Hovey-Palmieri-Strickland 97). In
particular it is this structure that gives rise to the -Adams spectral sequences which we discuss in Part 2.

Corollary 5.1. The stable homotopy category Ho(Spectra) (remark 4.13) inherits the structure of a
symmetric monoidal category

(Ho(Spectra), ∧ , ≔ ( ))

with tensor product the left derived functor ∧  of the symmetric monoidal smash product of spectra (def.
2.9, def. 2.13, prop. 2.14) and with tensor unit the sphere spectrum  (the image in Ho(Spectra) of any of
the structured sphere spectra from def. 2.4).
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Moreover, the localization functor (def.) is a lax monoidal functor

: (OrthSpec(Top ), ∧ , ) ⟶ (Ho(Spectra), ∧ , ( )) .

Proof. In view of theorem 4.14 this is a special case of prop. 3.13.  ▮

Remark 5.2. Let , ∈ Ho(Spectra) be two spectra in the stable homotopy category, then the stable
homotopy groups (def.) of their derived symmetric monoidal smash product of spectra (corollary 5.1) is
also called the generalized homology of  with coefficients in  and denoted

•( ) ≔ •( ∧ ) .

This is conceptually dual to the concept of generalized (Eilenberg-Steenrod) cohomology (example)

•( ) ≔ [ , ]• .

Notice that (def., lemma)

•( ) = •( ∧ )

≃ [ , ∧ ]•
.

In the special case that =  is a suspension spectrum, then

•( ) ≃ •( ∧ )

(by prop. 2.29 ) and this is called the generalized -homology of the topological space ∈ Top * /.

Since the sphere spectrum  is the tensor unit for the derived smash product of spectra (corollary 5.1) we
have

•( ) ≃ •( ) .

For that reason often one also writes for short

• ≔ •( ) .

Notice that similarly the -generalized cohomology (exmpl.) of the sphere spectrum is

• ≔ •( )

= [ , ]−•

≃ −• ( )

≃ −•

.

(Beware that, as usual, here we are not displaying a tilde-symbol to indicate reduced cohomology).

Tensor triangulated structure

We discuss that the derived smash product of spectra from corollary 5.1 on the stable homotopy category
interacts well with its structure of a triangulated category (def.).

Definition 5.3. A tensor triangulated category is a category Ho equipped with

the structure of a symmetric monoidal category (Ho, ⊗ , 1, ) (def. 1.5);1. 

the structure of a triangulated category (Ho, , CofSeq) (def.);2. 

for all objects , ∈ Ho natural isomorphisms

, : ( ) ⊗ ⟶≃ ( ⊗ )

3. 

such that

(tensor product is additive) for all ∈ Ho the functors ⊗(−) ≃ (−)⊗  preserve finite direct sums
(are additive functors);

1. 

(tensor product is exact) for each object ∈ Ho the functors ⊗ (−) ≃ (−)⊗  preserves
distinguished triangles in that for

⟶ ⟶ ⟶

in CofSeq, then also

2. 
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⊗ →⎯⎯⎯⎯⎯
⊗

⊗ →⎯⎯⎯⎯⎯
⊗

⊗ →⎯⎯⎯⎯⎯
⊗

⊗( ) ≃ ( ⊗ )

is in CofSeq, where the equivalence at the end is , ∘ , .

Jointly this says that for all objects  the equivalences  give ⊗(−) the structure of a triangulated
functor.

(Balmer 05, def. 1.1)

In addition we ask that

(coherence) for all , , ∈ Ho the following diagram commutes

( ( ) ⊗ )⊗ →⎯⎯⎯⎯⎯⎯
, ⊗

( ( ⊗ )) ⊗ →⎯⎯⎯⎯⎯⎯
⊗ ,

(( ⊗ )⊗ )

, , ↓ ↓ , ,

( ) ⊗ ( ⊗ ) →⎯⎯⎯⎯⎯⎯
, ⊗

( ⊗ ( ⊗ ))

,

where  is the associator of (Ho, ⊗ , 1).

1. 

(graded commutativity) for all , ∈ ℤ the following diagram commutes

( 1)⊗ ( 1) ⟶≃ + 1

, ↓ ↓(− ) ⋅

( 1)⊗ ( 1) ⟶
≃

+ 1

,

where the horizontal isomorphisms are composites of the ⋅ , ⋅  and the braidings.

2. 

(Hovey-Palmieri-Strickland 97, def. A.2.1)

Proposition 5.4. The stable homotopy category Ho(Spectra) (def.) equipped with

its triangulated category structure (Ho(Spectra), , CofSeq) for distinguished triangles the homotopy
cofiber sequences (prop.;

1. 

the derived symmetric monoidal smash product of spectra (Ho(Spectra), ∧ , ) (corollary 5.1)2. 

is a tensor triangulated category in the sense of def. 5.3.

(e.g. Hovey-Palmieri-Strickland 97, 9.4)

We break up the proof into lemma 5.5, lemma 5.6, lemma 5.7 and lemma 5.9.

Lemma 5.5. For ∈ Ho(Spectra) any spectrum in the stable homotopy category (remark 4.13), then the
derived symmetric monoidal smash product of spectra (corollary 5.1)

∧ (−) : Ho(Spectra) ⟶ Ho(Spectra)

preserves direct sums, in that for all , ∈ Ho(Spectra) then

∧ ( ⊕ ) ≃ ( ∧ )⊕ ( ∧ ) .

Proof. The direct sum in Ho(Spectra) is represented by the wedge sum in SeqSpec(Top ) (prop., prop.). Since

wedge sum of sequential spectra is the coproduct in SeqSpec(Top ) (exmpl.) and since the forgetful functor

seq* :OrthSpec(Top ) ⟶ SeqSpec(Top ) preserves colimits (since by prop. 2.19 it acts by precomposition on

functor categories, and since for these colimits are computed objectwise), it follows that also wedge sum of
orthogonal spectra represents the direct sum operation in the stable homotopy category.

Now assume without restriction that ,  and  are cofibrant orthogonal spectra representing the objects of
the same name in the stable homotopy catgeory. Since wedge sum is coproduct, it follows that also the
wedge sum ∨  is cofibrant.

Since ∧ (−) is a left Quillen functor by theorem 4.14, it follows that the derived tensor product ∧ ( ⊕ )
is represented by the plain symmetric monoidal smash product of spectra ∧ ( ∨ ). By def. 2.9 (or more
explicitly by prop. 2.14) this is the coequalizer

⊗ ⊗ ( ∨ ) →⎯⎯⎯⎯⎯⎯⎯⎯
→⎯⎯⎯⎯⎯⎯⎯⎯

⊗ ( ∨ ) →⎯⎯⎯ ⊗ ( ∨ ) .

Inserting the definition of Day convolution (def. 1.39), the middle term here is
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∫
,

Orth( ⊗ , −) ∧ ( ) ∧ ( ∨ )( ) ≃ ∫
,

Orth( ⊗ , −) ∧ ( ) ∧ ( ( ) ∨ ( ))

∫
,

Orth( ⊗ , −) ∧ ( ) ∧ ( ) ∨ ∫
,

Orth( ⊗ , −) ∧ ( ) ∧ ( )

≃ ⊗ ∨ ⊗

,

where in the second but last step we used that the smash product in Top * / distributes over wedge sum and
that coends commute with wedge sums (both being colimits).

The analogous analysis applies to the left term in the coequalizer diagram. Hence the whole diagram splits
as the wedge sum of the respective diagrams for ∧  and ∧ .  ▮

Lemma 5.6. For ∈ Ho(Spectra) any spectrum in the stable homotopy category (remark 4.13), then the
derived symmetric monoidal smash product of spectra (corollary 5.1)

∧ (−) : Ho(Spectra) ⟶ Ho(Spectra)

preserves homotopy cofiber sequences.

Proof. We may choose a cofibrant representative of  in OrthSpec(Top ) , which we denote by the same

symbol. Then the functor

∧ (−) : OrthSpec(Top ) ⟶ OrthSpec(Top )

is a left Quillen functor in that it preserves cofibrations and acyclic cofibrations by theorem 4.14 and it is a
left adjoint by prop. 1.22. Hence its left derived functor is equivalently its restriction to cofibrant objects
followed by the localization functor.

But now every homotopy cofiber (def.) is represented by the ordinary cofiber of a cofibration. The left
Quillen functor preserves both the cofibration as well as its cofiber.  ▮

Lemma 5.7. The canonical suspension functor on the stable homotopy category

: Ho(Spectra) ⟶ Ho(Spectra)

commutes with forming the derived symmetric monoidal smash product of spectra ∧  from corollary 5.1 in
that for , ∈ Ho(Spectra) any two spectra, then there are isomorphisms

( ∧ ) ≃ ( ) ∧ ≃ ∧ ( ) .

Proof. By theorem 4.14 the symmetric monoidal smash product of spectra is a left Quillen functor, and by
prop. 3.7 and lemma 3.8 the canonical suspension operation is the left derived functor of the left Quillen
functor (−) ∧  of smash tensoring with . Therefore all three expressions are represented by application of
the underived functors on cofibrant representatives in OrthSpec(Top ) (the fibrant replacement that is part of

the derived functor construction is preserved by left Quillen functors).

So for  and  cofibrant orthogonal spectra (which we denote by the same symbol as the objects in the
homotopy category which they represent), by def. 2.9 (or more explicitly by prop. 2.14), the object
( ∧ ) ∈ Ho(Spectra) is represented by the coequalizer

( ⊗ ⊗ ) ∧ →⎯⎯⎯⎯⎯⎯⎯⎯
→⎯⎯⎯⎯⎯⎯⎯⎯
( ⊗ ) ∧ →⎯⎯⎯ ( ⊗ ) ∧ ,

where the two morphisms bing coequalized are the images of those of def. 2.9 under smash tensoring with
. Now it is sufficient to observe that for any ∈ Top * / we have canonical isomorphisms

( ⊗ ) ∧ ≃ ( ⊗ ( ∧ )) ≃ (( ∧ ) ⊗ )

and similarly for the triple Day tensor product.

This follows directly from the definition of the Day convolution product (def. 1.39)

(( ⊗ ) ∧ )( ) = ∫
,

Orth( ⊕ , ) ∧ ( ) ∧ ( ) ∧

and the symmetry of the smash product on Top * / (example 1.10).  ▮

Example 5.8. For ∈ Ho(Spectra) a spectrum, then the -generalized homology (according to remark 5.2) of
a suspension of the spectrum is the stable homotopy groups of  in shifted degree:

•( ) ≃ • − ( ) .

Proof. We compute
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•( ) ≔ •( ∧ )

≃ •( ( ∧ ))

≃ •( )

≃ [ , ]

= [ , ]−

≃ • − ( )

.

Here we use

first the definition (remark 5.2);

then the fact that suspension commutes with smash product (lemma 5.7, part of the tensor
triangulated structure of prop. 5.4);

then the fact that the sphere spectrum is the tensor unit of the smash product of spectra (cor. 5.1);

then the isomorphism of stable homotopy groups with graded homs out of the spjere spectrum
(lemma).

  ▮

Lemma 5.9. For , ∈ ℤ then the following diagram commutes in Ho(Spectra):

( ) ∧ ( ) ⟶≃ +

, ↓ ↓(− )

( ) ∧ ( ) ⟶
≃

+

.

Proof. It is sufficient to prove this for , ∈ ℕ ↪ ℤ. From this the general statement follows by looping and
using lemma 5.7.

So assume , ≥ 0.

Observe that the sphere spectrum = ( ) ∈ Ho(Spectra) is represented by the orthogonal sphere

spectrum =  (def. 2.25) and since  is a left Quillen functor (prop. 3.18) and ∈ (Top * /)

is cofibrant, this is a cofibrant orthogonal spectrum. Hence, as in the proof of lemma 5.7,  is
represented by

∧ ≃ .

Since  is a symmetric monoidal functor by prop. 2.29, it makes the following diagram commute

( ∧ )⊗ ( ∧ ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
∧ , ∧

( ))

( ∧ ) ⊗ ( ∧ )

↓ ↓

∧ ( ∧ ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯
(

,

* /

)

∧ ( ∧ )

.

Now the homotopy class of ,

* /

 in

[ + , + ]
*
≃ + ( + ) ≃ ℤ

is

[
,

* /

] =
1 if ⋅ even

−1 if ⋅ odd
.

This translates to ∧
,

* /

 under the identification (lemma)

[ , ]• ≃ •( )

and using the adjunction (−) ∧ ( + ) ⊣ Maps( + , −)
*
 from prop. 1.37:

[ ∧ ( + ), ∧ ( + )] ≃ [ , ∧ Maps( + , + )] .

  ▮

Homotopy ring spectra
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We discuss commutative monoids in the tensor triangulated stable homotopy category (prop. 5.4).

In this section the only tensor product that plays a role is the derived smash product of spectra from
corollary 5.1. Therefore to ease notation, in this section (and in all of Part 2) we write for short

∧ ≔ ∧ .

Definition 5.10. A commutative monoid ( , , ) (def. 1.13) in the monoidal stable homotopy category
(Ho(Spectra), ∧ , ) of corollary 5.1 is called a homotopy commutative ring spectrum.

A module object (def. 1.16) over  is accordingly called a homotopy module spectrum.

Proposition 5.11. For ( , , ) a homotopy commutative ring spectrum (def. 5.10), its stable homotopy
groups (def.)

•( )

canonically inherit the structure of a ℤ-graded-commutative ring.

Moreover, for ∈ Ho(Spectra) any spectrum, then the generalized homology (remark 5.2)

•( ) ≔ •( ∧ )

(i.e. the stable homotopy groups of the free module over  on  (prop. 1.20)) canonically inherits the
structure of a left graded •( )-module, and similarly

•( ) ≔ •( ∧ )

canonically inherits the structure of a right graded •( )-module.

Proof. Under the identification (lemma)

•( ) ≃ [ , ]•

≃ [ , −• ]

≃ [ • , ]

let

: ⟶

for ∈ {1, 2} be two elements of •( ).

Observe that there is a canonical identification

+ ≃ ∧

since ≃ ∧  is the tensor unit (cor. 5.1, lemma 1.2) using lemma 5.7 (part of the tensor triangulated
structure from prop. 5.4). With this we may form the composite

⋅ : + ⟶≃ ∧ →⎯⎯⎯⎯⎯
∧

∧ ⟶ .

That this pairing is associative and unital follows directly from the associativity and unitality of  and the
coherence of the isomorphism on the left (prop. 5.4). Evidently the pairing is graded. That it is bilinear
follows since addition of morphisms in the stable homotopy category is given by forming their direct sum
(prop.) and since ∧ distributes over direct sum (lemma 5.5, part of the tensor triangulated structure of prop.
5.4)).

It only remains to show graded-commutivity of the pairing. This is exhibited by the following commuting
diagram:

+ →⎯⎯⎯⎯⎯⎯⎯⎯
(− ) ⋅

+

≃ ↓ ↓≃

∧ →⎯⎯⎯⎯⎯⎯⎯⎯⎯
,

∧
∧ ↓ ↓ ∧

∧ →⎯⎯⎯
,

∧

↘ ↙

.

Here the top square is that of lemma 5.9 (part of the tensor triangulated structure of prop. 5.4)), the middle
square is the naturality square of the braiding (def. 1.4, cor. 5.1), and the bottom triangle commutes by
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definition of ( , , ) being a commutative monoid (def. 1.13).

Similarly given

: ⟶

as before and

: ⟶ ∧ ,

then an action is defined by the composite

⋅ : + ⟶≃ ∧ →⎯⎯⎯
∧

∧ ∧ →⎯⎯⎯
∧

∧ .

This is clearly a graded pairing, and the action property and unitality follow directly from the associativity
and unitality, respectively, of ( , , ).

Analogously for the right action on •( ).  ▮

Example 5.12. (ring structure on the stable homotopy groups of spheres)

The sphere spectrum = ( ) is a homotopy commutative ring spectrum (def. 5.10).

On the one hand this is because it is the tensor unit for the derived smash product of spectra (by cor. 5.1),
and by example 1.14 every such is canonically a (commutative) monoid. On the other hand we have the
explicit representation by the orthogonal ring spectrum (def. 2.15) , according to lemma 2.7, and the
localization functor  is a symmetric lax monoidal functor (prop. 3.14, and in fact a strong monoidal
functor on cofibrant objects such as  according to prop. 3.13) and hence preserves commutative
monoids (prop. 1.50).

The stable homotopy groups of the sphere spectrum are of course the stable homotopy groups of spheres
(exmpl.)

• ≔ •( ) ≃ lim→⎯⎯ • + ( ) .

Now prop. 5.11 gives the stable homotopy groups of spheres the structure of a graded commutative ring.
By the proof of prop. 5.11, the product operation in that ring sends elements : ⟶  to

+ ⟶≃ ∧ →⎯⎯⎯⎯⎯
∧

∧ ⟶
≃

,

where now not only the first morphism, but also the last morphism is an isomorphism (the isomorphism
from lemma 1.2). Hence up to isomorphism, the ring structure on the stable homotopy groups of spheres
is the derived smash product of spectra.

This implies that for , ∈ Ho(Spectra) any two spectra, then the graded abelian group [ , ]• (def.) of

morphisms from  to  in the stable homotopy category canonically becomes a module over the ring •

• ⊗ [ , ]• ⟶ [ , ]•

by

( → ), ( → ) ↦ + →≃ ∧ →⎯⎯⎯
∧

∧ →≃ .

In particular for every spectrum ∈ Ho(Spectra), its stable homotopy groups •( ) ≃ [ , ]• (lemma)

canonically form a module over •. If =  happens to carry the structure of a homotopy commutative
ring spectrum, then this module structure coincides the one induced from the unit

•( ) : • = •( ) ⟶ •( )

under prop. 5.11.

(It is straightforward to unwind all this categorical algebra to concrete component expressions by
proceeding as in the proof of this lemma).)

This finally allows to uniquely characterize the stable homotopy theory that we have been discussing:

Theorem 5.13. (Schwede-Shipley uniqueness theorem)

The homotopy category Ho( ) (def.) of every stable homotopy category  (def.) canonically has graded
hom-groups with the structure of modules over • = •( ) (example 5.12). In terms of this, the following
are equivalent:
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There is a zig-zag of Quillen equivalences (def.) between  and the stable model structure on
topological sequential spectra (thm.) (equivalently (thm. 4.12) the stable model structure on
orthogonal spectra)

≃
→⎯⎯⎯⎯⎯⎯

←⎯⎯⎯⎯⎯⎯ ≃
←⎯⎯⎯⎯⎯⎯

→⎯⎯⎯⎯⎯⎯ ⋯ ≃
←⎯⎯⎯⎯⎯⎯

→⎯⎯⎯⎯⎯⎯ OrthSpec(Top ) ≃
→⎯⎯⎯⎯⎯⎯

←⎯⎯⎯⎯⎯⎯SeqSpec(Top )

1. 

there is an equivalence of categories between the homotopy category Ho( ) and the stable homotopy
category Ho(Spectra) (def.)

Ho( ) ≃ Ho(Spectra)

which is •-linear on all hom-groups.

2. 

(Schwede-Shipley 02, Uniqueness theorem)

6. Examples

For reference, we consider some basic examples of orthogonal ring spectra (def. 2.15) . By prop. 2.16 and
corollary 5.1 each of these examples in particular represents a homotopy commutative ring spectrum (def.
5.10) in the tensor triangulated stable homotopy category (prop. 5.4).

We make use of these examples of homotopy commutative ring spectra  in Part 2 in the computation of
-Adams spectral sequences.

For constructing representations as orthogonal ring spectra of spectra that are already known as sequential
spectra (def.) two principles are usefully kept in mind:

by prop. 2.16 it is sufficient to give an equivariant multiplicative pairing ∧ → +  and

equivariant unit maps → , → , from these the structure maps ∧ → +  are already

uniquely induced;

1. 

the choice of ( )-action on  is governed mainly by the demand that the unit map →  has to be
equivariant, with respect to the ( )-action on  induced by regarding  as the one-point
compactification of the defining ( )-representation on ℝ  (“representation sphere”).

2. 

Sphere spectrum

We already described the orthogonal sphere spectrum  as an orthogonal ring spectrum in lemma 2.7. The
component spaces are the spheres  with their ( )-action as representation spheres, and the
multiplication maps are the canonical identifications

∧ ⟶ + .

More generally, by prop. 2.29 the orthogonal suspension spectrum functor is a strong monoidal functor, and
so by prop. 2.16 the suspension spectrum of a monoid in Top * / (for instance + for  a topological group)
canonically carries the structure of an orthogonal ring spectrum.

The orthogonal sphere spectrum is the special case of this with ≃  for  the tensor unit in Top * /

(example 1.10) and hence a monoid by example 1.14.

Eilenberg-MacLane spectra

We discuss the model of Eilenberg-MacLane spectra as symmetric spectra and orthogonal spectra. To that
end, notice the following model for Eilenberg-MacLane spaces.

Definition 6.1. For  an abelian group and ∈ ℕ, the reduced -linearization [ ]
*
 of the n-sphere  is

the topological space, whose underlying set is the quotient of the tensor product with  of the free abelian
group on the underlying set of ,

⊗ℤ [ ] = [ ] ⟶ [ ]
*

by the relation that identifies every formal linear combination of the basepoint of  with 0. The topology
is the induced quotient topology

⊔
∈ℕ

× ( ) ⟶ [ ]
*

(of the disjoint union of product topological spaces, where  is equipped with the discrete topology).

(Aguilar-Gitler-Prieto 02, def. 6.4.20)
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Proposition 6.2. For  a countable abelian group, then the reduced -linearization [ ]
*
 (def. 6.1) is an

Eilenberg-MacLane space, in that its homotopy groups are

( [ ]
*
) ≃

if =

* otherwise

(in particular for ≥ 1 then there is a unique connected component and hence we need not specify a
basepoint for the homotopy group).

(Aguilar-Gitler-Prieto 02, corollary 6.4.23)

Definition 6.3. For  a countable abelian group, then the orthogonal Eilenberg-MacLane spectrum
is the orthogonal spectrum (def. 2.11) with

component spaces

( ) ≔ [ ]
*

being the reduced -linearization (def. 6.1) of the representation sphere ;

( )-action on [ ]
*
 induced from the canonical ( )-action on  (representation sphere);

structure maps

: ( ) ⟶ ( ) +

hence

∧ [ ] ⟶ [ + ]

given by

, , ↦ ( , ) .

The incarnation of  as a symmetric spectrum is the same, with the group action of ( ) replaced by the
subgroup action of the symmetric group ( ) ↪ ( ).

If  is a commutative ring, then the Eilenberg-MacLane spectrum  becomes a commutative orthogonal
ring spectrum or symmetric ring spectrum (def. 2.15) by

taking the multiplication

( ) ∧ ( ) = [ ]
*
∧ [ ]

*
⟶ [ + ] = ( ) +

to be given by

, ↦
,

( ⋅ )( , )

1. 

taking the unit maps

⟶ [ ]
*
= ( )

to be given by the canonical inclusion of generators

↦ 1 .

2. 

(Schwede 12, example I.1.14)

Proposition 6.4. The stable homotopy groups (def. 2.21) of an Eilenberg-MacLane spectrum HA (def. 6.3)
are

( ) ≃
if = 0

0 otherwise

Thom spectra

We discuss the realization of Thom spectra as orthogonal ring spectra. For background on Thom spectra
realized as sequential spectra see Part S the section Thom spectra.
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Definition 6.5. As an orthogonal ring spectrum (def. 2.15), the universal Thom spectrum  has

component spaces

( ) ≔ ( )+ ∧
( )

the Thom spaces (def.) of the universal vector bundle (def.) of rank ;

left ( )-action induced by the remaining canonical left action of ( );

canonical multiplication maps (def.)

( ( )+ ∧
( )

) ∧ ( ( )+ ∧
( )

⟶ ( + )+ ∧
( + )

+

unit maps

≃ ( )+ ∧ ( ) ⟶ ( )+ ∧ ( )

induced by the fiber inclusion ( ) ↪ ( ).

(Schwede 12, I, example 1.16)

For the universal complex Thom spectrum MU the construction is a priori directly analogous, but with the
real Cartesian space ℝ  replace by the complex vector space ℂ  thoughout. This makes the n-sphere

= (ℝ ) be replaced by the 2 -sphere ≃ ℂ  throughout. Hence the construction requires a second step
in which the resulting -spectrum (def.) is turned into an actual orthogonal spectrum. This proceeds
differently than for sequential spectra (lemma) due to the need to have compatible orthogonal group-action
on all spaces.

Definition 6.6. The universal complex Thom spectrum MU is represented as an orthogonal ring
spectrum (def. 2.15) as follows

First consider the component spaces

̅ ̅ ̅ ̅ ̅ ̅ ≔ ( )+ ∧ ( )
(ℂ )

given by the Thom spaces (def.) of the complex universal vector bundle (def.) of rank , and equipped
with the ( )-action which is induced via the canonical inclusions

( ) ↪ ( ) ↪ ( ) .

Regard these as equipped with the canonical pairing maps (def.)

̅ ̅ , : ̅ ̅ ̅ ̅ ̅ ̅ ∧ ̅ ̅ ̅ ̅ ̅ ̅ ⟶ ̅ ̅ ̅ ̅ ̅ ̅ + .

These are ( )-equivariant, hence in particular ( )-equivariant.

Then take the actual components spaces to be loop spaces of these:

≔ Maps( , ̅ ̅ ̅ ̅ ̅ ̅ )

and regard these as equipped with the conjugation action by ( ) induced by the above action on ̅ ̅ ̅ ̅ ̅ ̅  and

the canonical action on ≃ (ℝ ).

Define the actual pairing maps

, : ∧ ⟶ +

via

Maps( , ̅ ̅ ̅ ̅ ̅ ̅ ) ∧ Maps( , ̅ ̅ ̅ ̅ ̅ ̅ ) ⟶ Maps( + , ̅ ̅ ̅ ̅ ̅ ̅ + )

( , ) ↦ ̅ ̅ , ∘ ( ∧ )
.

Finally in order to define the unit maps, consider the isomorphism

≃ ℂ ≃ ℝ ⊕ ℝ ≃ ∧

and then take the unit maps

⟶ ( ) = Maps( , ̅ ̅ ̅ ̅ ̅ ̅ )

to be the adjuncts of the canonical embeddings
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∧ ≃ ℂ ≃ ( )+ ∧ ( )
ℂ ⟶ ( )+ ∧ ( )

ℂ .

(Schwede 12, I, example 1.18)

7. Conclusion

We summarize the results about stable homotopy theory obtained above.

First of all we have established a commuting diagram of Quillen adjunctions and Quillen equivalences of the
form

(Top * /) ⊥⟶
⟵

(Top * /)

↓ ⊣ ↑ ↓ ⊣ ↑

SeqSpec(Top ) ⊥⟶
⟵

SeqSpec(Top )

↓ ⊣ ↑ ↓ ⊣ ↑

SeqSpec(Top ) ≃
⟶
⟵ SeqSpec(Top )

! ↓ ≃ ↑
* ! ↓ ≃ ↑

*

OrthSpec(Top ) OrthSpec(Top )

where

(Top * /)  is the classical model structure on pointed topological spaces (thm., thm.);

SeqSpec(Top )  is the stable model structure on topological sequential spectra (thm.);

OrthSpec(Top )  is the stable model structure on orthogonal spectra from theorem 4.1.

Here the top part of the diagram is from remark 3.19, while the vertical Quillen equivalence (seq! ⊣ seq*) is

from theorem 4.1.

Moreover, the top and bottom model categories are monoidal model categories (def. 3.11): Top * / with
respect to the smash product of pointed topological spaces (theorem 3.17) and OrthSpec(Top )  as well as

OrthSpec(Top )  with respect to the symmetric monoidal smash product of spectra (theorem 3.17 and

theorem 4.14); and the compsite vertical adjunction

(Top * /, ∧ , )

↓ ⊣ ↑

(OrthSpec(Top ), ∧ , )

is a strong monoidal Quillen adjunction (def. 3.15, corollary 4.15), and so also the induced adjunction of
derived functors

(Ho(Top * /), ∧ , )

↓ ⊣ ↑

(Ho(Spectra), ∧ , )

is a strong monoidal adjunction (by prop. 3.16) from the the derived smash product of pointed topological
spaces to the derived symmetric smash product of spectra.

Under passage to homotopy categories this yields a commuting diagram of derived adjoint functors

Ho(Top * /) ⊥⟶
⟵

Ho(Top * /)

↓ ⊣ ↑ ↓ ⊣ ↑

Ho(Spectra) ≃⟶
⟵ Ho(Spectra)

between the (Serre-Quillen-)classical homotopy category Ho(Top * /) and the stable homotopy category
Ho(Spectra) (remark 4.13). The latter is an additive category (def.) with direct sum the wedge sum of spectra
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⊕ = ∨  (lemma, lemma) and in fact a triangulated category (def.) with distinguished triangles the homotopy
cofiber sequences of spectra (prop.).

While this is the situation already for sequential spectra (thm.), in addition we have now that both the
classical homotopy category as well as the stable homotopy category are symmetric monoidal categories
with respect to derived smash product of pointed topological spaces and the derived symmetric monoidal
smash product of spectra, respectively (corollary 5.1).

Moreover, the derived smash product of spectra is compatible with the additive category structure (direct
sums) and the triangulated category structure (homotopy cofiber sequences), this being a tensor
triangulated category (prop. 5.4).

abelian groups spectra
integers ℤ sphere spectrum

Ab ≃ ℤMod Spectra ≃ Mod

direct sum ⊕ wedge sum ∨

tensor product ⊗ℤ smash product of spectra ∧

kernels/cokernels homotopy fibers/homotopy cofibers

The commutative monoids with respect to this smash product of spectra are precisely the commutative
orthogonal ring spectra (def. 2.15, prop. 2.16) and the module objects over these are precisely the
orthogonal module spectra (def. 2.17, prop. 2.18).

algebra homological algebrahigher algebra
abelian group chain complex spectrum
ring dg-ring ring spectrum
module dg-module module spectrum

The localization functors  (def.) from the monoidal model categories to their homotopy categories are lax
monoidal functors (cor. 5.1)

(Top * /, ∧ , ) ⟶ (Ho(Top * /), ∧ , ( ))

(OrthSpec(Top ), ∧ , ) ⟶ (Ho(Spectra), ∧ , ( ))
.

This implies that for ∈ OrthSpec(Top ) a commutativeorthogonal ring spectrum, then its image ( ) in the

stable homotopy category is a homotopy commutative ring spectrum (def. 5.10) and similarly for module
spectra (prop. 1.50).

monoidal stable model category -localization→tensor triangulated category

stable model structure on orthogonal spectra
OrthSpec(Top )

stable homotopy category
Ho(Spectra)

symmetric monoidal smash product of spectra derived smash product of spectra

commutative orthogonal ring spectrum (E-infinity ring)
homotopy commutative ring
spectrum

Finally, the graded hom-groups [ , ]• (def.) in the tensor triangulated stable homotopy category are

canonically graded modules over the graded commutative ring of stable homotopy groups of spheres
(exmpl. 5.12)

[ , ]• ∈ •( )Mod .

Hence the next question is how to actually compute any of these. This is the topic of Part 2 -- The Adams
spectral sequence.
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Anthony Elmendorf, Igor Kriz, Michael Mandell, Peter May, Rings, modules and algebras in stable
homotopy theory, AMS 1997, 2014

Stefan Schwede, Brooke Shipley, Algebras and modules in monoidal model categories Proc. London
Math. Soc. (2000) 80(2): 491-511 (pdf)

For the induced tensor triangulated category structure on the stable homtopy category we follow

Mark Hovey, John Palmieri, Neil Strickland, Axiomatic stable homotopy theory, Memoirs of the AMS 610
(1997) (pdf)

which all goes back to

Frank Adams, Stable homotopy and generalised homology, 1974

A compendium on symmetric spectra is

Stefan Schwede, Symmetric spectra, 2012 (pdf)
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This page is an introduction to spectral sequences. We motivate spectral sequences of filtered complexes
from the computation of cellular cohomology via stratum-wise relative cohomology. In the end we generalize
to spectral sequences of filtered spectra.

For background on homological algebra see at Introduction to Homological algebra.

For background on stable homotopy theory see at Introduction to Stable homotopy theory.

For application to complex oriented cohomology see at Introduction to Cobordism and Complex Oriented
Cohomology.

For application to the Adams spectral sequence see Introduction to Adams spectral sequences.

Contents
1. For filtered complexes

Ordinary homology

Cellular homology

Filtered chain complexes

Comparing cellular and singular homology

2. For filtered spectra

3. References

In Introduction to Stable homotopy theory we have set up the concept of spectra  and their stable
homotopy groups •( ) (def.). More generally for  and  two spectra then there is the graded stable
homotopy group [ , ]• of homotopy classes of maps bewteen them (def.). These may be thought of as

generalized cohomology groups (exmpl.). Moreover, in part 1.2 we discussed the symmetric monoidal smash
product of spectra ∧ . The stable homotopy groups of such a smash product spectrum may be thought of
as generalized homology groups (rmk.).

These stable homotopy and generalized (co-)homology groups are the fundamental invariants in algebraic
topology. In general they are as rich and interesting as they are hard to compute, as famously witnessed by
the stable homotopy groups of spheres, some of which we compute in part 2.

In general the only practicable way to carry out such computations is by doing them along a decomposition
of the given spectrum into a “sequence of stages” of sorts. The concept of spectral sequence is what
formalizes this idea.

(Here the re-occurence of the root “spectr-” it is a historical coincidence, but a lucky one.)

Here we give a expository introduction to the concept of spectral sequences, building up in detail to the
spectral sequence of a filtered complex.

We put these spectral sequences to use in

part 2 -- Adams spectral sequences.

part S -- Complex oriented cohomology theory

1. For filtered complexes

We begin with recalling basics of ordinary relative homology and then seamlessly derive the notion of
spectral sequences from that as the natural way of computing the ordinary cohomology of a CW-complex
stagewise from the relative cohomology of its skeleta. This is meant as motivation and warmup. What we
are mostly going to use further below are spectral sequences induced by filtered spectra, this we turn to
next.

Ordinary homology

Introduction to Spectral Sequences in nLab https://ncatlab.org/nlab/show/Introduction+to+Spectral+Sequences

1 of 15 09.05.17, 16:02



Let  be a topological space and ↪  a topological subspace. Write •( ) for the chain complex of singular
homology on  and •( ) ↪ •( ) for the chain map induced by the subspace inclusion.

Definition 1.1. The (degreewise) cokernel of this inclusion, hence the quotient •( )/ •( ) of •( ) by the
image of •( ) under the inclusion, is the chain complex of -relative singular chains.

A boundary in this quotient is called an -relative singular boundary,

a cycle is called an -relative singular cycle.

The chain homology of the quotient is the -relative singular homology of 

( , ) ≔ ( •( )/ •( )) .

Remark 1.2. This means that a singular ( + 1)-chain ∈ + ( ) is an -relative cycle precisely if its
boundary ∂ ∈ ( ) is, while not necessarily 0, contained in the -chains of : ∂ ∈ ( ) ↪ ( ). So the
boundary vanishes possibly only “up to contributions coming from ”.

We record two evident but important classes of long exact sequences that relative homology groups sit in:

Proposition 1.3. Let ↪  be a topological subspace inclusion. The corresponding relative singular
homology, def. 1.1, sits in a long exact sequence of the form

⋯ → ( ) ⎯⎯
( )

( ) → ( , ) ⎯⎯− − ( ) ⎯⎯⎯⎯⎯− ( )
− ( ) → − ( , ) → ⋯ .

The connecting homomorphism : + ( , ) → ( ) sends an element [ ] ∈ + ( , ) represented by an
-relative cycle ∈ + ( ), to the class represented by the boundary ∂ ∈ ( ) ↪ ( ).

Proof. This is the homology long exact sequence, induced by the defining short exact sequence

0 → •( ) ↪ •( ) → coker( ) ≃ •( )/ •( ) → 0 of chain complexes.  ▮

Proposition 1.4. Let ↪ ↪  be a sequence of two topological subspace inclusions. Then there is a long
exact sequence of relative singular homology groups of the form

⋯ → ( , ) → ( , ) → ( , ) → − ( , ) → ⋯ .

Proof. Observe that we have a short exact sequence of chain complexes, def.
\ref{ShortExactSequenceOfChainComplexes}

0 → •( )/ •( ) → •( )/ •( ) → •( )/ •( ) → 0 .

The corresponding homology long exact sequence, prop. \ref{HomologyLongExactSequence}, is the long
exact sequence in question.  ▮

We look at some concrete fundamental examples in a moment. But first it is useful to make explicit the
following general sub-notion of relative homology.

Let  still be a given topological space.

Definition 1.5. The augmentation map for the singular homology of  is the homomorphism of abelian
groups

: ( ) → ℤ

which adds up all the coefficients of all 0-chains:

: : ↦ .

Since the boundary of a 1-chain is in the kernel of this map, by example
\ref{BasicExamplesOfChainBoundaries}, it constitutes a chain map

: •( ) → ℤ ,

where now ℤ is regarded as a chain complex concentrated in degree 0.

Definition 1.6. The reduced singular chain complex ˜
•( ) of  is the kernel of the augmentation map,

the chain complex sitting in the short exact sequence

0 → ˜
•( ) → •( ) → ℤ → 0 .

The reduced singular homology ˜ •( ) of  is the chain homology of the reduced singular chain complex
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˜ •( ) ≔ •( ˜ •( )) .

Equivalently:

Definition 1.7. The reduced singular homology of , denoted ˜ •( ), is the chain homology of the
augmented chain complex

⋯ → ( ) → ( ) → ( ) → ℤ → 0 .

Let  be a topological space, •( ) its singular homology and ˜ •( ) its reduced singular homology, def. 1.6.

Proposition 1.8. For ∈ ℕ there is an isomorphism

( ) ≃
˜ ( ) for ≥ 1

˜ ( ) ⊕ ℤ for = 0

Proof. The homology long exact sequence, prop. \ref{HomologyLongExactSequence}, of the defining short

exact sequence ˜ •( ) → •( ) → ℤ is, since ℤ here is concentrated in degree 0, of the form

⋯ → ˜ ( ) → ( ) → 0 → ⋯ → 0 → ⋯ → ˜ ( ) → ( ) → 0 → ˜ ( ) → ( ) → ℤ → 0 .

Here exactness says that all the morphisms ˜ ( ) → ( ) for positive  are isomorphisms. Moreover, since ℤ
is a free abelian group, hence a projective object, the remaining short exact sequence

0 → ˜ ( ) → ( ) → ℤ → 0

is split, by prop. \ref{SplittingLemma}, and hence ( ) ≃ ˜ ( ) ⊕ ℤ.  ▮

Proposition 1.9. For = *  the point, the morphism

( ) : ( ) → ℤ

is an isomorphism. Accordingly the reduced homology of the point vanishes in every degree:

˜ •( * ) ≃ 0 .

Proof. By the discussion in section 2) we have that

( * ) ≃
ℤ for = 0

0 otherwise
.

Moreover, it is clear that : ( * ) → ℤ is the identity map.  ▮

Now we can discuss the relation between reduced homology and relative homology.

Proposition 1.10. For  an inhabited topological space, its reduced singular homology, def. 1.6, coincides
with its relative singular homology relative to any base point : * → :

˜ •( ) ≃ •( , * ) .

Proof. Consider the sequence of topological subspace inclusions

∅ ↪ * ↪ .

By prop. 1.4 this induces a long exact sequence of the form

⋯ → + ( * ) → + ( ) → + ( , * ) → ( * ) → ( ) → ( , * ) → ⋯ → ( ) → ( , * ) → ( * ) ⎯⎯⎯
( )

( ) → ( , * ) →

Here in positive degrees we have ( * ) ≃ 0 and therefore exactness gives isomorphisms

( ) →≃ ( , * ) ∀ ≥

and hence with prop. 1.8 isomorphisms

˜ ( ) →≃ ( , * ) ∀ ≥ .

It remains to deal with the case in degree 0. To that end, observe that ( ) : ( * ) → ( ) is a
monomorphism: for this notice that we have a commuting diagram
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( * ) → ( * )

( ) ↓ ( ) ↗ ↓≃
( )

( ) ⎯⎯
( )

ℤ

,

where : → *  is the terminal map. That the outer square commutes means that ( ) ∘ ( ) = ( ) and
hence the composite on the left is an isomorphism. This implies that ( ) is an injection.

Therefore we have a short exact sequence as shown in the top of this diagram

0 → ( * ) ⎯⎯⎯
( )

( ) → ( , * ) → 0

≃ ↘ ↓ ( )

ℤ

.

Using this we finally compute

˜ ( ) ≔ ker ( )

≃ coker( ( ))

≃ ( , * )

.

  ▮

With this understanding of homology relative to a point in hand, we can now characterize relative homology
more generally. From its definition in def. 1.1, it is plausible that the relative homology group ( , )

provides information about the quotient topological space / . This is indeed true under mild conditions:

Definition 1.11. A topological subspace inclusion ↪  is called a good pair if

 is closed inside ;1. 

 has an neighbourhood ↪ ↪  such that ↪  has a deformation retract.2. 

Proposition 1.12. If ↪  is a topological subspace inclusion which is good in the sense of def. 1.11, then
the -relative singular homology of  coincides with the reduced singular homology, def. 1.6, of the
quotient space / :

( / ) ≃ ˜ ( , ) .

The proof of this is spelled out at Relative homology – relation to quotient topological spaces. It needs the
proof of the Excision property of relative homology. While important, here we will not further dwell on this.
The interested reader can find more information behind the above links.

Cellular homology

With the general definition of relative homology in hand, we now consider the basic cells such that cell
complexes built from such cells have tractable relative homology groups. Actually, up to weak homotopy
equivalence, every Hausdorff topological space is given by such a cell complex and hence its relative
homology, then called cellular homology, is a good tool for computing singular homology rather generally.

Definition 1.13. For ∈ ℕ write

↪ ℝ ∈ Top for the standard -disk;

− ↪ ℝ ∈ Top for the standard ( − 1)-sphere;

(notice that the 0-sphere is the disjoint union of two points, = * ∐ * , and by definition the
(−1)-sphere is the empty set)

− ↪  for the continuous function that includes the ( − 1)-sphere as the boundary of the -disk.

Example 1.14. The reduced singular homology of the -sphere  equals the − -relative homology of the
-disk with respect to the canonical boundary inclusion − ↪ : for all ∈ ℕ

˜ •( ) ≃ •( , − ) .

Proof. The -sphere is homeomorphic to the -disk with its entire boundary identified with a point:

≃ / − .

Moreover the boundary inclusion is a good pair in the sense of def. 1.11. Therefore the example follows with
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prop. 1.12.  ▮

When forming cell complexes from disks, then each relative dimension will be a wedge sum of disks:

Definition 1.15. For { : * → }  a set of pointed topological spaces, their wedge sum ∨  is the result of

identifying all base points in their disjoint union, hence the quotient

/ * .

Example 1.16. The wedge sum of two pointed circles is the “figure 8”-topological space.

Proposition 1.17. Let { * → }  be a set of pointed topological spaces. Write ∨ ∈ Top for their wedge sum

and write : → ∨  for the canonical inclusion functions.

Then for each ∈ ℕ the homomorphism

( ˜ ( )) : ⊕ ˜ ( ) → ˜ ( ∨ )

is an isomorphism.

Proof. By prop. 1.12 the reduced homology of the wedge sum is equivalently the relative homology of the
disjoint union of spaces relative to their disjoint union of basepoints

˜ ( ∨ ) ≃ ( , * ) .

The relative homology preserves these coproducts (sends them to direct sums) and so

( , * ) ≃ ⊕ ( , * ) .

  ▮

The following defines topological spaces which are inductively built by gluing disks to each other.

Definition 1.18. A CW complex of dimension (−1) is the empty topological space.

By induction, for ∈ ℕ a CW complex of dimension  is a topological space  obtained from

a CW-complex −  of dimension − 1;1. 

an index set Cell( ) ∈ Set;2. 

a set of continuous maps (the attaching maps) { : − → − } ∈ ( )3. 

as the pushout

≃
∈ ( ) ∈ ( ) −

in

∐ ∈ ( )
− ⎯

( )

−

↓ ↓

∐ ∈ ( ) →

,

hence as the topological space obtained from −  by gluing in -disks  for each ∈ Cell( )  along the

given boundary inclusion : − → − .

By this construction, an -dimensional CW-complex is canonically a filtered topological space, hence a
sequence of topological subspace inclusions of the form

∅ ↪ ↪ ↪ ⋯ ↪ − ↪

which are the right vertical morphisms in the above pushout diagrams.

A general CW complex  then is a topological space which is the limiting space of a possibly infinite such
sequence, hence a topological space given as the sequential colimit over a tower diagram each of whose
morphisms is such a filter inclusion
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∅ ↪ ↪ ↪ ⋯ ↪ .

The following basic facts about the singular homology of CW complexes are important.

Now we can state a variant of singular homology adapted to CW complexes which admits a more systematic
way of computing its homology groups. First we observe the following.

Proposition 1.19. The relative singular homology, def. 1.1, of the filtering degrees of a CW complex , def.
1.18, is

( , − ) ≃
ℤ[Cells( ) ] if =

0 otherwise
,

where ℤ[Cells( ) ] denotes the free abelian group on the set of -cells.

Proof. The inclusion − ↪  is a good pair in the sense of def. 1.11. The quotient / −  is by definition
of CW-complexes a wedge sum, def. 1.15, of -spheres, one for each element in Cell( ) . Therefore by prop.

1.12 we have an isomorphism ( , − ) ≃ ˜ ( / − ) with the reduced homology of this wedge sum. The
statement then follows by the respect of reduced homology for wedge sums, prop. 1.17.  ▮

Proposition 1.20. For  a CW complex with skeletal filtration { }  as above, and with , ∈ ℕ we have for

the singular homology of  that

( > ) ⇒ ( ( ) ≃ 0) .

In particular if  is a CW-complex of finite dimension dim  (the maximum degree of cells), then

( > dim ) ⇒ ( ( ) ≃ 0) .

Moreover, for <  the inclusion

( ) →≃ ( )

is an isomorphism and for =  we have an isomorphism

image( ( ) → ( )) ≃ ( ) .

Proof. By the long exact sequence in relative homology, prop. 1.3 we have an exact sequence of the form

+ ( , − ) → ( − ) → ( ) → ( , − ) .

Now by prop. 1.19 the leftmost and rightmost homology groups here vanish when ≠  and ≠ − 1 and
hence exactness implies that

( − ) →≃ ( )

is an isomorphism for ≠ , − 1. This implies the first claims by induction on .

Finally for the last claim use that the above exact sequence gives

− + ( , − ) → − ( − ) → − ( ) → 0

and hence that with the above the map − ( − ) → − ( ) is surjective.  ▮

We may now discuss the cellular homology of a CW complex.

Definition 1.21. For  a CW-complex, def. 1.18, its cellular chain complex • ( ) ∈ Ch• is the chain
complex such that for ∈ ℕ

the abelian group of chains is the relative singular homology group, def. 1.1, of ↪  relative to

− ↪ :

( ) ≔ ( , − ) ,

the differential ∂ + : + ( ) → ( ) is the composition

∂ : + ( + , ) →⎯ ( ) → ( , − ) ,

where ∂  is the boundary map of the singular chain complex and where  is the morphism on relative
homology induced from the canonical inclusion of pairs ( , ∅) → ( , − ).

Proposition 1.22. The composition ∂ ∘ ∂ +  of two differentials in def. 1.21 is indeed zero, hence • ( )

is indeed a chain complex.
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Proof. On representative singular chains the morphism  acts as the identity and hence ∂ ∘ ∂ +  acts as
the double singular boundary, ∂ ∘ ∂ + = 0.  ▮

Remark 1.23. This means that

a cellular -chain is a singular -chain required to sit in filtering degree , hence in ↪ ;

a cellular -cycle is a singular -chain whose singular boundary is not necessarily 0, but is
contained in filtering degree ( − 2), hence in − ↪ .

a cellular -boundary is a singular -chain which is the boundary of a singular ( + 1)-chain coming
from filtering degree ( + 1).

This kind of situation – chains that are cycles only up to lower filtering degree and boundaries that come
from specified higher filtering degree – has an evident generalization to higher relative filtering degrees. And
in this greater generality the concept is of great practical relevance. Therefore before discussing cellular
homology further now, we consider this more general “higher-order relative homology” that it suggests
(namely the formalism of spectral sequences). After establishing a few fundamental facts about that we will
come back in prop. 1.46 below to analyse the above cellular situation using this conceptual tool.

In theorem 1.48 we conclude that cellular homology and singular homology agree of CW-complexes agres.

First we abstract the structure on chain complexes that in the above example was induced by the
CW-complex structure on the singular chain complex.

Filtered chain complexes

Definition 1.24. The structure of a filtered chain complex in a chain complex • is a sequence of chain
map inclusions

⋯ ↪ − • ↪ • ↪ ⋯ ↪ • .

The associated graded complex of a filtered chain complex, denoted • •, is the collection of quotient
chain complexes

• ≔ •/ − • .

We say that element of • are in filtering degree .

Remark 1.25. In more detail this means that

[⋯ →⎯ ⎯⎯− − → ⋯] is a chain complex, hence { } are objects in  ( -modules) and {∂ } are
morphisms (module homomorphisms) with ∂ + ∘ ∂ = 0;

1. 

For each ∈ ℤ there is a filtering •  on  and all these filterings are compatible with the
differentials in that

∂( ) ⊂ −

2. 

The grading associated to the filtering is such that the -graded elements are those in the quotient

≔
−

.

Since the differentials respect the grading we have chain complexes • in each filtering degree .

3. 

Hence elements in a filtered chain complex are bi-graded: they carry a degree as elements of • as usual,
but now they also carry a filtering degree: for , ∈ ℤ we therefore also write

, ≔ +

and call this the collection of ( , )-chains in the filtered chain complex.

Accordingly we have ( , )-cycles and -boundaries. But for these we may furthermore refine to a notion
where also the filtering degree of the boundaries is constrained:

Definition 1.26. Let • • be a filtered chain complex. Its associated graded chain complex is the set of
chain complexes

• ≔ •/ − •

for all .
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Then for , , ∈ ℤ we say that

+  is the module of ( , )-chains or of ( + )-chains in filtering degree ;1. 

the module

, ≔ ∈ + | ∂ = 0mod − •

= ∈ + | ∂( ) ∈ − + − / − +

is the module of -almost ( , )-cycles (the ( + )-chains whose differential vanishes modulo terms
of filtering degree − );

2. 

, ≔ ∂( + − + + ) ,

is the module of -almost ( , )-boundaries.

3. 

Similarly we set

, ≔ { ∈ + | ∂ = 0}/ − + = ( + )

, ≔ ∂( + + ) .

From this definition we immediately have that the differentials ∂ : + → + −  restrict to the -almost
cycles as follows:

Proposition 1.27. The differentials of • restrict on -almost cycles to homomorphisms of the form

∂ : , → − , + − .

These are still differentials: ∂ = 0.

