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nLab
* Introduction to Stable Homotopy
Theory

This entry is a detailed introduction to the stable homotopy category and to its
key computational tool, the Adams spectral sequence. To that end we introduce
the modern tools, such as model categories and highly structured ring spectra. In
the accompanying seminar we consider applications to cobordism theory and
complex oriented cohomology such as to converge in the end to a glimpse of the
modern picture of chromatic homotopy theory.
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Basic reading

Further reading

My initial inclination was to call this book The Music of
the Spheres, but I was dissuaded from doing so by my -
diligent publisher, who is ever mindful of the sensibilities %3
of librarians. (Ravenel 86, preface)

1. Survey

We are concerned with the theory of spectra in the sense of algebraic topology:
the proper generalization of abelian groups to homotopy theory.

1) Stable homotopy theory

A group in homotopy theory is equivalently a loop space under concatenation of
loops (“oo-group”). A double loop space is a group with some commutativity
structure (“Eckmann-Hilton argument”), a triple loop space has more
commutativity structure, and so forth. A spectrum is where this progression of
looping and delooping stabilizes (an “w-abelian group”). Therefore one speaks of
stable homotopy theory:

stabilization

Spaces Spectra .

_—
(linearization)

Most of linear algebra and algebraic geometry passes along as abelian groups are
generalized to spectra and turns into something remarkably rich, called brave
new algebra, higher algebra and spectral geometry. In particular the analog of
the theory of (commutative) rings and their modules exist, given by
(commutative) ring spectra (E-oo rings, A-o rings) and module spectra
(oo-modules).

2) Adams spectral sequences
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Since spectra are considerably richer than abelian groups, stable homotopy is
much concerned with “fracturing” stable homotopy types into more tractable
components:

To that end, notice that from the point of view of arithmetic geometry, an abelian
group A is equivalently a quasicoherent sheaf over Spec(Z).

AbelianGroups =~ QCoh(Spec(Z)) .

This point of view generalizes to homotopy theory and turns out to be very
fruitful there. The analog of the integers Z is the sphere spectrum §, and this is
naturally the initial commutative ring spectrum (“E-co ring”), just as Z is the
initial commutative ring. The formal dual Spec(S) of S is hence the terminal
space in E-co arithmetic geometry (“spectral geometry”) and spectra are
equivalently the quasicoherent co-stacks over Spec(S)

Spectra = QCoh(Spec(S)) .

Therefore the study of spectra “fractures” into the various localizations and
formal completions of Spec(S). Since this is like the white light of Spec(S)

decomposing into various wavelengths, one speaks of chromatic homotopy
theory.

In particular, an E-o ring E is dually a morphism of E,-algebraic spaces
Spec(E) — Spec(S) and under good conditions the 1-image of this map is the
formal dual of the localization L;S at E:

epi; mono4
Spec(E) — Spec(LgS) —— Spec(S) .

This means that Spec(E) — Spec(LgS) is a cover and that hence E-local spectra are
equivalently quasicoherent co-stacks on Spec(E) equipped with descent data:
dually they are co-modules over E equipped with comodule structure over the
Hopf algebroid (Sweedler coring) E Qg E.

The computation of homotopy groups of spectra that make use of their
decomposition this way into E-co-modules equipped with descent data is the
E-Adams spectral sequence, a central tool of the theory.

S) Complex oriented cohomology

For this reason special importance is carried by those E-oo rings such that
Spec(E) — Spec(S) is already a covering, in a suitable sense, for these the

E-co-modules equipped with descent data give an equivalent, but in general more
tractable, incarnation of the stable homotopy theory of spectra.

Curiously, this way a good bit of differential topology — cobordism theory - arises
within stable homotopy theory: the archetypical Spec(E) which covers Spec(S) in a

suitable sense is E = MU, the Thom spectrum representing complex cobordism
cohomology.
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An commutative ring spectrum E over MU, hence a Spec(E) — Spec(MU) is now a
multiplicative “complex oriented cohomology theory”.

2, Prelude) Classical homotopy theory

This section is at: Introduction to Stable homotopy theory -- P

3. Part 1) Stable homotopy theory

This section is at Introduction to Stable homotopy theory -- 1

4. Interlude) Spectral sequences

This section is at Introduction to Stable homotopy theory -- I

5. Part 2) Adams spectral sequences

This section is at Introduction to Stable homotopy theory -- 2

6. Seminar) Complex oriented cohomology
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This section is at Introduction to Stable homotopy theory -- S

~7. References
Basic reading
For Prelude) Classical homotopy theory a concise and self-contained re-write

of the proof (Quillen 67) of the classical model structure on topological spaces is
in

e Philip Hirschhorn, The Quillen model category of topological spaces
(arXiv:1508.01942).

For general model category theory a decent concise account is in

e William Dwyer, J. Spalinski, Homotopy theories and model categories (pdf)
in Ioan Mackenzie James (ed.), Handbook of Algebraic Topology 1995

For the restriction to the convenient category of compactly generated topological
spaces good sources are

e Gaunce Lewis, Compactly generated spaces (pdf), appendix A of The Stable
Category and Generalized Thom Spectra PhD thesis Chicago, 1978

e Neil Strickland, The category of CGWH spaces, 2009 (pdf)

For section 1) Stable homotopy theory we follow the modern picture of the
stable homotopy category for which an enjoyable survey may be found in

e Cary Malkiewich, The stable homotopy category, 2014 (pdf).

The classical account in (Adams 74, part III sections 2, 4-7) is still a good read,
but ignore the "Adams category”-construction of the stable homotopy category in
sections III.2 and III.3. What we actually do follows

e Michael Mandell, Peter May, Stefan Schwede, Brooke Shipley, Model
categories of diagram spectra, Proceedings of the London Mathematical
Society, 82 (2001), 441-512 (pdf)

For the discussion of ring spectra we pass to symmetric spectra and orthogonal
spectra. A compendium on the former is in

e Stefan Schwede, Symmetric spectra, 2012 (pdf)

50f7 09.05.17, 16:11



Introduction to Stable Homotopy Theory in nLab https://ncatlab.org/nlab/print/Introduction+to+Stable+Homotopy+Theory

For Interlude: Spectral sequences a discussion streamlined for our purposes
is in (Rognes 12, section 2).

In 2) Adams spectral sequence for the general theory we follow

e Frank Adams, Stable homotopy and generalized homology, Chicago Lectures
in mathematics, 1974

e Aldridge Bousfield, sections 5 and 6 of The localization of spectra with
respect to homology, Topology 18 (1979), no. 4, 257-281. (pdf)

For the special case of the classical Adams spectral sequence we follow (Kochman
96, chapter V).

For the Seminar on Complex oriented cohomology an excellent textbook to
hold on to is

e Stanley Kochman, Bordism, Stable Homotopy and Adams Spectral
Sequences, AMS 1996

Specifically for S.1) Generalized cohomology a neat account is in:

e Marcelo Aguilar, Samuel Gitler, Carlos Prieto, section 12 of Algebraic
topology from a homotopical viewpoint, Springer (2002) (toc pdf)

For S.2) Cobordism theory an efficient collection of the highlights is in

e Cary Malkiewich, Unoriented cobordism and M0, 2011 (pdf)

except that it omits proof of the Leray-Hirsch theorem/Serre spectral sequence
and that of the Thom isomorphism, but see the references there and see
(Kochman 96, Aguilar-Gitler-Prieto 02, section 11.7) for details.

For S.3) Complex oriented cohomology besides (Kochman 96, chapter 4)
have a look at Adams 74, part II and

e Jacob Lurie, lectures 1-10 of Chromatic Homotopy Theory, 2010

(These overlap, pick the one that seems more inviting on first reading.)

Further reading

The two originals

e Daniel Quillen, Axiomatic homotopy theory in Homotopical algebra, Lecture
Notes in Mathematics, No. 43 43, Berlin (1967)

e Kenneth Brown, Abstract Homotopy Theory and Generalized Sheaf
Cohomology, Transactions of the American Mathematical Society, Vol. 186
(1973), 419-458 (JSTOR)

are still an excellent source. For further reading on homotopy theory and stable

6 of 7 09.05.17, 16:11



Introduction to Stable Homotopy Theory in nLab https://ncatlab.org/nlab/print/Introduction+to+Stable+Homotopy+Theory

7 of 7

homotopy theory a useful collection is

e Joan Mackenzie James, Handbook of Algebraic Topology 1995

The modern chromatic picture originates around

e Mike Hopkins, Complex oriented cohomology theories and the language of
stacks, 1999

a useful survey is in

e Dylan Wilson section 1.2 of Spectral Sequences from Sequences of Spectra:
Towards the Spectrum of the Category of Spectra lecture at 2013 Pre-Talbot
Seminar, March 2013 (pdf)

a wealth of details is in

e Doug Ravenel, Complex cobordism and stable homotopy groups of spheres,
1987/2003 (pdf)

and new foundations have been laid in

e Jacob Lurie, Higher Algebra

Revised on May 9, 2017 10:09:31 by Urs Schreiber
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nLab
* Introduction to Homotopy Theory

This pages gives a detailed introduction to classical homotopy theory, starting with the concept
of homotopy in topological spaces and motivating from this the “abstract homotopy theory” in
general model categories.

For background on basic topology see at Introduction to Topology.

For application to homological algebra see at Introduction to Homological algebra.

For application to stable homotopy theory see at Introduction to Stable homotopy theory.

Contents Context
1. Topological homotopy theory Homotopy theory
Universal constructions
Homotopy

Cell complexes

Fibrations

2. Abstract homotopy theory
Factorization systems

Homotopy
The homotopy category

Derived functors

Quillen adjunctions

3. The model structure on topological spaces
The classical homotopy category

Model structure on pointed spaces

Model structure on compactly generated spaces

Topological enrichment

Model structure on topological functors

4. Homotopy fiber sequences
Mapping cones

Categories of fibrant objects

Homotopy fibers

Homotopy pullbacks

Long sequences

5. The suspension/looping adjunction

6. References

While the field of algebraic topology clearly originates in topology, it is not actually interested in
topological spaces regarded up to topological isomorphism, namely homeomorphism (“point-set
topology”), but only in topological spaces regarded up to weak homotopy equivalence - hence it
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is interested only in the “weak homotopy types” of topological spaces. This is so notably because
ordinary cohomology groups are invariants of the (weak) homotopy type of topological spaces
but do not detect their homeomorphism class.

The category of topological spaces obtained by forcing weak homotopy equivalences to become
isomorphisms is the “classical homotopy category” Ho(Top). This homotopy category however
has forgotten a little too much information: homotopy theory really wants the weak homotopy
equivalences not to become plain isomorphisms, but to become actual homotopy equivalences.
The structure that reflects this is called a model category structure (short for “category of
models for homotopy types”). For classical homotopy theory this is accordingly called the
classical model structure on topological spaces. This we review here.

1. Topological homotopy theory

This section recalls relevant concepts from actual topology (“point-set topology”) and highlights
facts that motivate the axiomatics of model categories below. We prove two technical lemmas
(lemma 1.40 and lemma 1.52) that serve to establish the abstract homotopy theory of
topological spaces further below.

Literature (Hirschhorn 15)

Throughout, let Top denote the category whose objects are topological spaces and whose
morphisms are continuous functions between them. Its isomorphisms are the homeomorphisms.

(Further below we restrict attention to the full subcategory of compactly generated topological
spaces.)

Universal constructions

To begin with, we recall some basics on universal constructions in Top: limits and colimits of
diagrams of topological spaces; exponential objects.

Generally, recall:

Definition 1.1. A diagram in a category C is a small category I and a functor

X.:1—>¢C

@i5pnewBx).

A cone over this diagram is an object @ equipped with morphisms p,:Q — X; for all i € I, such
that all these triangles commute:

Q
i x@, K

Dually, a co-cone under the diagram is Q@ equipped with morphisms g,:X; — @ such that all
these triangles commute

A limit over the diagram is a universal cone, denoted h<—m-e1X"’ that is: a cone such that every
L
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other cone uniquely factors through it Q — lim in’ making all the resulting triangles
1AS]

commute.

Dually, a colimit over the diagram is a universal co-cone, denoted lim  X;.
i€l

We now discuss limits and colimits in ¢ = Top. The key for understanding these is the fact that
there are initial and final topologies:

Definition 1.2. Let {X; = (§;,7;) € Top},_, be a set of topological spaces, and let S € Set be a bare
set. Then

fi . i eae .
1. For {§ = Si};e, @ set of functions out of S, the initial topology v, ({f;};c,) is the
topology on S with the minimum collection of open subsets such that all
f;1 (S, Tinisiat ({f;};¢,)) = X; are continuous.

fi . . . :
2. For {§; = S},¢, @ set of functions into S, the final topology 74,.({f;},.,) is the topology on
S with the maximum collection of open subsets such that all f,:X; - (S, Taaa ({f;},¢,)) are

continuous.

Example 1.3. For X a single topological space, and i;:S © U(X) a subset of its underlying set,
then the initial topology 7,41 (ts), def. 1.2, is the subspace topology, making

ts (S Tinital () © X

a topological subspace inclusion.

Example 1.4. Conversely, for p,:U(X) — S an epimorphism, then the final topology 7, (pg) On S
is the guotient topology.

Proposition 1.5. Let I be a small category and let X,:1 — Top be an I-diagram in Top (a functor
from I to Top), with components denoted X; = (S;,t;), where S; € Set and 1; a topology on S;.
Then:

1. The limit of X, exists and is given by the topological space whose underlying set is the
limit in Set of the underlying sets in the diagram, and whose topology is the initial
topology, def. 1.2, for the functions p, which are the limiting cone components:

lim Si
i€l
Si — S

Hence

li_miEIXi = <li<—mie15i' Tinitial({Pi}ie,))

2. The colimit of X, exists and is the topological space whose underlying set is the colimit in
Set of the underlying diagram of sets, and whose topology is the final topology, def. 1.2
for the component maps 1; of the colimiting cocone

Hence
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lim X, = (lm S0, tana (e )

—i€el

(e.g. Bourbaki 71, section 1.4)

Proof. The required universal property of (h(_m ISi, Tinitial({pi}iel)> (def. 1.1) is immediate: for
LE
S
X; — X

any cone over the diagram, then by construction there is a unique function of underlying sets
§ — lim ISl- making the required diagrams commute, and so all that is required is that this
[AS]

unique function is always continuous. But this is precisely what the initial topology ensures.

The case of the colimit is formally dual. N
Example 1.6. The limit over the empty diagram in Top is the point = with its unique topology.

Example 1.7. For {X;},_, a set of topological spaces, their coproduct Y X; € Top is their disjoint
i

union.
In particular:

Example 1.8. For S € Set, the S-indexed coproduct of the point, [[ _ * is the set S itself
equipped with the final topology, hence is the discrete topological space on S.

Example 1.9. For {X;},_, a set of topological spaces, their product [],., X; € Top is the Cartesian
product of the underlying sets equipped with the product topology, also called the Tychonoff

product.

In the case that S is a finite set, such as for binary product spaces X x Y, then a sub-basis for
the product topology is given by the Cartesian products of the open subsets of (a basis for)
each factor space.

Example 1.10. The equalizer of two continuous functions f,g:X = Y in Top is the equalizer of
the underlying functions of sets

f
eq(f,9) © Sx > Sy

(hence the largets subset of Sy on which both functions coincide) and equipped with the
subspace topology, example 1.3.

Example 1.11. The coequalizer of two continuous functions f,g:X — Y in Top is the coequalizer
of the underlying functions of sets

f
Sx > Sy — coeq(f, g)

(hence the quotient set by the equivalence relation generated by f(x) ~ g(x) for all x € X) and
equipped with the guotient topology, example 1.4.

Example 1.12. For
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two continuous functions out of the same domain, then the colimit under this diagram is also
called the pushout, denoted

g

A — Y
fi« lg*f'
X — Xu,Y.

(Here g f is also called the pushout of f, or the cobase change of f along g.)

This is equivalently the coequalizer of the two morphisms from A to the coproduct of X with Y
(example 1.7):

ASXUuY > XU,Y.
If g is an inclusion, one also writes X U, Y and calls this the attaching space.
By example 1.11 the
X pushout/attaching space is the

; - quotient topological space
oo

Yus X XU, Y=XUuy)/ ~

¥ © 0 of the disjoint union of X and Y

subject to the equivalence relation
which identifies a point in X with a

point in Y if they have the same pre-image in A.

(graphics from Aguilar-Gitler-Prieto 02)

Notice that the defining universal property of this colimit means that completing the span

A — Y
l
X

to a commuting square

is equivalent to finding a morphism

XuyYy—>~27.
A

Example 1.13. For A & X a topological subspace inclusion, example 1.3, then the pushout

A © X
l (po) !
* — X/A

is the quotient space or cofiber, denoted X/ A.

https://ncatlab.org/nlab/print/Introduction+to+Homotopy-+Theory
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Example 1.14. An important special case of example 1.12:
For n € N write

e D":={x € R"| |[x| < 1} ©» R" for the standard topological n-disk (equipped with its
subspace topology as a subset of Cartesian space);

e " 1=9Dp":={x € R"| || = 1} ©» R" for its boundary, the standard topological n-sphere.
Notice that S™' = ¢ and that §° = = Ui *.
Let
ip:S"t— D"

be the canonical inclusion of the standard (n-1)-sphere as the boundary of the standard n-disk
(both regarded as topological spaces with their subspace topology as subspaces of the
Cartesian space R").

Then the colimit in Top under the diagram

in — iTl
Dn<_Sn 1_>DTL

’

i.e. the pushout of i,, along itself, is the
n-sphere s™:

Snfl L_Tl) Dn
in | (po) ! -
p" - st

(graphics from Ueno-Shiga-Morita 95)

Another kind of colimit that will play a role for certain technical constructions is transfinite
composition. First recall

Definition 1.15. A partial order is a set S equipped with a relation < such that for all elements
a,b,c€eS

1) (reflexivity) a < a;
2) (transitivity) ifa< b and b < cthen a <¢;
3) (antisymmetry) if a<b and b <a then a =b.

This we may and will equivalently think of as a category with objects the elements of S and a
unique morphism a — b precisely if a < b. In particular an order-preserving function between
partially ordered sets is equivalently a functor between their corresponding categories.

A bottom element 1 in a partial order is one such that L <a for all a. A top element T is one
forwicha< T.

A partial order is a total order if in addition
4) (totality) eithera<b or b < a.
A total order is a well order if in addition

5) (well-foundedness) every non-empty subset has a least element.

An ordinal is the equivalence class of a well-order.
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The successor of an ordinal is the class of the well-order with a top element freely adjoined.
A limit ordinal is one that is not a successor.

Example 1.16. The finite ordinals are labeled by n € N, corresponding to the well-orders
{0<1<2-<n-1}. Here (n+ 1) is the successor of n. The first non-empty limit ordinal is

w=[(N, <)].
Definition 1.17. Let C be a category, and let I ¢ Mor(C) be a class of its morphisms.

For a an ordinal (regarded as a category), an a-indexed transfinite sequence of elements in I
is a diagram

X.:a—C
such that
1. X, takes all successor morphisms g 5 B+1in ato elementsin I
Xppi1 €1

2. X, is continuous in that for every nonzero limit ordinal g < a, X, restricted to the
full-subdiagram {y | y < B} is a colimiting cocone in € for X, restricted to {y | y < B83}.

The corresponding transfinite composition is the induced morphism

into the colimit of the diagram, schematically:

Xo,1 X1,2
Xo — X1 — X, -

Nl 7
X

We now turn to the discussion of mapping spaces/exponential objects.

Definition 1.18. For X a topological space and Y a locally compact topological space (in that for
every point, every neighbourhood contains a compact neighbourhood), the mapping space

X'e Top

is the topological space

e whose underlying set is the set Homr,, (Y, X) of continuous functions Y - X,

e whose open subsets are unions of finitary intersections of the following subbase elements
of standard open subsets:

the standard open subset U* c Homr,, (Y, X) for

0 K &Y a compact topological space subset

o U % X an open subset

is the subset of all those continuous functions f that fit into a commuting diagram of the
form
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K oY
l A
U o X

Accordingly this is called the compact-open topology on the set of functions.

The construction extends to a functor
(—)(_) : Toplocp X Top — Top .

Proposition 1.19. For X a topological space and Y a locally compact topological space (in that
for each point, each open neighbourhood contains a compact neighbourhood), the
topological mapping space X" from def. 1.18 is an exponential object, i.e. the functor (-)"
is right adjoint to the product functor Y x (=): there is a natural bijection

Homrop (Z X Y, X) = Homrep (Z, X7)

between continuous functions out of any product topological space of Y with any Z € Top and
continuous functions from Z into the mapping space.

A proof is spelled out here (or see e.g. Aguilar-Gitler-Prieto 02, prop. 1.3.1).

Remark 1.20. In the context of prop. 1.19 it is often assumed that Y is also a Hausdorff
topological space. But this is not necessary. What assuming Hausdorffness only achieves is
that all alternative definitions of “locally compact” become equivalent to the one that is
needed for the proposition: for every point, every open neighbourhood contains a compact
neighbourhood.

Remark 1.21. Proposition 1.19 fails in general if Y is not locally compact. Therefore the plain
category Top of all topological spaces is not a Cartesian closed category.

This is no problem for the construction of the homotopy theory of topological spaces as such,
but it becomes a technical nuisance for various constructions that one would like to perform
within that homotopy theory. For instance on general pointed topological spaces the smash
product is in general not associative.

On the other hand, without changing any of the following discussion one may just pass to a
more convenient category of topological spaces such as notably the full subcategory of
compactly generated topological spaces Top,, < Top (def. 3.35) which is Cartesian closed. This

we turn to below.

Homotopy

The fundamental concept of homotopy theory is clearly that of homotopy. In the context of
topological spaces this is about contiunous deformations of continuous functions parameterized
by the standard interval:

Definition 1.22. Write
I[=[0,1] >R

for the standard topological interval, a compact connected topological subspace of the real
line.

Equipped with the canonical inclusion of its two endpoints

89,6 3!
*U*u—12[—>*

this is the standard interval object in Top.
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For X € Top, the product topological space X x I, example 1.9, is called the standard cylinder
object over X. The endpoint inclusions of the interval make it factor the codiagonal on X

id,8q),(id, &6
Vy s xux QG0000) vy Ly

Definition 1.23. For f,g:X — Y two continuous functions between topological spaces X,Y, then a
left homotopy

nif=,9

is a continuous function

n:XxI—Y

out of the standard cylinder object over X, def. 1.22, such that this fits into a commuting
diagram of the form

(graphics grabbed from J. Tauber here)

Example 1.24. Let X be a topological space
and let x,y € X be two of its points, regarded as functions x,y: * — X from the point to X. Then
a left homotopy, def. 1.23, between these two functions is a commuting diagram of the form

*

50i \x
I Loy,
19,

y

%
This is simply a continuous path in X whose endpoints are x and y.
For instance:
Example 1.25. Let
)
consty : [ — x — [

be the continuous function from the standard interval I = [0, 1] to itself that is constant on the
value 0. Then there is a left homotopy, def. 1.23, from the identity function

n : id; = const,
given by
nxt)=x(1-1t).

A key application of the concept of left homotopy is to the definition of homotopy groups:

Definition 1.26. For X a topological space, then its set =,(X) of connected components, also

called the 0-th homotopy set, is the set of left homotopy-equivalence classes (def. 1.23) of
points x: * - X, hence the set of path-connected components of X (example 1.24). By
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composition this extends to a functor

my:Top — Set .

ForneN, n>1 and for x: *+ - X any point, then the nth homotopy group n,(X,x) of X at x is
the group

e whose underlying set is the set of left homotopy-equivalence classes of maps I" — X that
take the boundary of I" to x and where the left homotopies n are constrained to be
constant on the boundary;

e whose group product operation takes [a:I" - X] and [B:I" - X] to [« - B] with

a-p:rmsm oy Py
In—l

where the first map is a homeomorphism from the unit n-cube to the n-cube with one side
twice the unit length (e.g. (xq,x5,x35,:) = (2xq,%x5,%3,)).

By composition, this construction extends to a functor

T.>, : Top™/ — GrpN=1

from pointed topological spaces to graded groups.

Notice that often one writes the value of this functor on a morphism f as f, = n.(f).

Remark 1.27. At this point we don’t go further into the abstract reason why def. 1.26 yields
group structure above degree 0, which is that positive dimension spheres are H-cogroup
objects. But this is important, for instance in the proof of the Brown representability theorem.
See the section Brown representability theorem in Part S.

Definition 1.28. A continuous function f : X — Y is called a homotopy equivalence if there
exists a continuous function the other way around, g : Y — X, and left homotopies, def. 1.23,
from the two composites to the identity:

n,: feg=,idy

and

nz:g°f:LidX'

If here n, is constant along I, f is said to exhibit X as a deformation retract of Y.

Example 1.29. For X a topological space and X x I its standard cylinder object of def. 1.22, then
the projection p:X x I — X and the inclusion (id, §,):X — X x I are homotopy equivalences, def.

1.28, and in fact are homotopy inverses to each other:

The composition

id, &
x 2% v 1 P x

is immediately the identity on X (i.e. homotopic to the identity by a trivial homotopy), while
the composite

id, &
xx1 2 x 8%%) vy

is homotopic to the identity on X x I by a homotopy that is pointwise in X that of example
1.25.
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Definition 1.30. A continuous function f:X — Y is called a weak homotopy equivalence if its
image under all the homotopy group functors of def. 1.26 is an isomorphism, hence if

o (f) & o (X) - o (X)
andforallxeXandalln>1
T (f) : (X, %) = ma (Y, (V) -

Proposition 1.31. Every homotopy equivalence, def. 1.28, is a weak homotopy equivalence,
def. 1.30.

In particular a deformation retraction, def. 1.28, is a weak homotopy equivalence.

Proof. First observe that for all X € Top the inclusion maps

id, 8
x 94%0) v oy

into the standard cylinder object, def. 1.22, are weak homotopy equivalences: by
postcomposition with the contracting homotopy of the interval from example 1.25 all homotopy
groups of X x I have representatives that factor through this inclusion.

Then given a general homotopy equivalence, apply the homotopy groups functor to the
corresponding homotopy diagrams (where for the moment we notationally suppress the choice
of basepoint for readability) to get two commuting diagrams

T, (X) . (Y)
m.(1d,8o) | P (e (g) m.(id,8p) | \ e (@) oma(f)
7. (1) 7. (1)
T, (XxI) — mn.(Y) ) n,(YxI) — m.(X).
7 (id, 61) 4 7 ) m.(id,81) 1 7 )
., (X) ,(Y)

By the previous observation, the vertical morphisms here are isomorphisms, and hence these
diagrams exhibit . (f) as the inverse of m.(g), hence both as isomorphisms. N

Remark 1.32. The converse of prop. 1.31 is not true generally: not every weak homotopy
equivalence between topological spaces is a homotopy equivalence. (For an example with full
details spelled out see for instance Fritsch, Piccinini: “Cellular Structures in Topology”, p.
289-290).

However, as we will discuss below, it turns out that

1. every weak homotopy equivalence between CW-complexes is a homotopy equivalence
(Whitehead's theorem, cor. 3.8);

2. every topological space is connected by a weak homotopy equivalence to a CW-complex
(CW _approximation, remark 3.12).

Example 1.33. For X € Top, the projection X x I — X from the cylinder object of X, def. 1.22, is a
weak homotopy equivalence, def. 1.30. This means that the factorization

Vy i XUXOXXISX

of the codiagonal Vx in def. 1.22, which in general is far from being a monomorphism, may be
thought of as factoring it through a monomorphism after replacing X, up to weak homotopy
equivalence, by X x I.

In fact, further below (prop. 1.25) we see that X U X —» X x I has better properties than the
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generic monomorphism has, in particular better homotopy invariant properties: it has the left
lifting property against all Serre fibrations E 2, B that are also weak homotopy equivalences.

Of course the concept of left homotopy in def. 1.23 is accompanied by a concept of right
homotopy. This we turn to now.

Definition 1.34. For X a topological space, its standard topological path space object is the
topological mapping space X', prop. 1.19, out of the standard interval I of def. 1.22.

Example 1.35. The endpoint inclusion into the standard interval, def. 1.22, makes the path
space X' of def. 1.34 factor the diagonal on X through the inclusion of constant paths and the
endpoint evaluation of paths:

XI—)* IX*LI*—>I
Ay i X— X' S X xX.

This is the formal dual to example 1.22. As in that example, below we will see (prop. 3.14)
that this factorization has good properties, in that

1. X7* is a weak homotopy equivalence;

2. X*"*~!is a Serre fibration.

So while in general the diagonal Ay is far from being an epimorphism or even just a Serre
fibration, the factorization through the path space object may be thought of as replacing X, up
to weak homotopy equivalence, by its path space, such as to turn its diagonal into a Serre
fibration after all.

Definition 1.36. For f,g:X — Y two continuous functions between topological spaces X,Y, then a
right homotopy f =; g is a continuous function

n:X—>Y1

into the path space object of X, def. 1.34, such that this fits into a commuting diagram of the

form
Y
faoqx%
x 5 yl.
y%1
PN
Y

Cell complexes

We consider topological spaces that are built consecutively by attaching basic cells.

Definition 1.37. Write

L
Itop = {5"71 i Dn} c Mor(Top)

neN

for the set of canonical boundary inclusion maps of the standard n-disks, example 1.14. This
going to be called the set of standard topological generating cofibrations.

Definition 1.38. For X € Top and for n € N, an n-cell attachment to X is the pushout
(“attaching space”, example 1.12) of a generating cofibration, def. 1.37
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STL* 1 N X
‘n | (po) )

D™ — X U D™ =XusD"
Sn—l

along some continuous function ¢.

A continuous function f:X — Y is called a topological relative cell complex if it is exhibited
by a (possibly infinite) sequence of cell attachments to X, in that it is a transfinite composition
(def. 1.17) of pushouts (example 1.12)

]_[i Sni -1 — Xk

]_[iDni - Xk+1

of coproducts (example 1.7) of generating cofibrations (def. 1.37).

A topological space X is a cell complex if  — X is a relative cell complex.

A relative cell complex is called a finite relative cell complex if it is obtained from a finite
number of cell attachments.

A (relative) cell complex is called a (relative) CW-complex if the above transfinite
composition is countable
X = XO — X1 —_— XZ —
RN ! v

Y =limX,
—
and if X, is obtained from X, _; by attaching cells precisely only of dimension k.

Remark 1.39. Strictly speaking a relative cell complex, def. 1.38, is a function f:X > Y,
together with its cell structure, hence together with the information of the pushout diagrams
and the transfinite composition of the pushout maps that exhibit it.

In many applications, however, all that matters is that there is some (relative) cell
decomosition, and then one tends to speak loosely and mean by a (relative) cell complex only
a (relative) topological space that admits some cell decomposition.

The following lemma 1.40, together with lemma 1.52 below are the only two statements of the
entire development here that involve the concrete particular nature of topological spaces
(“point-set topology”), everything beyond that is general abstract homotopy theory.

Lemma 1.40. Assuming the axiom of choice and the law of excluded middle, every compact
subspace of a topological cell complex, def. 1.38, intersects the interior of a finite number of
cells.

(e.g. Hirschhorn 15, section 3.1)

Proof. So let Y be a topological cell complex and ¢ © Y a compact subspace. Define a subset

PcY
by choosing one point in the interior of the intersection with C of each cell of Y that intersects C.

It is now sufficient to show that P has no accumulation point. Because, by the compactness of X,
every non-finite subset of ¢ does have an accumulation point, and hence the lack of such shows
that P is a finite set and hence that C intersects the interior of finitely many cells of Y.

13 of 111 09.05.17, 15:41



Introduction to Homotopy Theory in nLab https://ncatlab.org/nlab/print/Introduction+to+Homotopy+Theory

To that end, let c € € be any point. If ¢ is a 0-cell in Y, write U, := {c}. Otherwise write e, for the
unique cell of Y that contains ¢ in its interior. By construction, there is exactly one point of P in
the interior of e.. Hence there is an open neighbourhood c € U, c e, containing no further points
of P beyond possibly c itself, if ¢ happens to be that single point of P in e,.

It is now sufficient to show that U, may be enlarged to an open subset U, of Y containing no
point of P, except for possibly c itself, for that means that ¢ is not an accumulation point of P.

To that end, let a. be the ordinal that labels the stage Y, of the transfinite composition in the

cell complex-presentation of Y at which the cell e, above appears. Let y be the ordinal of the full
cell complex. Then define the set

T={BU) la<p<y U,g ¥ UnYe=Uc, UNPED ()},

and regard this as a partially ordered set by declaring a partial ordering via

BpU) <(BpU2) & By <B,,UNYp =U;.

This is set up such that every element (B,U) of T with g the maximum value g =y is an extension
U, that we are after.

Observe then that for (8, Us), ., @ chain in (T, <) (a subset on which the relation < restricts to a
total order), it has an upper bound in T given by the union (U, B, Us Us). Therefore Zorn's
lemma applies, saying that (T, <) contains a maximal element (8., Umax)-

Hence it is now sufficient to show that g___=y. We argue this by showing that assuming
B . <V leads to a contradiction.

So assume B <y. Then to construct an element of T that is larger than (8 . ,Unax), consider
for each cell d at stage Yz ., its attaching map hg:S™ 1 - Yp _and the corresponding

preimage open set h; '(Unmax) € S™ '. Enlarging all these preimages to open subsets of D™ (such
that their image back in Xz ., does not contain c), then (B .., Unax) < (B, + 1, Ua Ug). This is

a contradiction. Hence .=y, and we are done. H

It is immediate and useful to generalize the concept of topological cell complexes as follows.

Definition 1.41. For ¢ any category and for K c Mor(C) any sub-class of its morphisms, a
relative K-cell complexes is a morphism in ¢ which is a transfinite composition (def. 1.17) of
pushouts of coproducts of morphsims in K.

Definition 1.42. Write

L (o)
]Top =4D" —— D" x 1 C Mor(Top)
neN

for the set of inclusions of the topological n-disks, def. 1.37, into their cylinder objects, def.
1.22, along (for definiteness) the left endpoint inclusion.

These inclusions are similar to the standard topological generating cofibrations I, of def.
1.37, but in contrast to these they are “acyclic” (meaning: trivial on homotopy classes of maps
from “cycles” given by n-spheres) in that they are weak homotopy equivalences (by prop.
1.31).

Accordingly, Jzop is to be called the set of standard topological generating acyclic
cofibrations.
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Lemma 1.43. For X a CW-complex (def. 1.38), then its inclusion X ) X x I into its standard
cylinder (def. 1.22) is a ]Top-relative cell complex (def. 1.41, def. 1.42).

Proof. First erect a cylinder over all 0-cells
erXO DO - X

\) (po) | .
]—[xeXO Dt — Yy

Assume then that the cylinder over all n-cells of X has been erected using attachment from Jrop-
Then the union of any (n + 1)-cell ¢ of X with the cylinder over its boundary is homeomorphic to
D™ and is like the cylinder over the cell “with end and interior removed”. Hence via attaching
along D"*' - D"*! x I the cylinder over ¢ is erected. N

Lemma 1.44. The maps D™ & D™ x I in def. 1.42 are finite relative cell complexes, def. 1.38. In
other words, the elements of ], are Ir,-relative cell complexes.

Proof. There is a homeomorphism

p" = D"
(id.&p) | 1
Dn X I ~ D'l’l+1

such that the map on the right is the inclusion of one hemisphere into the boundary n-sphere of
D"™*1. This inclusion is the result of attaching two cells:

_ in
st 1 LN D"

‘m|  (po) |
p* — st
sm l—d> sm

(po) 1

Dn+1 _d) Dn+1
1

n+1 |

here the top pushout is the one from example 1.14. N

Lemma 1.45. Every ]Top-relative cell complex (def. 1.42, def. 1.41) is a weak homotopy
equivalence, def. 1.30.

Proof. Let X — X = lim Xz be a ], -relative cell complex.
—p<a op

First observe that with the elements D™ - D™ x I of ], being homotopy equivalences for all n € N

(by example 1.29), each of the stages X; — X, in the relative cell complex is also a homotopy
equivalence. We make this fully explicit:

By definition, such a stage is a pushout of the form

n
gON = X
(¢, 1490

l (po) l

n
U DX —  Xpi,
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Then the fact that the projections Py, :D™ x | - D™ are strict left inverses to the inclusions (id, §,)

gives a commuting square of the form

'U Dni — Xﬁ
iel
20490 | Jia
U DMx]
i€l
iléllpni l l
(] Dni — XB

i€l

and so the universal property of the colimit (pushout) X, gives a factorization of the identity
morphism on the right through Xz,

U D™
iEID - Xﬁ

127 (d-%0) 1 1
U D™ x

iEID [ = Xgia
iléllp"i l l

U D™
iEID - Xﬁ

which exhibits Xz, = Xz as a strict left inverse to X; — Xz.,;. Hence it is now sufficient to show
that this is also a homotopy right inverse.

To that end, let

nni:D"ixI—>D"i><I

be the left homotopy that exhibits p,, as a homotopy right inverse to Py, by example 1.29. For

each t € [0,1] consider the commuting square

ni
Pt T K
) \

U DM xI X
i€l A1,
nni(_'t)l lld

iEIDni XI'— Xgiq

Regarded as a cocone under the span in the top left, the universal property of the colimit
(pushout) Xz, ; gives a continuous function

n(—t) : Xpp1 — Xpi1

for each t € [0,1]. For t = 0 this construction reduces to the provious one in that

n(—0):Xp,1 = Xg > Xp,, is the composite which we need to homotope to the identity; while
n(—,1) is the identity. Since n(—,t) is clearly also continuous in t it constitutes a continuous
function

n:Xpe1 XI— Xpgig

which exhibits the required left homotopy.

So far this shows that each stage X; - Xz, in the transfinite composition defining Xisa
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homotopy equivalence, hence, by prop. 1.31, a weak homotopy equivalence.

This means that all morphisms in the following diagram (notationally suppressing basepoints
and showing only the finite stages)

”n(X) = ”n(Xl) = T[n(XZ) = T[n(XB) =
= -

R
'
N

lim 7, (Xa)
are isomorphisms.

Moreover, lemma 1.40 gives that every representative and every null homotopy of elements in
nn()/?) already exists at some finite stage X,. This means that also the universally induced
morphism

lim 7, (Xo) = 1, (X)
is an isomorphism. Hence the composite 7, (X) = nn()A() is an isomorphism. N

Fibrations

Given a relative C-cell complex i:X —» Y, def. 1.41, it is typically interesting to study the extension
problem along f, i.e. to ask which topological spaces E are such that every continuous function
f:X — E has an extension f along :

X — E
Ll af
Y

If such extensions exists, it means that E is sufficiently “spread out” with respect to the maps in
C. More generally one considers this extension problem fiberwise, i.e. with both E and Y (hence
also X) equipped with a map to some base space B:

Definition 1.46. Given a category C and a sub-class C c Mor(C) of its morphisms, then a
morphism p:E — B in C is said to have the right lifting property against the morphisms in C if
every commuting diagram in ¢ of the form

X — F
¢l L
Y — B

with c € ¢, has a lift h, in that it may be completed to a commuting diagram of the form

X — E
€L hp P
Y — B

We will also say that f is a C-injective morphism if it satisfies the right lifting property
against C.

Definition 1.47. A continuous function p:E — B is called a Serre fibration if it is a
]Top-iniective morphism; i.e. if it has the right lifting property, def. 1.46, against all topological

generating acylic cofibrations, def. 1.42; hence if for every commuting diagram of continuous
functions of the form
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D" — E
(id.8o) | 15
D*"xI — B

has a lift h, in that it may be completed to a commuting diagram of the form

D" — E
(id.&o) | hopo|P.

D"xI — B

Remark 1.48. Def. 1.47 says, in view of the definition of left homotopy, that a Serre fibration p
is @ map with the property that given a left homotopy, def. 1.23, between two functions into
its codomain, and given a lift of one the two functions through p, then also the homotopy
between the two lifts. Therefore the condition on a Serre fibration is also called the homotopy
lifting property for maps whose domain is an n-disk.

More generally one may ask functions p to have such homotopy lifting property for functions
with arbitrary domain. These are called Hurewicz fibrations.

Remark 1.49. The precise shape of D™ and D™ x I in def. 1.47 turns out not to actually matter
much for the nature of Serre fibrations. We will eventually find below (prop. 3.5) that what
actually matters here is only that the inclusions D" & D™ x I are relative cell complexes (lemma
1.44) and weak homotopy equivalences (prop. 1.31) and that all of these may be generated
from them in a suitable way.

But for simple special cases this is readily seen directly, too. Notably we could replace the
n-disks in def. 1.47 with any homeomorphic topological space. A choice important in the
comparison to the classical model structure on simplicial sets (below) is to instead take the
topological n-simplices A™. Hence a Serre fibration is equivalently characterized as having lifts
in all diagrams of the form

A" — E
(id,8p) 1 1P
A"x] — B

Other deformations of the n-disks are useful in computations, too. For instance there is a
homeomorphism from the n-disk to its “cylinder with interior and end removed”, formally:

(D"x {0 U (dD"xI) =~ D"
) )
DM x I ~ D"x]

and hence f is a Serre fibration equivalently also if it admits lifts in all diagrams of the form

(D*x{0Hu(aD"xI) — E
(id,8p) l 1P

A" x| — B

The following is a general fact about closure of morphisms defined by lifting properties which we
prove in generality below as prop. 2.10.

Proposition 1.50. A Serre fibration, def. 1.47 has the right lifting property against all retracts
(see remark 2.12) of ]Top-re/ative cell complexes (def. 1.42, def. 1.38).

The following statement is foreshadowing the long exact sequences of homotopy groups (below)
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induced by any fiber sequence, the full version of which we come to below (example 4.37) after
having developed more of the abstract homotopy theory.

Proposition 1.51. Let f:X — Y be a Serre fibration, def. 1.47, let y: + - Y be any point and
write

Lo f
FyoX—>Y

for the fiber inclusion over that point. Then for every choice x: « — X of lift of the point y
through f, the induced sequence of homotopy groups

Ta(Fyx) 5 m (X, %) 25 m.(1)

is exact, in that the kernel of f_is canonically identified with the image of v.:

ker(f,) = im(t) .

Proof. 1t is clear that the image of «, is in the kernel of f_(every sphere in F,, ~ X becomes
constant on y, hence contractible, when sent forward to Y).

For the converse, let [a] € . (X, x) be represented by some a:5S" ' — X. Assume that [a] is in the
kernel of f . This means equivalently that « fits into a commuting diagram of the form

Sn—l — X
l U
p* 5y

where k is the contracting homotopy witnessing that f [a] = 0.

Now since x is a lift of y, there exists a left homotopy

1 : k = const,

as follows:

Sn—l l X

m | Vv

pm Sy

‘L(ld,sl) lld

id, &

pr %) pryp My

l l

* l) Y

(for instance: regard D™ as embedded in R" such that 0 € R" is identified with the basepoint on
the boundary of D™ and set n(v,t) = k(tv)).

The pasting of the top two squares that have appeared this way is equivalent to the following
commuting square

Snfl N — X

(id.61) | I
,id

stixy Y gy My
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Because f is a Serre fibration and by lemma 1.43 and prop. 1.50, this has a lift
f:8S"IxI—X.

Notice that 7 is a basepoint preserving left homotopy from « = 7j|, to some o' == 7|,. Being
homotopic, they represent the same element of n,,_; (X, x):

[a'] = [a] .

But the new representative o' has the special property that its image in Y is not just trivializable,
but trivialized: combining 7 with the previous diagram shows that it sits in the following
commuting diagram

o snot 80 o1y 1y
Lin Lnid) f
pr %) pryp Iy
! )
« 2, Y

The commutativity of the outer square says that f o' is constant, hence that o' is entirely
contained in the fiber F,. Said more abstractly, the universal property of fibers gives that «’

factors through F,, 4 X, hence that [a'] = [a] is in the image of «,. W

The following lemma 1.52, together with lemma 1.40 above, are the only two statements of the
entire development here that crucially involve the concrete particular nature of topological
spaces (“point-set topology”), everything beyond that is general abstract homotopy theory.

Lemma 1.52. The continuous functions with the right lifting property, def. 1.46 against the set
Itop = {(s"~' » D™ of topological generating cofibrations, def. 1.37, are precisely those which

are both weak homotopy equivalences, def. 1.30 as well as Serre fibrations, def. 1.47.

Proof. We break this up into three sub-statements:

A) I1,p-injective morphisms are in particular weak homotopy equivalences

Let p:)’? — X have the right lifting property against Ir,,

A

Snfl — X
my 3P
D" — X

We check that the lifts in these diagrams exhibit 7. (f) as being an isomorphism on all homotopy
groups, def. 1.26:

For n = 0 the existence of these lifts says that every point of X is in the image of p, hence that

no()/(\’) - my(X) is surjective. Let then S° = +[[ * — X bea map that hits two connected
components, then the existence of the lift says that if they have the same image in 7,(X) then

they were already the same connected component in X. Hence no()/\() - 1my(X) is also injective and
hence is a bijection.

Similarly, forn>1, if " - X represents an element in nn()A() that becomes trivial in n,(X), then
the existence of the lift says that it already represented the trivial element itself. Hence
nn()/?) - m,(X) has trivial kernel and so is injective.
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Finally, to see that nn()/?) - m,(X) is also surjective, hence bijective, observe that every elements
in m,,(X) is equivalently represented by a commuting diagram of the form

sk — 5\(
l l l
D" — X = X

and so here the lift gives a representative of a preimage in nn()/?).
B) Ir,p-injective morphisms are in particular Serre fibrations

By an immediate closure property of lifting problems (we spell this out in generality as prop.
2.10, cor. 2.11 below) an Ir.p-injective morphism has the right lifting property against all
relative cell complexes, and hence, by lemma 1.44, itis also a jTop—injective morphism, hence a

Serre fibration.

C) Acyclic Serre fibrations are in particular I,,-injective morphisms

(Hirschhorn 15, section 6).

Let f:X - Y be a Serre fibration that induces isomorphisms on homotopy groups. In degree 0
this means that f is an isomorphism on connected components, and this means that there is a
lift in every commuting square of the form

St=9 — X
l W
D0 = *x e d Y
(this is my(f) being surjective) and in every commuting square of the form
R ¢
o) Vv

D1:* g Y

(this is my(f) being injective). Hence we are reduced to showing that for n > 2 every diagram of

the form
sm1 5 x
| Vv
p» Sy

has a lift.

To that end, pick a basepoint on $" ! and write x and y for its images in X and Y, respectively

Then the diagram above expresses that f [a] = 0 € m,_4,(Y,y) and hence by assumption on f it
follows that [a] = 0 € m,,_, (X, x), which in turn mean that there is k' making the upper triangle of
our lifting problem commute:

Sn—l l X
n | 7rer
DTL

It is now sufficient to show that any such ¥’ may be deformed to a p’ which keeps making this
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upper triangle commute but also makes the remaining lower triangle commute.

To that end, notice that by the commutativity of the original square, we already have at least
this commuting square:

_ ln
STL 1 N DTL

m | Ve

D" — Y

K

This induces the universal map (k, f - k") from the pushout of its cospan in the top left, which is
the n-sphere (see this example):

Sn—l L_n) DTl
"L (po) VT
p* — §"
K

NGRS
Y

This universal morphism represents an element of the nth homotopy group:
[, for)] €My (Y, y) .
By assumption that f is a weak homotopy equivalence, there is a [p] € 7,,(X,x) with
f.lpl = [ f o k)]

hence on representatives there is a lift up to homotopy

X
T

n

_—
(1, fokr)

Morever, we may always find p of the form (p’,k’) for some p’:D™ - X. (“Paste k' to the reverse
of p.”)

Consider then the map

G Uep

and observe that this represents the trivial class:

[(feop' 0l =[(fop'.for)]+[(fer'K)]

= f.10 KD+ [(f o x’10)]
=lrl

=[G, for )]+ [(f oK', 1]
=0

This means equivalently that there is a homotopy
¢:fop >k
fixing the boundary of the n-disk.

Hence if we denote homotopy by double arrows, then we have now achieved the following
situation
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STL*l i) X
n | pr}U¢ lf
D" — Y
and it now suffices to show that ¢ may be lifted to a homotopy of just p’, fixing the boundary,
for then the resulting homotopic p ” is the desired lift.
To that end, notice that the condition that ¢:D" x I - Y fixes the boundary of the n-disk means
equivalently that it extends to a morphism

sty prx L9y
snt=1xg
out of the pushout that identifies in the cylinder over D™ all points lying over the boundary.
Hence we are reduced to finding a lift in

D" - X

! W

R NTI LPY EA2
ST AxI

But inspection of the left map reveals that it is homeomorphic again to D™ - D™ x I, and hence
the lift does indeed exist. N

2, Abstract homotopy theory

In the above we discussed three classes of continuous functions between topological spaces

1. weak homotopy equivalences;

2. relative cell complexes;

3. Serre fibrations

and we saw first aspects of their interplay via lifting properties.

A fundamental insight due to (Quillen 67) is that in fact all constructions in homotopy theory are
elegantly expressible via just the abstract interplay of these classes of morphisms. This was
distilled in (Quillen 67) into a small set of axioms called a model category structure (because
it serves to make all objects be models for homotopy types.)

This abstract homotopy theory is the royal road for handling any flavor of homotopy theory, in
particular the stable homotopy theory that we are after in Part 1. Here we discuss the basic
constructions and facts in abstract homotopy theory, then below we conclude section P1) by
showing that the above system of classes of maps of topological spaces is indeed an example.

Literature (Dwyer-Spalinski 95)

Definition 2.1. A category with weak equivalences is

1. a category C;

2. a sub-class W c Mor(C) of its morphisms;
such that

1. W contains all the isomorphisms of C;
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2. W is closed under two-out-of-three: in every commuting diagram in € of the form

if two of the three morphisms are in W, then so is the third.

Remark 2.2. It turns out that a category with weak equivalences, def. 2.1, already determines
a homotopy theory: the one given given by universally forcing weak equivalences to become
actual homotopy equivalences. This may be made precise and is called the simplicial
localization of a category with weak equivalences (Dwyer-Kan 80a, Dwyer-Kan 80b,
Dwyer-Kan 80c). However, without further auxiliary structure, these simplicial localizations are
in general intractable. The further axioms of a model category serve the sole purpose of
making the universal homotopy theory induced by a category with weak equivalences be
tractable:

Definition 2.3. A model category is

1. a category ¢ with all limits and colimits (def. 1.1);

2. three sub-classes W, Fib, Cof ¢ Mor(C) of its morphisms;
such that

1. the class W makes C into a category with weak equivalences, def. 2.1;

2. The pairs (W n Cof, Fib) and (Cap, W n Fib) are both weak factorization systems, def. 2.5.

One says:

e elements in W are weak equivalences,

e elements in Cof are cofibrations,

e elements in Fib are fibrations,

e elements in W n Cof are acyclic cofibrations,

e elements in W n Fib are acyclic fibrations.

The form of def. 2.3 is due to (Joyal, def. E.1.2). It implies various other conditions that (Quillen
67) demands explicitly, see prop. 2.10 and prop. 2.14 below.

We now dicuss the concept of weak factorization systems appearing in def. 2.3.

Factorization systems

Definition 2.4. Let ¢ be any category. Given a diagram in C of the form

then an extension of the morphism f along the morphism p is a completion to a commuting
diagram of the form
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X L Y
P
! 75
B
Dually, given a diagram of the form

A
lp

X L Y

then a lift of f through p is a completion to a commuting diagram of the form

A
Fpop
x L vy

Combining these cases: given a commuting square

X, — Y

141 l lpr
X, — Y,

then a lifting in the diagram is a completion to a commuting diagram of the form

Given a sub-class of morphisms K c Mor(C), then

e a morphism p_ as above is said to have the right lifting property against K or to be a
K-injective morphism if in all square diagrams with p, on the right and any p, € K on
the left a lift exists.

dually:

® a morphism p, is said to have the left lifting property against K or to be a
K-projective morphism if in all square diagrams with p, on the left and any p, € K on
the left a lift exists.

Definition 2.5. A weak factorization system (WFS) on a category C is a pair (Proj, Inj) of
classes of morphisms of ¢ such that

1. Every morphism f:X —» Y of € may be factored as the composition of a morphism in Proj
followed by one in Inj

€Proj €lnj

f:X—Z—Y

2. The classes are closed under having the lifting property, def. 2.4, against each other:

1. Proj is precisely the class of morphisms having the left lifting property against every
morphisms in Inj;
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2. Inj is precisely the class of morphisms having the right lifting property against every
morphisms in Proj.

Definition 2.6. For C a category, a functorial factorization of the morphisms in C is a functor

fact : ¢4t — ¢4l
which is a section of the composition functor d, : ¢4 —» ¢4,

Remark 2.7. In def. 2.6 we are using the following standard notation, see at simplex category
and at nerve of a category:

Write [1] = {0 - 1} and [2] = {0 —» 1 - 2} for the ordinal humbers, regarded as posets and hence
as categories. The arrow category Arr(C) is equivalently the functor category

¢4 .= Funct(4[1],¢), while ¢! := Funct(4[2],€) has as objects pairs of composable morphisms

in C. There are three injective functors §;:[1] - [2], where §; omits the index i in its image. By
precomposition, this induces functors d;:¢4? — ¢!, Here

e d, sends a pair of composable morphisms to their composition;
e d, sends a pair of composable morphisms to the first morphisms;
e d, sends a pair of composable morphisms to the second morphisms.

Definition 2.8. A weak factorization system, def. 2.5, is called a functorial weak
factorization system if the factorization of morphisms may be chosen to be a functorial
factorization fact, def. 2.6, i.e. such that d, o fact lands in Proj and d o fact in Inj.

Remark 2.9. Not all weak factorization systems are functorial, def. 2.8, although most
(including those produced by the small object argument (prop. 2.17 below), with due care)
are.

Proposition 2.10. Let C be a category and let K c Mor(C) be a class of morphisms. Write K Proj
and K Inj, respectively, for the sub-classes of K-projective morphisms and of K-injective
morphisms, def. 2.4. Then:

1. Both classes contain the class of isomorphism of C.
2. Both classes are closed under composition in C.

K Proj is also closed under transfinite composition.

3. Both classes are closed under forming retracts in the arrow category ¢*'l (see remark
2.12).

4. K Proj is closed under forming pushouts of morphisms in ¢ ("cobase change”).

K Inj is closed under forming pullback of morphisms in C (“base change”).
5. K Proj is closed under forming coproducts in ¢4,
K Inj is closed under forming products in ¢!,
Proof. We go through each item in turn.
containing isomorphisms

Given a commuting square
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A L ox
i p
Elso‘L l
B — Y

g

with the left morphism an isomorphism, then a lift is given by using the inverse of this
isomorphism foi™* ' Hence in particular there is a lift when p € K and so i € K Proj. The other
case is formally dual.

closure under composition

Given a commuting square of the form

A — X

! J’ZlKInj
eKi ! lz;ZI(Inj

B — Y

consider its pasting decomposition as

A — X

Loy lIilz(lnj
b

B — Y

Now the bottom commuting square has a lift, by assumption. This yields another pasting
decomposition

A — X

i e

€K €K Inj

2]
! 7 lEKInj

B — Y

and now the top commuting square has a lift by assumption. This is now equivalently a lift in the
total diagram, showing that p, o p, has the right lifting property against K and is hence in K In;.
The case of composing two morphisms in K Proj is formally dual. From this the closure of K Proj
under transfinite composition follows since the latter is given by colimits of sequential
composition and successive lifts against the underlying sequence as above constitutes a cocone,
whence the extension of the lift to the colimit follows by its universal property.

closure under retracts

Let j be the retract of an i € K Proj, i.e. let there be a commuting diagram of the form.

idg: A —- C — A
J i J
! lEKProj U
idg: B - D — B

Then for
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A — X
il v

B — Y

a commuting square, it is equivalent to its pasting composite with that retract diagram

A — C — A — X
. ; . £
ij iEKProj ‘LJ iE‘K
B — D — B — Y
Here the pasting composite of the two squares on the right has a lift, by assumption:
A — C — A — X
. ; f
v i 7 Vo
B —- D — B — Y

By composition, this is also a lift in the total outer rectangle, hence in the original square. Hence
j has the left lifting property against all p € K and hence is in K Proj. The other case is formally
dual.

closure under pushout and pullback

Let p € KInj and and let

Zxp X — X
f'py 1P
z Ly

be a pullback diagram in ¢. We need to show that f"p has the right lifting property with respect
toallieK. So let

A — Zx:X

i v
eKl l

B % 7z

be a commuting square. We need to construct a diagonal lift of that square. To that end, first
consider the pasting composite with the pullback square from above to obtain the commuting
diagram

A — Ixg X — X
iy lf*P 17

3 % z Ly

By the right lifting property of p, there is a diagonal lift of the total outer diagram

A - X
IO
B E) Y

By the universal property of the pullback this gives rise to the lift § in
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Zx;X — X
g , AL 1P,
B % 7z Ly

In order for g to qualify as the intended lift of the total diagram, it remains to show that

A — ZXfX

g,
B
commutes. To do so we notice that we obtain two cones with tip 4:
e one is given by the morphisms
1.LA-ZxsX>X
2.458%7
with universal morphism into the pullback being
©A->Zx:X
e the other by
1.458% 7%, x> x
2.45B% 7.
with universal morphism into the pullback being
oatBlzxx.

The commutativity of the diagrams that we have established so far shows that the first and
second morphisms here equal each other, respectively. By the fact that the universal morphism
into a pullback diagram is unique this implies the required identity of morphisms.

The other case is formally dual.

closure under (co-)products

Let {(4s 5 B,) € K Proj}, . be a set of elements of K Proj. Since colimits in the presheaf category

¢ are computed componentwise, their coproduct in this arrow category is the universal
morphism out of the coproduct of objects [],_ A, induced via its universal property by the set of
morphisms i.:

(is)ses
U Ag 23y B .
SES SES

Now let

U A, — X
SES

(s)ses | l};K

U B, — Y
SES

be a commuting square. This is in particular a cocone under the coproduct of objects, hence by
the universal property of the coproduct, this is equivalent to a set of commuting diagrams
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A, — X

is f
€K Proj ! J’EK
B, — Y
SES

By assumption, each of these has a lift ¢;. The collection of these lifts

A, — X

s | ¢ f
€Proj s/ J’EK

B, — Y

SES

is now itself a compatible cocone, and so once more by the universal property of the coproduct,
this is equivalent to a lift (¢5)__ in the original square

U A — X
SES

(is)ses l (ts)ses 2 lé‘x

U B — Y

SES
This shows that the coproduct of the i; has the left lifting property against all f € K and is hence
in K Proj. The other case is formally dual. W

An immediate consequence of prop. 2.10 is this:

Corollary 2.11. Let C be a category with all small colimits, and let K ¢ Mor(C) be a sub-class of
its morphisms. Then every K-injective morphism, def. 2.4, has the right lifting property, def.
2.4, against all K-relative cell complexes, def. 1.41 and their retracts, remark 2.12.

Remark 2.12. By a retract of a morphism X J, Y in some category ¢ we mean a retract of f as

an object in the arrow category ¢4, hence a morphism 4 -2 B such that in ¢2" there is a
factorization of the identity on g through f

idj:9g—f—yg.

This means equivalently that in ¢ there is a commuting diagram of the form

idg: A — X — A
19 W 18
idg: B — Y — B

Lemma 2.13. In every category C the class of isomorphisms is preserved under retracts in the
sense of remark 2.12.

Proof. For
idg: A — X — A
e
idg: B - Y — B
a retract diagram and X ER Y an isomorphism, the inverse to 4 %Bis given by the composite
X — A
o
B — Y
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More generally:

Proposition 2.14. Given a model category in the sense of def. 2.3, then its class of weak
equivalences is closed under forming retracts (in the arrow category, see remark 2.12).

(Joyal, prop. E.1.3)

Proof. Let
id: 4 — X — A
rl WV
id: B —- Y — B

be a commuting diagram in the given model category, with w € W a weak equivalence. We need
to show that then also f e .

First consider the case that f € Fib.

In this case, factor w as a cofibration followed by an acyclic fibration. Since w € W and by
two-out-of-three (def. 2.1) this is even a factorization through an acyclic cofibration followed by
an acyclic fibration. Hence we obtain a commuting diagram of the following form:

idi 4 - X — A
ldsL lEWﬂCOf lld

id: A S x — 4,

f EWNFib f
€Fib ! l J’eFib

idi: B -, Y — B

where s is uniquely defined and where t is any lift of the top middle vertical acyclic cofibration
against f. This now exhibits f as a retract of an acyclic fibration. These are closed under retract
by prop. 2.10.

Now consider the general case. Factor f as an acyclic cofibration followed by a fibration and form
the pushout in the top left square of the following diagram

d: A — X — A

wnCof wnCof
EWr\Cofi (po) lE o lE o

id: A4 — X — A"

EFlb\L lEW lEFlb

idi: B —» Y — B

where the other three squares are induced by the universal property of the pushout, as is the
identification of the middle horizontal composite as the identity on A’'. Since acyclic cofibrations
are closed under forming pushouts by prop. 2.10, the top middle vertical morphism is now an
acyclic fibration, and hence by assumption and by two-out-of-three so is the middle bottom
vertical morphism.

Thus the previous case now gives that the bottom left vertical morphism is a weak equivalence,
and hence the total left vertical composite is. N

Lemma 2.15. (retract argument)

Consider a composite morphism

31 of 111 09.05.17, 15:41



Introduction to Homotopy Theory in nLab https://ncatlab.org/nlab/print/Introduction+to+Homotopy+Theory

fixbaty.

1. If f has the left lifting property against p, then f is a retract of i.

2. If f has the right lifting property against i, then f is a retract of p.

Proof. We discuss the first statement, the second is formally dual.

Write the factorization of f as a commuting square of the form

X — A
f l lp'
Yy =Y

By the assumed lifting property of f against p there exists a diagonal filler g making a
commuting diagram of the form

X — A
fiL9, P
Y =Y

By rearranging this diagram a little, it is equivalent to
X = X

fl )
A

idy: Yy —

— Y
g p

Completing this to the right, this yields a diagram exhibiting the required retract according to
remark 2.12:

Small object argument

Given a set C c Mor(C) of morphisms in some category ¢, a natural question is how to factor any
given morphism f:X — Y through a relative C-cell complex, def. 1.41, followed by a C-injective
morphism, def. 1.46

€Ccell A €Cinj
— X —

f:X

A first approximation to such a factorization turns out to be given simply by forming X= X, by
attaching all possible C-cells to X. Namely let

dom(c) — X

(C/f)=+cCl !
cod(c) — Y

be the set of all ways to find a C-cell attachment in £, and consider the pushout X of the
coproduct of morphisms in C over all these:
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]_[CE(C/f) dom(c) — X
Hce(C/f)Cl (pO) .
]_[CE(C/f) cod(¢c) — X,

This gets already close to producing the intended factorization:
First of all the resulting map X - X, is a C-relative cell complex, by construction.

Second, by the fact that the coproduct is over all commuting squres to f, the morphism f itself
makes a commuting diagram

]_[Ce(c/f) dom(c) — X

Hce(C/f)Cl Lf

]_[CE(C/f) cod(c) — Y

and hence the universal property of the colimit means that f is indeed factored through that
Cc-cell complex X;; we may suggestively arrange that factorizing diagram like so:

Uee/pdom(c) — X

id | l
Ucee/p dom(c) X1

Ueee/n e 20l
]_[Ce(c/f) cod(c) — Y

This shows that, finally, the colimiting co-cone map - the one that now appears diagonally -
almost exhibits the desired right lifting of X; - Y against the ¢ € €. The failure of that to hold on
the nose is only the fact that a horizontal map in the middle of the above diagram is missing:
the diagonal map obtained above lifts not all commuting diagrams of c € C into f, but only those
where the top morphism dom(c) - X, factors through X - X;.

The idea of the small object argument now is to fix this only remaining problem by iterating the
construction: next factor X; — Y in the same way into

X, — X, —>Y

and so forth. Since relative C-cell complexes are closed under composition, at stage n the
resulting X — X,, is still a C-cell complex, getting bigger and bigger. But accordingly, the failure
of the accompanying X,, — Y to be a C-injective morphism becomes smaller and smaller, for it
now lifts against all diagrams where dom(c¢) — X,, factors through X, _; — X,,, which intuitively is
less and less of a condition as the X,,_; grow larger and larger.

The concept of small object is just what makes this intuition precise and finishes the small object
argument. For the present purpose we just need the following simple version:

Definition 2.16. For ¢ a category and C c Mor(C) a sub-set of its morphisms, say that these
have small domains if there is an ordinal a (def. 1.15) such that for every c € € and for every
C-relative cell complex given by a transfinite composition (def. 1.17)

f:X—>X1—>X2—>~--—>XB—>~--—>)/}

every morphism dom(c) — X factors through a stage X; — X of order B<a:
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Xp
2
AN
dom(c) — X
The above discussion proves the following:

Proposition 2.17. (small object argument)

Let ¢ be a locally small category with all small colimits. If a set C c Mor(C) of morphisms has all
small domains in the sense of def. 2.16, then every morphism f:X — in C factors through a
C-relative cell complex, def. 1.41, followed by a C-injective morphism, def. 1.46

€Ccell A €Cinj
— X —

f: X

(Quillen 67, 11.3 lemma)

Homotopy

We discuss how the concept of homotopy is abstractly realized in model categories, def. 2.3.

Definition 2.18. Let ¢ be a model category, def. 2.3, and X € C an object.

e A path space object Path(X) for X is a factorization of the diagonal 45 : X - X X X as

(Porp1)
Ay X—>Path(X) DL XXX

where X — Path(X) is a weak equivalence and Path(X) —» X x X is a fibration.

e A cylinder object Cyl(X) for X is a factorization of the codiagonal (or “fold map”)
Vy : XUX—> X as

Uy XuX(O 1)c l(X)—>X

where Cyl(X) - X is a weak equivalence. and X u X - Cyl(X) is a cofibration.

Remark 2.19. For every object X € ¢ in a model category, a cylinder object and a path space
object according to def. 2.18 exist: the factorization axioms guarantee that there exists

1. a factorization of the codiagonal as

€W NFib
Vx XIJX—>Cyl(X)—>X

2. a factorization of the diagonal as

ewnCof
Ay + X —— Path(X) —>X XX .

The cylinder and path space objects obtained this way are actually better than required by def.
2.18: in addition to Cyl(X) —» X being just a weak equivalence, for these this is actually an

acyclic fibration, and dually in addition to X — Path(X) being a weak equivalence, for these it is
actually an acyclic cofibrations.

Some authors call cylinder/path-space objects with this extra property “very good”
cylinder/path-space objects, respectively.

One may also consider dropping a condition in def. 2.18: what mainly matters is the weak
equivalence, hence some authors take cylinder/path-space objects to be defined as in def.
2.18 but without the condition that X u X - Cyl(X) is a cofibration and without the condition
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that Path(X) - X is a fibration. Such authors would then refer to the concept in def. 2.18 as
“good” cylinder/path-space objects.

The terminology in def. 2.18 follows the original (Quillen 67, 1.1 def. 4). With the induced
concept of left/right homotopy below in def. 2.22, this admits a quick derivation of the key
facts in the following, as we spell out below.

Lemma 2.20. Let C be a model category. If X € C is cofibrant, then for every cylinder object
Cyl(X) of X, def. 2.18, not only is (i, i,):X U X - X a cofibration, but each

i, i1:X — Cyl(X)
is an acyclic cofibration separately.

Dually, if X € C is fibrant, then for every path space object Path(X) of X, def. 2.18, not only is
(p, p,):Path(X) - X x X a cofibration, but each

Py P, :Path(X) — X
is an acyclic fibration separately.

Proof. We discuss the case of the path space object. The other case is formally dual.

First, that the component maps are weak equivalences follows generally: by definition they have
a right inverse Path(X) —» X and so this follows by two-out-of-three (def. 2.1).

But if X is fibrant, then also the two projection maps out of the product X x X —» X are fibrations,
because they are both pullbacks of the fibration X — =

XxX — X
l (pb) 1.
X — %

hence p,:Path(X) - X x X » X is the composite of two fibrations, and hence itself a fibration, by
prop. 2.10. N

Path space objects are very non-unique as objects up to isomorphism:

Example 2.21. If X e C is a fibrant object in a model category, def. 2.3, and for Path, (X) and
Path, (X) two path space objects for X, def. 2.18, then the fiber product Path, (X) Xy Path,(X) is
another path space object for X: the pullback square

X - XxX
\) \)
Path, (X) X Path, (X) — Path, (X) X Path,(X)

(id,ay,id)
XXXXX —_— XXXXXXX
Lo LPrPe)
XXX = XXX

gives that the induced projection is again a fibration. Moreover, using lemma 2.20 and
two-out-of-three (def. 2.1) gives that X — Path, (X) X Path,(X) is a weak equivalence.

For the case of the canonical topological path space objects of def 1.34, with
Path, (X) = Path,(X) = X' = X/® then this new path space object is XV! = x!%2] the mapping
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36 of 111

space out of the standard interval of length 2 instead of length 1.

Definition 2.22. Let f,g:X — Y be two parallel morphisms in a model category.

e A left homotopy 7:f =, g is @ morphism 7r:Cyl(X) — Y from a cylinder object of X, def.
2.18, such that it makes this diagram commute:

X — X)) « X
A Y
Y

¢ A right homotopy 7:f =5 g is a morphism n:X - Path(Y) to some path space object of X,
def. 2.18, such that this diagram commutes:

X
fy 17 NI
Y <« Path(Y) — Y

Lemma 2.23. Let f,g:X - Y be two parallel morphisms in a model category.

1. Let X be cofibrant. If there is a left homotopy f =, g then there is also a right homotopy
f =g g (def. 2.22) with respect to any chosen path space object.

2. Let X be fibrant. If there is a right homotopy f =y g then there is also a left homotopy
f =, g with respect to any chosen cylinder object.

In particular if X is cofibrant and Y is fibrant, then by going back and forth it follows that every
left homotopy is exhibited by every cylinder object, and every right homotopy is exhibited by
every path space object.

Proof. We discuss the first case, the second is formally dual. Let 5:Cyl(X) — Y be the given left
homotopy. Lemma 2.20 implies that we have a lift h in the following commuting diagram

iof
X —  Path(Y)
ig h Po.P1
ewnCof ! 7 J’EFib’
Cyl(X) —— Y XY
yl(x) (fep,m)

where on the right we have the chosen path space object. Now the composite 7 := hoi; is a right
homotopy as required:

Path(Y)

Po,P1

h
7 lEFib-

i1
X Cyl(X) —— Y XY
= W& 753

Proposition 2.24. For X a cofibrant object in a model category and Y a fibrant object, then the
relations of left homotopy f =, g and of right homotopy f =y g (def. 2.22) on the hom set
Hom(X,Y) coincide and are both equivalence relations.

Proof. That both relations coincide under the (co-)fibrancy assumption follows directly from
lemma 2.23.

The symmetry and reflexivity of the relation is obvious.
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That right homotopy (hence also left homotopy) with domain X is a transitive relation follows
from using example 2.21 to compose path space objects. N

The homotopy category

We discuss the construction that takes a model category, def. 2.3, and then universally forces all
its weak equivalences into actual isomorphisms.

Definition 2.25. Let ¢ be a model category, def. 2.3. Write Ho(C) for the category whose

e objects are those objects of ¢ which are both fibrant and cofibrant;

e morphisms are the homotopy classes of morphisms of ¢, hence the equivalence classes of
morphism under the equivalence relation of prop. 2.24;

and whose composition operation is given on representatives by composition in C.

This is, up to equivalence of categories, the homotopy category of the model category C.

Proposition 2.26. Def. 2.25 is well defined, in that composition of morphisms between fibrant-
cofibrant objects in C indeed passes to homotopy classes.

Proof. Fix any morphism X N Y between fibrant-cofibrant objects. Then for precomposition
(=) o [f] : Homyge) (Y, Z) = Homyge(x, 2))

to be well defined, we need that with (g ~h) : Y - Z also (fg ~ fh) : X - Z. But by prop 2.24 we
may take the homotopy ~ to be exhibited by a right homotopy 5:Y — Path(Z), for which case the
statement is evident from this diagram:

Z
g 1P1
x L v % pahz).
n\ I,
Z
For postcomposition we may choose to exhibit homotopy by left homotopy and argue dually. R

We now spell out that def. 2.25 indeed satisfies the universal property that defines the
localization of a category with weak equivalences at its weak equivalences.

Lemma 2.27. (Whitehead theorem in model categories)

Let ¢ be a model category. A weak equivalence between two objects which are both fibrant
and cofibrant is a homotopy equivalence.

Proof. By the factorization axioms in the model category € and by two-out-of-three (def. 2.1),
every weak equivalence f:X — Y factors through an object Z as an acyclic cofibration followed by
an acyclic fibration. In particular it follows that with X and Y both fibrant and cofibrant, so is Z,
and hence it is sufficient to prove that acyclic (co-)fibrations between such objects are homotopy
equivalences.

So let f:X — Y be an acyclic fibration between fibrant-cofibrant objects, the case of acyclic
cofibrations is formally dual. Then in fact it has a genuine right inverse given by a lift f ' in the
diagram
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(0] - X

f -1 f
el ! 4 ie'Fian

X = X

To see that f ' is also a left inverse up to left homotopy, let Cyl(X) be any cylinder object on X
(def. 2.18), hence a factorization of the codiagonal on X as a cofibration followed by a an acyclic
fibration

xux eyl S x

and consider the commuting square

_1° id
xux LMYy

ECg% l J’]c;WnFib
Cyl(X) Y

3l
:
=

which commutes due to f ! being a genuine right inverse of f. By construction, this commuting
square now admits a lift n, and that constitutes a left homotopy n:f ‘o f=,id. N

Definition 2.28. Given a model category ¢, consider a choice for each object X € C of

p

——~2 X of the initial morphism, such that when X is already

. . ix
1. a factorization ¢ —co (0),¢
cofibrant then p, = idy;

2. a factorization Xewj%% pPX % » of the terminal morphism, such that when X is already

fibrant then j, =idy.
Write then

Ypo C — Ho(0C)

for the functor to the homotopy category, def. 2.25, which sends an object X to the object PQX
and sends a morphism f:X — Y to the homotopy class of the result of first lifting in

o — QY
X | ef p Py
(0).4 m Y
and then lifting (here: extending) in
JoyeQf

QX —— PQY
Jox | Pef p Yy
PQX — *

Lemma 2.29. The construction in def. 2.28 is indeed well defined.

Proof. First of all, the object PQX is indeed both fibrant and cofibrant (as well as related by a
zig-zag of weak equivalences to X):
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(0]
eCofi \eCof
QX Swocor POX mp *-
EW’i
X

Now to see that the image on morphisms is well defined. First observe that any two choices
(Qf), of the first lift in the definition are left homotopic to each other, exhibited by lifting in

(@N1.@N)
QX uQx ——% Qv

€Cof | pY_
eWNFib

Cyl(QX) Ferxooan Y
Hence also the composites Joy © (Qp); are left homotopic to each other, and since their domain is

cofibrant, then by lemma 2.23 they are also right homotopic by a right homotopy «. This implies
finally, by lifting in

QX 5 Path(PQY)

ewnCof | lEFlb

PQX ————— PQY X PQY
¢ (R(Qf)1,P(Q)2) ¢ ¢

that also P(Qf), and P(Qf), are right homotopic, hence that indeed PQf represents a well-defined
homotopy class.

Finally to see that the assignment is indeed functorial, observe that the commutativity of the
lifting diagrams for Qf and PQf imply that also the following diagram commutes
x 2 ox %% pox
fl le lPQ].“

Y «— QY — PQY
Py Jor

Now from the pasting composite

j
x & ox 2% pox
fl le inf
Y «— QY — PQY
Py Joy
9] ng iPQg
7 — QZ — PQZ
Pz JQz
one sees that (PQg) o (PQf) is a lift of g o f and hence the same argument as above gives that it
is homotopic to the chosen PQ(g-f). N

For the following, recall the concept of natural isomorphism between functors: for F,G : ¢ — D
two functors, then a natural transformation n:F = G is for each object ¢ € 0bj(€) a morphism
n.:F(c) — G(c) in D, such that for each morphism f:c; - ¢, in € the following is a commuting

square:
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n
F(c1) — G(cq)
F(f) | 1609

F(cz) 71_) G(cz)

c2

Such 7 is called a natural isomorphism if its n_ are isomorphisms for all objects c.

Definition 2.30. For ¢ a category with weak equivalences, its localization at the weak
equivalences is, if it exists,

1. a category denoted C[W ]
2. a functor
y:C—CWw™
such that
1. y sends weak equivalences to isomorphisms;

2. y is universal with this property, in that:

for F:C — D any functor out of € into any category D, such that F takes weak
equivalences to isomorphisms, it factors through y up to a natural isomorphism p

Ho(C)

and this factorization is unique up to unique isomorphism, in that for (Fl,pl) and (Pz,pz)

two such factorizations, then there is a unique natural isomorphism «:F; = F, making the
evident diagram of natural isomorphisms commute.

Theorem 2.31. For ¢ a model category, the functor Ypo in def. 2.28 (for any choice of P and Q)
exhibits Ho(C) as indeed being the localization of the underlying category with weak
equivalences at its weak equivalences, in the sense of def. 2.30:

c = ¢
YPQ | R4
Ho(€) = c[w™

(Quillen 67, 1.1 theorem 1)

Proof. First, to see that that Ypo indeed takes weak equivalences to isomorphisms: By two-out-

of-three (def. 2.1) applied to the commuting diagrams shown in the proof of lemma 2.29, the
morphism PQf is a weak equivalence if f is:

j
x & ox =2 pox

=

fl »LQf inf

Y & Qv = PQY
Py Jqy

With this the "Whitehead theorem for model categories”, lemma 2.27, implies that PQf
represents an isomorphism in Ho(C).
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Now let F:¢ — D be any functor that sends weak equivalences to isomorphisms. We need to
show that it factors as

Ho(C)

uniquely up to unique natural isomorphism. Now by construction of P and Q in def. 2.28, Yo is
the identity on the full subcategory of fibrant-cofibrant objects. It follows that if F exists at all, it
must satisfy for all X N Y with X and Y both fibrant and cofibrant that

F([fD) = F(f),
(hence in particular F(y, ,(f)) = F(PQf)).

But by def. 2.25 that already fixes F on all of Ho(C), up to unique natural isomorphism. Hence it
only remains to check that with this definition of F there exists any natural isomorphism p filling
the diagram above.

To that end, apply F to the above commuting diagram to obtain

F(py) F(ox)

F(X) —X FQX) —=5 F(PQX)
1S0 1SO

F() | LF@n LFPen

iso iso
F(Y) oy F(QY) Flor) F(PQY)
Here now all horizontal morphisms are isomorphisms, by assumption on F. It follows that
defining p, = F(jox) © Fpy) ~! makes the required natural isomorphism:

or: FOO 10 pax) 2 pepgx) = For, 00

F | VRPN | FrpqU)
iso iso ~

py: F() W F(QY) Far) F(PQY) = F(yp (X))

Remark 2.32. Due to theorem 2.31 we may suppress the choices of cofibrant Q and fibrant
replacement P in def. 2.28 and just speak of the localization functor

y : C — Ho(C)

up to natural isomorphism.

In general, the localization ¢[W '] of a category with weak equivalences (G, W) (def. 2.30) may
invert more morphisms than just those in W. However, if the category admits the structure of a
model category (G, W, Cof, Fib), then its localiztion precisely only inverts the weak equivalences.

Proposition 2.33. Let C be a model category (def. 2.3) and let y : ¢ — Ho(C) be its localization
functor (def. 2.28, theorem 2.31). Then a morphism f in C is a weak equivalence precisely if
y(f) is an isomorphism in Ho(C).

(e.g. Goerss-Jardine 96, II, prop 1.14)

While the construction of the homotopy category in def. 2.25 combines the restriction to good
(fibrant/cofibrant) objects with the passage to homotopy classes of morphisms, it is often useful

41 of 111 09.05.17, 15:41



Introduction to Homotopy Theory in nLab https://ncatlab.org/nlab/print/Introduction+to+Homotopy+Theory

to consider intermediate stages:

Definition 2.34. Given a model category ¢, write

for the system of full subcategory inclusions of:

1. the category of fibrant objects ¢,

2. the category of cofibrant objects ¢,

3. the category of fibrant-cofibrant objects Cg,

all regarded a categories with weak equivalences (def. 2.1), via the weak equivalences
inherited from ¢, which we write (C;, W), (C.,, W) and (Cr., Wp,).

Remark 2.35. Of course the subcategories in def. 2.34 inherit more structure than just that of
categories with weak equivalences from C. €, and C, each inherit “half” of the factorization
axioms. One says that ¢, has the structure of a “fibration category” called a “Brown-category
of fibrant objects”, while ¢, has the structure of a “cofibration category”.

We discuss properties of these categories of (co-)fibrant objects below in Homotopy fiber
sequences.

The proof of theorem 2.31 immediately implies the following:

Corollary 2.36. For C a model category, the restriction of the localization functor y : ¢ — Ho(C)
from def. 2.28 (using remark 2.32) to any of the sub-categories with weak equivalences of

def, 2.34
Cse
/ N
C. Cr
N v
c
il’
Ho(C)

exhibits Ho(C) equivalently as the localization also of these subcategories with weak
equivalences, at their weak equivalences. In particular there are equivalences of categories

Ho(C) = C[W ] = Cf[W ] = Cc[Wc '] = Cpc[Wg'] .

The following says that for computing the hom-sets in the homotopy category, even a mixed
variant of the above will do; it is sufficient that the domain is cofibrant and the codomain is
fibrant:

Lemma 2.37. For X,Y € C with X cofibrant and Y fibrant, and for P,Q fibrant/cofibrant
replacement functors as in def. 2.28, then the morphism

Home (jy,py)
Homy,e)(PX, QY) = Home(PX,QY)/ . ———— Home(X,Y)/_
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(on homotopy classes of morphisms, well defined by prop. 2.24) is a natural bijection.

(Quillen 67, 1.1 lemma 7)

Proof. We may factor the morphism in question as the composite

Homge (id DPy)/ - Home (jy,idy) /.
Home(PX,QY)/ ———2""'5 Home(PX,Y) /. ——""5 Home(X,Y)/_ .

This shows that it is sufficient to see that for X cofibrant and Y fibrant, then
Home(idy, p,)/_ : Home(X,QY)/_ — Home(X,Y)/_

is an isomorphism, and dually that
Home(j,,idy)/_ : Home(PX,Y)/_ — Home(X,Y)/_

is an isomorphism. We discuss this for the former; the second is formally dual:

First, that Hom,(idyx, p,) is surjective is the lifting property in

@ — QY
Cof Py
sty LewnFib
X i) Y

which says that any morphism f:X - Y comes from a morphism ]/}:X — QY under postcomposition
with Qv 2 v.

Second, that Home(idy, p,) is injective is the lifting property in

XuX (fiz QY
Cof Py
ertl leWnFib

Cyl(X) 7 Y

which says that if two morphisms f, g: X - QY become homotopic after postcomposition with
py:QX — Y, then they were already homotopic before. W

We record the following fact which will be used in part 1.1 (here):

Lemma 2.38. Let C be a model category (def. 2.3). Then every commuting square in its
homotopy category Ho(C) (def. 2.25) is, up to isomorphism of squares, in the image of the
localization functor ¢ — Ho(C) of a commuting square in C (i.e.: not just commuting up to

homotopy).
Proof. Let
A L B
al 1Y €Ho(©)
A — B
fr

be a commuting square in the homotopy category. Writing the same symbols for fibrant-
cofibrant objects in ¢ and for morphisms in C representing these, then this means that in ¢ there
is a left homotopy of the form
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A LB
i1 1 lb
cyl4) — B
fo 1 A

A — A

a

Consider the factorization of the top square here through the mapping cylinder of f

A L B

il ~L (po) lEW
Cyl(d) —  Cyl(f)
TN )
A B’
a N Tf/
AI
This exhibits the composite A 3 Cyl(4) - Cyl(f) as an alternative representative of f in Ho(C), and
Cyl(f) —» B’ as an alternative representative for b, and the commuting square

A — Cyl(f)
ay l
A — B

fr

as an alternative representative of the given commuting square in Ho(C). W

Derived functors

Definition 2.39. For ¢ and D two categories with weak equivalences, def. 2.1, then a functor
F:¢ — D is called a homotopical functor if it sends weak equivalences to weak equivalences.