Proof. By the very definition of ,  it consists of elements in filtering degree  on which ∂ decreases the
filtering degree to − . Also by definition of differential on a chain complex, ∂ decreases the actual degree
+  by one. This explains that ∂ restricted to ,  lands in − , + −

• . Now the image constists indeed of
actual boundaries, not just -almost boundaries. But since actual boundaries are in particular -almost
boundaries, we may take the codomain to be − , + − .  ▮

As before, we will in general index these differentials by their codomain and hence write in more detail

∂ , : , → − , + − .

Proposition 1.28. We have a sequence of canonical inclusions

, ↪ , ↪ ⋯ , ↪ , ↪ ⋯ ↪ , ↪ , .

The following observation is elementary, and yet this is what drives the theory of spectral sequences, as it
shows that almost cycles may be computed iteratively by homological means themselves.

Proposition 1.29. The ( + 1)-almost cycles are the ∂ -kernel inside the -almost cycles:

,
+ ≃ ker( , →⎯ − , + − ) .

Proof. An element ∈ +  represents

an element in ,  if ∂ ∈ − + −1. 

an element in ,
+  if even ∂ ∈ − − + − ↪ − + − .2. 

The second condition is equivalent to ∂  representing the 0-element in the quotient

− + − / − − + − . But this is in turn equivalent to ∂  being 0 in

− , + − ⊂ − + − / − − + − .  ▮

With a definition of almost-cycles and almost-boundaries, of course we are now interested in the
corresponding homology groups:

Definition 1.30. For , , ∈ ℤ define the -almost ( , )-chain homology of the filtered complex to be the
quotient of the -almost ( , )-cycles by the -almost ( , )-boundaries, def. 1.26:

, ≔ ,

,

=
∈ + | ∈ − + −

( + − + + )⊕ − +
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By prop. 1.27 the differentials of • restrict on the -almost homology groups to maps

∂ : , → − , + − .

The central property of these -almost homology groups now is their following iterative homological
characterization.

Proposition 1.31. With definition 1.30 we have that • , •
+  is the ∂ -chain homology of • , • :

,
+ =

ker(∂ : , → − , + − )

im(∂ : + , − + → , )
.

Proof. By prop. 1.29.  ▮

This structure on the collection of -almost cycles of a filtered chain complex thus obtained is called a
spectral sequence:

Definition 1.32. A homology spectral sequence of -modules is

a set { , } , , ∈ℤ of -modules;1. 

a set {∂ , : , → − , + − } , , ∈ℤ of homomorphisms2. 

such that

the ∂ s are differentials: ∀ , , (∂ − , + − ∘ ∂ , = 0);1. 

the modules ,
+  are the ∂ -homology of the modules in relative degree :

∀ , , ,
+ ≃

ker(∂ − , + − )

im(∂ , )
.

2. 

One says that • , •  is the -page of the spectral sequence.

Since this turns out to be a useful structure to make explicit, as the above motivation should already
indicate, one introduces the following terminology and basic facts to talk about spectral sequences.

Definition 1.33. Let { , } , ,  be a spectral sequence, def. 1.32, such that for each ,  there is ( , ) such

that for all ≥ ( , ) we have

,
≥ ( , ) ≃ ,

( , ) .

Then one says that

the bigraded object

≔ { , } , ≔ { ,
( , )} ,

is the limit term of the spectral sequence;

1. 

the spectral sequence abuts to .

Example 1.34. If for a spectral sequence there is  such that all differentials on pages after  vanish,
∂ ≥ = 0, then { } ,  is a limit term for the spectral sequence. One says in this cases that the spectral

sequence degenerates at .

Proof. By the defining relation

,
+ ≃ ker(∂ − , + − )/im(∂ , ) =

the spectral sequence becomes constant in  from  on if all the differentials vanish, so that ker(∂ , ) = ,

for all , .  ▮

Example 1.35. If for a spectral sequence { , } , ,  there is ≥ 2 such that the th page is concentrated in

a single row or a single column, then the spectral sequence degenerates on this pages, example 1.34,
hence this page is a limit term, def. 1.33. One says in this case that the spectral sequence collapses on
this page.

Proof. For ≥ 2 the differentials of the spectral sequence

∂ : , → − , + −

have domain and codomain necessarily in different rows an columns (while for = 1 both are in the same
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row and for = 0 both coincide). Therefore if all but one row or column vanish, then all these differentials
vanish.  ▮

Definition 1.36. A spectral sequence { , } , ,  is said to converge to a graded object • with filtering • •,

traditionally denoted

, ⇒ • ,

if the associated graded complex { + } , ≔ { + / − + } of  is the limit term of , def. 1.33:

, ≃ + ∀ , .

Remark 1.37. In practice spectral sequences are often referred to via their first non-trivial page, often also
the page at which it collapses, def. 1.35, often already the second page. Then one tends to use notation
such as

, ⇒ •

to be read as “There is a spectral sequence whose second page is as shown on the left and which
converges to a filtered object as shown on the right.”

Definition 1.38. A spectral sequence { , } is called a bounded spectral sequence if for all , ∈ ℤ the
number of non-vanishing terms of total degree , hence of the form , − , is finite.

Definition 1.39. A spectral sequence { , } is called

a first quadrant spectral sequence if all terms except possibly for , ≥ 0 vanish;

a third quadrant spectral sequence if all terms except possibly for , ≤ 0 vanish.

Such spectral sequences are bounded, def. 1.38.

Proposition 1.40. A bounded spectral sequence, def. 1.38, has a limit term, def. 1.33.

Proof. First notice that if a spectral sequence has at most  non-vanishing terms of total degree  on page
, then all the following pages have at most at these positions non-vanishing terms, too, since these are the

homologies of the previous terms.

Therefore for a bounded spectral sequence for each  there is ( ) ∈ ℤ such that , − = 0 for all ≤ ( ) and
all . Similarly there is ( ) ∈ ℤ such − , = 0 for all ≤ ( ) and all .

We claim then that the limit term of the bounded spectral sequence is in position ( , ) given by the value

,  for

> max( − ( + − 1), + 1 − ( + + 1)) .

This is because for such  we have

− , + − = 0 because − < ( + − 1), and hence the kernel ker(∂ − , + − ) = 0 vanishes;1. 

+ , − + = 0 because − + 1 < ( + + 1), and hence the image im(∂ , ) = 0 vanishes.2. 

Therefore

,
+ = ker(∂ − , + − )/im(∂ , )

≃ , /0

≃ ,

.

  ▮

The central statement about the notion of the spectral sequence of a filtered chain complex then is the
following proposition. It says that the iterative computation of higher order relative homology indeed in the
limit computes the genuine homology.

Definition 1.41. For • • a filtered complex, write for ∈ ℤ

•( ) ≔ image( •( ) → •( )) .

This defines a filtering • •( ) of the homology, regarded as a graded object.

Proposition 1.42. If the spectral sequence of a filtered complex • • of prop. 1.31 has a limit term, def.
1.33 then it converges, def. 1.36, to the chain homology of •
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, ⇒ + ( •) ,

i.e. for sufficiently large  we have

, ≃ + ( ) ,

where on the right we have the associated graded object of the filtering of def. 1.41.

Proof. By assumption, there is for each ,  an ( , ) such that for all ≥ ( , ) the -almost cycles and
-almost boundaries, def. 1.26, in +  are the ordinary cycles and boundaries. Therefore for ≥ ( , )

def. 1.30 gives , ≃ + ( ).  ▮

This says what these spectral sequences are converging to. For computations it is also important to know
how they start out for low . We can generally characterize ,  for very low values of  simply as follows:

Proposition 1.43. We have

, = + = + / − +

is the associated p-graded piece of + ;

, = + ( •)

Proof. For = 0 def. 1.30 restricts to

, =
+

− +
= +

because for ∈ +  we automatically also have ∂ ∈ +  since the differential respects the filtering
degree by assumption.

For = 1 def. 1.30 gives

, =
{ ∈ + | ∂ = 0 ∈ + }

∂( + )
= + ( •) .

  ▮

Remark 1.44. There is, in general, a decisive difference between the homology of the associated graded
complex + ( •) and the associated graded piece of the genuine homology + ( •): in the former
the differentials of cycles are required to vanish only up to terms in lower degree, but in the latter they
are required to vanish genuinely. The latter expression is instead the value of the spectral sequence for
→ ∞, see prop. 1.42 below.

Comparing cellular and singular homology

These general facts now allow us, as a first simple example for the application of spectral sequences to see
transparently that the cellular homology of a CW complex, def. 1.21, coincides with its genuine singular
homology.

First notice that of course the structure of a CW-complex on a topological space , def. 1.18 naturally
induces on its singular simplicial complex •( ) the structure of a filtered chain complex, def. 1.24:

Definition 1.45. For ↪ ↪ ⋯ ↪  a CW complex, and ∈ ℕ, write

•( ) ≔ •( )

for the singular chain complex of ↪ . The given topological subspace inclusions ↪ +  induce chain
map inclusions •( ) ↪ + •( ) and these equip the singular chain complex •( ) of  with the
structure of a bounded filtered chain complex

0 ↪ •( ) ↪ •( ) ↪ •( ) ↪ ⋯ ↪ •( ) ≔ •( ) .

(If  is of finite dimension dim  then this is a bounded filtration.)

Write { , ( )} for the spectral sequence of a filtered complex corresponding to this filtering.

Proposition 1.46. The spectral sequence { , ( )} of singular chains in a CW complex , def. 1.45
converges, def. 1.36, to the singular homology of :

, ( ) ⇒ •( ) .

Proof. The spectral sequence { , ( )} is clearly a first-quadrant spectral sequence, def. 1.39. Therefore it is
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a bounded spectral sequence, def. 1.38 and hence has a limit term, def. 1.40. So the statement follows with
prop. 1.42.  ▮

We now identify the low-degree pages of { , ( )} with structures in singular homology theory.

Proposition 1.47.

= 0 – , ( ) ≃ + ( )/ + ( − ) is the group of − -relative (p+q)-chains, def. 1.1, in ;

= 1 – , ( ) ≃ + ( , − ) is the − -relative singular homology, def. 1.1, of ;

= 2 – , ( ) ≃
( ) for = 0

0 otherwise

= ∞ – , ( ) ≃ + ( )/ − + ( ).

Proof. By straightforward and immediate analysis of the definitions.  ▮

As a result of these general considerations we now obtain the promised isomorphism between the cellular
homology and the singular homology of a CW-complex :

Theorem 1.48. For ∈ Top a CW complex, def. 1.18, its cellular homology, def. 1.21 • ( ) coincides with
its singular homology •( ):

• ( ) ≃ •( ) .

Proof. By the third item of prop. 1.47 the ( = 2)-page of the spectral sequence { , ( )} is concentrated in
the ( = 0)-row and hence it collapses there, def. 1.35. Accordingly we have

, ( ) ≃ , ( )

for all , . By the third and fourth item of prop. 1.47 this non-trivial only for = 0 and there it is equivalently

( ) ≃ ( ) .

Finally observe that ( ) ≃ ( ) by the definition of the filtering on the homology, def. 1.41, and using
prop. 1.20.  ▮

2. For filtered spectra

Definition 2.1. A filtered spectrum is a spectrum  equipped with a sequence • : (ℕ, > ) ⟶ Spectra of spectra
of the form

⋯⟶ ⟶ ⟶ ⟶ = .

Remark 2.2. More generally a filtering on an object  in (stable or not) homotopy theory is a ℤ-graded
sequence • such that  is the homotopy colimit ≃ lim→⎯⎯ •. But for the present purpose we stick with the

simpler special case of def. 2.1.

Remark 2.3. There is no condition on the morphisms in def. 2.1. In particular, they are not required to be
n-monomorphisms or n-epimorphisms for any .

On the other hand, while they are also not explicitly required to have a presentation by cofibrations or
fibrations, this follows automatically: by the existence of model structures for spectra, every filtering on a
spectrum is equivalent to one in which all morphisms are represented by cofibrations or by fibrations.

This means that we may think of a filtration on a spectrum  in the sense of def. 2.1 as equivalently being
a tower of fibrations over .

The following remark 2.4 unravels the structure encoded in a filtration on a spectrum, and motivates the
concepts of exact couples and their spectral sequences from these.

Remark 2.4. Given a filtered spectrum as in def. 2.1, write  for the homotopy cofiber of its th stage,
such as to obtain the diagram

⋯ ⟶ ⟶ ⟶ ⟶

↓ ↓ ↓ ↓

where each stage
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+ ⟶

↓ ( )

is a homotopy fiber sequence.

To break this down into invariants, apply the stable homotopy groups-functor (def.). This yields a diagram
of ℤ-graded abelian groups of the form

⋯ ⟶ •( ) →⎯⎯⎯⎯
•( )

•( ) →⎯⎯⎯⎯
•( )

•( ) →⎯⎯⎯⎯
•( )

•( )

↓ ↓ ↓ ↓

•( ) •( ) •( ) •( )

.

Each hook at stage  extends to a long exact sequence of homotopy groups (prop.) via connecting
homomorphisms •

⋯ → • + ( ) →⎯⎯⎯• + •( + ) →⎯⎯⎯⎯
•( )

•( ) ⟶ •( ) ⟶• • − ( + ) → ⋯ .

If we understand the connecting homomorphism

: •( ) ⟶ •( + )

as a morphism of degree -1, then all this information fits into one diagram of the form

⋯ ⟶ •( ) →⎯⎯⎯⎯
•( )

•( ) →⎯⎯⎯⎯
•( )

•( ) →⎯⎯⎯⎯
•( )

•( )

↓ ↖ ↓ ↖ ↓ ↖ ↓

•( ) •( ) •( ) •( )

,

where each triangle is a rolled-up incarnation of a long exact sequence of homotopy groups (and in
particular is not a commuting diagram!).

If we furthermore consider the bigraded abelian groups •( •) and •( •), then this information may
further be rolled-up to a single diagram of the form

•( •) →⎯⎯⎯⎯•
( •)

•( •)

↖ ↓ •( ( •))

•( •)

where the morphisms •( •), •(cofib( •)) and  have bi-degree (0, −1), (0, 0) and (−1, 1), respectively.

Here it is convenient to shift the bigrading, equivalently, by setting

, ≔ − ( )
ℰ , ≔ − ( ) ,

because then  counts the cycles of going around the triangles:

⋯ → + , + →⎯⎯⎯⎯⎯⎯
− ( ) , →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

− ( ( ))
ℰ , ⟶ + , → ⋯

Data of this form is called an exact couple, def. 2.6 below.

Definition 2.5. An unrolled exact couple (of Adams-type) is a diagram of abelian groups of the form

⋯ ⟶ , • ⟶ , • ⟶ , • ⟶ , •

↓ ↖ ↓ ↖ ↓ ↖ ↓

ℰ , • ℰ , • ℰ , • ℰ , •

such that each triangle is a rolled-up long exact sequence of abelian groups of the form

⋯ → + , + ⟶ , ⟶ ℰ , ⟶ + , → ⋯ .

The collection of this “un-rolled” data into a single diagram of abelian groups is called the corresponding
exact couple.

Definition 2.6. An exact couple is a diagram (non-commuting) of abelian groups of the form
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⟶

↖ ↓

ℰ

,

such that this is exact sequence exact in each position, hence such that the kernel of every morphism is
the image of the preceding one.

The concept of exact couple so far just collects the sequences of long exact sequences given by a filtration.
Next we turn to extracting information from this sequence of sequences.

Remark 2.7. The sequence of long exact sequences in remark 2.4 is inter-locking, in that every − ( )
appears twice:

↘ ↗

− − ( + )

− ↗ ↘ − − ( ( + )) ↗

− ( ) →⎯⎯⎯⎯⎯⎯
: , − − ( + ) →⎯⎯⎯⎯⎯⎯⎯⎯

: + ,

− − ( + )

↗
− −
+ ↘ ↗

− − ( ( + ))

− − ( + )

↗ ↘

This gives rise to the horizontal composites , , as show above, and by the fact that the diagonal
sequences are long exact, these are differentials: = 0, hence give a chain complex:

⋯ ⟶ − ( ) →⎯⎯
,

− − ( + ) →⎯⎯⎯⎯⎯
+ ,

− − ( + ) ⟶ ⋯ .

We read off from the interlocking long exact sequences what these differentials mean: an element
∈ − ( ) lifts to an element ^ ∈ − − ( + ) precisely if = 0:

^ ∈ − − ( + )

↘ − − ( + )

− − ( + )

− ↗ ↘ − − ( ( + ))

∈ − ( ) →⎯⎯
, − − ( + )

This means that the cochain cohomology of the complex ( •( •), ) produces elements of •( •) and hence
of •( ).

In order to organize this observation, notice that in terms of the exact couple of remark 2.4, the
differential

, ≔ − − (cofib( + )) ∘ −

is a component of the composite

≔ ∘ .

Some terminology:

Definition 2.8. Given an exact couple, def. 2.6,

• , • ⟶ • , •

↖ ↓

ℰ • , •

its page is the chain complex

( • , • , ≔ ∘ ) .

Definition 2.9. Given an exact couple, def. 2.6, then the induced derived exact couple is the diagram
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˜ ⟶
˜
˜

˜ ↖ ↓
˜

ℰ̃

with

ℰ̃ ≔ ker( )/im( );1. 

˜ ≔ im( );2. 

˜ ≔ | ( );3. 

˜ ≔ ∘ (im( ))− ;4. 

˜ ≔ | ( ).5. 

Proposition 2.10. A derived exact couple, def. 2.9, is again an exact couple, def. 2.6.

Definition 2.11. Given an exact couple, def. 2.6, then the induced spectral sequence, def. 1.32, is the
sequence of pages, def. 2.8, of the induced sequence of derived exact couples, def. 2.9, prop. 2.10.

Example 2.12. Consider a filtered spectrum, def. 2.1,

⋯ ⟶ ⟶ ⟶ ⟶

↓ ↓ ↓ ↓

and its induced exact couple of stable homotopy groups, from remark 2.4

⟶

↖ ↓

ℰ

→⎯⎯⎯⎯⎯⎯
(− , − )

( , ) ↖ ↓( , )

ℰ

with bigrading as shown on the right.

As we pass to derived exact couples, by def. 2.9, the
bidegree of  and  is preserved, but that of  increases by
(1, 1) in each step, since

deg( ˜) = deg( ∘ im( )− ) = deg( ) + (1, 1) .

Therefore the induced spectral sequence has differentials of
the form

: ℰ , ⟶ ℰ + , + − .

This is also called the Adams-type spectral sequence of the
tower of fibrations + → .

This we discuss in detail in part 2 -- Adams spectral sequences.

3. References

A gentle exposition of the general idea of spectral sequences is in

John McCleary, A User’s Guide to Spectral Sequences, Cambridge University Press (1985, 2001)

A concise account streamlined for our purposes is in section 2 of

John Rognes, The Adams spectral sequence (following Bruner), 2012 (pdf)
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nLab

Introduction to the Adams Spectral Sequence

This page gives a detailed introduction to the Adams spectral sequence in its general spectral form (Adams-
Novikov spectral sequence).

For background on spectral sequences see Introduction to Spectral Sequences.

For background on stable homotopy theory see Introduction to Stable homotopy theory.

For background on complex oriented cohomology see Introduction to Cobordism and Complex Oriented
Cohomology.

Contents
1. The spectral sequence

Filtered spectra

-Adams filtrations

2. The first page
Flat homotopy ring spectra

The -Steenrod algebra

Comodules over the -Steenrod algebra

Universal coefficient theorem

3. The second page
-Adams resolutions

Homological co-algebra

4. Convergence
Primary decomposition of abelian groups

Localization and adic completion of abelian groups

Localization and nilpotent completion of spectra

Convergence theorems

5. Classical Adams spectral sequence ( = , = )
The dual Steenrod algebra

The cobar complex

The May spectral sequence

The second page

The first dozen stable stems

6. The case =  and =

7. Adams-Novikov spectral sequence ( = , = )

8. References

The main result of Part 1.1 was the construction of the stable homotopy category Ho(Spectra) (thm., def.) as
a triangulated category (prop.) with graded abelian hom groups [ , ]• (def.).

These are the basic invariants of stable homotopy theory, the stable homotopy groups. They are as rich and
interesting as they are, in general, hard to compute. The archetypical example for this phenonemon are the
stable homotopy groups of spheres •( ). (We compute the first dozen of these, 2-locally, below.)

In order to get more control over Ho(Spectra), the main result of Part 1.2 was the construction of tensor
triangulated category structure on Ho(Spectra) (prop.), induced form a symmetric monoidal smash product of
spectra ∧ (thm.)

(Ho(Spectra), ∧ , ) .
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As discussed in Part I (and briefly reviewed below), the tool of choice to break up the computation of stable
homotopy groups in stable homotopy theory into tractable computations in homological algebra are spectral
sequences. These break up computations of stable homotopy groups along chosen filtrations on spectra.
Using the tensor triangulated structure, it turns out that every homotopy commutative ring spectrum
(def.) induces a well-adapted filtration on spectra that allows to compute the “formal neighbourhood around
” in any spectrum (called the -nilpotent completion) via a spectral sequence. This is the -Adams spectral

sequence which we discuss here.

Where the Atiyah-Hirzebruch spectral sequence (see part S, this prop.) approximates [ , ]• via the ordinary

cohomology •( , •( )), the idea of the Adams spectral sequence is to make use of an auxiliary homotopy
commutative ring spectrum  and approximate maps of spectra →  via their image •( ) → •( ) in
-generalized homology (rmk).

But in order for maps of homology groups to have a chance to retain enough information, they should be
forced to be equivariant with respect to extra structure inherited by forming -homology.

For instance if =  then the dual Steenrod algebra  (co-)acts on •( ) = •( , ) and a necessary
condition for a morphism of homology groups to come from a morphism of spectra is that it is a
homomorphism with respect to this co-action. The classical Adams spectral sequence (discussed below),
accordingly, approximates [ , ]• by Hom ( •( , ), •( , )).

More generally, since spectra are equivalently module spectra over the sphere spectrum , the operation of
forming -homology spectra ↦ ∧  is equivalently the extension of scalars along the ring unit ⟶ . This
means that the extra structure inherited by -homology groups contains the information given by the
further extensions along the cosimplicial diagram

⟶ ⟶⟶ ∧ ⟶⟶
⟶

∧ ∧ ⟶⟶
⟶⟶

⋯ .

In good cases this gives •( ) the structure of a module over the Hopf algebroid •( ∧ ) = •( ) ⟵⟵ • of
“dual -Steenrod operations”. Accordingly the general -Adams spectral sequence approximates [ , ]• by

Hom
•( )( •( ), •( )).

For = MU, BP, this is the Adams-Novikov spectral sequence, considered below.

We discuss first the

General theory of E-Adams spectral sequences

and then consider the classical

Examples and applications

First we set up the general theory of -Adams spectral sequences. (We consider examples and applications
further below.)

Literature (Adams 74, part III.15, Bousfield 79, sections 5 and 6, Ravenel 86, appendix A)

1. The spectral sequence

Filtered spectra

We introduce the types of spectral sequences of which the -Adams spectral sequences (def. 1.14 below)
are an example.

Definition 1.1. A filtered spectrum is a spectrum ∈ Ho(Spectra) equipped with a sequence

• : (ℕ, > ) ⟶ Ho(Spectra) in the stable homotopy category (def.) of the form

⋯⟶ ⟶ ⟶ ⟶ ≔ .

Remark 1.2. More generally a filtering on an object  in (stable or not) homotopy theory is a ℤ-graded
sequence • such that  is the homotopy colimit ≃ lim→⎯⎯ •. But for the present purpose we stick with the

simpler special case of def. 1.1.

Remark 1.3. There is no condition on the morphisms in def. 1.1. In particular, they are not required to be
n-monomorphisms or n-epimorphisms for any .

On the other hand, while they are also not explicitly required to have a presentation by cofibrations or
fibrations, this follows automatically: by the existence of the model structure on topological sequential
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spectra (thm.) or equivalently (thm.) the model structure on orthogonal spectra (thm.), every filtering on
a spectrum is equivalent to one in which all morphisms are represented by cofibrations or by fibrations.

This means that we may think of a filtration on a spectrum in the sense of def. 1.1 as equivalently being a
tower of fibrations over that spectrum.

The following definition 1.4 unravels the structure encoded in a filtration on a spectrum, and motivates the
concepts of exact couples and their spectral sequences from these.

Definition 1.4. (exact couple of a filtered spectrum)

Consider a spectrum ∈ Ho(Spectra) and a filtered spectrum • as in def. 1.1.

Write  for the homotopy cofiber of its th stage, such as to obtain the diagram

⋯ ⟶ ⟶ ⟶ ⟶

↓ ↓ ↓ ↓

where each stage

+ ⟶

↓

is a homotopy cofiber sequence (def.), hence equivalently (prop.) a homotopy fiber sequence, hence
where

+ ⟶ ⟶ ⟶ +

is an exact triangle (prop.).

Apply the graded hom-group functor [ , −]• (def.) to the above tower. This yields a diagram of ℤ-graded

abelian groups of the form

⋯ ⟶ [ , ]• →⎯⎯⎯⎯⎯
[ , ]•) [ , ]• →⎯⎯⎯⎯

[ , ]• [ , ]• →⎯⎯⎯⎯
[ , ]• [ , ]•

↓[ , ]• ↓[ , ]• ↓[ , ]• ↓[ , ]•

[ , ]• [ , ]• [ , ]• [ , ]•

,

where each hook at stage  extends to a long exact sequence of homotopy groups (prop.) via connecting
homomorphisms [ , ℎ ]•

⋯ → [ , ]• + →⎯⎯⎯⎯⎯⎯⎯
[ , ]• + [ , + ]• →⎯⎯⎯⎯⎯

[ , ]• [ , ]• →⎯⎯⎯⎯⎯
[ , ]• [ , ]• →⎯⎯⎯⎯⎯

[ , ]• [ , + ]• − → ⋯ .

If we regard the connecting homomorphism [ , ℎ ] as a morphism of degree -1, then all this information
fits into one diagram of the form

⋯ ⟶ [ , ]• →⎯⎯⎯⎯
[ , ]• [ , ]• →⎯⎯⎯⎯

[ , ]• [ , ]• →⎯⎯⎯⎯
[ , ]• [ , ]•

↓ ↖
[ , ]•

↓ ↖
[ , ]•

↓ ↖
[ , ]•

↓[ , ]•

[ , ]• [ , ]• [ , ]• [ , ]•

,

where each triangle is a rolled-up incarnation of a long exact sequence of homotopy groups (and in
particular is not a commuting diagram!).

If we furthermore consider the bigraded abelian groups [ , •]• and [ , •]•, then this information may

further be rolled-up to a single diagram of the form

[ , •]• →⎯⎯⎯⎯
[ , •]• [ , •]•

[ , •]•
↖ ↓[ , •]•

[ , •]•

.

Specifically, regard the terms here as bigraded in the following way

, ( , ) ≔ [ , ] −

, ( , ) ≔ [ , ] −

.
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Then the bidegree of the morphisms is

morphismbidegree
[ , ] (−1, −1)

[ , ] (0, 0)

[ , ℎ] (1, 0)

This way  counts the cycles of going around the triangles:

⋯ → + , + ( , ) →⎯⎯⎯
[ , ] , ( , ) →⎯⎯⎯

[ , ] , ( , ) →⎯⎯⎯
[ , ] + , ( , ) → ⋯

Data of this form is called an exact couple, def. 1.6 below.

Definition 1.5. An unrolled exact couple (of Adams-type) is a diagram of abelian groups of the form

⋯ ⟶ , • ⟶ , • ⟶ , • ⟶ , •

↓ ↖ ↓ ↖ ↓ ↖ ↓

ℰ , • ℰ , • ℰ , • ℰ , •

such that each triangle is a rolled-up long exact sequence of abelian groups of the form

⋯ → + , + ⟶ , ⟶ℰ , ⟶ + , → ⋯ .

The collection of this “un-rolled” data into a single diagram of abelian groups is called the corresponding
exact couple.

Definition 1.6. An exact couple is a diagram (non-commuting) of abelian groups of the form

⟶

↖ ↓

ℰ

,

such that this is exact in each position, hence such that the kernel of every morphism is the image of the
preceding one.

The concept of exact couple so far just collects the sequences of long exact sequences given by a filtration.
Next we turn to extracting information from this sequence of sequences.

Remark 1.7. The sequence of long exact sequences in def. 1.4 is inter-locking, in that every [ , ] −

appears twice:

↘ ↗

[ , + ] − −

[ , ] ↗ ↘[ , ] ↗

[ , ] − ⟶ [ , + ] − − ⟶ [ , + ] − −

↗ [ , ] ↘ ↗[ , ]

[ , + ] − −

↗ ↘

This gives rise to the horizontal (“splicing”) composites , as shown, and by the fact that the diagonal
sequences are long exact, these are differentials in that they square to zero: ( ) = 0. Hence there is a
cochain complex:

⋯ ⟶ [ , ] − ⟶ [ , + ] − − ⟶ [ , + ] − − ⟶ ⋯ .

We may read off from these interlocking long exact sequences what these differentials mean, as follows.
An element ∈ [ , ] −  lifts to an element ̂ ∈ [ , + ] − −  precisely if = 0:

^ ∈ [ , + ] − −

↘[ , ]

[ , + ] − −

[ , ] ↗ ↘[ , ]

∈ [ , ] − ⟶ [ , + ] − −
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In order to organize this observation, notice that in terms of the exact couple of remark 1.4, the
differential

≔ [ , ] ∘ [ , ℎ]

is the composite

≔ ∘ .

Some terminology:

Definition 1.8. Given an exact couple, def. 1.6,

• , • ⟶ • , •

↖ ↓

ℰ • , •

observe that the composite

≔ ∘

is a differential in that it squares to 0, due to the exactness of the exact couple:

∘ = ∘ ∘
=

∘

= 0
.

One says that the page of the exact couple is the graded chain complex

(ℰ • , • , ≔ ∘ ) .

Given a cochain complex like this, we are to pass to its cochain cohomology. Since the cochain complex
here has the extra structure that it arises from an exact couple, its cohomology groups should still
remember some of that extra structure. Indeed, the following says that the remaining extract structure on
the cohomology of the page of an exact couple is itself again an exact couple, called the “derived exact
couple”.

Definition 1.9. Given an exact couple, def. 1.6, then its derived exact couple is the diagram

˜ ⟶
˜
˜

˜ ↖ ↓
˜

ℰ̃

≔

im( ) ⟶ im( )

↖ ↓ ∘ −

(ℰ, ∘ )

with

ℰ̃ ≔ ker( )/im( ) (with ≔ ∘  from def. 1.8);1. 

˜ ≔ im( );2. 

˜ ≔ | ( );3. 

˜ ≔ ∘ −  (where −  is the operation of choosing any preimage under );4. 

˜ ≔ | ( ).5. 

Lemma 1.10. The derived exact couple in def. 1.9 is well defined and is itself an exact couple, def. 1.6.

Proof. This is straightforward to check. For completeness we spell it out:

First consider that the morphisms are well defined in the first place.

It is clear that ˜ is well-defined.

That ˜ lands in ker( ): it lands in the image of  which is in the kernel of , by exactness, hence in the kernel
of  by definition.

That ˜ is independent of the choice of preimage: For any ∈ ˜ = im( ), let , ′ ∈  be two preimages under ,
hence ( ) = ( ′) = . This means that ( ′ − ) = 0, hence that ′ − ∈ ker( ), hence that ′ − ∈ im( ), hence
there exists ∈ ℰ such that ′ = + ( ), hence ( ′ ) = ( ) + ( ( )) = ( ) + ( ), but ( ) = 0 in ℰ̃.

That ˜  vanishes on im( ): because im( ) ⊂ im( ) and hence by exactness.
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That ˜  lands in im( ): since it is defined on ker( ) = ker( ∘ ) it lands in ker( ). By exactness this is im( ).

That the sequence of maps is again exact:

The kernel of ˜ is those ∈ im( ) such that their preimage − ( ) is still in im( ) (by exactness of the original
exact couple) hence such that ∈ im( | ( ) ), hence such that ∈ im(˜).

The kernel of ˜  is the intersection of the kernel of  with the kernel of = ∘ , wich is still the kernel of ,
hence the image of , by exactness. Indeed this is also still the image of ˜, since for every ∈  then
˜( ( )) = ( ).

The kernel of ˜ is ker( ) ∩ im( ) ≃ im( ) ∩ im( ), by exactness. Let ∈ ℰ such that ( ) ∈ im( ), then by exactness

( ) ∈ ker( ) hence ( ( )) = ( ) = 0, hence ∈ ker( ) and so ( ) = ˜ ( ).  ▮

Definition 1.11. Given an exact couple, def. 1.6, then the induced spectral sequence of the exact
couple is the sequence of pages, def. 1.8, of the induced sequence of derived exact couples, def. 1.9,
lemma 1.10.

The th page of the spectral sequence is the page (def. 1.8) of the th exact couple, denoted

{ℰ , } .

Remark 1.12. So the spectral sequence of an exact couple (def. 1.11) is a sequence of cochain complexes
(ℰ , ), where the cohomology of one is the terms of the next one:

ℰ + ≃ (ℰ , ) .

In practice this is used as a successive stagewise approximation to the computation of a limiting term ℰ .
What that limiting term is, if it exists at all, is the subject of convergence of the spectral sequence, we
come to this below.

Def. 1.11 makes sense without a (bi-)grading on the terms of the exact couple, but much of the power of
spectral sequences comes from the cases where such a bigrading is given, since together with the sequence
of pages of the spectral sequence, this tends to organize computation of the successive cohomology groups
in an efficient way. Therefore consider:

Definition 1.13. Given a filtered spectrum as in def. 1.1,

⋯ ⟶ ⟶ ⟶ ⟶

↓ ↓ ↓ ↓

and given another spectrum ∈ Ho(Spectra), the induced spectral sequence of a filtered spectrum is
the spectral sequence that is induced, by def. 1.11 from the exact couple (def. 1.6) given by def. 1.4:

⟶

↖ ↓

ℰ

≔

⊕ ,
, ( , ) →⎯⎯⎯

[ , ]
⊕ ,

, ( , )

[ , ] ↖ ↓[ , ]

⊕ ,
, ( , )

≔

⊕ , [ , ] − →⎯⎯⎯
[ , ]

⊕ , [ , ] −

[ , ] ↖ ↓[ , ]

[ , ] −

with the following bidegree of the differentials:

deg =

→⎯⎯⎯⎯⎯⎯
(− , − )

( , ) ↖ ↓( , )

ℰ

.

In particular the first page is

ℰ , = [ , ] −

= [ , ∘ ℎ] .

As we pass to derived exact couples, by def. 1.9, the bidegree of  and  is preserved, but that of 
increases by (1, 1) with each page, since (by def. 1.8)

deg( ˜) = deg( ∘ − )

= deg( ) − deg( )

= deg( ) + (1, 1)

.

Similarly the first differential has degree
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deg( ∘ ) = deg( ) + deg( )

= (1, 0) + (0, 0)

= (1, 0)

and so the differentials on the th page are of the form

: ℰ , ⟶ ℰ + , + − .

It is conventional to depict this in tables where  increases
vertically and upwards and −  increases horizontally and to
the right, so that  goes up  steps and always one step to
the left. This is the “Adams type” grading convention for
spectral sequences (different from the Serre-Atiyah-
Hirzebruch spectral sequence convention (prop.)). One also
says that

 is the filtration degree;

−  is the total degree;

 is the internal degree.

A priori all this is ℕ× ℤ-graded, but we regard it as being ℤ × ℤ-graded by setting

, • ≔ 0 , ℰ , • ≔ 0

and trivially extending the definition of the differentials to these zero-groups.

-Adams filtrations

Given a homotopy commutative ring spectrum ( , , ), then an -Adams spectral sequence is a spectral
sequence as in def. 1.13, where each cofiber is induced from the unit morphism : ⟶ :

Definition 1.14. Let , ∈ Ho(Spectra) be two spectra (def.), and let ( , , ) ∈ CMon(Ho(Spectra), ∧ , ) be a
homotopy commutative ring spectrum (def.) in the tensor triangulated stable homotopy category
(Ho(Spectra), ∧ , ) (prop.).

Then the -Adams spectral sequence for the computation of the graded abelian group

[ , ]• ≔ [ , −• ]

of morphisms in the stable homotopy category (def.) is the spectral sequence of a filtered spectrum (def.
1.13) of the image under [ , −]• of the tower

⋮

↓

⟶ ∧ =

↓

⟶ ∧ =

↓

⟶ ∧ =

↓

= ⟶ ∧ =

,

where each hook is a homotopy fiber sequence (equivalently a homotopy cofiber sequence, prop.), hence
where each

+ ⟶ ⟶ ⟶ +

is an exact triangle (prop.), where inductively

≔ ∧

is the derived smash product of spectra (corollary) of  with the stage  (cor.), and where

: →⎯⎯
≃

ℓ−

∧ →⎯⎯⎯
∧

∧
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is the composition of the inverse derived unitor on  (cor.) with the derived smash product of spectra of
the unit  of  and the identity on .

Hence, by def 1.13, the first page is

, ( , ) ≔ [ , ] −

= [ , ∘ ℎ]

and the differentials are of the form

: , ( , ) ⟶ + , + − ( , ) .

A priori • , •( , ) is ℕ× ℤ-graded, but we regard it as being ℤ × ℤ-graded by setting

, •( , ) ≔ 0

and trivially extending the definition of the differentials to these zero-groups.

(Adams 74, theorem 15.1 page 318)

Remark 1.15. The morphism

[ , ] : [ , ]• →⎯⎯⎯⎯⎯⎯⎯⎯
[ , ∧ ]

[ , ∧ ]•

in def. 1.14 is sometimes called the Boardman homomorphism (Adams 74, p. 58).

For =  the sphere spectrum it reduces to a canonical morphism from stable homotopy to generalized
homology (rmk.)

•( ) : •( ) ⟶ •( ) .

For = HA an Eilenberg-MacLane spectrum (def.) this in turn reduces to the Hurewicz homomorphism
for spectra.

This way one may think of the -Adams filtration on  in def. 1.14 as the result of filtering any spectrum 
by iteratively projecting out all its -homology. This idea was historically the original motivation for the
construction of the classical Adams spectral sequence by John Frank Adams, see the first pages of (Bruner
09) for a historical approach.

It is convenient to adopt the following notation for -Adams spectral sequences (def. 1.14):

Definition 1.16. For ( , , ) ∈ CMon(Ho(Spectra), ∧ , ) a homotopy commutative ring spectrum (def.), write ̅ ̅ ̅

for the homotopy fiber of its unit : → , i.e. such that there is a homotopy fiber sequence (equivalently a
homotopy cofiber sequence, prop.) in the stable homotopy category Ho(Spectra) of the form

̅ ̅ ̅ ̅⟶ ⟶ ,

equivalently an exact triangle (prop.) of the form

̅ ̅ ̅ ̅⟶ ⟶ ⟶ ̅ ̅̅ ̅ .

(Adams 74, theorem 15.1 page 319) Beware that for instance (Hopkins 99, proof of corollary 5.3) uses “ ̅ ̅ ̅”̅

not for the homotopy fiber of →  but for its homotopy cofiber, hence for what is ̅ ̅ ̅ ̅according to (Adams
74).

Lemma 1.17. In terms of def. 1.16, the spectra entering the definition of the -Adams spectral sequence in
def. 1.14 are equivalently

≃ ̅ ̅̅ ∧

and

≃ ∧ ̅ ̅̅ ̅ ∧ .

where we write

̅ ̅ ̅ ̅ ≔ ̅ ̅̅ ∧̅ ⋯ ∧ ̅ ̅ ∧̅ .

Hence the first page of the -Adams spectral sequence reads equivalently

, ( , ) ≃ [ , ∧ ̅ ̅̅ ∧ ] − .
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(Adams 74, theorem 15.1 page 319)

Proof. By definition the statement holds for = 0. Assume then by induction that it holds for some ≥ 0.
Since the smash product of spectra-functor (−) ∧ ̅ ̅̅ ̅ ∧  preserves homotopy cofiber sequences (lemma, this
is part of the tensor triangulated structure of the stable homotopy category), its application to the homotopy
cofiber sequence

̅ ̅ ̅ ̅⟶ ⟶

from def. 1.16 yields another homotopy cofiber sequence, now of the form

̅ ̅̅ ̅ + ∧ ⟶ ̅ ̅̅ ̅ ∧ ⟶ ∧ ̅ ̅̅ ̅ ∧

where the morphism on the right is identified as  by the induction assumption, hence + ≃ ∧ ̅ ̅ ̅ ∧ .

Since +  is defined to be the homotopy fiber of , it follows that + ≃ ̅ ̅̅ ̅ + ∧ .  ▮

Remark 1.18. Terminology differs across authors. The filtration in def. 1.14 in the rewriting by lemma 1.17
is due to (Adams 74, theorem 15.1), where it is not give any name. In (Ravenel 84, p. 356) it is called the
(canonical) Adams tower while in (Ravenel 86, def. 2.21) it is called the canonical Adams resolution.
Several authors follow the latter usage, for instance (Rognes 12, def. 4.1). But (Hopkins 99) uses “Adams
resolution” for the “ -injective resolutions” (see here) and uses “Adams tower” for yet another concept
(def.).

We proceed now to analyze the first two pages and then the convergence properties of -Adams spectral
sequences of def. 1.14.

2. The first page

By lemma 1.17 the first page of an -Adams spectral sequence (def. 1.14) looks like

, ( , ) ≃ [ , ∧ ̅ ̅̅ ∧ ] − .

We discuss now how, under favorable conditions, these hom-groups may alternatively be computed as
morphisms of -homology equipped with suitable comodule structure over a Hopf algebroid structure on the
dual -Steenrod operations •( ) (The -generalized homology of  (rmk.)). Then below we discuss that, as
a result, the -cohomology of the first page computes the Ext-groups from the -homology of  to the
-homology of , regarded as •( )-comodules.

The condition needed for this to work is the following.

Flat homotopy ring spectra

Definition 2.1. Call a homotopy commutative ring spectrum ( , , ) (def.) flat if the canonical right

•( )-module structure on •( ) (prop.) (equivalently the canonical left module struture, see prop. 2.5
below) is a flat module.

The key consequence of the assumption that  is flat in the sense of def. 2.1 is the following.

Proposition 2.2. Let ( , , ) be a homotopy commutative ring spectrum (def.) and let ∈ Ho(Spectra) be any
spectrum. Then there is a homomorphism of graded abelian groups of the form

•( ) ⊗
•( ) •( ) ⟶ [ , ∧ ∧ ]• = •( ∧ ∧ )

(for •(−) the canonical •( )-modules from this prop.) given on elements

⟶ ∧ , ⟶ ∧

by

⋅ : + ⟶≃ ∧ →⎯⎯⎯⎯
∧

∧ ∧ ∧ →⎯⎯⎯⎯⎯⎯⎯⎯
∧ ∧

∧ ∧ .

If •( ) is a flat module over •( ) then this is an isomorphism.

(Adams 69, lecture 3, lemma 1 (p. 68), Adams 74, part III, lemma 12.5)

Proof. First of all, that the given pairing is a well defined homomorphism (descends from •( ) × •( ) to

•( ) ⊗
•( ) •( )) follows from the associativity of .

We discuss that it is an isomorphism when •( ) is flat over •( ):
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First consider the case that ≃  is a suspension of the sphere spectrum. Then (by this example, using
the tensor triangulated stucture on the stable homotopy category (prop.))

•( ) = •( ) ≃ • − ( )

and

•( ∧ ∧ ) = •( ∧ ∧ ) ≃ • − ( )

and

•( ) ⊗
•( ) • − ( ) ≃ • − ( )

Therefore in this case we have an isomorphism for all .

For general , we may without restriction assume that  is represented by a sequential CW-spectrum
(prop.). Then the homotopy cofibers of its cell attachment maps are suspensions of the sphere spectrum
(rmk.).

First consider the case that  is a CW-spectrum with finitely many cells. Consider the homotopy cofiber
sequence of the ( + 1)st cell attachment (by that remark):

− ⟶ ⟶ + ⟶ ⟶

and its image under the natural morphism •( ) ⊗
•( ) •(−) → •([ , ∧ ∧ (−)]), which is a commuting

diagram of the form

•( ) ⊗
•( ) •(

− ) ⟶ •( ) ⊗
•( ) •( ) ⟶ •( ) ⊗

•( ) •( + ) ⟶ •( ) ⊗
•( ) •( ) ⟶ •( ) ⊗

•( ) •(

↓ ↓ ↓ ↓ ↓

[ , ∧ ∧ − ]• ⟶ [ , ∧ ∧ ]• ⟶ [ , ∧ ∧ + ]• ⟶ [ , ∧ ∧ ]• ⟶ [ , ∧ ∧ ]•

Here the bottom row is a long exact sequence since ∧ ∧ (−) preserves homotopy cofiber sequences (by
this lemma, part of the tensor triangulated structure on Ho(Spectra) prop.), and since [ , −]• ≃ •(−) sends

homotopy cofiber sequences to long exact sequences (prop.). By the same reasoning, •(−) of the
homotopy cofiber sequence is long exact; and by the assumption that •( ) is flat, the functor

•( ) ⊗
•( ) (−) preserves this exactness, so that also the top row is a long exact sequence.

Now by induction over the cells of , the outer four vertical morphisms are isomorphisms. Hence the
5-lemma implies that also the middle morphism is an isomorphism.

This shows the claim inductively for all finite CW-spectra. For the general statement, now use that

every CW-spectrum is the filtered colimit over its finite CW-subspectra;1. 

the symmetric monoidal smash product of spectra ∧ (def.) preserves colimits in its arguments
separately (since it has a right adjoint (prop.));

2. 

[ , −]• ≃ •(−) commutes over filtered colimits of CW-spectrum inclusions (by this lemma, since spheres

are compact);

3. 

•( ) ⊗
•( ) (−) distributes over colimits (it being a left adjoint).4. 

  ▮

Using prop. 2.2, we find below (theorem 2.34) that the first page of the -Adams spectral sequence may be
equivalently rewritten as hom-groups of comodules over •( ) regarded as a graded commutative Hopf
algebroid. We now first discuss what this means.

The -Steenrod algebra

We discuss here all the extra structure that exists on the -self homology •( ) of a flat homotopy
commutative ring spectrum. For =  the Eilenberg-MacLane spectrum on a prime field this reduces to
the classical structure in algebraic topology called the dual Steenrod algebra * . Therefore one may
generally speak of •( ) as being the dual -Steenrod algebra.

Without the qualifier “dual” then “ -Steenrod algebra” refers to the -self-cohomology •( ). For =  this
Steenrod algebra  (without “dual”) is traditionally considered first, and the classical Adams spectral
sequence was originally formulated in terms of  instead of * . But one observes (Adams 74, p. 280) that
the “dual” Steenrod algebra •( ) is much better behaved, at least as long as  is flat in the sense of def.
2.1.
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Moreover, the dual -Steenrod algebra •( ) is more fundamental in that it reflects a stacky geometry
secretly underlying the -Adams spectral sequence (Hopkins 99). This is the content of the concept of
“commutative Hopf algebroid” (def. 2.9 below) which is equivalently the formal dual of a groupoid internal to
affine schemes, def. 2.6.

A simple illustrative archetype of the following construction of commutative Hopf algebroids from homotopy
commutative ring spectra is the following situation:

For  a finite set consider

× ×

↓ ∘ = ( , )

×
= ↓ ↑ ↓ =

as the (“codiscrete”) groupoid with  as objects and precisely one morphism from every object to every
other. Hence the composition operation ∘, and the source and target maps are simply projections as shown.
The identity morphism (going upwards in the above diagram) is the diagonal.

Then consider the image of this structure under forming the free abelian groups ℤ[ ], regarded as
commutative rings under pointwise multiplication.

Since

ℤ[ × ] ≃ ℤ[ ] ⊗ ℤ[ ]

this yields a diagram of homomorphisms of commutative rings of the form

(ℤ[ ] ⊗ ℤ[ ]) ⊗ℤ[ ] (ℤ[ ] ⊗ ℤ[ ])

↑

ℤ[ ] ⊗ ℤ[ ]

↑ ↓ ↑

ℤ[ ]

satisfying some obvious conditions. Observe that here

the two morphisms ℤ[ ] ⇉ ℤ[ ] ⊗ ℤ[ ] are ↦ ⊗  and ↦ ⊗ , respectively, where  denotes the unit
element in ℤ[ ];

1. 

the morphism ℤ[ ] ⊗ ℤ[ ] → ℤ[ ] is the multiplication in the ring ℤ[ ];2. 

the morphism

ℤ[ ] ⊗ ℤ[ ] ⟶ ℤ[ ] ⊗ ℤ[ ] ⊗ ℤ[ ] ⟶≃ (ℤ[ ] ⊗ ℤ[ ]) ⊗ℤ[ ] (ℤ[ ] ⊗ ℤ[ ])

is given by ⊗ ↦ ⊗ ⊗ .

3. 

All of the following rich structure is directly modeled on this simplistic example. We simply

replace the commutative ring ℤ[ ] with any flat homotopy commutative ring spectrum ,1. 

replace tensor product of abelian groups ⊗ with derived smash product of spectra;2. 

and form the stable homotopy groups •(−) of all resulting expressions.3. 

Definition 2.3. Let ( , , ) be a homotopy commutative ring spectrum (def.) which is flat according to def.
2.1.

Then the dual -Steenrod algebra is the pair of graded abelian groups

( •( ), •( ))

(rmk.) equipped with the following structure:

the graded commutative ring structure

•( ) ⊗ •( ) ⟶ •( )

induced from  being a homotopy commutative ring spectrum (prop.);

1. 
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the graded commutative ring structure

•( ) ⊗ •( ) ⟶ •( )

induced from the fact that with  also ∧  is canonically a homotopy commutative ring spectrum
(exmpl.), so that also •( ) = •( ∧ ) is a graded commutative ring (prop.);

2. 

the homomorphism of graded commutative rings

: •( ) ⟶ •( ) ⊗
•( ) •( )

induced under •(−) from

∧ →⎯⎯⎯⎯⎯⎯
∧ ∧

∧ ∧

via prop. 2.2;

3. 

the homomorphisms of graded commutative rings

: •( ) ⟶ •( )

and

: •( ) ⟶ •( )

induced under •(−) from the homomorphisms of commutative ring spectra

⎯
≃

−

∧ →⎯⎯⎯
∧

∧

and

⎯
≃

ℓ−

∧ →⎯⎯⎯
∧

∧ ,

respectively (exmpl.);

4. 

the homomorphism of graded commutative rings

: •( ) ⟶ •( )

induced under •(−) from

: ∧ ⟶

regarded as a homomorphism of homotopy commutative ring spectra (exmpl.);

5. 

the homomorphisms graded commutative rings

: •( ) ⟶ •( )

induced under •(−) from the braiding

, : ∧ ⟶ ∧

regarded as a homomorphism of homotopy commutative ring spectra (exmpl.).

6. 

(Adams 69, lecture 3, pages 66-68)

Notice that (as verified by direct unwinding of the definitions):

Lemma 2.4. For ( , , ) a homotopy commutative ring spectrum (def.), consider •( ) with its canonical left
and right •( )-module structure as in this prop.. These module structures coincide with those induced by
the ring homomorphisms  and  from def. 2.3.