Definition 2.40. Given a homotopical functor F:C¢ — D (def. 2.39) between categories with
weak equivalences whose homotopy categories Ho(€) and Ho(D) exist (def. 2.30), then its
(“total”) derived functor is the functor Ho(F) between these homotopy categories which is
induced uniquely, up to unique isomorphism, by their universal property (def. 2.30):

(64 — D
rey - IR
Ho(C) m Ho(D)

Remark 2.41. While many functors of interest between model categories are not homotopical in
the sense of def. 2.39, many become homotopical after restriction to the full subcategories ¢,
of fibrant objects or ¢, of cofibrant objects, def. 2.34. By corollary 2.36 this is just as good for
the purpose of homotopy theory.

Therefore one considers the following generalization of def. 2.40:

Definition 2.42. Consider a functor F:C — D out of a model category ¢ (def. 2.3) into a
category with weak equivalences D (def. 2.1).

1. If the restriction of F to the full subcategory ¢, of fibrant object becomes a homotopical
functor (def. 2.39), then the derived functor of that restriction, according to def. 2.40, is
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called the right derived functor of F and denoted by RF:

er . LYo,

RF: C;[W™'] = Ho(C) Ho(D)

——
Ho(F)

where we use corollary 2.36.

2. If the restriction of F to the full subcategory €, of cofibrant object becomes a homotopical

functor (def. 2.39), then the derived functor of that restriction, according to def. 2.40, is
called the /eft derived functor of F and denoted by LF:

C. S (64 — D

er . RCE
LF: C[W™' = Ho(C) v Ho(D)
where again we use corollary 2.36.
The key fact that makes def. 2.42 practically relevant is the following:

Proposition 2.43. (Ken Brown's lemma)

Let ¢ be a model category with full subcategories Cy,C, of fibrant objects and of cofibrant
objects respectively (def. 2.34). Let D be a category with weak equivalences.

1. A functor out of the category of fibrant objects

F:C;—D

is @ homotopical functor, def. 2.39, already if it sends acylic fibrations to weak
equivalences.

2. A functor out of the category of cofibrant objects

F:¢,—D

is a homotopical functor, def. 2.39, already if it sends acylic cofibrations to weak
equivalences.

The following proof refers to the factorization lemma, whose full statement and proof we
postpone to further below (lemma 4.9).

Proof. We discuss the case of a functor on a category of fibrant objects Cf, def. 2.34. The other
case is formally dual.

Let f:X — Y be a weak equivalence in C;. Choose a path space object Path(X) (def. 2.18) and
consider the diagram

Path(f) —— X

eWnNFib
pif f
ew b (pb) oy
P1
Path(Y) —— Y~
€W nNFib
Po
eWnNFib
Y
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where the square is a pullback and Path(f) on the top left is our notation for the universal cone
object. (Below we discuss this in more detail, it is the mapping cocone of f, def. 4.1).

Here:

1. p, are both acyclic fibrations, by lemma 2.20;
2. Path(f) — X is an acyclic fibration because it is the pullback of p,.

3. p;f is a weak equivalence, because the factorization lemma 4.9 states that the composite

vertical morphism factors f through a weak equivalence, hence if f is a weak equivalence,
then p;f is by two-out-of-three (def. 2.1).

Now apply the functor F to this diagram and use the assumption that it sends acyclic fibrations
to weak equivalences to obtain

F(Path(f)) = F(X)

F(p:f
®1h LFD
F(py)
F(Path(Y)) —5 F(Y)-
F(pg)
eEw
Y

But the factorization lemma 4.9, in addition says that the vertical composite p, o p;f is a
fibration, hence an acyclic fibration by the above. Therefore also F(p, ° p;f) is a weak
equivalence. Now the claim that also F(f) is a weak equivalence follows with applying two-out-
of-three (def. 2.1) twice. N

Corollary 2.44. Let ¢, D be model categories and consider F:C — D a functor. Then:

1. If F preserves cofibrant objects and acyclic cofibrations between these, then its left
derived functor (def. 2.42) LLF exists, fitting into a diagram

C. — D,
ey ¢ UMD
LF
Ho(C) — Ho(D)
2. If F preserves fibrant objects and acyclic fibrants between these, then its right derived
functor (def. 2.42) RF exists, fitting into a diagram
F
Ye | 75 ARER

Ho(C) Y Ho(D)

Proposition 2.45. Let F : ¢ — D be a functor between two model categories (def. 2.3).

1. If F preserves fibrant objects and weak equivalences between fibrant objects, then the
total right derived functor RF == R(y, o F) (def. 2.42) in

ety gl U
Ho(C) Y Ho(D)
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is given, up to isomorphism, on any object X e ¢ A Ho(C) by appying F to a fibrant
replacement PX of X and then forming a cofibrant replacement Q(F(PX)) of the result:

RF(X) = Q(F(PX)) .

1. If F preserves cofibrant objects and weak equivalences between cofibrant objects, then
the total left derived functor LF = L(y,, o F) (def. 2.42) in

C, — D

Teey gL UMD
Ho(C) 7 Ho(D)

is given, up to isomorphism, on any object X e ¢ A Ho(C) by appying F to a cofibrant
replacement QX of X and then forming a fibrant replacement P(F(QX)) of the result:

LF(X) = P(F(QX)) .

Proof. We discuss the first case, the second is formally dual. By the proof of theorem 2.31 we
have

RF(X) = ¥, (F(y,))
=y, F(Q(P(X)))

But since F is a homotopical functor on fibrant objects, the cofibrant replacement morphism
F(Q(P(X))) — F(P(X)) is a weak equivalence in D, hence becomes an isomorphism under y,,.

Therefore
RF(X) =y, (F(P(X))) .

Now since F is assumed to preserve fibrant objects, F(P(X)) is fibrant in D, and hence y,, acts on
it (only) by cofibrant replacement. N

Quillen adjunctions

In practice it turns out to be useful to arrange for the assumptions in corollary 2.44 to be
satisfied by pairs of adjoint functors. Recall that this is a pair of functors L and R going back and
forth between two categories

¢ D

L
—
—

R

such that there is a natural bijection between hom-sets with L on the left and those with R on
the right:

¢d,c : Home(L(d), ¢) - Homy (d, R(c))

for all objects d € D and c € €. This being natural means that ¢:Homy (L(-), —) = Home(—, R(-)) is
a natural transformation, hence that for all morphisms g:d, —» d, and f:c; - ¢, the following is a
commuting square:

Home(L(dy), 1) Homy, (dy, R(¢q))
L(H)e()eg | 19°()°R(@)

Home(L(dy),c;) —— Homgp(dy, R(c3))
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We write (L 4 R) to indicate an adjunction and call L the left adjoint and R the right adjoint of the
adjoint pair.

The archetypical example of a pair of adjoint functors is that consisting of forming Cartesian
products Y x (—) and forming mapping spaces (—)¥, as in the category of compactly generated
topological spaces of def. 3.35.

If f:L(d) - c is any morphism, then the image ¢,.(f):d - R(c) is called its adjunct, and
conversely. The fact that adjuncts are in bijection is also expressed by the notation

L) L a
-~
¢ — R(d)

For an object d € D, the adjunct of the identity on Ld is called the adjunction unitn, : d — RLd.

For an object c € ¢, the adjunct of the identity on Rc is called the adjunction counit e, : LRc — c.

Adjunction units and counits turn out to encode the adjuncts of all other morphisms by the
formulas

o 1dl o) =@l R Ro)
g Lg €
® (d > Rc) = (Ld = LRc = ).

Definition 2.46. Let ¢,D be model categories. A pair of adjoint functors between them

(L4R): €D

L
Pl
ﬁ
R

is called a Quillen adjunction (and L,R are called left/right Quillen functors, respectively) if
the following equivalent conditions are satisfied
1. L preserves cofibrations and R preserves fibrations;
2. L preserves acyclic cofibrations and R preserves acyclic fibrations;
3. L preserves cofibrations and acylic cofibrations;
4. R preserves fibrations and acyclic fibrations.
Proposition 2.47. The conditions in def. 2.46 are indeed all equivalent.

(Quillen 67, 1.4, theorem 3)

Proof. First observe that

e (i) A left adjoint L between model categories preserves acyclic cofibrations precisely if its
right adjoint R preserves fibrations.

e (ii) A left adjoint L between model categories preserves cofibrations precisely if its right
adjoint R preserves acyclic fibrations.

We discuss statement (i), statement (ii) is formally dual. So let f:4 —» B be an acyclic cofibration
in D and g:X - Y a fibration in ¢. Then for every commuting diagram as on the left of the
following, its (L 4 R)-adjunct is a commuting diagram as on the right here:
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A — RX) L(A) — X
i R@uny 19
B — R(Y) L(B) — Y

If L preserves acyclic cofibrations, then the diagram on the right has a lift, and so the

(L 4 R)-adjunct of that lift is a lift of the left diagram. This shows that R(g) has the right lifting
property against all acylic cofibrations and hence is a fibration. Conversely, if R preserves
fibrations, the same argument run from right to left gives that L preserves acyclic fibrations.

Now by repeatedly applying (i) and (ii), all four conditions in question are seen to be
equivalent. N

L
—

Lemma 2.48. Let C % D be a Quillen adjunction, def. 2.46.

1. For X € C a fibrant object and Path(X) a path space object (def. 2.18), then R(Path(X)) is a
path space object for R(X).

2. For X € ¢ a cofibrant object and Cyl(X) a cylinder object (def. 2.18), then L(Cyl(X)) is a
path space object for L(X).

Proof. Consider the second case, the first is formally dual.

First Observe that L(Y uY) = LY U LY because L is left adjoint and hence preserves colimits, hence
in particular coproducts.

Hence
€ Cof € Cof
L(X UX — Cyl(X)) = (L(X) U L(X) — L(Cyl(X)))
is a cofibration.

Second, with Y cofibrant then also Y u Cyl(Y) is a cofibrantion, since Y - Y uY is a cofibration
(lemma 2.20). Therefore by Ken Brown's lemma (prop. 2.43) L preserves the weak equivalence

EW
cyl(y) —v. B

Proposition 2.49. For ¢ D a Quillen adjunction, def. 2.46, then also the corresponding left

L
Pl
1
&
and right derived functors, def. 2.42, via cor. 2.44, form a pair of adjoint functors

u
Ho(C) i)Ho(D).
RR

(Quillen 67, 1.4 theorem 3)

Proof. By def. 2.42 and lemma 2.37 it is sufficient to see that for X,Y € ¢ with X cofibrant and Y
fibrant, then there is a natural bijection

Home(LX,Y)/_ =~ Home(X,RY)/_ .

Since by the adjunction isomorphism for (L 4 R) such a natural bijection exists before passing to
homotopy classes (—)/_, it is sufficient to see that this respects homotopy classes. To that end,
use from lemma 2.48 that with Cyl(Y) a cylinder object for Y, def. 2.18, then L(Cyl(Y)) is a
cylinder object for L(Y). This implies that left homotopies

(f=L9 :LX—>Y
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given by
n: Cyl(LX) = LCyl(X) — Y
are in bijection to left homotopies
(f=.8 :X—RY
given by

7+ Cyl(X) — RX .

Definition 2.50. For ¢,D two model categories, a Quillen adjunction (def.2.46)

(L4R):C L D

» [

is called a Quillen equivalence, to be denoted

Q
;UlrQRTb-
S

if the following equivalent conditions hold.

1. The right derived functor of R (via prop. 2.47, corollary 2.44) is an equivalence of
categories

RR:Ho(C) = Ho(D) .

2. The left derived functor of L (via prop. 2.47, corollary 2.44) is an equivalence of
categories

LL:Ho(D) = Ho(C) .

3. For every cofibrant object d € D, the “derived adjunction unit”, hence the composite

d - R(L(d)) W, R(P(L(d)))

(of the adjunction unit with any fibrant replacement P as in def. 2.28) is a weak
equivalence;

and for every fibrant object ¢ € ¢, the “derived adjunction counit”, hence the composite

L(pR(c)) €
L(Q(R(c))) —— L(R(c)) — ¢

(of the adjunction counit with any cofibrant replacement as in def. 2.28) is a weak
equivalence in D.

4. For every cofibrant object d € D and every fibrant object ¢ € ¢, a morphism d — R(c) is a
weak equivalence precisely if its adjunct morphism L(c) - d is:

EWqp
d — R(c)
EWe )
L(d) —c
Poposition 2.51. The conditions in def. 2.50 are indeed all equivalent.

(Quillen 67, 1.4, theorem 3)
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Proof. That 1) & 2) follows from prop. 2.49 (if in an adjoint pair one is an equivalence, then so
is the other).

To see the equivalence 1),2) © 3), notice (prop.) that a pair of adjoint functors is an equivalence
of categories precisely if both the adjunction unit and the adjunction counit are natural
isomorphisms. Hence it is sufficient to show that the morphisms called “derived adjunction
(co-)units” above indeed represent the adjunction (co-)unit of (LL 4 RR) in the homotopy
category. We show this now for the adjunction unit, the case of the adjunction counit is formally
dual.

To that end, first observe that for d € D, then the defining commuting square for the left derived
functor from def. 2.42

L
D, — (64

Y| 72 1rpe

Ho(D) T Ho(C)

(using fibrant and fibrant/cofibrant replacement functors y,, Ypro from def. 2.28 with their

universal property from theorem 2.31, corollary 2.36) gives that

(LL)d = PLPd =~ PLd € Ho(C),

where the second isomorphism holds because the left Quillen functor L sends the acyclic
cofibration j,:d - Pd to a weak equivalence.

The adjunction unit of (LL 4 RR) on Pd € Ho(C) is the image of the identity under

Homyoe) (LL)Pd, (LL)Pd) > Homye(e (Pd, (RR)(LL)Pd) .

By the above and the proof of prop. 2.49, that adjunction isomorphism is equivalently that of
(L 4 R) under the isomorphism

Hom(j 4,id)
Homy, ) (PLd, PLd) ——— Home¢(Ld, PLd) / _

of lemma 2.37. Hence the derived adjunction unit is the (L 4 R)-adjunct of
1d 4 pra S pra,

which indeed (by the formula for adjuncts) is

R(iLg)
x 2 RLd ~4 RPLA

To see that 4) = 3):

Consider the weak equivalence LX LX prx. Its (L 4 R)-adjunct is
i
x % RLx 2% rpLX

by assumption 4) this is again a weak equivalence, which is the requirement for the derived unit
in 3). Dually for derived counit.

To see 3) = 4):

Consider any f:Ld - c a weak equivalence for cofibrant d, firbant c. Its adjunct f sits in a
commuting diagram
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7ood % Rrld B Re

- \RiLd | Re
d — RPLd R RPc

where Pf is any lift constructed as in def. 2.28.

This exhibits the bottom left morphism as the derived adjunction unit, hence a weak equivalence
by assumption. But since f was a weak equivalence, so is Pf (by two-out-of-three). Thereby also
RPf and Rj,, are weak equivalences by Ken Brown's lemma 2.43 and the assumed fibrancy of c.

Therefore by two-out-of-three (def. 2.1) also the adjunct f is a weak equivalence. B

In certain situations the conditions on a Quillen equivalence simplify. For instance:

L
Proposition 2.52. If in a Quillen adjunction ¢ I} D (def. 2.46) the right adjoint R “creates
R

weak equivalences” (in that a morphism f in C is a weak equivalence precisly if U(f) is) then
(L 4 R) is a Quillen equivalence (def. 2.50) precisely already if for all cofibrant objects d € D the
plain adjunction unit

d - R(L(d))
is a weak equivalence.

Proof. By prop. 2.51, generally, (L 4 R) is a Quillen equivalence precisely if

1. for every cofibrant object d € D, the “derived adjunction unit”

R(UL(a))
d 25 RL(d)) —225 R(P(L(Q)))
is a weak equivalence;

2. for every fibrant object ¢ € ¢, the “derived adjunction counit”

L(Q(R(c ))) L(R(C)) S
is a weak equivalence.

Consider the first condition: Since R preserves the weak equivalence Juayr then by two-out-
of-three (def. 2.1) the composite in the first item is a weak equivalence precisely if 7 is.

Hence it is now sufficient to show that in this case the second condition above is automatic.

Since R also reflects weak equivalences, the composite in item two is a weak equivalence
precisely if its image

PR (C))

R(L(Q(R(C)))) R(L(R(©)) “5 R(e)

under R is.

Moreover, assuming, by the above, that Moy ©ON the cofibrant object Q(R(¢)) is a weak

equivalence, then by two-out-of-three this composite is a weak equivalence precisely if the
further composite with n is

QR©) 2% RILOQR©)) —T* RLR©))) " R(C) .
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By the formula for adjuncts, this composite is the (L 4 R)-adjunct of the original composite,
which is just Preo)

L(R(c)) €
L(Q(R(c))) —— L(R(c)) — ¢ .

QR(C) 29 R(e)

But Preo) is a weak equivalence by definition of cofibrant replacement. N

3. The model structure on topological spaces

We now discuss how the category Top of topological spaces satisfies the axioms of abstract
homotopy theory (model category) theory, def. 2.3.

Definition 3.1. Say that a continuous function, hence a morphism in Top, is

¢ a classical weak equivalence if it is a weak homotopy equivalence, def. 1.30;

e a classical fibration if it is a Serre fibration, def. 1.47;

e a classical cofibration if it is a retract (rem. 2.12) of a relative cell complex, def. 1.38.

and hence

e a acyclic classical cofibration if it is a classical cofibration as well as a classical weak
equivalence;

® a acyclic classical fibration if it is a classical fibration as well as a classical weak
equivalence.

Write

W, Fiby, Cofy © Mor(Top)
for the classes of these morphisms, respectively.

We first prove now that the classes of morphisms in def. 3.1 satisfy the conditions for a model
category structure, def. 2.3 (after some lemmas, this is theorem 3.7 below). Then we discuss
the resulting classical homotopy category (below) and then a few variant model structures
whose proof follows immediately along the line of the proof of ToPguitten *

e The model structure on pointed topological spaces Topél/lmen;

e The model structure on compactly generated topological spaces (ToP ) quitten and
*/ .
(TOng )Quillen 4
e The model structure on topologically enriched functors [C, (Topcg)Quillen]proj and

[C’ (Tong) Quillen]proj )

Proposition 3.2. The classical weak equivalences, def. 3.1, satify two-out-of-three (def. 2.1).

Proof. Since isomorphisms (of homotopy groups) satisfy 2-out-of-3, this property is directly
inherited via the very definition of weak homotopy equivalence, def. 1.30. N

Lemma 3.3. Every morphism f:X — Y in Top factors as a classical cofibration followed by an
acyclic classical fibration, def. 3.1:
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€Cofe) A EW(NFibg
X

f: X

Proof. By lemma 1.40 the set It,, = {s" ' & D™ of topological generating cofibrations, def. 1.37,
has small domains, in the sense of def. 2.16 (the n-spheres are compact). Hence by the small
object argument, prop. 2.17, f factors as an Ir,,-relative cell complex, def. 1.41, hence just a
plain relative cell complex, def. 1.38, followed by an Iy,,-injective morphisms, def. 1.46:

€Cof¢ A EIT()p Inj
—s X —

f:X

By lemma 1.52 the map X > Y is both a weak homotopy equivalence as well as a Serre
fibration. N

Lemma 3.4. Every morphism f:X — Y in Top factors as an acyclic classical cofibration followed
by a fibration, def. 3.1:

f .y €W NCof )/\( €Fibg
Proof. By lemma 1.40 the set Jrop = {D™ o D™ x I} of topological generating acyclic cofibrations,

def. 1.42, has small domains, in the sense of def. 2.16 (the n-disks are compact). Hence by the
small object argument, prop. 2.17, f factors as an ]Top-relative cell complex, def. 1.41, followed

by a Jiop-injective morphisms, def. 1.46:

elTop Cell A elTop Inj
f: X X

By definition this makes X —Y a Serre fibration, hence a fibration.

By lemma 1.44 a relative ]Top-cell complex is in particular a relative It,,-cell complex. Hence

7AY - - - - - - -
X - X is a classical cofibration. By lemma 1.45 it is also a weak homotopy equivalence, hence a
clasical weak equivalence. 1

Lemma 3.5. Every commuting square in Top with the left morphism a classical cofibration and
the right morphism a fibration, def. 3.1

ge fe
COfCl l lFibCl

P
admits a lift as soon as one of the two is also a classical weak equivalence.

Proof. A) If the fibration f is also a weak equivalence, then lemma 1.52 says that it has the
right lifting property against the generating cofibrations Ir,,, and cor. 2.11 implies the claim.

B) If the cofibration g on the left is also a weak equivalence, consider any factorization into a
relative ]Top-cell complex, def. 1.42, def. 1.41, followed by a fibration,

€Jrop Cell eFiby
. N 5

)

€] Cell
as in the proof of lemma 3.4. By lemma 1.45 the morphism o 7, is a weak homotopy

equivalence, and so by two-out-of-three (prop. 3.2) the factorizing fibration is actually an acyclic
fibration. By case A), this acyclic fibration has the right lifting property against the cofibration g
itself, and so the retract argument, lemma 2.15 gives that g is a retract of a relative j, -cell

complex. With this, finally cor. 2.11 implies that f has the right lifting property against g. W

Finally:
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Proposition 3.6. The systems (Cof,, W N Fiby) and (W n Cofy, Fiby) from def. 3.1 are weak
factorization systems.

Proof. Since we have already seen the factorization property (lemma 3.3, lemma 3.4) and the
lifting properties (lemma 3.5), it only remains to see that the given left/right classes exhaust the
class of morphisms with the given lifting property.

For the classical fibrations this is by definition, for the the classical acyclic fibrations this is by
lemma 1.52.

The remaining statement for Cof,; and W n Cof, follows from a general argument (here) for
cofibrantly generated model categories (def. 3.9), which we spell out:

So let f:X — Y be in (It Inj)Proj, we need to show that then f is a retract (remark 2.12) of a
relative cell complex. To that end, apply the small object argument as in lemma 3.3 to factor f
as

ITop Cell ? €lTop Inj

f:X

It follows that f has the left lifting property against = Y, and hence by the retract argument

(lemma 2.15) it is a retract of X ety This proves the claim for Cof.

The analogous argument for W n Cof,;, using the small object argument for Jropr shows that
every f € (jTOp Inj)Proj is a retract of a jTop—ceII complex. By lemma 1.44 and lemma 1.45 a
]Top-cell complex is both an Ir,,-cell complex and a weak homotopy equivalence. Retracts of the

former are cofibrations by definition, and retracts of the latter are still weak homotopy
equivalences by lemma 2.13. Hence such f is an acyclic cofibration. N

In conclusion, prop. 3.2 and prop. 3.6 say that:
Theorem 3.7. The classes of morphisms in Mor(Top) of def. 3.1,

* W, = weak homotopy equivalences,

® Fib, = Serre fibrations

e Cof, = retracts of relative cell complexes

define a model category structure (def. 2.3) Top,.,, the classical model structure on
topological spaces or Serre-Quillen model structure .

In particular

1. every object in ToPguitten is fibrant;

2. the cofibrant objects in ToPgyinen AF€ the retracts of cell complexes.

Hence in particular the following classical statement is an immediate corollary:
Corollary 3.8. (Whitehead theorem)

Every weak homotopy equivalence (def. 1.30) between topological spaces that are
homeomorphic to a retract of a cell complex, in particular to a CW-complex (def. 1.38), is a
homotopy equivalence (def. 1.28).

Proof. This is the "Whitehead theorem in model categories”, lemma 2.27, specialized to

Topguien Vid theorem 3.7. 1

In proving theorem 3.7 we have in fact shown a bit more that stated. Looking back, all the
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structure of ToPguiten is entirely induced by the set I, (def. 1.37) of generating cofibrations and
the set Jrop (def. 1.42) of generating acyclic cofibrations (whence the terminology). This

phenomenon will keep recurring and will keep being useful as we construct further model
categories, such as the classical model structure on pointed topological spaces (def. 3.31), the
projective model structure on topological functors (thm. 3.76), and finally various model
structures on spectra which we turn to in the section on stable homotopy theory.

Therefore we make this situation explicit:

Definition 3.9. A model category C (def. 2.3) is called cofibrantly generated if there exists
two subsets

I,] € Mor(C)
of its class of morphisms, such that

1. I and J have small domains according to def. 2.16,

2. the (acyclic) cofibrations of ¢ are precisely the retracts, of I-relative cell complexes
(J-relative cell complexes), def. 1.41.

Proposition 3.10. For C a cofibrantly generated model category, def. 3.9, with generating
(acylic) cofibrations I (]), then its classes W, Fib, Cof of weak equivalences, fibrations and
cofibrations are equivalently expressed as injective or projective morphisms (def. 2.4) this
way:

1. Cof = (I Inj)Proj

2. WNFib = I nj;

3. W n Cof = (J Inj)Proj;
4. Fib = ] Inj;

Proof. It is clear from the definition that I c (I Inj)Proj, so that the closure property of prop. 2.10
gives an inclusion

Cof c (I Inj)Proj .

For the converse inclusion, let f € (I Inj)Proj. By the small object argument, prop. 2.17, there is a

1 j
factorization f: sreel . Hence by assumption and by the retract argument lemma 2.15, f is a

retract of an I-relative cell complex, hence is in Cof.

This proves the first statement. Together with the closure properties of prop. 2.10, this implies
the second claim.

The proof of the third and fourth item is directly analogous, just with J replaced forI. R

The classical homotopy category

With the classical model structure on topological spaces in hand, we now have good control over
the classical homotopy category:

Definition 3.11. The Serre-Quillen classical homotopy category is the homotopy category,
def. 2.25, of the classical model structure on topological spaces ToDguinten from theorem 3.7:

we write

Ho(Top) = Ho(TopQuiHen) .
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Remark 3.12. From just theorem 3.7, the definition 2.25 (def. 3.11) gives that
HO(TOpQuillen) = (TOpRetract(Cell))/~

is the category whose objects are retracts of cell complexes (def. 1.38) and whose morphisms
are homotopy classes of continuous functions. But in fact more is true:

Theorem 3.7 in itself implies that every topological space is weakly equivalent to a retract of a
cell complex, def. 1.38. But by the existence of CW approximations, this cell complex may
even be taken to be a CW complex.

(Better yet, there is Quillen equivalence to the classical model structure on simplicial sets

w,
which implies a functorial CW _approximation |Sing X| S x given by forming the geometric
realization of the singular simplicial complex of X.)

Hence the Serre-Quillen classical homotopy category is also equivalently the category of just
the CW-complexes whith homotopy classes of continuous functions between them

HO(TopQuillen) = (TOpRetraCt(Cell))/~
= (Topey) /-

It follows that the universal property of the homotopy category (theorem 2.31)

HO(TOP gy en) = ToP[W ']

implies that there is a bijection, up to natural isomorphism, between

1. functors out of Top,, which agree on homotopy-equivalent maps;

2. functors out of all of Top which send weak homotopy equivalences to isomorphisms.

This statement in particular serves to show that two different axiomatizations of generalized
(Eilenberg-Steenrod) cohomology theories are equivalent to each other. See at Introduction to
Stable homotopy theory -- S the section generalized cohomology functors (this prop.)

Beware that, by remark 1.32, what is not equivalent to Ho(Topg,ien) is the category
hTop := Top/_

obtained from all topological spaces with morphisms the homotopy classes of continuous
functions. This category is “too large”, the correct homotopy category is just the genuine full

subcategory

Ho(Topgien) = (TOPRegract(ceny)/~ = Top/. = < hTop.

Beware also the ambiguity of terminology: “classical homotopy category” some literature
refers to hTop instead of Ho(Top g, jpen)- However, here we never have any use for hTop and will

not mention it again.

Proposition 3.13. Let X be a CW-complex, def. 1.38. Then the standard topological cylinder of
def. 1.22

(ip,i1)

XUX—XXI—>X

(obtained by forming the product with the standard topological intervall I = [0,1]) is indeed a
cylinder object in the abstract sense of def. 2.18.

Proof. We describe the proof informally. It is immediate how to turn this into a formal proof, but
the notation becomes tedious. (One place where it is spelled out completely is Ottina 14, prop.

57 of 111 09.05.17, 15:41



Introduction to Homotopy Theory in nLab https://ncatlab.org/nlab/print/Introduction+to+Homotopy+Theory

2.9.)

So let X, » X; - X, - --- » X be a presentation of X as a CW-complex. Proceed by induction on
the cell dimension.

First observe that the cylinder X, x I over X, is a cell complex: First X, itself is a disjoint union of
points. Adding a second copy for every point (i.e. attaching along $~' - D°) yields X, U X,, then
attaching an inteval between any two corresponding points (along S° — D') yields X, x I.

So assume that for n € N it has been shown that X,, x I has the structure of a CW-complex of
dimension (n+ 1). Then for each cell of X,,, ;, attach it twice to X,, x I, once at X,, x {0}, and once
at X, x {1}.

The result is X, ., with a hollow cylinder erected over each of its (n + 1)-cells. Now fill these
hollow cylinders (along $s"** - D"*') to obtain X,,; x I.

This completes the induction, hence the proof of the CW-structure on X x I.

. . o . . (ip,i1) .
The construction also manifestly exhibits the inclusion X U X — as a relative cell complex.

Finally, it is clear (prop. 1.31) that X x I - X is a weak homotopy equivalence. i

Conversely:

Proposition 3.14. Let X be any topological space. Then the standard topological path space
object (def. 1.34)

; (x%0,x%1)
S

X—X XXX

(obtained by forming the mapping space, def. 1.18, with the standard topological intervall
1 =[0,1]) is indeed a path space object in the abstract sense of def. 2.18.

Proof. To see that const: X - X' is a weak homotopy equivalence it is sufficient, by prop. 1.31, to
exhibit a homotopy equivalence. Let the homotopy inverse be x%:x’ - X. Then the composite

const IXSO
X— X —X

is already equal to the identity. The other we round, the rescaling of paths provides the required
homotopy

EN=ye-)

Ixx!
To see that X' — X x X is a fibration, we need to show that every commuting square of the form
DTL — XI
o) l
D"xI — XxX
has a lift.

Now first use the adjunction (I x (=)) 4 (=)' from prop. 1.19 to rewrite this equivalently as the
following commuting square:

prup® L prypudrxD
(o.i1) | 1
DI — X
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This square is equivalently (example 1.12) a morphism out of the pushout

D"x1 U ((D"xDuD"xD)—X.
D

up™
By the same reasoning, a lift in the original diagram is now equivalently a lifting in

D"xI u (D"xhHud"xI) — X
p™up™

l 1
(D"x D x1 — %

Inspection of the component maps shows that the left vertical morphism here is the inclusion
into the square times D" of three of its faces times D". This is homeomorphic to the inclusion
D"t - p"*t1 x| (as in remark 1.49). Therefore a lift in this square exsists, and hence a lift in the
original square exists. W

Model structure on pointed spaces

A pointed object (X,x) is of course an object X equipped with a point x: * - X, and a morphism of
pointed objects (X,x) — (Y,y) is a morphism X — Y that takes x to y. Trivial as this is in itself, it is
good to record some basic facts, which we do here.

Passing to pointed objects is also the first step in linearizing classical homotopy theory to stable
homotopy theory. In particular, every category of pointed objects has a zero object, hence has
zero morphisms. And crucially, if the original category had Cartesian products, then its pointed
objects canonically inherit a non-cartesian tensor product: the smash product. These ingredients
will be key below in the section on stable homotopy theory.

Definition 3.15. Let ¢ be a category and let X € C be an object.

The slice category €, is the category whose

A
® objects are morphisms | in C;
X
A — B
e morphisms are commuting triangles N v in¢C.
X

Dually, the coslice category ¢*/ is the category whose

X
e objects are morphisms | in C;
A

e morphisms are commuting triangles V4 N oin C.

A — B

There are the canonical forgetful functors

U:ce;c¥ —e
given by forgetting the morphisms to/from X.

We here focus on this class of examples:
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Definition 3.16. For ¢ a category with terminal object *, the coslice category (def. 3.15) ¢*/ is
the corresponding category of pointed objects: its

e objects are morphisms in ¢ of the form = 5x (hence an object X equipped with a choice
of point; i.e. a pointed object);

e morphisms are commuting triangles of the form

*
Xy A4
x L vy
(hence morphisms in ¢ which preserve the chosen points).

Remark 3.17. In a category of pointed objects ¢*/, def. 3.16, the terminal object coincides with
the initial object, both are given by = € C itself, pointed in the unique way.

In this situation one says that = is a zero object and that ¢*/ is a pointed category.

It follows that also all hom-sets Hom,.,(X,Y) of ¢*/ are canonically pointed sets, pointed by the
zero morphism

3r 3
0: X—0—>Y.

Definition 3.18. Let ¢ be a category with terminal object and finite colimits. Then the forgetful
functor U:¢*/ - € from its category of pointed objects, def. 3.16, has a left adjoint

(4
*/
L C
—
U

c

given by forming the disjoint union (coproduct) with a base point (*adjoining a base point”).

Proposition 3.19. Let C be a category with all limits and colimits. Then also the category of
pointed objects ¢*/, def. 3.16, has all limits and colimits.

Moreover:

1. the limits are the limits of the underlying diagrams in C, with the base point of the limit
induced by its universal property in C;

2. the colimits are the limits in C of the diagrams with the basepoint adjoined.

Proof. 1t is immediate to check the relevant universal property. For details see at slice category
— limits and colimits. 1

Example 3.20. Given two pointed objects (X,x) and (Y,y), then:
1. their product in ¢*/ is simply (X x Y, (x,y));

2. their coproduct in ¢*/ has to be computed using the second clause in prop. 3.19: since
the point * has to be adjoined to the diagram, it is given not by the coproduct in ¢, but by
the pushout in ¢ of the form:

* — X
Y1 (po) l
Y — XvY
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This is called the wedge sum operation on pointed objects.
Generally for a set {X;},, in Top™/

1. their product is formed in Top as in example 1.9, with the new basepoint canonically
induced;

2. their coproduct is formed by the colimit in Top over the diagram with a basepoint
adjoined, and is called the wedge sum v;¢; X;.

Example 3.21. For X a CW-complex, def. 1.38 then for every n € N the quotient (example 1.13)
of its n-skeleton by its (n — 1)-skeleton is the wedge sum, def. 3.20, of n-spheres, one for each

n-cell of X:

X"/x" 1t~ v §".

i€l

Definition 3.22. For ¢*/ a category of pointed objects with finite limits and finite colimits, the
smash product is the functor

(IA(-) ¢ xe —e

given by
XAY == x U (XXY),
xuy

hence by the pushout in €

idy,y),(x,id
Xuy w XXY

l l
* — XANY

In terms of the wedge sum from def. 3.20, this may be written concisely as

XXy
CXvy S

XAY

Remark 3.23. For a general category C in def. 3.22, the smash product need not be associative,
namely it fails to be associative if the functor (-) x Z does not preserve the guotients involved

in the definition.

In particular this may happen for ¢ = Top.

A sufficient condition for (-) x Z to preserve quotients is that it is a left adjoint functor. This is
the case in the smaller subcategory of compactly generated topological spaces, we come to
this in prop. 3.44 below.

These two operations are going to be ubiquituous in stable homotopy theory:

symbolname category theory
XvY |wedge sum |coproduct in ¢*/
XAY smash producttensor product in ¢*/

Example 3.24. For X,Y € Top, with X,,Y, € Top*/, def. 3.18, then
o X, VY, =(XUuY),;
o X, AV, =(XxY),.
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Proof. By example 3.20, X, vY, is given by the colimit in Top over the diagram

*

X * * Y

This is clearly X u = uY. Then, by definition 3.22
_ Xus)x(Xux)
Xe AV, = (XU)V (YU =)

_ Xxyuxuyus
T Xuvus

=~ XXYU =*,

Example 3.25. Let ¢*/ = Top*/ be pointed topological spaces. Then

I, € Top*/

denotes the standard interval object I = [0,1] from def. 1.22, with a djoint basepoint adjoined,
def. 3.18. Now for X any pointed topological space, then

XAI) =X xD/({xo} X 1)

is the reduced cylinder over X: the result of forming the ordinary cyclinder over X as in def.
1.22, and then identifying the interval over the basepoint of X with the point.

(Generally, any construction in C properly adapted to pointed objects ¢*/ is called the

“reduced” version of the unpointed construction. Notably so for “reduced suspension” which
we come to below.)

Just like the ordinary cylinder X x I receives a canonical injection from the coproduct X u X
formed in Top, so the reduced cyclinder receives a canonical injection from the coproduct X u X
formed in Top*/, which is the wedge sum from example 3.20:

XVX— XA .

Example 3.26. For (X,x), (Y,y) pointed topological spaces with Y a locally compact topological

space, then the pointed mapping space is the topological subspace of the mapping space of
def. 1.18

Maps((Y,y), (X,x)), © (XY, const,)

on those maps which preserve the basepoints, and pointed by the map constant on the
basepoint of X.

In particular, the standard topological pointed path space object on some pointed X (the
pointed variant of def. 1.34) is the pointed mapping space Maps(I,X),.

The pointed consequence of prop. 1.19 then gives that there is a natural bijection

Hom, ./ ((Z,2) A (Y,y), (X, %)) = Hom, ./ ((Z 2),Maps((Y,y), (X,x)),)

between basepoint-preserving continuous functions out of a smash product, def. 3.22, with
pointed continuous functions of one variable into the pointed mapping space.

Example 3.27. Given a morphism f:X — Y in a category of pointed objects ¢*/, def. 3.16, with
finite limits and colimits,
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1. its fiber or kernel is the pullback of the point inclusion

fib(f) — X
L (pb) V
* — Y

2. its cofiber or cokernel is the pushout of the point projection

x L v
L (po) \)

* —  cofib(f)

Remark 3.28. In the situation of example 3.27, both the pullback as well as the pushout are
equivalently computed in €. For the pullback this is the first clause of prop. 3.19. The second
clause says that for computing the pushout in ¢, first the point is to be adjoined to the
diagram, and then the colimit over the larger diagram

*

N

be computed. But one readily checks that in this special case this does not affect the result.
(The technical jargon is that the inclusion of the smaller diagram into the larger one in this
case happens to be a final functor.)

Proposition 3.29. Let ¢ be a model category and let X € C be an object. Then both the slice
category €,x as well as the coslice category ¢*/, def. 3.15, carry model structures themselves

- the model structure on a (co-)slice category, where a morphism is a weak equivalence,
fibration or cofibration iff its image under the forgetful functor U is so in C.

In particular the category ¢*/ of pointed objects, def. 3.16, in a model category C becomes
itself a model category this way.

The corresponding homotopy category of a model category, def. 2.25, we call the pointed
homotopy category Ho(C*/).

Proof. This is immediate:

By prop. 3.19 the (co-)slice category has all limits and colimits. By definition of the weak
equivalences in the (co-)slice, they satisfy two-out-of-three, def. 2.1, because the do in C.

Similarly, the factorization and lifting is all induced by ¢: Consider the coslice category ¢*/, the
case of the slice category is formally dual; then if

commutes in ¢, and a factorization of f exists in C, it uniquely makes this diagram commute

X
v/ LN
A — C — B
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Similarly, if

is a commuting diagram in ¢*/, hence a commuting diagram in ¢ as shown, with all objects
equipped with compatible morphisms from X, then inspection shows that any lift in the diagram
necessarily respects the maps from X, too. N

Example 3.30. For ¢ any model category, with ¢*/ its pointed model structure according to
prop. 3.29, then the corresponding homotopy category (def. 2.25) is, by remark 3.17,
canonically enriched in pointed sets, in that its hom-functor is of the form

[— -], : Ho(C*/)°P x Ho(C*/) — Set™/ .

Definition 3.31. Write Top(*ll/lillen for the classical model structure on pointed topological
spaces, obtained from the classical model structure on topological spaces ToPgitten (theorem
3.7) via the induced coslice model structure of prop. 3.29.

Its homotopy category, def. 2.25,

Ho(Top™/) := HO(TOPSI/mlen)

we call the classical pointed homotopy category.

Remark 3.32. The fibrant objects in the pointed model structure ¢*/, prop. 3.29, are those that
are fibrant as objects of C. But the cofibrant objects in ¢* are now those for which the
basepoint inclusion is a cofibration in X.

For ¢*/ = Topé{lmerl from def. 3.31, then the corresponding cofibrant pointed topological spaces

are tyically referred to as spaces with non-degenerate basepoints or . Notice that the point
itself is cofibrant in ToPguinens SO that cofibrant pointed topological spaces are in particular

cofibrant topological spaces.

While the existence of the model structure on Top*/ is immediate, via prop. 3.29, for the
discussion of topologically enriched functors (below) it is useful to record that this, too, is a
cofibrantly generated model category (def. 3.9), as follows:

Definition 3.33. Write

n—-1 (tn)y n

ITop%/=<{S+ —>D+} c Mor(Top*/)

and

n (id'60)+ n */
]Top*/ = {D+ —> (D" x I)+} c Mor(Top™/),

respectively, for the sets of morphisms obtained from the classical generating cofibrations, def.
1.37, and the classical generating acyclic cofibrations, def. 1.42, under adjoining of basepoints
(def. 3.18).

Theorem 3.34. The sets Liop*/ and Jrop*/ in def. 3.33 exhibit the classical model structure on

pointed topological spaces TOPaﬁinen of def. 3.31 as a cofibrantly generated model category,
def. 3.9.

(This is also a special case of a general statement about cofibrant generation of coslice model
structures, see this proposition.)
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Proof. Due to the fact that in ]Top*/ a basepoint is freely adjoined, lemma 1.52 goes through
verbatim for the pointed case, with Jrop replaced by ]Top*/, as do the other two lemmas above

that depend on point-set topology, lemma 1.40 and lemma 1.45. With this, the rest of the proof
follows by the same general abstract reasoning as above in the proof of theorem 3.7. N

Model structure on compactly generated spaces

The category Top has the technical inconvenience that mapping spaces x¥ (def. 1.18) satisfying
the exponential property (prop. 1.19) exist in general only for Y a locally compact topological
space, but fail to exist more generally. In other words: Top is not cartesian closed. But cartesian
closure is necessary for some purposes of homotopy theory, for instance it ensures that

1. the smash product (def. 3.22) on pointed topological spaces is associative (prop. 3.44
below);

2. there is a concept of topologically enriched functors with values in topological spaces, to
which we turn below;

3. geometric realization of simplicial sets preserves products.

The first two of these are crucial for the development of stable homotopy theory in the next
section, the third is a great convenience in computations.

Now, since the homotopy theory of topological spaces only cares about the CW approximation to
any topological space (remark 3.12), it is plausible to ask for a full subcategory of Top which still
contains all CW-complexes, still has all limits and colimits, still supports a model category
structure constructed in the same way as above, but which in addition is cartesian closed, and
preferably such that the model structure interacts well with the cartesian closure.

Such a full subcategory exists, the category of compactly generated topological spaces. This we
briefly describe now.

Literature (Strickland 09)

Definition 3.35. Let X be a topological space.

A subset A c X is called compactly closed (or k-closed) if for every continuous function
f:K — X out of a compact Hausdorff space K, then the preimage f '(A) is a closed subset of K.

The space X is called compactly generated if its closed subsets exhaust (hence coincide
with) the k-closed subsets.

Write

TopCg < Top

for the full subcategory of Top on the compactly generated topological spaces.

Definition 3.36. Write
k
Top — Topcg < Top

for the functor which sends any topological space X = (S, 1) to the topological space (S, kr) with
the same underlying set S, but with open subsets k7 the collection of all k-open subsets with
respect to t.

Lemma 3.37. Let X € Top,, < Top and let Y € Top. Then continuous functions

65 of 111 09.05.17, 15:41



Introduction to Homotopy Theory in nLab https://ncatlab.org/nlab/print/Introduction+to+Homotopy+Theory

X—Y
are also continuous when regarded as functions
X — k()
with k from def. 3.36.

Proof. We need to show that for A c X a k-closed subset, then the preimage f '(A4) c X is closed
subset.

Let ¢:K — X be any continuous function out of a compact Hausdorff space K. Since 4 is k-closed
by assumption, we have that (f o ¢) *(4) = ¢ "*(f *(A)) c K is closed in K. This means that f '(4)
is k-closed in X. But by the assumption that X is compactly generated, it follows that f ~'(4) is
already closed. N

Corollary 3.38. For X € Top,, there is a natural bijection

Homr,p (X)) = HomTOpcg X, k(Y)) .

This means equivalently that the functor k (def. 3.36) together with the inclusion from def.
3.35 forms an pair of adjoint functors

[N
Top_._ 1 Top.

C8 «—
k

This in turn means equivalently that Top,, < Top is a coreflective subcategory with coreflector
k. In particular k is idemotent in that there are natural homeomorphisms

k(k(X)) = k(X) .

Hence colimits in Top,, exists and are computed as in Top. Also limits in Top, . exists, these are
obtained by computing the limit in Top and then applying the functor k to the result.

The following is a slight variant of def. 1.18, appropriate for the context of Top,,-

Definition 3.39. For X,Y € Top,, (def. 3.35) the compactly generated mapping space
X'e Top,, is the compactly generated topological space whose underlying set is the set C(Y,X)

of continuous functions f:Y — X, and for which a subbase for its topology has elements U?%,
for U c X any open subset and ¢:K - Y a continuous function out of a compact Hausdorff space
K given by

U = {f € C(Y,X)| f($(K)) < U}.

Remark 3.40. If Y is (compactly generated and) a Hausdorff space, then the topology on the
compactly generated mapping space X! in def. 3.39 agrees with the compact-open topology of
def. 1.18. Beware that it is common to say “compact-open topology” also for the topology of
the compactly generated mapping space when Y is not Hausdorff. In that case, however, the
two definitions in general disagree.

Proposition 3.41. The category Top,, of def. 3.35 is cartesian closed:

for every X € Top,, then the operation X x (=) x (=) x X of forming the Cartesian product in
Top,, (which by cor. 3.38 is k applied to the usual product topological space) together with the

operation (—)* of forming the compactly generated mapping space (def. 3.39) forms a pair of
adjoint functors
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For proof see for instance (Strickland 09, prop. 2.12).

Corollary 3.42. For X,Y € Tong/ , the operation of forming the pointed mapping space (example
3.26) inside the compactly generated mapping space of def. 3.39

ev.
Maps(Y, X)_ = fib(XY = x ,x)

is left adjoint to the smash product operation on pointed compactly generated topological

spaces.
YA(S)
Top./ "~ L  Top./
Opeg L Topg, .
Maps(Y, -),

Corollary 3.43. For I a small category and X,:I — Topc*g/ a diagram, then the compactly

generated mapping space construction from def. 3.39 preserves limits in its covariant
argument and sends colimits in its contravariant argument to limits:

Maps(X,liLni Y;), = liLniMaps(X, Yy,

and
Maps(li_)mi X, V), = }iLniMaps(Xi,Y)* .
Proof. The first statement is an immediate implication of Maps(X, —), being a right adjoint,
according to cor. 3.42.

For the second statement, we use that by def. 3.35 a compactly generated topological space is
uniquely determined if one knows all continuous functions out of compact Hausdorff spaces into
it. Hence it is sufficient to show that there is a natural isomorphism

HomTopc*g/ (K, Maps(li_m)i X;, Y)*) ~ HomTopéé (K, li(_miMaps(Xi,Y)*>
for K any compact Hausdorff space.

With this, the statement follows by cor. 3.42 and using that ordinary hom-sets take colimits in
the first argument and limits in the second argument to limits:

Hom */(K, Maps(lim X;, Y) ) =~ Hom */<KAlim Xi Y)
Topcg —i * Topcg —i
= Hom, ., (li_m)i(K/\Xi), Y)
~ li(_mi(HomTopgg/ (KAX;, Y)j
~ li(_miHomTopc*é (K, Maps(X;,Y),)

~ HomTopc*é (K, li(_miMaps(Xi,Y)*>

Moreover, compact generation fixes the associativity of the smash product (remark 3.23):

Proposition 3.44. On pointed (def. 3.16) compactly generated topological spaces (def. 3.35)
the smash product (def. 3.22)
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(9)A(-): Tong/ X Topc*g/ — Tong/

is associative and the 0-sphere is a tensor unit for it.

Proof. Since (—) x X is a left adjoint by prop. 3.41, it presevers colimits and in particular

guotient space projections. Therefore with X,Y,Z € Top:g/ then

S IR a
XAY)AZ = ——XDiubaxy
( ) XAY)x{z}u{[x] = [y]}xZ
XXYXZ
~ XXIXZUIXYxZ
- XXY x{z}
- XXYXZ
T Xxvyvz
The analogous reasoning applies to yield also XA (Y AZ) = XX—\X/:jZZ

The second statement follows directly with prop. 3.41. 1

Remark 3.45. Corollary 3.42 together with prop. 3.44 says that under the smash product the
category of pointed compactly generated topological spaces is a closed symmetric monoidal
category with tensor unit the 0-sphere.

(Topgd, A,S°), .

Notice that by prop. 3.41 also unpointed compactly generated spaces under Cartesian product
form a closed symmetric monoidal category, hence a cartesian closed category

(Topcg, X, *).

The fact that Topc*g/ is still closed symmetric monoidal but no longer Cartesian exhibits Topc*g/ as
being “more linear” than Top,,. The “full linearization” of Top,, is the closed symmteric

monoidal category of structured spectra under smash product of spectra which we discuss in
section 1.

Due to the idempotency ko k =~ k (cor. 3.38) it is useful to know plenty of conditions under which
a given topological space is already compactly generated, for then applying k to it does not
change it and one may continue working as in Top.

Example 3.46. Every CW-complex is compactly generated.

Proof. Since a CW-complex is a Hausdorff space, by prop. 3.53 and prop. 3.54 its k-closed
subsets are precisely those whose intersection with every compact subspace is closed.

Since a CW-complex X is a colimit in Top over attachments of standard n-disks D™ (its cells), by
the characterization of colimits in Top (prop.) a subset of X is open or closed precisely if its
restriction to each cell is open or closed, respectively. Since the n-disks are compact, this implies
one direction: if a subset 4 of X intersected with all compact subsets is closed, then A is closed.

For the converse direction, since a CW-complex is a Hausdorff space and since compact
subspaces of Hausdorff spaces are closed, the intersection of a closed subset with a compact
subset is closed. N

For completeness we record further classes of examples:

Example 3.47. The category Top,, of compactly generated topological spaces includes

1. all locally compact topological spaces,

2. all first-countable topological spaces,
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hence in particular

1. all metrizable topological spaces,

2. all discrete topological spaces,

3. all codiscrete topological spaces.

(Lewis 78, p. 148)

Recall that by corollary 3.38, all colimits of compactly generated spaces are again compactly
generated.

Example 3.48. The product topological space of a CW-complex with a compact CW-complex,
and more generally with a locally compact CW-complex, is compactly generated.

(Hatcher “Topology of cell complexes”, theorem A.6)

More generally:

Proposition 3.49. For X a compactly generated space and Y a locally compact Hausdorff space,
then the product topological space X x Y is compactly generated.

e.g. (Strickland 09, prop. 26)

Finally we check that the concept of homotopy and homotopy groups does not change under
passing to compactly generated spaces:

Proposition 3.50. For every topological space X, the canonical function k(X) — X (the
adjunction unit) is a weak homotopy equivalence.

Proof. By example 3.46, example 3.48 and lemma 3.37, continuous functions §™ - k(X) and
their left homotopies S™ x I - k(X) are in bijection with functions S™ — X and their homotopies
S"xI-X. 11

Theorem 3.51. The restriction of the model category structure on ToPguinten from theorem 3.7

along the inclusion Top,, < Top of def. 3.35 is still a model category structure, which is
cofibrantly generated by the same sets Iy, (def. 1.37) and Jrop (def. 1.42) The coreflection of
cor. 3.38 is a Quillen equivalence (def. 2.50)

2N
(Topcg)Quillen (i TopQuillen '
k

Proof. By example 3.46, the sets Ir,, and Jrop @re indeed in Mor(Tong). By example 3.48 all

arguments above about left homotopies between maps out of these basic cells go through
verbatim in Top, - Hence the three technical lemmas above depending on actual point-set

topology, topology, lemma 1.40, lemma 1.45 and lemma 1.52, go through verbatim as before.
Accordingly, since the remainder of the proof of theorem 3.7 of Top,,, follows by general

abstract arguments from these, it also still goes through verbatim for (Topcg)Quillen (repeatedly

use the small object argument and the retract argument to establish the two weak factorization
systems).

Hence the (acyclic) cofibrations in (Top ) g, @re identified with those in Top,;,.,,,» and so the
inclusion is a part of a Quillen adjunction (def. 2.46). To see that this is a Quillen equivalence
(def. 2.50), it is sufficient to check that for X a compactly generated space then a continuous
function f:X — Y is a weak homotopy equivalence (def. 1.30) precisely if the adjunct f:X — k(Y)
is a weak homotopy equivalence. But, by lemma 3.37, f is the same function as f, just
considered with different codomain. Hence the result follows with prop. 3.50. N

69 of 111 09.05.17, 15:41



Introduction to Homotopy Theory in nLab https://ncatlab.org/nlab/print/Introduction+to+Homotopy+Theory

Compactly generated weakly Hausdorff topological spaces

While the inclusion Top,, < Top of def. 3.35 does satisfy the requirement that it gives a cartesian

closed category with all limits and colimits and containing all CW-complexes, one may ask for
yet smaller subcategories that still share all these properties but potentially exhibit further
convenient properties still.

A popular choice introduced in (McCord 69) is to add the further restriction to topopological
spaces which are not only compactly generated but also weakly Hausdorff. This was motivated
from (Steenrod 67) where compactly generated Hausdorff spaces were used by the observation
((McCord 69, section 2)) that Hausdorffness is not preserved my many colimit operations,
notably not by forming guotient spaces.

On the other hand, in above we wouldn’t have imposed Hausdorffness in the first place. More

intrinsic advantages of Top, g,y Over Top , are the following:

e every pushout of a morphism in Top gy < Top along a closed subspace inclusion in Top is
again in Top

cgwH

e in Top g quotient spaces are not only preserved by cartesian products (as is the case for
all compactly generated spaces due to X x (—) being a left adjoint, according to cor. 3.38)
but by all pullbacks

e in Top the regular monomorphisms are the closed subspace inclusions

cgwH
We will not need this here or in the following sections, but we briefly mention it for completenes:

Definition 3.52. A topological space X is called weakly Hausdorff if for every continuous
function

f:K—X

out of a compact Hausdorff space K, its image f(K) c X is a closed subset of X.

Proposition 3.53. Every Hausdorff space is a weakly Hausdorff space, def. 3.52.

Proof. Since compact subspaces of Hausdorff spaces are closed. R

Proposition 3.54. For X a weakly Hausdorff topological space, def. 3.52, then a subset Ac X is
k-closed, def. 3.35, precisely if for every subset K c X that is compact Hausdorff with respect
to the subspace topology, then the intersection K n A is a closed subset of X.

e.g. (Strickland 09, lemma 1.4 (c))

Topological enrichment

So far the classical model structure on topological spaces which we established in theorem 3.7,
as well as the projective model structures on topologically enriched functors induced from it in
theorem 3.76, concern the hom-sets, but not the hom-spaces (def. 3.65), i.e. the model
structure so far has not been related to the topology on hom-spaces. The following statements
say that in fact the model structure and the enrichment by topology on the hom-spaces are
compatible in a suitable sense: we have an “enriched model category”. This implies in particular
that the product/hom-adjunctions are Quillen adjunctions, which is crucial for a decent discusson
of the derived functors of the suspension/looping adjunction below.

Definition 3.55. Leti,:X; - Y, and i,: X, » Y, be morphisms in Top
product

def. 3.35. Their pushout

cg’/
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i1 Oy = ((id, i), (i1, id))
is the universal morphism in the following diagram

X, X X,
i) (idi2)
Y1 XX, (po) X1 XY,
N /
X
(Y1 x X3) X1|£X2 (X1 XxY3)

1 (diz), (i1,id))
Y, XY,

Example 3.56. If i;: X; © Y, and i,:X, © Y, are inclusions, then their pushout product i; oi, from
def. 3.55 is the inclusion

(X, XY, UY; xXX,)oV, XY,.
For instance
({0} > nNo({o} -1
is the inclusion of two adjacent edges of a square into the square.

Example 3.57. The pushout product with an initial morphism is just the ordinary Cartesian
product functor

@->X)0(-)=Xx(-),

@-XoMUsB=xxalxxp.

Proof. The product topological space with the empty space is the empty space, hence the map

id, . . . . . .
PxA @n @ x B is an isomorphism, and so the pushout in the pushout product is X x A. From this

one reads off the universal map in question to be X x f:

PxA
s N
XX A (po) P xB
~ N v/
XXA
D)
XXxB

Example 3.58. With
i J
Itop:(S" & D™ and Jpo, (D" S DT x 1)

the generating cofibrations (def. 1.37) and generating acyclic cofibrations (def. 1.42) of
(Topcg)Quillen (theorem 3.51), then their pushout-products (def. 3.55) are

71 of 111 09.05.17, 15:41



Introduction to Homotopy Theory in nLab https://ncatlab.org/nlab/print/Introduction+to+Homotopy+Theory

72 of 111

iTLl o inz = iTLl +ny
inl Djnz = jn1+n2
Proof. To see this, it is profitable to model n-disks and n-spheres, up to homeomorphism, as

n-cubes D™ =~ [0,1]" ¢ R™ and their boundaries S ' =~ 3[0,1]" . For the idea of the proof, consider
the situation in low dimensions, where one readily sees pictorially that

and
ihhoj,: (= u | )oo.

Generally, D™ may be represented as the space of n-tuples of elements in [0,1], and S™ as the
suspace of tuples for which at least one of the coordinates is equal to 0 or to 1.

Accordingly, S™ x D"2 & D™ *"2 s the subspace of (n, + n,)-tuples, such that at least one of the
first n, coordinates is equal to 0 or 1, while D™ x "2 & D™ *™2 g the subspace of (n, + n,)-tuples
such that east least one of the last n, coordinates is equal to 0 or to 1. Therefore

S™M x D"2yp™ x §"2 ~ §M1tN2
And of course it is clear that D™ x D"2 ~ p™*"2_ This shows the first case.

For the second, use that S™ x D™2 x [ is contractible to $™* x D™ in D™ x D"2 x I, and that
S™ x D™ is a subspace of D"t x D"z, Qi

Definition 3.59. Let i:A - B and p:X —» Y be two morphisms in Top,, def. 3.35. Their pullback
powering is

poi= (p” X"
being the universal morphism in
XB
L@BxD
Y® x x4
YA
7 N
YEB (pb) x4
yi ™ /pa
YA

Proposition 3.60. Let i, i,,p be three morphisms in Top,,, def. 3.35. Then for their pushout-

products (def. 3.55) and pullback-powerings (def. 3.59) the following lifting properties are
equivalent (“Joyal-Tierney calculus”):

i, 0i, hasLLPagainst p
& i;  hasLLPagainst pUiz .

& i, hasLLPagainst p"i

Proof. We claim that by the cartesian closure of Top,,, and carefully collecting terms, one finds
a natural bijection between commuting squares and their lifts as follows:
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f (f.82)
0o L x® OxB U PxA2% x
) OxA
i1 | 1P o 10y | 1P
— VB x x4
(91.92) vA PxB g_f Y

where the tilde denotes product/hom-adjuncts, for instance
pIys
PxBy
etc.

To see this in more detail, observe that both squares above each represent two squares from the
two components into the fiber product and out of the pushout, respectively, as well as one more
square exhibiting the compatibility condition on these components:

i

Q — x®
) 17"
BXXA
(91.92) v4
o L xk o L x* p 93 xa
~ (g oy ) w?
P — YE P — x4 Y8 — y4
EY 91 yi2
7 (id,iz) g,
QxXxB —> X QXA — (QXB PxA =S X
PN (iq,id) l lp '(il,id) l lf ’(id,iz) l lp
PxXB — Y PxA — X PxB — Y
gs 9o 91
(F.32)
QxB U PxA—5 X
Q%A
>~ i1|:|i2 l lp
PXB — Y
91

Proposition 3.61. The pushout-product in Top,, (def. 3.35) of two classical cofibrations is a
classical cofibration:

Cof, O Cof, c Cof .

If one of them is acyclic, then so is the pushout-product:

Cofygo (W N Cofy) € Wy N Cofy .
Proof. Regarding the first point:
By example 3.58 we have
Itop Oltop C Itop

Hence
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Itop Olrop has LLP against W N Fiby

& Itop has LLP against (W4 N Fibcl)‘j’TOp
= Cofy has LLP against (W, N Fibcl)DITOP
& IO Cofy has LLP against WqnFiby
And I1op has LLP against (W, n Fiby) <%
= Cofy has LLP against (W N Fibg) <
=3

Cof, O0Cof; has LLP against W N Fiby

where all logical equivalences used are those of prop. 3.60 and where all implications appearing
are by the closure property of lifting problems, prop. 2.10.

Regarding the second point: By example 3.58 we moreover have
ITOP IjjTop < ]Top

and the conclusion follows by the same kind of reasoning. H

Remark 3.62. In model category theory the property in proposition 3.61 is referred to as
saying that the model category (TOP¢e) quilten from theorem \ref{ModelStructureOnTopcg}

1. is a monoidal model category with respect to the Cartesian product on Top .,

2. is an enriched model category, over itself.

A key point of what this entails is the following:

Proposition 3.63. For X € (Topcg)Quillen cofibrant (a retract of a cell complex) then the product-
hom-adjunction for Y (prop. 3.41) is a Quillen adjunction

Xx(-)
— 7

(Topcg)Quillen i}() (Topcg)Quillen '
(&)

Proof. By example 3.57 we have that the left adjoint functor is equivalently the pushout product
functor with the initial morphism of X:

XX (=)=®->X)o(-).

By assumption (¢ — X) is a cofibration, and hence prop. 3.61 says that this is a left Quillen
functor. N

The statement and proof of prop. 3.63 has a direct analogue in pointed topological spaces

Proposition 3.64. For X € (Topc*g/ )Quillen cofibrant with respect to the classical model structure on

pointed compactly generated topological spaces (theorem 3.51, prop. 3.29) (hence a retract
of a cell complex with non-degenerate basepoint, remark 3.32) then the pointed product-
hom-adjunction from corollary 3.42 is a Quillen adjunction (def. 2.46):

XA (=)
(Top.:)) L (Top.)
ng Quillen ——— ng Quillen *
Maps(X, -,

Proof. Let now o0, denote the smash pushout product and (-)°‘” the smash pullback
powering defined as in def. 3.55 and def. 3.59, but with Cartesian product replaced by smash
product (def. 3.22) and compactly generated mapping space replaced by pointed mapping
spaces (def. 3.26).

By theorem 3.34 (Top,/

¢ ) Quillen is cofibrantly generated by Liop/ = (Itop), @nd Jrop*! = Urop) s -
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Example 3.24 gives that for i, € I, and j, € Jrop then

(iny )y O (ny)y = (g 4mp)
and

(ny)y A (ny)y = (g amy),

Hence the pointed analog of prop. 3.61 holds and therefore so does the pointed analog of the
conclusion in prop. 3.63. i

Model structure on topological functors

With classical topological homotopy theory in hand (theorem 3.7, theorem 3.51), it is
straightforward now to generalize this to a homotopy theory of topological diagrams. This is
going to be the basis for the stable homotopy theory of spectra, because spectra may be
identified with certain topological diagrams (prop.).

Technically, “topological diagram” here means “Top-enriched functor”. We now discuss what this
means and then observe that as an immediate corollary of theorem 3.7 we obtain a model
category structure on topological diagrams.

As a by-product, we obtain the model category theory of homotopy colimits in topological
spaces, which will be useful.

In the following we say Top-enriched category and Top-enriched functor etc. for what often is
referred to as “topological category” and “topological functor” etc. As discussed there, these
latter terms are ambiguous.

Literature (Riehl, chapter 3) for basics of enriched category theory; (Piacenza 91) for the
projective model structure on topological functors.

Definition 3.65. A topologically enriched category C is a Topcg-enriched category, hence:

1. a class 0bj(C), called the class of objects;

2. for each a,b € 0bj(C) a compactly generated topological space (def. 3.35)

C(a,b) € TopCg ,

called the space of morphisms or the hom-space between a and b;

3. for each a, b, ¢ € Obj(C) a continuous function
oabc : Cla,b) X C(b,c) — C(a,c)

out of the cartesian product (by cor. 3.38: the image under k of the product topological
space), called the composition operation;

4. for each a € 0bj(C) a point Id, € C(a, a), called the identity morphism on a
such that the composition is associative and unital.

Similarly a pointed topologically enriched category is such a structure with Top,, replaced

by Topc*g/ (def. 3.16) and with the Cartesian product replaced by the smash product (def. 3.22)
of pointed topological spaces.

Remark 3.66. Given a (pointed) topologically enriched category as in def. 3.65, then forgetting
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the topology on the hom-spaces (along the forgetful functor U:Top,, = Set) yields an ordinary
locally small category with

Home¢(a, b) = U(C(a, b)) .

It is in this sense that C is a category with extra structure, and hence “enriched”.

The archetypical example is Top,, itself:

Example 3.67. The category Top,, (def. 3.35) canonically obtains the structure of a

topologically enriched category, def. 3.65, with hom-spaces given by the compactly generated
mapping spaces (def. 3.39)

—vX
Topcg(X, Y)=Y
and with composition
Y¥xz¥ — 7%

given by the adjunct under the (product4 mapping-space)-adjunction from prop. 3.41 of the
evaluation morphisms

XxV¥xz2" &y g

Similarly, pointed compactly generated topological spaces Top,z/ form a pointed topologically
enriched category, using the pointed mapping spaces from example 3.26:

Topc*g/(X, Y) == Maps(X,Y), .

Definition 3.68. A topologically enriched functor between two topologically enriched categories

F:¢c—D

isa Topcg—enriched functor, hence:

1. a function

F, : Obj(C) — Obj(D)

of objects;

2. for each a, b € Obj(C) a continuous function

Fop : C(a,b) — D(Fo(a),Fo(b))

of hom-spaces,

such that this preserves composition and identity morphisms in the evident sense.

A homomorphism of topologically enriched functors

n:F=aG

is a Topcg-enriched natural transformation: for each ¢ € 0bj(€) a choice of morphism
1. € D(F(c), G(c)) such that for each pair of objects ¢, d € ¢ the two continuous functions

My °F(=): C(c,d) — D(F(c),G(d))

and

G(=)emn, : C(c,d) — D(F(c),G(d))
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agree.

We write [C, D] for the resulting category of topologically enriched functors.

Remark 3.69. The condition on an enriched natural transformation in def. 3.68 is just that on
an ordinary natural transformation on the underlying unenriched functors, saying that for
every morphisms f:c — d there is a commuting square

CleoxX 5 Fo
f v cf) | iF(f.)
ced)xX — F(d)

Md

Example 3.70. For ¢ any topologically enriched category, def. 3.65 then a topologically
enriched functor (def. 3.68)

F : C’—)TopCg

to the archetical topologically enriched category from example 3.67 may be thought of as a
topologically enriched copresheaf, at least if ¢ is small (in that its class of objects is a proper
set).

Hence the category of topologically enriched functors
[C, Top,]

according to def. 3.68 may be thought of as the (co-)presheaf category over € in the realm of
topological enriched categories.

A functor F € [C, Top, | is equivalently

1. a compactly generated topological space F, € Top,, for each object a € 0bj(0);

2. a continuous function

Fqo X C(a,b) — F
for all pairs of objects a, b € 0bj(C)

such that composition is respected, in the evident sense.

For every object c € ¢, there is a topologically enriched representable functor, denoted y(c) or
C(c, —) which sends objects to

y(c)(d) = C(c,d) € TopCg

and whose action on morphisms is, under the above identification, just the composition
operation in C.

Proposition 3.71. For C any small topologically enriched category, def. 3.65 then the enriched
functor category [C, Top,,| from example 3.70 has all limits and colimits, and they are

computed objectwise:

if
F,:1— [C,Topcg]

is a diagram of functors and c € C is any object, then

(lim F;)(c) = lim (F;(c)) € Top,,
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and
(lim F;)(c) = lim (Fi(c)) € Top,, .

Proof. First consider the underlying diagram of functors F; where the topology on the
hom-spaces of ¢ and of Top,, has been forgotten. Then one finds

(lim F{)(c) = lim (F{(c)) € Set
and

(lim F)(e) = lim (F{(c)) € Set

by the universal property of limits and colimits. (Given a morphism of diagrams then a unique
compatible morphism between their limits or colimits, respectively, is induced as the universal
factorization of the morphism of diagrams regarded as a cone or cocone, respectvely, over the
codomain or domain diagram, respectively).

Hence it only remains to see that equipped with topology, these limits and colimits in Set become
limits and colimits in Top,,. That is just the statement of prop. 1.5 with corollary 3.38. N

Definition 3.72. Let ¢ be a topologically enriched category, def. 3.65, with [C'.TOpcg] its category
of topologically enriched copresheaves from example 3.70.

1. Define a functor

(=) (=) : [6,Top,,] x Top,, — [C, Top,,]

by forming objectwise cartesian products (hence k of product topological spaces)

F-X:cw»F(l)xX.
This is called the tensoring of [C, Topcg] over Top,,.
2. Define a functor
()7 (Top) P x [€, Top,,] — [C, Top,]

by forming objectwise compactly generated mapping spaces (def. 3.39)

FX¥:ce F(c)X .
This is called the powering of [C, Top,,| over Top,,.

Analogously, for € a pointed topologically enriched category, def. 3.65, with [C, Topc*g/] its
category of pointed topologically enriched copresheaves from example 3.70, then:

1. Define a functor
(=)A() : [c Topc*g/] X Topc*g/ —[c, Topc*g/]

by forming objectwise smash products (def. 3.22)

FAX:cwmF(O)NX.
This is called the smash tensoring of [¢,Top,, ] over Top,, .

2. Define a functor
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Maps(—, —), : Topc*g/ x [C, Topc*g/] — [C, Topc*g/]

by forming objectwise pointed mapping spaces (example 3.26)
F¥:cw Maps(X, F(c)), -
This is called the pointed powering of [C, Topcg] over Top,,.

There is a full blown Topcg-enriched Yoneda lemma. The following records a slightly simplified
version which is all that is needed here:

Proposition 3.73. (topologically enriched Yoneda-lemma)

Let ¢ be a topologically enriched category, def. 3.65, write [C, Topcg] for its category of
topologically enriched (co-)presheaves, and for c € Obj(C) write y(c) = C(c, —) € [C,Top, ] for the

topologically enriched functor that it represents, all according to example 3.70. Recall the
tensoring operation (F,X) » F - X from def. 3.72.

For c e Obj(C), X € Top,, and F € [C, Topcg], there is a natural bijection between
1. morphisms y(c)-X — F in [C, Topcg],'
2. morphisms X — F(c¢) in Top,,-

In short:

y()- X—F
X — F(c)

Proof. Given a morphism 7n:y(¢) - X — F consider its component

n,:Clc,e)xX — F(o)
and restrict that to the identity morphism id. € C(c, ¢) in the first argument

n.(de, =) : X = F(c) .
We claim that just this n_(id., —) already uniquely determines all components

Ny Cle,d) XX — F(d)
of n, for all d € 0bj(C): By definition of the transformation n (def. 3.68), the two functions

F(=)en, : C(c,d) — F(d)““9"*
and
n,°C(c, =) XX : €(c,d) — F(d)“ ¥

agree. This means (remark 3.69) that they may be thought of jointly as a function with values in
commuting squares in Top,, of this form:

Clc,o)xX — F(o)
f e cef) | LF?O
Clc,d)x X n—> F(d)

For any f € C(c,d), consider the restriction of
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Ny o C(e,f) € F() "™

to id, € €(c,¢), hence restricting the above commuting squares to
. Mc
{id.}xX — F(c)
f e cf) | 19

{fixX — F()
Nd
This shows that 7, is fixed to be the function
na(f,%) = F(f) on (id¢, x)

and this is a continuous function since all the operations it is built from are continuous.

Conversely, given a continuous function a:X — F(c), define for each d the function
Ng:(fLx) = F(f)ea.

Running the above analysis backwards shows that this determines a transformation
n:y(co)xX-F. 1

Definition 3.74. For C a small topologically enriched category, def. 3.65, write

P
I'IC:Op = {Y(C)'(Sn 1_n)Dn)} neNn,

c€0bj(e)
and
¢ (id,&o)
Jtop = {y(c) (D" ——=D"x 1) nen,
c€0bj(C)

for the sets of morphisms given by tensoring (def. 3.72) the representable functors (example
3.70) with the generating cofibrations (def.1.37) and acyclic generating cofibrations (def.
1.42), respectively, of (Topcg)Quillen (theorem 3.51).
These are going to be called the generating cofibrations and acyclic generating
cofibrations for the projective model structure on topologically enriched functors over C.

Analgously, for ¢ a pointed topologically enriched category, write

_q ()4
1€ = poas =o)L

ceobj(e)
and
(id,8¢)
c +
J = roamr == omxn )L,
cEODbj(C)

for the analogous construction applied to the pointed generating (acyclic) cofibrations of def.
3.33.

Definition 3.75. Given a small (pointed) topologically enriched category ¢, def. 3.65, say that a
morphism in the category of (pointed) topologically enriched copresheaves [C, Topcg]

([C‘,Topc*g/]), example 3.70, hence a natural transformation between topologically enriched

functors, n:F - G is

* a projective weak equivalence, if for all c € Obj(C) the component n_:F(c) - G(c) is a
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weak homotopy equivalence (def. 1.30);

¢ a projective fibration if for all ¢ € Obj(C) the component n_:F(c) - G(c) is a Serre
fibration (def. 1.47);

e a projective cofibration if it is a retract (rmk. 2.12) of an I%’Op-relative cell complex
(def. 1.41, def. 3.74).

Write

[C, (Topcg) Quillen]proj

and

*/
[C: (Topcg )Quillen]proi

for the categories of topologically enriched functors equipped with these classes of morphisms.

Theorem 3.76. The classes of morphisms in def. 3.75 constitute a model category structure on
[C, Top, g] and [C, Topc*g/ ], called the projective model structure on enriched functors

[C, (Topcg)Quillen]prOj

and
[C, (Top.!
) ng

)Quillen]proj

These are cofibrantly generated model category, def. 3.9, with set of generating (acyclic)
cofibrations the sets Itop, J1,, and Igop* I ]ﬁop* , from def. 3.74, respectively.

(Piacenza 91, theorem 5.4)

Proof. By prop. 3.71 the category has all limits and colimits, hence it remains to check the
model structure

But via the enriched Yoneda lemma (prop. 3.73) it follows that proving the model structure
reduces objectwise to the proof of theorem 3.7, theorem 3.51. In particular, the technical
lemmas 1.40, 1.45 and 1.52 generalize immediately to the present situation, with the evident
small change of wording:

For instance, the fact that a morphism of topologically enriched functors n:F — G that has the
right lifting property against the elements of I%,p is a projective weak equivalence, follows by
noticing that for fixed n:F - G the enriched Yoneda lemma prop. 3.73 gives a natural bijection of
commuting diagrams (and their fillers) of the form

y()-S"' — F s*1 — F(o)
(dtn) | e ! e ],
y()-D" — G D" — G(o)

and hence the statement follows with part A) of the proof of lemma 1.52.

With these three lemmas in hand, the remaining formal part of the proof goes through verbatim
as above: repeatedly use the small object argument (prop. 2.17) and the retract argument
(prop. 2.15) to establish the two weak factorization systems. (While again the structure of a
category with weak equivalences is evident.) N

Example 3.77. Given examples 3.67 and 3.70, the next evident example of a pointed
topologically enriched category besides Topc"g/ itself is the functor category
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[Top,Z, Tope]] .

The only technical problem with this is that Topc*g/ is not a small category (it has a proper class

of objects), which means that the existence of all limits and colimits via prop. 3.71 may (and
does) fail.

But so we just restrict to a small topologically enriched subcategory. A good choice is the full
subcategory

Topeg fin © TOPgy

of topological spaces homoemorphic to finite CW-complexes. The resulting projective model
category (via theorem 3.76)

*/ */
[TOpcg,fin ’ (Topcg )Quillen]proj

is also also known as the strict model structure for excisive functors. (This terminology is
the special case for n = 1 of the terminology “n-excisive functors” as used in “Goodwillie
calculus”, a homotopy-theoretic analog of differential calculus.) After enlarging its class of
weak equivalences while keeping the cofibrations fixed, this will become Quillen equivalent to
a model structure for spectra. This we discuss in part 1.2, in the section on pre-excisive
functors.

One consequence of theorem 3.76 is the model category theoretic incarnation of the theory of
homotopy colimits.

Observe that ordinary limits and colimits (def. 1.1) are equivalently characterized in terms of
adjoint functors:

Let ¢ be any category and let I be a small category. Write [I,C] for the corresponding functor
category. We may think of its objects as I-shaped diagrams in ¢, and of its morphisms as
homomorphisms of these diagrams. There is a canonical functor

const; : C — [[,C]

which sends each object of C to the diagram that is constant on this object. Inspection of the
definition of the universal properties of limits and colimits on one hand, and of left adjoint and
right adjoint functors on the other hand, shows that

1. precisely when ¢ has all colimits of shape I, then the functor const; has a left adjoint functor,
which is the operation of forming these colimits:

li4)m
—
ey 1 ¢

consty

2. precisely when C has all limits of shape I, then the functor const; has a right adjoint functor,
which is the operation of forming these limits.

consty
(—
[I,e] L €

lim
—I

Proposition 3.78. Let I be a small topologically enriched category (def. 3.65). Then the
(li_)ml - const;)-adjunction

lim
am,

e
[1’ (Topcg)Quillen]proj (i (Topcg)Quillen

consty
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is a Quillen adjunction (def. 2.46) between the projective model structure on topological
functors on 1, from theorem 3.76, and the classical model structure on topological spaces from
theorem 3.51.

Similarly, if 1 is enriched in pointed topological spaces, then for the classical model structure
on pointed topological spaces (prop. 3.29, theorem 3.34) the adjunction

lim
—_—

[£, (ToPe ) quitienproj <L (TOPeY)
’ ng Quillendproj «—— ng Quillen

const
is a Quillen adjunction.

Proof. Since the fibrations and weak equivalences in the projective model structure (def. 3.75)
on the functor category are objectwise those of (Top_,) e, @nd of (Topc*g/)QumGn, respectively, it
is immediate that the functor const, preserves these. In particular it preserves fibrations and
acyclic fibrations and so the claim follows (prop. 2.47). 1

Definition 3.79. In the situation of prop. 3.78 we say that the left derived functor (def. 2.42) of
the colimit functor is the homotopy colimit

hocolim; = ]Lli_)ml : Ho([I, Top]) — Ho(Top)

and

hocolim; := ]Lli_)ml : Ho([I, Top*/]) — Ho(Top*/) .

Remark 3.80. Since every object in (Topcg)Quillen and in (Topgg/)Qumen is fibrant, the homotopy

colimit of any diagram X,, according to def. 3.79, is (up to weak homotopy equivalence) the

EW i
result of forming the ordinary colimit of any projectively cofibrant replacement X, 2 x..

Example 3.81. Write N= for the poset (def. 1.15) of natural numbers, hence for the small
category (with at most one morphism from any given object to any other given object) that
looks like

N*={0-1-2-3-}.

Regard this as a topologically enriched category with the, necessarily, discrete topology on its
hom-sets.

Then a topologically enriched functor

X.:N=— TopCg

is just a plain functor and is equivalently a sequence of continuous functions (morphisms in
Topcg) of the form (also called a cotower)

XO &)XI gXZ 2))(3 —> e,
It is immediate to check that those sequences X, which are cofibrant in the projective model
structure (theorem 3.76) are precisely those for which

1. all component morphisms f; are cofibrations in (Topcg)Quillen or (Tong/)Qumen, respectively,

hence retracts (remark 2.12) of relative cell complex inclusions (def. 1.38);

2. the object X,, and hence all other objects, are cofibrant, hence are retracts of cell
complexes (def. 1.38).

By example 3.81 it is immediate that the operation of forming colimits sends projective (acyclic)
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cofibrations between sequences of topological spaces to (acyclic) cofibrations in the classical
model structure on pointed topological spaces. On those projectively cofibrant sequences where
every map is not just a retract of a relative cell complex inclusion, but a plain relative cell
complex inclusion, more is true:

Proposition 3.82. In the projective model structures on cotowers in topological spaces,

[N=, (Top and [N=, (Topc*g/ )quiltenlproj frOM def. 3.81, the following holds:

cg)Quillen]proj

1. The colimit functor preserves fibrations between sequences of relative cell complex
inclusions;

2. Let I be a finite category, let D.(=):I1 - [N=, Top,,] be a finite diagram of sequences of
relative cell complexes. Then there is a weak homotopy equivalence

. . ~) EWa . . .
im, (1, ,(0) == im (1 0,0)
from the colimit over the limit sequnce to the limit of the colimits of sequences.

Proof. Regarding the first statement:

are cofibrantly generated model categories (theorem

Use that both (Top,) ouiiten @A (TOPg ) guitten

3.34) whose generating acyclic cofibrations have compact topological spaces as domains and
codomains. The colimit over a sequence of relative cell complexes (being a transfinite
composition) yields another relative cell complex, and hence lemma 1.40 says that every
morphism out of the domain or codomain of a generating acyclic cofibration into this colimit
factors through a finite stage inclusion. Since a projective fibration is a degreewise fibration, we
have the lifting property at that finite stage, and hence also the lifting property against the
morphisms of colimits.

Regarding the second statement:

This is a model category theoretic version of a standard fact of plain category theory, which says
that in the category Set of sets, filtered colimits commute with finite limits in that there is an
isomorphism of sets of the form which we have to prove is a weak homotopy equivalence of
topological spaces. But now using that weak homotopy equivalences are detected by forming
homotopy groups (def. 1.26), hence hom-sets out of n-spheres, and since n-spheres are
compact topological spaces, lemma 1.40 says that homming out of n-spheres commutes over
the colimits in question. Moreover, generally homming out of anything commutes over limits, in
particular finite limits (every hom functor is left exact functor in the second variable). Therefore
we find isomorphisms of the form

Hom(Sq, h_)mn(ll<_ml Dn(i)>> ~ li_)mn(li(_miHom(Sq, Dn(i))) EN li_mi<li_m)nHom(San(i))) ~ Hom(Sq, h(_ml(ll_)mn Dn(i)>>

and similarly for the left homotopies Hom(S? x I, —) (and similarly for the pointed case). This
implies the claimed isomorphism on homotopy groups. N

4. Homotopy fiber sequences

A key aspect of homotopy theory is that the universal constructions of category theory, such as
limits and colimits, receive a refinement whereby their universal properties hold not just up to
isomorphism but up to (weak) homotopy equivalence. One speaks of homotopy limits and
homotopy colimits.

We consider this here just for the special case of homotopy fibers and homotopy cofibers,
leading to the phenomenon of homotopy fiber sequences and their induced long exact
sequences of homotopy groups which control much of the theory to follow.