These two actions need not strictly coincide, but they are isomorphic:

Proposition 2.5. For ( , , ) a homotopy commutative ring spectrum (def.), consider •( ) with its
canonical left and right •( )-module structure (prop.). Since  is a commutative monoid, this right
module structure may equivalently be regarded as a left-module, too. Then the braiding

•( ) ≃ •( ∧ ) →⎯⎯⎯⎯⎯⎯
•( , )

•( ∧ ) ≃ •( )

constitutes a module isomorphism (def.) between these two left module structures.

Proof. On representatives as in the proof of (this propo.), the original left action is given by (we are
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notationally suppressing associators throughout)

∧ ∧ →⎯⎯⎯
∧

∧ ,

while the other left action, induced from the canonical right action, is given by

∧ ∧ →⎯⎯⎯⎯⎯
≃

, ∧
∧ ∧ →⎯⎯⎯

∧
∧ .

So in order that ,  represents a module homomorphism under •(−), it is sufficient that the following
diagram commutes (we write ≔  for ∈ {1, 2, 3} to make the action of the braiding more manifest)

∧ ∧ →⎯⎯⎯⎯⎯⎯⎯
∧ ,

∧ ∧

↓ ↓ , ∧

∧ ∧

∧ ↓ ↓ ∧

∧ →⎯⎯⎯⎯
,

∧

.

But since ( , , ) is a commutative monoid (def.), it satisfies = ∘  so that we may factor this diagram as
follows:

∧ ∧ →⎯⎯⎯⎯⎯⎯⎯
∧ ,

∧ ∧

, ∧
↓ ↓ , ∧

∧ ∧ →⎯⎯⎯⎯⎯⎯⎯⎯
∧ ,

∧ ∧

∧ ↓ ↓ ∧

∧ →⎯⎯⎯⎯
,

∧

.

Here the top square commutes by coherence of the braiding (rmk) since both composite morphisms
correspond to the same permutation, while the bottom square commutesm due to the naturality of the
braiding. Hence the total rectangle commutes.  ▮

The dual -Steenrod algebras of def. 2.3 evidently carry a lot of structure. The concept organizing this is
that of_commutative Hopf algebroids_.

Definition 2.6. A graded commutative Hopf algebroid is an internal groupoid in the opposite category
gCRing  of ℤ-graded commutative rings, regarded with its cartesian monoidal category structure.

(e.g. Ravenel 86, def. A1.1.1)

Remark 2.7. We unwind def. 2.6. For ∈ gCRing, write Spec( ) for the same object, but regarded as an
object in gCRing .

An internal category in gCRing  is a diagram in gCRing  of the form

Spec( ) ×
( )

Spec( )

↓∘

Spec( )

↓ ↑ ↓

Spec( )

,

(where the fiber product at the top is over  on the left and  on the right) such that the pairing ∘ defines
an associative composition over Spec( ), unital with respect to . This is an internal groupoid if it is
furthemore equipped with a morphism

inv : Spec( ) ⟶ Spec( )

acting as assigning inverses with respect to ∘.

The key basic fact to use in order to express this equivalently in terms of algebra is that tensor product of
commutative rings exhibits the cartesian monoidal category structure on CRing , see at CRing – Properties
– Cocartesian comonoidal structure:

Spec( ) ×
( )

Spec( ) ≃ Spec( ⊗ ) .

This means that the above is equivalently a diagram in gCRing of the form
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⊗

↑

↑ ↓ ↑

as well as

: ⟶

and satisfying formally dual conditions, spelled out as def. 2.9 below. Here

,  are called the left and right unit maps;

 is called the co-unit;

 is called the comultiplication;

 is called the antipode or conjugation

Remark 2.8. Generally, in a commutative Hopf algebroid, def. 2.6, the two morphisms , : →  from

remark 2.7 need not coincide, they make  genuinely into a bimodule over , and it is the tensor product
of bimodules that appears in remark 2.7. But it may happen that they coincide:

An internal groupoid ⟶⟶  for which the domain and codomain morphisms coincide, = , is euqivalently

a group object in the slice category over .

Dually, a commutative Hopf algebroid ⟵⟵  for which  and  happen to coincide is equivalently a

commutative Hopf algebra  over .

Writing out the formally dual axioms of an internal groupoid as in remark 2.7 yields the following equivalent
but maybe more explicit definition of commutative Hopf algebroids, def. 2.6

Definition 2.9. A commutative Hopf algebroid is

two commutative rings,  and ;1. 

ring homomorphisms

(left/right unit)

, : ⟶ ;

1. 

(comultiplication)

: ⟶ ⊗ ;

2. 

(counit)

: ⟶ ;

3. 

(conjugation)

: ⟶

4. 

2. 

such that

(co-unitality)

(identity morphisms respect source and target)

∘ = ∘ = id ;

1. 

(identity morphisms are units for composition)

(id ⊗ ) ∘ = ( ⊗ id ) ∘ = id ;

2. 

(composition respects source and target)

∘ = (id⊗ ) ∘ ;1. 

3. 

1. 
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∘ = ( ⊗ id) ∘2. 

(co-associativity) (id ⊗ ) ∘ = ( ⊗ id ) ∘ ;2. 

(inverses)

(inverting twice is the identity)

∘ = id ;

1. 

(inversion swaps source and target)

∘ = ; ∘ = ;

2. 

(inverse morphisms are indeed left and right inverses for composition)

the morphisms  and  induced via the coequalizer property of the tensor product from (−) ⋅ (−)
and (−) ⋅ (−), respectively

⊗ ⊗ ⟶
⟶ ⊗ →⎯⎯⎯ ⊗

(−)⋅ (−) ↓ ↙

and

⊗ ⊗ ⟶
⟶ ⊗ →⎯⎯⎯ ⊗

(−)⋅(−) ↓ ↙

satisfy

∘ = ∘

and

∘ = ∘ .

3. 

3. 

(Adams 69, lecture 3, pages 62-66, Ravenel 86, def. A1.1.1)

Remark 2.10. In (Adams 69, lecture 3, page 60) the terminology used is “Hopf algebra in a fully
satisfactory sense” with emphasis that the left and right module structure may differ. According to
(Ravenel 86, first page of appendix A1) the terminology “Hopf algebroid” for this situation is due to
Haynes Miller.

Example 2.11. For  a commutative ring, then ⊗  becomes a commutative Hopf algebroid over ,
formally dual (via def. 2.6) to the pair groupoid on Spec( ) ∈ CRing .

For  a finite set and = ℤ[ ], then this reduces to the motivating example from above.

It is now straightforward, if somewhat tedious, to check that:

Proposition 2.12. Let ( , , ) be a homotopy commutative ring spectrum (def.) which is flat according to
def. 2.1, then the dual -Steenrod algebra ( •( ), •( )) with the structure maps ( , , , , ) from prop.

2.3 is a graded commutative Hopf algebroid according to def. 2.9:

( •( ), •( )) ∈ CommHopfAlgd

(Adams 69, lecture 3, pages 67-71, Ravenel 86, chapter II, prop. 2.2.8)

Proof. One observes that ∧  satisfies the axioms of a commutative Hopf algebroid object in homotopy
commutative ring spectra, over , by direct analogy to example 2.11 (one just has to verify that the
symmetric braidings go along coherently, which works by use of the coherence theorem for symmetric
monoidal categories (rmk.)). Applying the functor •(−) that forms stable homotopy groups to all structure
morphisms of ∧  yields the claimed structure morphisms of •( ).  ▮

We close this subsection on commutative Hopf algebroids by discussion of their isomorphism classes, when
regarded dually as affine groupoids:

Definition 2.13. Given an internal groupoid in gCRing  (def. 2.6, remark 2.7)
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Spec( ) ×
( )

Spec( )

↓∘

Spec( )

↓ ↑ ↓

Spec( )

,

then its affife scheme Spec( )/ ∼  of isomorphism classes of objects is the coequlizer? of the source and

target morphisms

Spec(Gamma) →⎯⎯
←⎯⎯

Spec( ) →⎯⎯ Spec( )/ ∼ .

Hence this is the formal dual of the equalizer of the left and right unit (def. 2.9)

→⎯⎯
→⎯⎯

.

By example 2.11 every commutative ring gives rise to a commutative Hopf algebroid ⊗  over . The core
of  is the formal dual of the corresponding affine scheme of isomorphism classes according to def. 2.13:

Definition 2.14. For  a commutative ring, its core  is the equalizer in

⟶ ⟶⟶ ⊗ .

A ring which is isomorphic to its core is called a solid ring.

(Bousfield-Kan 72, §1, def. 2.1, Bousfield 79, 6.4)

Proposition 2.15. The core of any ring  is solid (def. 2.14):

≃ .

(Bousfield-Kan 72, prop. 2.2)

Proposition 2.16. The following is the complete list of solid rings (def. 2.14) up to isomorphism:

The localization of the ring of integers at a set  of prime numbers (def. 4.11)

ℤ[ − ] ;

1. 

the cyclic rings

ℤ/ ℤ

for ≥ 2;

2. 

the product rings

ℤ[ − ] × ℤ/ ℤ ,

for ≥ 2 such that each prime factor of  is contained in the set of primes ;

3. 

the ring cores of product rings

(ℤ[ − ] ×
∈

ℤ/ ( )) ,

where ⊂  are infinite sets of primes and ( ) are positive natural numbers.

4. 

(Bousfield-Kan 72, prop. 3.5, Bousfield 79, p. 276)

Comodules over the -Steenrod algebra

Definition 2.17. Let ( , , ) be a homotopy commutative ring spectrum (def.) which is flat according to def.
2.1.

For ∈ Ho(Spectra) any spectrum, say that the comodule structure on •( ) (rmk.)) over the dual
-Steenrod algebra (def. 2.3) is

the canonical structure of a •( )-module (according to this prop.);1. 
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the homomorphism of •( )-modules

•( ) : •( ) ⟶ •( ) ⊗
•( ) •( )

induced under •(−) and via prop. 2.2 from the morphism of spectra

∧ ≃ ∧ ∧ →⎯⎯⎯⎯⎯⎯
∧ ∧

∧ ∧ .

2. 

Definition 2.18. Given a graded commutative Hopf algebroid  over  as in def. 2.9, hence an internal
groupoid in gCRing , then a comodule ring over it is an action in CRing  of that internal groupoid.

In the same spirit, a comodule over a commutative Hopf algebroid (not necessarily a comodule ring) is a
quasicoherent sheaf on the corresponding internal groupoid (regarded as a (algebraic) stack) (e.g. Hopkins
99, prop. 11.6). Explicitly in components:

Definition 2.19. Given a ℤ-graded commutative Hopf algebroid  over  (def. 2.9) then a left comodule
over  is

a ℤ-graded -module ;1. 

(co-action) a homomorphism of graded -modules

: ⟶ ⊗ ;

2. 

such that

(co-unitality)

( ⊗ id ) ∘ = id ;

1. 

(co-action property)

( ⊗ id ) ∘ = (id ⊗ ) ∘ .

2. 

A homomorphism between graded comodules : →  is a homomorphism of underlying graded
-modules such that the following diagram commutes

⟶

↓ ↓

⊗ →⎯⎯⎯⎯⎯
⊗

⊗

.

We write

CoMod

for the resulting category of left comodules over . Analogously for right comodules. The notation for the
hom-sets in this category is abbreviated to

Hom (−, −) ≔ Hom (−, −) .

A priori this is an Ab-enriched category, but it is naturally further enriched in graded abelian groups:

we may drop in the above definition of comodule homomorphisms : →  the condition that the
underlying morphism be grading-preserving. Say that  has degree  if it increases degree by . This gives
a ℤ-graded hom-group

Hom• (−, −) .

Example 2.20. For ( , ) a commutative Hopf algebroid, then  becomes a left -comodule (def. 2.19) with
coaction given by the right unit

⟶ ≃ ⊗ .

Proof. The required co-unitality property is the dual condition in def. 2.9

∘ = id

of the fact in def. 2.6 that identity morphisms respect sources:

id : ⟶ ≃ ⊗ →⎯⎯⎯⎯⎯
⊗

⊗ ≃

The required co-action property is the dual condition
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∘ = (id⊗ ) ∘

of the fact in def. 2.6 that composition of morphisms in a groupoid respects sources

⟶

↓ ↓

≃ ⊗ →⎯⎯⎯⎯⎯⎯
⊗

⊗

.

  ▮

Proposition 2.21. Let ( , , ) be a homotopy commutative ring spectrum (def.) which is flat according to
def. 2.1, and for ∈ Ho(Spectra) any spectrum, then the morphism 

•( ) from def. 2.17 makes •( ) into a

comodule (def. 2.19) over the dual -Steenrod algebra (def. 2.3)

•( ) ∈ •( )CoMod .

(Adams 69, lecture 3, pages 67-71, Ravenel 86, chapter II, prop. 2.2.8)

Example 2.22. Given a commutative Hopf algebroid  over , def. 2.9, then  itself becomes a left
-comodule (def. 2.19) with coaction given by

: ⟶ ≃ ⊗

and a right -comodule with coaction given by

: ⟶ ≃ ⊗ .

More generally:

Proposition 2.23. Given a commutative Hopf algebroid  over , there is a free-forgetful adjunction

Mod ⊥ →⎯⎯⎯⎯⎯⎯
−

←⎯⎯⎯⎯⎯⎯
CoMod

between the category of -comodules, def. 2.19 and the category of modules over , where the cofree
functor is right adjoint.

Moreover:

The co-free -comodule on an -module  is ⊗  equipped with the coaction induced by the
comultiplication  in .

1. 

The adjunct ˜  of a comodule homomorphism

⟶ ⊗

is its composite with the counit  of 

˜ : ⟶ ⊗ →⎯⎯⎯⎯⎯
⊗

⊗ ≃ .

2. 

The proof is formally dual to the proof that shows that constructing free modules is left adjoint to the
forgetful functor from a category of modules to the underlying monoidal category (prop.). But since the
details of the adjunction isomorphism are important for the following discussion, we spell it out:

Proof. A homomorphism into a co-free -comodule is a morphism of -modules of the form

: ⟶ ⊗

making the following diagram commute

⟶ ⊗

↓ ↓ ⊗

⊗ →⎯⎯⎯⎯⎯
⊗

⊗ ⊗

.

Consider the composite

˜ : ⟶ ⊗ →⎯⎯⎯⎯⎯
⊗

⊗ ≃ ,

i.e. the “corestriction” of  along the counit of . By definition this makes the following square commute
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⊗ →⎯⎯⎯⎯⎯
⊗

⊗ ⊗

= ↓ ↓ ⊗ ⊗

⊗ →⎯⎯⎯⎯⎯
⊗ ˜

⊗

.

Pasting this square onto the bottom of the previous one yields

⟶ ⊗

↓ ↓ ⊗

⊗ →⎯⎯⎯⎯⎯
⊗

⊗ ⊗

= ↓ ↓ ⊗ ⊗

⊗ →⎯⎯⎯⎯⎯
⊗ ˜

⊗

.

Now due to co-unitality, the right right vertical composite is the identity on ⊗ . But this means by the

commutativity of the outer rectangle that  is uniquely fixed in terms of ˜  by the relation

= (id⊗ ) ∘ .

This establishes a natural bijection

⟶ ⊗

⟶
˜

and hence the adjunction in question.  ▮

Proposition 2.24. Consider a commutative Hopf algebroid  over , def. 2.9. Any left comodule  over 
(def. 2.19) becomes a right comodule via the coaction

⟶ ⊗ ⟶≃ ⊗ →⎯⎯⎯⎯⎯
⊗

⊗ ,

where the isomorphism in the middle the is braiding in Mod and where  is the conjugation map of .

Dually, a right comodule  becoomes a left comodule with the coaction

⟶ ⊗ ⟶≃ ⊗ →⎯⎯⎯⎯⎯
⊗

⊗ .

Definition 2.25. Given a commutative Hopf algebroid  over , def. 2.9, and given  a right -comodule
and  a left comodule (def. 2.19), then their cotensor product □  is the kernel of the difference of
the two coaction morphisms:

□ ≔ keræ
èçç

⊗ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
⊗ − ⊗

⊗ ⊗ ö
ø÷÷
.

If both  and  are left comodules, then their cotensor product is the cotensor product of  with 
regarded as a right comodule via prop. 2.24.

e.g. (Ravenel 86, def. A1.1.4).

Example 2.26. Given a commutative Hopf algebroid  over , (def.), and given  a left -comodule (def.).
Regard  itself canonically as a right -comodule via example 2.22. Then the cotensor product

Prim( ) ≔ □

is called the primitive elements of :

Prim( ) = { ∈ | ( ) = 1⊗ } .

Proposition 2.27. Given a commutative Hopf algebroid  over , def. 2.9, and given ,  two left
-comodules (def. 2.19), then their cotensor product (def. 2.25) is commutative, in that there is an

isomorphism

□ ≃ □ .

(e.g. Ravenel 86, prop. A1.1.5)

Lemma 2.28. Given a commutative Hopf algebroid  over , def. 2.9, and given ,  two left -comodules
(def. 2.19), such that  is projective as an -module, then

The morphism1. 
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Hom ( , ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
↦( ⊗ )∘

Hom ( , ⊗ ) ≃ Hom ( , ) ≃ Hom ( , ) ⊗

gives Hom ( , ) the structure of a right -comodule;

The cotensor product (def. 2.25) with respect to this right comodule structure is isomorphic to the
hom of -comodules:

Hom ( , )□ ≃ Hom ( , ) .

Hence in particular

□ ≃ Hom ( , )

2. 

(e.g. Ravenel 86, lemma A1.1.6)

Remark 2.29. In computing the second page of -Adams spectral sequences, the second statement in
lemma 2.28 is the key translation that makes the comodule Ext-groups on the page be equivalent to a
Cotor-groups. The latter lend themselves to computation, for instance via Lambda-algebra or via the May
spectral sequence.

Universal coefficient theorem

The key use of the Hopf coalgebroid structure of prop. 2.3 for the present purpose is that it is extra
structure inherited by morphisms in -homology from morphisms of spectra. Namely forming -homology

*
: •( ) → •( ) of a morphism of a spectra : →  does not just produce a morphism of -homology groups

[ , ]• ⟶Hom ℤ( •( ), •( ))

but in fact produces homomorphisms of comodules over •( )

: [ , ]• ⟶Hom
•( )( •( ), •( )) .

This is the statement of lemma 2.30 below. The point is that •( )-comodule homomorphism are much more
rigid than general abelian group homomorphisms and hence closer to reflecting the underlying morphism of
spectra : → .

In good cases such an approximation of homotopy by homology is in fact accurate, in that  is an
isomorphism. In such a case (Adams 74, part III, section 13) speaks of a “universal coefficient theorem”
(the coefficients here being .)

One such case is exhibited by prop. 2.33 below. This allows to equivalently re-write the first page of the
-Adams spectral sequence in terms of -homology homomorphisms in theorem 2.34 below.

Lemma 2.30. For , ∈ Ho(Spectra) any two spectra, the morphism (of ℤ-graded abelian) generalized
homology groups given by smash product with  (rmk.)

•( ∧ −) : [ , ]• ⟶ Hom ℤ
• ( •( ), •( ))

( ⟶ ) ↦ •( ) ⟶* •( )

factors through the forgetful functor from •( )-comodule homomorphisms (def. 2.19) over the dual
-Steenrod algebra (def. 2.3):

Hom •( )
• ( •( ), •( ))

∃ ↗ ↓

[ , ]• →⎯⎯⎯⎯⎯⎯
•( ∧ −)

Hom ℤ
• ( •( ), •( ))

,

where •( ) and •( ) are regarded as -Steenrod comodules according to def. 2.19, prop. 2.21.

Proof. By def. 2.19 we need to show that for ⟶  a morphism in Ho(Spectra) then the following diagram
commutes

•( ) ⟶* •( )

•( ) ↓ ↓ •( )

•( ) ⊗
•( ) •( ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯

⊗ •( ) *
•( ) ⊗

•( ) •( )

.

By def. 2.19 and prop. 2.21 this is the image under foming stable homotopy groups •(−) of the following
diagram in Ho(Spectra):
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∧ →⎯⎯⎯
∧

∧

≃ ↓ ↓≃

∧ ∧ ∧ ∧

∧ ∧ ↓ ↓ ∧ ∧

∧ ∧ →⎯⎯⎯⎯⎯⎯
∧ ∧

∧ ∧

.

But that this diagram commutes is simply the functoriality of the derived smash product of spectra as a
functor on the product category Ho(Spectra) × Ho(Spectra).  ▮

Proposition 2.31. Let ( , , ) be a homotopy commutative ring spectrum (def.), and let , ∈ Ho(Spectra) be
two spectra such that •( ) is a projective module over •( ) (via this prop.).

Then the homomorphism of graded abelian groups

: [ , ∧ ]• ⟶Hom
•( )
• ( •( ), •( ))•

given by

( ⟶ ∧ ) ↦ •( ∧ →⎯⎯⎯
∧

∧ ∧ →⎯⎯⎯
∧

∧ )

is an isomorphism.

(Schwede 12, chapter II, prop. 6.20)

Proof. First of all we claim that the morphism in question factors as

: [ , ∧ ]• ⟶
≃ Hom• ( ∧ , ∧ ) ⟶• Hom

•( )
• ( •( ), •( )) ,

where

Mod = Mod(Ho(Spectra), ∧ , ) denotes the category of homotopy module spectra over  (def.)1. 

the first morphisms is the free-forgetful adjunction isomorphism for forming free (prop.) -homotopy
module spectra

2. 

the second morphism is the respective component of the composite of the forgetful functor from
-homotopy module spectra back to Ho(Spectra) with the functor • that forms stable homotopy groups.

3. 

This is because (by this prop.) the first map is given by first smashing with  and then postcomposing with

the -action on the free module ∧ , which is the pairing ∧ →  (prop.).

Hence it is sufficient to show that the morphism on the right is an isomorphism.

We show more generally that for ,  any two -homotopy module spectra (def.) such that •( ) is a
projective module over •( ), then

Hom• ( , ) ⟶• Hom •( )
• ( •( ), •( ))

is an isomorphism.

To see this, first consider the case that •( ) is in fact a •( )-free module.

This implies that there is a basis ℬ = { } ∈  and a homomorphism

∨
∈

| | ⟶

of -homotopy module spectra, such that this is a stable weak homotopy equivalence.

Observe that this sits in a commuting diagram of the form

Hom• ( ∨
∈

| | , ) ⟶• Hom •( )
• ( •( ∨

∈

| | ), •( ))

≃ ↓ ↓≃

∏ ∈ [ | | , ]• ⟶
≃

∏ ∈ • +| |( )

where

the left vertical isomorphism exhibits wedge sum of spectra as the coproduct in the stable homotopy
category (lemma);

1. 
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the bottom isomorphism is from this prop.;2. 

the right vertical isomorphism is that of the free-forgetful adjunction for modules over •( ).3. 

Hence the top horizontal morphism is an isomorphism, which was to be shown.

Now consider the general case that •( ) is a projective module over •( ). Since (graded) projective
modules are precisely the retracts of (graded) free modules (prop.), there exists a diagram of •( )-modules
of the form

id : •( ) ⟶ •( ∨∈
| | ) ⟶ •( )

which induces the corresponding split idempotent of •( )-modules

•( ∨∈
| | ) ⟶ •( ) ⟶ •( ∨

∈

| | ) .

As before, by freeness this is actually the image under • of an idempotent of homotopy ring spectra

• : ∨
∈

| | ⟶ ∨
∈

| |

and so in particular of spectra.

Now in the stable homotopy category Ho(Spectra) all idempotents split (prop.), hence there exists a diagram
of spectra of the form

: ∨
∈

| | ⟶ ⟶ ∨
∈

| |

with •( ) = •.

Consider the composite

⟶ ∨
∈

| | ⟶ .

Since •( ) = • it follows that under • this is an isomorphism, then that ≃  in the stable homotopy
category.

In conclusion this exhibits  as a retract of an free -homotopy module spectrum

id : ⟶ ∨
∈

| | ⟶ ,

hence of a spectrum for which the morphism in question is an isomorphism. Since the morphism in question
is natural, its value on  is a retract in the arrow category of an isomorphism, hence itself an isomorphism
(lemma).  ▮

Remark 2.32. A stronger version of the statement of prop. 2.31, with the free homotopy -module
spectrum ∧  replaced by any homotopy -module spectrum , is considered in (Adams 74, chapter III,
prop. 13.5) (“universal coefficient theorem”). Strong conditions are considered that ensure that

•( ) = [ , ]• ⟶Hom
•( )
• ( •( ), •( ))

is an isomormphism (expressing the -cohomology of  as the •( )-linear dual of the -homology of ).

For the following we need only the weaker but much more general statement of prop. 2.31, and in fact
this is all that (Adams 74, p. 323) ends up using, too.

With this we finally get the following statement, which serves to identify maps of certain spectra with their
induced maps on -homology:

Proposition 2.33. Let ( , , ) be a homotopy commutative ring spectrum (def.), and let , ∈ Ho(Spectra) be
two spectra such that

 is flat according to def. 2.1;1. 

•( ) is a projective module over •( ) (via this prop.).2. 

Then the morphism from lemma 2.30

[ , ∧ ]• →⎯⎯⎯⎯⎯⎯•( ∧ −)
Hom •( )

• ( •( ), •( ∧ ))) ≃ Hom •( )
• ( •( ), •( ) ⊗

•( ) •( )))

is an isomorphism (where the isomophism on the right is that of prop. 2.2).

(Adams 74, part III, page 323)
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Proof. Observe that the following diagram commutes:

[ , ∧ ]• →⎯⎯⎯⎯⎯⎯•( ∧ −)
Hom

•( )
• ( •( ), •( ) ⊗

•( ) •( )))

↘ ↙ ⊗ ∘(−)

Hom
•( )
• ( •( ), •( ))

,

where

the top morphism is the one from lemma 2.30;1. 

the right vertical morphism is the adjunction isomorphism from prop. 2.23;2. 

the left diagonal morphism is the one from prop. 2.31.3. 

To see that this indeed commutes, notice that

the top morphism sends ( → ∧ ) to •( ) ⎯⎯•
( )

•( ∧ ) ≃ •( ∧ ∧ ) by definition;1. 

the right vertical morphism sends this further to •( ) ⎯⎯•
( )

•( ∧ ∧ ) ⎯⎯⎯⎯⎯•( ∧ )
•( ∧ ), by the proof of

prop. 2.23 (which says that the map is given by postcomposition with the counit of •( )) and def. 2.3
(which says that this counit is represented by );

2. 

by prop. 2.31 this is the same as the action of the left diagonal morphism.3. 

But now

the right vertical morphism is an isomorphism by prop. 2.2;1. 

the left diagonal morphism is an isomorphism by prop. 2.312. 

and so it follows that the top horizontal morphism is an isomorphism, too.  ▮

In conclusion:

Theorem 2.34. Let ( , , ) be a homotopy commutative ring spectrum (def.), and let , ∈ Ho(Spectra) be
two spectra such that

 is flat according to def. 2.1;1. 

•( ) is a projective module over •( ) (via this prop.).2. 

Then the first page of the -Adams spectral sequence, def. 1.14, for [ , ]• is isomorphic to the following

chain complex of graded homs of comodules (def. 2.19) over the dual -Steenrod algebra ( •( ), •( ))
(prop. 2.3):

, ( , ) ≃ Hom •( )( •( ), • − ( )) , = Hom •( )( •( ), •( ∘ ℎ))

0 → Hom
•( )( •( ), •( )) ⟶ Hom

•( )( •( ), • − ( )) ⟶ Hom
•( )( •( ), • − ( )) ⟶ ⋯ .

(Adams 74, theorem 15.1 page 323)

Proof. This is prop. 2.33 applied to def. 1.14:

, ( , ) = [ , ∧ ] −

≃ Hom
•( )
− ( •( ), •( ∧ ))

≃ Hom
•( )( •( ), • − ( ))

  ▮

3. The second page

Theorem 3.1. Let ( , , ) be a homotopy commutative ring spectrum (def.), and let , ∈ Ho(Spectra) be two
spectra such that

 is flat according to def. 2.1;1. 

•( ) is a projective module over •( ) (via this prop.).2. 
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Then the entries of the second page of the -Adams spectral sequence for [ , ]• (def. 1.14) are the

Ext-groups of commutative Hopf algebroid-comodules (def. 2.19) over the commutative Hopf algebroid
structure on the dual -Steenrod algebra •( ) from prop. 2.3:

, ( , ) ≃ Ext
•( )
, ( •( ), •( )) .

(On the right  is the degree that goes with any Ext-functor, and the “internal degree”  is the additional
degree of morphisms between graded modules from def. 2.19.)

In the special case that =  is the sphere spectrum, then (by prop. 2.28) these are equivalently Cotor-
groups

, ( , ) ≃ Cotor
•( )
, ( •( ), •( )) .

(Adams 74, theorem 15.1, page 323)

Proof. By theorem 2.34, under the given assumptions the first page reads

, ( , ) ≃ Hom
•( )( •( ), • − ( )) , = Hom

•( )( •( ), •( ∘ ℎ))

0 → Hom
•( )( •( ), •( )) ⟶ Hom

•( )( •( ), • − ( )) ⟶ Hom
•( )( •( ), • − ( )) ⟶ ⋯ .

By remark 1.12 the second page is the cochain cohomology of this complex. Hence by the standard theory
of derived functors in homological algebra (see the section Via acyclic resolutions), it is now sufficient to see
that:

the category •( )CoMod (def. 2.19, prop. 2.12) is an abelian category with enough injectives (so that
all right derived functors on •( )CoMod exist);

1. 

the first page graded chain complex ( • , ( , ), ) is the image under the hom-functor
≔ Hom

•( )( •( ), −) of an -acyclic resolution of •( ) (so that its cohomology indeed computes the

Ext-derived functor (theorem)).

2. 

That •( )CoMod is an abelian category is lemma 3.3 below, and that it has enough injectives is lemma 3.4.

Lemma 3.2 below shows that •( •) is a resolution of •( ) in •( )CoMod. By prop. 2.2 it is a resolution by
cofree comodules (def. 2.23). That these are -acyclic is lemma 3.5 below.  ▮

-Adams resolutions

We discuss that the first page of the -Adams spectral sequence indeed exhibits a resolution as required by
the proof of theorem 3.1.

Lemma 3.2. Given an -Adams spectral sequence ( , ( , ), ) as in def. 1.14, then the sequences of
morphisms

0 → •( ) →⎯⎯⎯⎯⎯
•( )

•( ) →⎯⎯⎯⎯⎯
•( )

• − ( + ) → 0

are short exact, hence their splicing of short exact sequences

0 → •( ) →⎯⎯⎯⎯
•( )

•( ) ⟶ • − ( ) ⟶ • − ( ) ⟶ ⋯

•( ) ↘ ↗
•( ) •( ) ↘ ↗

•( )

• − ( ) • − ( )

is a long exact sequence, exhibiting the graded chain complex ( •( •), ∂) as a resolution of •( ).

(Adams 74, theorem 15.1, page 322)

Proof. Consider the image of the defining homotopy cofiber sequence

⟶ ∧ ⟶ +

under the functor ∧ (−). This is itself a homotopy cofiber sequence of the form

∧ →⎯⎯⎯⎯
∧

∧ ∧ →⎯⎯⎯⎯
∧

∧ +

(due to the tensor triangulated structure of the stable homotopy category, prop.).
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Applying the stable homotopy groups functor •(−) ≃ [ , −]• (lemma) to this yields a long exact sequence

(prop.)

⋯⟶ •( + ) →⎯⎯⎯⎯⎯
•( )

•( ) →⎯⎯⎯⎯⎯
•( )

•( ) →⎯⎯⎯⎯⎯
•( )

• − ( + ) →⎯⎯⎯⎯⎯⎯⎯
• − ( )

• − ( ) →⎯⎯⎯⎯⎯⎯⎯
• − ( )

• − ( ) ⟶ ⋯ .

But in fact this splits: by unitality of ( , , ), the product operation  on the homotopy commutative ring
spectrum  is a left inverse to  in that

id : ∧ →⎯⎯⎯⎯
∧

∧ ∧ →⎯⎯⎯
∧

∧ .

Therefore •( ) is a monomorphism, hence its kernel is trivial, and so by exactness •( ) = 0. This means

that the above long exact sequence collapses to short exact sequences.  ▮

Homological co-algebra

We discuss basic aspects of homological algebra in categories of comodules (def. 2.19) over commutative
Hopf algebroids (def. 2.6), needed in the proof of theorem 3.1.

Lemma 3.3. Let ( , ) be a commutative Hopf algebroid  over  (def. 2.6, 2.9), such that the right
-module structure on  induced by  is a flat module.

Then the category CoMod of comodules over  (def. 2.19) is an abelian category.

(e.g. Ravenel 86, theorem A1.1.3)

Proof. It is clear that, without any condition on the Hopf algebroid, CoMod is an additive category.

Next we need to show if  is flat over , that then this is also a pre-abelian category, in that kernels and
cokernels exist.

To that end, let : ( , ) ⟶ ( , ) be a morphism of comodules, hence a commuting diagram in Mod of

the form

⟶

↓ ↓

⊗ →⎯⎯⎯⎯⎯⎯
⊗

⊗

.

Consider the kernel ker( ) of  in Mod and its image under ⊗ (−)

ker( ) ⟶ ⟶

∃ ↓ ↓ ↓

⊗ ker( ) ⟶ ⊗ →⎯⎯⎯⎯⎯⎯
⊗

⊗

.

By the assumption that  is a flat module over , also ⊗ ker( ) ≃ ker( ⊗ ) is a kernel. Hence by the
universal property of kernels and the commutativity of the square o the right, there exists a unique vertical
morphism as shown on the left, making the left square commute. This means that the -module ker( )
uniquely inherits the structure of a -comodule such as to make ker( ) →  a comodule homomorphism. By
the same universal property it follows that ker( ) with this comodule structure is in fact the kernel of  in
CoMod.

The argument for the existence of cokernels proceeds formally dually. Hence CoMod is a pre-abelian
category.

But it also follows from this construction that the comparison morphism

coker(ker( )) ⟶ ker(coker( ))

formed in CoMod has underlying it the corresponding comparison morphism in Mod. There this is an
isomorphism by the fact that the category of modules Mod is an abelian category, hence it is an
isomorphism also in CoMod. So the latter is in fact an abelian category itself.  ▮

Lemma 3.4. Let ( , ) be a commutative Hopf algebroid  over  (def. 2.6, 2.9), such that the right
-module structure on  induced by  is a flat module.

Then

every co-free -comodule (def. 2.23) on an injective module over  is an injective object in CoMod;1. 
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CoMod has enough injectives (def.) if the axiom of choice holds in the ambient set theory.2. 

(e.g. Ravenel 86, lemma A1.2.2)

Proof. First of all, assuming the axiom of choice, then the category of modules Mod has enough injectives
(by this proposition).

Now by prop. 2.23 we have the adjunction

Mod ⊥ →⎯⎯⎯⎯⎯⎯
−

←⎯⎯⎯⎯⎯⎯
CoMod .

Observe that the left adjoint is a faithful functor (being a forgetful functor) and that, by the proof of lemma
3.3, it is an exact functor. This implies that

for ∈ Mod an injective module, then the co-free comodule ⊗  is an injective object in CoMod (by
this lemma);

1. 

for ∈ CoMod any object, and for : forget( ) ↪  a monomorphism of -modules into an injective
-module, then the adjunct ˜ : ↪ ⊗  is a monomorphism (by this lemma)) hence a monomorpism

into an injective comodule, by the previous item.

2. 

Hence CoMod has enough injective objects (def.).  ▮

Lemma 3.5. Let ( , ) be a commutative Hopf algebroid  over  (def. 2.6, 2.9), such that the right
-module structure on  induced by  is a flat module. Let ∈ CoMod be a -comodule (def. 2.19) such

that the underlying -module is a projective module (a projective object in Mod).

Then (assuming the axiom of choice in the ambient set theory) every co-free comodule (prop. 2.23) is an
-acyclic object for  the hom functor Hom ( , −).

Proof. We need to show that the derived functors ℝ•Hom ( , −) vanish in positive degree on all co-free
comodules, hence on ⊗ , for all ∈ Mod.

To that end, let • be an injective resolution of  in Mod. By lemma 3.4 then ⊗ • is a sequence of
injective objects in CoMod and by the assumption that  is flat over  it is an injective resolution of ⊗

in CoMod. Therefore the derived functor in question is given by

ℝ • ≥ Hom ( , ⊗ ) ≃ • ≥ (Hom ( , ⊗ •))

≃ • ≥ (Hom ( , •))

≃ 0

.

Here the second equivalence is the cofree/forgetful adjunction isomorphism of prop. 2.23, while the last
equality then follows from the assumption that the -module underlying  is a projective module (since hom
functors out of projective objects are exact functors (here) and since derived functors of exact functors
vanish in positive degree (here)).  ▮

With lemma 3.5 the proof of theorem 3.1 is completed.

4. Convergence

We discuss the convergence of -Adams spectral sequences (def. 1.14), i.e. the identification of the “limit”,
in an appropriate sense, of the terms , ( , ) on the th page of the spectral sequence as  goes to infinity.

If an -Adams spectral sequence converges, then it converges not necessarily to the full stable homotopy
groups [ , ]•, but to some localization of them. This typically means, roughly, that only certain -torsion

subgroups in [ , ]• for some prime numbers  are retained. We give a precise discussion below in

Localization and adic completion of abelian groups.

If one knows that [ , ]  is a finitely generated abelian group (as is the case notably for = [ , ]  by the

Serre finiteness theorem) then this allows to recover the full information from its pieces: by the fundamental
theorem of finitely generated abelian groups (prop. 4.1 below) these groups are direct sums of powers ℤ  of
the infinite cyclic group with finite cyclic groups of the form ℤ/ ℤ, and so all one needs to compute is the
powers  “one prime  at a time”. This we review below in Primary decomposition of abelian groups.

The deeper reason that -Adams spectral sequences tend to converge to localizations of the abelian groups
[ , ]• of morphisms of spectra, is that they really converges to the actual homotopy groups but of

localizations of spectra. This is more than just a reformulation, because the localization at the level of
spectra determies the filtration which controls the nature of the convergence. We discuss this localization of
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spectra below in Localization and nilpotent completion of spectra.

Then we state convergence properties of -Adams spectral sequences below in Convergence statements.

Primary decomposition of abelian groups

An -Adams spectral sequence typically converges (discussed below) not to the full stable homotopy groups
[ , ]•, but just to some piece which on the finite direct summands consists only of p-primary groups for

some prime numbers  that depend on the nature of the homotopy ring spectrum  . Here we review basic
facts about -primary decomposition of finite abelian groups and introduce their graphical calculus (remark
\ref{pprimarygraphical} below) which will allow to read off these -primary pieces from the stable page of
the -Adams spectral sequnce.

Theorem 4.1. (fundamental theorem of finitely generated abelian groups)

Every finitely generated abelian group  is isomorphic to a direct sum of p-primary cyclic groups ℤ/ ℤ
(for  a prime number and  a natural number ) and copies of the infinite cyclic group ℤ:

≃ ℤ ⊕ ℤ/ ℤ .

The summands of the form ℤ/ ℤ are also called the p-primary components of . Notice that the  need

not all be distinct.

fundamental theorem of finite abelian groups:

In particular every finite abelian group is of this form for = 0, hence is a direct sum of cyclic groups.

fundamental theorem of cyclic groups:

In particular every cyclic group ℤ/ ℤ is a direct sum of cyclic groups of the form

ℤ/ ℤ ≃ ℤ/ ℤ

where all the  are distinct and  is the maximal power of the prime factor  in the prime decomposition

of .

Specifically, for each natural number  dividing  it contains ℤ/ ℤ as the subgroup generated by
/ ∈ ℤ → ℤ/ ℤ. In fact the lattice of subgroups of ℤ/ ℤ is the formal dual of the lattice of natural numbers
≤  ordered by inclusion.

(e.g. Roman 12, theorem 13.4, Navarro 03) for cyclic groups e.g. (Aluffi 09, pages 83-84)

This is a special case of the structure theorem for finitely generated modules over a principal ideal domain.

Example 4.2. For  a prime number, there are, up to isomorphism, two abelian groups of order , namely

(ℤ/ ℤ)⊕ (ℤ/ ℤ)

and

ℤ/ ℤ .

Example 4.3. For  and  two distinct prime numbers, ≠ , then there is, up to isomorphism, precisely

one abelian group of order , namely

ℤ/ ℤ⊕ℤ/ ℤ .

This is equivalently the cyclic group

ℤ/ ℤ ≃ ℤ/ ℤ⊕ ℤ/ ℤ .

The isomorphism is given by sending 1 to ( , ).

Example 4.4. Moving up, for two distinct prime numbers  and , there are exactly two abelian groups of

order , namely (ℤ/ ℤ)⊕ (ℤ/ ℤ)⊕ (ℤ/ ℤ) and (ℤ/ ℤ)⊕ (ℤ/ ℤ). The latter is the cyclic group of

order . For instance, ℤ/12ℤ ≅ (ℤ/4ℤ)⊕ (ℤ/3ℤ).

Example 4.5. Similarly, there are four abelian groups of order , three abelian groups of order , and

so on.
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More generally, theorem 4.1 may be used to compute exactly how many abelian groups there are of any
finite order  (up to isomorphism): write down its prime factorization, and then for each prime power 
appearing therein, consider how many ways it can be written as a product of positive powers of . That is,
each partition of  yields an abelian group of order . Since the choices can be made independently for
each , the numbers of such partitions for each  are then multiplied.

Of all these abelian groups of order , of course, one of them is the cyclic group of order . The
fundamental theorem of cyclic groups says it is the one that involves the one-element partitions = [ ],
i.e. the cyclic groups of order  for each .

Remark 4.6. (graphical representation of -primary decomposition)

Theorem 4.1 says that for any prime number , the p-primary part of any finitely generated abelian group
is determined uniquely up to isomorphism by

a total number ∈ ℕ of powers of ;

a partition = + +⋯+ .

The corresponding p-primary group is

=

ℤ/ ℤ .

In the context of Adams spectral sequences it is conventional to depict this information graphically by

 dots;

of which sequences of length  are connected by vertical lines, for ∈ {1,⋯, }.

For example the graphical representation of the -primary group

ℤ/ ℤ⊕ ℤ/ ℤ⊕ ℤ/ ℤ⊕ℤ/ ℤ

is

•

|

• •

| |

• •

| |

• • • •

.

This notation comes from the convention of drawing stable pages of multiplicative Adams spectral
sequences and reading them as encoding the extension problem for computing the homotopy groups that
the spectral sequence converges to:

a dot at the top of a vertical sequence of dots denotes the group ℤ/ ℤ;

inductively, a dot vetically below a sequence of dots denotes a group extension of ℤ/ ℤ by the group
represented by the sequence of dots above;

a vertical line between two dots means that the the generator of the group corresponding to the
upper dot is, regarded after inclusion into the group extension, the product by  of the generator of
the group corresponding to the lower dot, regarded as represented by the generator of the group
extension.

So for instance

•

|

•

stands for an abelian group  which forms a group extension of the form
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ℤ/ ℤ

↓

↓

ℤ/ ℤ

such that multiplication by  takes the generator of the bottom copy of ℤ/ ℤ, regarded as represented by
the generator of , to the generator of the image of the top copy of ℤ/ ℤ.

This means that of the two possible choices of extensions (by example 4.2)  corresponds to the
non-trivial extension = ℤ/ ℤ. Because then in

ℤ/ ℤ

↓

ℤ/ ℤ

↓

ℤ/ ℤ

the image of the generator 1 of the first group in the middle group is = ⋅ 1.

Conversely, the notation

•

•

stands for an abelian group  which forms a group extension of the form

ℤ/ ℤ

↓

↓

ℤ/ ℤ

such that multiplication by  of the generator of the top group in the middle group does not yield the
generator of the bottom group.

This means that of the two possible choices (by example 4.2)  corresponds to the trivial extension
= ℤ/ ℤ⊕ℤ/ ℤ. Because then in

ℤ/ ℤ

↓

ℤ/ ℤ⊕ ℤ/ ℤ

↓

ℤ/ ℤ

the generator 1 of the top group maps to the element (1, 0) in the middle group, and multiplication of that
by  is (0, 0) instead of (0, 1), where the latter is the generator of the bottom group.

Similarly

•

|

•

|

•

is to be read as the result of appending to the previous case a dot below, so that this now indicates a
group extension of the form

ℤ/ ℤ

↓

↓

ℤ/ ℤ
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such that -times the generator of the bottom group, regarded as represented by the generator of the
middle group, is the image of the generator of the top group. This is again the case for the unique
non-trivial extension, and hence in this case the diagram stands for = ℤ/ ℤ.

And so on.

For example the stable page of the -classical Adams spectral sequence for computation of the 2-primary
part of the stable homotopy groups of spheres − ( ) has in (“internal”) degree − ≤ 13 the following
non-trivial entries:

(graphics taken from (Schwede 12)))

Ignoring here the diagonal lines (which denote multiplication by the element ℎ  that encodes the
additional ring structure on •( ) which here we are not concerned with) and applying the above
prescription, we read off for instance that ( ) ≃ ℤ/8ℤ (because all three dots are connected) while
( ) ≃ ℤ/2ℤ⊕ ℤ/2ℤ (because here the two dots are not connected). In total

= 0 1 2 3 456 7 8 9 10 11 1213

( )( ) = ℤ( ) ℤ/2 ℤ/2 ℤ/8 0 0 ℤ/2 ℤ/16 (ℤ/2) (ℤ/2) ℤ/2 ℤ/8 0 0

Here the only entry that needs further explanation is the one for = 0. We discuss the relevant concepts
for this below in the section Localization and adic completion of abelian groups, but for completeness, here
is the quick idea:

The symbol ℤ( ) refers to the 2-adic integers (def. 4.16), i.e. for the limit of abelian groups

ℤ( ) = lim←⎯⎯ ≥
ℤ/2 ℤ

This is not 2-primary, but it does arise when applying 2-adic completion of abelian groups (def. 4.15) to
finitely generated abelian groups as in theorem 4.1. The 2-adic integers is the abelian group associated to
the diagram

⋮

|

•

|

•

|

•

|

•

as in the above figure. Namely by the above prescrption, this infinite sequence should encode an abelian
group  such that it is an extension of ℤ/ ℤ by itself of the form

0 → →⎯⎯⎯⎯
⋅ (−)

⟶ℤ/ ℤ

(Because it is supposed to encode an extension of ℤ/ ℤ by the group corresponding to the result of
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chopping off the lowest dot, which however in this case does not change the figure.)

Indeed, by lemma 4.17 below we have a short exact sequence

0 → ℤ( ) →⎯⎯⎯⎯
⋅ (−)

ℤ( ) ⟶ ℤ/ ℤ → 0 .

Localization and adic completion of abelian groups

Remark 4.7. Recall that Ext-groups Ext• ( , ) between abelian groups , ∈ Ab are concentrated in degrees
0 and 1 (prop.). Since

Ext ( , ) ≃ Hom( , )

is the plain hom-functor, this means that there is only one possibly non-vanishing Ext-group Ext ,
therefore often abbreviated to just “Ext”:

Ext( , ) ≔ Ext ( , ) .

Definition 4.8. Let  be an abelian group.

Then an abelian group  is called -local if all the Ext-groups from  to  vanish:

Ext•( , ) ≃ 0

hence equivalently (remark 4.7) if

Hom( , ) ≃ 0 and Ext( , ) ≃ 0 .

A homomorphism of abelian groups : ⟶  is called -local if for all -local groups  the function

Hom( , ) : Hom( , ) ⟶ Hom( , )

is a bijection.

(Beware that here it would seem more natural to use Ext• instead of Hom, but we do use Hom. See
(Neisendorfer 08, remark 3.2).

A homomorphism of abelian groups

: ⟶

is called a -localization if

 is -local;1. 

 is a -local morphism.2. 

We now discuss two classes of examples of localization of abelian groups

Classical localization at/away from primes;1. 

Formal completion at primes.2. 

Classical localization at/away from primes

For ∈ ℕ, write ℤ/ ℤ for the cyclic group of order .

Lemma 4.9. For ∈ ℕ and ∈ Ab any abelian group, then

the hom-group out of ℤ/ ℤ into  is the -torsion subgroup of 

Hom(ℤ/ ℤ, ) ≃ { ∈ | ⋅ = 0}

1. 

the first Ext-group out of ℤ/ ℤ into  is

Ext (ℤ/ ℤ, ) ≃ / .

2. 

Proof. Regarding the first item: Since ℤ/ ℤ is generated by its element 1 a morphism ℤ/ ℤ →  is fixed by
the image  of this element, and the only relation on 1 in ℤ/ ℤ is that ⋅ 1 = 0.

Regarding the second item:

Consider the canonical free resolution
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0 → ℤ →⎯⎯⎯⎯
⋅ (−)

ℤ ⟶ ℤ/ ℤ → 0 .

By the general discusson of derived functors in homological algebra this exhibits the Ext-group in degree 1
as part of the following short exact sequence

0 → Hom(ℤ, ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( ⋅(−), )

Hom(ℤ, ) ⟶ Ext (ℤ/ ℤ, ) → 0 ,

where the morphism on the left is equivalently ⎯⎯⎯
⋅ (−)

.  ▮

Example 4.10. An abelian group  is ℤ/ ℤ-local precisely if the operation

⋅ (−) : ⟶

of multiplication by  is an isomorphism, hence if “  is invertible in ”.

Proof. By the first item of lemma 4.9 we have

Hom(ℤ/ ℤ, ) ≃ { ∈ | ⋅ = 0}

By the second item of lemma 4.9 we have

Ext (ℤ/ ℤ, ) ≃ / .

Hence by def. 4.8  is ℤ/ ℤ-local precisely if

{ ∈ | ⋅ = 0} ≃ 0

and if

/ ≃ 0 .

Both these conditions are equivalent to multiplication by  being invertible.  ▮

Definition 4.11. For ⊂ ℕ a set of prime numbers, consider the direct sum ⊕ ∈ ℤ/ ℤ of cyclic groups of
order .

The operation of ⊗ ∈ ℤ/ ℤ-localization of abelian groups according to def. 4.8 is called inverting the
primes in .

Specifically

for = { } a single prime then ℤ/ ℤ-localization is called localization away from ;1. 

for  the set of all primes except  then ⊗ ∈ ℤ/ ℤ-localization is called localization at ;2. 

for  the set of all primes, then ⊗ ∈ ℤ/ ℤ-localizaton is called rationalization..3. 

Definition 4.12. For ⊂ Primes ⊂ ℕ a set of prime numbers, then

ℤ[ − ] ↪ ℚ

denotes the subgroup of the rational numbers on those elements which have an expression as a fraction
of natural numbers with denominator a product of elements in .

This is the abelian group underlying the localization of a commutative ring of the ring of integers at the set
 of primes.

If = Primes − { } is the set of all primes except  one also writes

ℤ( ) ≔ ℤ[Primes − { }] .

Notice the parenthesis, to distinguish from the notation ℤ  for the p-adic integers (def. 4.16 below).

Remark 4.13. The terminology in def. 4.11 is motivated by the following perspective of arithmetic
geometry:

Generally for  a commutative ring, then an -module is equivalently a quasicoherent sheaf on the
spectrum of the ring Spec( ).

In the present case = ℤ is the integers and abelian groups are identified with ℤ-modules. Hence we may
think of an abelian group  equivalently as a quasicoherent sheaf on Spec(Z).