84 of 111 09.05.17, 15:41



Introduction to Homotopy Theory in nLab https://ncatlab.org/nlab/print/Introduction+to+Homotopy+Theory

Mapping cones

In the context of homotopy theory, a pullback diagram, such as in the definition of the fiber in
example 3.27

fib(f) — X
! V
* — Y

ought to commute only up to a (left/right) homotopy (def. 2.22) between the outer composite
morphisms. Moreover, it should satisfy its universal property up to such homotopies.

Instead of going through the full theory of what this means, we observe that this is plausibly
modeled by the following construction, and then we check (below) that this indeed has the
relevant abstract homotopy theoretic properties.

Definition 4.1. Let ¢ be a model category, def. 2.3 with ¢*/ its model structure on pointed
objects, prop. 3.29. For f:X — Y a morphism between cofibrant objects (hence a morphism in
€y, - c*/, def. 2.34), its reduced mapping cone is the object

Cone(f) = * % Cyl(X) I)J( Y

in the colimiting diagram

s

X — Y
L U
X2 oy :
l N l
* = —  Cone(f)

where Cyl(X) is a cylinder object for X, def. 2.18.

Dually, for f:X — Y a morphism between fibrant objects (hence a morphism in (C’*)]c o ¢/, def.
2.34), its mapping cocone is the object

Path,(f) = * >}§ Path(Y) >}§ Y

in the following limit diagram

Path,.(f) — — X
! N Vv
Path(Y) p—1> Y
l LPo
* — Y

where Path(Y) is a path space object for Y, def. 2.18.

Remark 4.2. When we write homotopies (def. 2.22) as double arrows between morphisms,
then the limit diagram in def. 4.1 looks just like the square in the definition of fibers in
example 3.27, except that it is filled by the right homotopy given by the component map
denoted n:
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Path,(f) — X
V.

* — Y

Lz,

Dually, the colimiting diagram for the mapping cone turns to look just like the square for the
cofiber, except that it is filled with a left homotopy

f

X — Y
Loz, l
* — Cone(f)

Proposition 4.3. The colimit appearing in the definition of the reduced mapping cone in def.
4.1 is equivalent to three consecutive pushouts:

X N Y

! (po) Lt
x o yl(x) —  Coyl(f) -

L (po) l (po)
* — Cone(X) — Cone(f)

The two intermediate objects appearing here are called

e the plain reduced cone Cone(X) = * U Cyl(X),

e the reduced mapping cylinder Cyl(f) = Cyl(X) U Y.

Dually, the limit appearing in the definition of the mapping cocone in def. 4.1 is equivalent to
three consecutive pullbacks:

Path,(f) — Path(f) — X

L b)) L (b V
Path,(Y) — Path(Y) -2 Y

1
! (pb) LPo

* — Y

The two intermediate objects appearing here are called

¢ the based path space object Path,(Y) := « [], Path(Y),
e the mapping path space or mapping co-cylinder Path(f) =X X Path(X).

Definition 4.4. Let X € ¢*/ be any pointed object.

1. The mapping cone, def. 4.3, of X - = is called the reduced suspension of X, denoted

XX = Cone(X — *) .

Via prop. 4.3 this is equivalently the coproduct of two copies of the cone on X over their
base:
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X — *
! (po) l
X % clx) — Cone(X)-

L (po) l (po) l
* — Cone(X) — 2X

This is also equivalently the cofiber, example 3.27 of (iy, i;), hence (example 3.20) of the
wedge sum inclusion:

(io,il) COfib(io,il)

XVX=XUX-25cyl(X) —=5 5X .

2. The mapping cocone, def. 4.3, of * —» X is called the loop space object of X, denoted

X = Path,(* - X) .

Via prop. 4.3 this is equivalently
(0).¢ —  Path,(X) — =

! (pb) ! (pb) L
Path,(X) — Path(X) o2 X

1
) (pb) LPo

* — X
This is also equivalently the fiber, example 3.27 of (p,,p,):

fib(pgy,pq) (Pg.P1)
0X —2 5 Path(X) =5 X x X .

Proposition 4.5. In pointed topological spaces Top*/,

e the reduced suspension objects (def. 4.4) induced from the standard reduced cylinder
(=) AU}) of example 3.25 are isomorphic to the smash product (def. 3.22) with the

1-sphere, for later purposes we choose to smash on the left and write

cofib(X VX - XA(I,)) =S'AX,
Dually:

e the loop space objects (def. 4.4) induced from the standard pointed path space object
Maps(l, —), are isomorphic to the pointed mapping space (example 3.26) with the

1-sphere

fib(Maps(I,,X), - X X X) =~ Maps(S, X), .

Proof. By immediate inspection: For instance the fiber of Maps(I;,X), — X x X is clearly the

subspace of the unpointed mapping space X' on elements that take the endpoints of I to the
basepoint of X. N

Example 4.6. For ¢ = Top with Cyl(X) = X x I the standard cyclinder object, def. 1.22, then by
example 1.12, the mapping cone, def. 4.1, of a continuous function f:X — Y is obtained by

1. forming the cylinder over X;
2. attaching to one end of that cylinder the space Y as specified by the map f.

3. shrinking the other end of the cylinder to the point.
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Accordingly the
suspension of a
topological space is the
result of shrinking both
ends of the cylinder on
the object two the
point. This is ' : 7 mapping
homeomoprhic to cone

attaching two copies of f i L q
X Y inclusion Cf collapse ZX NESE—

the cone on the space
at the base of the cone.

(graphics taken from
Muro 10)

Below in example 4.19
we find the homotopy-
theoretic interpretation
of this standard

topological mapping cone as a model for the homotopy cofiber.

Remark 4.7. The formula for the mapping cone in prop. 4.3 (as opposed to that of the mapping
co-cone) does not require the presence of the basepoint: for f:X — Y a morphism in ¢ (as

opposed to in ¢*/) we may still define

Cone’ (f) = YI}J( Cone’ (X),

where the prime denotes the unreduced cone, formed from a cylinder object in €.

Proposition 4.8. For f:X — Y a morphism in Top, then its unreduced mapping cone, remark
4.7, with respect to the standard cylinder object X x I def. 1.22, is isomorphic to the reduced
mapping cone, def. 4.1, of the morphism f_:X, - Y, (with a basepoint adjoined, def. 3.18)

with respect to the standard reduced cylinder (example 3.25):

Cone’ (f) = Cone(f,) .

Proof. By prop. 3.19 and example 3.24, Cone(f,) is given by the colimit in Top over the following
diagram:

(f,id)
-—

* — XU * YU =
l l l
XUu*x — (XxDu=
l !
* — —  Cone(f)
We may factor the vertical maps to give
* — X U * —>(f'id) YU =

\) \) l
XUx*x — (XXDU =

l

x L x — —  Cone'(f),
l 1

* — —  Cone' (f)
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This way the top part of the diagram (using the pasting law to compute the colimit in two
stages) is manifestly a cocone under the result of applying (-), to the diagram for the

unreduced cone. Since (—), is itself given by a colimit, it preserves colimits, and hence gives the
partial colimit Cone’(f), as shown. The remaining pushout then contracts the remaining copy of
the point away. N

Example 4.6 makes it clear that every cycle S* - Y in Y that happens to be in the image of X can
be continuously translated in the cylinder-direction, keeping it constant in Y, to the other end of
the cylinder, where it shrinks away to the point. This means that every homotopy group of v,
def. 1.26, in the image of f vanishes in the mapping cone. Hence in the mapping cone the
image of X under f in Y is removed up to homotopy. This makes it intuitively clear how
Cone(f) is a homotopy-version of the cokernel of f. We now discuss this formally.

Lemma 4.9. (factorization lemma)

Let ¢, be a category of cofibrant objects, def. 2.34. Then for every morphism f:X — Y the
mapping cylinder-construction in def. 4.3 provides a cofibration resolution of f, in that

1. the composite morphism X iR Cyl(X) €] Cyl(f) is a cofibration;

2. f factors through this morphism by a weak equivalence left inverse to an acyclic
cofibration

(i1).f°ig
fX o D Vs

Dually:

Let ¢, be a category of fibrant objects, def. 2.34. Then for every morphism f:X — Y the
mapping cocylinder-construction in def. 4.3 provides a fibration resolution of f, in that

. . 1if . . .
1. the composite morphism Path(f) ESA Path(Y) Byisa fibration;

2. f factors through this morphism by a weak equivalence right inverse to an acyclic
fibration:

Po°PiSf

Proof. We discuss the second case. The first case is formally dual.

So consider the mapping cocylinder-construction from prop. 4.3

eWnNFib
Path(f) —— X
p;fl (pb) lf
Path(Y) —2— Y-
ath(Y) o
eWnNFib ‘Lpo
Y

To see that the vertical composite is indeed a fibration, notice that, by the pasting law, the
above pullback diagram may be decomposed as a pasting of two pullback diagram as follows
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(fid)"(p1.p¢) pr
Path(f) W“’» Xxy =5 X
1 i(f'ld) lf
(p4,po) EFib pr
Path(Y) —>—— YXY — Y-
Po | < pr,
€Fib
Y

Both squares are pullback squares. Since pullbacks of fibrations are fibrations by prop. 2.10, the
morphism Path(f) » X x Y is a fibration. Similarly, since X is fibrant, also the projection map

X xY - Y is a fibration (being the pullback of X - * along Y — ).

Since the vertical composite is thereby exhibited as the composite of two fibrations

(f.id)"(p1.p¢) pry o (f,1d)=pr
Path(f) S T Yy xy 2 "3y,

it is itself a fibration.
Then to see that there is a weak equivalence as claimed:

The universal property of the pullback Path(f) induces a right inverse of Path(f) — X fitting into
this diagram

3 EWNFib
idy: X pevd Path(f) —— X

1l ) W
idy: ¥ = Path(r) 3 v

RN LPo
Y

which is a weak equivalence, as indicated, by two-out-of-three (def. 2.1).

This establishes the claim. R

Categories of fibrant objects

Below we discuss the homotopy-theoretic properties of the mapping cone- and mapping cocone-
constructions from above. Before we do so, we here establish a collection of general facts that
hold in categories of fibrant objects and dually in categories of cofibrant objects, def. 2.34.

Literature (Brown 73, section 4).

Lemma 4.10. Let f:X — Y be a morphism in a category of fibrant objects, def. 2.34. Then given
any choice of path space objects Path(X) and Path(Y), def. 2.18, there is a replacement of
Path(X) by a path space object Path(X) along an acylic fibration, such that Path(X) has a
morphism ¢ to Path(Y) which is compatible with the structure maps, in that the following
diagram commutes
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X — Y
V4 l l
= ¢
Path(X) e Path(X) — Path(Y).
(2f29) B
wEpP ™ L !

xxx B yxy

(Brown 73, section 2, lemma 2)

Proof. Consider the commuting square

X L v S path)
! LedpD)
@& rd (f.1)

Path(X) —— XxX — YXY

Then consider its factorization through the pullback of the right morphism along the bottom
morphism,

X — (fopl.fepH) Path(Y) — Path(Y)

Y. Y
€WNFib (pg,p1)
ew N - L e Fib-
(fopd ford)
Path(X) —2 1 yxy

Finally use the factorization lemma 4.9 to factor the morphism X — (f o p, f o p{)"Path(Y) through

a weak equivalence followed by a fibration, the object this factors through serves as the desired
path space resolution

x ¥ Pamx)  —  Path()
N | EWnFib l(pg.p.},)

ford.forf
Path(x) L POTPH y oy

Lemma 4.11. In a category of fibrant objects Cy, def. 2.34, let

A, N A,

€Fib ¥ < eFib
B
be a morphism over some object B in C; and let u:B' — B be any morphism in C;. Let
u*f
u*Ay — u'a,

€Fib ¥ ? eFib
BI

be the corresponding morphism pulled back along u.

Then

e if f is a fibration then also u*f is a fibration;
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e jf f is a weak equivalence then also u*f is a weak equivalence.

(Brown 73, section 4, lemma 1)

Proof. For f € Fib the statement follows from the pasting law which says that if in

B'xpgA, — A

Lu'fEFib | fEFib

B'xgA, — A,

’ u
B — B

the bottom and the total square are pullback squares, then so is the top square. The same
reasoning applies for f € W n Fib.

Now to see the case that f e W:

Consider the full subcategory (C/p)f of the slice category C,p (def. 3.15) on its fibrant objects,
i.e. the full subcategory of the slice category on the fibrations

X

p
Verib
B

into B. By factorizing for every such fibration the diagonal morphisms into the fiber product X;;X

through a weak equivalence followed by a fibration, we obtain path space objects Pathy(X)
relative to B:

ew €Fib
(4x)/B: X — Pathg(X) — X>B<X

€Fib ¥ 3 ? ¢ Fib
B

With these, the factorization lemma (lemma 4.9) applies in (C/8);-

(Notice that for this we do need the restriction of C,5 to the fibrations, because this ensures that
the projections p;:X; xp X, — X; are still fibrations, which is used in the proof of the factorization
lemma (here).)

So now given any

f

X — Y
EW

€Fib ¥ ? eFib
B

apply the factorization lemma in (C/B)f to factor it as

iew EWNFib

X — Pathg(f) —— Y

€Fib ¥ \ Z eFib
B

By the previous discussion it is sufficient now to show that the base change of i to B’ is still a
weak equivalence. But by the factorization lemma in (C/B)f, the morphism i is right inverse to
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another acyclic fibration over B:

] iew EWNFib
idy : X — Pathg(f) —— X
€Fib ¥ - “ Fib
B

(Notice that if we had applied the factorization lemma of 4y in C, instead of (4x)/B in (C,p) then
the corresponding triangle on the right here would not commute.)

Now we may reason as before: the base change of the top morphism here is exhibited by the
following pasting composite of pullbacks:

B’ ?X — X
\) (pb) \)
B' x Paths(f) — Pathy(f)
. (pb) LEWNFib
B’ >B<X — X
\) (pb) \)
B’ — B

The acyclic fibration Pathg(f) is preserved by this pullback, as is the identity idy:X — Pathg(X) - X.
Hence the weak equivalence X — Pathgz(X) is preserved by two-out-of-three (def. 2.1).

Lemma 4.12. In a category of fibrant objects, def. 2.34, the pullback of a weak equivalence
along a fibration is again a weak equivalence.

(Brown 73, section 4, lemma 2)

Proof. Let u:B' —» B be a weak equivalence and p:E — B be a fibration. We want to show that the
left vertical morphism in the pullback

ExzB — B

lﬂEW lEW

€Fib
E —

is a weak equivalence.

First of all, using the factorization lemma 4.9 we may factor B’ - B as

, €W EWNF
B" — Path(u) —— B

with the first morphism a weak equivalence that is a right inverse to an acyclic fibration and the
right one an acyclic fibration.

Then the pullback diagram in question may be decomposed into two consecutive pullback
diagrams

ExzB - B’
) )

€Fib
Q — Path(w),

lEWnFib lEWnFlb
€Fib
RN B
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where the morphisms are indicated as fibrations and acyclic fibrations using the stability of these
under arbitrary pullback.

This means that the proof reduces to proving that weak equivalences u:B’ €% B that are right

. . e . EWNF _, .
inverse to some acyclic fibration v:B —— B’ map to a weak equivalence under pullback along a
fibration.

Given such u with right inverse v, consider the pullback diagram

E
(p,id)
ew | \id
€W nNFib
E,= BxgE :
| EFib | PEFib
(pb) B
‘L ‘LUEWﬂFib
veFibnw

!

Notice that the indicated universal morphism p x Id:E el E, into the pullback is a weak
equivalence by two-out-of-three (def. 2.1).

The previous lemma 4.11 says that weak equivalences between fibrations over B are themselves
preserved by base extension along u:B’ — B. In total this yields the following diagram

WE=B"XgE — E

u*(pxId) pxId
ew | ew | \1d
. €WnFib
u'E, - E; —
B
€W nFib
l l Y !
, u veWNFib ,
B — B —> B

so that with p xId:E - E,; a weak equivalence also u*(p x Id) is a weak equivalence, as indicated.

Notice that u*E = B’ x5 E — E is the morphism that we want to show is a weak equivalence. By
two-out-of-three (def. 2.1) for that it is now sufficient to show that u*E; - E; is a weak
equivalence.

That finally follows now since, by assumption, the total bottom horizontal morphism is the
identity. Hence so is the top horizontal morphism. Therefore u*E, — E, is right inverse to a weak

equivalence, hence is a weak equivalence. N1

Lemma 4.13. Let (C*/)f be a category of fibrant objects, def. 2.34 in a model structure on
pointed objects (prop. 3.29). Given any commuting diagram in C of the form

ew 2
Xy — X = X
t g

Pq
€Fib

Py
€Fib

\) \)

B 5% ¢
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(meaning: both squares commute and t equalizes f with g) then the localization functor
y:(c*/)f - Ho(€"/) (def. 2.28, cor 2.36) takes the morphisms fib(p,) = fib(p,) induced by f and
g on fibers (example 3.27) to the same morphism, in the homotopy category.

(Brown 73, section 4, lemma 4)

Proof. First consider the pullback of p, along u: this forms the same kind of diagram but with
the bottom morphism an identity. Hence it is sufficient to consider this special case.

Consider the full subcategory (C;é)f of the slice category C‘/é (def. 3.15) on its fibrant objects,

i.e. the full subcategory of the slice category on the fibrations
X
‘I'I;Fib

B

into B. By factorizing for every such fibration the diagonal morphisms into the fiber product X X X

through a weak equivalence followed by a fibration, we obtain path space objects Pathg(X)
relative to B:

ew €Fib
(4x)/B: X — Pathg(X) — X>B<X

€Fib ¥ \ ? Fib
B

With these, the factorization lemma (lemma 4.9) applies in (C’}“é)f.

(Pg:p1) . . .
Let then X > Pathg (X,) Doba X, Xg X, be a path space object for X, in the slice over B and

consider the following commuting square

, sft
X'y, — Pathg(X,)

t (po:p1)
ew l J'EFib '

X, — X2>E§X2

By factoring this through the pullback (f,9)"(p,,r,) and then applying the factorization lemma

4.9 and then two-out-of-three (def. 2.1) to the factoring morphisms, this may be replaced by a
commuting square of the same form, where however the left morphism is an acyclic fibration

X", — Pathg(X,)

(Po.p1)

t
! iEFib .

eWnFib

X I8 xxx

This makes also the morphism X ”; — B be a fibration, so that the whole diagram may now be
regarded as a diagram in the category of fibrant objects (C/p)f of the slice category over B.

As such, the top horizontal morphism now exhibits a right homotopy which under localization
Vg : (C/p); — Ho(C/p) (def. 2.28) of the slice model structure (prop. 3.29) we have

Ys(F) =vg(9) -

The result then follows by observing that we have a commuting square of functors
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. fib .

€y, — ¢
"By o,

Ho(C;;) — Ho(C"/)

because, by lemma 4.11, the top and right composite sends weak equivalences to
isomorphisms, and hence the bottom filler exists by theorem 2.31. This implies the claim. N

Homotopy fibers

We now discuss the homotopy-theoretic properties of the mapping cone- and mapping cocone-
constructions from above.

Literature (Brown 73, section 4).

Remark 4.14. The factorization lemma 4.9 with prop. 4.3 says that the mapping cocone of a
morphism f, def. 4.1, is equivalently the plain fiber, example 3.27, of a fibrant resolution f of

f:

Path.(f) — Path(f)
! by

* — Y

The following prop. 4.15 says that, up to equivalence, this situation is independent of the
specific fibration resolution f provided by the factorization lemma (hence by the prescription for
the mapping cocone), but only depends on it being some fibration resolution.

Proposition 4.15. In the category of fibrant objects (C*/)f, def. 2.34, of a model structure on

pointed objects (prop. 3.29) consider a morphism of fiber-diagrams, hence a commuting
diagram of the form

. Py
fib(p,) — X1 =Fib Yy

L 19 e

. P2
fib(p,) — X <Fib Y,

If f and g weak equivalences, then so is h.

Proof. Factor the diagram in question through the pullback of p, along f

fibp,) — X

W Wl AP
ib(fp,) — fX 25 v,

L= LEw v,
fib(p,) — X, -5 ¥,

and observe that
1. fib(f'p,) = pt" f'p, = pt’p, = fib(p,);

2. f'X, » X, is a weak equivalence by lemma 4.12;

3. X; - f'X, is a weak equivalence by assumption and by two-out-of-three (def. 2.1);
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Moreover, this diagram exhibits h:fib(p,) — fib(f'p,) = fib(p,) as the base change, along * — Y, of
X, - f'X,. Therefore the claim now follows with lemma 4.11. R

Hence we say:

Definition 4.16. Let ¢ be a model category and ¢*/ its model category of pointed objects, prop.
3.29. For f:X — Y any morphism in its category of fibrant objects (C’*/)f, def. 2.34, then its
homotopy fiber

hofib(f) — X

is the morphism in the homotopy category Ho(€*/), def. 2.25, which is represented by the
fiber, example 3.27, of any fibration resolution f of f (hence any fibration f such that f factors
through a weak equivalence followed by f).

Dually:

For f:X — Y any morphism in its category of cofibrant objects (C‘*/)C, def. 2.34, then its
homotopy cofiber

Y — hocofib(f)

is the morphism in the homotopy category Ho(C), def. 2.25, which is represented by the
cofiber, example 3.27, of any cofibration resolution of f (hence any cofibration f such that f
factors as f followed by a weak equivalence).

Proposition 4.17. The homotopy fiber in def. 4.16 is indeed well defined, in that for f, and f,

two fibration replacements of any morphisms f in C¢, then their fibers are isomorphic in
Ho(C*/).

Proof. It is sufficient to exhibit an isomorphism in Ho(C*/) from the fiber of the fibration

replacement given by the factorization lemma 4.9 (for any choice of path space object) to the
fiber of any other fibration resolution.

Hence given a morphism f:Y — X and a factorization

A €Fib
f:X—>X—0Y
ew” f,

consider, for any choice Path(Y) of path space object (def. 2.18), the diagram

€W NFib
Path(f) —— X
€w | (pb) LW
eEWNFib A
Path(f,) —— X
f1
€Fib l (pb) l €Fib
Pq
Path(Y) —— Y
eWNFib
Po
EWNFib |

Y
as in the proof of lemma 4.9. Now by repeatedly using prop. 4.15:

1. the bottom square gives a weak equivalence from the fiber of Path(f,) — Path(Y) to the fiber
of f,;
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2. The square

Path(f,) — Path(f,)
! l
Path(Y) — Y
Po

gives a weak equivalence from the fiber of Path(f,) — Path(Y) to the fiber of Path(f ) - Y.
3. Similarly the total vertical composite gives a weak equivalence via

eEw
Path(f) — Path(f,)
) )
Y — Y
id
from the fiber of Path(f) — Y to the fiber of Path(f,) - Y.
Together this is a zig-zag of weak equivalences of the form

fib(f,) < fib(Path(f,) - Path(Y)) <= fib(Path(f,) - ¥) < fib(Path(f) - ¥)

between the fiber of Path(f) — Y and the fiber of f,. This gives an isomorphism in the homotopy
category. N

Example 4.18. (fibers of Serre fibrations)

In showing that Serre fibrations are abstract fibrations in the sense of model category theory,
theorem 3.7 implies that the fiber F (example 3.27) of a Serre fibration, def. 1.47

F — X
lp
B

over any point is actually a homotopy fiber in the sense of def. 4.16. With prop. 4.15 this
implies that the weak homotopy type of the fiber only depends on the Serre fibration up to
weak homotopy equivalence in that if p’: X’ - B’ is another Serre fibration fitting into a
commuting diagram of the form

EW (]

X X'
1P P
B EWl B’

EWCl ,
then F — F'.

In particular this gives that the weak homotopy type of the fiber of a Serre fibration p:X - B
does not change as the basepoint is moved in the same connected component. For let y:I — B
be a path between two points

io,1 14
by, : * ——1—>B.
’ EWl

Then since all objects in (Topcg)Qumen are fibrant, and since the endpoint inclusions i, , are

weak equivalences, lemma 4.12 gives the zig-zag of top horizontal weak equivalences in the
following diagram:

09.05.17, 15:41



Introduction to Homotopy Theory in nLab https://ncatlab.org/nlab/print/Introduction+to+Homotopy+Theory

* EWCI * EWCI *
Fpy = bop — ¥'p <— bip =Fp,

0

Lowb) L b

Fib
EWl EWl
x  — ] —
ip iq

and hence an isomorphism F, = F, in the classical homotopy category (def. 3.11).

The same kind of argument applied to maps from the square I? gives that if Y, ¥,:1 - B are
two homotopic paths with coinciding endpoints, then the isomorphisms between fibers over
endpoints which they induce are equal. (But in general the isomorphism between the fibers
does depend on the choice of homotopy class of paths connecting the basepoints!)

The same kind of argument also shows that if B has the structure of a cell complex (def. 1.38)
then the restriction of the Serre fibration to one cell D™ may be identified in the homotopy
category with D™ x F, and may be canonically identified so if the fundamental group of X is
trivial. This is used when deriving the Serre-Atiyah-Hirzebruch spectral sequence for p (prop.).

Example 4.19. For every continuous function f:X — Y between CW-complexes, def. 1.38, then
the standard topological mapping cone is the attaching space (example 1.12)

Y Uy Cone(X) € Top

of Y with the standard cone Cone(X) given by collapsing one end of the standard topological
cyclinder X x I (def. 1.22) as shown in example 4.6.

Equipped with the canonical continuous function

Y — Y Uy Cone(X)

this represents the homotopy cofiber, def. 4.16, of f with respect to the classical model
structure on topological spaces € = TOPyilien from theorem 3.7.

Proof. By prop. 3.13, for X a CW-complex then the standard topological cylinder object X x I is
indeed a cyclinder object in Top,, .- Therefore by prop. 4.3 and the factorization lemma 4.9,
the mapping cone construction indeed produces first a cofibrant replacement of f and then the
ordinary cofiber of that, hence a model for the homotopy cofiber. N

Example 4.20. The homotopy fiber of the inclusion of classifying spaces BO(n) » BO(n + 1) is the
n-sphere S™. See this prop. at Classifying spaces and G-structure.

Example 4.21. Suppose a morphism f:X — Y already happens to be a fibration between fibrant
objects. The factorization lemma 4.9 replaces it by a fibration out of the mapping cocylinder
Path(f), but such that the comparison morphism is a weak equivalence:

fib(f) — X Loy

€Fib
lEW lEW lld
. i
fib(f) — Path(f) porered

Hence by prop. 4.15 in this case the ordinary fiber of f is weakly equivalent to the mapping
cocone, def. 4.1.

We may now state the abstract version of the statement of prop. 1.51:

Proposition 4.22. Let C be a model category. For f:X - Y any morphism of pointed objects,
and for A a pointed object, def. 3.16, then the sequence
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[4, hofib(F)]. — [4,X]. 25 [4,Y].
is exact as a sequence of pointed sets.

(Where the sequence here is the image of the homotopy fiber sequence of def. 4.16 under the
hom-functor [A, -], : Ho(€"/) — Set™/ from example 3.30.)

Proof. Let A, X and Y denote fibrant-cofibrant objects in ¢*/ representing the given objects of
the same name in Ho(C*/). Moreover, let f be a fibration in ¢*/ representing the given morphism
of the same name in Ho(C"/).

Then by def. 4.16 and prop. 4.17 there is a representative hofib(f) € C of the homotopy fiber
which fits into a pullback diagram of the form
hofib(f) — X
! W
* — Y

With this the hom-sets in question are represented by genuine morphisms in ¢*/, modulo
homotopy. From this it follows immediately that im(i,) includes into ker(f,). Hence it remains to

show the converse: that every element in ker(f,) indeed comes from im(i.).

But an element in ker(f)) is represented by a morphism a:A — X such that there is a left
homotopy as in the following diagram

oy A, S
iq

A3 gl > v
)

* — Y

Now by lemma 2.20 the square here has a lift 77, as shown. This means that i, o7 is left
homotopic to a«. But by the universal property of the fiber, i; o ) factors through i:hofib(f) - X. W

With prop. 4.15 it also follows notably that the loop space construction becomes well-defined on
the homotopy category:

Remark 4.23. Given an object X € (3;/, and picking any path space object Path(X), def. 2.18 with
induced loop space object 0X, def. 4.4, write Path,(X) = Path(X) X Path(X) for the path space

object given by the fiber product of Path(X) with itself, via example 2.21. From the pullback
diagram there, the fiber inclusion 2X — Path(X) induces a morphism

0X X QX — (0X), .

In the case where ¢*/ = Top*/ and 2 is induced, via def. 4.4, from the standard path space
object (def. 1.34), i.e. in the case that

NX = fib(Maps(/4,X), — X X X),

then this is the operation of concatenating two loops parameterized by I = [0,1] to a single loop
parameterized by [0, 2].

Proposition 4.24. Let ¢ be a model category, def. 2.3. Then the construction of forming loop
space objects X » 0X, def. 4.4 (which on C;/ depends on a choice of path space objects, def.
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2.18) becomes unique up to isomorphism in the homotopy category (def. 2.25) of the model
structure on pointed objects (prop. 3.29) and extends to a functor:

Q2 : Ho(€*) — Ho(C™/) .

Dually, the reduced suspension operation, def. 4.4, which on ¢*/ depends on a choice of
cylinder object, becomes a functor on the homotopy category

Y : Ho(C*/) — Ho(C*/) .

Moreover, the pairing operation induced on the objects in the image of this functor via remark
4.23 (concatenation of loops) gives the objects in the image of 2 group object structure, and
makes this functor lift as

Q2 : Ho(C*) — Grp(Ho(C*)) .

(Brown 73, section 4, theorem 3)

Proof. Given an object X € ¢*/ and given two choices of path space objects Path(X) and Path(X),
we need to produce an isomorphism in Ho(C*/) between (X and 02X.

To that end, first lemma 4.10 implies that any two choices of path space objects are connected
via a third path space by a span of morphisms compatible with the structure maps. By two-out-
of-three (def. 2.1) every morphism of path space objects compatible with the inclusion of the
base object is a weak equivalence. With this, lemma 4.11 implies that these morphisms induce
weak equivalences on the corresponding loop space objects. This shows that all choices of loop
space objects become isomorphic in the homotopy category.

Moreover, all the isomorphisms produced this way are actually equal: this follows from lemma
4.13 applied to

X - Path(X) = Path(X)
! !

id
XxX — XxX
This way we obtain a functor
0:¢;/ —Hoc™).

By prop. 4.15 (and using that Cartesian product preserves weak equivalences) this functor
sends weak equivalences to isomorphisms. Therefore the functor on homotopy categories now
follows with theorem 2.31.

It is immediate to see that the operation of loop concatenation from remark 4.23 gives the
objects X € Ho(C*/) the structure of monoids. It is now sufficient to see that these are in fact

groups:

We claim that the inverse-assigning operation is given by the left map in the following pasting
composite

N'X — Path'(X) — XxX

1= = (pb) lswfp
NX — Path(X) —— X xX
®g.p1)

(where Path’ (X), thus defined, is the path space object obtained from Path(X) by “reversing the
notion of source and target of a path”).
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To see that this is indeed an inverse, it is sufficient to see that the two morphisms
0X = (0X),
induced from

2
Path(X) ———— Path(X) x4 Path’ (X)
(sepg,S°pg)

coincide in the homotopy category. This follows with lemma 4.13 applied to the following
commuting diagram:

A

X - Path(X) s Path(X) xy Path’ (1)
Pg.p1) 1 1
XxX Ae—pr% XxX
[ |
Homotopy pullbacks

The concept of homotopy fibers of def. 4.16 is a special case of the more general concept of
homotopy pullbacks.

Definition 4.25. A model category ¢ (def. 2.3) is called a right proper model category if
pullback along fibrations preserves weak equivalences.

Example 4.26. By lemma 4.12, a model category ¢ (def. 2.3) in which all objects are fibrant is
a right proper model category (def. 4.25).

Definition 4.27. Let ¢ be a right proper model category (def. 4.25). Then a commuting square

A — B

l 19

c — D
f

in C; is called a homotopy pullback (of f along g and equivalently of g along f) if the
following equivalent conditions hold:

1. for some factorization of the form

EW A €Fib
g:B—B—D

the universally induced morphism from A4 into the pullback of B along f is a weak

equivalence:
A — B
Ew | lEW
JAN AN
CXB — B

2. for some factorization of the form
EW A €Fib

f:C—C—D
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the universally induced morphism from A into the pullback of D along g is a weak
equivalence:

EW A
A— CXB.
D
3. the above two conditions hold for every such factorization.

(e.g. Goerss-Jardine 96, II (8.14))

Proposition 4.28. The conditions in def. 4.27 are indeed equivalent.

Proof. First assume that the first condition holds, in that

A — B
Ew | lEW

N N

CxB — B

Then let

eW Aa €Fib
fiCc—C—D

be any factorization of f and consider the pasting diagram (using the pasting law for pullbacks)

A — e'>.§B — B
EW\L lEW (pb) »LEW

A EW A A €Fib A

C>D<B — C>[§D — B’

€

L (pb) LFib (pb) LEFP®

c — 2‘ — D
EwW €Fib
where the inner morphisms are fibrations and weak equivalences, as shown, by the pullback
stability of fibrations (prop. 2.10) and then since pullback along fibrations preserves weak
equivalences by assumption of right properness (def. 4.25). Hence it follows by two-out-of-three

(def. 2.1) that also the comparison morphism A - 6>[§B is a weak equivalence.

In conclusion, if the homotopy pullback condition is satisfied for one factorization of g, then it is
satisfied for all factorizations of f. Since the argument is symmetric in f and g, this proves the
claim. R

Remark 4.29. In particular, an ordinary pullback square of fibrant objects, one of whose edges
is a fibration, is a homotopy pullback square according to def. 4.27.

Proposition 4.30. Let C be a right proper model category (def. 4.25). Given a diagram in C of
the form

€Fib
A — B «—

lEW lEW iEW

then the induced morphism on pullbacks is a weak equivalence
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Proof. (The reader should draw the 3-dimensional cube diagram which we describe in words
now.)

First consider the universal morphism ¢ - E X C and observe that it is a weak equivalence by

right properness (def. 4.25) and two-out-of-three (def. 2.1).

Then consider the universal morphism A X C-A X (E X () and observe that this is also a weak
equivalence, since A X C is the limiting cone of a homotopy pullback square by remark 4.29, and
since the morphism is the comparison morphism to the pullback of the factorization constructed
in the first step.

Now by using the pasting law, then the commutativity of the “left” face of the cube, then the
pasting law again, one finds that A X (E X O)=A X (DI; x ). Again by right properness this implies

that 4 X (E X C)-D X F is a weak equivalence.

With this the claim follows by two-out-of-three. N

Homotopy pullbacks satisfy the usual abstract properties of pullbacks:

Proposition 4.31. Let C be a right proper model category (def. 4.25). If in a commuting square
in C one edge is a weak equivalence, then the square is a homotopy pullback square precisely
if the opposite edge is a weak equivalence, too.

Proof. Consider a commuting square of the form

A — B

l 1,

C — D
ew

To detect whether this is a homotopy pullback, by def. 4.27 and prop. 4.28, we are to choose
any factorization of the right vertical morphism to obtain the pasting composite

A — B
. LEW

N (274 A

CxB — B,

X
D
1 (pb) leFib
c — D

EW
Here the morphism in the middle is a weak equivalence by right properness (def. 4.25). Hence it
follows by two-out-of-three that the top left comparison morphism is a weak equivalence (and
so the original square is a homotopy pullback) precisely if the top morphism is a weak
equivalence. 11

Proposition 4.32. Let C be a right proper model category (def. 4.25).

1. (pasting law) If in @ commuting diagram

A — B — C
l l l
D — E — F

the square on the right is a homotoy pullback (def. 4.27) then the left square is, too,
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precisely if the total rectangle is;

2. in the presence of functorial factorization (def. 2.6) through weak equivalences followed
by fibrations:

every retract of a homotopy pullback square (in the category €7 of commuting squares in
Cr) is itself a homotopy pullback square.

Proof. For the first statement: choose a factorization of ¢ =% # £ F, pull it back to a

A ib A
factorization B - B g and assume that B - B is a weak equivalence, i.e. that the right square
is @a homotopy pullback. Now use the ordinary pasting law to conclude.

For the second statement: functorially choose a factorization of the two right vertical morphisms
of the squares and factor the squares through the pullbacks of the corresponding fibrations
along the bottom morphisms, respectively. Now the statement that the squares are homotopy
pullbacks is equivalent to their top left vertical morphisms being weak equivalences. Factor
these top left morphisms functorially as cofibrations followed by acyclic fibrations. Then the
statement that the squares are homotopy pullbacks is equivalent to those top left cofibrations
being acyclic. Now the claim follows using that the retract of an acyclic cofibration is an acyclic
cofibration (prop. 2.10). N

Long sequences

The ordinary fiber, example 3.27, of a morphism has the property that taking it twice is always
trivial:

« = fib(fib(f)) — fib(f) = X 5V .

This is crucially different for the homotopy fiber, def. 4.16. Here we discuss how this comes
about and what the consequences are.

Proposition 4.33. Let C; be a category of fibrant objects of a model category, def. 2.34 and let
f:X — Y be a morphism in its category of pointed objects, def. 3.16. Then the homotopy fiber
of its homotopy fiber, def. 4.16, is isomorphic, in Ho(C*/), to the loop space object QY of Y
(def. 4.4, prop. 4.24):

hofib(hofib(X 5 Y)) ~ av .

Proof. Assume without restriction that f : X — Y is already a fibration between fibrant objects in
C (otherwise replace and rename). Then its homotopy fiber is its ordinary fiber, sitting in a
pullback square

hofib(f) ~ F — X
1 lf'

* — Y

In order to compute hofib(hofib(f)), i.e. hofib(i), we need to replace the fiber inclusion i by a

fibration. Using the factorization lemma 4.9 for this purpose yields, after a choice of path space
object Path(X) (def. 2.18), a replacement of the form

ew

F — F Xy Path(X)
i

Py J’eFib
X

Hence hofib(i) is the ordinary fiber of this map:
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hofib(hofib(f)) = F x Path(X) x5 * € Ho(C"/) .

Notice that

F Xy Path(X) = = X, Path(X)

because of the pasting law:

F Xy Path(X) — Path(X)

l (pb) l
F 5 x
l ®b) Y
* — Y

Hence
hofib(hofib(f)) = * Xy Path(X) Xy * .
Now we claim that there is a choice of path space objects Path(X) and Path(Y) such that this

model for the homotopy fiber (as an object in ¢*/) sits in a pullback diagram of the following
form:

* Xy Path(X) Xy * — Path(X)

l l eWnF
nY —  Path(Y) X, X .

l (pb) l

* — Y xX

By the pasting law and the pullback stability of acyclic fibrations, this will prove the claim.

To see that the bottom square here is indeed a pullback, check the universal property: A
morphism out of any 4 into = Xy Path(Y) Xy X is @ morphism a:A — Path(Y) and a morphism

b:A — X such that p (a) = *, p,(a) = f(b) and b = . Hence it is equivalently just a morphism
a:A - Path(Y) such that p (a) = * and p,(a) = =. This is the defining universal property of
DY = * >}§Path(Y) X

Now to construct the right vertical morphism in the top square (Quillen 67, page 3.1): Let
Path(Y) be any path space object for Y and let Path(X) be given by a factorization

Ew €Fib
(idy, io f, idy) : X — Path(X) — X Xy Path(Y) x, X
and regarded as a path space object of X by further comoposing with
€Fib
(pr,,pry):X Xy Path(Y) Xy X — X X X .
We need to show that Path(X) — Path(Y) X, X is an acyclic fibration.

It is a fibration because X X, Path(Y) x, X - Path(Y) X, X is a fibration, this being the pullback of
the fibration X 5 v.

To see that it is also a weak equivalence, first observe that Path(Y) x, X EWnmp X, this being the

pullback of the acyclic fibration of lemma 2.20. Hence we have a factorization of the identity as

_ i ,
idy : X —p Path(X) — Path(Y) Xy X ———o
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and so finally the claim follows by two-out-of-three (def. 2.1). N

Remark 4.34. There is a conceptual way to understand prop. 4.33 as follows: If we draw
double arrows to indicate homotopies, then a homotopy fiber (def. 4.16) is depicted by the
following filled square:

hofib(f) — =
l v 1
X — Y

f

just like the ordinary fiber (example 3.27) is given by a plain square

fib(f) — =
l !
X — Y
f

One may show that just like the fiber is the universal solution to making such a commuting
square (a pullback limit cone def. 1.1), so the homotopy fiber is the universal solution up to
homotopy to make such a commuting square up to homotopy - a homotopy pullback
homotopy limit cone.

Now just like ordinary pullbacks satisfy the pasting law saying that attaching two pullback
squares gives a pullback rectangle, the analogue is true for homotopy pullbacks. This implies
that if we take the homotopy fiber of a homotopy fiber, thereby producing this double
homotopy pullback square

hofib(g) — hofib(f) — =
1 % W v |

* — X — Y
f
then the total outer rectangle here is itself a homotopy pullback. But the outer rectangle
exhibits the homotopy fiber of the point inclusion, which, via def. 4.4 and lemma 4.9, is the
loop space object:

Ny — =«
l v .

*x — Y

Proposition 4.35. Let C be a model category and let f:X —» Y be morphism in the pointed
homotopy category Ho(C*/) (prop. 3.29). Then:

1. There is a long sequence to the left in ¢*/ of the form
of ) f
-+ — NX — QY — hofib(f) = X —>7Y,

where each morphism is the homotopy fiber (def. 4.16) of the following one: the
homotopy fiber sequence of f. Here Qf denotes Qf followed by forming inverses with
respect to the group structure on 2(-) from prop. 4.24.

Moreover, for A € C*/ any object, then there is a long exact sequence

RN [A,!)ZY]* — [A, 2hofib(f)], — [4,02X], — [A,02Y] — [A,hofib(f)], — [4,X], — [A Y],
of pointed sets, where [—, —], denotes the pointed set valued hom-functor of example 3.30.