The “ring of functions” on Spec(Z) is the integers, and a point in Spec(ℤ) is labeled by a prime number ,
thought of as generating the ideal of functions on Spec(Z) which vanish at that point. The residue field at
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that point is = ℤ/ ℤ.

Inverting a prime means forcing  to become invertible, which, by this characterization, it is precisely
away from that point which it labels. The localization of an abelian group at ℤ/ ℤ hence corresponds to the
restriction of the corresponding quasicoherent sheaf over Spec(ℤ) to the complement of the point labeled
by .

Similarly localization at  is localization away from all points except .

See also at function field analogy for more on this.

Proposition 4.14. For ⊂ ℕ a set of prime numbers, a homomorphism of abelian groups
: lookrightarrow  is local (def. 4.8) with respect to ⊕ ∈ ℤ/ ℤ (def. 4.11) if under tensor product of

abelian groups with ℤ[ − ] (def. 4.12) it becomes an isomorphism

⊗ℤ[ − ] : ⊗ ℤ[ − ] ⟶≃ ⊗ℤ[ − ] .

Moreover, for  any abelian group then its ⊕ ∈ ℤ/ ℤ-localization exists and is given by the canonical
projection morphism

⟶ ⊗ℤ[ − ] .

(e.g. Neisendorfer 08, theorem 4.2)

Formal completion at primes

We have seen above in remark 4.13 that classical localization of abelian groups at a prime number is
geometrically interpreted as restricting a quasicoherent sheaf over Spec(Z) to a single point, the point that
is labeled by that prime number.

Alternatively one may restrict to the “infinitesimal neighbourhood” of such a point. Technically this is called
the formal neighbourhood, because its ring of functions is, by definition, the ring of formal power series
(regarded as an adic ring or pro-ring). The corresponding operation on abelian groups is accordingly called
formal completion or adic completion or just completion, for short, of abelian groups.

It turns out that if the abelian group is finitely generated then the operation of p-completion coincides with
an operation of localization in the sense of def. 4.8, namely localization at the p-primary component ℤ( ) of
the group ℚ/ℤ (def. 4.22 below). On the one hand this equivalence is useful for deducing some key
properties of p-completion, this we discuss below. On the other hand this situation is a shadow of the
relation between localization of spectra and nilpotent completion of spectra, which is important for
characterizing the convergence properties of Adams spectral sequences.

Definition 4.15. For  a prime number, then the p-adic completion of an abelian group  is the abelian
group given by the limit

∧ ≔ lim←⎯⎯(⋯⟶ / ⟶ / ⟶ / ) ,

where the morphisms are the evident quotient morphisms. With these understood we often write

∧ ≔ lim←⎯⎯ /

for short. Notice that here the indexing starts at = 1.

Example 4.16. The p-adic completion (def. 4.15) of the integers ℤ is called the p-adic integers, often
written

ℤ ≔ ℤ∧ ≔ lim←⎯⎯ ℤ/ ℤ ,

which is the original example that gives the general concept its name.

With respect to the canonical ring-structure on the integers, of course ℤ is a prime ideal.

Compare this to the ring ℂ of holomorphic functions on the complex plane. For ∈ ℂ any point, it contains
the prime ideal generated by ( − ) (for  the canonical coordinate function on ). The formal power series
ring ℂ[[( . )]] is the adic completion of ℂ at this ideal. It has the interpretation of functions defined on a
formal neighbourhood of  in ℂ.

Analogously, the p-adic integers ℤ  may be thought of as the functions defined on a formal neighbourhood
of the point labeled by  in Spec(Z).
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Lemma 4.17. There is a short exact sequence

0 → ℤ →⎯⎯⎯⎯
⋅ (−)

ℤ ⟶ ℤ/ ℤ → 0 .

Proof. Consider the following commuting diagram

⋮ ⋮ ⋮

↓ ↓ ↓

ℤ/ ℤ →⎯⎯⎯⎯
⋅ (−)

ℤ/ ℤ ⟶ ℤ/ ℤ

↓ ↓ ↓

ℤ/ ℤ →⎯⎯⎯⎯
⋅ (−)

ℤ/ ℤ ⟶ ℤ/ ℤ

↓ ↓ ↓

ℤ/ ℤ →⎯⎯⎯⎯
⋅ (−)

ℤ/ ℤ ⟶ ℤ/ ℤ

↓ ↓ ↓

0 ⟶ ℤ/ ℤ ⟶ ℤ/ ℤ

.

Each horizontal sequence is exact. Taking the limit over the vertical sequences yields the sequence in
question. Since limits commute over limits, the result follows.  ▮

We now consider a concept of -completion that is in general different from def. 4.15, but turns out to
coincide with it in finitely generated abelian groups.

Definition 4.18. For  a prime number, write

ℤ[1/ ] ≔ lim→⎯⎯ ℤ →⎯⎯⎯⎯
⋅ (−)

ℤ →⎯⎯⎯⎯
⋅ (−)

ℤ⟶ ⋯

for the colimit (in Ab) over iterative applications of multiplication by  on the integers.

This is the abelian group generated by formal expressions  for ∈ ℕ, subject to the relations

( ⋅ )
1
+ =

1
.

Equivalently it is the abelian group underlying the ring localization ℤ[1/ ].

Definition 4.19. For  a prime number, then localization of abelian groups (def. 4.8) at ℤ[1/ ] (def. 4.18) is
called -completion of abelian groups.

Lemma 4.20. An abelian group  is -complete according to def. 4.19 precisely if both the limit as well as
the lim^1 of the sequence

⋯⟶ ⟶ ⟶ ⟶

vanishes:

lim←⎯⎯ ⋯⟶ ⟶ ⟶ ⟶ ≃ 0

and

lim←⎯⎯ ⋯⟶ ⟶ ⟶ ⟶ ≃ 0 .

Proof. By def. 4.8 the group  is ℤ[1/ ]-local precisely if

Hom(ℤ[1/ ], ) ≃ 0 and Ext (ℤ[1/ ], ) ≃ 0 .

Now use the colimit definition ℤ[1/ ] = lim→⎯⎯ ℤ (def. 4.18) and the fact that the hom-functor sends colimits in

the first argument to limits to deduce that

Hom(ℤ[1/ ], ) = Hom(lim→⎯⎯ ℤ, )

≃ lim←⎯⎯ Hom(ℤ, )

≃ lim←⎯⎯

.

This yields the first statement. For the second, use that for every cotower over abelian groups • there is a
short exact sequence of the form
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0 → lim←⎯⎯ Hom( , ) ⟶ Ext (lim→⎯⎯ , ) ⟶ lim←⎯⎯ Ext ( , ) → 0

(by this lemma).

In the present case all ≃ ℤ, which is a free abelian group, hence a projective object, so that all the
Ext-groups out of it vannish. Hence by exactness there is an isomorphism

Ext (lim→⎯⎯ ℤ, ) ≃ lim←⎯⎯ Hom(ℤ, ) ≃ lim←⎯⎯ .

This gives the second statement.  ▮

Example 4.21. For  a prime number, the p-primary cyclic groups of the form ℤ/ ℤ are -complete (def.
4.19).

Proof. By lemma 4.20 we need to check that

lim←⎯⎯ ⋯⟶ ℤ/ ℤ⟶ ℤ/ ℤ ⟶ ℤ/ ℤ ≃ 0

and

lim←⎯⎯ ⋯⟶ ℤ/ ℤ⟶ ℤ/ ℤ ⟶ ℤ/ ℤ ≃ 0 .

For the first statement observe that  consecutive stages of the tower compose to the zero morphism. First
of all this directly implies that the limit vanishes, secondly it means that the tower satisfies the Mittag-Leffler
condition (def.) and this implies that the lim  also vanishes (prop.).  ▮

Definition 4.22. For  a prime number, write

ℤ( ) ≔ ℤ[1/ ]/ℤ

(the p-primary part of ℚ/ℤ), where ℤ[1/ ] = lim→⎯⎯ (ℤ → ℤ → ℤ → ⋯) from def. 4.18.

Since colimits commute over each other, this is equivalently

ℤ( ) ≃ lim→⎯⎯ (0 ↪ ℤ/ ℤ ↪ ℤ/ ℤ ↪ ⋯) .

Theorem 4.23. For  a prime number, the ℤ[1/ ]-localization

⟶ ℤ[ / ]

of an abelian group  (def. 4.18, def. 4.8), hence the -completion of  according to def. 4.19, is given by
the morphism

⟶ Ext (ℤ( ), )

into the first Ext-group into  out of ℤ( ) (def. 4.22), which appears as the first connecting
homomorphism  in the long exact sequence of Ext-groups

0 → Hom(ℤ( ), ) ⟶ Hom(ℤ[1/ ], ) ⟶ Hom(ℤ, ) ⟶
)
Ext (ℤ( ), ) → ⋯ .

that is induced (via this prop.) from the defining short exact sequence

0 → ℤ⟶ ℤ[1/ ] ⟶ ℤ( ) → 0

(def. 4.22).

e.g. (Neisendorfer 08, p. 16)

Proposition 4.24. If  is a finitely generated abelian group, then its -completion (def. 4.19, for any prime
number ) is equivalently its p-adic completion (def. 4.15)

ℤ[1/ ] ≃ ∧ .

Proof. By theorem 4.23 the -completion is Ext (ℤ( ), ). By def. 4.22 there is a colimit

ℤ( ) = lim→⎯⎯ (ℤ/ ℤ → ℤ/ ℤ → ℤ/ ℤ → ⋯) .

Together this implies, by this lemma, that there is a short exact sequence of the form

0 → lim←⎯⎯ Hom(ℤ/ ℤ, ) ⟶ ∧ ⟶ lim←⎯⎯ Ext (ℤ/ ℤ, ) → 0 .

By lemma 4.9 the lim^1 on the left is over the -torsion subgroups of , as  ranges. By the assumption
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that  is finitely generated, there is a maximum  such that all torsion elements in  are annihilated by .
This means that the Mittag-Leffler condition (def.) is satisfied by the tower of -torsion subgroups, and
hence the lim^1-term vanishes (prop.).

Therefore by exactness of the above sequence there is an isomorphism

ℤ[ / ] ≃ lim←⎯⎯ Ext (ℤ/ ℤ, )

≃ lim←⎯⎯ /
,

where the second isomorphism is by lemma 4.9.  ▮

Proposition 4.25. If  is a -divisible group in that →⎯⎯⎯⎯
⋅ (−)

 is an isomorphism, then its -completion (def.
4.19) vanishes.

Proof. By theorem 4.23 the localization morphism  sits in a long exact sequence of the form

0 → Hom(ℤ( ), ) ⟶ Hom(ℤ[1/ ], ) ⟶ Hom(ℤ, ) ⟶ Ext (ℤ( ), ) → ⋯ .

Here by def. 4.18 and since the hom-functor takes colimits in the first argument to limits, the second term is
equivalently the limit

Hom(ℤ[1/ ], ) ≃ lim←⎯⎯ ⋯ → →⎯⎯⎯⎯
⋅ (−)

→⎯⎯⎯⎯
⋅ (−)

.

But by assumption all these morphisms ⋅ (−) that the limit is over are isomorphisms, so that the limit
collapses to its first term, which means that the morphism  in the above sequence is an isomorphism. But
by exactness of the sequence this means that = 0.  ▮

Corollary 4.26. Let  be a prime number. If  is a finite abelian group, then its -completion (def. 4.19) is
equivalently its p-primary part.

Proof. By the fundamental theorem of finite abelian groups,  is a finite direct sum

≃ ⊕ℤ/ ℤ

of cyclic groups of ordr  for prime numbers and ∈ ℕ (thm.).

Since finite direct sums are equivalently products (biproducts: Ab is an additive category) this means that

Ext (ℤ( ), ) ≃ Ext (ℤ( ), ℤ/ ℤ) .

By theorem 4.23 the th factor here is the -completion of ℤ/ ℤ, and since ⋅ (−) is an isomorphism on

ℤ/ ℤ if ≠  (because its kernel evidently vanishes), prop. 4.25 says that in this case the factor vanishes,

so that only the factors with =  remain. On these however Ext (ℤ( ), −) is the identity by example

4.21.  ▮

Localization and nilpotent completion of spectra

We discuuss

Bousfield localization of spectra1. 

Nilpotent completion of spectra2. 

which are the analogs in stable homotopy theory of the construction of localization of abelian groups
discussed above.

Literature: (Bousfield 79)

,

Localization of spectra

Definition 4.27. Let ∈ Ho(Spectra) be be a spectrum. Say that

a spectrum  is -acyclic if the smash product with  is zero, ∧ ≃ 0;1. 

a morphism : →  of spectra is an -equivalence if ∧ : ∧ → ∧  is an isomorphism in
Ho(Spectra), hence if •( ) is an isomorphism in -generalized homology;

2. 
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a spectrum  is -local if the following equivalent conditions hold

for every -equivalence  then [ , ]• is an isomorphism;1. 

every morphism ⟶  out of an -acyclic spectrum  is zero in Ho(Spectra);2. 

3. 

(Bousfield 79, §1) see also for instance (Lurie, Lecture 20, example 4)

Lemma 4.28. The two conditions in the last item of def. 4.27 are indeed equivalent.

Proof. Notice that ∈ Ho(Spectra) being -acyclic means equivalently that the unique morphism 0 ⟶  is an
-equivalence.

Hence one direction of the claim is trivial. For the other direction we need to show that for [−, ]• to give an

isomorphism on all -equivalences , it is sufficient that it gives an isomorphism on all -equivalences of the
form 0 → .

Given a morphism : → , write ⟶ /  for its homotopy cofiber. Then since Ho(Spectra) is a triangulated
category (prop.) the defining axioms of triangulated categories (def., lemma) give that there is a commuting
diagram of the form

0 ⟶ ⟶ ⟶ 0 ⟶

↓ ↓ ↓ ↓ ↓
− / ⟶ ⟶ ⟶ / ⟶

,

where both the top as well as the bottom are homotopy cofiber sequences. Hence applying [−, ]• to this

diagram in Ho(Spectra) yields a diagram of graded abelian groups of the form

0 ⟵ [ , ]• ⟵ [ , ]• ⟵ 0 ⟵ [ , ]• +

↑ ↑ ↑[ , ]• ↑ ↑

[ / , ]• + ⟵ [ , ]• ⟵ [ , ]• ⟵ [ / , ]• ⟵ [ , ]• +

,

where now both horizontal sequences are long exact sequences (prop.).

Hence if [ / , ]• ⟶ 0 is an isomorphism, then all four outer vertical morphisms in this diagram are

isomorphisms, and then the five-lemma implies that also [ , ]• is an isomorphism.

Hence it is now sufficient to observe that with : →  an -equivalence, then its homotopy cofiber /  is
-acyclic.

To see this, notice that by the tensor triangulated structure on Ho(Spectra) (prop.) the smash product with 
preserves homotopy cofiber sequences, so that there is a homotopy cofiber sequence

∧ →⎯⎯⎯
∧

∧ ⟶ ∧ ( / ) ⟶ ∧ .

But if the first morphism here is an isomorphism, then the axioms of a triangulated category (def.) imply
that ∧ / ≃ 0. In detail: by the axioms we may form the morphism of homotopy cofiber sequences

∧ →⎯⎯⎯
∧

∧ ⟶ ∧ / ⟶ ∧

↓ ↓( ∧ )− ↓ ↓

∧ ⟶ ∧ ⟶ 0 ⟶ ∧

.

Then since two of the three vertical morphisms on the left are isomorphisms, so is the third (lemma).  ▮

Definition 4.29. Given , ∈ Ho(Spectra), then an -Bousfield localization of spectra of  is

an -local spectrum 1. 

an -equivalence ⟶ .2. 

according to def. 4.27.

We discuss now that -Localizations always exist. The key to this is the following lemma 4.30, which asserts
that a spectrum being -local is equivalent to it being -null, for some “small” spectrum :

Lemma 4.30. For every spectrum  there exists a spectrum  such that any spectrum  is -local (def.
4.27) precisely if it is -null, i.e.
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is -local ⇔ [ , ]
*
= 0

and such that

 is -acyclic (def. 4.27);1. 

there exists an infinite cardinal number  such that  is a -CW spectrum (hence a CW spectrum
(def.) with at most  many cells);

2. 

the class of -acyclic spectra (def. 4.27) is the class generated by  under

wedge sum1. 

the relation that if in a homotopy cofiber sequence → →  two of the spectra are in the
class, then so is the third.

2. 

3. 

(Bousfield 79, lemma 1.13 with lemma 1.14) review includes (Bauer 11, p.2,3, VanKoughnett 13, p. 8)

Proposition 4.31. For ∈ Ho(Spectra) any spectrum, every spectrum  sits in a homotopy cofiber sequence
of the form

( ) ⟶ ⟶ ( ) ,

and natural in , such that

( ) is -acyclic,1. 

( ) is -local,2. 

according to def. 4.27.

(Bousfield 79, theorem 1.1) see also for instance (Lurie, Lecture 20, example 4)

Proof. Consider the -CW-spectrum spectrum  whose existence is asserted by lemma 4.30. Let

≔ { → Cone( )}

denote the set containing as its single element the canonical morphism (of sequential spectra) from  into
the standard cone of , i.e. the cofiber

Cone( ) ≔ cofib( → ∧ +) ≃ ∧

of the inclusion of  into its standard cylinder spectrum (def.).

Since the standard cylinder spectrum on a CW-spectrum is a good cylinder object (prop.) this means
(lemma) that for  any fibrant sequential spectrum, and for ⟶  any morphism, then an extension along
the cone inclusion

⟶

↓ ↗

Cone( )

equivalently exhibits a null-homotopy of the top morphism. Hence the ( → Cone( ))-injective objects in
Ho(Spectra) are precisely those spectra  for which [ , ]• ≃ 0.

Moreover, due to the degreewise nature of the smash tensoring Cone( ) = ∧  (def), the inclusion morphism
→ Cone( ) is degreewise the inclusion of a CW-complex into its standard cone, which is a relative cell

complex inclusion (prop.).

By this lemma the -cell spectrum  is -small object (def.) with respect to morphisms of spectra which are
degreewise relative cell complex inclusion small object argument .

Hence the small object argument applies (prop.) and gives for every  a factorization of the terminal
morphism → *  as an -relative cell complex (def.) followed by an -injective morphism (def.)

→⎯⎯⎯⎯ →⎯⎯⎯ * .

By the above, this means that [ , ] = 0, hence by lemma 4.30 that  is -local.

It remains to see that the homotopy fiber of →  is -acyclic: By the tensor triangulated structure on
Ho(Spectra) (prop.) it is sufficient to show that the homotopy cofiber is -acyclic (since it differs from the
homotopy fiber only by suspension). By the pasting law, the homotopy cofiber of a transfinite composition is
the transfinite composition of a sequence of homotopy pushouts. By lemma 4.30 and applying the pasting
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law again, all these homotopy pushouts produce -acyclic objects. Hence we conclude by observing that the
the transfinite composition of the morphisms between these -acyclic objects is -acyclic. Since by
construction all these morphisms are relative cell complex inclusions, this follows again with the
compactness of the -spheres (lemma).  ▮

Lemma 4.32. The morphism → ( ) in prop. 4.31 exhibits an -localization of  according to def. 4.29

Proof. It only remains to show that →  is an -equivalence. By the tensor triangulated structure on
Ho(Spectra) (prop.) the smash product with  preserves homotopy cofiber sequences, so that

∧ ⟶ ∧ →⎯⎯⎯⎯
∧

∧ ⟶ ∧

is also a homotopy cofiber sequence. But now ∧ ≃ 0 by prop. 4.31, and so the axioms (def.) of the
triangulated structure on Ho(Spectra) (prop.) imply that ∧  is an isomorphism.  ▮

Nilpotent completion of spectra

Definition 4.33. Let ( , , ) be a homotopy commutative ring spectrum (def.) and ∈ Ho(Spectra) any

spectrum. Write ̅ ̅ ̅for the homotopy fiber of the unit →  as in def. 1.16 such that the -Adams filtration
of  (def. 1.14) reads (according to lemma 1.17)

⋮

↓

̅ ̅̅ ̅ ∧

↓

̅ ̅̅ ̅ ∧

↓

̅ ̅ ∧̅

↓

.

For ∈ ℕ, write

̅ ̅ ̅ ̅ − ≔ hocof( ̅ ̅̅ ̅ ⟶ )

for the homotopy cofiber. Here ̅ ̅̅ −̅ ≃ 0. By the tensor triangulated structure of Ho(Spectra) (prop.), this
homotopy cofiber is preserved by forming smash product with , and so also

̅ ̅ ̅ ∧ ≃ hocof( ̅ ̅ ̅ ∧ ⟶ ) .

Now let

̅ ̅ ̅ →⎯⎯⎯− ̅ ̅ ̅ −

be the morphism implied by the octahedral axiom of the triangulated category Ho(Spectra) (def., prop.):

̅ ̅ ̅ ̅ + ⟶ ̅ ̅̅ ⟶ ∧ ̅ ̅̅ ⟶ ̅ ̅̅ ̅ +

= ↓ ↓ ↓ ↓

̅ ̅̅ ̅ + ⟶ ⟶ ̅ ̅̅ ̅ ⟶ ̅ ̅̅ ̅ +

↓ ↓ −

̅ ̅̅ ̅ − ⟶= ̅ ̅ ̅ ̅ −

↓ ↓

̅ ̅̅ ̅ ⟶ ∧ ̅ ̅̅

.

By the commuting square in the middle and using again the tensor triangulated structure, this yields an
inverse sequence under :

≃ ∧ ⟶⋯ →⎯⎯⎯⎯
∧

̅ ̅̅ ̅ ∧ →⎯⎯⎯⎯
∧

̅ ̅ ̅ ∧ →⎯⎯⎯⎯
∧

̅ ̅ ̅ ̅ ∧

The E-nilpotent completion ∧ of  is the homotopy limit over the resulting inverse sequence

∧ ≔ ℝlim←⎯⎯
̅ ̅ ̅ ∧
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or rather the canonical morphism into it

⟶ ∧ .

Concretely, if

≃ ∧ ⟶⋯ →⎯⎯⎯⎯
∧

̅ ̅̅ ̅ ∧ →⎯⎯⎯⎯
∧

̅ ̅ ̅ ∧ →⎯⎯⎯⎯
∧

̅ ̅ ̅ ̅ ∧

is presented by a tower of fibrations between fibrant spectra in the model structure on topological
sequential spectra, then ∧ is represented by the ordinary sequential limit over this tower.

(Bousfield 79, top, middle and bottom of page 272)

Remark 4.34. In (Bousfield 79) the -nilpotent completion of  (def. 4.33) is denoted “ ∧ ”. The notation
“ ∧” which we use here is more common among modern authors. It emphasizes the conceptual relation to
p-adic completion ∧ of abelian groups (def. 4.15) and is less likely to lead to confusion with the smash
product of  with .

Remark 4.35. The nilpotent completion ∧ is -local. This induces a universal morphism

⟶ ∧

from the -Bousfield localization of spectra of  into the -nilmpotent completion

(Bousfield 79, top of page 273)

We consider now conditions for this morphism to be an equivalence.

Proposition 4.36. Let  be a connective ring spectrum such that the core of ( ), def. 2.14, is either of

the localization of the integers at a set  of primes, ( ) ≃ ℤ[ − ];

a cyclic ring ( ) ≃ ℤ/ ℤ, for ≥ 2.

Then the map in remark 4.35 is an equivalence

⟶≃ ∧ .

(Bousfield 79, theorem 6.5, theorem 6.6).

Convergence theorems

We state the two main versions of Bousfield’s convergence theorems for the -Adams spectral sequence,
below as theorem 4.40 and theorem 4.41.

First we need to define the concepts that enter the convergence statement:

the infinity-page , ( , ) (def. 4.37),1. 

a filtration on [ , ∧]• (def. 4.38)2. 

what it means for the former to converge to the latter (def. 4.39).3. 

Broadly the statement will be that typically

the -Adams spectral sequence , ( , ) computes the stable homotopy groups [ , ∧] of maps from 
into the E-nilpotent completion of ;

1. 

these groups are localizations of the full groups [ , ]• depending on the core of ( ).2. 

Literature: (Bousfield 79)

Definition 4.37. Let ( , , ) be a homotopy commutative ring spectrum (def.) and , ∈ Ho(Spectra) two
spectra with associated -Adams spectral sequence { , , } (def. 1.14).

Observe that

if > then +
, • ( , ) ≃ ker( | , •( , ) ) ⊂

, •( , )

since the differential  on the th page has bidegree ( , − 1), and since , • ( , ) ≃ 0, so that for >  the
image of  in , ( , ) vanishes.
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Thus define the bigraded abelian group

, ( , ) ≔ lim , ( , ) = ∩ , ( , )

called the “infinity page” of the -Adams spectral sequence.

Definition 4.38. Let ( , , ) be a homotopy commutative ring spectrum (def.) and , ∈ Ho(Spectra) two
spectra with associated -Adams spectral sequence { , , } (def. 1.14) and E-nilpotent completion ∧ (def.
4.33).

Define a filtration

⋯ ↪ [ , ∧]• ↪ [ , ∧]• ↪ [ , ∧]• = [ , ∧]•

on the graded abelian group [ , ∧]• by

[ , ∧]• ≔ ker( [ , ∧]• →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
[ , ∧ → ̅ ̅ ̅ ̅ − ∧ ]

[ , ̅ ̅̅ ̅ − ∧ ]• ) ,

where the morphisms ∧ → ̅ ̅ ̅ − ∧  is the canonical one from def. 4.33.

Definition 4.39. Let ( , , ) be a homotopy commutative ring spectrum (def.) and , ∈ Ho(Spectra) two
spectra with associated -Adams spectral sequence { , , } (def. 1.14) and E-nilpotent completion ∧ (def.
4.33).

Say that the -Adams spectral sequence { , , } converges completely to the E-nilpotent completion
[ , ∧]• if the following two canonical morphisms are isomorphisms

[ , ∧]• ⟶ lim←⎯⎯ [ , ∧]•/ [ , ∧]•

(where on the right we have the limit over the tower of quotients by the stages of the filtration from
def. 4.38)

1. 

[ , ∧] − / + [ , ∧] − ⟶ , ( , ) ∀ ,

(where [ , ∧]• is the filtration stage from def. 4.38 and , ( , ) is the infinity-page from def. 4.37).

2. 

Notice that the first morphism is always surjective, while the second is necessarily injective, hence the
condition is equivalently that the first is also injective, and the second also surjective.

(Bousfield 79, §6)

Now we state sufficient conditions for complete convergence of the -Adams spectral sequence. It turns out
that convergence is controled by the core (def. 2.14) of the ring ( ). By prop. 2.16 these cores are either
localizations of the integers ℤ[ − ] at a set  of primes (def. 4.11) or are cyclic rings, or cores of products of
these. We discuss the first two cases.

Theorem 4.40. Let ( , , ) be a homotopy commutative ring spectrum (def.) and let , ∈ Ho(Spectra) be
two spectra such that

the core (def. 2.14) of the 0-th stable homotopy group ring of  (prop.) is the localization of the
integers at a set  of primes (def. 4.11)

( ) ≃ ℤ[ − ] ⊂ ℚ

1. 

 is a CW-spectrum (def.) with a finite number of cells (rmk.);2. 

then the -Adams spectral sequence for [ , ]• (def. 1.14) converges completely (def. 4.39) to the

localization

[ , ∧]• = ℤ[ − ] ⊗ [ , ]•

of [ , ]•.

(Bousfield 79, theorem 6.5)

Theorem 4.41. Let ( , , ) be a homotopy commutative ring spectrum (def.) and let , ∈ Ho(Spectra) be
two spectra such that

the core (def. 2.14) of the 0-th stable homotopy group ring of  (prop.) is a prime field1. 
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( ) ≃

for some prime number ;

 is a connective spectrum in that its stable homotopy groups •( ) vanish in negative degree;2. 

 is a CW-spectrum (def.) with a finite number of cells (rmk.);3. 

[ , ]• is degreewise a finitely generated group4. 

then the -Adams spectral sequence for [ , ]• (def. 1.14) converges completely (def. 4.39) to the -adic

completion (def. 4.15)

[ , ∧]• ≃ lim←⎯⎯ [ , ]•/ [ , ]•

of [ , ]•.

(Bousfield 79, theorem 6.6)

Examples

We now consider examples applying the general theory of -Adams spectral sequences above in special
cases to the concrete computation of certain stable homotopy groups.

Example 4.42. Examples of commutative ring spectra that are flat according to def. 2.1 include =

 – the sphere spectrum;

 – Eilenberg-MacLane spectra for prime fields;

MO, MU, MSp – Thom spectra;

KO, KU – topological K-theory spectra.

(Adams 69, lecture 1, lemma 28 (p. 45))

Proof of the first two items. For =  we have •( ) ≔ •( ∧ ) ≃ •( ), since the sphere spectrum  is the
tensor unit for the derived smash product of spectra (cor.). Hence the statement follows since every ring is,
clearly, flat over itself.

For =  we have that •( ) ≃  (prop.), hence a field (a prime field). Every module over a field is a
projective module (prop.) and every projective module is flat (prop.).  ▮

Example 4.43. Examples of ring spectra that are not flat in the sense of def. 2.1 include HZ, and .

Examples 4.44.

For =  and = , then theorem 3.1 and theorem
\ref{ConvergenceOfEAdamsSpectralSequenceToECompletion} with example
\ref{ExamplesOfEnilpotentLocalizations} gives a spectral sequence

Ext * ( , ) ⇒ •( ) ⊗ ∧ .

This is the classical Adams spectral sequence.

For =  and = MU, then theorem 3.1 and theorem
\ref{ConvergenceOfEAdamsSpectralSequenceToECompletion} with example
\ref{ExamplesOfEnilpotentLocalizations} gives a spectral sequence

Ext
*( )(MU*, MU*) ⇒ •( ) .

This is the Adams-Novikov spectral sequence.

5. Classical Adams spectral sequence ( = , = )
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We consider now the example of the -Adams spectral sequence { , ( , ), } (def. 1.14) for the case that

=  is the Eilenberg-MacLane spectrum (def.) with coefficients in a prime field, regarded in
Ho(Spectra) with its canonical struture of a homotopy commutative ring spectrum induced (via this
corollary) from its canonical structure of an orthogonal ring spectrum (from this def.);

1. 

= =  are both the sphere spectrum.2. 

This example is called the classical Adams spectral sequence.

The -dual Steenrod algebra according to the general definition 2.3 turns out to be the classical dual
Steenrod algebra *  recalled below .

Notice that  satisfies the two assumptions needed to identify the second page of the -Adams spectral
sequence according to theorem 3.1:

Lemma 5.1. The Eilenberg-MacLane spectrum  is flat according to 2.1, and ( ) is a projective
module over •( ).

Proof. The stable homotopy groups of  is the prime field  itself, regarded as a graded commutative
ring concentrated in degree 0 (prop.)

•( ) ≃ .

Since this is a field, all modules over it are projective modules (prop.), hence in particular flat modules
(prop.).  ▮

Corollary 5.2. The classical Adams spectral sequence, i.e. the -Adams spectral sequence (def. 1.14) for
=  (def.) and = = , has on its second page the Ext-groups of classical dual Steenrod algebra

comodules from ≃ ( ) to itself, and converges completely (def. 4.39) to the p-adic completion (def.
4.15) of the stable homotopy groups of spheres, hence in degree 0 to the p-adic integers and in all other
degrees to the -primary part (theorem 4.1)

, ( , ) = Ext *
, ( , ) ⇒ ( •( )) .

Proof. By lemma 5.1 the conditions of theorem 3.1 are satisfied, which implies the form of the second
page.

For the convergence statement, we check the assumptions in theorem 4.41:

By prop. 2.15 and prop. 2.16 the ring = ( ) coincides with its core: ≃ ;1. 

 is clearly a connective spectrum;2. 

 is clearly a finite CW-spectrum;3. 

the groups •( ) ≃ [ , ]• are degreewise finitely generated, by Serre's finiteness theorem?.4. 

Hence theorem 4.41 applies and gives the convergence as stated.

Finally, by prop. 5.5 the dual -Steenrod algebra in the present case is the classical dual Steenrod
algebra.  ▮

We now use the classical Adams spectral sequence from corollary 5.2 to compute the first dozen stable
homotopy groups of spheres.

The dual Steenrod algebra

Definition 5.3. Let  be a prime number. Write  for the corresponding prime field.

The mod -Steenrod algebra  is the graded co-commutative Hopf algebra over  which is

for = 2 generated by elements denoted Sq  for ∈ ℕ, ≥ 1;

for > 2 generated by elements denoted  and  for ∈ ℕ, ≥ 1

(called the Serre-Cartan basis elements)

whose product is subject to the following relations (called the Ádem relations):

for = 2:

for 0 < ℎ < 2  the
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Sq Sq =
=

[ / ]
− − 1

ℎ − 2
Sq + − Sq ,

for > 2:

for 0 < ℎ <  then

=
=

[ / ]

(−1) +
( − 1)( − ) − 1

ℎ −
+ −

and if 0 < ℎ <  then

= ∑[ / ]
= (−1) +

( − 1)( − )

ℎ −
+ −

+∑[( − )/ ]
= (−1) + −

( − 1)( − ) − 1

ℎ − − 1
+ −

and whose coproduct  is subject to the following relations:

for = 2:

(Sq ) =
=

Sq ⊗ Sq −

for > 2:

( ) =

=

⊗ −

and

( ) = ⊗ 1 + 1⊗ .

e.g. (Kochmann 96, p. 52)

Definition 5.4. The -linear dual of the mod -Steenrod algebra (def. 5.3) is itself naturally a graded
commutative Hopf algebra (with coproduct the linear dual of the original product, and vice versa), called
the dual Steenrod algebra * .

Proposition 5.5. There is an isomorphism

* ≃ •( , ) = •( ∧ ) .

(e.g. Ravenel 86, p. 49, Rognes 12, remark 7.24)

We now give the generators-and-relations description of the dual Steenrod algebra *  from def. 5.4, in
terms of linear duals of the generators for  itself, according to def. 5.3.

Theorem 5.6. (Milnor’s theorem)

The dual mod 2-Steenrod algebra *  (def. 5.4) is, as an associative algebra, the free graded commutative
algebra

* ≃ Sym ( , ,⋯, )

on generators:

, ≥ 1 being the linear dual to Sq
−
Sq

−
⋯Sq Sq ,

of degree 2 − 1.

The dual mod -Steenrod algebra *  (def. 5.4) is, as an associative algebra, the free graded commutative
algebra

* ≃ Sym ( , ,⋯, , , ⋯)

on generators:

, ≥ 1 being the linear dual to 
− −

⋯ ,

Introduction to the Adams Spectral Sequence in nLab https://ncatlab.org/nlab/print/Introduction+to+the+Adams+Spectral+S...

44 of 53 09.05.17, 16:05



of degree 2( − 1).

 being linear dual to 
− −

⋯ .

Moreover, the coproduct on *  is given on generators by

( ) =
=

− ⊗

and

( ) = ⊗ 1 +
=

− − ⊗ ,

where we set ≔ 1.

(This defines the coproduct on the full algbra by it being an algebra homomorphism.)

This is due to (Milnor 58). See for instance (Kochmann 96, theorem 2.5.1, Ravenel 86, chapter III, theorem
3.1.1)

The cobar complex

In order to compute the second page of the classical -Adams spectral sequence (cor. 5.2) we consider a
suitable cochain complex whose cochain cohomology gives the relevant Ext-groups.

Definition 5.7. Let ( , ) be a graded commutative Hopf algebra, hence a commutative Hopf algebroid for
which the left and right units coincide : ⟶  (remark 2.8).

Then the unit coideal of  is the cokernel

̅ ̅ ≔ coker( ⟶ ) .

Remark. By co-unitality of graded commutative Hopf algebras (def. 2.9) ∘ = id  the defining projection of
the unit coideal (def. 5.7)

⟶ ⟶ ̅ ̅

forms a split exact sequence which exhibits a direct sum decomposition

≃ ⊕ ̅ ̅ ̅ .

Lemma 5.8. Let ( , ) be a commutative Hopf algebra, hence a commutative Hopf algebroid for which the
left and right units coincide : ⟶ .

Then the unit coideal ̅ ̅ (def. 5.7) carries the structure of an -bimodule such that the projection
morphism

⟶ ̅ ̅̅ ̅

is an -bimodule homomorphism. Moreover, the coproduct : ⟶ ⊗  descends to a morphism
̅ ̅̅ ̅ : ̅ ̅̅ ̅⟶ ̅ ̅ ⊗ ̅ ̅̅ ̅such that the projection intertwines the two coproducts.

Proof. For the first statement, consider the commuting diagram

⊗ →⎯⎯⎯
⊗

⊗ ⟶ ⊗ ̅ ̅ ̅

↓ ↓ ↓∃

⟶ ⟶ ̅ ̅̅ ̅

,

where the left commuting square exhibits the fact that  is a homomorphism of left -modules.

Since the tensor product of abelian groups ⊗ is a right exact functor it preserves cokernels, hence ⊗ ̅ ̅ is
the cokernel of ⊗ → ⊗  and hence the right vertical morphisms exists by the universal property of
cokernels. This is the compatible left module structure on ̅ ̅ ̅. Similarly the right -module structure is
obtained.

For the second statement, consider the commuting diagram
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⟶ ⟶ ̅ ̅̅

↓ ↓ ↓∃

≃ ⊗ →⎯⎯⎯⎯⎯
⊗

⊗ ⟶ ̅ ̅̅ ⊗̅ ̅ ̅ ̅

.

Here the left square commutes by one of the co-unitality conditions on ( , ), equivalently this is the
co-action property of  regarded canonically as a -comodule.

Since also the bottom morphism factors through zero, the universal property of the cokernel ̅ ̅̅ ̅implies the
existence of the right vertical morphism as shown.  ▮

Definition 5.9. (cobar complex)

Let ( , ) be a commutative Hopf algebra, hence a commutative Hopf algebroid for which the left and right

units coincide ⟶ . Let  be a left -comodule.

The cobar complex •( ) is the cochain complex of abelian groups with terms

( ) ≔ ̅ ̅ ⊗ ⋯⊗ ̅ ̅ ⊗̅

(for ̅ ̅̅ ̅the unit coideal of def. 5.7, with its -bimodule structure via lemma 5.8)

and with differentials : ( ) ⟶ + ( ) given by the alternating sum of the coproducts via lemma 5.8.

(Ravenel 86, def. A1.2.11)

Proposition 5.10. Let ( , ) be a commutative Hopf algebra, hence a commutative Hopf algebroid for which

the left and right units coincide ⟶ . Let  be a left -comodule.

Then the cochain cohomology of the cobar complex • ( ) (def. 5.9) is the Ext-groups of comodules from 
(regarded as a left comodule via def. 2.20) into 

•( •( )) ≃ Ext• ( , ) .

(Ravenel 86, cor. A1.2.12, Kochman 96, prop. 5.2.1)

Proof idea. One first shows that there is a resolution of  by co-free comodules given by the complex

• ( ) ≔ ⊗ ̅ ̅̅⊗
•
⊗

with differentials given by the alternating sum of the coproducts. This is called the cobar resolution of .

To see that this is indeed a resolution, one observes that a contracting homotopy is given by

( |⋯| ) ≔ ( ) |⋯|

for > 0 and

( ) ≔ 0 .

Now from lemma 3.5, in view of remark , and since  is trivially projective over itself, it follows that this is
an -acyclic resolution for ≔ Hom ( , −).

This means that the resolution serves to compute the Ext-functor in question and we get

Ext•( , ) ≃ •(Hom ( , • ( )))

= •(Hom ( , ⊗ ̅ ̅ ̅⊗
•
⊗ ))

≃ •(Hom ( , ̅ ̅̅ ̅
⊗•

⊗ ))

≃ •( ̅ ̅
⊗•

⊗ ) ,

,

where the second-but-last equivalence is the isomorphism of the co-free/forgetful adjunction

Mod ⊥ →⎯⎯⎯⎯⎯⎯
−

←⎯⎯⎯⎯⎯⎯
CoMod

from prop. 2.23, while the last equivalence is the isomorphism of the free/forgetful adjunction

Mod ⊥→⎯⎯⎯⎯
←⎯⎯⎯⎯

Ab
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  ▮

The May spectral sequence

The cobar complex (def. 5.9) realizes the second page of the classical Adams spectral sequence (cor. 5.2) as
the cochain cohomology of a cochain complex. This is still hard to compute directly, but we now discuss that
this cochain complex admits a filtration so that the induced spectral sequence of a filtered complex is
computable and has trivial extension problem (rmk.). This is called the May spectral sequence.

We obtain this spectral sequence in prop. 5.16 below. First we need to consider some prerequisites.

Lemma 5.11. Let ( , ) be a graded commutative Hopf algebra, i.e. a graded commutative Hopf algebroid
with left and right unit coinciding for which the underlying -algebra of  is a free graded commutative
-algebra on a set of generators { } ∈

such that

all generators  are primitive elements;1. 

 is in degree 0;2. 

( < ) ⇒ (deg( ) ≤ deg( ));3. 

there are only finitely many  in a given degree,4. 

then the Ext of -comodules from  to itself is the free graded commutative algebra on these generators

Ext ( , ) ≃ [{ } ∈ ] .

(Ravenel 86, lemma 3.1.9, Kochman 96, prop. 3.7.5)

Proof. Consider the co-free left -comodule (prop.)

⊗ [{ } ∈ ]

and regard it as a chain complex of left comodules by defining a differential via

: ↦
: ↦ 0

and extending as a graded derivation.

We claim that  is a homomorphism of left comodules: Due to the assumption that all the  are primitive we
have on generators that

(id, )( ( )) = (id, )( ⊗ 1 + 1⊗ )

= ⊗ ( 1)
=

+ 1⊗ ( )
=

= ( )

and

(id, )( ( )) = (id, )(1, )

= (1, )

= 0

= (0)

= ( )

.

Since  is a graded derivation on a free graded commutative algbra, and  is an algebra homomorphism,
this implies the statement for all other elements.

Now observe that the canonical chain map

( ⊗ [{ } ∈ ], ) ⟶
≃

(which projects out the generators  and  and is the identity on ), is a quasi-isomorphism, by

construction. Therefore it constitutes a co-free resolution of  in left -comodules.

Since the counit  is assumed to be flat, and since [{ } ∈ ] is degreewise a free module over , hence in

particular a projective module, prop. 3.5 says that the above is an acyclic resolution with respect to the
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functor Hom ( , −): CoMod ⟶ Mod. Therefore it computes the Ext-functor. Using that forming co-free
comodules is right adjoint to forgetting -comodule structure over  (prop. 2.23), this yields:

Ext• ( , ) ≃ •(Hom ( , ⊗ [{ } ∈ ]), )

≃ •(Hom ( , [{ } ∈ ]), = 0)

≃ Hom ( , [{ } ∈ ])

≃ [{ } ∈ ]

.

  ▮

Lemma 5.12. If ( , ) as above is equipped with a filtering, then there is a spectral sequence

ℰ = Ext
•
(gr• , gr• ) ⇒ Ext ( , )

converging to the Ext over  from  to itself, whose first page is the Ext over the associated graded Hopf
algebra gr• .

(Ravenel 86, lemma 3.1.9, Kochman 96, prop. 3.7.5)

Proof. The filtering induces a filtering on the cobar complex (def. 5.9) which computes Ext  (prop. 5.10).
The spectral sequence in question is the corresponding spectral sequence of a filtered complex. Its first page
is the homology of the associated graded complex (by this prop.), which hence is the homology of the cobar
complex (def. 5.9) of the associated graded Hopf algebra gr• . By prop. 5.10 this is the Ext-groups as

shown.  ▮

Let now ≔ , ≔ • be the mod 2 dual Steenrod algebra. By Milnor's theorem (prop. 5.6), as an
-algebra this is

• = Sym ( , ,⋯) .

and the coproduct is given by

( ) =
=

− ⊗ ,

where we set ≔ 1.

Definition 5.13. Introduce new generators

ℎ , ≔
for ≥ 1, ≥ 0

1 for = 0

Remark 5.14. By binary expansion of powers, there is a unique way to express every monomial in
[ , ,⋯] as a product of the new generators in def. 5.13 such that each such element appears at most

once in the product. E.g.

= + + +

= ℎ , ℎ , ℎ , ℎ , ℎ ,

.

Proposition 5.15. In terms of the generators {ℎ , } from def. 5.13, the coproduct on the dual Steenrod
algebra *  takes the following simple form

(ℎ , ) =
=

ℎ − , + ⊗ℎ , .

Proof. Using that the coproduct of a bialgebra is a homomorphism for the algebra structure and using
freshman's dream arithmetic over , one computes:
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(ℎ , ) =

= ( ( ))

= ∑ = − ⊗

= ∑ = − ⊗

= ∑ = −
⋅ ⊗

= ∑ = −

( + )
⊗

= ∑ = ℎ − , + ⊗ℎ ,

.

  ▮

Proposition 5.16. There exists a converging spectral sequence of graded -vector spaces of the form

, , = [{ℎ , } ≥ ,

≥

] ⇒ Ext *
, ( , ) ,

called the May spectral sequence (where  and  are from the bigrading of the spectral sequence itself,
while the index  is that of the graded -vector spaces), with

ℎ , ∈ ,
+ − − , −

1. 

first differential given by

(ℎ , ) =
=

ℎ − , + ⊗ℎ , ;

2. 

higher differentials of the form

: , , ⟶ + , − , − + ,

where the filtration is by maximal degree.

3. 

Notice that since everything is -linear, the extension problem of this spectral sequence is trivial.

(Kochman 96, prop. 5.3.1)

Proof. Define a grading on the dual Steenrod algebra • (theorem 5.6) by taking the degree of the
generators from def.5.13 to be (this idea is due to (Ravenel 86, p.69))

|ℎ , | ≔ 2 − 1

and extending this additively to monomials, via the unique decomposition of remark 5.14.

For example

| | = |ℎ , ℎ , ℎ , ℎ , ℎ , |

= 2(2 − 1) + 3(2 − 1)
.

Consider the corresponding increasing filtration

⋯ ⊂ * ⊂ +
* ⊂ ⋯ ⊂ *

with filtering stage  containing all elements of total degree ≤ .

Observe via prop. 5.15 that

(ℎ , ) = ℎ , ⊗1
= −

+ ∑ ℎ − , + ⊗ℎ ,

= −

+ 1⊗ℎ ,

= −
.

This means that after projection to the associated graded Hopf algebra

•
* ⟶ gr•

* ≔ •( *)/ • − ( *)

all the generators ℎ ,  become primitive elements:

(ℎ , ) = ℎ , ⊗1+ 1⊗ℎ , ∈ gr•
* ⊗gr•

* .

Hence lemma 5.11 applies and says that the Ext from  to itself over the associated graded Hopf algebra is
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the polynomial algebra in these generators:

Ext
•

* ( , ) ≃ [{ℎ , } ≥ ,

≥

] .

Moreover, lemma 5.12 says that this is the first page of a spectral sequence that converges to the Ext over
the original Hopf algebra:

ℰ = [{ℎ , } ≥

≥

] ⇒ Ext * ( , ) .

Moreover, again by lemma 5.12, the differentials on any -page are the restriction of the differentials of the
bar complex to the -almost cycles (prop.). Now the differential of the cobar complex is the alternating sum
of the coproduct on * , hence by prop. 5.15 this is:

(ℎ , ) =
=

ℎ − , + ⊗ℎ , .

  ▮

The second page

Now we use the May spectral sequence (prop. 5.16) to compute the second page and in fact the stable page
of the classical Adams spectral sequence (cor. 5.2) in low internal degrees − .

Lemma 5.17. (terms on the second page of May spectral sequence)

In the range − ≤ 13, the second page of the May spectral sequence for Ext * ( , ) has as generators

all the

ℎ

, ≔ (ℎ , )

as well as the element

≔ ℎ , ℎ , + ℎ , ℎ ,

subject to the relations

ℎ ℎ + = 0

ℎ , = ℎ

ℎ = ℎ , .

e.g. (Ravenel 86, lemma 3.2.8 and lemma 3.2.10, Kochman 96, lemma 5.3.2)

Proof. Remember that the differential in the cobar complex (def. 5.9) lands not in = *  itself, but in the
unit coideal ̅ ̅̅ ̅≔ coker( ) where the generator ℎ , = = 1 disappears.

Using this we find for the differential  of the generators in low degree on the first page of the May spectral
sequence (prop. 5.16) via the formula for the differential from prop. 5.15, the following expressions:

(ℎ ) ≔ (ℎ , )

= ̅ ̅ ̅ (̅ℎ , )

= ℎ , ⊗ ℎ ,

=

+ ℎ , +

=

⊗ℎ ,

= 0

and hence all the elements ℎ  are cocycles on the first page of the May spectral sequence.

Also, since  is a derivation (by definition of the cobar complex, def. 5.9) and since the product of the
image of the cobar complex in the first page of the May spectral sequence is graded commutative, we have
for all ,  that

(ℎ , ) = 2ℎ , ( (ℎ , ))

= 0

(since 2 = 0 mod 2).

Similarly we compute  on the other generators. These terms do not vanish, but so they impose relations
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on products in the cobar complex:

(ℎ , ) = ℎ , ⊗ℎ ,

(ℎ , ) = ℎ , ⊗ℎ ,

(ℎ , ) = ℎ , ⊗ℎ ,

(ℎ , ) = ℎ , ⊗ℎ ,

(ℎ , ) = ℎ , ⊗ℎ , + ℎ , ⊗ℎ ,

This shows that ℎ ℎ + = 0 in the given range.

The remaining statements follow similarly.  ▮

Remark 5.18. With lemma 5.17, so far we see the following picture in low degrees.

⋮ ⋮

3 ℎ ℎ , ℎ ℎ

2 ℎ ℎ ℎ ℎ

1 ℎ ℎ ℎ

0 1 2 3 4

Here the relation

ℎ ⊗ ℎ = 0

removes a vertical tower of elements above ℎ .

So far there are two different terms in degree ( , − ) = (3, 3). The next lemma shows that these become
identified on the next page.

Lemma 5.19. (differentials on the second page of the May spectral sequence)

The differentials on the second page of the May spectral sequence (prop. 5.16) relevant for internal
degrees − ≤ 12 are

(ℎ ) = 01. 

( , ) = ℎ ℎ + + ℎ +2. 

( ) = ℎ ℎ3. 

( , ) = ℎ , + ℎ ,4. 

(Kochman 96, lemma 5.3.3)

Proof. The first point follows as before in lemma 5.17, in fact the ℎ  are infinite cycles in the May spectral
sequence.

We spell out the computation for the second item:

We may represent ,  by ×  plus terms of lower degree. Choose the representative

, = ⊗ +
+
⊗ +

+
⊗ .

Then we compute , , using the definition of the cobar complex (def. 5.9), the value of the coproduct on
dual generators (theorem 5.6), remembering that the coproduct  on a Hopf algebra is a homomorphism for
the underlying commutative ring, and using freshman's dream arithmetic to evaluate prime-2 powers of
sums. For the three summands we obtain

( ⊗ ) = ̅ ̅ ̅ (̅ ) ⊗ + ⊗ ̅ ̅ ̅ (̅ )

=
+
⊗ ⊗ + ⊗

+
⊗

and
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(
+
⊗ ) = ⊗ ̅ ̅ ̅ (̅ )

=
+
⊗ ⊗1+ 1⊗ ⊗1+

+
⊗ + 1⊗

=
+
⊗

+ + ⊗ +
+
⊗ ⊗ +

+
⊗ ⊗ +

+
⊗

+
⊗

+

and

(
+

⊗ ) = ̅ ̅ ̅ (̅
+

) ⊗

=
+
⊗1+ 1⊗

+
⊗1+

+
⊗ +1⊗ ⊗

=
+
⊗ ⊗ +

+
⊗ ⊗ + ⊗

+
⊗ +

+
⊗

+ + ⊗

.

The labeled summands appear twice in ,  hence vanish (mod 2). The remaining terms are

, =
+
⊗

+
⊗

+
+

+
⊗ ⊗

and these indeed represent the claimed elements.  ▮

Remark 5.20. With lemma 5.19 the picture from remark 5.18 is further refined:

For = 0 the differentia ( , ) = ℎ ℎ + + ℎ +  means that on the third page of the May spectral sequence
there is an identification

ℎ = ℎ ℎ .

Hence where on page two we saw two distinct elements in bidegree ( , − ) = (3, 3), on the next page
these merge:

⋮ ⋮

3 ℎ ℎ = ℎ ℎ

2 ℎ ℎ ℎ ℎ

1 ℎ ℎ ℎ

0 1 2 3 4

Proceeding in this fashion, one keeps going until the 4-page of the May spectral sequence (Kochman 96,
lemma 5.3.5). Inspection of degrees shows that this is sufficient, and one obtains:

Theorem 5.21. (stable page of classical Adams spectral sequence)

In internal degree − ≤ 12 the infinity page (def. 4.37) of the classical Adams spectral sequence (cor.
5.2) is spanned by the items in the following table

Here every dot is a generator for a copy of ℤ/2ℤ. Vertical edges denote multiplication with ℎ  and diagonal
edges denotes multiplication with ℎ .

e.g. (Ravenel 86, theorem 3.2.11, Kochman 96, prop. 5.3.6), graphics taken from (Schwede 12))
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The first dozen stable stems

Theorem 5.21 gives the stable page of the classical Adams spectral sequence in low degree. By corollary 5.2
and def. 4.39 we have that a vertical sequence of dots encodes an 2-primary part of the stable homotopy
groups of spheres according to the graphical calculus of remark 4.6 (the rules for determining group
extensions there is just the solution to the extension problem (rmk.) in view of def. 4.39):

= 0 1 2 3 456 7 8 9 10 11 1213

( ⊗ ℤ( )) = ℤ( ) ℤ/2 ℤ/2 ℤ/8 0 0 ℤ/2 ℤ/16 (ℤ/2) (ℤ/2) ℤ/2 ℤ/8 0 0

The full answer in this range turns out to be this:

= 01 2 3 456 7 8 9 10 11 1213 14 15 ⋯

( ) = ℤ ℤ/2 ℤ/2 ℤ/24 0 0 ℤ/2 ℤ/240 (ℤ/2) (ℤ/2) ℤ/6 ℤ/504 0 ℤ/3 (ℤ/2) ℤ/480⊕ ℤ/2⋯

And expanding the range yields this :

stable homotopy groups of spheres at 2

(graphics taken from Hatcher’s website)

6. The case =  and =

used to compute the stable homotopy groups of the complex Thom spectrum  from the homology of MU

(hence, by Thom's theorem, equivalently the complex cobordism ring • ≃ • ), see at Seminar session:
Milnor-Quillen theorem on MU)

This is the Milnor-Quillen theorem on MU, see at Seminar session: Milnor-Quillen theorem on MU

(Adams 74, part II, around section 8, Lurie 10, around lecture 9)

7. Adams-Novikov spectral sequence ( = , = )

this is the classical Adams-Novikov spectral sequence , converges faster than the classical choice =  to
the stable homotopy groups of spheres, (…)

(Kochman 96, section 5)

8. References

For the general theory we follow the original

John Frank Adams, section 2 of Lectures on generalised cohomology, in Peter Hilton (ed.) Category
Theory, Homology Theory and Their Applications III, volume 99 of Lecture Notes in Mathematics
(1969), Springer-Verlag Berlin-Heidelberg-New York.

Frank Adams, section III.15 of Stable homotopy and generalized homology, Chicago Lectures in
mathematics, 1974

Aldridge Bousfield, sections 5 and 6 of The localization of spectra with respect to homology, Topology
18 (1979), no. 4, 257–281. (pdf)

For the homological algebra of comodules over Hopf algebroids we follow appendix A of

Doug Ravenel, Complex cobordism and stable homotopy groups of spheres, 1986/2003

For the special case of the classical Adams spectral sequence and of the Adams-Novikov spectral sequence
we follow

Stanley Kochman, chapter 5 of Bordism, Stable Homotopy and Adams Spectral Sequences, AMS 1996

Revised on April 22, 2017 04:32:59 by Urs Schreiber
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Introduction to Stable homotopy theory -- S

S4D2 – Graduate Seminar on Topology

Complex oriented cohomology

 Dr. Urs Schreiber

Abstract. The category of those generalized cohomology theories that are equipped with a universal
“complex orientation” happens to unify within it the abstract structure theory of stable homotopy theory
with the concrete richness of the differential topology of cobordism theory and of the arithmetic geometry of
formal group laws, such as elliptic curves. In the seminar we work through classical results in algebraic
topology, organized such as to give in the end a first glimpse of the modern picture of chromatic homotopy
theory.

Accompanying notes.
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Stiefel manifolds and Grassmannians

Classifying spaces

-Structure on the Stable normal bundle

Thom spectra
Thom spaces

Universal Thom spectra 

Pontrjagin-Thom construction

Bordism and Thom’s theorem
Bordism

Thom’s theorem

Thom isomorphism
Thom-Gysin sequence
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Outlook: Geometry of Spec(MU)

2. References

1. Seminar) Complex oriented cohomology

Outline. We start with two classical topics of algebraic topology that first run independently in parallel:

S.1) Generalized cohomology

S.2) Cobordism theory

The development of either of these happens to give rise to the concept of spectra and via this concept it
turns out that both topics are intimately related. The unification of both is our third topic

S.3) Complex oriented cohomology

Literature. (Kochman 96).

S.1) Generalized cohomology

Idea. The concept that makes algebraic topology be about methods of homological algebra applied to
topology is that of generalized homology and generalized cohomology: these are covariant functors or
contravariant functors, respectively,

Spaces ⟶ Abℤ
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from (sufficiently nice) topological spaces to ℤ-graded abelian groups, such that a few key properties of the
homotopy types of topological spaces is preserved as one passes them from Ho(Top) to the much more
tractable abelian category Ab.

Literature. (Aguilar-Gitler-Prieto 02, chapters 7,8 and 12, Kochman 96, 3.4, 4.2, Schwede 12, II.6)

Generalized cohomology functors

Idea. A generalized (Eilenberg-Steenrod) cohomology theory is such a contravariant functor which satisfies
the key properties exhibited by ordinary cohomology (as computed for instance by singular cohomology),
notably homotopy invariance and excision, except that its value on the point is not required to be
concentrated in degree 0. Dually for generalized homology. There are two versions of the axioms, one for
reduced cohomology, and they are equivalent if properly set up.

An important example of a generalised cohomology theory other than ordinary cohomology is topological
K-theory. The other two examples of key relevance below are cobordism cohomology and stable
cohomotopy.

Literature. (Switzer 75, section 7, Aguilar-Gitler-Prieto 02, section 12 and section 9, Kochman 96, 3.4).

Reduced cohomology

The traditional formulation of reduced generalized cohomology in terms of point-set topology is this:

Definition 1.1. A reduced cohomology theory is

a functor

˜ • : (Top * / ) ⟶ Abℤ

from the opposite of pointed topological spaces (CW-complexes) to ℤ-graded abelian groups
(“cohomology groups”), in components

˜ : ( ⟶ ) ↦ ( ˜
•
( ) ⟶

*
˜ •( )) ,

1. 

equipped with a natural isomorphism of degree +1, to be called the suspension isomorphism, of
the form

: ˜
•
(−) ⟶≃ ˜ • + ( − )

2. 

such that:

(homotopy invariance) If , : ⟶  are two morphisms of pointed topological spaces such that

there is a (base point preserving) homotopy ≃  between them, then the induced homomorphisms

of abelian groups are equal

* = * .

1. 

(exactness) For : ↪  an inclusion of pointed topological spaces, with : ⟶ Cone( ) the induced
mapping cone (def.), then this gives an exact sequence of graded abelian groups

˜ •(Cone( )) ⟶
*
˜ •( ) ⟶

*
˜ •( ) .

2. 

(e.g. AGP 02, def. 12.1.4)

This is equivalent (prop. 1.4 below) to the following more succinct homotopy-theoretic definition:

Definition 1.2. A reduced generalized cohomology theory is a functor

˜ • : Ho(Top * /) ⟶ Abℤ

from the opposite of the pointed classical homotopy category (def., def.), to ℤ-graded abelian groups, and
equipped with natural isomorphisms, to be called the suspension isomorphism of the form

: ˜
• +

( − ) ⟶≃ ˜ •(−)

such that:
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(exactness) it takes homotopy cofiber sequences in Ho(Top * /) (def.) to exact sequences.

As a consequence (prop. 1.4 below), we find yet another equivalent definition:

Definition 1.3. A reduced generalized cohomology theory is a functor

˜ • : (Top * /) ⟶ Abℤ

from the opposite of the category of pointed topological spaces to ℤ-graded abelian groups, such that

(WHE) it takes weak homotopy equivalences to isomorphisms

and equipped with natural isomorphism, to be called the suspension isomorphism of the form

: ˜
• +

( − ) ⟶≃ ˜ •(−)

such that

(exactness) it takes homotopy cofiber sequences in Ho(Top * /) (def.), to exact sequences.

Proposition 1.4. The three definitions

def. 1.1

def. 1.2

def. 1.3

are indeed equivalent.

Proof. Regarding the equivalence of def. 1.1 with def. 1.2:

By the existence of the classical model structure on topological spaces (thm.), the characterization of its
homotopy category (cor.) and the existence of CW-approximations, the homotopy invariance axiom in def.
1.1 is equivalent to the functor passing to the classical pointed homotopy category. In view of this and since
on CW-complexes the standard topological mapping cone construction is a model for the homotopy cofiber
(prop.), this gives the equivalence of the two versions of the exactness axiom.

Regarding the equivalence of def. 1.2 with def. 1.3:

This is the universal property of the classical homotopy category (thm.) which identifies it with the
localization (def.) of Top * / at the weak homotopy equivalences (thm.), together with the existence of CW
approximations (rmk.): jointly this says that, up to natural isomorphism, there is a bijection between
functors  and ˜  in the following diagram (which is filled by a natural isomorphism itself):

Top ⟶ Abℤ

↓ ↗ ˜

Ho(Top) ≃ (Top )/∼

where  sends weak homotopy equivalences to isomorphisms and where (−)∼ means identifying homotopic

maps.  ▮

Prop. 1.4 naturally suggests (e.g. Lurie 10, section 1.4) that the concept of generalized cohomology be
formulated in the generality of any abstract homotopy theory (model category), not necessarily that of
(pointed) topological spaces:

Definition 1.5. Let  be a model category (def.) with * / its pointed model category (prop.).

A reduced additive generalized cohomology theory on  is

a functor

˜ • : Ho( * /) ⟶ Abℤ

1. 

a natural isomorphism (“suspension isomorphisms”) of degree +1

: ˜
•
⟶ ˜ • + ∘

2. 

such that

(exactness) ˜ • takes homotopy cofiber sequences to exact sequences.
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Finally we need the following terminology:

Definition 1.6. Let ˜
•
 be a reduced cohomology theory according to either of def. 1.1, def. 1.2, def. 1.3 or

def. 1.5.

We say ˜
•
 is additive if in addition

(wedge axiom) For { } ∈  any set of pointed CW-complexes, then the canonical morphism

˜ •( ∨ ∈ ) ⟶
∈

˜ •( )

from the functor applied to their wedge sum (def.), to the product of its values on the wedge
summands, is an isomorphism.

We say ˜
•
 is ordinary if its value on the 0-sphere  is concentrated in degree 0:

(Dimension) ˜ • ( ) ≃ 0.

If ˜
•
 is not ordinary, one also says that it is generalized or extraordinary.

A homomorphism of reduced cohomology theories

: ˜
•
⟶ ˜ •

is a natural transformation between the underlying functors which is compatible with the suspension
isomorphisms in that all the following squares commute

˜ •( ) ⟶ ˜ •( )

↓ ↓

˜ • + ( ) ®¾ ˜ • + ( )

.

We now discuss some constructions and consequences implied by the concept of reduced cohomology
theories:

Definition 1.7. Given a generalized cohomology theory ( •, ) on some  as in def. 1.5, and given a
homotopy cofiber sequence in  (prop.),

⟶ ⟶ ®¾¾¾
( )

,

then the corresponding connecting homomorphism is the composite

∂ : •( ) ⟶ • + ( ) ®¾¾¾
( )* • + ( ) .

Proposition 1.8. The connecting homomorphisms of def. 1.7 are parts of long exact sequences

⋯⟶ •( ) ⟶ •( ) ⟶ •( ) ⟶ • + ( ) → ⋯ .

Proof. By the defining exactness of •, def. 1.5, and the way this appears in def. 1.7, using that  is by
definition an isomorphism.  ▮

Unreduced cohomology

Given a reduced generalized cohomology theory as in def. 1.1, we may “un-reduce” it and evaluate it on
unpointed topological spaces  simply by evaluating it on + (def.). It is conventional to further generalize to
relative cohomology and evaluate on unpointed subspace inclusions : ↪ , taken as placeholders for their
mapping cones Cone( +) (prop.).

In the following a pair ( , ) refers to a subspace inclusion of topological spaces ↪ . Whenever only one
space is mentioned, the subspace is assumed to be the empty set ( , ∅). Write Top↪  for the category of

such pairs (the full subcategory of the arrow category of Top  on the inclusions). We identify Top ↪ Top↪

by ↦ ( ,∅).

Definition 1.9. A cohomology theory (unreduced, relative) is

a functor1. 
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•: (Top↪ ) → Abℤ

to the category of ℤ-graded abelian groups,

a natural transformation of degree +1, to be called the connecting homomorphism, of the form

( , ) :
•( , ∅) → • + ( , ) .

2. 

such that:

(homotopy invariance) For : ( , ) → ( , ) a homotopy equivalence of pairs, then

•( ) : •( , ) ⟶≃ •( , )

is an isomorphism;

1. 

(exactness) For ↪  the induced sequence

⋯ → ( , ) ⟶ ( ) ⟶ ( ) ⟶ + ( , ) → ⋯

is a long exact sequence of abelian groups.

2. 

(excision) For ↪ ↪  such that ̀̀ ⊂ Int( ), then the natural inclusion of the pair
: ( − , − ) ↪ ( , ) induces an isomorphism

•( ) : ( , ) ⟶≃ ( − , − )

3. 

We say • is additive if it takes coproducts to products:

(additivity) If ( , ) = ∐ ( , ) is a coproduct, then the canonical comparison morphism

( , ) ⟶≃ ( , )

is an isomorphism from the value on ( , ) to the product of values on the summands.

We say • is ordinary if its value on the point is concentrated in degree 0

(Dimension): • ( * , ∅) = 0.

A homomorphism of unreduced cohomology theories

: • ⟶ •

is a natural transformation of the underlying functors that is compatible with the connecting
homomorphisms, hence such that all these squares commute:

•( , ∅) ®¾¾
( ,∅) •( , ∅)

↓ ↓

• + ( , ) ®¾¾¾
( , ) • + ( , )

.

e.g. (AGP 02, def. 12.1.1).

Lemma 1.10. The excision axiom in def. 1.9 is equivalent to the following statement:

For all , ↪  with = Int( ) ∪ Int( ), then the inclusion

: ( , ∩ ) ⟶ ( , )

induces an isomorphism,

* : •( , ) ⟶≃ •( , ∩ )

(e.g Switzer 75, 7.2)

Proof. In one direction, suppose that • satisfies the original excision axiom. Given ,  with
= Int ( ) ∪ Int( ), set ≔ −  and observe that

Introduction to Stable homotopy theory -- S in nLab https://ncatlab.org/nlab/print/Introduction+to+Stable+homotopy+theor...

6 of 78 27.12.2016 13:13



`̀ = −`̀ `̀ `̀

= − Int( )

⊂ Int( )

and that

( − , − ) = ( , ∩ ) .

Hence the excision axiom implies •( , ) ⟶≃ •( , ∩ ).

Conversely, suppose • satisfies the alternative condition. Given ↪ ↪  with ̀̀ ⊂ Int( ), observe that we
have a cover

Int( − ) ∪ Int( ) = ( −̀` ) ∩ Int ( )

⊃ ( − Int( )) ∩ Int( )

=

and that

( − , ( − ) ∩ ) = ( − , − ) .

Hence

•( − , − ) ≃ •( − , ( − ) ∩ ) ≃ •( , ) .

  ▮

The following lemma shows that the dependence in pairs of spaces in a generalized cohomology theory is
really a stand-in for evaluation on homotopy cofibers of inclusions.

Lemma 1.11. Let • be an cohomology theory, def. 1.9, and let ↪ . Then there is an isomorphism

•( , ) ⟶≃ •( ∪ Cone( ), * )

between the value of • on the pair ( , ) and its value on the unreduced mapping cone of the inclusion
(rmk.), relative to a basepoint.

If moreover ↪  is (the retract of) a relative cell complex inclusion, then also the morphism in
cohomology induced from the quotient map : ( , ) ⟶ ( / , * ) is an isomorphism:

•( ) : •( / , * ) ⟶
•( , ) .

(e.g AGP 02, corollary 12.1.10)

Proof. Consider ≔ (Cone( ) − × {0}) ↪ Cone( ), the cone on  minus the base . We have

( ∪ Cone( ) − , Cone( ) − ) ≃ ( , )

and hence the first isomorphism in the statement is given by the excision axiom followed by homotopy
invariance (along the contraction of the cone to the point).

Next consider the quotient of the mapping cone of the inclusion:

( ∪ Cone( ), Cone( )) ⟶ ( / , * ) .

If ↪  is a cofibration, then this is a homotopy equivalence since Cone( ) is contractible and since by the
dual factorization lemma (lem.) and by the invariance of homotopy fibers under weak equivalences (lem.),
∪ Cone( ) → /  is a weak homotopy equivalence, hence, by the universal property of the classical

homotopy category (thm.) a homotopy equivalence on CW-complexes.

Hence now we get a composite isomorphism

•( / , * ) ⟶
≃ •( ∪ Cone( ), Cone( )) ⟶≃ •( , ) .

  ▮

Example 1.12. As an important special case of : Let ( , ) be a pointed CW-complex. For
: (Cone( ), ) → ( , { }) the quotient map from the reduced cone on  to the reduced suspension, then

•( ) : •(Cone( ), ) ⟶≃ •( , { })
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is an isomorphism.

Proposition 1.13. (exact sequence of a triple)

For • an unreduced generalized cohomology theory, def. 1.9, then every inclusion of two consecutive
subspaces

↪ ↪

induces a long exact sequence of cohomology groups of the form

⋯ → − ( , ) ⟶
¯

( , ) ⟶ ( , ) ⟶ ( , ) → ⋯

where

¯ : − ( , ) ⟶ − ( ) ⟶ ( , ) .

Proof. Apply the braid lemma to the interlocking long exact sequences of the three pairs ( , ), ( , ), ( , ):

(graphics from this Maths.SE comment, showing the dual situation for homology)

See here for details.  ▮

Remark 1.14. The exact sequence of a triple in prop. 1.13 is what gives rise to the Cartan-Eilenberg
spectral sequence for -cohomology of a CW-complex .

Example 1.15. For ( , ) a pointed topological space and Cone( ) = ( ∧ ( +))/  its reduced cone, the long
exact sequence of the triple ({ }, , Cone( )), prop. 1.13,

0 ≃ (Cone( ), { }) ⟶ ( , { }) ⟶
¯

+ (Cone( ), ) ⟶ + (Cone( ), { }) ≃ 0

exhibits the connecting homomorphism ¯  here as an isomorphism

¯ : ( , { }) ⟶≃ + (Cone( ), ) .

This is the suspension isomorphism extracted from the unreduced cohomology theory, see def. 1.17
below.

Proposition 1.16. (Mayer-Vietoris sequence)

Given • an unreduced cohomology theory, def. 1.9. Given a topological space covered by the interior of
two spaces as = Int( ) ∪ Int( ), then for each ⊂ ∩  there is a long exact sequence of cohomology
groups of the form

⋯ → − ( ∩ , ) ⟶
¯

( , ) ⟶ ( , ) ⊕ ( , ) ⟶ ( ∩ , ) → ⋯ .

e.g. (Switzer 75, theorem 7.19, Aguilar-Gitler-Prieto 02, theorem 12.1.22)

Relation between unreduced and reduced cohomology

Definition 1.17. (unreduced to reduced cohomology)

Let • be an unreduced cohomology theory, def. 1.9. Define a reduced cohomology theory, def. 1.1 ( ˜
•
, )

as follows.

For : * →  a pointed topological space, set

˜ •( , ) ≔ •( , { }) .

This is clearly functorial. Take the suspension isomorphism to be the composite
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: ˜
• +

( ) = • + ( , { }) ®¾
•( ) • + (Cone( ), ) ®¾

¯ −
•( , { }) = ˜ •( )

of the isomorphism •( ) from example 1.12 and the inverse of the isomorphism ¯  from example 1.15.

Proposition 1.18. The construction in def. 1.17 indeed gives a reduced cohomology theory.

(e.g Switzer 75, 7.34)

Proof. We need to check the exactness axiom given any ↪ . By lemma 1.11 we have an isomorphism

˜ •( ∪ Cone( )) = •( ∪ Cone( ), { * }) ⟶
≃ •( , ) .

Unwinding the constructions shows that this makes the following diagram commute:

˜ •( ∪ Cone( )) ⟶≃ •( , )

↓ ↓

˜ •( ) = •( , { })

↓ ↓

˜ •( ) = •( , { })

,

where the vertical sequence on the right is exact by prop. 1.13. Hence the left vertical sequence is exact.  ▮

Definition 1.19. (reduced to unreduced cohomology)

Let ( ˜
•
, ) be a reduced cohomology theory, def. 1.1. Define an unreduced cohomolog theory •, def. 1.9,

by

•( , ) ≔ ˜ •( + ∪ Cone( +))

and let the connecting homomorphism be as in def. 1.7.

Proposition 1.20. The construction in def. 1.19 indeed yields an unreduced cohomology theory.

e.g. (Switzer 75, 7.35)

Proof. Exactness holds by prop. 1.8. For excision, it is sufficient to consider the alternative formulation of
lemma 1.10. For CW-inclusions, this follows immediately with lemma 1.11.  ▮

Theorem 1.21. The constructions of def. 1.19 and def. 1.17 constitute a pair of functors between then
categories of reduced cohomology theories, def. 1.1 and unreduced cohomology theories, def. 1.9 which
exhbit an equivalence of categories.

Proof. (…careful with checking the respect for suspension iso and connecting homomorphism..)

To see that there are natural isomorphisms relating the two composites of these two functors to the identity:

One composite is

• ↦ ( ˜
•
: ( , ) ↦ •( , { }))

↦ (( ′ )• : ( , ) ↦ •( + ∪ Cone( +)), * )
,

where on the right we have, from the construction, the reduced mapping cone of the original inclusion ↪
with a base point adjoined. That however is isomorphic to the unreduced mapping cone of the original
inclusion (prop.- P#UnreducedMappingConeAsReducedConeOfBasedPointAdjoined)). With this the natural
isomorphism is given by lemma 1.11.

The other composite is

˜ • ↦ ( • : ( , ) ↦ ˜ •( + ∪ Cone( +)))

↦ (( ˜ ′ )• : ↦ ˜ •( + ∪ Cone( *+ )))

where on the right we have the reduced mapping cone of the point inclusion with a point adoined. As before,
this is isomorphic to the unreduced mapping cone of the point inclusion. That finally is clearly homotopy
equivalent to , and so now the natural isomorphism follows with homotopy invariance.  ▮

Finally we record the following basic relation between reduced and unreduced cohomology:

Proposition 1.22. Let • be an unreduced cohomology theory, and ˜
•
 its reduced cohomology theory from
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def. 1.17. For ( , * ) a pointed topological space, then there is an identification

•( ) ≃ ˜ •( ) ⊕ •( * )

of the unreduced cohomology of  with the direct sum of the reduced cohomology of  and the unreduced
cohomology of the base point.

Proof. The pair * ↪  induces the sequence

⋯ → • − ( * ) ⟶ ˜ •( ) ⟶ •( ) ⟶ •( * ) ⟶ ˜ • + ( ) → ⋯

which by the exactness clause in def. 1.9 is exact.

Now since the composite * → → *  is the identity, the morphism •( ) → •( * ) has a section and so is in
particular an epimorphism. Therefore, by exactness, the connecting homomorphism vanishes, = 0 and we
have a short exact sequence

0 → ˜ •( ) ⟶ •( ) ⟶ •( * ) → 0

with the right map an epimorphism. Hence this is a split exact sequence and the statement follows.  ▮

Generalized homology functors

All of the above has a dual version with generalized cohomology replaced by generalized homology. For ease
of reference, we record these dual definitions:

Definition 1.23. A reduced homology theory is a functor

˜
• : (Top *

/ ) ⟶ Abℤ

from the category of pointed topological spaces (CW-complexes) to ℤ-graded abelian groups (“homology
groups”), in components

˜
• : ( ⟶ ) ↦ ( ˜ •( ) ⟶* ˜

•( )) ,

and equipped with a natural isomorphism of degree +1, to be called the suspension isomorphism, of
the form

: ˜ •(−) ⟶
≃ ˜

• + ( − )

such that:

(homotopy invariance) If , : ⟶  are two morphisms of pointed topological spaces such that

there is a (base point preserving) homotopy ≃  between them, then the induced homomorphisms

of abelian groups are equal

* = * .

1. 

(exactness) For : ↪  an inclusion of pointed topological spaces, with : ⟶ Cone( ) the induced
mapping cone, then this gives an exact sequence of graded abelian groups

˜
•( ) ⟶* ˜

•( ) ⟶* ˜
•(Cone( )) .

2. 

We say ˜ • is additive if in addition

(wedge axiom) For { } ∈  any set of pointed CW-complexes, then the canonical morphism

⊕ ∈
˜
•( ) ⟶ ˜ •( ∨ ∈ )

from the direct sum of the value on the summands to the value on the wedge sum (prop.-
P#WedgeSumAsCoproduct)), is an isomorphism.

We say ˜ • is ordinary if its value on the 0-sphere  is concentrated in degree 0:

(Dimension) ˜
• ( ) ≃ 0.

A homomorphism of reduced cohomology theories

: ˜ • ⟶ ˜
•
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is a natural transformation between the underlying functors which is compatible with the suspension
isomorphisms in that all the following squares commute

˜
•( ) ⟶ ˜

•( )

↓ ↓

˜
• + ( ) ®¾ ˜

• + ( )

.

Definition 1.24. A homology theory (unreduced, relative) is a functor

• : (Top
↪ ) ⟶ Abℤ

to the category of ℤ-graded abelian groups, as well as a natural transformation of degree +1, to be called
the connecting homomorphism, of the form

( , ) : • + ( , ) ⟶ •( , ∅) .

such that:

(homotopy invariance) For : ( , ) → ( , ) a homotopy equivalence of pairs, then

•( ) : •( , ) ⟶≃ •( , )

is an isomorphism;

1. 

(exactness) For ↪  the induced sequence

⋯ → + ( , ) ⟶ ( ) ⟶ ( ) ⟶ ( , ) → ⋯

is a long exact sequence of abelian groups.

2. 

(excision) For ↪ ↪  such that ̀̀ ⊂ Int( ), then the natural inclusion of the pair
: ( − , − ) ↪ ( , ) induces an isomorphism

•( ) : ( − , − ) ⟶≃ ( , )

3. 

We say • is additive if it takes coproducts to direct sums:

(additivity) If ( , ) = ∐ ( , ) is a coproduct, then the canonical comparison morphism

⊕ ( , ) ⟶≃ ( , )

is an isomorphismfrom the direct sum of the value on the summands, to the value on the total pair.

We say • is ordinary if its value on the point is concentrated in degree 0

(Dimension): • ( * , ∅) = 0.

A homomorphism of unreduced homology theories

: • ⟶ •

is a natural transformation of the underlying functors that is compatible with the connecting
homomorphisms, hence such that all these squares commute:

• + ( , ) ®¾¾¾
( , )

• + ( , )

↓ ↓

•( , ∅) ®¾¾
( ,∅) •( , ∅)

.

Multiplicative cohomology theories

The generalized cohomology theories considered above assign cohomology groups. It is familiar from
ordinary cohomology with coefficients not just in a group but in a ring, that also the cohomology groups
inherit compatible ring structure. The generalization of this phenomenon to generalized cohomology theories
is captured by the concept of multiplicative cohomology theories:

Definition 1.25. Let , ,  be three unreduced generalized cohomology theories (def.). A pairing of
cohomology theories
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: □ ⟶

is a natural transformation (of functors on (Top↪ × Top↪ ) ) of the form

, : ( , ) ⊗ ( , ) ⟶ + ( × , × ∪ × )

such that this is compatible with the connecting homomorphisms  of , in that the following are
commuting squares

( ) ⊗ ( , ) ®¾¾¾
⊗ + ( , ) ⊗ ( , )

, ↓ ↓ + ,

≃+
( × ∪ × , × )

+
( × , × )

⟶ + + ( × , × )

and

( , ) ⊗ ( ) ®¾¾¾¾¾
(− ) ⊗ + ( , ) ⊗ ( , )

, ↓ ↓ , +

≃+
( × ∪ × , × )

+
( × , × )

⟶ + + ( × , × )

,

where the isomorphisms in the bottom left are the excision isomorphisms.

Definition 1.26. An (unreduced) multiplicative cohomology theory is an unreduced generalized
cohomology theory theory  (def. 1.9) equipped with

(external multiplication) a pairing (def. 1.25) of the form : □ ⟶ ;1. 

(unit) an element 1 ∈ ( * )2. 

such that

(associativity) ∘ (id ⊗ ) = ∘ ( ⊗ id);1. 

(unitality) (1 ⊗ ) = ( ⊗ 1) =  for all ∈ ( , ).2. 

The mulitplicative cohomology theory is called commutative (often considered by default) if in addition

(graded commutativity)

( , ) ⊗ ( , ) ®¾¾¾¾¾¾¾¾¾
( ⊗ )↦(− ) ( ⊗ )

( , ) ⊗ ,

, ↓ ↓ ,

+ ( × , × ∪ × ) ®¾¾¾¾¾¾¾
( ( , ),( , ))*

+ ( × , × ∪ × )

.

Given a multiplicative cohomology theory ( , , 1), its cup product is the composite of the above external
multiplication with pullback along the diagonal maps ( , ) : ( , ) ⟶ ( × , × ∪ × );

(−) ∪ (−) : ( , ) ⊗ ( , ) ®¾¾¾
, + ( × , × ∪ × ) ®¾¾¾

( , )*
+ ( , ∪ ) .

e.g. (Tamaki-Kono 06, II.6)

Proposition 1.27. Let ( , , 1) be a multiplicative cohomology theory, def. 1.26. Then

For every space  the cup product gives •( ) the structure of a ℤ-graded ring, which is graded-
commutative if ( , , 1) is commutative.

1. 

For every pair ( , ) the external multiplication  gives •( , ) the structure of a left and right module
over the graded ring •( * ).

2. 

All pullback morphisms respect the left and right action of •( * ) and the connecting homomorphisms
respect the right action and the left action up to multiplication by (−1)

3. 

Proof. Regarding the third point:

For pullback maps this is the naturality of the external product: let : ( , ) ⟶ ( , ) be a morphism in Top↪
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then naturality says that the following square commutes:

( * ) ⊗ ( , ) ®¾¾¾
, + ( , )

( , *) ↓ ↓
*

( * ) ⊗ ( , ) ®¾¾¾
, + ( , )

.

For connecting homomorphisms this is the (graded) commutativity of the squares in def. 1.26:

( * ) ⊗ ( ) ®¾¾¾¾¾
(− ) ( , )

( * ) ⊗
+ ( )

, ↓ ↓ ,

+ ( ) ⟶ + + ( , )

.

  ▮

Brown representability theorem

Idea. Given any functor such as the generalized (co)homology functor above, an important question to ask
is whether it is a representable functor. Due to the ℤ-grading and the suspension isomorphisms, if a
generalized (co)homology functor is representable at all, it must be represented by a ℤ-indexed sequence of
pointed topological spaces such that the reduced suspension of one is comparable to the next one in the list.
This is a spectrum or more specifically: a sequential spectrum .

Whitehead observed that indeed every spectrum represents a generalized (co)homology theory. The Brown
representability theorem states that, conversely, every generalized (co)homology theory is represented by a
spectrum, subject to conditions of additivity.

As a first application, Eilenberg-MacLane spectra representing ordinary cohomology may be characterized
via Brown representability.

Literature. (Switzer 75, section 9, Aguilar-Gitler-Prieto 02, section 12, Kochman 96, 3.4)

Traditional discussion

Write Top≥
* / ↪ Top * / for the full subcategory of connected pointed topological spaces. Write Set * / for the

category of pointed sets.

Definition 1.28. A Brown functor is a functor

: Ho(Top≥
* / ) ⟶ Set * /

(from the opposite of the classical homotopy category (def., def.) of connected pointed topological spaces)
such that

(additivity)  takes small coproducts (wedge sums) to products;1. 

(Mayer-Vietoris) If = Int( ) ∪ Int( ) then for all ∈ ( ) and ∈ ( ) such that ( ) | ∩ = ( )| ∩

then there exists ∈ ( ) such that = ( )|  and = ( )| .

2. 

Proposition 1.29. For every additive reduced cohomology theory ˜ •(−) :Ho(Top * /) → Set * / (def. 1.2) and

for each degree ∈ ℕ, the restriction of ˜ (−) to connected spaces is a Brown functor (def. 1.28).

Proof. Under the relation between reduced and unreduced cohomology above, this follows from the
exactness of the Mayer-Vietoris sequence of prop. 1.16.  ▮

Theorem 1.30. (Brown representability)

Every Brown functor  (def. 1.28) is representable, hence there exists ∈ Top≥
* /  and a natural

isomorphism

[−, ]
*
⟶≃ (−)

(where [−, −]
*
 denotes the hom-functor of Ho(Top≥

* / ) (exmpl.)).

(e.g. AGP 02, theorem 12.2.22)
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Remark 1.31. A key subtlety in theorem 1.30 is the restriction to connected pointed topological spaces in
def. 1.28. This comes about since the proof of the theorem requires that continuous functions : ⟶
that induce isomorphisms on pointed homotopy classes

[ , ]
*
⟶ [ , ]

*

for all  are weak homotopy equivalences (For instance in AGP 02 this is used in the proof of theorem
12.2.19 there). But [ , ]

*
= ( , ) gives the th homotopy group of only for the canonical basepoint,

while for a weak homotopy equivalence in general one needs to consider the homotopy groups at all
possible basepoints, at least one for each connected component. But so if one does assume that all spaces
involved are connected, hence only have one connected component, then indeed weak homotopy
equivalences are equivalently those maps →  making all the [ , ]

*
⟶ [ , ]

*
 into isomorphisms.

See also example 1.42 below.

The representability result applied degreewise to an additive reduced cohomology theory will yield (prop.
1.33 below) the following concept.

Definition 1.32. An Omega-spectrum  (def.) is

a sequence { } ∈ℕ of pointed topological spaces ∈ Top * /1. 

weak homotopy equivalences

˜ : ®¾¾
∈

˜
+

for each ∈ ℕ, form each space to the loop space of the following space.

2. 

Proposition 1.33. Every additive reduced cohomology theory ˜ •(−):(Top* ) ⟶ Abℤ according to def. 1.2,

is represented by an Omega-spectrum  (def. 1.32) in that in each degree ∈ ℕ

˜ (−) is represented by some ∈ Ho(Top * /);1. 

the suspension isomorphism  of ˜
•
 is represented by the structure map ˜  of the Omega-spectrum

in that for all ∈ Top * / the following diagram commutes:

˜ ( ) ®¾¾
( )

⟶ ˜ +
( )

≃ ↓ ↓≃

[ , ]
*

®¾¾¾
[ , ˜ ]

* [ , + ]
*

≃ [ , + ]
*

,

where [−, −]
*
≔ Hom

( ≥
* / )

 denotes the hom-sets in the classical pointed homotopy category (def.)

and where in the bottom right we have the ( ⊣ )-adjunction isomorphism (prop.).

2. 

Proof. If it were not for the connectedness clause in def. 1.28 (remark 1.31), then theorem 1.30 with prop.
1.29 would immediately give the existence of the { } ∈ℕ and the remaining statement would follow

immediately with the Yoneda lemma, which says in particular that morphisms between representable
functors are in natural bijection with the morphisms of objects that represent them.

The argument with the connectivity condition in Brown representability taken into account is essentially the
same, just with a little bit more care:

For  a pointed topological space, write ( ) for the connected component of its basepoint. Observe that the
loop space of a pointed topological space only depends on this connected component:

≃ ( ( )) .

Now for ∈ ℕ, to show that ˜ (−) is representable by some ∈ Ho(Top * /), use first that the restriction of
˜ +

 to connected spaces is represented by some +
( ) . Observe that the reduced suspension of any

∈ Top * / lands in Top≥
* / . Therefore the ( ⊣ )-adjunction isomorphism (prop.) implies that ˜

+
( (−)) is

represented on all of Top * / by +
( ) :

˜ +
( ) ≃ [ , +

( ) ]
*
≃ [ , +

( ) ]
*
≃ [ , + ]

*
,

where +  is any pointed topological space with the given connected component +
( ) .
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Now the suspension isomorphism of ˜  says that ∈ Ho(Top * /) representing ˜  exists and is given by +
( ) :

˜ ( ) ≃ ˜ +
( , ) ≃ [ , + ]

for any +  with connected component +
( ) .

This completes the proof. Notice that running the same argument next for ( + 1) gives a representing space

+  such that its connected component of the base point is +
( )  found before. And so on.  ▮

Conversely:

Proposition 1.34. Every Omega-spectrum , def. 1.32, represents an additive reduced cohomology theory

def. 1.1 ˜ • by

˜ ( ) ≔ [ , ]
*

with suspension isomorphism given by

: ˜ ( ) = [ , ]
*

®¾¾
[ , ˜ ]

[ , + ]
*
→≃ [ , + ] = ˜ +

( ) .

Proof. The additivity is immediate from the construction. The exactnes follows from the long exact
sequences of homotopy cofiber sequences given by this prop..  ▮

Remark 1.35. If we consider the stable homotopy category Ho(Spectra) of spectra (def.) and consider any
topological space  in terms of its suspension spectrum ∈ Ho(Spectra) (exmpl.), then the statement of
prop. 1.34 is more succinctly summarized by saying that the graded reduced cohomology groups of a
topological space  represented by an Omega-spectrum  are the hom-groups

˜ •( ) ≃ [ , • ]

in the stable homotopy category, into all the suspensions (thm.) of .

This means that more generally, for ∈ Ho(Spectra) any spectrum, it makes sense to consider

˜ •( ) ≔ [ , • ]

to be the graded reduced generalized -cohomology groups of the spectrum .

See also in part 1 this example.

Application to ordinary cohomology

Example 1.36. Let  be an abelian group. Consider singular cohomology (−, ) with coefficients in . The
corresponding reduced cohomology evaluated on n-spheres satisfies

˜ ( , ) ≃
if =

0 otherwise

Hence singular cohomology is a generalized cohomology theory which is “ordinary cohomology” in the
sense of def. 1.6.

Applying the Brown representability theorem as in prop. 1.33 hence produces an Omega-spectrum (def.
1.32) whose th component space is characterized as having homotopy groups concentrated in degree 
on . These are called Eilenberg-MacLane spaces ( , )

( ( , )) ≃
if =

0 otherwise
.

Here for > 0 then ( , ) is connected, therefore with an essentially unique basepoint, while ( , 0) is
(homotopy equivalent to) the underlying set of the group .

Such spectra are called Eilenberg-MacLane spectra :

( ) ≃ ( , ) .

As a consequence of example 1.36 one obtains the uniqueness result of Eilenberg-Steenrod:

Proposition 1.37. Let ˜  and ˜  be ordinary (def. 1.6) generalized (Eilenberg-Steenrod) cohomology
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theories. If there is an isomorphism

˜ ( ) ≃ ˜ ( )

of cohomology groups of the 0-sphere, then there is an isomorphism of cohomology theories

˜ ⟶≃ ˜ .

(e.g. Aguilar-Gitler-Prieto 02, theorem 12.3.6)

Homotopy-theoretic discussion

Using abstract homotopy theory in the guise of model category theory (see the lecture notes on classical
homotopy theory), the traditional proof and further discussion of the Brown representability theorem above
becomes more transparent (Lurie 10, section 1.4.1, for exposition see also Mathew 11).

This abstract homotopy-theoretic proof uses the general concept of homotopy colimits in model categories
as well as the concept of derived hom-spaces (“∞-categories”). Even though in the accompanying Lecture
notes on classical homotopy theory these concepts are only briefly indicated, the following is included for
the interested reader.

Definition 1.38. Let  be a model category. A functor

: Ho( ) ⟶ Set

(from the opposite of the homotopy category of  to Set)

is called a Brown functor if

it sends small coproducts to products;1. 

it sends homotopy pushouts in → Ho( ) to weak pullbacks in Set (see remark 1.39).2. 

Remark 1.39. A weak pullback is a diagram that satisfies the existence clause of a pullback, but not
necessarily the uniqueness condition. Hence the second clause in def. 1.38 says that for a homotopy
pushout square

⟶

↓ ⇙ ↓

⟶ ⊔

in , then the induced universal morphism

( ⊔ ) ⟶ ( ) ×
( )

( )

into the actual pullback is an epimorphism.

Definition 1.40. Say that a model category  is compactly generated by cogroup objects closed
under suspensions if

 is generated by a set

{ ∈ } ∈

of compact objects (i.e. every object of  is a homotopy colimit of the objects .)

1. 

each  admits the structure of a cogroup object in the homotopy category Ho( );2. 

the set { } is closed under forming reduced suspensions.3. 

Example 1.41. (suspensions are H-cogroup objects)

Let  be a model category and * / its pointed model category (prop.) with zero object (rmk.). Write
: ↦ 0∐ 0 for the reduced suspension functor.

Then the fold map

≃ 0 ⊔ 0 ⊔ 0 ⟶ 0 ⊔ ⊔ 0 ≃ 0 ⊔ 0 ≃
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exhibits cogroup structure on the image of any suspension object  in the homotopy category.

This is equivalently the group-structure of the first (fundamental) homotopy group of the values of functor
co-represented by :

Ho( )( , −) : ↦ Ho( )( , ) ≃ Ho( )( , ) ≃ Ho( )( , ) .

Example 1.42. In bare pointed homotopy types = Top * / , the (homotopy types of) n-spheres  are
cogroup objects for ≥ 1, but not for = 0, by example 1.41. And of course they are compact objects.

So while { } ∈ℕ generates all of the homotopy theory of Top * /, the latter is not an example of def. 1.40

due to the failure of  to have cogroup structure.

Removing that generator, the homotopy theory generated by { } ∈ℕ

≥

 is Top≥
* / , that of connected pointed

homotopy types. This is one way to see how the connectedness condition in the classical version of Brown
representability theorem arises. See also remark 1.31 above.

See also (Lurie 10, example 1.4.1.4)

In homotopy theories compactly generated by cogroup objects closed under forming suspensions, the
following strenghtening of the Whitehead theorem holds.

Proposition 1.43. In a homotopy theory compactly generated by cogroup objects { } ∈  closed under

forming suspensions, according to def. 1.40, a morphism : ⟶  is an equivalence precisely if for each
∈  the induced function of maps in the homotopy category

Ho( )( , ) : Ho( )( , ) ⟶ Ho( )( , )

is an isomorphism (a bijection).

(Lurie 10, p. 114, Lemma star)

Proof. By the ∞-Yoneda lemma, the morphism  is a weak equivalence precisely if for all objects ∈  the
induced morphism of derived hom-spaces

( , ) : ( , ) ⟶ ( , )

is an equivalence in Top . By assumption of compact generation and since the hom-functor (−, −)

sends homotopy colimits in the first argument to homotopy limits, this is the case precisely already if it is
the case for ∈ { } ∈ .

Now the maps

( , ) : ( , ) ⟶ ( , )

are weak equivalences in Top  if they are weak homotopy equivalences, hence if they induce

isomorphisms on all homotopy groups  for all basepoints.

It is this last condition of testing on all basepoints that the assumed cogroup structure on the  allows to do
away with: this cogroup structure implies that ( , −) has the structure of an -group, and this implies (by
group multiplication), that all connected components have the same homotopy groups, hence that all
homotopy groups are independent of the choice of basepoint, up to isomorphism.

Therefore the above morphisms are equivalences precisely if they are so under applying  based on the
connected component of the zero morphism

( , ) : ( , ) ⟶ ( , ) .

Now in this pointed situation we may use that

(−, −) ≃ (−, (−))

≃ ( (−), −)

≃ Ho( )( (−), −)

to find that  is an equivalence in  precisely if the induced morphisms

Ho( )( , ) : Ho( )( , ) ⟶ Ho( )( , )

are isomorphisms for all ∈  and ∈ ℕ.
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Finally by the assumption that each suspension  of a generator is itself among the set of generators, the
claim follows.  ▮

Theorem 1.44. (Brown representability)

Let  be a model category compactly generated by cogroup objects closed under forming suspensions,
according to def. 1.40. Then a functor

: Ho( ) ⟶ Set

(from the opposite of the homotopy category of  to Set) is representable precisely if it is a Brown functor,
def. 1.38.

(Lurie 10, theorem 1.4.1.2)

Proof. Due to the version of the Whitehead theorem of prop. 1.43 we are essentially reduced to showing
that Brown functors  are representable on the . To that end consider the following lemma. (In the
following we notationally identify, via the Yoneda lemma, objects of , hence of Ho( ), with the functors they
represent.)

Lemma (⋆): Given ∈  and ∈ ( ), hence : → , then there exists a morphism : → ′  and an
extension ′ : ′ →  of  which induces for each  a bijection ′ ∘ (−):PSh(Ho( ))( , ′ ) ⟶≃ Ho( )( , ) ≃ ( ).

To see this, first notice that we may directly find an extension  along a map →  such as to make a

surjection: simply take  to be the coproduct of all possible elements in the codomain and take

: ⊔
∈ ,

: →

⟶

to be the canonical map. (Using that , by assumption, turns coproducts into products, we may indeed treat
the coproduct in  on the left as the coproduct of the corresponding functors.)

To turn the surjection thus constructed into a bijection, we now successively form quotients of . To that
end proceed by induction and suppose that : →  has been constructed. Then for ∈  let

≔ ker Ho( )( , ) ®¾¾¾
∘(−)

( )

be the kernel of  evaluated on . These  are the pieces that need to go away in order to make a

bijection. Hence define +  to be their joint homotopy cofiber

+ ≔ coker ( ⊔
∈ ,

∈

) ®¾¾¾

( ) ∈
∈

.

Then by the assumption that  takes this homotopy cokernel to a weak fiber (as in remark 1.39), there
exists an extension +  of  along → + :

Then by the assumption that  takes this homotopy cokernel to a weak fiber (as in remark 1.39), there
exists an extension +  of  along → + :

( ⊔
∈

∈

) ®¾¾¾

( ) ∈
∈

⟶

↓ (po ) ↓ ↗∃ +

* ⟶ +

⇔

( + ) ⟶ *
∃ + ↗ ↓ ↓

* ⟶ ker(( *) ∈

∈

) ⟶ *

↘ ↓ (pb) ↓

( ) ®¾¾¾
( *) ∈

∈

∏ ∈

∈

( )

.

It is now clear that we want to take

′ ≔ lim⎯

and extend all the  to that colimit. Since we have no condition for evaluating  on colimits other than

pushouts, observe that this sequential colimit is equivalent to the following pushout:
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⊔ ⟶ ⊔

↓ ↓

⊔ + ⟶ ′

,

where the components of the top and left map alternate between the identity on  and the above successor
maps → + . Now the excision property of  applies to this pushout, and we conclude the desired
extension ′ : ′ → :

⊔

↙ ↘

⊔ + ⟶ ′ ⟵ ⊔

( + ) ↘ ↓∃ ↙( )

⇔

( ′)

∃ ↗ ↓

* ®¾¾
( )

lim¬¾ ( )

↙ ↘

∏ ( + ) ∏ ( )

↘ ↙

∏ ( )

,

It remains to confirm that this indeed gives the desired bijection. Surjectivity is clear. For injectivity use that
all the  are, by assumption, compact, hence they may be taken inside the sequential colimit:

( )

∃^ ↗ ↓

⟶ ′ = lim®¾

.

With this, injectivity follows because by construction we quotiented out the kernel at each stage. Because
suppose that  is taken to zero in ( ), then by the definition of +  above there is a factorization of 
through the point:

0: ⟶
^

( ) ⟶

↓ ↓

* ⟶ ( )+

↓

′

This concludes the proof of Lemma (⋆).

Now apply the construction given by this lemma to the case ≔ 0 and the unique :0 →
∃ !

. Lemma ( ⋆ )

then produces an object ′  which represents  on all the , and we want to show that this ′ actually
represents  generally, hence that for every ∈  the function

≔ ′ ∘ (−) : Ho( )( , ′) ⟶ ( )

is a bijection.

First, to see that  is surjective, we need to find a preimage of any : → . Applying Lemma ( ⋆ ) to
( ′ , ) : ′ ⊔ ⟶  we get an extension  of this through some ′ ⊔ ⟶  and the morphism on the right of
the following commuting diagram:

Ho( )(−, ′ ) ⟶ Ho( )(−, )

∘(−) ↘ ↙ ∘(−)

(−)

.

Moreover, Lemma ( ⋆ ) gives that evaluated on all , the two diagonal morphisms here become
isomorphisms. But then prop. 1.43 implies that ′ ⟶  is in fact an equivalence. Hence the component map
→ ≃  is a lift of  through .

Second, to see that  is injective, suppose , : → ′  have the same image under . Then consider their
homotopy pushout
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⊔ ®¾
( , )

′

↓ ↓

⟶

along the codiagonal of . Using that  sends this to a weak pullback by assumption, we obtain an extension
¯  of ′  along ′ → . Applying Lemma ( ⋆ ) to this gives a further extension ¯ ′ : ′ →  which now makes the
following diagram

Ho( )(−, ′ ) ⟶ Ho( )(−, )

∘(−) ↘ ↙ ¯ ∘(−)

(−)

such that the diagonal maps become isomorphisms when evaluated on the . As before, it follows via prop.
1.43 that the morphism ℎ: ′ ⟶ ′  is an equivalence.