1. Dually, there is a long sequence to the right in ¢*/ of the form
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z
X LR Y — hocofib(f) — 2X 2, XY - -,

where each morphism is the homotopy cofiber (def. 4.16) of the previous one: the
homotopy cofiber sequence of f. Moreover, for A€ ¢*/ any object, then there is a long
exact sequence

- (22X, A], — [ hocofib(f), A], — [2Y,A], — [2X, A] — [hocofib(f), A], — [V, A], — [X, 4],

of pointed sets, where [—, —], denotes the pointed set valued hom-functor of example
3.30.

(Quillen 67, 1.3, prop. 4)

Proof. That there are long sequences of this form is the result of combining prop. 4.33 and
prop. 4.22.

It only remains to see that it is indeed the morphisms 2f that appear, as indicated.

In order to see this, it is convenient to adopt the following notation: for f:X —» Y a morphism,
then we denote the collection of generalized element of its homotopy fiber as

hofib() = {(x, f(x) % +)}

indicating that these elements are pairs consisting of an element x of X and a “path” (an
element of the given path space object) from f(x) to the basepoint.

This way the canonical map hofib(f) - X is (x, f(x) » *) - x. Hence in this notation the homotopy
fiber of the homotopy fiber reads

hofib(hofib(£)) = {(Gx, () + ), x %3 )}
This identifies with 2Y by forming the loops
Y. f(2),
where the overline denotes reversal and the dot denotes concatenation.

Then consider the next homotopy fiber

Y3
X WS> *
y v frs3)
hofib(hofib(hofib(£))) = { | ((x f(x) % «),x '3 «),| f® ~>
N > 7

where on the right we have a path in hofib(f) from (x, f(x) 13 +) to the basepoint element. This is
a path y, together with a path-of-paths which connects f, to f(y,).

By the above convention this is identified with the loop in X which is
Yy (]_/3) .

But the map to hofib(hofib(f)) sends this data to ((x, f(x) “ +),x *& «), hence to the loop
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Ve f0) = fry) - f(7y)
=frs-73)
=fry73)
=fry73)

hence to the reveral of the image under f of the loop in X. N

Remark 4.36. In (Quillen 67, 1.3, prop. 3, prop. 4) more is shown than stated in prop. 4.35:
there the connecting homomorphism QY - hofib(f) is not just shown to exist, but is described
in detail via an action of QY on hofib(f) in Ho(C). This takes a good bit more work. For our

purposes here, however, it is sufficient to know that such a morphism exists at all, hence that
QY = hofib(hofib(f)).

Example 4.37. Let ¢ = (ToP¢g) quitten be the classical model structure on topological spaces

(compactly generated) from theorem 3.7, theorem 3.51. Then using the standard pointed
topological path space objects Maps(i,,X) from def. 1.34 and example 3.26 as the abstract
path space objects in def. 2.18, via prop. 3.14, this gives that

[, Q"X] = m,(X)

is the nth homotopy group, def. 1.26, of X at its basepoint.

Hence using 4 = « in the first item of prop. 4.35, the long exact sequence this gives is of the
form

w5 3 (X) D5 (1Y) — my(hofib(£)) — 1y (X) 5 m,(¥) — 1y (hofib(F)) — 1y (X) L5 my () — + .

This is called the long exact sequence of homotopy groups induced by f.

Remark 4.38. As we pass to stable homotopy theory (in Part 1)), the long exact sequences in
example 4.37 become long not just to the left, but also to the right. Given then a tower of
fibrations, there is an induced sequence of such long exact sequences of homotopy groups,
which organizes into an exact couple. For more on this see at Interlude -- Spectral sequences
(this remark).

Example 4.39. Let again ¢ = (Topcg)Quillen be the classical model structure on topological spaces

(compactly generated) from theorem 3.7, theorem 3.51, as in example 4.37. For E € Topc*g/ any
pointed topological space and i:A & X an inclusion of pointed topological spaces, the exactness
of the sequence in the second item of prop. 4.35

-«+ = [hocofib(i), E] — [X,E], — [A4,E], — -
gives that the functor
[ E], : (Topciy)*® — Set™/
behaves like one degree in an additive reduced cohomology theory (def.). The Brown

representability theorem (thm.) implies that all additive reduced cohomology theories are
degreewise representable this way (prop.).

5. The suspension/looping adjunction

We conclude this discussion of classical homotopy theory with the key statement that leads over
to stable homotopy theory in Introduction to Stable homotopy theory -- 1: the suspension and
looping adjunction on the classical pointed homotopy category.

Proposition 5.1. The canonical loop space functor 2 and reduced suspension functor X from

109 of 111 09.05.17, 15:41



Introduction to Homotopy Theory in nLab https://ncatlab.org/nlab/print/Introduction+to+Homotopy+Theory

prop. 4.24 on the classical pointed homotopy category from def. 3.31 are adjoint functors,
with X left adjoint and 2 right adjoint:

X
(£ 40) : Ho(Top™/) % Ho(Top*/) .

Moreover, this is equivalently the adjoint pair of derived functors, according to prop. 2.49, of
the Quillen adjunction

sTA(o)
*/ A */
(Tong )Quillen ;) (Tong )Quillen
Maps(Sl, s

of cor. 3.42.

Proof. By prop. 4.24 we may represent ¥ and 2 by any choice of cylinder objects and path
space objects (def. 2.18).

The standard topological path space (—)' is generally a path space object by prop. 3.14. With
prop. 4.5 this shows that

2 = R Maps(S%, -), -

Moreover, by the existence of CW-approximations (remark 3.12) we may represent each object
in the homotopy category by a CW-complex. On such, the standard topological cylinder (=) x I is

a cylinder object by prop. 3.13. With prop. 4.5 this shows that

J=LES'A (D).
[ |

Final remark 5.2. What is called stable homotopy theory is the result of universally forcing the
(2 4 2)-adjunction of prop. 5.1 to become an equivalence of categories.

This is the topic of the next section at Introduction to Stable homotopy theory -- 1.

6. References

A concise and yet self-contained re-write of the proof (Quillen 67) of the classical model
structure on topological spaces is provided in

e Philip Hirschhorn, The Quillen model category of topological spaces (arXiv:1508.01942).

For general model category theory a decent review is in

e William Dwyer, J. Spalinski, Homotopy theories and model categories (pdf) in Ioan
Mackenzie James (ed.), Handbook of Algebraic Topology 1995

The equivalent definition of model categories that we use here is due to
e André Joyal, appendix E of The theory of quasi-categories and its applications (pdf)
The two originals are still a good source to turn to:

e Daniel Quillen, Axiomatic homotopy theory in Homotopical algebra, Lecture Notes in
Mathematics, No. 43 43, Berlin (1967)

e Kenneth Brown, Abstract Homotopy Theory and Generalized Sheaf Cohomology,
Transactions of the American Mathematical Society, Vol. 186 (1973), 419-458 (JSTOR)
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For the restriction to the convenient category of compactly generated topological spaces good
sources are

e Gaunce Lewis, Compactly generated spaces (pdf), appendix A of The Stable Category and
Generalized Thom Spectra PhD thesis Chicago, 1978

e Neil Strickland, The category of CGWH spaces, 2009 (pdf)
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nLab
* Introduction to Stable homotopy theory --
1-1

We give an introduction to the stable homotopy category and to its key computational tool,
the Adams spectral sequence. To that end we introduce the modern tools, such as model
categories and highly structured ring spectra. In the accompanying seminar we consider
applications to cobordism theory and complex oriented cohomology such as to converge in
the end to a glimpse of the modern picture of chromatic homotopy theory._

Lecture notes.

Main page: Introduction to Stable homotopy theory.

Previous section: Prelude -- Classical homotopy theory

This section_ Part 1 -- Stable homotopy theory

This subsection: Part 1.1 — Stable homotopy theory - Sequential spectra

Next subsection: Part 1.2 -- Stable homotopy theory -- Structured Spectra

Next section: Part 2 -- Adams spectral sequences

Stable homotopy theory — Sequential spectra

1. Sequential pre-spectra
Stable homotopy groups

Omega-spectra

As topological diagrams

Suspension and looping

2. The strict model structure on sequential spectra
Suspension and looping

CW-spectra
Topological enrichment

3. The stable model structure on sequential spectra
Bousfield localization

Proof of the stable model structure

Stability of the homotopy theory

Cofibrant generation

4. The stable homotopy category
Additivity
Triangulated structure

Long fiber-cofiber sequences
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5. References

The Prelude on Classical homotopy theory ended with the following phenomenon:

Definition 0.1. The reduced suspension/looping operation on pointed (def.) compactly
generated topological spaces (def.) is the smash-tensor/hom-adjunction (cor.) for the
standard 1-sphere smash product from the left:

sta(m)
S40) : Top./ L Top./
( _| ) Opcg 5 Opcg :
Maps(s?, -),

Proposition 0.2. With respect to the classical model structure on pointed compactly
generated topological spaces (Topc*g/ )Qumen (thm., prop.)

1. the adjunction in def. 0.1 is a Quillen adjunction (def.)

sTa(-)
(Z40): (Top.) 1 (Top.)
' ng Quillen — — ng Quillen ’
Maps(Sl, s

2. its induced adjoint pair of derived functors on the classical pointed homotopy
category (by this prop.) is the canonical suspension/looping adjunction (according to

this prop.)

X

H
(2 42) : Ho(Top*/) L Ho(Top™/) .
0

See (this prop.).

The stable homotopy category Ho(Spectra) is to be the result of stabilizing the adjunction in

prop. 0.2, in the sense of forcing it to become an equivalence of categories in a compatible
way, i.e. such as to fit into a diagram of categories of the form

z

Ho(Top*/) Ho(Top*/)

[

| 4 Ta® 2| 4 Tax.
Ho(Spectra) _=~ Ho(Spectra)
Moreover, for stable homotopy theory proper we are to refine this situation from homotopy

categories to model categories and ask it to be the diagram of derived functors (according to
this prop.) of a diagram of Quillen adjunctions (def.)

X
(Topc*g/ ) Quillen T (TOP;;/ )Quillen
s
S SRIEIE
X
5eqSPec(ToP ) gapie =g SeASPEC(TOPcy) iapic
n

This we establish in theorem 3.25 below.
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The notation ¥ and 2% is meant to be suggestive of the intuition behind how this
stabilization will work: The universal way of making a topological space X become stable
under suspension is to pass to its infinite suspension in a suitable sense. That suitable sense
is going to be called the suspension spectrum of X (def. 1.3 below). Conversely, if an object

does not change up to equivalence, by forming its loop spaces, it must give an infinite loop
space.

In contrast to the classical homotopy category, the stable homotopy category is a
triangulated category (a shadow of the fact that the (co0,1)-category of spectra is a stable
(c0,1)-category). As such it may be thought of as a refinement of the derived category of
chain complexes (of abelian groups): every chain complex gives rise to a spectrum and
every chain map to a map between these spectra (the stable Dold-Kan correspondence), but
there are many more spectra and maps between them than arise from chain complexes and
chain maps.

There is a variety of different models for the stable homotopy theory of spectra, some of
which fits into this hierarchy:

1. sequential spectra with their model structure on sequential spectra

2. symmetric spectra with their model structure on symmetric spectra

3. orthogonal spectra with their model structure on orthogonal spectra

4. excisive functors with their model structure for excisive functors

As one moves down this list, the objects modelling the spectra become richer. This means on
the one hand that their abstract properties become better as one moves down the list, on
the other hand it means that it is more immediate to construct and manipulate examples as
one stays further up in the list.

We start with plain sequential spectra as a transparent means to construct the stable
homotopy category. In order to discuss ring spectra it is convenient to first pass to the richer
model of highly structured spectra, this we do in Part II

The most lighweight model for spectra are sequential spectra. They support most of stable
homotopy theory in a straightforward way, and have the advantage that examples tend to
be immediate (for instance the proof of the Brown representability theorem spits out
sequential spectra).

The key disadvantage of sequential spectra is that they do not support a functorial smash
product of spectra before passing to the stable homotopy category, much less a symmetric
smash product of spectra. This is the structure needed for a decent discussion of the higher
algebra of ring spectra. To accomodate this, further below we enhance sequential spectra to
the more highly structured models given by symmetric spectra and orthogonal spectra. But
all these models are connected by a free-forgetful adjunction and for working with either it
is useful to have the means to pass back and forth between them.

1. Sequential pre-spectra

The following def. 1.1 is the traditional component-wise definition of sequential spectra. It
was first stated in (Lima 58) and became widely appreciated with (Boardman 65).

It is generally supposed that G. W. Whitehead also had something to do with it, but the
latter takes a modest attitude about that. (Adams 74, p. 131)

Below in prop. 1.23 we discuss an equivalent definition of sequential spectra as “topological
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diagram spectra” (Mandell-May-Schwede-Shipley 00), namely as topologically enriched
functors (defn.) on a topologically enriched category of n-spheres, which is useful for
establishing the stable model category structure (below) and for establishing the symmetric
monoidal smash product of spectra (in 1.2).

Throughout, our ambient category of topological spaces is Top,,, the category of compactly
generated topological space (defn.).

Definition 1.1. A sequential prespectrum in topological spaces, or just sequential
spectrum for short (or even just spectrum), is

1. an N-graded pointed compactly generated topological space

X. = (Xn € Top)), ey

(the component spaces);

2. pointed continuous functions

0n:STAX, = X

for all n € N (the structure maps) from the smash product (defn.) of one component
space with the standard 1-sphere to the next component space.

A homomorphism f:X — Y of sequential spectra is a sequence f,:X, —» Y, of base point-

preserving continuous functions between component spaces, such that these respect the
structure maps in that all diagrams of the form

siar
STAX, s S'av,

Lok Lok

fn+1
n+1 n+1

commute.
Write Sequec(Topcg) for this category of topological sequential spectra.

Due to the classical adjunction

sTA()
* — *
Topcg/ 1 Topcg/
Maps(Sl, s

from classical homotopy theory (this prop.), the definition of sequential spectra in def. 1.1 is
equivalent to the following definition

Definition 1.2. A sequential prespectrum in topological spaces, or just sequential
spectrum for short (or even just spectrum), is

1. an N-graded pointed compactly generated topological space

X. = Xy €Toped),en
(the component spaces);

2. pointed continuous functions

Gn:X, = Maps(Sh, X, 1),
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for all n € N (the adjunct structure maps) from one component space to the
pointed mapping space (def., exmpl.) out of S* into the next component space.

A homomorphism f:X — Y of sequential spectra is a sequence f.:X. - Y. of base point-
preserving continuous function, such that all diagrams of the form

f
X z Y,

n
o | Lax

Maps(S", Xp 1), Maps(S", Y1),

Maps(slrfn+ 1)*
commute.

Example 1.3. For X € Top*/cg a pointed topological space, its suspension spectrum XX is
the sequential spectrum , def. 1.1, with

® (Z®X), =S"AX (smash product of X with the n-sphere);

e g,:S'AS"AX S S"T1X (the canonical homeomorphism).

This construction extends to a functor

. Top;g/ — SeqSpec(Top,,) .

Example 1.4. The suspension spectrum (example 1.3) of the point is the standard
sequential sphere spectrum

Sseq = 27S° .
Its nth component space is the standard n-sphere
(Sseq)n =Ss".

Example 1.5. A fundamental example of a spectrum that is not just a suspension spectrum
is the universal real Thom spectrum, denoted MO. For details on this see Part S — Thom

spectra.

There are are also the universal complex Thom spectrum denoted MU, and the universal
symplectic Thom spectrum denoted MSp. Their standard construction first yields an
example of a “sequential $*-spectrum”; which we introduce below in def. 3.17; and then
there is an adjunction (prop. 3.19) that canonically turns this into an ordinary sequential
spectrum.

Definition 1.6. Let X € SeqSpec(Top,,) be a sequential spectrum (def. 1.1) and K € Top:g/ a
pointed compactly generated topological space. Then

1. X AK (the smash tensoring of X with K) is the sequential spectrum given by

© (XAK), =X, ANK (smash product on component spaces (defn.))

o gk = gX Aidy.
2. Maps(K, X), (the powering of K into X) is the sequential spectrum with

© (Maps(K,X),), = Maps(K, X,), (compactly generated pointed mapping space (def.,
def.))
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Maps(K,op),

t,id
(const,id) MapS(K,Sl AXp), —— Maps(K, Xy 41),,

o araps(K'X)* : ST AMaps(K, X,,)
where (const,id) : [s, ¢] = [const,, ¢].
These operations canonically extend to functors
(=)A(—): Sequec(Tong) X Topc*g/ — Sequec(Tong)
and

Maps(—, —), : (Top;g/)Op x SeqSpec(Top,,) — SeqSpec(Top,,) -

Example 1.7. The tensoring (def. 1.6) of the standard sphere spectrum Sg4 (def. 1.4) with
a space X € Top,, is isomorphic to the suspension spectrum of X (def. 1.3):

Sea AX = Z%X .

Proposition 1.8. Forany K € Topc*g/ the functors of smash tensoring and powering with K,
from def. 1.6, constitute a pair of adjoint functors

(-)AK
Sequec(Topcg) L Sequec(Tong) .
Maps(K, —),

Proof. For X,Y € Sequec(Topcg) and K € Tong/, let

Ak Ly

be a morphism, with component maps fitting into commuting squares of the form

siar
S'AX,AK —3 S'ay,
U%AKl ld%

Xn+1/\K - Yn+1

Applying degreewise the adjunction
(-)AK
Top,/ L _ Top,./
OPeg __ — , 10P¢g
Maps (K, -),

from classical homotopy theory (this prop.) gives that these squares are in natural bijection
with squares of the form

Siaf

S'AX, Maps(K,S'AY,),

0{2{ 1 lMaPS(K'U%).*

fn+1

Xn+1 — Maps(K, Yn+1)*

But since the map s A f, is the smash product of two maps, only one of which involves the
smash factor of K, one sees that here the top map factors through the map (const,id) from
def. 1.6.

Hence the commuting square above factors as
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SIAf
S'AX, —3 S*AMaps(K,Y,),
01)1( l l(T1lﬁ\L/Iaps(K,Y).*

Xnv1  ——  Maps(K,Yniq),
This gives the structure maps for a homomorphism
f : X — Maps(K, Y), .
Running this argument backwards shows that the map f ~ f given thereby is a bijection. W

Remark 1.9. For the adjunction of prop. 1.8 it is crucial that the smash tensoring in def. 1.6
is from the right, at least as long as the structure maps in def. 1.1 are defined as they are,
with the circle smash factor on the left. We could change both jointly: take the structure
maps to be from smash products with the circle on the right, and take smash tensoring to
be from the left. But having both on the right or both on the left does not work.

Proposition 1.10. The functor X that forms suspension spectra (def. 1.3) has a right
adjoint functor 0%

ZT40%): SeqSpec(Top,,) Top;g/,

SIHT%

given by picking the 0-component space:
.QOO(X) = Xo .

Proof. By def. 1.1 the components f of a homomorphism of sequential spectra of the form

f

XX >Y
have to make these diagrams commute
STAS™X m S'AY,
~ | Lon
fn+1

STTIAX S Y,

for all n € N. Since here the left vertical map is an isomorphism by def. 1.3, this uniquely
fixes f, ., in terms of f . Hence the only freedom in specifying f is in the choice of the

component f:X — Y,, which is equivalently a morphism

X = 0%Y.

Stable homotopy groups

In analogy to how homotopy groups are the fundamental invariants in classial homotopy
theory, the fundamental invariants of stable homtopy theory are stable homtopy groups:

Definition 1.11. The stable homotopy groups of a sequential prespectrum X, def. 1.1, is
the Z-graded abelian group given by the colimit of homotopy groups of the component
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spaces (def.)

m.(X) = li_)mk T (Xi)

where the colimit is over the sequential diagram whose component morphisms are given
in terms of the structure maps of def. 1.1 by

(S*A(-)

- [Sq+k+1, ]
Tark (X)) > [STHE X, ok

stk x,
: k+1 1 k+1 =
[STHTLSAX], ——— [ST7 T, Xpepq ], > Tgyrr1Xi1)

and equivalently are given in terms of the adjunct structure maps of def. 1.2 by

KA [

Mgk (Xi) = [STHE X, STH Maps(S, Xy 41),], = [STAST Xy ia], = Tgprr s Kir1) -

The colimit starts at
0 ifg=0
“lgl ifg<o0
This canonically extends to a functor
T, : Sequec(Tong) — Ab% .
Proposition 1.12. The two component morphisms given in def. 1.11 indeed agree.

Proof. Consider the following instance of the defining naturality square of the
(S* A (-)) 4 Maps(S*, —),-adjunction of prop. 0.2:
[S'AXp,S'AX,], = [Xp,Maps(SLST A X)) ],

[Sll\a,ak] l \L[a»Maps(Sl»ak)f]*

[51 /\Sq+k:Xk+1]* - [Sq+k. MapS(Sl, Xiv), 1,

Then consider the identity element in the top left hom-set. Its image under the left vertical
map is the first of the two given component morphisms. Its image under going around the
other way is the second of the two component morphisms. By the commutativity of the
diagram, these two images agree. 1

Example 1.13. Given X € Top./, then the stable homotopy groups (def. 1.11) of its
suspension spectrum (example 1.3) are given by

o (X) = m(Z7X)
= lim Tark(SEAX)
= lim @ kX))
Specifically for X = S° the 0-sphere, with suspension spectrum the standard sphere

spectrum (def. 1.4), its stable homotopy groups are the stable homotopy groups of
spheres:

T3(S%) = my(S)

=lim g, (5%)

Recall the Freudenthal suspension theorem, which states that if X is an n-connected
pointed CW-complex then the comparison map
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g (X) = g1 (ZX)
is an isomorphism for g < 2n. This implies first of all that every 2*X is (k — 1)-connected

Mo (2X) = *
T (5%2X) = my(ZX) = *
T, (23X) = my (52X) = my(ZX) = *

and then that the gth stable homotopy group of X is attained at stage k =g+ 2 in the
colimit:

ﬂg(X) = 7Tq+(q+2)(2q+2X) .

Historically, this fact was one of the motivations for finding a stable homotopy category
(def. 4.1 below).

Definition 1.14. A morphism f:X — Y of sequential spectra, def. 1.1, is called a stable

weak homotopy equivalence, if its image under the stable homotopy group-functor of
def. 1.11 is an isomorphism

m.(f) : m.(X) = m(Y) .

Omega-spectra

In order to motivate Omega-spectra consider the following shadow of the structure they will
carry:

Example 1.15. A Z-graded abelian group is equivalently a sequence {4,},, of N-graded
abelian groups 4,,, together with isomorphisms

Ap = Apiq[1],

(where [1] denotes the operation of shifting all entries in a graded abelian group down in
degree by -1). Because this means that the sequence of N-graded abelian groups is of the
following form

as a; a;
a; a; QAo
aq a a_q

N
Ap A Az

This allows to recover the Z-graded abelian group {a,}
abelian groups.

nez ffom an N-sequence of N-graded

Then consider the case that the N-graded abelian groups here are homotopy groups of
some topological space. Then shifting the degree of the component groups corresponds to
forming loop spaces, because for any topological space X then

T (2X) = . (X) .

(This may be seen concretely in point-set topology or abstractly by looking at the long
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exact sequence of homotopy groups for the fiber sequence 2X — Path,(X) - X.)

We find this kind of behaviour for the stable homotopy groups of Omega-spectra below in
example 1.18.

Definition 1.16. An Omega-spectrum is a sequential spectrum X of topological spaces,
def. 1.1, such that the (smash product 4 pointed mapping space)-adjuncts &, of the
structure maps o,,:2X,, - X,,,, of X are weak homotopy equivalences (def.), hence classical
weak equivalences (def.):

. EW(| 1
On : Xn — Maps(S-,Xp41),
for all n e N.

Equivalently: an Omega-spectrum is a sequential spectrum in the incarnation of def. 1.2
such that all adjunct structure maps are weak homotopy equivalences.

Example 1.17. The Brown representability theorem (thm.) implies (prop.) that every
generalized (Eilenberg-Steenrod) cohomology theory (def.) is represented by an Omega-
spectrum (def. 1.16).

Applied to ordinary cohomology with coefficients some abelian group A4, this yields the
Eilenberg-MacLane spectra HA (exmpl.). These are the Omega-spectra whose nth
component space is an Eilenberg-MaclLane space

(HA), = K(A,n) .

A genuinely generalized (i.e. non-ordinary, hence “extra-ordinary”) cohomology theory is
topological K-theory K*(—). Applying the Brown representability theorem to topological

K-theory yields the K-theory spectrum denoted KU.

Omega-spectra are singled out among all sequential pre-spectra as having good behaviour
under forming stable homotopy groups.

Example 1.18. If a sequential spectrum X is an Omega-spectrum, def. 1.16, then its
colimiting stable homotopy groups reduce to the actual homotopy groups of the
component spaces, in that:

X Omega-spectrum = . (X) = .
g P k( ) T[OXlkl lfk <0

(Hence the stable homotopy groups of an Omega-spectrum realize the general pattern
discussed in example 1.15.)

Proof. For an Omega-spectrum, the adjunct structure maps 6, are weak homotopy

equivalences, by definition, hence are classical weak equivalences. Hence [S?, G,], is an

isomorphism (prop.). Therefore, by prop. 1.12, the sequential colimit in def. 1.11 is entirely
over isomorphisms and hence is given already by the first object of the sequence.

We now show that every sequential pre-spectrum may be completed to an Omega-
spectrum, up to stable weak homotopy equivalence:

Definition 1.19. For X € SeqSpec(Top,,), define a spectrum QX € SeqSpec(Top,,) and a
morphism

Ny : X — QX
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(to be called the spectrification of X) as follows.

First introduce for the given components X, and adjunct structure maps 4, of X (from def.
1.2) the notation

Zox =Xk, Ogx=0.

G
Now assume, by induction, that sets of objects {Z; s}, . @nd maps {Z; K 0Z; 41}y have
been constructed for some i € N.

Then construct Z;,, , € Top,, by factorizing 4;,, with respect to the model structure
(Topg‘g/)Qumen (thm.) as a classical cofibration followed by a classical weak equivalence.

More specifically, apply the small object argument (prop.) with respect to the set of
generating cofibrations Ir,, (def.) to produce functorial factorizations (def.) into a relative

cell complex followed by a weak homotopy equivalence (just as in the proof of this

lemma):
5o g, —k g Pk
Oik ' Zj i i .
i,k i,k EITop Cell i+1,k ewg Lk+1

Then define 6,1, as the composite

- ik 20 k+1)
Oiv1k P Zivrk — i1 — i 1 k41 -

This produces for each i € N a commuting diagram of the form

Lo,k l1,k L2,k
Xk =Zox —  Zix = Lok T2
EITOp Cell EITOp Cell EITOp Cell
Ok=00k | o1k | G2,k |

2000,k +1) 2014,k +1) 2012,k +1)
-QXk+1=-QZO,k+1 - -QZ1,k+1 - -QZZ,k+1 -

That this indeed commutes is the identity

Givvk ° ik = Rk r1)° ¢i,k) °lik
=0 r1)° (¢i,k ° L) .

=0k+1) ° Ok
Now let QX be the spectrum with component spaces the colimit

(@), =1im Zy

and with adjunct structure maps (via def. 1.2) given by the map induced under colimits by
the above diagrams

G2 = lim &y, : QX — 0(QX) .

Notice that this is indeed well-defined: since each component map X;, — X;., is a relative
cell complex and since the 1-sphere S' is compact, it follows (lemma) that
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lim 07 = lim Maps(S", Z; 1),
~ Maps(S%, li_)ml_ Zik),
= 0lim Z
= (20X)
Finally, let
Ny X = QX

be degreewise the inclusion of the first component (i = 0) into the colimit. By construction,
this is a homomorphism of sequential spectra (according to def. 1.2).

Proposition 1.20. Let X € Sequec(Topcg) be a sequential prespectrum with j,:X - QX from
def. 1.19. Then:

1. QX is an Omega-spectrum (def. 1.16);

2. n,:X > QX Is a stable weak homotopy equivalence (def. 1.14):

3. n, Is a level weak equivalence (is in Wi, def. 2.1) precisely if X is an Omega-
spectrum,;

4. a morphism f:X - Y is a stable weak homotopy equivalence (def. 1.14), precisely if
Qf:QX — QY is a level weak equivalence (is in Wi, def. 2.1).

(Schwede 97, lemma 2.1.3 and remark before section 2.2)

Proof. Since the colimit defining QX is a transfinite composition of relative cell complexes,
each component map X, — (QX), is itself a relative cell complex. Since n-spheres are

compact topological spaces, it follows (lemma) that each element of a homotopy group in
m.((@X),) is in the image of a finite stage n.(Z;,) for some i € N. From this, all statements

follow by inspection at finite stages.

Regarding first statement:

Since each 4;, by construction is a weak homotopy equivalence followed by an inclusion of
stages in the colimit, as any element of =, ((QX),) is sent along 5,‘3X it passes through one

such m,(6;,) at some stage i, hence also through all the following, and is hence identically
preserved in the colimit.

Regarding the second statement:

By the previous statement and by example 1.18, the map n.(n,):m.(X) - m.(QX) is given in
degree q = 0 by

li_m)keN T+ k(X)) — g ((QX),)

=li_)mk Tq (Qkxk)

and similarly in degree g < 0. Now using the compactness of the spheres and the definition
of Q we compute on the right:
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q((QX)y) = mq(lim Zj)
=lim mq(Zio) |
= lim (25X

where the last isomorphism is n, applied to the composite of the weak homotopy
equivalences

Regarding the third statement:
In one direction:

If X is an Omega-spectrum in that all its adjunct structure maps 4, are weak homotopy
equivalences, then by two-out-of-three also the maps ¢; in def. 1.19 are weak homotopy
equivalences. Hence (j,), : X, — (@X), is the map into a sequential colimit over acyclic relative

cell complexes, and again by the compactness of the spheres, this means that it is itself a
weak homotopy equivalence.

In the other direction:

If n, is degrewise a weak homotopy equivalence, then by applying two-out-of-three (def.) to

the compatibility squares for the adjunct structure morphisms (def. 1.2), using that %% is a
weak homotopy equivalence by the first point above

Ux)n
Xn m QX),
o | o
EWc1
EW ]

Maps(S?t, X ——— < 5 Maps(SY, (0X
ps(S™, Xn+1) P ps(S+, (@X)

n+1)
implies that also &) € W, hence that X is an Omega-spectrum.

The fourth statement follows with similar reasoning. W

Remark 1.21. In the case that X is a CW-spectrum (def. 2.7) then the sequence of

resolutions in the definition of spectrification in def. 1.19 is not necessary, and one may
simply consider

QcwX), = li_)mk-Qanm-

See for instance (Lewis-May-Steinberger 86, p. 3) and (Weibel 94, 10.9.6 and topology
exercise 10.9.2).

As topological diagrams

In order to conveniently understand the stable model category structure on spectra, we now
consider an equivalent reformulation of the component-wise definition of sequential spectra,
def. 1.1, as topologically enriched functors (defn.).

Definition 1.22. Write

¢ : StdSpheres — Topc*g/
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for the non-full topologically enriched subcategory (def.) of that of pointed compactly
generated topological spaces (def.) where:

e objects are the standard n-spheres S*, for n € N, identified as the smash product
powers s™ = (1" of the standard circle;

e hom-spaces are

* for k<O
StdSpheres(S™, S¥™™) = .
S* otherwise

e composition is induced from composition in Topc*g/ by regarding the hom-space ¥
above as its image in Maps(S™,§**™)_under the adjunct

S* - Maps(s™, $**™),
of the canonical isomorphism
skast = sktn,
This induces the category
[StdSpheres, Tong/]

of topologically enriched functors on StdSpheres with values in Topc*g/ (exmpl.).

Proposition 1.23. There is an equivalence of categories

(—)%¢9 : [StdSpheres, Topgg/] = SeqSpec(Top,,)

from the category of topologically enriched functors on the category of standard spheres
of def. 1.22 to the category of topological sequential spectra, def. 1.1, which is given on
objects by sending X € [StdSpheres, Topjg/ ] to the sequential prespectrum X°°% with
components

X% =X(S™
and with structure maps

1 seq n ,seq
STANX, T — X,
1 se se
ST — Maps(X;"% X33),

being the adjunct of the component map of X on spheres of consecutive dimension.

Proof. First observe that from its components on consecutive spheres the functor X is
already uniquely determined. Indeed, by definition the hom-space between non-consecutive
spheres StdSpheres(S™, S™¥) is the smash product of the hom-spaces between the consecutive
spheres, for instance:

S'ASY = StdSpheres(S™ S"*1) A StdSpheres(S™*?, §™1?)
=1 =1° )
s = StdSpheres(S™, S"*?)

and so functoriality completely fixes the former by the latter.
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This means that we actually have a bijection between classes of objects.

Now observe that a natural transformation f:X — Y between two functors on StdSpheres is
equivalently a collection of component maps f :X, - Yy, such that for each s € s! then the

following squares commute
xesm oy

Xsn'sn+1(5) . lysn”’gn-#l(s)

X(Sn+1) f_ﬂ) Y(Sn+1)
n

By the smash/hom adjunction, the square equivalently factors as

XM In ys"
(sid) | L i)
1 n 1 n
STAX(S™ T STAY(S™) .
0'1?{ l la}:

Xt undersetf ., — Y(s™th

Here the top square commutes in any case, and so the total rectangle commutes precisely if
the lower square commutes, hence if under our identification the components {f } constitute

a homomorphism of sequential spectra.
Hence we have an isomorphism on all hom-sets, and hence an equivalence of categories. W

Further below we use prop. 1.23 to naturally induce a model structure on the category of
topological sequential spectra.

Remark 1.24. Under the equivalence of prop. 1.23, the general concept of tensoring of
topologically enriched functors over topological spaces (according to this def.) restricts to
the concept of tensoring of sequential spectral over topological spaces according to def.
1.6.

Proposition 1.25. The category Sequec(Toqu) of sequential spectra (def. 1.1) has all limits
and colimits, and they are computed objectwise:

Given
X, 11— Sequec(Tong)
a diagram of sequential spectra, then:

1. its colimiting spectrum has component spaces the colimit of the component spaces
formed in Top, . (via this prop. and this corollary):

(tim X(), =lim X(D,,

2. its limiting spectrum has component spaces the limit of the component spaces
formed in Top,, (via this prop. and this corollary):

(lim X(0)), = lim X(),;

moreover:
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1. the colimiting spectrum has structure maps in the sense of def. 1.1 given by

lim ok

1 . , JURT 1 , —1i . .
St A (im X(0),) = lim (S* AX(D),) ——— lim X(D,,,

where the first isomorphism exhibits that S* A (—) preserves all colimits, since it is a
left adjoint by prop. 0.2;

2. the limiting spectrum has adjunct structure maps in the sense of def. 1.2 given by

L X(D)
m,; o . . .
lim X(0),, - @iMaps(sl, X(0),), = Maps(S*, lim X(D),),

where the last isomorphism exhibits that Maps(S*, —), preserves all limits, since it is a
right adjoint by prop. 0.2.
Proof. That the limits and colimits exist and are computed objectwise follows via prop. 1.2

from the general statement for categories of topological functors (prop.). But it is also
immediate to directly check the universal property. W

Example 1.26. The initial object and the terminal object in Sequec(Tong) agree and are

both given by the spectrum constant on the point, which is also the suspension spectrum
X”x (def. 1.3) of the point). We will denote this spectrum = or 0 (since it is hence a zero

object ):

1 - g =
STA ¥y =% S %,

Example 1.27. The coproduct of spectra X,Y € SeqSpec(Top ), called the wedge sum of
spectra

XvY=XuY

is componentwise the wedge sum of pointed topological spaces (exmpl.)

(XVY) =X, VY,

with structure maps

XvVy 1 1 1 (6%, 0%)
on " i STAXVY) =S AX VS AY —> X, 1 VY.

Example 1.28. For X € Sequec(Tong) a sequential spectrum, def. 1.1, its standard

cylinder spectrum is its smash tensoring X A (1), according to def. 1.6, with the

standard interval (def.) with a basepoint freely adjoined (def.). The component spaces of
the cylinder spectrum are the standard reduced cylinders (def.) of the component spaces
of X:

(XA (1+))n =Xn NI .

By the functoriality of the smash tensoring, the factoring

Voo : S°vS® — 1, —8°

of the codiagonal on the 0-sphere through the standard interval with a base point
adjoined, gives a factoring of the codiagonal of X through its standard cylinder spectrum

XA(SOvsO-g XAy —S°
Uy : xvx 2SS 2y g ) ST
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(where we are using that wedge sum is the coproduct in pointed topological spaces
(exmpl.).)

Suspension and looping

We discuss models for the operation of reduced suspension and forming loop space objects
of sequential spectra.

Definition 1.29. For X a sequential spectrum, then

1. the standard suspension of X is the smash product-tensoring X A S* according to
def. 1.6;

2. the standard looping of X is the smash powering Maps(S', X), according to def. 1.6.

Proposition 1.30. For X € Sequec(Tong), the standard suspension X AS* of def. 1.29 is

equivalently the cofiber (formed via prop. 1.25) of the canonical inclusion of boundaries
into the standard cylinder spectrum X A (1) of example 1.28:

XAS'=cofib(XVX - XA()).

Proof. This is immediate from the componentwise construction of the smash tensoring and
the componentwise computation of colimits of spectra via prop. 1.25. 1

This means that once we know that Xv X - X A (1) is suitably a cofibration (to which we turn
below) then the standard suspension is a homotopy-correct model for the suspension
operation. However, some properties of suspension are hard to prove directly with the
standard suspension model. For such there are two other models for suspension and looping
of spectra. These three models are not isomorphic to each other in Sequec(Tong), but (this

is lemma 3.22 below) they will become isomorphic in the stable homotopy category (def.
4.1).

Definition 1.31. For X a sequential spectrum (def. 1.1) and k € Z, the k-fold shifted
spectrum of X is the sequential spectrum denoted X[k] given by

Xpir forn+ k>0

. 14
* otherwise

-am%={

of., forn+k=0

o gy = T
0 otherwise

Definition 1.32. For X a sequential spectrum, def. 1.1, then

1. the alternative suspension of X is the sequential spectrum X with

1. (ZX), = S'A X, (smash product on the left (defn.))
2. 02X =S A (c)).
in the sense of def. 1.1;
2. the alternative looping of X is the sequential spectrum 02X with

1. (2X), = Maps(S*, Xp),
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2. 5% .= Maps(S?, Er,}f)*
in the sense of def. 1.2.

Remark 1.33. In various references the “alternative suspension” from def. 1.32 is called
the “fake suspension” (e.g. Goerss-Jardine 96, p. 499, Jardine 15, section 10.4).

Remark 1.34. There is no direct natural isomorphism between the standard suspension
(def. 1.29) and the alternative suspension (def. 1.32). This is due to the non-trivial graded
commutativity (braiding) of smash products of spheres. (We discuss braiding of the smash
product more in detail in Part 1.2, this example).

Namely a natural isomorphism ¢:ZX — X AS* (or alternatively the other way around)
would have to make the following diagrams commute:

id_1 /MA@
STAS'AX, =3 S'AX,AS

51/\‘711 l (I‘IC) ionASI

SYA Xni1 — Xns1 AS
n

and naturally so in X.

The only evident option is to have ¢ be the braiding homomorphisms of the smash product

b, =Tsix :STAX, S X, ASt.

It may superficially look like this makes the above diagram commute, but it does not. To
make this explicit, consider labeling the two copies of the circle appearing here as S} and
Si. Then the diagram we are dealing with looks like this:

SEASIAX, — SiAX,AS)

Sahon | (nc) 1on1Sh
1 1
Sa/\Xn+1 - Xn+1ASb

If we had S Ao, on the left and o, A Ss on the right, then the naturality of the braiding

would indeed give a commuting diagram. But since this is not the case, the only way to
achieve this would be by exchanging in the top left

SaANSp — Sy ASq .
However, this map is non-trivial. It represents —1 in [S? 5%], = m,(S%) = Z. Hence inserting
this map in the top of the previous diagram still does not make it commute.

But this technical problem points to its own solutions: if we were to restrict to the
homotopy category of spectra which had structure maps only of the form S*A X, — X, .,

then the braiding required to make the two models of suspension comparable would be
SEASE — SEASE

and this map is indeed trivial, up to homotopy. This we make precise as lemma 3.22
below.

More generally, the kind of issue encountered here is taken care of by the concept of
symmetric spectra, to which we turn in Part 1.2.
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Remark 1.35. The looping and suspension operations in def. 1.29 and def. 1.32 commute
with shifting, def. 1.31. Therefore in expressions like ¥(X[1]) etc. we may omit the

parenthesis.

Proposition 1.36. The constructions from def. 1.29, def. 1.31 and def. 1.32 form pairs of
adjoint functors SeqSpec — SeqSpec like so:

1. (D[-1]+ (1),
2. (=) AS* 4 Maps(S*, -).;
3. 240

Proof. Regarding the first statement:

A morphism of the form f : X[—-1] — Y has components of the form

X, — Y3
f

X, 3 v,
f

X, = v,
f0=0

*x — Y,

and the compatibility condition with the structure maps in lowest degree is automatically

satisfied
(s*afg)=0
« —2 5 S'AY,
U())([*l]zo L ,],Ug ]
f
Xo RN Y,

Therefore this is equivalent to components

hence to a morphism X — Y[1].
The second statement is a special case of prop. 1.8.
Regarding the third statement:

This follows by applying the (smash product-pointed mapping space)-adjunction
isomorphism twice, like so:

Morphisms f:ZX - Y in the sense of def. 1.1 are in components given by commuting
diagrams of this form:
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siaf,

S'ASTAX, Stay,
staok | e

1
S AXnia ]T-l—l) Ynia

Applying the adjunction isomorphism diagonally gives a natural bijection to diagrams of this
form:

stax, =5 Y,
01)1( l lan

Xnt1 f—) Maps(Sl, Yn+1)*

n+1

(To see this in full detail, for instance for the adjunct of the left and bottom morphism:
chase the identity idg1,, . in both ways

Hom(S*AXp,1,S ' AXpy1) = Hom(X,,q1,Maps(SL,S'AXn 1))
Hom(S Ac¥.fr11) | L Hom(@ Maps(S™, i 1).)
Hom(S'AS'AX,,Yni1) =  Hom(S'AX, Maps(S',Yy.1),)
through the adjunction naturality square. The other cases follow analogously.)