Since by this construction ℎ ∘  and ℎ ∘  are homotopic

⊔ ®¾
( , )

′

↓ ↓ ↘≃

⟶ ⟶ ′

it follows with ℎ being an equivalence that already  and  were homotopic, hence that they represented the
same element.  ▮

Proposition 1.45. Given a reduced additive cohomology functor • :Ho( ) → Abℤ, def. 1.5, its underlying
Set-valued functors :Ho( ) → Ab → Set are Brown functors, def. 1.38.

Proof. The first condition on a Brown functor holds by definition of •. For the second condition, given a
homotopy pushout square

⟶

↓ ↓

⟶

in , consider the induced morphism of the long exact sequences given by prop. 1.8

•(coker( )) ⟶ •( ) ⟶
*

•( ) ⟶ • + ( coker( ))

≃ ↓ ↓ ↓ ↓≃

•(coker( )) ⟶ •( ) ⟶
*

•( ) ⟶ • + ( coker( ))

Here the outer vertical morphisms are isomorphisms, as shown, due to the pasting law (see also at fiberwise
recognition of stable homotopy pushouts). This means that the four lemma applies to this diagram.
Inspection shows that this implies the claim.  ▮

Corollary 1.46. Let  be a model category which satisfies the conditions of theorem 1.44, and let ( •, ) be
a reduced additive generalized cohomology functor on , def. 1.5. Then there exists a spectrum object
∈ Stab( ) such that

•  is degreewise represented by :

• ≃ Ho( )(−, •) ,

1. 

the suspension isomorphism  is given by the structure morphisms ˜ : → +  of the spectrum, in
that

: (−) ≃ Ho( )(−, ) ®¾¾¾¾¾
( )(−, ˜ )

Ho( )(−, + ) ≃ Ho( )( (−), + ) ≃ + ( (−)) .

2. 

Proof. Via prop. 1.45, theorem 1.44 gives the first clause. With this, the second clause follows by the
Yoneda lemma.  ▮

Milnor exact sequence

Idea. One tool for computing generalized cohomology groups via “inverse limits” are Milnor exact
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sequences. For instance the generalized cohomology of the classifying space (1) plays a key role in the
complex oriented cohomology-theory discussed below, and via the equivalence (1) ≃ ℂ  to the homotopy
type of the infinite complex projective space (def. 1.134), which is the direct limit of finite dimensional
projective spaces ℂ , this is an inverse limit of the generalized cohomology groups of the ℂ s. But what
really matters here is the derived functor of the limit-operation – the homotopy limit – and the Milnor exact
sequence expresses how the naive limits receive corrections from higher “lim^1-terms”. In practice one
mostly proceeds by verifying conditions under which these corrections happen to disappear, these are the
Mittag-Leffler conditions.

We need this for instance for the computation of Conner-Floyd Chern classes below.

Literature. (Switzer 75, section 7 from def. 7.57 on, Kochman 96, section 4.2, Goerss-Jardine 99, section
VI.2, )

Lim

Definition 1.47. Given a tower • of abelian groups

⋯ → → → →

write

∂ : ⟶

for the homomorphism given by

∂ : ( ) ∈ℕ ↦ ( − ( + )) ∈ℕ .

Remark 1.48. The limit of a sequence as in def. 1.47 – hence the group lim¬¾  universally equipped with

morphisms lim¬¾ ®¾  such that all

lim¬¾

+ ↙ ↘

+ ⟶

commute – is equivalently the kernel of the morphism ∂ in def. 1.47.

Definition 1.49. Given a tower • of abelian groups

⋯ → → → →

then lim¬¾ • is the cokernel of the map ∂ in def. 1.47, hence the group that makes a long exact sequence

of the form

0 → lim¬¾ ⟶ ⟶ ⟶ lim¬¾ → 0 ,

Proposition 1.50. The functor lim¬¾ :Ab(ℕ, ≥) ⟶ Ab (def. 1.49) satisfies

for every short exact sequence 0 → • → • → • → 0 ∈ Ab(ℕ, ≥) then the induced sequence

0 → lim¬¾ → lim¬¾ → lim¬¾ → lim¬¾ → lim¬¾ → lim¬¾ → 0

is a long exact sequence of abelian groups;

1. 

if • is a tower such that all maps are surjections, then lim¬¾ ≃ 0.2. 

(e.g. Switzer 75, prop. 7.63, Goerss-Jardine 96, section VI. lemma 2.11)

Proof. For the first property: Given • a tower of abelian groups, write
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•( •) ≔

⎡

⎣

⎢
⎢⎢
⎢

0 → ⟶ → 0

⎤

⎦

⎥
⎥⎥
⎥

for the homomorphism from def. 1.47 regarded as the single non-trivial differential in a cochain complex of
abelian groups. Then by remark 1.48 and def. 1.49 we have ( ( •)) ≃ lim¬¾ • and ( ( •)) ≃ lim¬¾ •.

With this, then for a short exact sequence of towers 0 → • → • → • → 0 the long exact sequence in question
is the long exact sequence in homology of the corresponding short exact sequence of complexes

0 → •( •) ⟶
•( •) ⟶

•( •) → 0 .

For the second statement: If all the  are surjective, then inspection shows that the homomorphism ∂ in

def. 1.47 is surjective. Hence its cokernel vanishes.  ▮

Lemma 1.51. The category Ab(ℕ, ≥ ) of towers of abelian groups has enough injectives.

Proof. The functor (−) :Ab(ℕ, ≥) → Ab that picks the -th component of the tower has a right adjoint , which

sends an abelian group  to the tower

≔ ⋯ → → ⏟
=( ) +

→ ⏟
=( )

→ 0⏟
=( ) −

→ 0 → ⋯ → 0 → 0 .

Since (−)  itself is evidently an exact functor, its right adjoint preserves injective objects (prop.).

So with • ∈ Ab
(ℕ, ≥), let ↪ ˜  be an injective resolution of the abelian group , for each ∈ ℕ. Then

• ®¾¾¾
( ) ∈ℕ

∈ℝ

↪
∈ℕ

˜

is an injective resolution for •.  ▮

Proposition 1.52. The functor lim¬¾ :Ab(ℕ, ≥) ⟶ Ab (def. 1.49) is the first right derived functor of the limit

functor lim¬¾:Ab
(ℕ, ≥ ) ⟶ Ab.

Proof. By lemma 1.51 there are enough injectives in Ab(ℕ, ≥). So for • ∈ Ab
(ℕ, ≥) the given tower of abelian

groups, let

0 → • ⟶ • ⟶ • ⟶ • ⟶⋯

be an injective resolution. We need to show that

lim¬¾ • ≃ ker(lim¬¾( ))/im(lim¬¾( )) .

Since limits preserve kernels, this is equivalently

lim¬¾ • ≃ (lim¬¾(ker( )•))/im(lim¬¾( ))

Now observe that each injective •  is a tower of epimorphism. This follows by the defining right lifting
property applied against the monomorphisms of towers of the following form

⋯ → 0 → 0 ⟶ 0 ⟶ ℤ ⟶ ⋯ ⟶ ℤ ⟶ ℤ

⋯ ↓ ↓ ↓ ↓ ↓ ↓

⋯ → 0 → 0 → ℤ ⟶ ℤ ⟶ ⋯ ⟶ ℤ ⟶ ℤ

Therefore by the second item of prop. 1.50 the long exact sequence from the first item of prop. 1.50 applied
to the short exact sequence

0 → • ⟶ • ⟶ ker( )• → 0

becomes

0 → lim¬¾ • ®¾¾¬¾ lim¬¾ • ®¾¾¬¾ lim¬¾(ker( )•) ⟶ lim¬¾ • ⟶ 0 .

Introduction to Stable homotopy theory -- S in nLab https://ncatlab.org/nlab/print/Introduction+to+Stable+homotopy+theor...

22 of 78 27.12.2016 13:13



Exactness of this sequence gives the desired identification lim¬¾ • ≃ (lim¬¾(ker( )•))/im(lim¬¾( )) .   ▮

Proposition 1.53. The functor lim¬¾ :Ab(ℕ, ≥) ⟶ Ab (def. 1.49) is in fact the unique functor, up to natural

isomorphism, satisfying the conditions in prop. 1.53.

Proof. The proof of prop. 1.52 only used the conditions from prop. 1.50, hence any functor satisfying these
conditions is the first right derived functor of lim¬¾, up to natural isomorphism.  ▮

The following is a kind of double dual version of the lim  construction which is sometimes useful:

Lemma 1.54. Given a cotower

• = ( → → → ⋯)

of abelian groups, then for every abelian group ∈ Ab there is a short exact sequence of the form

0 → lim¬¾Hom( , ) ⟶ Ext (lim®¾ , ) ⟶ lim¬¾ Ext ( , ) → 0 ,

where Hom(−, −) denotes the hom-group, Ext (−, −) denotes the first Ext-group (and so
Hom(−, −) = Ext (−, −)).

Proof. Consider the homomorphism

∂̃ : ⊕ ⟶ ⊕

which sends ∈  to − ( ). Its cokernel is the colimit over the cotower, but its kernel is trivial (in

contrast to the otherwise formally dual situation in remark 1.48). Hence (as opposed to the long exact
sequence in def. 1.49) there is a short exact sequence of the form

0 → ⊕ ⟶
˜
⊕ ⟶ lim®¾ → 0 .

Every short exact sequence gives rise to a long exact sequence of derived functors (prop.) which in the
present case starts out as

0 → Hom(lim®¾ , ) ⟶ Hom( , ) ⟶ Hom( , ) ⟶ Ext (lim®¾ , ) ⟶ Ext ( , ) ⟶ Ext ( , ) ⟶ ⋯

where we used that direct sum is the coproduct in abelian groups, so that homs out of it yield a product,
and where the morphism ∂ is the one from def. 1.47 corresponding to the tower

Hom( • , ) = (⋯ → Hom( , ) → Hom( , ) → Hom( , )) .

Hence truncating this long sequence by forming kernel and cokernel of ∂, respectively, it becomes the short
exact sequence in question.  ▮

Mittag-Leffler condition

Definition 1.55. A tower • of abelian groups

⋯ → → → →

is said to satify the Mittag-Leffler condition if for all  there exists ≥  such that for all ≥ ≥  the
image of the homomorphism →  equals that of →

im( → ) ≃ im( → ) .

(e.g. Switzer 75, def. 7.74)

Example 1.56. The Mittag-Leffler condition, def. 1.55, is satisfied in particular when all morphisms + →
are epimorphisms (hence surjections of the underlying sets).

Proposition 1.57. If a tower • satisfies the Mittag-Leffler condition, def. 1.55, then its lim⎯  vanishes:

lim¬¾ • = 0 .

e.g. (Switzer 75, theorem 7.75, Kochmann 96, prop. 4.2.3, Weibel 94, prop. 3.5.7)

Proof idea. One needs to show that with the Mittag-Leffler condition, then the cokernel of ∂ in def. 1.47
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vanishes, hence that ∂ is an epimorphism in this case, hence that every ( ) ∈ℕ ∈ ∏  has a preimage

under ∂. So use the Mittag-Leffler condition to find pre-images of  by induction over .  ▮

Mapping telescopes

Given a sequence

• = ⟶ ⟶ ⟶⋯

of (pointed) topological spaces, then its mapping telescope is the result of forming the (reduced) mapping
cylinder Cyl( ) for each  and then attaching all these cylinders to each other in the canonical way

Definition 1.58. For

• = ⟶ ⟶ ⟶⋯

a sequence in Top, its mapping telescope is the quotient topological space of the disjoint union of
product topological spaces

Tel( •) ≔ ( ⊔
∈ℕ

( × [ , + 1]))/∼

where the equivalence relation quotiented out is

( , ) ∼ ( ( ), + 1)

for all ∈ ℕ and ∈ .

Analogously for • a sequence of pointed topological spaces then use reduced cylinders (exmpl.) to set

Tel( •) ≔ ⊔
∈ℕ

( ∧ [ , + 1]+) /∼ .

Lemma 1.59. For • the sequence of stages of a (pointed) CW-complex = lim¬¾ , then the canonical map

Tel( •) ⟶

from the mapping telescope, def. 1.58, is a weak homotopy equivalence.

Proof. Write in the following Tel( ) for Tel( •) and write Tel( ) for the mapping telescop of the substages of
the finite stage  of . It is intuitively clear that each of the projections at finite stage

Tel( ) ⟶

is a homotopy equivalence, hence (prop.) a weak homotopy equivalence. A concrete construction of a
homotopy inverse is given for instance in (Switzer 75, proof of prop. 7.53).

Moreover, since spheres are compact, so that elements of homotopy groups (Tel( )) are represented at
some finite stage (Tel( )) it follows that

lim®¾ (Tel( )) ⟶≃ (Tel( ))

are isomorphisms for all ∈ ℕ and all choices of basepoints (not shown).

Together these two facts imply that in the following commuting square, three morphisms are isomorphisms,
as shown.

lim¬¾ (Tel( )) ⟶≃ (Tel( ))

≃ ↓ ↓

lim¬¾ ( ) ⟶
≃

( )

.

Therefore also the remaining morphism is an isomorphism (two-out-of-three). Since this holds for all  and
all basepoints, it is a weak homotopy equivalence.  ▮

Milnor exact sequences

Proposition 1.60. (Milnor exact sequence for homotopy groups)
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Let

⋯ → ⟶ ⟶ ⟶

be a tower of fibrations (Serre fibrations (def.)). Then for each ∈ ℕ there is a short exact sequence

0 → lim¬¾ + ( ) ⟶ (lim¬¾ ) ⟶ lim¬¾ ( ) → 0 ,

for • the homotopy group-functor (exact as pointed sets for = 0, as groups for ≥ 1) which says that

the failure of the limit over the homotopy groups of the stages of the tower to equal the homotopy
groups of the limit of the tower is at most in the kernel of the canonical comparison map;

1. 

that kernel is the lim¬¾  (def. 1.49) of the homotopy groups of the stages.2. 

An elementary but tedious proof is indicated in (Bousfield-Kan 72, chapter IX, theorem 3.1. The following is
a neat model category-theoretic proof following (Goerss-Jardine 96, section VI. prop. 2.15), which however
requires the concept of homotopy limit over towers.

Proof. With respect to the classical model structure on simplicial sets or the classical model structure on
topological spaces, a tower of fibrations as stated is a fibrant object in the injective model structure on
functors [(ℕ, ≥ ), sSet]  ([(ℕ, ≥ ), Top] ) (prop). Hence the plain limit over this diagram represents the

homotopy limit. By the discussion there, up to weak equivalence that homotopy limit is also the pullback in

holim • ⟶ ∏ Path( )

↓ (pb) ↓

∏ ®¾¾¾
( , )

∏ ×

,

where on the right we have the product over all the canonical fibrations out of the path space objects. Hence
also the left vertical morphism is a fibration, and so by taking its fiber over a basepoint, the pasting law
gives a homotopy fiber sequence

⟶ holim • ⟶ .

The long exact sequence of homotopy groups of this fiber sequence goes

⋯ → + ( ) ⟶ + ( ) ⟶ (lim¬¾ •) ⟶ ( ) ⟶ ( ) → ⋯ .

Chopping that off by forming kernel and cokernel yields the claim for positive . For = 0 it follows by
inspection.  ▮

Proposition 1.61. (Milnor exact sequence for generalized cohomology)

Let  be a pointed CW-complex, = lim®¾  and let ˜
•
 an additive reduced cohomology theory, def. 1.1.

Then the canonical morphisms make a short exact sequence

0 → lim¬¾
˜ • − ( ) ⟶ ˜ •( ) ⟶ lim¬¾

˜ •( ) → 0 ,

saying that

the failure of the canonical comparison map ˜
•
( ) → lim¬¾

˜ •( ) to the limit of the cohomology groups

on the finite stages to be an isomorphism is at most in a non-vanishing kernel;

1. 

this kernel is precisely the lim  (def. 1.49) of the cohomology groups at the finite stages in one
degree lower.

2. 

e.g. (Switzer 75, prop. 7.66, Kochmann 96, prop. 4.2.2)

Proof. For

• = ↪ ↪ ↪ ⋯

the sequence of stages of the (pointed) CW-complex = lim¬¾ , write
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≔ ⊔
∈ℕ

× [2 , 2 + 1];

≔ ⊔
∈ℕ ( + ) × [2 + 1, 2 + 2] .

for the disjoint unions of the cylinders over all the stages in even and all those in odd degree, respectively.

These come with canonical inclusion maps into the mapping telescope Tel( •) (def.), which we denote by

↘ ↙

Tel( •)

.

Observe that

∪ ≃ Tel( •);1. 

∩ ≃ ⊔
∈ℕ

;2. 

and that there are homotopy equivalences

≃ ⊔
∈ℕ +1. 

≃ ⊔
∈ℕ

2. 

Tel( •) ≃ .3. 

The first two are obvious, the third is this proposition.

This implies that the Mayer-Vietoris sequence (prop.) for ˜
•
 on the cover ⊔ →  is isomorphic to the

bottom horizontal sequence in the following diagram:

˜ • − ( ) ⊕ ˜ • − ( ) ⟶ ˜ • − ( ∩ ) ⟶ ˜ •( ) ®¾¾¾¾¾
( )*−( )*

˜ •( ) ⊕ ˜ •( ) ⟶ ˜ •( ∩ )

↓≃ ↓≃ ↓= ( , − ) ↓≃ ↓≃

∏ ˜ • − ( ) ⟶ ∏ ˜ • − ( ) ⟶ ˜ •( ) ®¾
( * )

∏ ˜ •( ) ⟶ ∏ ˜ •( )

,

hence that the bottom sequence is also a long exact sequence.

To identify the morphism ∂, notice that it comes from pulling back -cohomology classes along the inclusions
∩ →  and ∩ → . Comonentwise these are the inclusions of each  into the left and the right end of

its cylinder inside the mapping telescope, respectively. By the construction of the mapping telescope, one of
these ends is embedded via : ↪ +  into the cylinder over + . In conclusion, ∂ acts by

∂ : ( ) ∈ℕ ↦ ( − * ( + )) .

(The relative sign is the one in ( )*−( )* originating in the definition of the Mayer-Vietoris sequence and

properly propagated to the bottom sequence while ensuring that ˜
•
( ) → ∏ ˜ •( ) is really ( * )  and not

(−1) ( * ) , as needed for the statement to be proven.)

This is the morphism from def. 1.47 for the sequence

⋯ → ˜ •( + ) ⟶
*
˜ •( ) ⟶

*
˜ •( − ) → ⋯ .

Hence truncating the above long exact sequence by forming kernel and cokernel of ∂, the result follows via
remark 1.48 and definition 1.49.  ▮

In contrast:

Proposition 1.62. Let  be a pointed CW-complex, = lim¬¾ .

For ˜ • an additive reduced generalized homology theory, then

lim®¾
˜
•( ) ⟶≃ ˜

•( )

is an isomorphism.

(Switzer 75, prop. 7.53)
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There is also a version for cohomology of spectra:

For , ∈ Ho(Spectra) two spectra, then the -generalized cohomology of  is the graded group of homs in the
stable homotopy category (def., exmpl.)

•( ) ≔ [ , ]−•

≔ [ • , ]
.

The stable homotopy category is, in particular, the homotopy category of the stable model structure on
orthogonal spectra, in that its localization at the stable weak homotopy equivalences is of the form

: OrthSpec(Top ) ⟶ Ho(Spectra) .

In the following when considering an orthogonal spectrum ∈ OrthSpec(Top ), we use, for brevity, the same

symbol for its image under .

Proposition 1.63. For , ∈ OrthSpec(Top ) two orthogonal spectra (or two symmetric spectra such that  is

a semistable symmetric spectrum) then there is a short exact sequence of the form

0 → lim¬¾
• + − ( ) ⟶ •( ) ⟶ lim¬¾

• + ( ) → 0

where lim¬¾  denotes the lim^1, and where this and the limit on the right are taken over the following

structure morphisms

• + + ( + ) ®¾¾¾¾¾
• + + ( ) • + + ( ∧ ) ⟶≃ • + ( ) .

(Schwede 12, chapter II prop. 6.5 (ii)) (using that symmetric spectra underlying orthogonal spectra are
semistable (Schwede 12, p. 40))

Corollary 1.64. For , ∈ Ho(Spectra) two spectra such that the tower ↦ − ( ) satisfies the Mittag-
Leffler condition (def. 1.55), then two morphisms of spectra ⟶  are homotopic already if all their
morphisms of component spaces →  are.

Proof. By prop. 1.57 the assumption implies that the lim -term in prop. 1.63 vanishes, hence by exactness
it follows that in this case there is an isomorphism

[ , ] ≃ ( ) ⟶≃ lim¬¾ [ , ] .

  ▮

Serre-Atiyah-Hirzebruch spectral sequence

Idea. Another important tool for computing generalized cohomology is to reduce it to the computation of
ordinary cohomology with coefficients. Given a generalized cohomology theory , there is a spectral
sequence known as the Atiyah-Hirzebruch spectral sequence (AHSS) which serves to compute -cohomology
of -fiber bundles over a simplicial complex  in terms of ordinary cohomology with coefficients in the
generalized cohomology •( ) of the fiber. For = HA this is known as the Serre spectral sequence.

The Atiyah-Hirzebruch spectral sequence in turn is a consequence of the “Cartan-Eilenberg spectral
sequence” which arises from the exact couple of relative cohomology groups of the skeleta of the
CW-complex, and whose first page is the relative cohomology groups for codimension-1 skeleta.

We need the AHSS for instance for the computation of Conner-Floyd Chern classes below.

Literature. (Kochman 96, section 2.2 and 4.2)

See also the accompanying lecture notes on spectral sequences.

Converging spectral sequences

Definition 1.65. A cohomology spectral sequence { , , } is

a sequence { • , •} (for ∈ ℕ, ≥ 1) of bigraded abelian groups (the “pages”);1. 

a sequence of linear maps (the “differentials”)

{ : • , • ⟶ • + , • − + }

2. 
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such that

+
•, •  is the cochain cohomology of , i.e. +

• , • = ( • , • , ), for all ∈ ℕ, ≥ 1.

Given a ℤ-graded abelian group_ • equipped with a decreasing filtration

• ⊃ ⋯ ⊃ • ⊃ + • ⊃ ⋯ ⊃ 0

such that

• = ∪ • and 0 = ∩ •

then the spectral sequence is said to converge to •, denoted,

• , • ⇒ •

if

in each bidegree ( , ) the sequence { , }  eventually becomes constant on a group

, ≔ ≫
, ;

1. 

• , • is the associated graded of the filtered • in that

, ≃ + / + + .

2. 

The converging spectral sequence is called a multiplicative spectral sequence if

{ • , •} is equipped with the structure of a bigraded algebra;1. 

• • is equipped with the structure of a filtered graded algebra ( ⋅ ⊂ + + );2. 

such that

each  is a derivation with respect to the (induced) algebra structure on • , •, graded of degree 1
with respect to total degree;

1. 

the multiplication on • , • is compatible with that on •.2. 

Remark 1.66. The point of spectral sequences is that by subdividing the data in any graded abelian group
• into filtration stages, with each stage itself subdivided into bidegrees, such that each consecutive stage

depends on the previous one in way tightly controled by the bidegrees, then this tends to give much
control on the computation of •. For instance it often happens that one may argue that the differentials in
some spectral sequence all vanish from some page on (one says that the spectral sequence collapses at
that page) by pure degree reasons, without any further computation.

Example 1.67. The archetypical example of (co-)homology spectral sequences as in def. 1.65 are induced
from a filtering on a (co-)chain complex, converging to the (co-)chain homology of the chain complex by
consecutively computing relative (co-)chain homologies, relative to decreasing (increasing) filtering
degrees. For more on such spectral sequences of filtered complexes see at Interlude -- Spectral sequences
the section For filtered complexes.

A useful way to generate spectral sequences is via exact couples:

Definition 1.68. An exact couple is three homomorphisms of abelian groups of the form

⟶

↖ ↙

such that the image of one is the kernel of the next.

im(ℎ) = ker( ) , im( ) = ker( ) , im( ) = ker( ) .

Given an exact couple, then its derived exact couple is

im( ) ⟶ im( )

↖ ↙ ∘ −

( , ℎ ∘ )

,
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where −  denotes the operation of sending one equivalence class to the equivalenc class of any preimage
under  of any of its representatives.

Proposition 1.69. (cohomological spectral sequence of an exact couple)

Given an exact couple, def. 1.68,

⟶

↖ ↙

its derived exact couple

⟶

↖ ↙

is itself an exact couple. Accordingly there is induced a sequence of exact couples

⟶

↖ ↙ .

If the abelian groups  and  are equipped with bigrading such that

deg( ) = (0, 0) , deg( ) = (−1, 1) , deg(ℎ) = (1, 0)

then { • , • , } with

≔ ℎ ∘

= ℎ ∘ − + ∘

is a cohomological spectral sequence, def. 1.65.

(As before in prop. 1.69, the notation −  with ∈ ℕ denotes the function given by choosing, on
representatives, a preimage under = ∘ ⋯ ∘ ∘ , with the implicit claim that all possible choices

represent the same equivalence class.)

If for every bidegree ( , ) there exists , ≫ 1 such that for all ≥ ,

: + , − ⟶≃ + − , − − ;1. 

: − + , + − ⟶ − , + −2. 

then this spectral sequence converges to the inverse limit group

• ≔ lim ⋯ → , • − ⟶ − , • − + → ⋯

filtered by

• ≔ ker( • → − , • − + ) .

(e.g. Kochmann 96, lemma 2.6.2)

Proof. We check the claimed form of the -page:

Since ker(ℎ) = im( ) in the exact couple, the kernel

ker( − ) ≔ ker(ℎ ∘ − + ∘ )

consists of those elements  such that − + ( ( )) = ( ), for some , hence

ker( − ) , ≃ − ( − ( + − , − + )) .

By assumption there is for each ( , ) an ,  such that for all ≥ ,  then ker( − ) ,  is independent of .

Moreover, im( − ) consists of the image under ℎ of those ∈ − ,  such that − ( ) is in the image of ,
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hence (since im( ) = ker( ) by exactness of the exact couple) such that − ( ) is in the kernel of , hence
such that  is in the kernel of − . If >  then by assumption − | − , = 0 and so then im( − ) = im(ℎ).

(Beware this subtlety: while , | − ,  vanishes by the convergence assumption, the expression
, | + − , − +  need not vanish yet. Only the higher power , + + , + + | + − , − +  is again guaranteed

to vanish. )

It follows that

, − = ker( )/im( )

≃ − (im( − ))/im(ℎ)

⟶
≃
im( − ) ∩ im( )

≃ im( − ) ∩ ker( )

where in last two steps we used once more the exactness of the exact couple.

(Notice that the above equation means in particular that the -page is a sub-group of the image of the
-page under .)

The last group above is that of elements ∈  which map to zero in − , − +  and where two such are
identified if they agree in , − , hence indeed

, − ≃ / + .

  ▮

Remark 1.70. Given a spectral sequence (def. 1.65), then even if it converges strongly, computing its
infinity-page still just gives the associated graded of the filtered object that it converges to, not the filtered
object itself. The latter is in each filter stage an extension of the previous stage by the corresponding
stage of the infinity-page, but there are in general several possible extensions (the trivial extension or
some twisted extensions). The problem of determining these extensions and hence the problem of actually
determining the filtered object from a spectral sequence converging to it is often referred to as the
extension problem.

More in detail, consider, for definiteness, a cohomology spectral sequence converging to some filtered • •

, ⇒ • .

Then by definition of convergence there are isomorphisms

, • ≃ + •/ + + • .

Equivalently this means that there are short exact sequences of the form

0 → + + • ↪ + • ⟶ , • → 0 .

for all . The extension problem then is to inductively deduce • from knowledge of + • and , •.

In good cases these short exact sequences happen to be split exact sequences, which means that the
extension problem is solved by the direct sum

+ • ≃ + + • ⊕ , • .

But in general this need not be the case.

One sufficient condition that these exact sequences split is that they consist of homomorphisms of
-modules, for some ring , and that , • are projective modules (for instance free modules) over .

Because then the Ext-group Ext ( , • , −) vanishes, and hence all extensions are trivial, hence split.

So for instance for every spectral sequence in vector spaces the extension problem is trivial (since every
vector space is a free module).

The AHSS

The following proposition requires, in general, to evaluate cohomology functors not just on CW-complexes,
but on all topological spaces. Hence we invoke prop. 1.4 to regard a reduced cohomology theory as a
contravariant functor on all pointed topological spaces, which sends weak homotopy equivalences to
isomorphisms (def. 1.3).
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Proposition 1.71. (Serre-Cartan-Eilenberg-Whitehead-Atiyah-Hirzebruch spectral sequence)

Let • be a an additive unreduced generalized cohomology functor (def.). Let  be a CW-complex and let

→  be a Serre fibration (def.), such that all its fibers are weakly contractible or such that  is simply
connected. In either case all fibers are identified with a typical fiber  up to weak homotopy equivalence
by connectedness (this example), and well defined up to unique iso in the homotopy category by simply
connectedness:

⟶

↓ ∈.

If at least one of the following two conditions is met

 is finite-dimensional as a CW-complex;

•( ) is bounded below in degree and the sequences ⋯ → ( + ) → ( ) → ⋯ satisfy the Mittag-
Leffler condition (def. 1.55) for all ;

then there is a cohomology spectral sequence, def. 1.65, whose -page is the ordinary cohomology
•( , •( )) of  with coefficients in the -cohomology groups •( ) of the fiber, and which converges to

the -cohomology groups of the total space

, = ( , ( )) ⇒ •( )

with respect to the filtering given by

•( ) ≔ ker •( ) → •( − ) ,

where ≔ − ( ) is the fiber over the th stage of the CW-complex = lim¬¾ .

Proof. The exactness axiom for  gives an exact couple, def. 1.68, of the form

∏ ,
+ ( ) ⟶ ∏ ,

+ ( )

↖ ↙

∏ ,
+ ( , − )

⎛

⎝

⎜⎜

+ ( ) ⟶ + ( − )

↑ ↓
+ ( , − ) + + ( , − )

⎞

⎠

⎟⎟
,

where we take ≫ =  and = ∅.

In order to determine the -page, we analyze the -page: By definition

, = + ( , − )

Let ( ) be the set of -dimensional cells of , and notice that for ∈ ( ) then

( − ( ), − (∂ )) ≃ ( , − ) × ,

where  is weakly homotopy equivalent to  (exmpl.).

This implies that

, ≔ + ( , − )

≃ ˜ +
( / − )

≃ ˜ +
( ∨

∈ ( )
∧ +)

≃ ∏ ∈ ( )
˜ +

( ∧ +)

≃ ∏ ∈ ( )
˜ ( +)

≃ ∏ ∈ ( ) ( )

≃ ( , ( ))

,

where we used the relation to reduced cohomology ˜ , prop. 1.19 together with lemma 1.11, then the wedge
axiom and the suspension isomorphism of the latter.

The last group ( , ( )) appearing in this sequence of isomorphisms is that of cellular cochains (def.) of
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degree  on  with coefficients in the group ( ).

Since cellular cohomology of a CW-complex agrees with its singular cohomology (thm.), hence with its
ordinary cohomology, to conclude that the -page is as claimed, it is now sufficient to show that the
differential  coincides with the differential in the cellular cochain complex (def.).

We discuss this now for = id, hence =  and = * . The general case works the same, just with various
factors of  appearing in the following:

Consider the following diagram, which commutes due to the naturality of the connecting homomorphism  of
•:

∂* : − ( , ( * )) = ∏ ∈ −
( * ) ⟶ ∏ ∈ ( * ) = ( , ( * ))

≃ ↓ ↓≃

∏ ∈ −
˜ + −

( − ) ∏ ∈
˜ +

( )

≃ ↓ ↓≃

: + − ( − , − ) ⟶ + − ( − ) ⟶ + ( , − )

↓ ↓ ↓

+ − ( − , ∅) ⟶ + − ( − ) ⟶ + ( , − )

.

Here the bottom vertical morphisms are those induced from any chosen cell inclusion ( , − ) ↪ ( , − ).

The differential  in the spectral sequence is the middle horizontal composite. From this the vertical
isomorphisms give the top horizontal map. But the bottom horizontal map identifies this top horizontal
morphism componentwise with the restriction to the boundary of cells. Hence the top horizontal morphism is
indeed the coboundary operator ∂* for the cellular cohomology of  with coefficients in •( * ) (def.). This
cellular cohomology coincides with singular cohomology of the CW-complex  (thm.), hence computes the
ordinary cohomology of .

Now to see the convergence. If  is finite dimensional then the convergence condition as stated in prop.
1.69 is met. Alternatively, if •( ) is bounded below in degree, then by the above analysis the -page has a
horizontal line below which it vanishes. Accordingly the same is then true for all higher pages, by each of
them being the cohomology of the previous page. Since the differentials go right and down, eventually they
pass beneath this vanishing line and become 0. This is again the condition needed in the proof of prop. 1.69
to obtain convergence.

By that proposition the convergence is to the inverse limit

lim¬¾(⋯ → •( + ) ⟶ •( ) → ⋯) .

If  is finite dimensional or more generally if the sequences that this limit is over satisfy the Mittag-Leffler
condition (def. 1.55), then this limit is •( ), by prop. 1.57.  ▮

Multiplicative structure

Proposition 1.72. For • a multiplicative cohomology theory (def. 1.26), then the Atiyah-Hirzebruch
spectral sequences (prop. 1.71) for •( ) are multiplicative spectral sequences.

A decent proof is spelled out in (Kochman 96, prop. 4.2.9). Use the graded commutativity of smash
products of spheres to get the sign in the graded derivation law for the differentials. See also the proof via
Cartan-Eilenberg systems at multiplicative spectral sequence – Examples – AHSS for multiplicative
cohomology.

Proposition 1.73. Given a multiplicative cohomology theory ( , , 1) (def. 1.26), then for every Serre
fibration →  (def.) all the differentials in the corresponding Atiyah-Hirzebruch spectral sequence of prop.
1.71

•( , •( )) ⇒ •( )

are linear over •( * ).

Proof. By the proof of prop. 1.71, the differentials are those induced by the exact couple

Introduction to Stable homotopy theory -- S in nLab https://ncatlab.org/nlab/print/Introduction+to+Stable+homotopy+theor...

32 of 78 27.12.2016 13:13



∏ ,
+ ( ) ⟶ ∏ ,

+ ( )

↖ ↙

∏ ,
+ ( , − )

⎛

⎝

⎜⎜

+ ( ) ⟶ + ( − )

↑ ↓
+ ( , − ) + + ( , − )

⎞

⎠

⎟⎟
.

consisting of the pullback homomorphisms and the connecting homomorphisms of .

By prop. 1.69 its differentials on page  are the composites of one pullback homomorphism, the preimage of
( − 1) pullback homomorphisms, and one connecting homomorphism of . Hence the statement follows with
prop. 1.27.  ▮

Proposition 1.74. For  a homotopy commutative ring spectrum (def.) and  a finite CW-complex, then
the Kronecker pairing

⟨−, −⟩ : • ( ) ⊗ • ( ) ⟶ • − • ( )

extends to a compatible pairing of Atiyah-Hirzebruch spectral sequences.

(Kochman 96, prop. 4.2.10)

S.2) Cobordism theory

Idea. As one passes from abelian groups to spectra, a miracle happens: even though the latter are just the
proper embodiment of linear algebra in the context of homotopy theory (“higher algebra”) their inspection
reveals that spectra natively know about deep phenomena of differential topology, index theory and in fact
string theory (for instance via a close relation between genera and partition functions).

A strong manifestation of this phenomenon comes about in complex oriented cohomology theory/chromatic
homotopy theory that we eventually come to below. It turns out to be higher algebra over the complex
Thom spectrum MU.

Here we first concentrate on its real avatar, the Thom spectrum MO. The seminal result of Thom's theorem
says that the stable homotopy groups of MO form the cobordism ring of cobordism-equivalence classes of
manifolds. In the course of discussing this cobordism theory one encounters various phenomena whose
complex version also governs the complex oriented cohomology theory that we are interested in below.

Literature. (Kochman 96, chapter I and sections II.2, II6). A quick efficient account is in (Malkiewich 11).
See also (Aguilar-Gitler-Prieto 02, section 11).

Classifying spaces and -Structure

Idea. Every manifold  of dimension  carries a canonical vector bundle of rank : its tangent bundle. There
is a universal vector bundle of rank , of which all others arise by pullback, up to isomorphism. The base
space of this universal bundle is hence called the classifying space and denoted GL( ) ≃ ( ) (for ( ) the
orthogonal group). This may be realized as the homotopy type of a direct limit of Grassmannian manifolds.
In particular the tangent bundle of a manifold  is classified by a map ⟶ ( ), unique up to homotopy.
For  a subgroup of ( ), then a lift of this map through the canonical map ⟶ ( ) of classifying spaces
is a G-structure on 

↗ ↓

⟶ ( )

for instance an orientation for the inclusion SO( ) ↪ ( ) of the special orthogonal group, or an almost
complex structure for the inclusion ( ) ↪ (2 ) of the unitary group.

All this generalizes, for instance from tangent bundles to normal bundles with respect to any embedding. It
also behaves well with respect to passing to the boundary of manifolds, hence to bordism-classes of
manifolds. This is what appears in Thom's theorem below.

Literature. (Kochman 96, 1.3-1.4), for stable normal structures also (Stong 68, beginning of chapter II)

Coset spaces

Proposition 1.75. For  a smooth manifold and  a compact Lie group equipped with a free smooth action
on , then the quotient projection
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⟶ /

is a -principal bundle (hence in particular a Serre fibration).

This is originally due to (Gleason 50). See e.g. (Cohen, theorem 1.3)

Corollary 1.76. For  a Lie group and ⊂  a compact subgroup, then the coset quotient projection

⟶ /

is an -principal bundle (hence in particular a Serre fibration).

Proposition 1.77. For  a compact Lie group and ⊂ ⊂ closed subgroups, then the projection map on
coset spaces

: / ⟶ /

is a locally trivial / -fiber bundle (hence in particular a Serre fibration).

Proof. Observe that the projection map in question is equivalently

× ( / ) ⟶ / ,

(where on the left we form the Cartesian product and then divide out the diagonal action by ). This exhibits
it as the / -fiber bundle associated to the -principal bundle of corollary 1.76.  ▮

Orthogonal and Unitary groups

Proposition 1.78. The orthogonal group ( ) is compact topological space, hence in particular a compact
Lie group.

Proposition 1.79. The unitary group ( ) is compact topological space, hence in particular a compact Lie
group.

Example 1.80. The n-spheres are coset spaces of orthogonal groups:

≃ ( + 1)/ ( ) .

The odd-dimensional spheres are also coset spaces of unitary groups:

+ ≃ ( + 1)/ ( )

Proof. Regarding the first statement:

Fix a unit vector in ℝ + . Then its orbit under the defining ( + 1)-action on ℝ +  is clearly the canonical
embedding ↪ ℝ + . But precisely the subgroup of ( + 1) that consists of rotations around the axis
formed by that unit vector stabilizes it, and that subgroup is isomorphic to ( ), hence ≃ ( + 1)/ ( ).

The second statement follows by the same kind of reasoning:

Clearly ( + 1) acts transitively on the unit sphere +  in ℂ + . It remains to see that its stabilizer
subgroup of any point on this sphere is ( ). If we take the point with coordinates (1, 0, 0,⋯, 0) and regard
elements of ( + 1) as matrices, then the stabilizer subgroup consists of matrices of the block diagonal form

1 0⇀

0⇀

where ∈ ( ).  ▮

Proposition 1.81. For , ∈ ℕ, ≤ , then the canonical inclusion of orthogonal groups

( ) ↪ ( )

is an (n-1)-equivalence, hence induces an isomorphism on homotopy groups in degrees < − 1 and a
surjection in degree − 1.

Proof. Consider the coset quotient projection

( ) ⟶ ( + 1) ⟶ ( + 1)/ ( ) .
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By prop. 1.78 and by corollary 1.76, the projection ( + 1) → ( + 1)/ ( ) is a Serre fibration. Furthermore,
example 1.80 identifies the coset with the n-sphere

≃ ( + 1)/ ( ) .

Therefore the long exact sequence of homotopy groups (exmpl.)of the fiber sequence ( ) → ( + 1) →
has the form

⋯ → • + ( ) ⟶ •( ( )) ⟶ •( ( + 1)) ⟶ •( ) → ⋯

Since ( ) = 0, this implies that

− ( ( )) ⟶≃ − ( ( + 1))

is an isomorphism and that

− ( ( )) ⟶≃ − ( ( + 1))

is surjective. Hence now the statement follows by induction over − .  ▮

Similarly:

Proposition 1.82. For , ∈ ℕ, ≤ , then the canonical inclusion of unitary groups

( ) ↪ ( )

is a 2n-equivalence, hence induces an isomorphism on homotopy groups in degrees < 2  and a surjection
in degree 2 .

Proof. Consider the coset quotient projection

( ) ⟶ ( + 1) ⟶ ( + 1)/ ( ) .

By prop. 1.79 and corollary 1.76, the projection ( + 1) → ( + 1)/ ( ) is a Serre fibration. Furthermore,
example 1.80 identifies the coset with the (2n+1)-sphere

+ ≃ ( + 1)/ ( ) .

Therefore the long exact sequence of homotopy groups (exmpl.)of the fiber sequence ( ) → ( + 1) → +

is of the form

⋯ → • + ( + ) ⟶ •( ( )) ⟶ •( ( + 1)) ⟶ •(
+ ) → ⋯

Since ≤ ( + ) = 0, this implies that

( ( )) ⟶≃ ( ( + 1))

is an isomorphism and that

( ( )) ⟶≃ ( ( + 1))

is surjective. Hence now the statement follows by induction over − .  ▮

Stiefel manifolds and Grassmannians

Throughout we work in the category Top  of compactly generated topological spaces (def.). For these the

Cartesian product × (−) is a left adjoint (prop.) and hence preserves colimits.

Definition 1.83. For , ∈ ℕ and ≤ , then the th real Stiefel manifold of ℝ  is the coset topological
space.

(ℝ ) ≔ ( )/ ( − ) ,

where the action of ( − ) is via its canonical embedding ( − ) ↪ ( ).

Similarly the th complex Stiefel manifold of ℂ  is

(ℂ ) ≔ ( )/ ( − ) ,

here the action of ( − ) is via its canonical embedding ( − ) ↪ ( ).
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Definition 1.84. For , ∈ ℕ and ≤ , then the th real Grassmannian of ℝ  is the coset topological
space.

Gr (ℝ ) ≔ ( )/( ( ) × ( − )) ,

where the action of the product group is via its canonical embedding ( ) × ( − ) ↪ ( ) into the
orthogonal group.

Similarly the th complex Grassmannian of ℂ  is the coset topological space.

Gr (ℂ ) ≔ ( )/( ( ) × ( − )) ,

where the action of the product group is via its canonical embedding ( ) × ( − ) ↪ ( ) into the unitary
group.

Example 1.85.

(ℝ + ) ≃ ℝ  is real projective space of dimension .

(ℂ + ) ≃ ℂ  is complex projective space of dimension  (def. 1.134).

Proposition 1.86. For all ≤ ∈ ℕ, the canonical projection from the Stiefel manifold (def. 1.83) to the
Grassmannian is a ( )-principal bundle

( ) ↪ (ℝ )

↓

Gr (ℝ )

and the projection from the complex Stiefel manifold to the Grassmannian us a ( )-principal bundle:

( ) ↪ (ℂ )

↓

Gr (ℂ )

.

Proof. By prop 1.76 and prop 1.77.  ▮

Proposition 1.87. The real Grassmannians Gr (ℝ ) and the complex Grassmannians Gr (ℂ ) of def. 1.84
admit the structure of CW-complexes. Moreover the canonical inclusions

Gr (ℝ ) ↪ Gr (ℝ + )

are subcomplex incusion (hence relative cell complex inclusions).

Accordingly there is an induced CW-complex structure on the classifying space (def. 1.91).

( ) ≃ lim®¾ Gr (ℝ ) .

A proof is spelled out in (Hatcher, section 1.2 (pages 31-34)).

Proposition 1.88. The Stiefel manifolds (ℝ ) and (ℂ ) from def. 1.83 admits the structure of a
CW-complex.

e.g. (James 59, p. 3, James 76, p. 5 with p. 21, Blaszczyk 07)

(And I suppose with that cell structure the inclusions (ℝ ) ↪ (ℝ + ) are subcomplex inclusions.)

Proposition 1.89. The real Stiefel manifold (ℝ ) (def. 1.83) is (k-n-1)-connected.

Proof. Consider the coset quotient projection

( − ) ⟶ ( ) ⟶ ( )/ ( − ) = (ℝ ) .

By prop. 1.78 and by corollary 1.76, the projection ( ) → ( )/ ( − ) is a Serre fibration. Therefore there
is induced the long exact sequence of homotopy groups of this fiber sequence, and by prop. 1.81 it has the
following form in degrees bounded by :

⋯ → • ≤ − − ( ( − )) ⟶ • ≤ − − ( ( )) ⟶ • ≤ − − ( (ℝ )) ⟶ • − − − ( ( )) ⟶≃ • − − − ( ( − )) → ⋯ .

This implies the claim. (Exactness of the sequence says that every element in • ≤ − ( (ℝ )) is in the kernel
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of zero, hence in the image of 0, hence is 0 itself.)  ▮

Similarly:

Proposition 1.90. The complex Stiefel manifold (ℂ ) (def. 1.83) is 2(k-n)-connected.

Proof. Consider the coset quotient projection

( − ) ⟶ ( ) ⟶ ( )/ ( − ) = (ℂ ) .

By prop. 1.79 and by corollary 1.76 the projection ( ) → ( )/ ( − ) is a Serre fibration. Therefore there
is induced the long exact sequence of homotopy groups of this fiber sequence, and by prop. 1.82 it has the
following form in degrees bounded by :

⋯ → • ≤ ( − )( ( − )) ⟶ • ≤ ( − )( ( )) ⟶ • ≤ ( − )( (ℂ )) ⟶ • − ( − )( ( )) ⟶≃ • − ( − )( ( − )) → ⋯ .

This implies the claim.  ▮

Classifying spaces

Definition 1.91. By def. 1.84 there are canonical inclusions

Gr (ℝ ) ↪ Gr (ℝ + )

and

Gr (ℂ ) ↪ Gr (ℂ + )

for all ∈ ℕ. The colimit (in Top, see there, or rather in Top , see this cor.) over these inclusions is

denoted

( ) ≔ lim®¾ Gr (ℝ )

and

( ) ≔ lim®¾ Gr (ℂ ) ,

respectively.

Moreover, by def. 1.83 there are canonical inclusions

(ℝ ) ↪ (ℝ + )

and

(ℂ ) ↪ (ℂ + )

that are compatible with the ( )-action and with the ( )-action, respectively. The colimit (in Top, see
there, or rather in Top , see this cor.) over these inclusions, regarded as equipped with the induced

( )-action, is denoted

( ) ≔ lim®¾ (ℝ )

and

( ) ≔ lim®¾ (ℂ ) ,

respectively.

The inclusions are in fact compatible with the bundle structure from prop. 1.86, so that there are induced
projections

⎛

⎝
⎜⎜

( )

↓

( )

⎞

⎠
⎟⎟

≃ lim®¾
⎛

⎝

⎜⎜

(ℝ )

↓

Gr (ℝ )

⎞

⎠

⎟⎟

and
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⎛

⎝
⎜⎜

( )

↓

( )

⎞

⎠
⎟⎟

≃ lim®¾
⎛

⎝

⎜⎜

(ℂ )

↓

Gr (ℂ )

⎞

⎠

⎟⎟
,

respectively. These are the standard models for the universal principal bundles for  and ,
respectively. The corresponding associated vector bundles

( ) ×
( )

ℝ

and

( ) ×
( )

ℂ

are the corresponding universal vector bundles.

Since the Cartesian product ( ) × (−) in compactly generated topological spaces preserves colimits, it
follows that the colimiting bundle is still an ( )-principal bundle

( ( ))/ ( ) ≃ (lim®¾ (ℝ ))/ ( )

≃ lim®¾ ( (ℝ )/ ( ))

≃ lim®¾ Gr (ℝ )

≃ ( )

,

and anlogously for ( ).

As such this is the standard presentation for the ( )-universal principal bundle and ( )-universal principal
bundle, respectively. Its base space ( ) is the corresponding classifying space.

Definition 1.92. There are canonical inclusions

Gr (ℝ ) ↪ Gr + (ℝ + )

and

Gr (ℂ ) ↪ Gr + (ℂ + )

given by adjoining one coordinate to the ambient space and to any subspace. Under the colimit of def.
1.91 these induce maps of classifying spaces

( ) ⟶ ( + 1)

and

( ) ⟶ ( + 1) .

Definition 1.93. There are canonical maps

Gr (ℝ ) × Gr (ℝ ) ⟶ Gr + (ℝ + )

and

Gr (ℂ ) × Gr (ℂ ) ⟶ Gr + (ℂ + )

given by sending ambient spaces and subspaces to their direct sum.

Under the colimit of def. 1.91 these induce maps of classifying spaces

( ) × ( ) ⟶ ( + )

and

( ) × ( ) ⟶ ( + )

Proposition 1.94. The colimiting space ( ) = lim®¾ (ℝ ) from def. 1.91 is weakly contractible.

The colimiting space ( ) = lim®¾ (ℂ ) from def. 1.91 is weakly contractible.
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Proof. By propositions 1.89, and 1.90, the Stiefel manifolds are more and more highly connected as 
increases. Since the inclusions are relative cell complex inclusions by prop. 1.88, the claim follows.  ▮

Proposition 1.95. The homotopy groups of the classifying spaces ( ) and ( ) (def. 1.91) are those of
the orthogonal group ( ) and of the unitary group ( ), respectively, shifted up in degree: there are
isomorphisms

• + ( ( )) ≃ • ( )

and

• + ( ( )) ≃ • ( )

(for homotopy groups based at the canonical basepoint).

Proof. Consider the sequence

( ) ⟶ ( ) ⟶ ( )

from def. 1.91, with ( ) the fiber. Since (by prop. 1.77) the second map is a Serre fibration, this is a fiber
sequence and so it induces a long exact sequence of homotopy groups of the form

⋯ → •( ( )) ⟶ •( ( )) ⟶ •( ( )) ⟶ • − ( ( )) ⟶ • − ( ( )) → ⋯ .

Since by cor. 1.94 •( ( )) = 0, exactness of the sequence implies that

•( ( )) ⟶≃ • − ( ( ))

is an isomorphism.

The same kind of argument applies to the complex case.  ▮

Proposition 1.96. For ∈ ℕ there are homotopy fiber sequence (def.)

⟶ ( ) ⟶ ( + 1)

and

+ ⟶ ( ) ⟶ ( + 1)

exhibiting the n-sphere ((2 + 1)-sphere) as the homotopy fiber of the canonical maps from def. 1.92.

This means (thm.), that there is a replacement of the canonical inclusion ( ) ↪ ( + 1) (induced via
def. 1.91) by a Serre fibration

( ) ↪ ( + 1)

↓ ↗ .

˜ ( )

such that  is the ordinary fiber of ( ) → ˜ ( + 1), and analogously for the complex case.

Proof. Take ˜ ( ) ≔ ( ( + 1))/ ( ).

To see that the canonical map ( ) ⟶ ( ( + 1))/ ( ) is a weak homotopy equivalence consider the
commuting diagram

( ) ⟶ ( )

↓ ↓

( ) ⟶ ( + 1)

↓ ↓

( ) ⟶ ( ( + 1))/ ( )

.

By prop. 1.77 both bottom vertical maps are Serre fibrations and so both vertical sequences are fiber
sequences. By prop. 1.95 part of the induced morphisms of long exact sequences of homotopy groups looks
like this
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•( ( )) ⟶ •(( ( + 1))/ ( ))

≃ ↓ ↓≃

• − ( ( )) ⟶= • − ( ( ))

,

where the vertical and the bottom morphism are isomorphisms. Hence also the to morphisms is an
isomorphism.

That ( ) → ˜ ( + 1) is indeed a Serre fibration follows again with prop. 1.77, which gives the fiber
sequence

( + 1)/ ( ) ⟶ ( ( + 1))/ ( ) ⟶ ( ( + 1))/ ( + 1) .

The claim then follows with the identification

( + 1)/ ( ) ≃

of example 1.80.

The argument for the complex case is directly analogous, concluding instead with the identification

( + 1)/ ( ) ≃ +

from example 1.80.  ▮

-Structure on the Stable normal bundle

Definition 1.97. Given a smooth manifold  of dimension  and equipped with an embedding

: ↪ ℝ

for some ∈ ℕ, then the classifying map of its normal bundle is the function

: → Gr − (ℝ ) ↪ ( − )

which sends ∈  to the normal of the tangent space

= ( ) ↪ ℝ

regarded as a point in − (ℝ ).

The normal bundle of  itself is the subbundle of the tangent bundle

ℝ ≃ ℝ × ℝ

consisting of those vectors which are orthogonal to the tangent vectors of :

≔ ∈ , ∈ ( )ℝ | ⊥ * ⊂ ( )ℝ .

Definition 1.98. A ( , )-structure is

for each ∈ ℕ a pointed CW-complex ∈ Top * /1. 

equipped with a pointed Serre fibration

↓

( )

to the classifying space ( ) (def.);

2. 

for all ≤  a pointed continuous function

, : ⟶

which is the identity for = ;

3. 

such that for all ≤ ∈ ℕ these squares commute
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®¾¾¾
,

↓ ↓

( ) ⟶ ( )

,

where the bottom map is the canonical one from def. 1.92.

The ( , )-structure is multiplicative if it is moreover equipped with a system of maps

, : × → +  which cover the canonical multiplication maps (def.)

× ®¾¾¾
,

+

×
↓ ↓ +

( ) × ( ) ⟶ ( + )

and which satisfy the evident associativity and unitality, for = *  the unit, and, finally, which commute
with the maps  in that all , , ∈ ℕ these squares commute:

× ®¾¾¾¾¾
× , +

× +

, ↓ ↓ , +

+ ®¾¾¾¾¾¾¾
+ , + +

+ +

and

× ®¾¾¾¾¾
, + ×

+ ×

, ↓ ↓ + ,

+ ®¾¾¾¾¾¾¾
+ , + +

+ +

.

Similarly, an -( , )-structure is a compatible system

: ⟶ (2 )

indexed only on the even natural numbers.

Generally, an -( , )-structure for ∈ ℕ, ≥ 1 is a compatible system

: ⟶ ( )

for all ∈ ℕ, hence for all ∈ ℕ.

Example 1.99. Examples of ( , )-structures (def. 1.98) include the following:

= ( ) and = id is orthogonal structure (or “no structure”);1. 

= ( ) and  the universal principal bundle-projection is framing-structure;2. 

= SO( ) = ( )/SO( ) the classifying space of the special orthogonal group and  the canonical

projection is orientation structure;

3. 

= Spin( ) = ( )/Spin( ) the classifying space of the spin group and  the canonical projection is

spin structure.

4. 

Examples of -( , )-structures (def. 1.98) include

= ( ) = (2 )/ ( ) the classifying space of the unitary group, and  the canonical projection

is almost complex structure (or rather: almost Hermitian structure).

1. 

= Sp(2 ) = (2 )/Sp(2 ) the classifying space of the symplectic group, and  the canonical

projection is almost symplectic structure.

2. 

Examples of -( , )-structures (def. 1.98) include

= ℍ( ) = (4 )/ ℍ( ) the classifying space of the quaternionic unitary group, and  the

canonical projection is almost quaternionic structure.

1. 
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Definition 1.100. Given a smooth manifold  of dimension , and given a ( , )-structure as in def. 1.98,
then a ( , )-structure on the stable normal bundle of the manifold is an equivalence class of the
following structure:

an embedding : ↪ ℝ  for some ∈ ℕ;1. 

a homotopy class of a lift ^ of the classifying map  of the normal bundle (def. 1.97)

−

^ ↗ ↓ −

⟶ ( − )

.

2. 

The equivalence relation on such structures is to be that generated by the relation (( ) , ^ ) ∼ (( ),
^ ) if

≥1. 

the second inclusion factors through the first as

( ) : ⎯⎯⎯
( )

ℝ ↪ ℝ

2. 

the lift of the classifying map factors accordingly (as homotopy classes)

^ : ⟶
^

− ®¾¾¾¾¾
− , −

− .

3. 

Thom spectra

Idea. Given a vector bundle  of rank  over a compact topological space, then its one-point
compactification is equivalently the result of forming the bundle ( ) ↪  of unit n-balls, and identifying with
one single point all the boundary unit n-spheres ( ) ↪ . Generally, this construction Th( ) ≔ ( )/ ( ) is
called the Thom space of .

Thom spaces occur notably as codomains for would-be left inverses of embeddings of manifolds ↪ . The
Pontrjagin-Thom collapse map → Th( ) of such an embedding is a continuous function going the other
way around, but landing not quite in  but in the Thom space of the normal bundle of  in . Composing this
further with the classifying map of the normal bundle lands in the Thom space of the universal vector bundle
over the classifying space ( ), denoted ( ). In particular in the case that =  is an n-sphere (and
every manifold embeds into a large enough -sphere, see also at Whitney embedding theorem), the
Pontryagin-Thom collapse map hence associates with every manifold an element of a homotopy group of a
universal Thom space ( ).

This curious construction turns out to have excellent formal properties: as the dimension ranges, the
universal Thom spaces arrange into a spectrum, called the Thom spectrum, and the homotopy groups
defined by the Pontryagin-Thom collapse pass along to the stable homotopy groups of this spectrum.

Moreover, via Whitney sum of vector bundle the Thom spectrum naturally is a homotopy commutative ring
spectrum (def.), and under the Pontryagin-Thom collapse the Cartesian product of manifolds is compatible
with this ring structure.

Literature. (Kochman 96, 1.5, Schwede 12, chapter I, example 1.16)

Thom spaces

Definition 1.101. Let  be a topological space and let →  be a vector bundle over  of rank , which is
associated to an O(n)-principal bundle. Equivalently this means that →  is the pullback of the universal
vector bundle → ( ) (def. 1.91) over the classifying space. Since ( ) preserves the metric on ℝ , by
definition, such  inherits the structure of a metric space-fiber bundle. With respect to this structure:

the unit disk bundle ( ) →  is the subbundle of elements of norm ≤ 1;1. 

the unit sphere bundle ( ) →  is the subbundle of elements of norm = 1;

( ) ↪ ( ) ↪ ;

2. 

the Thom space Th( ) is the cofiber (formed in Top (prop.)) of 

Th( ) ≔ cofib( )

3. 
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canonically regarded as a pointed topological space.

( ) ⟶ ( )

↓ (po) ↓

* ⟶ Th( )

.

If →  is a general real vector bundle, then there exists an isomorphism to an ( )-associated bundle
and the Thom space of  is, up to based homeomorphism, that of this orthogonal bundle.

Remark 1.102. If the rank of  is positive, then ( ) is non-empty and then the Thom space (def. 1.101) is
the quotient topological space

Th( ) ≃ ( )/ ( ) .

However, in the degenerate case that the rank of  vanishes, hence the case that = ×ℝ ≃ , then
( ) ≃ ≃ , but ( ) = ∅. Hence now the pushout defining the cofiber is

∅ ⟶

↓ (po) ↓

* ⟶ Th( ) ≃ *

,

which exhibits Th( ) as the coproduct of  with the point, hence as  with a basepoint freely adjoined.

Th( × ℝ ) = Th( ) ≃ + .

Proposition 1.103. Let →  be a vector bundle over a CW-complex . Then the Thom space Th( ) (def.
1.101) is equivalently the homotopy cofiber (def.) of the inclusion ( ) ⟶ ( ) of the sphere bundle into
the disk bundle.

Proof. The Thom space is defined as the ordinary cofiber of ( ) → ( ). Under the given assumption, this
inclusion is a relative cell complex inclusion, hence a cofibration in the classical model structure on
topological spaces (thm.). Therefore in this case the ordinary cofiber represents the homotopy cofiber
(def.).  ▮

The equivalence to the following alternative model for this homotopy cofiber is relevant when discussing
Thom isomorphisms and orientation in generalized cohomology:

Proposition 1.104. Let →  be a vector bundle over a CW-complex . Write −  for the complement of
its 0-section. Then the Thom space Th( ) (def. 1.101) is homotopy equivalent to the mapping cone of the
inclusion ( − ) ↪  (hence to the pair ( , − ) in the language of generalized (Eilenberg-Steenrod)
cohomology).

Proof. The mapping cone of any map out of a CW-complex represents the homotopy cofiber of that map
(exmpl.). Moreover, transformation by (weak) homotopy equivalences between morphisms induces a (weak)
homotopy equivalence on their homotopy fibers (prop.). But we have such a weak homotopy equivalence,
given by contracting away the fibers of the vector bundle:

− ⟶
∈ ↓ ↓ ∈

( ) ↪ ( )

.

  ▮

Proposition 1.105. Let , →  be two real vector bundles. Then the Thom space (def. 1.101) of the
direct sum of vector bundles ⊕ →  is expressed in terms of the Thom space of the pullbacks | ( )

and | ( ) of  to the disk/sphere bundle of  as

Th( ⊕ ) ≃ Th( | ( ) )/Th( | ( ) ) .

Proof. Notice that

( ⊕ ) ≃ ( | ( ) ) ∪ ( );1. 

( ⊕ ) ≃ ( | ( ) ) ∪ Int ( | ( ) ).2. 

(Since a point at radius  in ⊕  is a point of radius ≤  in  and a point of radius −  in .)  ▮
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Proposition 1.106. For  a vector bundle then the Thom space (def. 1.101) of ℝ ⊕ , the direct sum of
vector bundles with the trivial rank  vector bundle, is homeomorphic to the smash product of the Thom
space of  with the -sphere (the -fold reduced suspension).

Th(ℝ ⊕ ) ≃ ∧ Th( ) = Th( ) .

Proof. Apply prop. 1.105 with = ℝ  and = . Since  is a trivial bundle, then

| ( ) ≃ ×

(as a bundle over × ) and similarly

| ( ) ≃ × .

  ▮

Example 1.107. By prop. 1.106 and remark 1.102 the Thom space (def. 1.101) of a trivial vector bundle of
rank  is the -fold suspension of the base space

Th( × ℝ ) ≃ ∧ Th( × ℝ )

≃ ∧ ( +)
.

Therefore a general Thom space may be thought of as a “twisted suspension”, with twist encoded by a
vector bundle (or rather by its underlying spherical fibration). See at Thom spectrum – For infinity-module
bundles for more on this.

Correspondingly the Thom isomorphism (prop. 1.129 below) for a given Thom space is a twisted version
of the suspension isomorphism (above).

Proposition 1.108. For →  and →  to vector bundles, let ⊠ → ×  be the direct sum of
vector bundles of their pullbacks to × . The corresponding Thom space (def. 1.101) is the smash
product of the individual Thom spaces:

Th( ⊠ ) ≃ Th( ) ∧ Th( ) .

Remark 1.109. Given a vector bundle →  of rank , then the reduced ordinary cohomology of its Thom
space Th( ) (def. 1.101) vanishes in degrees < :

˜ • (Th( )) ≃ • ( ( ), ( )) ≃ 0 .

Proof. Consider the long exact sequence of relative cohomology (from above)

⋯ → • − ( ( )) ⟶
*

• − ( ( )) ⟶ •( ( ), ( )) ⟶ •( ( )) ⟶
*

•( ( )) → ⋯ .

Since the cohomology in degree  only depends on the -skeleton, and since for <  the -skeleton of ( )
equals that of , and since ( ) is even homotopy equivalent to , the morhism * is an isomorphism in
degrees lower than . Hence by exactness of the sequence it follows that • ( ( ), ( )) = 0.  ▮

Universal Thom spectra 

Proposition 1.110. For each ∈ ℕ the pullback of the rank-( + 1) universal vector bundle to the classifying
space of rank  vector bundles is the direct sum of vector bundles of the rank  universal vector bundle
with the trivial rank-1 bundle: there is a pullback diagram of topological spaces of the form

ℝ⊕ ( ( ) ×
( )

ℝ ) ⟶ ( + 1) ×
( + )

ℝ +

↓ (pb) ↓

( ) ⟶ ( + 1)

,

where the bottom morphism is the canonical one (def.).

(e.g. Kochmann 96, p. 25)

Proof. For each ∈ ℕ, ≥  there is such a pullback of the canonical vector bundles over Grassmannians
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⊂ℝ ,

∈ , + ∈ℝ
⟶

+ ⊂ℝ + ,

∈ +

↓ ↓

Gr (ℝ ) ⟶ Gr + (ℝ + )

where the bottom morphism is the canonical inclusion (def.).

Now we claim that taking the colimit in each of the four corners of this system of pullback diagrams yields
again a pullback diagram, and this proves the claim.

To see this, remember that we work in the category Top  of compactly generated topological spaces (def.).

By their nature, we may test the universal property of a would-be pullback space already by mapping
compact topological spaces into it. Now observe that all the inclusion maps in the four corners of this system
of diagrams are relative cell complex inclusions, by prop. 1.87. Together this implies (via this lemma) that
we may test the universal property of the colimiting square at finite stages. And so this implies the claim by
the above fact that at each finite stage there is a pullback diagram.  ▮

Definition 1.111. The universal real Thom spectrum  is the spectrum, which is represented by the
sequential prespectrum (def.) whose th component space is the Thom space (def. 1.101)

( ) ≔ Th( ( ) ×
( )

ℝ )

of the rank- universal vector bundle, and whose structure maps are the image under the Thom space
functor Th(−) of the top morphisms in prop. 1.110, via the homeomorphisms of prop. 1.106:

: ( ) ≃ Th(ℝ⊕ ( ( ) ×
( )

ℝ )) ⟶ Th( ( + 1) ×
( + )

ℝ + ) = ( ) + .

More generally, there are universal Thom spectra associated with any other tangent structure (“[[(B,f)]-
structure]]”), notably for the orthogonal group replaced by the special orthogonal groups SO( ), or the spin
groups Spin( ), or the string 2-group String( ), or the fivebrane 6-group Fivebrane( ),…, or any level in the
Whitehead tower of ( ). To any of these groups there corresponds a Thom spectrum (denoted, respectively,
SO, MSpin, String, Fivebrane, etc.), which is in turn related to oriented cobordism, spin cobordism, string

cobordism, et cetera.:

Definition 1.112. Given a (B,f)-structure ℬ (def. 1.98), write ℬ for the pullback of the universal vector
bundle (def. 1.91) to the corresponding space of the ( , )-structure and with

ℬ ⟶ ( ) ×
( )

ℝ

↓ (pb) ↓

⟶ ( )

and we write ,  for the maps of total space of vector bundles over the , :

ℬ ®¾¾¾
, ℬ

↓ (pb) ↓

®¾¾¾
,

.

Observe that the analog of prop. 1.110 still holds:

Proposiiton 1.113. Given a (B,f)-structure ℬ (def. 1.98), then the pullback of its rank-( + 1) vector bundle

+
ℬ  (def. 1.112) along the map , + : → +  is the direct sum of vector bundles of the rank-  bundle
ℬ with the trivial rank-1-bundle: there is a pullback square

ℝ⊕ ℬ ®¾¾¾
, +

+
ℬ

↓ (pb) ↓

®¾¾¾
, +

+

.

Proof. Unwinding the definitions, the pullback in question is
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( , + )* +
ℬ = ( , + )* +

* ( ( + 1) ×
( + )

ℝ + )

≃ ( , + ∘ + )*( ( + 1) ×
( + )

ℝ + )

≃ ( ∘ )*( ( + 1) ×
( + )

ℝ + )

≃ * * ( ( + 1) ×
( + )

ℝ + )

≃ * (ℝ⊕ ( ( ) ×
( )

ℝ ))

≃ ℝ⊕ ℬ ,

where the second but last step is due to prop. 1.110.  ▮

Definition 1.114. Given a (B,f)-structure ℬ (def. 1.98), its universal Thom spectrum ℬ is, as a
sequential prespectrum, given by component spaces being the Thom spaces (def. 1.101) of the
ℬ-associated vector bundles of def. 1.112

( ℬ) ≔ Th( ℬ)

and with structure maps given via prop. 1.106 by the top maps in prop. 1.113:

: ( ℬ) = Th( ℰ) ≃ Th(ℝ⊕ ℰ) ®¾¾¾¾
( , + )

Th( +
ℬ ) = ( ℬ) + .

Similarly for an − ( , )-structure indexed on every th natural number (such as almost complex
structure, almost quaternionic structure, example 1.99), there is the corresponding Thom spectrum as a
sequential  spectrum (def.).

If =  for some natural system of groups → ( ), then one usually writes  for ℬ. For instance
SO, MSpin, MU, MSp etc.

If the ( , )-structure is multiplicative (def. 1.98), then the Thom spectrum ℬ canonical becomes a ring
spectrum (for more on this see Part 1-2 the section on orthogonal Thom spectra ): the multiplication maps

× → +  are covered by maps of vector bundles

ℬ ⊠ ℬ ⟶ +
ℬ

and under forming Thom spaces this yields (via prop. 1.108) maps

( ℬ) ∧ ( ℬ) ⟶ ( ℬ) +

which are associative by the associativity condition in a multiplicative ( , )-structure. The unit is

( ℬ) = Th( ℬ) ≃ Th( * ) ≃ ,

by remark 1.102.

Example 1.115. The universal Thom spectrum (def. 1.114) for framing structure (exmpl.) is equivalently
the sphere spectrum (def.)

1 ≃ .

Because in this case ≃ *  and so ℬ ≃ ℝ , whence Th( ℬ) ≃ .

Pontrjagin-Thom construction

Definition 1.116. For  a smooth manifold and : ↪ ℝ  an embedding, then a tubular neighbourhood of
 is a subset of the form

≔ ∈ ℝ | ( , ( )) <

for some ∈ ℝ, > 0, small enough such that the map

⟶

from the normal bundle (def. 1.97) given by

( ( ), ) ↦ ( ( ), (1 − −| |) )

is a diffeomorphism.
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Proposition 1.117. (tubular neighbourhood theorem)

For every embedding of smooth manifolds, there exists a tubular neighbourhood according to def. 1.116.

Remark 1.118. Given an embedding : ↪ ℝ  with a tubuluar neighbourhood hookrigtharrowℝ  (def.
1.116) then by construction:

the Thom space (def. 1.101) of the normal bundle (def. 1.97) is homeomorphic to the quotient
topological space of the topological closure of the tubular neighbourhood by its boundary:

Th( ( )) ≃ ( )`̀ `̀ `̀ / ∂ ( )`̀ `̀ `̀ ;

1. 

there exists a continous function

ℝ ⟶ ( )`̀ `̀ `̀ / ∂ ( )`̀ `̀ `̀

which is the identity on ( ) ⊂ ℝ  and is constant on the basepoint of the quotient on all other points.

2. 

Definition 1.119. For  a smooth manifold of dimension  and for : ↪ ℝ  an embedding, then the
Pontrjagin-Thom collapse map is, for any choice of tubular neighbourhood ( ) ⊂ ℝ  (def. 1.116) the
composite map of pointed topological spaces

→≃ (ℝ )* ⟶ ( )`̀ `̀ `̀ / ∂ ( )`̀ `̀ `̀ →≃ Th( )

where the first map identifies the k-sphere as the one-point compactification of ℝ ; and where the second
and third maps are those of remark 1.118.

The Pontrjagin-Thom construction is the further composite

: ⟶ Th( ) ®¾¾¾
( )

Th( ( − ) ×
( − )

ℝ − ) ≃ ( ) −

with the image under the Thom space construction of the morphism of vector bundles

⟶ ( − ) ×
( − )

ℝ −

↓ (pb) ↓

⟶ ( − )

induced by the classifying map  of the normal bundle (def. 1.97).

This defines an element

[ +( − ) → ( ) − ] ∈

in the th stable homotopy group (def.) of the Thom spectrum  (def. 1.111).

More generally, for  a smooth manifold with normal (B,f)-structure ( , , ^ ) according to def. 1.100, then

its Pontrjagin-Thom construction is the composite

: ⟶ Th( ) ®¾¾¾
(^ )

Th( −
ℬ ) ≃ ( ℬ) −

with

⟶
^

−
ℬ

↓ (pb) ↓

⟶̂ ( − )

.

Proposition 1.120. The Pontrjagin-Thom construction (def. 1.119) respects the equivalence classes
entering the definition of manifolds with stable normal ℬ-structure (def. 1.100) hence descends to a
function (of sets)

:
-manifolds with stable

normal ℬ-structure
⟶ ( ℬ) .

Proof. It is clear that the homotopies of classifying maps of ℬ-structures that are devided out in def. 1.100
map to homotopies of representatives of stable homotopy groups. What needs to be shown is that the
construction respects the enlargement of the embedding spaces.
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Given a embedded manifold ↪ ℝ  with normal ℬ-structure

−

^
↗ ↓ −

⟶ ( − )

write

: +( − ) ⟶ Th( ℬ − )

for its image under the Pontrjagin-Thom construction (def. 1.119). Now given ∈ ℕ, consider the induced

embedding ↪ ℝ ↪ ℝ +  with normal ℬ-structure given by the composite

− ®¾¾¾¾¾¾¾
− , + −

+ −

^
↗ ↓ − ×

↓ + −

⟶ ( − ) ⟶ ( + − )

.

By prop. 1.113 and using the pasting law for pullbacks, the classifying map ^′  for the enlarged normal
bundle sits in a diagram of the form

( ⊕ ℝ ) ®¾¾¾
(^ ⊕ )

( −
ℬ ⊕ℝ ) ®¾¾¾¾¾¾

− , + −
+ −

ℬ

↓ (pb) ↓ (pb) ↓

⟶̂ − ®¾¾¾¾¾¾
− , + −

+ −

.

Hence the Pontrjagin-Thom construction for the enlarged embedding space is (using prop. 1.106) the
composite

: +( + − ) ≃ Th(ℝ ) ∧ +( − ) ⟶ Th(ℝ ) ∧ Th( ) ®¾¾¾¾¾
( )∧ (^ )

Th(ℝ ) ∧ Th( −
ℬ )) ®¾¾¾¾¾¾¾

( − , + − )
Th( + −

ℬ )

The composite of the first two morphisms here is ∧ , while last morphism Th(^ − , + − ) is the

structure map in the Thom spectrum (by def. 1.114):

: ∧ +( − ) ®¾¾¾
∧

∧ Th( + −
ℬ ) ®¾¾¾¾¾¾

− , + −
ℬ

Th( + −
ℬ )

This manifestly identifies  as being the image of  under the component map in the sequential colimit

that defines the stable homotopy groups (def.). Therefore  and , for all ∈ ℕ, represent the same

element in •( ℬ).  ▮

Bordism and Thom’s theorem

Idea. By the Pontryagin-Thom collapse construction above, there is an assignment

Manifolds ⟶ ( )

which sends disjoint union and Cartesian product of manifolds to sum and product in the ring of stable
homotopy groups of the Thom spectrum. One finds then that two manifolds map to the same element in the
stable homotopy groups •( ) of the universal Thom spectrum precisely if they are connected by a
bordism. The bordism-classes •  of manifolds form a commutative ring under disjoint union and Cartesian
product, called the bordism ring, and Pontrjagin-Thom collapse produces a ring homomorphism

• ⟶ •( ) .

Thom's theorem states that this homomorphism is an isomorphism.

More generally, for ℬ a multiplicative (B,f)-structure, def. 1.98, there is such an identification

•
ℬ ≃ •( ℬ)

between the ring of ℬ-cobordism classes of manifolds with ℬ-structure and the stable homotopy groups of
the universal ℬ-Thom spectrum.

Literature. (Kochman 96, 1.5)

Introduction to Stable homotopy theory -- S in nLab https://ncatlab.org/nlab/print/Introduction+to+Stable+homotopy+theor...

48 of 78 27.12.2016 13:13



Bordism

Throughout, let ℬ be a multiplicative (B,f)-structure (def. 1.98).

Definition 1.121. Write ≔ [0, 1] for the standard interval, regarded as a smooth manifold with boundary.
For ∈ ℝ+ Consider its embedding

: ↪ ℝ⊕ℝ≥

as the arc

: ↦ cos( ) ⋅ + sin( ) ⋅ ,

where ( , ) denotes the canonical linear basis of ℝ , and equipped with the structure of a manifold with
normal framing structure (example 1.99) by equipping it with the canonical framing

fr : ↦ cos( ) ⋅ + sin( ) ⋅

of its normal bundle.

Let now ℬ be a (B,f)-structure (def. 1.98). Then for ↪ ℝ  any embedded manifold with ℬ-structure
^ : → −  on its normal bundle (def. 1.100), define its negative or orientation reversal −( , , ^) of

( , , ^) to be the restriction of the structured manifold

( × ⎯
( , )

ℝ + , ^ × fr)

to = 1.

Definition 1.122. Two closed manifolds of dimension  equipped with normal ℬ-structure ( , , ^ ) and

( , , ^ ) (def.) are called bordant if there exists a manifold with boundary  of dimension + 1 equipped

with ℬ-strcuture ( , , ^ ) if its boundary with ℬ-structure restricted to that boundary is the disjoint union

of  with the negative of , according to def. 1.121

∂( , , ^ ) ≃ ( , , ^ ) ⊔ −( , , ^ ) .

Proposition 1.123. The relation of ℬ-bordism (def. 1.122) is an equivalence relation.

Write •
ℬ for the ℕ-graded set of ℬ-bordism classes of ℬ-manifolds.

Proposition 1.124. Under disjoint union of manifolds, then the set of ℬ-bordism equivalence classes of def.
1.123 becomes an ℤ-graded abelian group

•
ℬ ∈ Abℤ

(that happens to be concentrated in non-negative degrees). This is called the ℬ-bordism group.

Moreover, if the (B,f)-structure ℬ is multiplicative (def. 1.98), then Cartesian product of manifolds followed
by the multiplicative composition operation of ℬ-structures makes the ℬ-bordism ring into a commutative
ring, called the ℬ-bordism ring.

•
ℬ ∈ CRingℤ .

e.g. (Kochmann 96, prop. 1.5.3)

Thom’s theorem

Recall that the Pontrjagin-Thom construction (def. 1.119) associates to an embbeded manifold ( , , ^) with
normal ℬ-structure (def. 1.100) an element in the stable homotopy group ( )( ℬ) of the universal

ℬ-Thom spectrum in degree the dimension of that manifold.

Lemma 1.125. For ℬ be a multiplicative (B,f)-structure (def. 1.98), the ℬ-Pontrjagin-Thom construction
(def. 1.119) is compatible with all the relations involved to yield a graded ring homomorphism

: •
ℬ ⟶ •( ℬ)

from the ℬ-bordism ring (def. 1.124) to the stable homotopy groups of the universal ℬ-Thom spectrum
equipped with the ring structure induced from the canonical ring spectrum structure (def. 1.114).
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Proof. By prop. 1.120 the underlying function of sets is well-defined before dividing out the bordism relation
(def. 1.122). To descend this further to a function out of the set underlying the bordism ring, we need to see
that the Pontrjagin-Thom construction respects the bordism relation. But the definition of bordism is just so
as to exhibit under  a left homotopy of representatives of homotopy groups.

Next we need to show that it is

a group homomorphism;1. 

a ring homomorphism.2. 

Regarding the first point:

The element 0 in the cobordism group is represented by the empty manifold. It is clear that the
Pontrjagin-Thom construction takes this to the trivial stable homotopy now.

Given two -manifolds with ℬ-structure, we may consider an embedding of their disjoint union into some ℝ
such that the tubular neighbourhoods of the two direct summands do not intersect. There is then a map
from two copies of the k-cube, glued at one face

□ ⊔
□ −

□ ⟶ ℝ

such that the first manifold with its tubular neighbourhood sits inside the image of the first cube, while the
second manifold with its tubular neighbourhood sits indide the second cube. After applying the
Pontryagin-Thom construction to this setup, each cube separately maps to the image under  of the
respective manifold, while the union of the two cubes manifestly maps to the sum of the resulting elements
of homotopy groups, by the very definition of the group operation in the homotopy groups (def.). This
shows that  is a group homomorphism.

Regarding the second point:

The element 1 in the cobordism ring is represented by the manifold which is the point. Without restriction
we may consoder this as embedded into ℝ , by the identity map. The corresponding normal bundle is of
rank 0 and hence (by remark 1.102) its Thom space is , the 0-sphere. Also ℬ is the rank-0 vector bundle
over the point, and hence ( ℬ) ≃  (by def. 1.114) and so ( * ) :( →≃ ) indeed represents the unit

element in •( ℬ).

Finally regarding respect for the ring product structure: for two manifolds with stable normal ℬ-structure,
represented by embeddings into ℝ , then the normal bundle of the embedding of their Cartesian product is
the direct sum of vector bundles of the separate normal bundles bulled back to the product manifold. In the
notation of prop. 1.108 there is a diagram of the form

⊠ ®¾¾¾
^ ⊠^

ℬ ⊠ ℬ ®¾¾¾
,

+
ℬ

↓ (pb) ↓ (pb) ↓

× ®¾¾¾
^ ×^

− × − ®¾¾¾¾¾
− , −

+ − −

.

To the Pontrjagin-Thom construction of the product manifold is by definition the top composite in the
diagram

+ +( + − − ) ⟶ Th( ⊠ ) ®¾¾¾¾
(^ ⊠^ )

Th( −
ℬ ⊠ −

ℬ ) ®¾¾¾¾¾
− , −

Th( + − −
ℬ )

≃ ↓ ↓≃ ↓≃ ↓=

+( − ) ∧ +( − ) ⟶ Th( ) ∧ Th( ) ®¾¾¾¾¾
(^ )∧ (^ )

Th( ℬ) ∧ Th( ℬ) ®¾¾¾¾¾
− , −

Th( + − −
ℬ )

,

which hence is equivalently the bottom composite, which in turn manifestly represents the product of the
separate PT constructions in •( ℬ).  ▮

Theorem 1.126. The ring homomorphsim in lemma 1.125 is an isomorphism.

Due to (Thom 54, Pontrjagin 55). See for instance (Kochmann 96, theorem 1.5.10).

Proof idea. Observe that given the result : +( − ) → Th( − ) of the Pontrjagin-Thom construction map,

the original manifold ↪ ℝ  may be recovered as this pullback:
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⟶ +( − )

↓ (pb) ↓

( − ) ⟶ Th( − )

.

To see this more explicitly, break it up into pieces:

⟶ + ↪ +( − )

↓ (pb) ↓ (pb) ↓

⟶ + ≃ Th( ) ®¾¾
( )

Th( )

↓ (pb) ↓ (pb) ↓

− ⟶ ( − )+ ≃ Th( − ) ®¾¾
( )

Th( −
ℬ )

↓ (pb) ↓ (pb) ↓

( − ) ⟶ ( ( − ))+ ≃ Th( ( − )) ⟶ Th( − )

.

Moreover, since the n-spheres are compact topological spaces, and since the classifying space ( ), and
hence its universal Thom space, is a sequential colimit over relative cell complex inclusions, the right vertical
map factors through some finite stage (by this lemma), the manifold  is equivalently recovered as a
pullback of the form

⟶ +( − )

↓ (pb) ↓

Gr − (ℝ ) ⟶ Th( − (ℝ ) ×
( − )

ℝ − )

.

(Recall that −
ℬ  is our notation for the universal vector bundle with ℬ-structure, while − (ℝ ) denotes a

Stiefel manifold.)

The idea of the proof now is to use this property as the blueprint of the construction of an inverse  to :
given an element in ( ℬ) represented by a map as on the right of the above diagram, try to define  and
the structure map  of its normal bundle as the pullback on the left.

The technical problem to be overcome is that for a general continuous function as on the right, the pullback
has no reason to be a smooth manifold, and for two reasons:

the map +( − ) → Th( − ) may not be smooth around the image of ;1. 

even if it is smooth around the image of , it may not be transversal to , and the intersection of two
non-transversal smooth functions is in general still not a smooth manifold.

2. 

The heart of the proof is in showing that for any  there are small homotopies relating it to an ′ that is both
smooth around the image of  and transversal to .

The first condition is guaranteed by Sard's theorem, the second by Thom's transversality theorem.

(…)  ▮

Thom isomorphism

Idea. If a vector bundle ⟶  of rank  carries a cohomology class ∈ (Th( ), ) that looks fiberwise like
a volume form – a Thom class – then the operation of pulling back from base space and then forming the
cup product with this Thom class is an isomorphism on (reduced) cohomology

((−) ∪ ) ∘ * : •( , ) ⟶≃ ˜ • + (Th( ), ) .

This is the Thom isomorphism. It follows from the Serre spectral sequence (or else from the Leray-Hirsch
theorem). A closely related statement gives the Thom-Gysin sequence.

In the special case that the vector bundle is trivial of rank , then its Thom space coincides with the -fold
suspension of the base space (example 1.107) and the Thom isomorphism coincides with the suspension
isomorphism. In this sense the Thom isomorphism may be regarded as a twisted suspension isomorphism.

We need this below to compute (co)homology of universal Thom spectra  in terms of that of the
classifying spaces .
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Composed with pullback along the Pontryagin-Thom collapse map, the Thom isomorphism produces maps in
cohomology that covariantly follow the underlying maps of spaces. These “Umkehr maps” have the
interpretation of fiber integration against the Thom class.

Literature. (Kochman 96, 2.6)

Thom-Gysin sequence

The Thom-Gysin sequence is a type of long exact sequence in cohomology induced by a spherical fibration
and expressing the cohomology groups of the total space in terms of those of the base plus correction. The
sequence may be obtained as a corollary of the Serre spectral sequence for the given fibration. It induces,
and is induced by, the Thom isomorphism.

Proposition 1.127. Let  be a commutative ring and let

⟶

↓

be a Serre fibration over a simply connected CW-complex with typical fiber (exmpl.) the n-sphere.

Then there exists an element ∈ + ( ; ) (in the ordinary cohomology of the total space with coefficients
in , called the Euler class of ) such that the cup product operation ∪ (−) sits in a long exact sequence
of cohomology groups of the form

⋯ → ( ; ) ⟶
*

( ; ) ⟶ − ( ; ) ®¾¾
∪(−) + ( ; ) → ⋯ .

(e.g. Switzer 75, section 15.30, Kochman 96, corollary 2.2.6)

Proof. Under the given assumptions there is the corresponding Serre spectral sequence

, = ( ; ( ; )) ⇒ + ( ; ) .

Since the ordinary cohomology of the n-sphere fiber is concentrated in just two degees

( ; ) =
for = 0 and =

0 otherwise

the only possibly non-vanishing terms on the  page of this spectral sequence, and hence on all the further
pages, are in bidegrees ( • , 0) and ( • , ):

• , ≃ •( ; ) , and • , ≃ •( ; ) .

As a consequence, since the differentials  on the th page of the Serre spectral sequence have bidegree
( + 1, − ), the only possibly non-vanishing differentials are those on the ( + 1)-page of the form

+
•, ≃ •( ; )

+ ↓

+
• + + , ≃ • + + ( ; )

.

Now since the coefficients  is a ring, the Serre spectral sequence is multiplicative under cup product and
the differential is a derivation (of total degree 1) with respect to this product. (See at multiplicative spectral
sequence – Examples – AHSS for multiplicative cohomology.)

To make use of this, write

≔ 1 ∈ ( ; ) ⟶≃ +
,

for the unit in the cohomology ring •( ; ), but regarded as an element in bidegree (0, ) on the ( + 1)-page
of the spectral sequence. (In particular  does not denote the unit in bidegree (0, 0), and hence + ( ) need
not vanish; while by the derivation property, it does vanish on the actual unit 1 ∈ ( ; ) ≃ +

, .)

Write

≔ + ( ) ∈ +
+ , ⟶≃ + ( ; )

for the image of this element under the differential. We will show that this is the Euler class in question.
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To that end, notice that every element in +
• ,  is of the form ⋅  for ∈ +

•, ≃ •( ; ).

(Because the multiplicative structure gives a group homomorphism ⋅ (−): •( ; ) ≃ +
, → +

, ≃ •( ; ),
which is an isomorphism because the product in the spectral sequence does come from the cup product in
the cohomology ring, see for instance (Kochman 96, first equation in the proof of prop. 4.2.9), and since
hence  does act like the unit that it is in •( ; )).

Now since +  is a graded derivation and vanishes on +
• ,  (by the above degree reasoning), it follows that

its action on any element is uniquely fixed to be given by the product with :

+ ( ⋅ ) = + ( ) ⋅ + (−1) ⋅ + ( )
=

= ⋅
.

This shows that +  is identified with the cup product operation in question:

+
, ≃ ( ; )

+ ↓ ↓ ∪(−)

+
+ + , ≃ + + ( ; )

.

In summary, the non-vanishing entries of the -page of the spectral sequence sit in exact sequences like
so

0

↓
,

( + ) ↓

+
, ≃ ( ; )

+ ↓ ↓ ∪(−)

+
+ + , ≃ + + ( ; )

( + ) ↓
+ + ,

↓

0

.

Finally observe (lemma 1.128) that due to the sparseness of the -page, there are also short exact
sequences of the form

0 → , ⟶ ( ; ) ⟶ − , → 0 .

Concatenating these with the above exact sequences yields the desired long exact sequence.  ▮

Lemma 1.128. Consider a cohomology spectral sequence converging to some filtered graded abelian group
• • such that

• = •;1. 

= 0;2. 

, = 0 unless = 0 or = ,3. 

for some ∈ ℕ, ≥ 1. Then there are short exact sequences of the form

0 → , ⟶ ⟶ − , → 0 .

(e.g. Switzer 75, p. 356)

Proof. By definition of convergence of a spectral sequence, the ,  sit in short exact sequences of the form

0 → + + ⟶ + ⟶ , → 0 .

So when , = 0 then the morphism  above is an isomorphism.

We may use this to either shift away the filtering degree
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if ≥  then + = ( − )+ ( − )+( + ) ®¾
≃

−
( − )+( + ) = + ≃ + ;

or to shift away the offset of the filtering to the total degree:

if 0 ≤ − 1 ≤ − 1 then + + = + ( + )+( − ) ®¾¾¾
≃

−( − )
+ ( + )+( − ) = + +

Moreover, by the assumption that if < 0 then + = 0, we also get

≃ , .

In summary this yields the vertical isomorphisms

0 → + + ⟶ + ⟶ , → 0
−( − )

↓≃
−

↓≃ ↓=

0 → + + ≃ + , ⟶ + ⟶ , → 0

and hence with the top sequence here being exact, so is the bottom sequence.  ▮

Thom isomorphism

Proposition 1.129. Let →  be a topological vector bundle of rank > 0 over a simply connected
CW-complex . Let  be a commutative ring.

There exists an element ∈ (Th( ); ) (in the ordinary cohomology, with coefficients in , of the Thom
space of , called a Thom class) such that forming the cup product with  induces an isomorphism

•( ; ) ®¾¾¾
∪(−) ˜ • + (Th( ); )

of degree  from the unreduced cohomology group of  to the reduced cohomology of the Thom space of
.

Proof. Choose an orthogonal structure on . Consider the fiberwise cofiber

≔ ( )/ ( )

of the inclusion of the unit sphere bundle into the unit disk bundle of  (def. 1.101).

− ↪ ⟶

↓ ↓ ↓

( ) ↪ ( ) ⟶

↓ ↓ ↓

= =

Observe that this has the following properties

→  is an n-sphere fiber bundle, hence in particular a Serre fibration;1. 

the Thom space Th( ) ≃ /  is the quotient of  by the base space, because of the pasting law applied
to the following pasting diagram of pushout squares

( ) ⟶ ( )

↓ (po) ↓

⟶ ( )/ ( )

↓ (po) ↓

* ⟶ Th( )

2. 

hence the reduced cohomology of the Thom space is (def.) the relative cohomology of  relative 

˜ •(Th( ); ) ≃ •( , ; ) .

3. 

→  has a global section →  (given over any point ∈  by the class of any point in the fiber of
( ) →  over ; or abstractly: induced via the above pushout by the commutation of the projections

from ( ) and from ( ), respectively).

4. 
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In the following we write •(−) ≔ •(−; ), for short.

By the first point, there is the Thom-Gysin sequence (prop. 1.127), an exact sequence running vertically in
the following diagram

•( )

* ↓ ↘≃

˜ •(Th( )) ⟶ •( ) ⟶
*

•( )

↓
• − ( )

.

By the second point above this is split, as shown by the diagonal isomorphism in the top right. By the third
point above there is the horizontal exact sequence, as shown, which is the exact sequence in relative
cohomology ⋯ → •( , ) → •( ) → •( ) → ⋯ induced from the section ↪ .

Hence using the splitting to decompose the term in the middle as a direct sum, and then using horizontal
and vertical exactness at that term yields

•( )

( , ) ↓ ↘≃

˜ •(Th( )) ⎯⎯⎯
( , )

˜ •(Th( )) ⊕ •( ) ®¾¾
( , )

•( )

↓( , )

• − ( )

and hence an isomorphism

˜ •(Th( )) ⟶≃ • − ( ) .

To see that this is the inverse of a morphism of the form ∪ (−), inspect the proof of the Gysin sequence.
This shows that • − ( ) here is identified with elements that on the second page of the corresponding Serre
spectral sequence are cup products

∪

with  fiberwise the canonical class 1 ∈ ( ) and with ∈ •( ) any element. Since •(−; ) is a
multiplicative cohomology theory (because the coefficients form a ring ), cup producs are preserved as one
passes to the -page of the spectral sequence, and the morphism •( ) → •( ) above, hence also the

isomorphism ˜
•
(Th( )) → •( ), factors through the -page (see towards the end of the proof of the Gysin

sequence). Hence the image of  on the -page is the Thom class in question.  ▮

Orientation in generalized cohomology

Idea. From the way the Thom isomorphism via a Thom class works in ordinary cohomology (as above), one
sees what the general concept of orientation in generalized cohomology and of fiber integration in
generalized cohomology is to be.

Specifically we are interested in complex oriented cohomology theories , characterized by an orientation
class on infinity complex projective space ℂ  (def. 1.134), the classifying space for complex line bundles,
which restricts to a generator on ↪ ℂ .

(Another important application is given by taking = KU to be topological K-theory. Then orientation is
spin^c structure and fiber integration with coefficients in  is fiber integration in K-theory. This is classical
index theory.)

Literature. (Kochman 96, section 4.3, Adams 74, part III, section 10, Lurie 10, lecture 5)

Riccardo Pedrotti, Complex oriented cohomology – Orientation in generalized cohomology, 2016 (pdf)

Universal -orientation

Definition 1.130. Let  be a multiplicative cohomology theory (def. 1.26) and let →  be a topological
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vector bundle of rank . Then an -orientation or -Thom class on  is an element of degree 

∈ ˜ (Th( ))

in the reduced -cohomology ring of the Thom space (def. 1.101) of , such that for every point ∈  its
restriction *  along

: ≃ Th(ℝ ) ®¾¾¾
( )

Th( )

(for ℝ ⎯  the fiber of  over ) is a generator, in that it is of the form

* = ⋅

for

∈ ˜ ( ) a unit in •;

∈ ˜ ( ) the image of the multiplicative unit under the suspension isomorphism ˜ ( ) →≃ ˜ ( ).

(e.g. Kochmann 96, def. 4.3.4)

Remark 1.131. Recall that a (B,f)-structure ℬ (def. 1.98) is a system of Serre fibrations ⟶ ( ) over
the classifying spaces for orthogonal structure equipped with maps

, + : ⟶ +

covering the canonical inclusions of classifying spaces. For instance for → ( ) a compatible system of
topological group homomorphisms, then the ( , )-structure given by the classifying spaces  (possibly
suitably resolved for the maps → ( ) to become Serre fibrations) defines G-structure.

Given a ( , )-structure, then there are the pullbacks ℬ ≔ * ( ( ) ×
( )

ℝ ) of the universal vector bundles

over ( ), which are the universal vector bundles equipped with ( , )-structure

ℬ ⟶ ( ) ×
( )

ℝ

↓ (pb) ↓

⟶ ( )

.

Finally recall that there are canonical morphisms (prop.)

: ℝ ⊕ ℬ ⟶ +
ℬ

Definition 1.132. Let  be a multiplicative cohomology theory and let ℬ be a multiplicative (B,f)-structure.
Then a universal -orientation for vector bundles with ℬ-structure is an -orientation, according to
def. 1.130, for each rank-  universal vector bundle with ℬ-structure:

∈ ˜ (Th( ℬ)) ∀ ∈ ℕ

such that these are compatible in that

for all ∈ ℕ then

= *
+ ,

where

∈ ˜ (Th( )) ≃ ˜ +
( Th( )) ≃ ˜ +

(Th(ℝ⊕ ))

(with the first isomorphism is the suspension isomorphism of  and the second exhibiting the
homeomorphism of Thom spaces Th(ℝ⊕ ) ≃ Th( ) (prop. 1.106) and where

* : ˜
+
(Th( + )) ⟶ ˜ +

(Th(ℝ⊕ ))

is pullback along the canonical :ℝ⊕ → +  (prop. 1.110).

1. 

for all , ∈ ℕ then

+ ⋅ + = + .

2. 
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Proposition 1.133. A universal -orientation, in the sense of def. 1.132, for vector bundles with (B,f)-
structure ℬ, is equivalently (the homotopy class of) a homomorphism of ring spectra

: ℬ ⟶

from the universal ℬ-Thom spectrum to a spectrum which via the Brown representability theorem
(theorem 1.30) represents the given generalized (Eilenberg-Steenrod) cohomology theory  (and which
we denote by the same symbol).

Proof. The Thom spectrum ℬ has a standard structure of a CW-spectrum. Let now  denote a sequential
Omega-spectrum representing the multiplicative cohomology theory of the same name. Since, in the
standard model structure on topological sequential spectra, CW-spectra are cofibrant (prop.) and Omega-
spectra are fibrant (thm.) we may represent all morphisms in the stable homotopy category (def.) by actual
morphisms

: ℬ ⟶

of sequential spectra (due to this lemma).

Now by definition (def.) such a homomorphism is precissely a sequence of base-point preserving continuous
functions

: ( ℬ) = Th( ℬ) ⟶

for ∈ ℕ, such that they are compatible with the structure maps  and equivalently with their
( ∧ (−) ⊣ Maps( , −)

*
)-adjuncts ˜ , in that these diagrams commute:

∧ Th( ℬ) ®¾¾¾
∧

∧
ℬ
↓ ↓

Th( +
ℬ ) ®¾¾

+
+

↔

Th( ℬ) ⟶

˜ ℬ
↓ ↓ ˜

Maps( , Th( +
ℬ )) ®¾¾¾¾¾

( , + )
*

Maps( , + )
*

for all ∈ ℕ.

First of all this means (via the identification given by the Brown representability theorem, see prop. 1.33,
that the components  are equivalently representatives of elements in the cohomology groups

∈ ˜ (Th( ℬ))

(which we denote by the same symbol, for brevity).

Now by the definition of universal Thom spectra (def. 1.111, def. 1.114), the structure map ℬ is just the
map :ℝ⊕ Th( ℬ) → Th( +

ℬ ) from above.

Moreover, by the Brown representability theorem, the adjunct ˜ ∘  (on the right) of ∘ ∧  (on the left)

is what represents (again by prop. 1.33) the image of

∈ (Th( ℬ))

under the suspension isomorphism. Hence the commutativity of the above squares is equivalently the first
compatibility condition from def. 1.132: ≃ *

+  in ˜
+
(Th(ℝ⊕ ℬ))

Next,  being a homomorphism of ring spectra means equivalently (we should be modelling ℬ and  as
structured spectra (here.) to be more precise on this point, but the conclusion is the same) that for all
, ∈ ℕ then

Th( ℬ ) ∧ Th( ℬ ) ⟶ Th( + )

∧
↓ ↓ +

∧ ⟶
⋅ +

.

This is equivalently the condition ⋅ ≃ + .

Finally, since ℬ is a ring spectrum, there is an essentially unique multiplicative homomorphism from the
sphere spectrum

⟶ ℬ .
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This is given by the component maps

: ≃ Th(ℝ ) ⟶ Th( ℬ)

that are induced by including the fiber of ℬ.

Accordingly the composite

⟶ ℬ⟶

has as components the restrictions *  appearing in def. 1.130. At the same time, also  is a ring spectrum,

hence it also has an essentially unique multiplicative morphism → , which hence must agree with * , up
to homotopy. If we represent  as a symmetric ring spectrum, then the canonical such has the required
property:  is the identity element in degree 0 (being a unit of an ordinary ring, by definition) and hence 
is necessarily its image under the suspension isomorphism, due to compatibility with the structure maps and
using the above analysis.  ▮

Complex projective space

For the fine detail of the discussion of complex oriented cohomology theories below, we recall basic facts
about complex projective space.

Complex projective space ℂ  is the projective space  for = ℂ being the complex numbers (and for
∈ ℕ), a complex manifold of complex dimension  (real dimension 2 ). Equivalently, this is the complex

Grassmannian Gr (ℂ + ) (def. 1.84). For the special case = 1 then ℂ ≃  is the Riemann sphere.

As  ranges, there are natural inclusions

* = ℂ ↪ ℂ ↪ ℂ ↪ ℂ ↪ ⋯ .

The sequential colimit over this sequence is the infinite complex projective space ℂ . This is a model for
the classifying space (1) of circle principal bundles/complex line bundles (an Eilenberg-MacLane space
(ℤ, 2)).

Definition 1.134. For ∈ ℕ, then complex -dimensional complex projective space is the complex
manifold (often just regarded as its underlying topological space) defined as the quotient

ℂ ≔ (ℂ + − {0})/∼

of the Cartesian product of ( + 1)-copies of the complex plane, with the origin removed, by the
equivalence relation

( ∼ ) ⇔ ( = ⋅ )

for some ∈ ℂ − {0} and using the canonical multiplicative action of ℂ on ℂ + .

The canonical inclusions

ℂ + ↪ ℂ +

induce canonical inclusions

ℂ ↪ ℂ + .

The sequential colimit over this sequence of inclusions is the infinite complex projective space

ℂ ≔ lim¬¾ ℂ .

The following equivalent characterizations are immediate but useful:

Proposition 1.135. For ∈ ℕ then complex projective space, def. 1.134, is equivalently the complex
Grassmannian

ℂ ≃ Gr (ℂ + ) .