Then applying the adjunction isomorphism diagonally once more gives a further bijection to
commuting diagrams of this form:

fn
X, = Maps(S?, Vo),
on l lMaps(Sl,&}:)*

Maps(Sl,XnH)* Maps(Sl, Maps(S?, Yn+1)*)*

This, finally, equivalently exhibits homomorphisms of the form
X — 0y
in the sense of def. 1.2. N

Proposition 1.37. The following diagram of adjoint pairs of functors commutes:

b
Topy . Topy

ﬁ
0

SR S SR S
b
(—

Sequec(Topcg) L Sequec(Topcg)
0

Here the top horizontal adjunction is from prop. 0.2, the vertical adjunction is from prop.
1.8 and the bottom adjunction is from prop. 1.36.

Proof. It is sufficient to check

I¥0X=YoX%,
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From this the statement
NN =NoN”
follows by uniqueness of adjoints.
So let X € Top,/. Then
® (ZX*X), =S'AS"AX,

0 s1aid
¢ g TN GLAGIASTAX TS STASTI A,

while
® (Z¥IX), =S"AS'AX,

o0 idastax
o o7 P SIASTASIAX 25 ST ASTA X,

where we write “id” for the canonical isomorphism. Clearly there is a natural isomorphism
given by the canonical identifications

SIASTAX S (SHM TTAX S STASTAX.

(As long as we are not smash-permuting the S* factor with the $™ factor - and here we are
not - then the fact that they get mixed under this isomorphism is irrelevant. The point
where this does become relevant is the content of remark 1.34 below.) R

2. The strict model structure on sequential spectra

The model category structure on sequential spectra which presents stable homotopy theory
is the “stable model structure” discussed below. Its fibrant-cofibrant objects are (in
particular) Omega-spectra, hence are the proper spectrum objects among the pre-spectrum
objects.

But for technical purposes it is useful to also be able to speak of a model structure on
pre-spectra, which sees their homotopy theory as sequences of simplicial sets equipped with
suspension maps, but not their stable structure. This is called the “strict model structure” for
sequential spectra. Its main point is that the stable model structure of interest arises from it
via left Bousfield localization.

Definition 2.1. Say that a homomorphism f,:X. = Y, in the category SeqSpec(Top), def. 1.1
is

e a strict weak equivalence if each component f_:X, - Y, is a weak equivalence in

the classical model structure on topological spaces (hence a weak homotopy
equivalence);

e a strict fibration if each component f, :X, - Y, is a fibration in the classical model
structure on topological spaces (hence a Serre fibration);

e a strict cofibration if the maps f :X, - Y, as well as for all n € N the maps

Yy . 1
Fri10n) t Xnia Sl/lexns ANYp —=Ynia

are cofibrations in the classical model structure on topological spaces (hence retracts
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of relative cell complexes);

We write W ict, Fibgrice @nd Cofgrice fOr these classes of morphisms, respectively.

Recall the sets

_q )y

ITop*/ = {S% = Dz}nEN
Un)y+

]Top*/ = {Dn — D" x I}nEN

of standard generating (acyclic) cofibrations (def.) of the classical model structure on
pointed topological spaces (thm.).

Definition 2.2. Write

I366% = {y(S™) - s} sne sraspheres, € [StdSpheres, Top*/] = SeqSpec(Top)
i+ EITOp */

and

strict .

JE = {y(S™) - J, Fsnesaspheres € [StdSpheres, Top*/] = SeqSpec(Top),
j+ E]Top */

for the set of morphisms arising as the tensoring (remark 1.24) of a representable
(exmpl.) with a generating acyclic cofibration of the classical model structure on pointed
topological spaces (def.).

Theorem 2.3. The classes of morphisms in def. 2.1 give the structure of a model category
(def.) to be denoted SeqSpec(Top) ..., and called the strict model structure on

topological sequential spectra (or: level model structure).

Moreover, this is a cofibrantly generated model category with generating (acyclic)
cofibrations the set 134" (resp. ]:gl‘“) from def. 2.2.

Proof. Prop. 1.23 says that the category of sequential spectra is equivalently an enriched
functor category

SeqSpec(Top) == [StdSpheres, Top;g/] .

Accordingly, this carries the projective model structure on functors (thm.). This immediately
gives the statement for the fibrations and the weak equivalences.

It only remains to check that the cofibrations are as claimed. To that end, consider a
commuting square of sequential spectra

By definition, this is equivalently an N-collection of commuting diagrams in Topcg of the form

h
X, —5 A,

Vn l
Y, — B,

such that all structure maps are respected.
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Stax ﬁ X
n n+1

1
\ S Ahn Vhin+i

siaa Thoa
ANAy, — Apgq

\) \)

1 oR
Byi1 S"AB, — Byia

Hence a lifting in the original diagram is a lifting in each degree n, such that the lifting in
degree n + 1 makes these diagrams of structure maps commute.

Since components are parameterized over N, this condition has solutions by induction:

First of all there must be an ordinary lifting in degree 0. Since the strict fibrations are
degreewise classical fibrations, this gives the condition that for f, to be a strict cofibration,

then f is to be a classical cofibration.

Then assume that a lifting [, in degree n has been found

h
X, 5 4,

Vn oz L

Y. — B,

Now the lifting [,,,, in the next degree has to also make the following diagram commute

ol
- Xn+1

lfn+1 Vin+i

Y

on

S'AYn = Yap

1
S A \,ln+1l

siaa. b o4
NA, — Apiq

This is a cocone under the commuting square for the structure maps, and therefore the
outer diagram is equivalently a morphism out of the domain of the pushout product f ooy

(def.), while the compatible lift [,,,, is equivalently a lift against this pushout product:

Stay,

fnna,)f l

1
(0foS A, 1 1)
L e LY

M Xnia Apiq
AX
lnt1 4 l
- Bni1

This shows that f is a strict cofibration precisely if, in addition to f, being a classical
cofibration, all these pushout products are classical cofibrations. N

Suspension and looping

Proposition 2.4. The (X” 4 2*)-adjunction from prop. 1.10 is a Quillen adjunction (def.)
between the classical model structure on pointed topological spaces (thm., prop.) and the

strict model structure on topological sequential spectra of theorem 2.3:
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ZOO

[ee] (e} — *
7407 Sequec(Tong)Strict i) (Topcg/)Quillen .
!200

Proof. 1t is clear that 2 preserves fibrations and acyclic cofibrations. This is sufficient to
deduce a Quillen adjunction.

Just for the record, we spell out a direct argument that also ¥* preserves cofibrations and
acyclic cofibrations:

Let f£:X — Y be a morphism in Top;/ and
IXFI°K — Iy
its image.

Since the structure maps in a suspension spectrum, example 1.3, are all isomorphisms, we
have for all n € N an isomorphism

E°X),., ]_[ STAQETY), =STACETY), .

sTAE®x),

Therefore 2%f is a strict cofibration, according to def. 2.1, precisely if (X%f), = f is a classical
cofibration and all the structure maps of Y are classical cofibrations. But the latter are
even isomorphisms, so that this is no extra condition (prop.). Hence X® sends classical
cofibrations of spaces to strict cofibrations of sequential spectra.

Furthermore, since S™ A (—):(Topc*g/)Quillen - (Topc"g/)Quillen is a left Quillen functor for all n € N
by prop. 0.2 it sends classical acyclic cofibrations to classical acyclic cofibrations. Hence z*,
which is degreewise given by S™ A (—), sends classical acyclic cofibrations to degreewise

acyclic cofibrations, hence in particular to degreewise weak equivalences, hence to weak
equivalences in the strict model structure on sequential spectra.

This shows that ¥* is a left Quillen functor. N

Proposition 2.5. The (2 4 2)-adjunction from prop. 1.36 is a Quillen adjunction (def.) with
respect to the strict model structure on sequential spectra of theorem 2.3.

z
—

SequeC(Topcg)strict i) Seqspec(TOpcg)strict '
0

Proof. Since the (acyclic) fibrations of SeqSpec(Top,,) are by definition those morphisms

strict

that are degreewise (acylic) fibrations in (Topc*g/)Quillen’ the statement follows immediately
from the fact that the right adjoint 22 is degreewise given by
Maps(S?, —)*:(Tong/)Quillen - (Topjg/)Qumen, which is a right Quillen functor by prop. 0.2. N

In summary, prop. 1.37, prop. 2.4 and prop. 2.5 say that

Corollary 2.6. The commuting square of adjunctions in prop. 1.37 is a square of Quillen
adjunctions with respect to the classical model structure on pointed compactly generated
topological spaces (thm., prop.) and the strict model structure on topological sequential
spectra of theorem 2.3:

24 of 79 09.05.17, 15:47



Introduction to Stable homotopy theory -- 1-1 in nLab https://ncatlab.org/nlab/print/Introduction+to+Stable+homotopy+theor...

z
*/ «— */
(TOng )Quillen 1 (Topcg )Quillen
%
0
S ST
X
—
Sequec(TOpcg)strict i SequeC(Topcg)strict
0

Further below we pass to the stable model structure in order to make the bottom adjunction
in this diagram become a Quillen equivalence. This stable model structure will have more
weak equivalences than the strict model structure, but will have the same cofibrations.
Therefore we first consider now cofibrancy conditions already in the strict model structure.

CW-spectra

Definition 2.7. A sequential spectrum X (def. 1.1) is called a cell spectrum if

1. all component spaces X,, are cell complexes (def.);

2. all structure maps ¢,:S*AX,, — X,,., are relative cell complex inclusions.

A CW-spectrum is a cell spectrum such that all component spaces X,, are CW-complexes
(def.).

Example 2.8. The suspension spectrum ¥*X (example 1.3) for X € Topc*g/ a CW-complex is a
CW-spectrum (def. 2.7).

Remark 2.9. Since, by definition 2.7, a p-cell of a cell spectrum that appears at stage q
shows up as its k-fold suspension at stage q + k, its attachment to some spectrum X is
reflected by a pushout of spectra of the form

3°57-ql - X —
L o) Lopo) L,
AN
I*DI[-q] — X — Z%SP[—q]

where the left vertical morphism is the image under the —qgth shift spectrum functor (def.
1.31) of the image under the suspension spectrum functor (example 1.3) of the basic cell
inclusion (), of pointed topological spaces (def.). This is a cofibration by prop. 2.4, and
so also the middle vertical morphism is a cofibration, by theorem 2.3. Using the pasting
law for pushouts, we find that the cofiber of the middle vertical morphisms (hence its
homotopy cofiber (def.) in the strict model structure) is 2*S?[—q] (not 2°S?[—q] (!)). This
is a shift of a trunction of the sphere spectrum.

After having set up the stable model category structure in theorem 3.11 below, we find
that this means that cell attachments to CW-spectra in the stable model structure are by
cofibers of integer shifts of the sphere spectrum S (def. 1.4), in that in the stable
homotopy category (def. 4.1) the above situation is reflected as a homotopy cofiber
sequence of the form

SPrAlg L x X pPAS

Lemma 2.10. Let k be an regular cardinal and let X be a k-cell spectrum, hence a cell
spectrum (def. 2.7) obtained from at most k stable cell attachments as in remark 2.9.
Then X is k-small (def.) with respect to morphisms of spectra that are degreewise relative
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cell complex inclusions.

Proof. By remark 2.9 the attachment of stable cells is by free spectra (def. 3.26) on
compact topological spaces. By prop. 3.28 maps out of them are equivalently maps of
component spaces in the lowest nontrivial degree. Since compact topological spaces are
small with respect to relative cell complex inclusions (lemma), all these cells are small.

Now notice that k-filtered colimits of sets commute with x-small limtis of sets (prop.). By
assumption X is a k-small transfinite composition of pushouts of k-small coproducts, all three
of which are k-small colimits; and let Y be the codomain of a x-small relative cell complex
inclusion, hence itself a k-small colimit.

Now if A = li_)mn o, is a k-small colimit of k-small objects ¢,,, and Y = h_)mi Y; is a k-small colimit,
then
Hom(A,li_)mi Y)) = Hom(li_m)a ca,li_)mi Y)

=~ H(_maHom(ca, li_)ml_ Y)

=~ li(_ma li_)ml_Hom(ca, Y)

= lim lim Hom(c,, ;) '

=~ li_)miHom(li_m)g s Yi)

=~ li_)miHom(A, Y)
Hence the claim follows. N

Proposition 2.11. The class of CW-spectra is closed under various operations, including

e finite wedge sum (def. 1.27)

Proposition 2.12. A sequential spectrum X € Sequec(Topcg) is cofibrant in the strict model
of theorem 2.3 precisely if

structure Sequec(Tong)

strict

1. X, is cofibrant;
2. each structure map ¢,:S* A X, - X, is a cofibration

in the classical model structure (Topc*g/ on pointed compactly generated topological

spaces (thm., prop.).

)Quillen

In particular cell spectra and specifically CW-spectra (def. 2.7) are cofibrant.

Proof. The initial object in SeqSpec(Top o) rict
(example 1.26). A morphism * — X is a cofibration according to def. 2.1 if

is the spectrum = that is constant on the point

1. the morphism % — X, is a classical cofibration, hence if the object X, is a classical
cofibrant object, hence a retract of a cell complex;

2. the morphisms

1
*n+1 1u STAKy — Xnia
STAx*p

are classical cofibrations. But since S'A * =~ + 3 x is an isomorphism in this case the
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pushout reduces to just its second summand, and so this is now equivalent to
STAXy = Xnia

being classical cofibrations; hence retracts of relative cell complexes.

Proposition 2.13. For X € SeqSpec(Top),,.,,. @ CW-spectrum, def. 2.7, then its standard

cylinder spectrum X A (I,.) of def. 1.28 satisfies the conditions on an abstract cylinder
object (def.) in that the inclusion

XVX— XA

(of the wedge sum of X with itself, example 1.27) is a cofibration in SeqSpec(Top)

stable”

Proof. According to def. 2.1 we need to check that for all n the morphism

KVX),,, U STAXAULD), = KAUL))

sTAGxvx), nt+l

is a retract of a relative cell complex. After distributing indices and smash products over
wedge sums, this is equivalently

KnaaVXna) o U STAXG AL = Xnpa AL
(S*AXp)V(STAXR))
Now by the assumption that X is a CW-spectrum, each X,, is a CW-complex, and this implies
that X, A (I,) is a relative cell complex in Top*/. With this, inspection shows that also the
above morphism is a relative cell complex. N

We now turn to discussion of CW-approximation of sequential spectra. First recall the
relative version of CW-approximation for topological spaces.

For the following, recall that a continuous function f:X - Y between topological spaces is
called an n-connected map if the induced morphism on homotopy groups

m.(f):m. (X, x) » n.(Y, f(x)) is

1. an isomorphism in degree < n;
2. an epimorphism in degree n.

(Hence an weak homotopy equivalence is an “w-connected map”.)

Lemma 2.14. [et f : A — X be a continuous function between topological spaces. Then

there exists for each n € N a relative CW-complex ?:A o ¥ together with an extension
p:Y =X, ie.

>
—
s
©
b

D>

such that ¢ is n-connected.

Moreover:

e if f itself is k-connected, then the relative C W-comp/ex}\f may be chosen to have cells
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only of dimension k+ 1 < dim < n.

e jf A is already a CW-complex, then ]/}:A — X may be chosen to be a subcomplex
inclusion.

(tomDieck 08, theorem 8.6.1)

Proposition 2.15. For every continuous function f:A — X out of a CW-complex A, there

exists a relative CW-complex ?:A —s X that factors f followed by a weak homotopy
equivalence

f
A — X
N 7
A ¢
! € WHE
N
X

Proof. Apply lemma 2.14 iteratively for n € N to produce a sequence with cocone of the form

f f
A3 x, 3 x - -
¢
f\l lobld)l"' )
X

where each f, is a relative CW-complex adding cells exactly of dimension n, and where ¢, in
n-connected.

Let then X be the colimit over the sequence (its transfinite composition) and ?:A - X the

induced component map. By definition of relative CW-complexes, this ]/} is itself a relative
CW-complex.

By the universal property of the colimit this factors f as

a x5y o
N ol v
X
19
X

Finally to see that ¢ is a weak homotopy equivalence: since n-spheres are compact
topological spaces, then every map a:S" - X factors through a finite stage i e N as

St X; - X (by this lemma). By possibly including further into higher stages, we may choose

i > n. But then the above says that further mapping along X - X is the same as mapping
along ¢,, which is (i > n)-connected and hence an isomorphism on the homotopy class of

a. B

Proposition 2.16. For X any topological sequential spectrum (def.1.1), then there exists a
CW-spectrum X (def. 2.7) and a homomorphism

8 EWstrict

X —IS x

which is degreewise a weak homotopy equivalence, hence a weak equivalence in the strict
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model structure of theorem 2.3.

Proof. First let 5\(0 — X, be a CW-approximation of the component space in degree 0, via
prop. 2.15. Then proceed by induction: suppose that for n € N a CW-approximation

¢ksn:)/?k5n - Xr<n has been found such that all the structure maps in degrees < n are
respected. Consider then the composite continuous function

1 A 51A¢n 1 on
SANXy,— S ANX, = Xniq -

Applying prop. 2.15 to this function factors it as

A A [}
S'AXn S Xnpq = Xy -

Hence we have obtained the next stage f(nﬂ of the CW-approximation. The respect for the
structure maps is just this factorization property:

siaey,

1,5 1
StaX, —3 stax,
incll lgn )
A

Xn+1 — Xn+1

¢n+1

Topological enrichment

We discuss here how the hom-set of homomorphisms between any two sequential spectra is
naturally equipped with a topology, and how these hom-spaces interact well with the strict
model structure on sequential spectra from theorem 2.3. This is in direct analogy to the
compatibility of compactly generated mapping spaces (def.) with the classical model
structure on compactly generated topological spaces discussed at Classical homotopy theory
- Topological enrichment. 1t gives an improved handle on the analysis of morphisms of
spectra below in the proof of the stable model structure and it paves the way to the
discussion of fully fledge mapping spectra below in part 1.2. There we will give a fully
general account of the principles underlying the following. Here we just consider a pragmatic
minimum that allows us to proceed.

Definition 2.17. For X,Y € SeqSpec(Top,,) two sequential spectra (def. 1.1) let

SeqSpec(X,Y) € Top;g/

be the pointed topological space whose underlying set is the hom-set HomSQqueC(Topcg) X, Y)

of homomorphisms from X to Y, and which is equipped with the final topology (def.)
generated by those functions

q’) K — HomSequeC(Topcg) (X’ Y)

out of compact Hausdorff spaces K, for which there exists a homomorphism of spectra

¢ XANK—Y

out of the smash tensoring of X with K (def. 1.6) such that forall ye K, neN, xe X,

¢(»), () =¢,(xy) .

29 of 79 09.05.17, 15:47



Introduction to Stable homotopy theory -- 1-1 in nLab https://ncatlab.org/nlab/print/Introduction+to+Stable+homotopy+theor...

By construction this makes SeqSpec(X,Y) indeed into a compactly generated topological
space, and it gives a natural bijection

HomTopég/ (K, SeqSpec(X,Y)) = HomSequec(Topéé)(X/\K, Y).

In Prelude -- Classical homotopy theory we discussed, in the section Topological enrichment,
that the classical model structure on topological spaces (when restricted to compactly
generated topological spaces) interacts well with forming smash products and pointed

mapping spaces. Concretely, the smash pushout product of two classical cofibrations is a
classical cofibration, and is acyclic if either of the factors is:

Cof, o Cof, c Cofy , (Cofy NW)oCofy c Cofy NW .

We also saw that, by Joyal-Tierney calculus (prop.), this is equivalent to the pullback
powering satisfying the dual relations

oCof,

. o(Cof NW¢p)
Fib

cl

<l c Fiby , Fib C Fibg N Wy , (Fiby N W)l c Fiby n W, .

Now that we passed from spaces to spectra, def. 1.6 generalizes the smash product of
spaces to the smash tensoring of sequential spectra by spaces, and generalizes the pointed
mapping space construction for spaces to the powering of a space into a sequential
spectrum. Accordingly there is now the analogous concept of pushout product with respect
to smash tensoring, and of pullback powering with respect to smash powering.

From the way things are presented, it is immediate that these operations on spectra satisfy
the analogous compatibility condition with the strict model structure on spectra from
theorem 2.3, in fact this follows generally for topologically enriched functor categories and is
inherited via prop. 1.23. But since this will be important for some of the discussion to follow,
we here make it explicit:

Definition 2.18. Let f : X > Y be a morphism in SeqSpec(Top,,) (def. 1.1) and leti: A—>B a
morphism in Top:g/.

Their pushout product with respect to smash tensoring is the universal morphism

foi=(({d,), (f,id))

in
XANA
(fid) , (4D
YAA (po) XAB
N 4 ,
(Ynl X|7\]A (XAB)

1.0, (f,id))

YAB
where (—) A (—) denotes the smash tensoring from def. 1.6.

Dually, their pullback powering is the universal morphism

£ = (Maps(B, f),, Maps(i, X),)
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Maps (B, X),

l (Maps(B, f),,Maps(i,X)..)

Maps(B,Y), Map X Maps(4, X),

S(4,Y)
/ N ,
Maps(B,Y), (pb) Maps(4, X),
Maps(i,Y), N ‘/Maps(A,p)*
Maps(4,7Y),

where Maps(—, —), denotes the smash powering from def. 1.6.

Similarly, for f:X - Y and i:A - B both morphisms of sequential spectra, then their
pullback powering is the universal morphism

fPt = (SeqSpec(B, f), SeqSpec(i, X))

SeqSpec(B, X),

l(SequeC(B,f)*,SequeC(i,X)*)

SeqSpec(B,Y), Sequ?c(A v SeqSpec(4, X),

4 N ’
SeqSpec(B,Y), (pb) SeqSpec(4,X),

SeqSpec(i,Y), N ‘/Sequec(A,p)*

SeqSpec(4,Y),
where now SeqSpec(—, —) is the hom-space functor from def. 2.17.

Proposition 2.19. The operation of forming pushout products with respect to smash
tensoring in def. 2.18 is compatible with the strict model structure on sequential spectra
from theorem 2.3 and with the classical model structure on compactly generated pointed
topological spaces (thm., prop.) in that it takes two cofibrations to a cofibration, and to an
acyclic cofibration if at least one of the inputs is acyclic:

COfstrict o COfcl c COfstrict
COfstrict O (COfcl ] Wcl) c COfstrict n Wstrict .

(COfstrict n Wstrict) O COfcl c COfstrict N Wstrict

Dually, the pullback powering satisfies

DCOfCl

l:ibstrict c Fibstrict
.. O(Cofo nWep) .
Flbstrict c Flbstrict n Wstrict '

. oCof, .
(Flbstrict n Wstrict) dc Flbstrict n Wstrict

Proof. The statement concering the pullback powering follows directly form the analogous
statement for topological spaces (prop.) by the fact that via theorem 2.3 the fibrations and

weak equivalences in Sequec(Tong) are degree-wise those in (Topc*g/)Qumen. From this the
statement about the pushout product follows dually by Joyal-Tierney calculus (prop.). N

strict

31 0f79 09.05.17, 15:47



Introduction to Stable homotopy theory -- 1-1 in nLab https://ncatlab.org/nlab/print/Introduction+to+Stable+homotopy+theor...

Remark 2.20. In the language of model category-theory, prop. 2.19 says that
SeqSpec(Top ) it is an enriched model category, the enrichment being over (Topjg/

This is often referred to simply as a “topological model category”.

)Quillen b

Proposition 2.21. For X € Sequec(Tong) a sequential spectrum, f € Mor(Sequec(Tong)) any

morphism of sequential spectra, and for g € Mor(Top;“p/t) a morphism of compact Hausdorff

spaces, then the hom-spaces of def. 2.17 interact with the pushout-product and pullback-
powering from def. 2.18 in that there is a natural isomorphism

SeqSpec(fog,X) = SeqSpec(f,X)"7 .

Proposition 2.22. For X,Y € Sequec(Tong) two sequential spectra with X a CW-spectrum
(def. 2.7), then there is a natural bijection

my SeqSpec(X,Y) = [X,Y]

strict

between the connected components of the hom-space from def. 2.17 and the hom-set in
the homotopy category (def.) of the strict model structure from theorem 2.3.

Proof. By def. 2.17 the path components of the hom-space are the left homotopy classes of
morphisms of spectra with respect to the standard cylinder spectrum of def. 1.28:

I, — SeqSpec(X,Y)
XA(I)—Y

By prop. 2.13, for X a CW-spectrum then the standard cylinder spectrum X A (I.) is a good
cyclinder object (def.) on a cofibrant object.

Since moreover every object in Sequec(Tong) is fibrant, the statement follows (with this

lemma). N

strict

3. The stable model structure on sequential spectra

The actual spectrum objects of interest in stable homotopy theory are not the pre-spectra of
def. 1.1, but the Omega-spectra of def. 1.16 among them. Hence we need to equip the
category of sequential pre-spectra of def. 1.1 with a model structure (def.) whose fibrant-
cofibrant objects are, in particular Omega-spectra. More in detail, it is plausible to require
that every pre-spectrum is weakly equivalent to a fibrant-cofibrant one which is both an
Omega-spectrum and a CW-spectrum as in def. 2.7. By prop. 2.12 this suggests to construct
a model category structure on Sequec(Tong) that has the same cofibrations as the strict

model structure of theorem 2.3, but more weak equivalences (and hence less fibrations),
such as to make every sequential pre-spectrum weakly equivalent to an Omega cell
spectrum.

Such a situation is called a Bousfield localization of a model category.

Bousfield localization

In plain category theory, a localization of a category C is equivalently a full subcategory

i:ClOCQC

such that the inclusion functor has a left adjoint L
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L
Cloc L, C.
i

The adjunction unit n,:X - L(X) “reflects” every object X of ¢ into one in the ¢, and
therefore this is also called a reflective subcategory inclusion.

It is a classical fact (Gabriel-Zisman 67, prop.) that in this situation

Cloc = CW, ]

is equivalently the localization (def.) of € at the “L-equivalences”, namely at those
morphisms f such that L(f) is an isomorphism. Hence one also speaks of reflective
localizations.

The following concept of Bousfield localization of model categories is the evident lift of this
concept of reflective localization from the realm of categories to the realm of model
categories (def.), where isomorphism is generealized to weak equivalence and where adjoint
functors are taken to exhibit Quillen adjunctions.

Definition 3.1. A left Bousfield localization ¢,,. of a model category € (def.) is another
model category structure on the same underlying category with the same cofibrations,

Cofjyc = Cof

but more weak equivalences

Wiee 2 W .
Notice that:

Proposition 3.2. Given a left Bousfield localization C,,. of C as in def. 3.1, then

1. Fiby,. C Fib;
2. Wloc n Fibloc =Wn Flb,

3. the identity functors constitute a Quillen adjunction

id

Cloe L C

loc i) .
id

4. the induced adjunction of derived functors (prop.) exhibits a reflective subcategory
inclusion of homotopy categories (def.)

Lid

b
Ho(Cpe) 1. Ho(C).

Rid

Proof. Regarding the first two items:

Using the properties of the weak factorization systems (def.) of (acyclic cofibrations,
fibrations) and (cofibrations, acyclic fibrations) for both model structures we get

Fibjoc = (Cofjoc N Wige)Inj
c (Cofjoc N W)Inj
= Fib

and
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Fibloc N WIOC = Cofloclnj
= Cof Inj
=FibnW

Regarding the third point:

By construction, id:C - ¢,,. preserves cofibrations and acyclic cofibrations, hence is a left
Quillen functor.

Regarding the fourth point:

Since Cofj,. = Cof the notion of left homotopy in ¢, is the same as that in ¢, and hence the
inclusion of the subcategory of local cofibrant-fibrant objects into the homotopy category of
the original cofibrant-fibrant objects is clearly a full inclusion. Since Fib,,. c Fib by the first
statement, on these cofibrant-fibrant objects the right derived functor of the identity is just
the identity and hence does exhibit this inclusion. The left adjoint to this inclusion is given
by Lid, by the general properties of Quillen adjunctions (prop). N

In plain category theory, given a reflective subcategory
L
H
cloc i) &
i

then the composite
Q=ioL:C—C

is an idempotent monad on ¢, hence, in particular, an endofunctor equipped with a natural
transformation n, : X » LX (the adjunction unit) — which “reflects” every object into one in

the image of L - such that this reflection is a projection in that each L(»,) is an isomorphism.
This characterizes the reflective subcategory ¢, © C as the subcategory of those objects X
for which n,, is an isomorphism.

The following is the lift of this alternative perspective of reflective localization via idempotent
monads from category theory to model category theory.

Definition 3.3. Let C be a model category (def.) which is right proper (def.), in that
pullback along fibrations preserves weak equivalences.

Say that a Quillen idempotent monad on C is
1. an endofunctor
Q:cC—¢C

2. a natural transformation

n:ide — Q
such that

1. (homotopical functor) Q preserves weak equivalences;

2. (idempotency) for all X € ¢ the morphisms

Q) : QX) == QX))
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and
EwW
Nown | Q0 — QX))
are weak equivalences;

3. (right-properness of the localization) if in a pullback square in ¢

f'h

fZ — X

L (pb)

VA — Y
h

we have that

1. f is a fibration;

2. 14, Ny, @nd Q(h) are weak equivalences
then Q(f"h) is a weak equivalence.

Definition 3.4. For Q:C — C a Quillen idempotent monad according to def. 3.3, say that a
morphism f in C is

1. a Q-weak equivalence if Q(f) is a weak equivalence;
2. a Q-cofibation if it is a cofibration.

3. a Q-fibration if it has the right lifting property against the morphisms that are both
(Q-)cofibrations as well as Q-weak equivalences.

Write
Co
for € equipped with these classes of morphisms.

Since Q preserves weak equivalences (by def. 3.3) then if the classes of morphisms in def.
3.4 do constitute a model category structure, then this is a left Bousfield localization of ¢,
according to def. 3.1.

We establish a couple of lemmas that will prove that the model structure indeed exists
(prop. 3.7 below).

Lemma 3.5. In the situation of def. 3.4, a morphism is an acyclic fibration in C, precisely if
it is an acyclic fibration in C.

Proof. Let f be a fibration and a weak equivalence. Since Q preserves weak equivalences by
condition 1 in def. 3.3, f is also a Q-weak equivalence. Since Q-cofibrations are cofibrations,
the acyclic fibration f has right lifting against Q-cofibrations, hence in particular against
against Q-acyclic Q-cofibrations, hence is a Q-fibration.

In the other direction, let f : X — Y be a Q-acyclic Q-fibration. Consider its factorization into
a cofibration followed by an acyclic fibration

fiX—2

— Y.
€Cof " ewnFib
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Observe that Q-equivalences satisfy two-out-of-three (def.), by functoriality and since the
plain equivalences do. Now the assumption that Q preserves weak equivalences together
with two-out-of-three implies that i is a Q-weak equivalence, hence a Q-acyclic Q-cofibration.
This implies that f has the right lifting property against i (since f is assumed to be a
Q-fibration, which is defined by this lifting property). Hence the retract argument (prop.)
implies that f is a retract of the acyclic fibration p, and so is itself an acyclic fibration. R

Lemma 3.6. In the situation of def. 3.4, if a morphism f:X — Y is a fibration, and if n,,n,
are weak equivalences, then f is a Q-fibration.

(e.g. Goerss-Jardine 96, chapter X, lemma 4.4)

Proof. We need to show under the given assumptions that for every commuting square of
the form

[04
— X

— >

f
EWQ ﬂCOfQ l
B Y
G
there exists a lifting.

To that end, first consider a factorization of the image under Q of this square as follows:

Ja Py

@ 9 0w @ moct £y O®
Q) | 10N =~ ey Ik 1
N €W n Cof €Fib
QB) Lz M) Q(B) 5 w oy Q(Y)

(This exists even without assuming functorial factorization: factor the bottom morphism,
form the pullback of the resulting Pgr observe that this is still a fibration, and then factor

(through j ) the universal morpism from the outer square into this pullback.)

Now consider the pullback of the right square above along the naturality square of n:id - Q,
take this to be the right square in the following diagram

Uao°ng @

a: A —— 7 X X —» X
Q(X)
i L@nN o

f: B — W XY — Y
Ug°ng.B) Q)

where the left square is the universal morphism into the pullback which is induced from the
naturality squares of n on a and g.

We claim that (7, f) here is a weak equivalence. This implies that we find the desired lift by
factoring (m, f) into an acyclic cofibration followed by an acyclic fibration and then lifting
consecutively as follows
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a: A Z X — X
QX)
d eWnCof 3 f
l ol 4 leFib
A — — Y
i 3 €WNFib id
ECOfl 7 l l

f: B — W XY — Y
Ugeng.B) Q)

To see that (¢, f) indeed is a weak equivalence:

Consider the diagram

04) —2 - 7 &t 7 x
EWnCof EW T Q)
Q(® T (m.f)
ew l ) .
ewnCof EW
QB) — Z «— W X
g pry QX)

Here the projections are weak equivalences as shown, because by assumption in def. 3.3
the ambient model category is right proper and these projections are the pullbacks along the
fibrations p, and Pg of the morphisms n, and n,, respectively, where the latter are weak
equivalences by assumption. Moreover Q(i) is a weak equivalence, since i is a Q-weak
equivalence.

Hence now it follows by two-out-of-three (def.) that = and then (=, f) are weak
equivalences. 1

Proposition 3.7. (Bousfield-Friedlander theorem)

Let ¢ be a right proper model category. Let Q:C — C be a Quillen idempotent monad on C,
according to def. 3.3.

Then the Bousfield localization model category C, (def. 3.1) at the Q-weak equivalences
(def. 3.4) exists, in that the model structure on C with the classes of morphisms in def.
3.4 exists.

(Bousfield-Friedlander 78, theorem 8.7, Bousfield 01, theorem 9.3, Goerss-Jardine 96,
chapter X, lemma 4.5, lemma 4.6, theorem 4.1)

Proof. The existence of limits and colimits is guaranteed since C is already assumed to be a
model category. The two-out-of-three poperty for Q-weak equivalences is an immediate
consequence of two-out-of-three for the original weak equivalences of €. Moreover,
according to lemma 3.5 the pair of classes (Cof,, W, N Fib,) equals the pair (Cof, W n Fib), and
this is a weak factorization system by the model structure ¢.

Hence it remains to show that (W, n Cofy, Fib,) is @ weak factorization system. The condition
Fiby = RLP(W, N Cofy) holds by definition of Fib,. Once we show that every morphism factors
as W, n Cof,, followed by Fib,, then the condition W, n Cof, = LLP(Fib,) follows from the
retract argument (lemma) and the fact that the classes W, and Cof,, are closed under
retracts, because W and Cof = Cof, are (by this prop. and this prop., respectively).

So we may conclude by showing the existence of (W, n Cof,, Fib,) factorizations:

First we consider the case of morphisms of the form f:Q(Y) - Q(Y). These may be factored
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with respect to ¢ as

€i p
fQ) eWnConﬁ)

Q) .

Here i is already a Q-acyclic Q-cofibration, since Q preserves weak equivalences by the first
clause in def. 3.3. Now apply id A Q to obtain

p

i) —— Z 5 o

ewnCof eFib

nQ(x) Nz Q)
bew ) bew

eEw

QX)) oz Q@ — e

where Now) and o) are weak equivalences by idempotency (the second clause in def. 3.3),

and Q(i) is a weak equivalence since Q preserves weak equivalences. Hence by two-out-
of-three also n, is a weak equivalence. Therefore lemma 3.6 gives that p is a Q-fibration,
and hence the above factorization is already as desired

£ — 2

EWQ ﬂCOfQ EFibQ

Q) .

Now for an arbitrary morphism g:X — Y, form a factorization of Q(g) as above and then
decompose the naturality square for n on g into the pullback of the resulting Q-fibration

along n,:
7 P €Fib
g X S ZIxvy—2 v
Q)
nX nt nY
ewg + e Ly,

eEw
9 o) -3 z  —3 QW)

This exhibits " as the pullback of a Q-weak equivalence along a fibration between objects on
which n is a weak equivalence. Then the third clause in def. 3.3 says that ' is itself as a
Q-weak equivalence. This way, two-out-of-three implies that 7 is a Q-weak equivalence.

Observe that p is a Q-fibration, because it is the pullback of a @-fibration and because
Q-fibrations are defined by a right lifting property (def. 3.4) and hence closed under pullback
(prop.) Finally, apply factorization in (Cof, W n Fib) to i to obtain the desired factorization
i ip b
f i ytcet woFb=wynFibg Fibg
Q QNFibg Fibg

While this establishes the @Q-model structure, so far this leaves open a more explicit
description of the Q-fibrations. This is provided by the next statement.

Proposition 3.8. For Q:C — C a Quillen idempotent monad according to def. 3.3, then a
morphism f:X - Y in C is a Q-fibration (def. 3.4) precisely if

1. f is a fibration;

2. the n-naturality square on f
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n
X =
f1 ew o jemn

Y P Q)

exhibits a homotopy pullback in € (def.), in that for any factorization of Q(f) through
a weak equivalence followed by a fibration p, then the universally induced morphism

X —pY
is weak equivalence (in C).

(e.g. Goerss-Jardine 96, chapter X, theorem 4.8)

Proof. First consider the case that f is a fibration and that the square is a homotopy
pullback. We need to show that then f is a Q-fibration.

Factor Q(f) as

p

Q) Q) e Z —o QY) -

ewnCof

By the proof of prop. 3.7, the morphism p is also a Q-fibration. Hence by the existence of the
Q-local model structure, also due to prop. 3.7, its pullback p is also a Q-fibration

x X o

i i
EWJ' lGW
Yy x 72z
Qv

P P
€Fibg 1 (pb) ¢ Fibg

Y P Q)

Here 7 is a weak equivalence by assumption that the diagram exhibits a homotopy pullback.
Hence it factors as

j A T

~2

Y X
ewnCof  eWnFib=WgnFibg  Q(Y)

This yields the situation

X = X x L x 2 x
j f

€W nCof L3z iEFib “ fl lf"’ﬂ lf'
A EFibQ
X — Y Y =Y =Y

por

As in the retract argument (prop.) this diagram exhibits f as a retract (in the arrow
category, rmk.) of the Q-fibration p o 7. Hence by the existence of the Q-model structure
(prop. 3.7) and by the closure properties for fibrations (prop.), also f is a Q-fibration.

Now for the converse. Assume that f is a Q-fibration. Since C, is a left Bousfield localization
of € (prop. 3.7), f is also a fibration (prop. 3.2). We need to show that the n-naturality
square on f exhibits a homotopy pullback.

So factor Q(f) as before, and consider the pasting composite of the factorization of the given
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square with the naturality squares of n:

n MQ(x)
X ﬁ QX) Tcwé QX))

i i Q)
EWQ l EWCWQ l J'EW
p*ny Nz
iy £ @ @
% P Q)
€Fibg ! (pb) J’EFichFib 1
EWQ EWCWQ
Y — Q) —— Q@)
My Q)

Here the top and bottom horizontal morphisms are weak (Q-)equivalences by the
idempotency of @, and Q(i) is a weak equivalence since Q preserves weak equivalences (first
and second clause in def. 3.3). Hence by two-out-of-three also n, is a weak equivalence.
From this, lemma 3.6 gives that p is a @-fibration. Then p, is a Q-weak equivalence since it
is the pullback of a Q-weak equivalence along a fibration between objects whose n is a weak

equivalence, via the third clause in def. 3.3. Finally two-out-of-three implies that i is a
Q-weak equivalence.

In particular, the bottom right square is a homotopy pullback (since two opposite edges are
weak equivalences, by this prop.), and since the left square is a genuine pullback of a
fibration, hence a homotopy pullback, the total bottom rectangle here exhibits a homotopy
pullback by the pasting law for homotopy pullbacks (prop.).

Now by naturality of n, that total bottom rectangle is the same as the following rectangle

i
Y X Z *
o) 0w ny)
v x 724 Qv x 2) —5  Qz
o QW X %) —o Q)

p o) o)
EFibQ ! ! !

eEw
Yoo e s @)
where now Q(p'n,) € W since p'n, € W,, as we had just established. This means again that

the right square is a homotopy pullback (prop.), and since the total rectangle still is a
homotopy pullback itself, by the previous remark, so is now also the left square, by the
other direction of the pasting law for homotopy pullbacks (prop.).

So far this establishes that the n-naturality square of p is a homotopy pullback. We still need
to show that also the n-naturality square of f is a homotopy pullback.

Factor i as a cofibration followed by an acyclic fibration. Since 7 is also a Q-weak equivalence,
by the above, two-out-of-three for Q-fibrations gives that this factorization is of the form

j A s

X - . Y X Z
EWgnCof=WgnCofg EWNFib=WgNFibg Q)

As in the first part of the proof, but now with (W n Cof, Fib) replaced by (W, n Cofy, Fib,) and
using lifting in the Q-model structure, this yields the situation
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X =X x Ly 3 x
j f
erncOle 77 leFibQ © fl li)on lf-
X — v Y =Y =Y
Do

As in the retract argument (prop.) this diagram exhibits f as a retract (in the arrow
category, rmk.) of pom.

Observe that the n-naturality square of the weak equivalence «n is a homotopy pullback,
since Q preserves weak equivalences (first clause of def. 3.3) and since a square with two
weak equivalences on opposite sides is a homotopy pullback (prop.). It follows that also the
n-naturality square of p o is a homotopy pullback, by the pasting law for homotopy

pullbacks (prop.).