Proposition 1.136. For ∈ ℕ then complex projective space, def. 1.134, is equivalently

the coset

ℂ ≃ ( + 1)/( ( ) × (1)) ,

1. 
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the quotient of the (2n+1)-sphere by the circle group ≃ { ∈ ℂ|| | = 1}2. 

ℂ ≃ + / .

Proof. To see the second characterization from def. 1.134:

With | − | :ℂ ⟶ ℝ the standard norm, then every element ⇀ ∈ ℂ +  is identified under the defining
equivalence relation with

1
|⇀|

⇀ ∈ − ↪ ℂ +

lying on the unit (2 − 1)-sphere. This fixes the action of ℂ − 0 up to a remaining action of complex numbers
of unit absolute value. These form the circle group .

The first characterization follows via prop. 1.135 from the general discusion at Grassmannian. With this the
second characterization follows also with the coset identification of the (2 + 1)-sphere: + ≃ ( + 1)/ ( )

(exmpl.).  ▮

Proposition 1.137. There is a CW-complex structure on complex projective space ℂ  (def. 1.134) for
∈ ℕ, given by induction, where ℂ +  arises from ℂ  by attaching a single cell of dimension 2( + 1) with

attaching map the projection + ⟶ ℂ  from prop. 1.136:

+ ⟶ + / ≃ ℂ

+ ↓ (po) ↓

+ ⟶ ℂ +

.

Proof. Given homogenous coordinates ( , , ⋯, , + , + ) ∈ ℂ +  for ℂ + , let

≔ −arg( + )

be the phase of + . Then under the equivalence relation defining ℂ +  these coordinates represent the
same element as

1
|⇀|

( , , ⋯, + , ) ,

where

= | + | ∈ [0, 1) ⊂ ℂ

is the absolute value of + . Representatives ⇀′ of this form (|⇀′ | = 1 and ′ + ∈ [0, 1]) parameterize the
2n+2-disk +  (2 + 3 real parameters subject to the one condition that the sum of their norm squares is
unity) with boundary the (2 + 1)-sphere at = 0. The only remaining part of the action of ℂ − {0} which fixes
the form of these representatives is  acting on the elements with = 0 by phase shifts on the , ⋯, + .
The quotient of this remaining action on ( + ) identifies its boundary + -sphere with ℂ , by prop.
1.136.  ▮

Proposition 1.138. For ∈ Ab any abelian group, then the ordinary homology groups of complex
projective space ℂ  with coefficients in  are

(ℂ , ) ≃
for even and ≤ 2

0 otherwise
.

Similarly the ordinary cohomology groups of ℂ  is

(ℂ , ) ≃
for even and ≤ 2

0 otherwise
.

Moreover, if  carries the structure of a ring = ( , ⋅ ), then under the cup product the cohomology ring of
ℂ  is the the graded ring

•(ℂ , ) ≃ [ ]/( + )

which is the quotient of the polynomial ring on a single generator  in degree 2, by the relation that
identifies cup products of more than -copies of the generator  with zero.

Finally, the cohomology ring of the infinite-dimensional complex projective space is the formal power
series ring in one generator:
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•(ℂ , ) ≃ [[ ]] .

(Or else the polynomial ring [ ], see remark 1.139)

Proof. First consider the case that the coefficients are the integers = ℤ.

Since ℂ  admits the structure of a CW-complex by prop. 1.137, we may compute its ordinary homology
equivalently as its cellular homology (thm.). By definition (defn.) this is the chain homology of the chain
complex of relative homology groups

⋯ ®¾ + ((ℂ ) + , (ℂ ) + ) ®¾ + ((ℂ ) + , (ℂ ) ) ®¾ ((ℂ ) , (ℂ ) − ) ®¾ ⋯ ,

where (−)  denotes the th stage of the CW-complex-structure. Using the CW-complex structure provided

by prop. 1.137, then there are cells only in every second degree, so that

(ℂ ) + = (ℂ )

for all ∈ ℕ. It follows that the cellular chain complex has a zero group in every second degree, so that all
differentials vanish. Finally, since prop. 1.137 says that (ℂ ) +  arises from (ℂ ) + = (ℂ )  by

attaching a single 2 + 2-cell it follows that (by passage to reduced homology)

(ℂ , ℤ) ≃ ˜ ( )((ℂ ) /(ℂ ) − ) ≃ ˜ ( ) ≃ ℤ .

This establishes the claim for ordinary homology with integer coefficients.

In particular this means that (ℂ , ℤ) is a free abelian group for all . Since free abelian groups are the
projective objects in Ab (prop.) it follows (with the discussion at derived functors in homological algebra)
that the Ext-groups vanishe:

Ext ( (ℂ , ℤ), ) = 0

and the Tor-groups vanishes:

Tor ( (ℂ ), ) = 0 .

With this, the statement about homology and cohomology groups with general coefficients follows with the
universal coefficient theorem for ordinary homology (thm.) and for ordinary cohomology (thm.).

Finally to see the action of the cup product: by definition this is the composite

∪ : •(ℂ , ) ⊗ •(ℂ , ) ⟶ •(ℂ × ℂ , ) ⟶
*

•(ℂ , )

of the “cross-product” map that appears in the Kunneth theorem, and the pullback along the diagonal
:ℂ → ℂ × ℂ .

Since, by the above, the groups (ℂ , ) ≃ [2 ] and + (ℂ , ) = 0 are free and finitely generated, the
Kunneth theorem in ordinary cohomology applies (prop.) and says that the cross-product map above is an
isomorphism. This shows that under cup product pairs of generators are sent to a generator, and so the
statement •(ℂ , ) ≃ [ ]( + ) follows.

This also implies that the projection maps

•((ℂ ) + , ) = •(ℂ + , ) → •(ℂ + , ) = •((ℂ ) , )

are all epimorphisms. Therefore this sequence satisfies the Mittag-Leffler condition (def. 1.55, example
1.56) and therefore the Milnor exact sequence for cohomology (prop. 1.61) implies the last claim to be
proven:

•(ℂ , )

≃ •(lim¬¾ ℂ , )

≃ lim®¾
•(ℂ , )

≃ lim®¾ ( [ ]/(( ) + ))

≃ [[ ]] ,

where the last step is this prop..  ▮

Remark 1.139. There is in general a choice to be made in interpreting the cohomology groups of a
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multiplicative cohomology theory  (def. 1.26) as a ring:

a priori •( ) is a sequence

{ ( )} ∈ℤ

of abelian groups, together with a system of group homomorphisms

( ) ⊗ ( ) ⟶ + ( ) ,

one for each pair ( , ) ∈ ℤ × ℤ.

In turning this into a single ring by forming formal sums of elements in the groups ( ), there is in
general the choice of whether allowing formal sums of only finitely many elements, or allowing arbitrary
formal sums.

In the former case the ring obtained is the direct sum

⊕ ∈ℕ ( )

while in the latter case it is the Cartesian product

∈ℕ

( ) .

These differ in general. For instance if  is ordinary cohomology with integer coefficients and  is infinite
complex projective space ℂ , then (prop. 1.138))

( ) =
ℤ even

0 otherwise

and the product operation is given by

( ) ⊗ ( ) ⟶ ( + )( )

for all ,  (and zero in odd degrees, necessarily). Now taking the direct sum of these, this is the
polynomial ring on one generator (in degree 2)

⊕ ∈ℕ ( ) ≃ ℤ[ ] .

But taking the Cartesian product, then this is the formal power series ring

∈ℕ

( ) ≃ ℤ[[ ]] .

A priori both of these are sensible choices. The former is the usual choice in traditional algebraic topology.
However, from the point of view of regarding ordinary cohomology theory as a multiplicative cohomology
theory right away, then the second perspective tends to be more natural:

The cohomology of ℂ  is naturally computed as the inverse limit of the cohomolgies of the ℂ , each of
which unambiguously has the ring structure ℤ[ ]/(( ) + ). So we may naturally take the limit in the
category of commutative rings right away, instead of first taking it in ℤ-indexed sequences of abelian
groups, and then looking for ring structure on the result. But the limit taken in the category of rings gives
the formal power series ring (see here).

See also for instance remark 1.1. in Jacob Lurie: A Survey of Elliptic Cohomology.

Complex orientation

Definition 1.140. A multiplicative cohomology theory  (def. 1.26) is called complex orientable if the the
following equivalent conditions hold

The morphism

* : ( (1)) ⟶ ( )

is surjective.

1. 

The morphism2. 
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˜ * : ˜ ( (1)) ⟶ ˜ ( ) ≃ ( )

is surjective.

The element 1 ∈ ( ) is in the image of the morphism ˜*.3. 

A complex orientation on a multiplicative cohomology theory • is an element

∈ ˜ ( (1))

(the “first generalized Chern class”) such that

* = 1 ∈ ( ) .

Remark 1.141. Since (1) ≃ (ℤ, 2) is the classifying space for complex line bundles, it follows that a
complex orientation on • induces an -generalization of the first Chern class which to a complex line
bundle ℒ on  classified by : → (1) assigns the class (ℒ) ≔ * . This construction extends to a
general construction of -Chern classes.

Proposition 1.142. Given a complex oriented cohomology theory ( •, ) (def. 1.140), then there is an
isomorphism of graded rings

•(ℂ ) ≃ •( * )[[ ]]

between the -cohomology ring of infinite-dimensional complex projective space (def. 1.134) and the
formal power series (see remark 1.139) in one generator of even degree over the -cohomology ring of
the point.

Proof. Using the CW-complex-structure on ℂ  from prop. 1.137, given by inductively identifying ℂ +  with
the result of attaching a single 2 -cell to ℂ . With this structure, the unique 2-cell inclusion : ↪ ℂ  is
identified with the canonical map → (1).

Then consider the Atiyah-Hirzebruch spectral sequence (prop. 1.71) for the -cohomology of ℂ .

•(ℂ , •( * )) ⇒ •(ℂ ) .

Since, by prop. 1.138, the ordinary cohomology with integer coefficients of complex projective space is

•(ℂ , ℤ) ≃ ℤ[ ]/(( ) + ) ,

where  represents a unit in ( , ℤ) ≃ ℤ, and since similarly the ordinary homology of ℂ  is a free abelian
group, hence a projective object in abelian groups (prop.), the Ext-group vanishes in each degree
(Ext ( (ℂ ), •( * )) = 0) and so the universal coefficient theorem (prop.) gives that the second page of the
spectral sequence is

•(ℂ , •( * )) ≃
•( * )[ ]/( + ) .

By the standard construction of the Atiyah-Hirzebruch spectral sequence (here) in this identification the
element  is identified with a generator of the relative cohomology

((ℂ ) , (ℂ ) ) ≃ ˜ ( )

(using, by the above, that this  is the unique 2-cell of ℂ  in the standard cell model).

This means that  is a permanent cocycle of the spectral sequence (in the kernel of all differentials)
precisely if it arises via restriction from an element in (ℂ ) and hence precisely if there exists a complex
orientation  on . Since this is the case by assumption on ,  is a permanent cocycle. (For the fully
detailed argument see (Pedrotti 16)).

The same argument applied to all elements in •( * )[ ], or else the •( * )-linearity of the differentials (prop.
1.73), implies that all these elements are permanent cocycles.

Since the AHSS of a multiplicative cohomology theory is a multiplicative spectral sequence (prop.) this
implies that the differentials in fact vanish on all elements of •( * )[ ]/( + ), hence that the given AHSS
collapses on the second page to give

ℰ • , • ≃ •( * )[ ]/(( ) + )

or in more detail:
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ℰ , • ≃
•( * ) if ≤ 2 and even

0 otherwise
.

Moreover, since therefore all ℰ , • are free modules over •( * ), and since the filter stage inclusions
+ •( ) ↪ •( ) are •( * )-module homomorphisms (prop.) the extension problem (remark 1.70)

trivializes, in that all the short exact sequences

0 → + + •( ) ⟶ + •( ) ⟶ ℰ , • → 0

split (since the Ext-group Ext •(*)
(ℰ , • , −) = 0 vanishes on the free module, hence projective module ℰ , •).

In conclusion, this gives an isomorphism of graded rings

•(ℂ ) ≃ ⊕ ℰ , • ≃ •( * )[ ]/(( ) + ) .

A first consequence is that the projection maps

•((ℂ ) + ) = •(ℂ + ) → •(ℂ +) = •((ℂ ) )

are all epimorphisms. Therefore this sequence satisfies the Mittag-Leffler condition (def., exmpl.) and
therefore the Milnor exact sequence for generalized cohomology (prop.) finally implies the claim:

•( (1)) ≃ •(ℂ )

≃ •(lim¬¾ ℂ )

≃ lim®¾
•(ℂ )

≃ lim®¾ ( •( * )[ ]/(( ) + ))

≃ •( * )[[ ]] ,

where the last step is this prop..  ▮

S.3) Complex oriented cohomology

Idea. Given the concept of orientation in generalized cohomology as above, it is clearly of interest to
consider cohomology theories  such that there exists an orientation/Thom class on the universal vector
bundle over any classifying space  (or rather: on its induced spherical fibration), because then all
-associated vector bundles inherit an orientation.

Considering this for = ( ) the unitary groups yields the concept of complex oriented cohomology theory.

It turns out that a complex orientation on a generalized cohomology theory  in this sense is already given
by demanding that there is a suitable generalization of the first Chern class of complex line bundles in
-cohomology. By the splitting principle, this already implies the existence of generalized Chern classes

(Conner-Floyd Chern classes) of all degrees, and these are the required universal generalized Thom classes.

Where the ordinary first Chern class in ordinary cohomology is simply additive under tensor product of
complex line bundles, one finds that the composite of generalized first Chern classes is instead governed by
more general commutative formal group laws. This phenomenon governs much of the theory to follow.

Literature. (Kochman 96, section 4.3, Lurie 10, lectures 1-10, Adams 74, Part I, Part II, Pedrotti 16).

Chern classes

Idea. In particular ordinary cohomology HR is canonically a complex oriented cohomology theory. The
behaviour of general Conner-Floyd Chern classes to be discussed below follows closely the behaviour of the
ordinary Chern classes.

An ordinary Chern class is a characteristic class of complex vector bundles, and since there is the classifying
space  of complex vector bundles, the universal Chern classes are those of the universal complex vector
bundle over the classifying space , which in turn are just the ordinary cohomology classes in •( )

These may be computed inductively by iteratively applying to the spherical fibrations

− ⟶ ( − 1) ⟶ ( )
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the Thom-Gysin exact sequence, a special case of the Serre spectral sequence.

Pullback of Chern classes along the canonical map ( (1)) ⟶ ( ) identifies them with the elementary
symmetric polynomials in the first Chern class in ( (1)). This is the splitting principle.

Literature. (Kochman 96, section 2.2 and 2.3, Switzer 75, section 16, Lurie 10, lecture 5, prop. 6)

Existence

Proposition 1.143. The cohomology ring of the classifying space ( ) (for the unitary group ( )) is the
polynomial ring on generators { } =  of degree 2, called the Chern classes

•( ( ), ℤ) ≃ ℤ[ ,⋯, ] .

Moreover, for : ( ) ⟶ BU( ) the canonical inclusion for ≤ ∈ ℕ, then the induced pullback map on
cohomology

( )* : •( ( )) ⟶ •( ( ))

is given by

( )*( ) =
for 1 ≤ ≤

0 otherwise
.

(e.g. Kochmann 96, theorem 2.3.1)

Proof. For = 1, in which case (1) ≃ ℂ  is the infinite complex projective space, we have by prop. 1.138

•( (1)) ≃ ℤ[ ] ,

where  is the first Chern class. From here we proceed by induction. So assume that the statement has
been shown for − 1.

Observe that the canonical map ( − 1) → ( ) has as homotopy fiber the (2n-1)sphere (prop. 1.96)
hence there is a homotopy fiber sequence of the form

− ⟶ ( − 1) ⟶ ( ) .

Consider the induced Thom-Gysin sequence (prop. 1.127).

In odd degrees 2 + 1 < 2  it gives the exact sequence

⋯ → ( ( − 1)) ⟶ + − ( ( ))
≃

⟶ + ( ( )) ®¾
( )* + ( ( − 1))

≃

→ ⋯,

where the right term vanishes by induction assumption, and the middle term since ordinary cohomology
vanishes in negative degrees. Hence

+ ( ( )) ≃ 0 for 2 + 1 < 2

Then for 2 + 1 > 2  the Thom-Gysin sequence gives

⋯ → + − ( ( )) ⟶ + ( ( )) ®¾
( )* + ( ( − 1))

≃

→ ⋯ ,

where again the right term vanishes by the induction assumption. Hence exactness now gives that

+ − ( ( )) ⟶ + ( ( ))

is an epimorphism, and so with the previous statement it follows that

+ ( ( )) ≃ 0

for all .

Next consider the Thom Gysin sequence in degrees 2
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⋯ → − ( ( − 1))
≃

⟶ − ( ( )) ⟶ ( ( )) ®¾
( )*

( ( − 1)) ⟶ + − ( ( ))
≃

→ ⋯ .

Here the left term vanishes by the induction assumption, while the right term vanishes by the previous
statement. Hence we have a short exact sequence

0 → − ( ( )) ⟶ ( ( )) ®¾
( )*

( ( − 1)) → 0

for all . In degrees • ≤ 2  this says

0 → ℤ ®¾¾¾
∪(−) • ≤ ( ( )) ®¾

( )*
(ℤ[ ,⋯, − ])• ≤ → 0

for some Thom class ∈ ( ( )), which we identify with the next Chern class.

Since free abelian groups are projective objects in Ab, their extensions are all split (the Ext-group out of
them vanishes), hence the above gives a direct sum decomposition

• ≤ ( ( )) ≃ (ℤ[ ,⋯, − ])• ≤ ⊕ℤ⟨2 ⟩

≃ (ℤ[ ,⋯, ])• ≤
.

Now by another induction over these short exact sequences, the claim follows.  ▮

Splitting principle

Lemma 1.144. For ∈ ℕ let : ( (1) ) ⟶ ( ) be the canonical map. Then the induced pullback

operation on ordinary cohomology

* : •( ( ); ℤ) ⟶ •( (1) ; ℤ)

is a monomorphism.

A proof of lemma 1.144 via analysis of the Serre spectral sequence of ( )/ (1) → (1) → ( ) is
indicated in (Kochmann 96, p. 40). A proof via transfer of the Euler class of ( )/ (1)  is indicated at
splitting principle (here).

Proposition 1.145. For ≤ ∈ ℕ let : ( (1) ) ⟶ ( ) be the canonical map. Then the induced
pullback operation on ordinary cohomology is of the form

( )* : ℤ[ ,⋯, ] ⟶ ℤ[( ) ,⋯( ) ]

and sends the th Chern class  (def. 1.143) to the th elementary symmetric polynomial in the  copies
of the first Chern class:

( )* : ↦ (( ) ,⋯, ( ) ) ≔
≤ ≤⋯≤ ≤

( ) ⋯( ) .

Proof. First consider the case = 1.

The classifying space (1) (def. 1.91) is equivalently the infinite complex projective space ℂ . Its ordinary
cohomology is the polynomial ring on a single generator , the first Chern class (prop. 1.138)

•( (1)) ≃ ℤ[ ] .

Moreover,  is the identity and the statement follows.

Now by the Künneth theorem for ordinary cohomology (prop.) the cohomology of the Cartesian product of 
copies of (1) is the polynomial ring in  generators

•( (1) ) ≃ ℤ[( ) ,⋯, ( ) ] .

By prop. 1.143 the domain of ( )* is the polynomial ring in the Chern classes { }, and by the previous
statement the codomain is the polynomial ring on  copies of the first Chern class

( )* : ℤ[ ,⋯, ] ⟶ ℤ[( ) ,⋯, ( ) ] .

This allows to compute ( )*( ) by induction:
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Consider ≥ 2 and assume that ( − ) −
* ( ) = (( ) ,⋯, ( )( − )). We need to show that then also

( )*( ) = (( ) ,⋯, ( ) ).

Consider then the commuting diagram

(1) − ®¾¾¾− ( − 1)

^ ↓ ↓ ^

(1) ⟶ ( )

where both vertical morphisms are induced from the inclusion

ℂ − ↪ ℂ

which omits the th coordinate.

Since two embeddings ^ , ^ : ( − 1) ↪ ( ) differ by conjugation with an element in ( ), hence by an inner

automorphism, the maps ^  and ^  are homotopic, and hence ( ^)* = ( ^)*, which is the morphism from

prop. 1.143.

By that proposition, ( ^)* is the identity on  and hence by induction assumption

( − )*( ^)* = ( − )*

= (( ) ,⋯, ( ) ,⋯, ( ) )
.

Since pullback along the left vertical morphism sends ( )  to zero and is the identity on the other

generators, this shows that

( )*( ) ≃ (( ) ,⋯, ( ) ,⋯, ( ) ) mod( ) .

This implies the claim for < .

For the case =  the commutativity of the diagram and the fact that the right map is zero on  by prop.
1.143 shows that the element ( ^)*( )* = 0 for all 1 ≤ ≤ . But by lemma 1.144 the morphism ( )*, is

injective, and hence ( )*( ) is non-zero. Therefore for this to be annihilated by the morphisms that send
( )  to zero, for all , the element must be proportional to all the ( ) . By degree reasons this means that it

has to be the product of all of them

( )*( ) = ( ) ⊗ ( ) ⊗⋯⊗ ( )

= (( ) ,⋯, ( ) )
.

This completes the induction step, and hence the proof.  ▮

Proposition 1.146. For ≤ ∈ ℕ, consider the canonical map

, − : ( ) × ( − ) ⟶ ( )

(which classifies the Whitney sum of complex vector bundles of rank  with those of rank − ). Under
pullback along this map the universal Chern classes (prop. 1.143) are given by

( , − )*( ) =
=

⊗ − ,

where we take = 1 and = 0 ∈ •( ( )) if > .

So in particular

( , − )*( ) = ⊗ − .

e.g. (Kochmann 96, corollary 2.3.4)

Proof. Consider the commuting diagram
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•( ( )) ®¾¾¾
, −*

•( ( ))⊗ •( ( − ))

*
↓ ↓

* ⊗ −*

•( (1) ) ≃ •( (1) ) ⊗ •( (1) − )

.

This says that for all  then

( * ⊗ −
* ) , −

* ( ) = * ( )

= (( ) ,⋯, ( ) )
,

where the last equation is by prop. 1.145.

Now the elementary symmetric polynomial on the right decomposes as required by the left hand side of this
equation as follows:

(( ) ,⋯, ( ) ) =
=

(( ) ,⋯, ( ) − ) ⋅ − (( ) − + , ⋯, ( ) ) ,

where we agree with (( ) ,⋯, ( ) ) = 0 if > . It follows that

( * ⊗ −
* ) , −

* ( ) = ( * ⊗ −
* )

=

⊗ − .

Since ( * ⊗ −
* ) is a monomorphism by lemma 1.144, this implies the claim.  ▮

Conner-Floyd Chern classes

Idea. For  a complex oriented cohomology theory, then the generators of the -cohomology groups of the
classifying space  are called the Conner-Floyd Chern classes, in •( ).

Using basic properties of the classifying space (1) via its incarnation as the infinite complex projective
space ℂ , one finds that the Atiyah-Hirzebruch spectral sequences

(ℂ , ( )) ⇒ •(ℂ )

collapse right away, and that the inverse system which they form satisfies the Mittag-Leffler condition.
Accordingly the Milnor exact sequence gives that the ordinary first Chern class  generates, over •( ), all
Conner-Floyd classes over (1):

•( (1)) ≃ •( )[[ ]] .

This is the key input for the discussion of formal group laws below.

Combining the Atiyah-Hirzebruch spectral sequence with the splitting principle as for ordinary Chern classes
above yields, similarly, that in general Conner-Floyd classes are generated, over •( ), from the ordinary
Chern classes.

Finally one checks that Conner-Floyd classes canonically serve as Thom classes for -cohomology of the
universal complex vector bundle, thereby showing that complex oriented cohomology theories are indeed
canonically oriented on (spherical fibrations of) complex vector bundles.

Literature. (Kochman 96, section 4.3 Adams 74, part I.4, part II.2 II.4, part III.10, Lurie 10, lecture 5)

Proposition 1.147. Given a complex oriented cohomology theory  with complex orientation , then the
-generalized cohomology of the classifying space ( ) is freely generated over the graded commutative

ring •( ) (prop.) by classes  for 0 ≤ ≤  of degree 2 , these are called the Conner-Floyd-Chern
classes

•( ( )) ≃ •( )[[ , , ⋯, ]] .

Moreover, pullback along the canonical inclusion ( ) → ( + 1) is the identity on  for ≤  and sends

+  to zero.

For  being ordinary cohomology, this reduces to the ordinary Chern classes of prop. 1.143.

For details see (Pedrotti 16, prop. 3.1.14).
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Formal group laws of first CF-Chern classes

Idea. The classifying space (1) for complex line bundles is a homotopy type canonically equipped with
commutative group structure (infinity-group-structure), corresponding to the tensor product of complex line
bundles. By the above, for  a complex oriented cohomology theory the first Conner-Floyd Chern class of
these complex line bundles generates the -cohomology of (1), it follows that the cohomology ring
•( (1)) ≃ •( )[[ ]] behaves like the ring of •( )-valued functions on a 1-dimensional commutative formal

group equipped with a canonical coordinate function . This is called a formal group law over the graded
commutative ring •( ) (prop.).

On abstract grounds it follows that there exists a commutative ring  and a universal (1-dimensional
commutative) formal group law ℓ over . This is called the Lazard ring. Lazard's theorem identifies this ring
concretely: it turns out to simply be the polynomial ring on generators in every even degree.

Further below this has profound implications on the structure theory for complex oriented cohomology. The
Milnor-Quillen theorem on MU identifies the Lazard ring as the cohomology ring of the Thom spectrum MU,
and then the Landweber exact functor theorem, implies that there are lots of complex oriented cohomology
theories.

Literature. (Kochman 96, section 4.4, Lurie 10, lectures 1 and 2)

Formal group laws

Definition 1.148. An (commutative) adic ring is a (commutative) topological ring  and an ideal ⊂  such
that

the topology on  is the -adic topology;1. 

the canonical morphism

⟶ lim¬¾ ( / )

to the limit over quotient rings by powers of the ideal is an isomorphism.

2. 

A homomorphism of adic rings is a ring homomorphism that is also a continuous function (hence a
function that preserves the filtering ⊃ ⋯ ⊃ / ⊃ / ). This gives a category AdicRing and a subcategory
AdicCRing of commutative adic rings.

The opposite category of AdicRing (on Noetherian rings) is that of affine formal schemes.

Similarly, for  any fixed commutative ring, then adic rings under  are adic -algebras. We write Adic Alg
and Adic CAlg for the corresponding categories.

Example 1.149. For  a commutative ring and ∈ ℕ then the formal power series ring

[[ , , ⋯, ]]

in variables with coefficients in  and equipped with the ideal

= ( ,⋯, )

is an adic ring (def. 1.148).

Proposition 1.150. There is a fully faithful functor

AdicRing ↪ ProRing

from adic rings (def. 1.148) to pro-rings, given by

( , ) ↦ (( / •)) ,

i.e. for , ∈ AdicRing two adic rings, then there is a natural isomorphism

Hom ( , ) ≃ lim¬¾ lim®¾ Hom ( / , / ) .

Definition 1.151. For ∈ CRing a commutative ring and for ∈ ℕ, a formal group law of dimension  over
 is the structure of a group object in the category Adic CAlg  from def. 1.148 on the object [[ , ⋯, ]]

from example 1.149.
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Hence this is a morphism

: [[ ,⋯, ]] ⟶ [[ ,⋯, , , ⋯, ]]

in Adic CAlg satisfying unitality, associativity.

This is a commutative formal group law if it is an abelian group object, hence if it in addition satisfies
the corresponding commutativity condition.

This is equivalently a set of  power series  of 2  variables , …, , , …,  such that (in notation

= ( ,…, ), = ( ,…, ), ( , ) = ( ( , ), …, ( , )))

( , ( , )) = ( ( , ), )
( , ) = + + higher order terms

Example 1.152. A 1-dimensional commutative formal group law according to def. 1.151 is equivalently a
formal power series

( , ) =
, ≥

,

(the image ]under\muinR[x,y]oftheelementt \in R [t]$) such that

(unitality)

( , 0) =

1. 

(associativity)

( , ( , )) = ( ( , ), ) ;

2. 

(commutativity)

( , ) = ( , ) .

3. 

The first condition means equivalently that

, =
1 if = 0

0 otherwise
, , =

1 if = 0

0 otherwise
.

Hence  is necessarily of the form

( , ) = + +
, ≥

, .

The existence of inverses is no extra condition: by induction on the index  one finds that there exists a
unique

( ) =
≥

( )

such that

( , iota( )) = , ( ( ), ) = .

Hence 1-dimensional formal group laws over  are equivalently monoids in Adic CAlg  on [[ ]].

Formal group laws from complex orientation

Let again (1) be the classifying space for complex line bundles, modeled, in particular, by infinite complex
projective space ℂ ).

Lemma 1.153. There is a continuous function

: ℂ × ℂ ⟶ ℂ

which represents the tensor product of line bundles in that under the defining equivalence, and for  any
paracompact topological space, then
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[ , ℂ × ℂ ] ≃ ℂ LineBund( )/ ∼ × ℂLineBund( )/ ∼

[ , ] ↓ ↓⊗

[ , ℂ ] ≃ ℂ LineBund( )/ ∼

,

where [−, −] denotes the hom-sets in the (Serre-Quillen-)classical homotopy category and ℂLineBund( )/ ∼
denotes the set of isomorphism classes of complex line bundles on .

Together with the canonical point inclusion * → ℂ , this makes ℂ  an abelian group object in the
classical homotopy category.

Proof. By the Yoneda lemma (the fully faithfulness of the Yoneda embedding) there exists such a morphism
ℂ × ℂ ⟶ ℂ  in the classical homotopy category. But since ℂ  admits the structure of a CW-complex
(prop. 1.137)) it is cofibrant in the standard model structure on topological spaces (thm.), as is its Cartesian
product with itself (prop.). Since moreover all spaces are fibrant in the classical model structure on
topological spaces, it follows (by this lemma) that there is an actual continuous function representing that
morphism in the homotopy category.

That this gives the structure of an abelian group object now follows via the Yoneda lemma from the fact that
each ℂLineBund( )/ ∼  has the structure of an abelian group under tensor product of line bundles, with the

trivial line bundle (wich is classified by maps factoring through * → ℂ ) being the neutral element, and that
this group structure is natural in .  ▮

Remark 1.154. The space (1) ≃ ℂ  has in fact more structure than that of a homotopy group from
lemma 1.153. As an object of the homotopy theory represented by the classical model structure on
topological spaces, it is a 2-group, a 1-truncated infinity-group.

Proposition 1.155. Let ( , ) be a complex oriented cohomology theory. Under the identification

•(ℂ ) ≃ •( )[[ ]] , •(ℂ × ℂ ) ≃ •( )[[ ⊗ 1, 1 ⊗ ]]

from prop. 1.142, the operation

•( )[[ ]] ≃ •(ℂ ) ⟶ •(ℂ × ℂ ) ≃ •( )[[ ⊗ 1, 1 ⊗ ]]

of pullback in -cohomology along the maps from lemma 1.153 constitutes a 1-dimensional graded-
commutative formal group law (example 1.152)over the graded commutative ring •( ) (prop.). If we
consider  to be in degree 2, then this formal group law is compatibly graded.

Proof. The associativity and commutativity conditions follow directly from the respective properties of the
map  in lemma 1.153. The grading follows from the nature of the identifications in prop. 1.142.  ▮

Remark 1.156. That the grading of  in prop. 1.155 is in negative degree is because by definition

•( ) = • =
−•

(rmk.).

Under different choices of orientation, one obtains different but isomorphic formal group laws.

The universal 1d commutative formal group law and Lazard’s theorem

It is immediate that there exists a ring carrying a universal formal group law. For observe that for
∑ , ,  an element in a formal power series algebra, then the condition that it defines a formal group law

is equivalently a sequence of polynomial equations on the coefficients . For instance the commutativity
condition means that

, = ,

and the unitality constraint means that

=
1 if = 1

0 otherwise
.

Similarly associativity is equivalently a condition on combinations of triple products of the coefficients. It is
not necessary to even write this out, the important point is only that it is some polynomial equation.

This allows to make the following definition
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Definition 1.157. The Lazard ring is the graded commutative ring generated by elenebts  in degree
2( + − 1) with , ∈ ℕ

= ℤ[ ]/(relations 1, 2, 3 below)

quotiented by the relations

=1. 

= = 1; ∀ ≠ 1: = 02. 

the obvious associativity relation3. 

for all , , .

The universal 1-dimensional commutative formal group law is the formal power series with
coefficients in the Lazard ring given by

ℓ( , ) ≔
,

∈ [[ , ]] .

Remark 1.158. The grading is chosen with regards to the formal group laws arising from complex oriented
cohomology theories (prop.) where the variable  naturally has degree -2. This way

deg( ) = deg( , ) + deg( ) + deg( ) = −2 .

The following is immediate from the definition:

Proposition 1.159. For every ring  and 1-dimensional commutative formal group law  over  (example
1.152), there exists a unique ring homomorphism

: ⟶

from the Lazard ring (def. 1.157) to , such that it takes the universal formal group law ℓ to 

*
ℓ = .

Proof. If the formal group law  has coefficients { , }, then in order that 
*
ℓ = , i.e. that

,

( , ) =
,

,

it must be that  is given by

( , ) = ,

where ,  are the generators of the Lazard ring. Hence it only remains to see that this indeed constitutes a
ring homomorphism. But this is guaranteed by the vary choice of relations imposed in the definition of the
Lazard ring.  ▮

What is however highly nontrivial is this statement:

Theorem 1.160. (Lazard's theorem)

The Lazard ring  (def. 1.157) is isomorphic to a polynomial ring

≃ ℤ[ , ,⋯]

in countably many generators  in degree 2 .

Remark 1.161. The Lazard theorem 1.160 first of all implies, via prop. 1.159, that there exists an
abundance of 1-dimensional formal group laws: given any ring  then every choice of elements { ∈ }
defines a formal group law. (On the other hand, it is nontrivial to say which formal group law that is.)

Deeper is the fact expressed by the Milnor-Quillen theorem on MU: the Lazard ring in its polynomial
incarnation of prop. 1.160 is canonically identieif with the graded commutative ring •( ) of stable
homotopy groups of the universal complex Thom spectrum MU. Moreover:

MU carries a universal complex orientation in that for  any homotopy commutative ring spectrum
then homotopy classes of homotopy ring homomorphisms →  are in bijection to complex
orientations on ;

1. 
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every complex orientation on  induced a 1-dimensional commutative formal group law (prop.)2. 

under forming stable homtopy groups every ring spectrum homomorphism →  induces a ring
homomorphism

≃ •( ) ⟶ •( )

and hence, by the universality of , a formal group law over •( ).

3. 

This is the formal group law given by the above complex orientation.

Hence the universal group law over the Lazard ring is a kind of decategorification of the universal complex
orientation on MU.

Complex cobordism

Idea. There is a weak homotopy equivalence : (1) ⟶≃ (1) between the classifying space for complex
line bundles and the Thom space of the universal complex line bundle. This gives an element

*( ) ∈ ( (1)) in the complex cobordism cohomology of (1) which makes the universal complex
Thom spectrum MU become a complex oriented cohomology theory.

This turns out to be a universal complex orientation on MU: for every other homotopy commutative ring
spectrum  (def.) there is an equivalence between complex orientations on  and homotopy classes of
homotopy ring spectrum homomorphisms

{ ⟶ }/ ≃ ≃ {complex orientations on } .

Hence complex oriented cohomology theory is higher algebra over MU.

Literature. (Schwede 12, example 1.18, Kochman 96, section 1.4, 1.5, 4.4, Lurie 10, lectures 5 and 6)

Conner-Floyd-Chern classes are Thom classes

We discuss that for  a complex oriented cohomology theory, then the th universal Conner-Floyd-Chern
class  is in fact a universal Thom class for rank complex vector bundles. On the one hand this says that
the choice of a complex orientation on  indeed universally orients all complex vector bundles. On the other
hand, we interpret this fact below as the unitality condition on a homomorphism of homotopy commutative
ring spectra →  which represent that universal orienation.

Lemma 1.162. For ∈ ℕ, the fiber sequence (prop. 1.96)

− ⟶ ( − 1)

↓

( )

exhibits ( − 1) as the sphere bundle of the universal complex vector bundle over ( ).

Proof. When exhibited by a fibration, here the vertical morphism is equivalently the quotient map

( ( ))/ ( − 1) ⟶ ( ( ))/ ( )

(by the proof of prop. 1.96).

Now the universal principal bundle ( ) is (def. \ref{EOn)}) equivalently the colimit

( ) ≃ lim®¾ ( )/ ( − ) .

Here each Stiefel manifold/coset spaces ( )/ ( − ) is equivalently the space of (complex) -dimensional
subspaces of ℂ  that are equipped with an orthonormal (hermitian) linear basis. The universal vector bundle

( ) ×
( )

ℂ ≃ lim®¾ ( )/ ( − ) ×
( )

ℂ

has as fiber precisely the linear span of any such choice of basis.

While the quotient ( )/( ( − ) × ( )) (the Grassmannian) divides out the entire choice of basis, the
quotient ( )/( ( − ) × ( − 1)) leaves the choice of precisly one unit vector. This is parameterized by the
sphere −  which is thereby identified as the unit sphere in the respective fiber of ( ) ×

( )
ℂ .  ▮
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In particular:

Lemma 1.163. The canonical map from the classifying space (1) ≃ ℂ  (the inifnity complex projective
space) to the Thom space of the universal complex line bundle is a weak homotopy equivalence

(1) ®¾¾
∈

(1) ≔ Th( (1) ×
( )

ℂ) .

Proof. Observe that the circle group (1) is naturally identified with the unit sphere in ℂ: (1) ≃ ( ).
Therefore the sphere bundle of the universal complex line bundle is equivalently the (1)-universal principal
bundle

(1) ×
( )

(ℂ)≃ (1) ×
( )

(1)

≃ (1)
.

But the universal principal bundle is contractible

(1) ®¾¾
∈

* .

(Alternatively this is the special case of lemma 1.162 for = 0.)

Therefore the Thom space

Th( (1) ×
( )

)≔ ( (1) ×
( )

)/ ( (1) ×
( )

)

®¾¾
∈

( (1) ×
( )

)

®¾¾
∈

(1)

.

  ▮

Lemma 1.164. For  a generalized (Eilenberg-Steenrod) cohomology theory, then the -reduced
cohomology of the Thom space of the complex universal vector bundle is equivalently the relative
cohomology of ( ) relative ( − 1)

˜ •(Th( ( ) ×
( )

ℂ )) ≃ •( ( ), ( − 1)) .

If  is equipped with the structure of a complex oriented cohomology theory then

˜ •(Th( ( ) ×
( )

ℂ )) ≃ ⋅ ( •( ))[[ ,⋯, ]] ,

where the  are the universal -Conner-Floyd-Chern classes.

Proof. Regarding the first statement:

In view of lemma 1.162 and using that the disk bundle is homotopy equivalent to the base space we have

˜ •(Th( ( ) ×
( )

ℂ ))= •( ( ( ) ×
( )

ℂ ), ( ( ) ×
( )

ℂ ))

≃ •( ( ), ( − 1))
.

Regarding the second statement: the Conner-Floyd classes freely generate the -cohomology of ( ) for all
:

•( ( )) ≃ •( )[[ ,⋯, ]] .

and the restriction morphism

•( ( )) ⟶ •( ( − 1))

projects out . Since this is in particular a surjective map, the relative cohomology •( ( ), ( − 1)) is
just the kernel of this map.  ▮

Proposition 1.165. Let  be a complex oriented cohomology theory. Then the th -Conner-Floyd-Chern
class

∈ ˜ (Th( ( ) ×
( )

ℂ ))

(using the identification of lemma 1.164) is a Thom class in that its restriction to the Thom space of any
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fiber is a suspension of a unit in ( ).

(Lurie 10, lecture 5, prop. 6)

Proof. Since ( ) is connected, it is sufficient to check the statement over the base point. Since that fixed
fiber is canonically isomorphic to the direct sum of  complex lines, we may equivalently check that the
restriction of  to the pullback of the universal rank  bundle along

: (1) ⟶ ( )

satisfies the required condition. By the splitting principle, that restriction is the product of the -copies of the
first -Conner-Floyd-Chern class

* ≃ (( ) ⋯( ) ) .

Hence it is now sufficient to see that each factor restricts to a unit on the fiber, but that it precisely the
condition that  is a complex orientaton of . In fact by def. 1.166 the restriction is even to 1 ∈ ( ).  ▮

Complex orientation as ring spectrum maps

For the present purpose:

Definition 1.166. For  a generalized (Eilenberg-Steenrod) cohomology theory, then a complex orientation
on  is a choice of element

∈ ( (1))

in the cohomology of the classifying space (1) (given by the infinite complex projective space) such that
its image under the restriction map

: ˜ ( (1)) ⟶ ˜ ( ) ≃ ( )

is the unit

( ) = 1 .

(Lurie 10, lecture 4, def. 2)

Remark 1.167. Often one just requires that ( ) is a unit, i.e. an invertible element. However we are after
identifying  with the degree-2 component (1) →  of homtopy ring spectrum morphisms → , and
by unitality these necessarily send → (1) to the unit : →  (up to homotopy).

Lemma 1.168. Let  be a homotopy commutative ring spectrum (def.) equipped with a complex orientation
(def. 1.166) represented by a map

: (1) ⟶ .

Write { } ∈ℕ for the induced Conner-Floyd-Chern classes. Then there exists a morphism of -sequential

spectra (def.)

⟶

whose component map ⟶  represents  (under the identification of lemma 1.164), for all ∈ ℕ.

Proof. Consider the standard model of MU as a sequential -spectrum with component spaces the Thom
spaces of the complex universal vector bundle

≔ Th( ( ) × ℂ ) .

Notice that this is a CW-spectrum (def., lemma).

In order to get a homomorphism of -sequential spectra, we need to find representatives : ⟶

of  (under the identification of lemma 1.164) such that all the squares

∧ ®¾¾¾
∧

∧

↓ ↓

( + ) ®¾¾¾
( + )

+

commute strictly (not just up to homotopy).
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To begin with, pick a map

: ≃ ⟶

that represents = 1.

Assume then by induction that maps  have been found for ≤ . Observe that we have a homotopy-

commuting diagram of the form

∧ ®¾¾¾
∧

∧

↓ ⇙ ↓

∧ ®¾¾¾
∧

∧

↓ ⇙ ↓ ,

( + ) ®¾¾
+

( + )

,

where the maps denoted  are any representatives of the Chern classes of the same name, under the
identification of lemma 1.164. Here the homotopy in the top square exhibits the fact that  is a complex
orientation, while the homotopy in the bottom square exhibits the Whitney sum formula for Chern classes
(prop. 1.146)).

Now since  is a CW-spectrum, the total left vertical morphism here is a (Serre-)cofibration, hence a
Hurewicz cofibration, hence satisfies the homotopy extension property. This means precisely that we may
find a map + : ( + ) ⟶ ( + ) homotopic to the given representative +  such that the required

square commutes strictly.  ▮

Lemma 1.169. For  a complex oriented homotopy commutative ring spectrum, the morphism of spectra

: ⟶

that represents the complex orientation by lemma 1.168 is a homomorphism of homotopy commutative
ring spectra.

(Lurie 10, lecture 6, prop. 6)

Proof. The unitality condition demands that the diagram

⟶

↘ ↓

commutes in the stable homotopy category Ho(Spectra). In components this means that

⟶

↘ ↓

commutes up to homotopy, hence that the restriction of  to a fiber is the 2 -fold suspension of the unit of
. But this is the statement of prop. 1.165: the Chern classes are universal Thom classes.

Hence componentwise all these triangles commute up to some homotopy. Now we invoke the Milnor
sequence for generalized cohomology of spectra (prop. 1.63). Observe that the tower of abelian groups
↦ ( ) is actually constant (suspension isomorphism) hence trivially satisfies the Mittag-Leffler condition

and so a homotopy of morphisms of spectra →  exists as soon as there are componentwise homotopies
(cor. 1.64).

Next, the respect for the product demands that the square

∧ ®¾
∧

∧

↓ ↓

⟶

commutes in the stable homotopy category Ho(Spectra). In order to rephrase this as a condition on the
components of the ring spectra, regard this as happening in the homotopy category Ho(OrthSpec(Top ))

of the model structure on orthogonal spectra, which is equivalent to the stable homotopy category (thm.).
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Here the derived symmetric monoidal smash product of spectra is given by Day convolution (def.) and maps
out of such a product are equivalently as in the above diagram is equivalent (cor.) to a suitably equivariant
collection diagrams of the form

∧ ®¾¾¾
∧

∧

↓ ↓

( + ) ®¾¾¾
( + )

( + )

,

where on the left we have the standard pairing operations for  (def.) and on the right we have the given
pairing on .

That this indeed commutes up to homotopy is the Whitney sum formula for Chern classes (prop.).

Hence again we have componentwise homotopies. And again the relevant Mittag-Leffler condition on
↦ − ((MU ∧ MU) )-holds, by the nature of the universal Conner-Floyd classes?, prop. 1.147. Therefore

these componentwise homotopies imply the required homotopy of morphisms of spectra (cor. 1.64).  ▮

Theorem 1.170. Let  be a homotopy commutative ring spectrum (def.). Then the map

( ⟶ ) ↦ ( (1) ≃ ⟶ )

which sends a homomorphism  of homotopy commutative ring spectra to its component map in degree 2,
interpreted as a class on (1) via lemma 1.163, constitutes a bijection from homotopy classes of
homomorphisms of homotopy commutative ring spectra to complex orientations (def. 1.166) on .

(Lurie 10, lecture 6, theorem 8)

Proof. By lemma 1.168 and lemma 1.169 the map is surjective, hence it only remains to show that it is
injective.

So let , ′ : →  be two morphisms of homotopy commutative ring spectra that have the same restriction,
up to homotopy, to ≃ ′ : ≃ (1). Since both are homotopy ring spectrum homomophisms, the

restriction of their components , ′ : →  to (1)∧  is a product of ≃ ′ , hence  becomes
homotopic to ′ after this restriction. But by the splitting principle this restriction is injective on cohomology
classes, hence  itself ist already homotopic to ′ .

It remains to see that these homotopies may be chosen compatibly such as to form a single homotopy of
maps of spectra

: ∧ + ⟶ ,

This follows due to the existence of the Milnor short exact sequence from prop. 1.63:

0 → lim¬¾
− ( − ) ⟶ ( ) ⟶ lim¬¾ ( − ) → 0 .

Here the Mittag-Leffler condition (def. 1.55) is clearly satisfied (by prop. 1.147 and lemma 1.164 all relevant
maps are epimorphisms, hence the condition is satisfied by example 1.56). Hence the lim^1-term vanishes
(prop. 1.57), and so by exactness the canonical morphism

( ) ⟶≃ lim¬¾ ( − )

is an isomorphism. This says that two homotopy classes of morphisms →  are equal precisely already if
all their component morphisms are homotopic (represent the same cohomology class).  ▮

Homology of 

Idea. Since, by the above, every complex oriented cohomology theory  is indeed oriented over complex
vector bundles, there is a Thom isomorphism which reduces the computation of the -homology of MU,

•( ) to that of the classifying space . The homology of , in turn, may be determined by the duality
with its cohomology (universal coefficient theorem) via Kronecker pairing and the induced duality of the
corresponding Atiyah-Hirzebruch spectral sequences (prop. 1.74) from the Conner-Floyd classes above.
Finally, via the Hurewicz homomorphism/Boardman homomorphism the homology of  gives a first
approximation to the homotopy groups of MU.

Literature. (Kochman 96, section 2.4, 4.3, Lurie 10, lecture 7)
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Milnor-Quillen theorem on 

Idea. From the computation of the homology of MU above and applying the Boardman homomorphism, one
deduces that the stable homotopy groups •(MU) of MU are finitely generated. This implies that it is suffient
to compute them over the p-adic integers for all primes . Using the change of rings theorem, this finally is
obtained from inspection of the filtration in the -Adams spectral sequence for MU. This is Milnor’s
theorem wich together with Lazard's theorem shows that there is an isomorphism of rings ≃ •( ) with
the Lazard ring. Finally Quillen's theorem on MU says that this isomorphism is exhibited by the universal
ring homomorphism ⟶ •( ) which classifies the universal complex orientation on .

Literature. (Kochman 96, section 4.4, Lurie 10, lecture 10)

Landweber exact functor theorem

Idea. By the above, every complex oriented cohomology theory induces a formal group law from its first
Conner-Floyd Chern class. Moreover, Quillen's theorem on MU together with Lazard's theorem say that the
cohomology ring •( ) of complex cobordism cohomology MU is the classifying ring for formal group laws.

The Landweber exact functor theorem says that, conversely, forming the tensor product of complex
cobordism cohomology theory (MU) with a Landweber exact ring via some formal group law yields a
cohomology theory, hence a complex oriented cohomology theory.

Literature. (Lurie 10, lectures 15,16)

Outlook: Geometry of Spec(MU)

The grand conclusion of Quillen's theorem on MU (above): complex oriented cohomology theory is
essentially the spectral geometry over Spec( ), and the latter is a kind of derived version of the moduli
stack of formal groups (1-dimensional commutative).

Landweber-Novikov theorem

Adams-Quillen theorem

Adams-Novikov spectral sequence

(…)

Literature. (Kochman 96, sections 4.5-4.7 and section 5, Lurie 10, lectures 12-14)

2. References

We follow in outline the textbook

Stanley Kochman, chapters I - IV of Bordism, Stable Homotopy and Adams Spectral Sequences, AMS
1996

For some basics in algebraic topology see also

Robert Switzer, Algebraic Topology - Homotopy and Homology, Die Grundlehren der Mathematischen
Wissenschaften in Einzeldarstellungen, Vol. 212, Springer-Verlag, New York, N. Y., 1975.

Specifically for S.1) Generalized cohomology a neat account is in:

Marcelo Aguilar, Samuel Gitler, Carlos Prieto, section 12 of Algebraic topology from a homotopical
viewpoint, Springer (2002) (toc pdf)

For S.2) Cobordism theory an efficient collection of the highlights is in

Cary Malkiewich, Unoriented cobordism and , 2011 (pdf)

except that it omits proof of the Leray-Hirsch theorem/Serre spectral sequence and that of the Thom
isomorphism, but see the references there and see (Kochman 96, Aguilar-Gitler-Prieto 02, section 11.7) for
details.
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For S.3) Complex oriented cohomology besides (Kochman 96, chapter 4) have a look at

Frank Adams, Stable homotopy and generalized homology, Chicago Lectures in mathematics, 1974

and

Jacob Lurie, lectures 1-10 of Chromatic Homotopy Theory, 2010

See also

Stefan Schwede, Symmetric spectra, 2012 (pdf)

Revised on July 15, 2016 08:58:13 by Urs Schreiber

Introduction to Stable homotopy theory -- S in nLab https://ncatlab.org/nlab/print/Introduction+to+Stable+homotopy+theor...

78 of 78 27.12.2016 13:13