In conclusion, we have exhibited f as a retract (in the arrow category, rmk.) of a morphism
p o T whose n-naturality square is a homotopy pullback. By naturality of n, this means that
the whole n-naturality square of f is a retract (in the category of commuting squares in ¢) of
a homotopy pullback square. This means that it is itself a homotopy pullback square

(prop.). N

Proof of the stable model structure

We show now that the operation of Omega-spectrification of topological sequental spectra,
from def. 1.19, is a Quillen idempotent monad in the sense of def. 3.3. Via the Bousfield-
Friedlander theorem (prop. 3.7) this establishes the stable model structure on topological
sequential spectra in theorem 3.11 below.

Lemma 3.9. The Omega-spectrification (Q,n) from def. 1.19 preserves homotopy pullbacks
(def.) in the strict model structure SeqSpec(Top,,) from theorem 2.3.

strict

(Schwede 97, lemma 2.1.3 (e))

Proof. Since, by prop. 1.20, Q preserves weak equivalences, it is sufficient to show that
every pullback square in Sequec(Tong) of a fibration

BxX — X
Y
B — Y

is taken by Q to a homotopy pullback square. By prop. 1.25 we need to check that this is the
case for the kth component space of the sequential spectra in the diagram, for all k € N.

Let Z%y, Z{ etc. denote the objects appearing in the definition of (QX), :=lim Z{,
4!
(QY),, = lim, Z{x, etc. (def. 1.19).

Use the small object argument (prop.) for the set Jrop*1) of acyclic generating cofibrations in

(Top;“g/)Quillen (def.) to construct a functorial factorization (def.) through acyclic relative cell
complex inclusions (def.) followed by Serre fibrations (def.) in each degree:

X €JTop Cell EFib¢y 4
ik w; ik -

Notice that by construction Z¥, and z!, are sequences of relative cell complexes. This
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implies, by the way the small object argument works and by the commutativity of each

E](Top « /) Cell
Zix ———— W,
€l / Cell J’ \
(Top™/) !
EJ(TOp « /) Cell

X
Zi+1,k Wi+1

that also W, is a sequence of relative cell complex inclusions: a cell in W; is given by the top
square in the following diagram, and the total rectangle is the image of that cell as a cell in

Wiiq:
gn-1 ‘_n> pr-1
l l
J x/ Cell
X (To )
Zik Wi,
€l ] Cell ‘l' 1
(Top™/)
](TO */) Cell

X
Zivig — Wipq

Therefore, forming the colimit over i € I of these sequences sends the degreewise Serre
fibration to a Serre fibration (prop.): because we test for a Serre fibration by lifting against
the morphism in ]Top*/, which have compact domain and codomain, and these may be taken

inside the colimit over relative cell complex inclusions (by this lemma)). So we have a Serre
fibration

. EW(]
lim W; — (QV),,
for each k € N.

Consider then the commuting diagrams

€ Fibcl EW € COfcl

B Y X

Zix — Zig Wi Zik
B Y X

1® 1® dew. N IR

EWcl EWc cl EwWa
i i i
QB — DVy (ETbl D Xy
C

. . . . bik
where the vertical morphisms are composites of the weak equivalences ¢, ,:Z; 1« =3 0Z; i1

from def. 1.19.

The diagonal is a chosen lift (where we use that 2 = Maps(S', —), preserves Serre fibrations

by prop. 0.2). This lift is a weak equivalence by two-out-of-three. On the left of the diagram
this exhibits now a weak equivalence of cospan-diagrams with right leg a fibration.
Therefore, since forming the limit over these cospan diagrams is a homotopy pullback (def.,
all objects here being fibrant), this induces a weak equivalence on these limits (prop.)

EW . . .
. 7B cl i i ~ Ni
K'Zi,k X Wi_)'QBk+i X 'QXk+i_'Q(Bk+i X Xk+i)'
z¥, ol Yieti

By universality of the pullback there is a commuting triangle
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BXxy X Pi B

Zt,k - Zi,k X W;

PEW N ‘/KEWCI

and hence by two-out-of-three also the top morphism is a weak equivalence.

Now observe that colimits over sequences of relative cell inclusions preserve finite limits up
to weak equivalence (prop.). This follows again by using that n-spheres may be taken inside
the colimits from the classical fact that filtered colimits preserve finite limits. In conclusion
then, we have a weak equivalence of the form

lim_ p;
QB x X)), =lim 22 ¥ =i (28 % w, | &2 (lim z?k) x (lim W-)= ©0B). x (lim W-).
Y k —; Lk EW —i L Zi},,k t — L “;»mizilfk —i t k(QY)k —i :

This exhibits (degreewise and hence globally) the homotopy pullback property to be
show. 11

Proposition 3.10. The Omega-spectrification (Q,n) from def. 1.19 is a Quillen idempotent
monad in the sense of def. 3.3 on the strict model structre theorem 2.3:

Q: Sequec(Topcg)Strict — Sequec(Topcg)Strict .

(Schwede 97, prop. 2.1.5)

Proof. First notice that the strict model structure is indeed right proper, as demanded in def.
3.3: Since every object in Sequec(Tong) is fibrant (this being so degreewise in (Topc*g/
this follows from this lemma.

)Quillen)
The first two conditions required on a Quillen idempotent monad in def. 3.3 are explicit in
prop. 1.20.

The third condition follows from lemma 3.9: A pullback of a Q-equivalence along a fibration
is @ homotopy pullback and is hence sent by Q to another homotopy pullback square.

f*h QUf 'R ew

fz — X Qf'7) —— QX)
L (pb) Vo= ! (pb)* 1O
rewg ¥ QD s A

By definition of Q-equivalence that resulting homotopy pullback square has the bottom edge
a weak equivalence, and hence also the top edge is a weak equivalence (prop.). B

Theorem 3.11. The left Bousfield localization of the strict model structure on sequential
spectra (theorem 2.3) at the class of stable weak homotopy equivalences (def. 1.14)
exists, called the stable model structure on topological sequential spectra

id
(—

Sequec(Tong)stalble #Sequec(Topcg)strict.

id

Moreover, its fibrant objects are precisely the Omega-spectra (def.1.16).

Proof. Let (Q,n) be the Omega-spectrification operation from def. 1.19. According to prop.
3.10 this is a Quillen-idempotent monad (def. 3.3) on Sequec(Tong) Hence the

strict”
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Bousfield-Friedlander theorem (prop. 3.7) asserts that the Bousfield localization of the strict
model structure at the Q-equivalences exists. By prop. 1.20 these are precisely the stable
weak homotopy equivalences.

Finally, by prop. 3.8 an object X € Sequec(Tong)Stable is fibrant in Sequec(Topcg)stable precisely
if

x 2w

) )

k —> *

exhibits a homotopy pullback in SeqSpec(Top o )gict - Since every object in SeqSpec(Top,,) is

fibrant, the vertical morphisms here are fibrations. The pullback of Q(X) along id, is just Q(X)
itself, and the universally induced morphism into this pullback is just n, itself. Hence the
square is a homotopy pullback precisely if , is a weak equivalence in Sequec(Tong)Strict,
hence degreewise a weak homotopy equivalence. Since Q(X) is an Omega-spectrum by prop.
1.20, this means precisely that X is an Omega-spectrum. R

strict

Stability of the homotopy theory

We discuss that the stable model structure Sequec(Tong)stable of theorem 3.11 is indeed a

stable model category, in that the canonical reduced suspension operation is an equivalence
of categories from the stable homotopy category (def. 4.1) to itself. This is theorem 3.23
below.

Definition 3.12. A pointed model category ¢ (exmpl.) is called a stable model category if
the canonically induced reduced suspension and loop space object-functors (prop.) on its
homotopy category (defn.) constitute an equivalence of categories

(Z40) : Ho(C) = Ho(C) .

o [RT ™

Literature (Jardine 15, sections 10.3 and 10.4)

First we observe that the alternative suspension induces an equivalence of homotopy
categories:

Lemma 3.13. With ¥ and 0 the alternative suspension and alternative looping functors from
def. 1.32:

1. 0 preserves Omega-spectra (def. 1.16);

2. X preserves stable weak homotopy equivalences (def. 1.14).

Proof. Regarding the first statement:

By prop. 0.2, 2 acts on component spaces and adjunct structure maps as the right Quillen
functor

. */ */
Maps(Sl, _)* ' (Tong)Quillen - (Topcg)Quillen

on the classical model structure on pointed compactly generated topological spaces (thm.,
prop.). Since in this model structure all objects are fibrant, Ken Brown's lemma (prop.)
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implies that with &; a weak homotopy equivalence, so is 65" = Maps(S%,5;).

Regarding the second point:

Let f:X —» Y be a stable weak homotopy equivalence. By the existence of the model structure
Sequec(Tong)Stable from theorem 3.11, Xf is a stable weak homotopy equivalence precisely if

its image in the homotopy category Ho(SequeC(TOPCg)stable) is an isomorphism (prop.). By the

Yoneda lemma (fully faithfulness of the Yoneda embedding), this is the case if for all
Z € Ho(Sequec(Topcg) ) the function

stable

[Zf' Z]stable : [ZY' Z]stable - [ZX' Z]stable

is a bijection. By the fact that the stable model structure is a left Bousfield localization of the
strict model structure with fibrant objects the Omega-spectra, this is the case equivalently
(using this lemma) if

[2f,Z) i © 2V 2] i — [2X,Z]

strict strict

is a bijection for all Omega-spectra Z. Now by the Quillen adjunction ¥ 4 2 on the strict
model category (prop. 2.5) this is equivalent to

[f,07) . ¢ [V, 07] . — [X,07]

strict strict

being a bijection for all Omega-spectra Z. But since 2 preserves Omega-spectra by the first
point above, this is still maps into a fibrant objects, hence is again equivalent (using again
the property of the left Bousfield localization) to the hom in the strict model structure

[f, 0Z] stable [Y, 2Z] stable X, 0Z] stable

being a bijection for all 2Z. But this is indeed a bijection, since f is a stable weak homotopy
equivalence, hence an isomorphism in the homotopy category. N

Lemma 3.14. For X a sequential spectrum, then (using remark 1.35 to suppress
parenthesis)

1. the structure maps constitute a homomorphism
IX[-1] —= X

(from the shift, def. 1.31, of the alternative suspension, def. 1.32) and this is a stable
weak homotopy equivalence,

2. the adjunct structure maps constitute a homomorphism
X — 0X[1]
(to the shift, def. 1.31, of the alternative looping, def. 1.32)

If X is an Omega-spectrum (def. 1.16) then this is a weak equivalence in the strict
model structure (def. 2.1), hence in particular a stable weak homotopy equivalence.

Proof. The diagrams that need to commute for the structure maps to give a homomorphism
as claimed are in degree 0 this one
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0
SIASTAx — X,
stao | 1%

S'AX, — X,
g9

and in degree n > 1 these:

sthg, _
stastax, , /2= x,
Sll\an,l 1 lan.
STA Xy, = Xni1
on

But in all these cases commutativity it trivially satisfied.

That the adjunct structure maps constitute a morphism X — 0X[1] follows dually.

If X is an Omega-spectrum, then by definition this last morphism is already a weak
equivalence in the strict model structure, hence in particular a weak equivalence in the
stable model structure.

From this it follows that also XX[—1] — X is a stable weak homotopy equivalence, because for
every Omega-spectrum Y then by the adjunctions in prop. 1.36 we have a commuting
diagram of the form

[X' Y] strict [ZX[ - 1]' Y] strict
idl lz
[X' Y] strict :) [X' 'QY[l]]strict

(To see the commutativity of this diagram in detail, consider for any [f] € [X,Y] . . chasing

the element ¢ in the two possible ways through the natural adjunction isomorphism:

[S'AYn_1,Yn] = [Yn_1,0Y,]

[S'Afp—1¥nl | L Fn—19Yn]
[STAXn_1,Yn] = [Xn_1,0V,]

Sending o) down gives o) oS'Af _ which equals (by the homomorphism property) f o os.
Instead sending o}, to the right yields &, and then down yields 6,  f, ,. By commutativity
this is adjunct to f 0 a3.)

Hence

(X, ¥ ] grice — [ZX[=1],Y]

strict strict

is a bijection for all Omega-spectra Y, and so the conclusion that XX[—1] - X is a stable weak
homotopy equivalence follows as in the proof of lemma 3.13. N

Lemma 3.15. The total derived functor of the alternative suspension operation X of def.
1.32 exists and constitutes an equivalence of categories from the stable homotopy
category to itself:

2 : Ho(SeqSpec(Top) ) = Ho(SeqSpec(Top)

stable stable) )

Proof. The total derived functor of X exists, because by lemma 3.13 ¥ preserves stable
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weak homotopy equivalences. Also the shift functor [—1] from def. 1.31 clearly preserves

stable equivalences, hence both descend to the homotopy category. There, by prop. 3.14
and remark 1.35, they are inverses of each other, up to isomorphism. N

Lemma 3.16. The canonical suspension functor on the homotopy category of any model
category (from this prop.) in the case of the stable homotopy category (def. 4.1)
Ho(Spectra) = Ho(Sequec(Topcg) ) is represented by the “standard suspension” operation

of def. 1.29.

stable

Proof. By CW-approximation (prop. 2.16), every object in the stable homotopy category is
represented by a CW-spectrum. By prop. 2.13, on CW-spectra the canonical suspension
functor on the homotopy category (from this prop.) is represented by the “standard
suspension” operation of def. 1.29. 1

The combination of lemma 3.15 with lemma 3.16 gives that in order to show that
Sequec(Tong)Stable is indeed a stable model category according to def. 3.12, we are reduced

to showing that in the homotopy category the alternative suspension operation (which we

know gives an equivalence) is naturally isomorphic to the standard suspension operation
(which we know is the correct suspension operation). This we turn to now.

According to remark 1.34, both should be directly comparable and isomorphic in the
homotopy category “in even degrees”, but non-comparable in odd degree. In order to make
this precise, we now introduce the concept of sequential spectra with components only in
even degree and then use an adjunction back to ordinary sequential spectra.

Observe that the definition of the category SeqSpec(Top,,) of sequential spectra in def. 1.1

does not require anything specific of the circle s': the same kind of definition may be
considered for any other pointed topological space T in place of S*. The construction of the
stable model structure Sequec(Tong)St&lble in theorem 3.11 does depend on the nature of S*,

but only in that it uses that the n-spheres §™ = (sH""

1. co-represent homotopy groups in the classical pointed homotopy category:
[S™ =1, = m(—-);

2. are compact, so that maps out of them factor through finite stages of transfinite
compositions of relative cell complex inclusions.

Both points still hold with S* replaced by S*AK., for K any contractible compact topological
space. Moreover, since only the stable homotopy groups matter for the construction of the
stable model category, one could replace S* by any $*: While the smash powers (§%)""
co-represent only every kth homotopy group, this is still sufficient for co-represent all the
stable homotopy groups.

The following is an immediate variant of the definition 1.1 of sequential spectra:

Definition 3.17. Let T =K, € Topc*g/ be a compact contractible topological space with a
basepoint freely adjoined, and let k€N, k > 1.

A sequential T A S*-spectrum is a sequence of component spaces X;,, € Top,, forneN,
and a sequence of structure maps of the form

k
Okn - TAS /\an _>Xk(n+1) .

A homomorphism of sequential T A S*-spectra f:X — Y is a sequence of component maps
fin * Xin = Yin Such that all these diagrams commute:
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TASKAfen

TASKA Xy, TASKAYy,

X Y
%k,n 1 lak,n

Xem+1) m Yiem+n

Write
SeqTASkSpec(Tong)

for the resulting category of sequential T A S*-spectra.

Proposition 3.18. For any T AS¥ as in def. 3.17, there exists a model category structure

SeqT/\SkSpec(Topcg)stable
on the category of sequential T A S*-spectra, where

e the weak equivalences are the morphisms that induce isomorphisms under

lim Ten(—);
——knekN kn( )/

e the fibrations are the morphisms whose n, -naturality square is a homotopy pullback,
where 7,.:id - Q, is the K A S*-spectrification functor defined as in def. 1.19 but with
S replaced by T A S* throughout.

Proof. The proof is verbatim that of theorem 3.11, with S* replaced by T A S* throughout. B

Lemma 3.19. For ke N, k > 1, there is a pair of adjoint functors

o~

k
Sequec(Topcg) I SeqSkSpec(Tong)
Ri

between sequential spectra (def. 1.1) and sequential S*-spectra (def. 3.17)

* where (RyX),,, = Xin and
R X n
ank :

ST Ao
L S K = SFTEAS A Ky —— B ST A K g — SYA Xin+(k-1) —— Xim+1)

e and where

X if n € kN
(LX), = _
SINXy_q ifq<kandn—q€kN
and
Op_(k-1) ifn+1€kN
L X
o =

idg1, xn otherwise

Moreover, for each X € Sequec(Tong), the adjunction unit

LkRkX — X

is a stable weak homotopy equivalence (def. 1.14).
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Proof. For ease of notation we discuss this for k = 2. The general case is directly analogous.
To see that we have an adjunction, consider a homomorphism

fiL,X—>Y.

Given its even-graded component maps, then its odd-graded component maps f, ., need to
fit into commuting squares of the form

siar
SYAX,, —5 S'AY,,
id | l"%/n .

1
STAX o f_)z o Yoni1
n

Since here the left map is an identity, this uniquely fixes the odd-graded components f, ..

in terms of the even-graded components. Moreover, these components then make the
following pasting rectangles comute

SZAfon

SEA Xy SZAY,,
~ l lsl/\"'{n
siar
SEA Xy ——5 S'AY gy
U%n l l”%/n+1
f2n+2
Xan+2 - Yonsz

This equivalently exhibits f as a homomorphism of the form
f:X—>RY
and hence establishes the adjunction isomorphism.

Finally to see that the adjunction unit is a stable weak homotopy equivalence: for
X € SeqSpec(Top,,) then the morphism of stable homotopy groups induced from

LR, X — X
is in degree q given by
li_rn)(--- - 7Tq+2k(X2k) - 7Tq+2k+2(Xq+2k+2) - ) = 7Tq(LszX)
=1 =1l l
1i_rn)(--- - 7Tq+2k(X2k) — Tyiokr1Xoks1) — 7Tq+2k+2(Xq+2k+2) o> ) = T[q(X)

From this it is clear by inspection that the induced vertical map on the right is an
isomorphism. Stated more abstractly: the inclusion of partially ordered sets N3,., © N=is a

cofinal functor and hence restriction along it preserves colimits. N o
Definition 3.20. For
a:T,AS*—T,nSk
any morphism, write

ar: SeqT2 ASkSpect(Tong) — SeqT1 ASkSpect(Tong)
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for the functor from the category of sequential T, A S¥-spectra (def. 3.17) to that of
T, A S¥-spectra which sends any X to a*X with

(a*X)kn = an

and
anid Ul)c(n
ol X Ty ASK A Xpn — To AS“ A Xpn — Xinrn) -

Lemma 3.21. For T := K, a compact contractible topological space with base point adjoined,
and for k € N, write i:5S* — T A S* for the canonical inclusion. Then the induced functor i*

from def. 3.20 is the right adjoint in a Quillen equivalence (def.)

L
—
SeqT/\S1 SpeC(’I‘Opcg)stable E Seqspec(Topcg)stable

i

between the stable model structures of sequential S*-spectra and of sequential
T A S*-spectra (prop. 3.18), respectively.

(Jardine 15, theorem 10.40)

Proof. Write p:T AS* — S* for the canonical projection.
A morphism
FiX—oiY

is given by components fitting into commuting squares of the form

1

Siaf
StaAx, —2 Stay,

id | Linid
S'AX, TAS'AY, .
UT)l(l l‘ﬂ}{
Xn+1 }TH) Ynia

Since p o i = id, every such diagram factors as

SIaf
Stax, —3  S'ay,
inid l ii/\id
TASIAS
TAS'AX, 5 TAS'AY,
pAid l l
S*AX,
‘71)1( l i”r{
Xn+1 f—) Yn+1
n+1

Here the bottom square exhibits the components of a morphism
fipX—Y

and this correspondence is clearly naturally bijective

50 of 79 09.05.17, 15:47



Introduction to Stable homotopy theory -- 1-1 in nLab https://ncatlab.org/nlab/print/Introduction+to+Stable+homotopy+theor...

This establishes the adjunction p* -4 i*. This is a Quillen equivalence because for every
Z € Top;“g/ then by the contractibility of K there is an equivalence

[TASYZ], =[S9Z],

and hence the concept of stable weak homotopy equivalences in both categories agrees.
Hence any f:p*X - Y is a stable weak homotopy equivalence precisely if f:X — iy is. B

With this in hand, we now finally state the comparison between standard and alternative
suspension:

Lemma 3.22. There is a natural isomorphism in the homotopy category
HO(SequeC(Topcg)stable) of the stable model structure, between the total derived functors

(prop.) of the standard suspension (def. 1.29) and of the alternative suspension (def.
1.32):

(=) = (=)ASt € Ho(SeqSpec(Top,,) s;.p1e)

Notice that we agreed in Part P to suppress the notation L for left derived functors of the

suspension functor, not to clutter the notation. If we re-instantiate this then the above
says that there is a natural isomorphism

LY =~ L((-)ASYH .

(Jardine 15, corollary 10.42, prop. 10.53)

Proof. Consider the adjunction (L, - R,):SeqSpec(Top) < Seq,Spec(Top) from lemma 3.19. We
claim that there is a natural isomorphism

T: Ry(E(-)) = Ry((-)ASY),
in Ho(SeqszSpec(Topcg)stable).

This implies the statement, since by lemma 3.19 the adjunction unit is a stable weak
equivalence, so that we get natural isomorphisms

Lyt 1 1
IX = L,R,(ZX) = LRy (XASY) = X AS

in Ho(SeqSpec(Top ) iape) (where we are using that R, evidently preserves cofibrant spectra,

so that L, applied to t represents the correct derived functor of L, and hence preserves this
isomorphism).

Now to see that the isomorphism t exists. Write

: SPAST S STAS?

Tsasl

for the braiding isomorphism, which swaps the first two canonical coordinates with the third.
Since the homotopy class of this map is trivial in that

[T321] = 1 € Z = m3(S®)

is the trivial element in the homotopy groups of spheres (and that is the point of passing to
S?-spectra here, because for S'-spectra the analogous map 75141 has non-trivial class,

remark 1.34) it follows that there is a left homotopy (def.) of the form
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s gyasd & §3

id N 'J’ ‘/152_51'

53

By forming the smash product of the entire diagram with X,,, and pasting on the right the
naturality square for the braiding with §*

T
SZAXyp,St
_

SYASEAX,, SEAX,y NSt
STA(o2n 1°(S Ao2n) 1 l(02n+1°(51/\02n))/\51
S'A X1y Xon AS?
T 1
Xon,S
this yields the diagram
io iy SZATXZn-S1
S3AXyy — (UD)AS*AX,, — S AXp SEAX, AS?
id N \ \/TSZ,SlAXn 2
53/\X2 l(02n+1?(51/\02n))/\51
n
\ )
STA(o2n11°(8 Aa2n)
Sl/\XZn (; in /\Sl

T
Xon, ST

Here the left diagonal composite is the structure map of R,(ZX) in degree n, while the right
vertical morphism is the structure map of R,(X ASY) in degree n. In the middle we have the
structure map of an auxiliary (I,) A S?-spectrum (def. 3.17)

Z € Seq1+ASzSpec(Topcg) ,

and the horizontal morphisms exhibit the functors of def. 3.20 from (I.,) A S*-spectra to
S%-spectra with

ioZ =R,(ZX) , i1Z=R,(XASYH.

By lemma 3.21 and since I is contractible, these functors are equivalences of categories on
the Ho(Seq,2Spec(Top,,)), and moreover they have the same inverse, namely p* for

p:1, AS? - 5% the canonical projection. This implies the isomorphism.

Explicitly, due to the equivalence there exists V with Z = p*V and with this we may form the
composite isomorphism

R,(ZX) = iyZ =~ igp'V=V=ipV=iiZ=R,(XASY.

We conclude:

Theorem 3.23. The stable model structure SeqSpec(Top),,.,,. from theorem 3.11 indeed

gives a stable model category in the sense of def. 3.12, in that the canonically induced
reduced suspension functor (prop.) on its homotopy category is an equivalence of

categories
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2 : Ho(SeqSpec(Top) ) = Ho(SeqSpec(Top)

stable stable) )

Proof. By lemma 3.16, the canonical suspension functor is represented, on fibrant-cofibrant
objects, by the standard suspension functor of def. 1.29. By prop. 3.22 this is naturally
isomorphic - on the level of the homotopy category - to the alternative suspension
operation of def. 1.32. Therefore the claim follows with prop. 3.15. N

In fact this lifts to a Quillen equivalence:

Proposition 3.24. The (X 4 2)-adjunction from prop. 1.36 is a Quillen equivalence (def.)
with respect to the stable model structure of theorem 3.11:

Tw

R

SeqspeC(Topcg)stable QseqspeC(TOng)Stable '

o]

Its derived functors (prop.) exhibit the canonical reduced suspension and looping
operation as an adjoint equivalence on the stable homotopy category

Ho(Spectra) Ho(Spectra) .

o[ RT™

Proof. By prop. 2.5 and the fact that the stable model structure has the same cofibrations
as the strict model structure, ¥ preserves stable cofibrations. Moreover, by lemma 3.13 »
preserves in fact all stable weak equivalences. Hence X is a left Quillen functor and so (2 4 )
is a Quillen adjunction. Finally lemma 3.15 gives that this Quillen adjunction is a Quillen
equivalence. i

In summary, this concludes the characterization of the stable homotopy category as the
result of stabilizing the canonical (2 - 2)-adjunction on the classical homotopy category:

Theorem 3.25. The classical model structure (Topc*g/ )Qumen on pointed compactly generated

topological spaces (thm., prop.) and the stable model structure on topological sequential
spectra SeqSpec(Top,,) (theorem 3.11) sit in a commuting diagram of Quillen adjunctions of

the form
/ a /
* «— *
(TOng )Quillen 1 (TOpcg )Quillen
%
N
SR S SR S
X
—
SequeC(Topcg)strict i} Seqspec(Topcg)strict'
n
iy 41 idy 41t
z
=

Sequec(TOpcg)stable Q SeqspeC(Tong)Stable

=]

where the top parts is from corollary 2.6, the bottom vertical Quillen adjunction is the
Bousfield localization of theorem 3.11 and the bottom horizontal adjunction is the Quillen

equivalence of prop. 3.24.

Hence (by this prop.) the derived functors of the functors in this diagram yield a
commuting square of adjoint functors between the classical homotopy category (def.) and
the stable homotopy category (def. 4.1) of the form
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*/ (i */
Ho(Top ™) %} Ho(Top ™)
R e U

b
Ho(Spectra) g Ho(Spectra)
n

where the horizontal adjunctions are the canonically induced (via this
prop.)suspension/looping functors by prop. 0.2 and by lemma 3.16 and theorem 3.23.

Cofibrant generation

from theorem 3.11 is a

stable _—

We show that the stable model structure Sequec(Tong)
cofibrantly generated model category (def.).

We will not use the result of this section in the remainder of part 1.1, but the following
argument is the blueprint for the proof of the model structure on orthogonal spectra that we
consider in part 1.2, in the section The stable model structure on structured spectra, and it
will be used in the proof of the Quillen equivalence of SeqSpec(Top,,) to the stable model

structure on orthogonal spectra (thm.).

stable

is cofibrantly generated means that for ¢ any topologically

Moreover, that SeqspeC(TOpcg)stable

enriched category (def.) then there exists a projective model structure on functors
[C’,Sequec(Tong) on the category of topologically enriched functors ¢ - Sequec(Tong)

(def.), in direct analogy to the projective model structure [C, (Top;“g/)Qumen]proj (thm.). This is

the model structure for parameterized stable homotopy theory. Just as the stable homotopy
theory discussed here is the natural home of generalized (Eilenberg-Steenrod) cohomology
theories (example 4.6) so parameterized stable homotopy theory is the natural home of
twisted cohomology theories.

stable]proj

In order to express the generating (acyclic) cofibrations, we need the following simple but
important concept.

Definition 3.26. For K € Top./, and n € N, write F,K € SeqSpec(Top,,) for the free spectrum
on K at n, with components

* forg<n
(F K) =
T4 ST AK forg=n

and with structure maps o, the canonical identifications for g > n
o1 S'A (FnK), = SIASTTM"AK S SITITMAK = (FnK)g,y -
For n € N, write

ky : Fpi St — F,S°

for the canonical morphisms of free sequential spectra with the following components
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kp)yys S0 — 83
kn)pey S5 —  S°

kdyyy ST = S

(kn),,: x  — S°
* — *
* e *
L% Lo

ky:  Fpi.S' — F,S°

Example 3.27. The free spectrum F,S° (def. 3.26) is the standard sequential sphere
spectrum from def. 1.4

FoS® =~ Sgyq .

Generally the free spectrum FK is the suspension spectrum (def. 1.3) on K:

FoK ~ %K .

Just as forming suspension spectra is left adjoint to extracting the Oth component space of a
sequential spectrum (prop. 1.10), so forming the nth free spectrum is left adjoint to
extracting the nth component space:

Proposition 3.28. ForneN, let
Ev, : SeqSpec(Top,,) — Top;g/

be the functor from sequential spectra (def. 1.1) to pointed topological spaces given by
extracting the nth component space

Ev,(X) = X,, .

Then this functor is right adjoint to forming nth free spectra (def. 3.26):

&
(F, 4 Evp) : Sequec(Tong) L Topg -

Evp

Proof. The proof is verbatim as that of prop. 1.10, just with n zeros inserted at the bottom
of the sequences of components maps. i

Definition 3.29. Write
I52P1e .= ISt € SeqSpec(Top)
for the set of morphisms appearing already in def. 2.2, and write

stable .__ jystrict .
JSEble = St | (k0 )

neN,ip €1
* (Top*/>

for the disjoint union of the other set of morphisms appearing in def. 2.2 with the set
{kn|:|i+}m+ of pushout-products under smash tensoring (according to def. 2.18) of the
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morphisms k, from def. 3.26 with the generating cofibrations of the classical model
structure on pointed topological spaces (def.).

Theorem 3.30. The stable model structure Sequec(Topcg)stable from theorem 3.11 is

cofibrantly generated (def.) with generating (acyclic) cofibrations the sets I_:f,ﬁ?lble (and
jstable) from def. 3.29.

seq

This is one of the cofibrantly model categories considered in (Mandell-May-Schwede-Shipley
01).

Proof. 1t is clear (as in theorem 2.3) that the two classes have small domains (def.).
Moreover, since I3 = I35 and Cofyaple = Cofsyice by definition, the fact that the

ccofibrations are the retracts of relative zgggble-ceu complexes is part of theorem 2.3. It only

remains to show that the stable acyclic cofibrations are precisely the retracts of relative
]ssgflble-cell complexes. This we is the statement of lemma 3.35 below. R

Lemma 3.31. The morphisms of free spectra {k,}, . from def. 3.26 co-represent the
adjunct structure maps of sequential spectra from def. 1.2, in that for X € Sequec(Tong),
then

SeqSpec(F,,S°, X)

|
>
3

~ X
SeqSpec(ky,X) 1 lon ,

SeqSpec(Fp1SLX) = 0Xpiq

where on the left we have the hom-spaces of def. 2.21, and where the horizontal
equivalences are via prop. 3.28.

Proof. Recall that we are precomposing with

(kn)pys S7 =
kn),,, S22 — 87

kp)py, St — St

(kn),y O
* — *
* —> *
- -

ky,: F,..8' — F,S°

Now for X any sequential spectrum, then a morphism f:F,S° - X is uniquely determined by
its nth component fn:S0 - X,,: the compatibility with the structure maps forces the next
component, in particular, to be ¢ 0 >f:

onoIf

st 15 X,
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But that (n + 1)st component is just the component that similarly determines the
precompositon of f with k,,, hence f o k,, is uniquely determined by the map o - Zf.
Therefore SeqSpec(k,, —) is the function

0 fHUT)l(ng 1
SeqSpec(ky, —) : X, = SeqSpec(S~,X,,) ——— Maps (S, X, 11), = 0Xp 44 -

It remains to see that this is indeed the (X 4 2)-adjunct of ¢. By the general formula for
adjuncts, this is

0 X
XX, 503X, “B0X,, ., .

To compare to the above, we check what this does on points: §° 7, X, is sent to the
composite

) X
s Lox, Losx, 22 ox,, . .

To identify this as a map S* - X,,.,,, we use the adjunction isomorphism once more to throw
all the n-s on the right back to x-s the left, to finally find that this is indeed

X
oXozsfist=ys0 L gx Mx

Lemma 3.32. Every element in jssgflble (def. 3.29) is an acyclic cofibration in the model

from theorem 3.11.

structure SeqSpec(Top ;) g ap1e

Proof. For the elements in ]:gli“ this is part of theorem 2.3. It only remains to see that the
morphisms k, oi, are stable acyclic cofibrations.

To see that they are stable cofibrations, hence strict cofibrations:

By Joyal-Tierney calculus (prop.) k, oi, has left lifting against any strict acyclic fibration f
precisely if k,, has left lifting against the pullback powering f°*+ (def. 2.18). By prop. 2.19
the latter is still a strict acyclic fibration. Since k,, is evidently a strict cofibration, the lifting
follows and hence also k, 0i, is a strict cofibration, hence a stable cofibration.

To see that they are stable weak equivalences: For each g the morphisms k, AS9" " are
stable acyclic cofibrations, and since stable acyclic cofibrations are preserved under pushout,
it follows by two-out-of-three that also k,, 0i, is a stable weak equivalence. 1

The reason for considering the set {k, 0i,} is to make the following true:

stable
seq

Lemma 3.33. A morphism f:X — Y in SeqSpec(Top) is a J
precisely if

-injective morphism (def.)

1. it is fibration in the strict model structure (hence degreewise a fibration);

2. for all n € N the commuting squares of structure map compatibilities on the
underlying sequential spectra

Xn — 0Xniq
In| 1% n+1

)
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exhibit homotopy pullbacks (def.) in SeqSpec(Top,,) in that the comparison map

strict”

X, —>Y, X 0X, .

Q¥n4q

is a weak homotopy equivalence (notice that Qf . is a fibration by the previous item
and since 0 = Maps(S%, —), is a right Quillen functor by prop. 0.2).

stable
seq

In particular, the | -injective objects are precisely the Omega-spectra, def. 1.16.

Proof. By theorem 2.3, lifting against j:glic alone characterizes strict fibrations, hence
degreewise fibrations. Lifting against the remaining pushout product morphism k, oi, is, by
Joyal-Tierney calculus (prop.), equivalent to left lifting i, against the pullback powering f=*»
from def. 2.18. Since the {i,} are the generating cofibrations in Topc*g/ such lifting means that
¥ is a weak equivalence in the strict model sructure. But by lemma 3.31, f*» is precisely
the comparison morphism in question. N

Lemma 3.34. A morphism in SeqSpec(Top) which is both

1. a stable weak homotopy equivalence (def. 1.14);

2. a Js@ble_jnjective morphism (def. 3.29, def.)

seq

is an acyclic fibration in the strict model structure, hence is degreewise a weak homotopy
equivalence and Serre fibration of topological spaces;

Proof. Let f:X —» B be both a stable weak homotopy equivalence as well as a K-injective
morphism. Since K contains the generating acyclic cofibrations for the strict model structure,
f is in particular a strict fibration, hence a degreewise fibration.

Consider the fiber F of f, hence the morphism F — « which is the pullback of f along * — B.
Notice that since f is a strict fibration, this is the homotopy fiber (def.) of f in the strict
model structure.

We claim that
1. F is an Omega-spectrum;
2. F - = is a stable weak homotopy equivalence.

The first item follows since F, being the pullback of a K-injective morphisms, is a K-injective
object (prop.), so that, by lemma 3.33, F it is an Omega-spectrum.

For the second item:

. fo . . : o
Since F - X — B is degreewise a homotopy fiber sequence, there are degreewise its long
exact sequences of homotopy groups (exmpl.)

o ey (B) — Ta(Fy) — (X)) 225 1. (By) = = 1y (By) — mo(F) — mo(Xy) — o (B),

Since in the category Ab of abelian group forming filtered colimits is an exact functor
(prop.), it follows that after passing to stable homotopy groups the resulting sequence

e 1 () D (B) = () = (%) B (B) > -

is still a long exact sequence.
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Since, by assumption, f, is an isomorphism, this exactness implies that =.(F) = 0, and hence
that F —» « is a stable weak homotopy equivalence. But since, by the first item above, F is an
Omega-spectrum, it follows (via example 1.18) that F —» « is even a degreewise weak
homotopy equivalence, hence that n,(F,) =~ 0 for all n € N.

Feeding this back into the above degreewise long exact sequence of homotopy groups now
implies that 7. -, (f,) is a weak homotopy equivalence for all n and for each homotopy group

in positive degree.

To deduce the remaining case that also =, (f,) is an isomorphism, observe that by
assumption of K-injectivity, lemma 3.33 gives that f is the pullback (in topological spaces)
of 2(f,). But by the above Qf is a weak homotopy equivalence, and since 2 = Maps(S', —), is
a right Quillen functor (prop. 0.2) it is also a Serre fibration. Therefore f is the pullback of
an acyclic Serre fibration and hence itself a weak homotopy equivalence. B

Lemma 3.35. The retracts (rmk.) of | :;Zble-re/ative cell complexes are precisely the stable
acyclic cofibrations.

Proof. Since all elements of 3"

lemma 3.32, it follows that every retract of a relative J
property.

are stable weak equivalences and strict cofibrations by
stable_ca|| complex has the same

seq

In the other direction, let f be a stable acyclic cofibration. Apply the small object argument
(prop.) to factor it

i P
jsEablecen jStable m;

as a J5°-relative cell complex i followed by a J52"*-injective morphism p. By the previous
statement i is a stable weak homotopy equivalence, and hence by assumption and by
two-out-of-three so is p. Therefore lemma 3.34 implies that p is a strict acyclic fibration. But
then the assumption that f is a strict cofibration means that it has the left lifting property
against p, and so the retract argument (prop.) implies that f is a retract of the relative

Jstable_cell complex i. W

seq

This completes the proof of theorem 3.30.

4. The stable homotopy category
Definition 4.1. Write
stable)

Ho(Spectra) = Ho(Sequec(Tong)

for the homotopy category (defn.) of the stable model structure on topological sequential
spectra from theorem 3.11.

This is called the stable homotopy category.

The stable homotopy category of def. 4.1 inherits particularly nice properties that are
usefully axiomatized for themselves. This axiomatics is called triangulated category structure
(def. 4.15 below) where the “triangles” are referring to the structure of the long fiber
sequences and long cofiber sequences (prop.) which happen to coincide in stable homotopy
theory.

Additivity
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The stable homotopy category Ho(Spectra) is the analog in homotopy theory of the category
Ab of abelian groups in homological algebra. While the stable homotopy category is not an
abelian category, as Ab is, but a homotopy-theoretic version of that to which we turn below,
it is an additive category.

Lemma 4.2. The stable homotopy category (def. 4.1) has finite coproducts. They are
represented by wedge sums (example 1.27) of CW-spectra (def. 2.7).

Proof. Having finite coproducts means
1. having empty coproducts, hence initial objects,
2. and having binary coproducts.

Regarding the initial object:

The spectrum X * (suspension spectrum (example 1.3) on the point) is both an initial
object and a terminal object in SeqSpec(Top,,). This implies in particular that it is both fibrant

and cofibrant. Finally its standard cylinder spectrum (example 1.28) is trivial
Z7x)A () = X%, All together with means that for X any fibrant-cofibrant spectrum, then

HomHo(Spectra)(Zoo*'Z) = HOl‘nSequec(Zm”‘vZ)/~ = *
and so X** also represents the initial object in the stable homotopy category.

Now regarding binary coproducts:

By prop. 2.16 and prop. 2.12, every spectrum has a cofibrant replacement by a
CW-spectrum. By prop. 2.11 the wedge sum X vY of two CW-spectra is still a CW-spectrum,
hence still cofibrant.

Let P and Q be fibrant and cofibrant replacement functors, respectively, as in the
section_Classical homotopy theory — The homotopy category.

We claim now that P(X vY) € Ho(Spectra) is the coproduct of PX with PY in Ho(Spectra). By
definition of the homotopy category (def.) this is equivalent to claiming that for Z any stable
fibrant spectrum (hence an Omega-spectrum by theorem 3.11) then there is a natural
isomorphism

HomSequec (P(X v Y), QZ) /~ = HomSequec (PX, QZ) /N X HomSequec (PY, QZ) /~

between left homotopy-classes of morphisms of sequential spectra.

But since X vY is cofibrant and Z is fibrant, there is a natural isomorphism (prop.)
HomSequec(P(X v Y): QZ) /~ - HomSequec(X \% Y: Z) /N .

Now the wedge sum X vY is the coproduct in Sequec(Tong), and hence morphisms out of it

are indeed in natural bijection with pairs of morphisms out of the two summands. But we
need this property to hold still after dividing out left homotopy. The key is that smash
tensoring (def. 1.6) distributes over wedge sum

XVY)AUL) = XAU)) VT AUL))

(due to the fact that the smash product of compactly generated pointed topological spaces
distributes this way over wedge sum of pointed spaces). This means that also left
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homotopies out of X vY are in natural bijection with pairs of left homotopies out of the
summands separately, and hence that there is a natural isomorphism

HomSequec(X VY, Z) /~ = HomSequec(Xr Z) /~ X HomSequec (Y' Z) /~ '

Finally we may apply the inverse of the natural isomorphism used before (prop.) to obtain in
total

HomSequec (X, Z) /~ X HomSequec (Y: Z) /~ - HomSequec (PX, QZ) /~ X HomSequec (PY, QZ) /~ .
The composite of all these isomorphisms proves the claim. N

Definition 4.3. Define group structure on the pointed hom-sets of the stable homotopy
category (def. 4.1)

[X,Y] € Grp

induced from the fact (prop.) that the hom-sets of any homotopy category into an object
in the image of the canonical loop space functor 2 inherit group structure, together with
the fact (theorem 3.23) that on the stable homotopy category 2 and X are inverse to each
other, so that

[X,Y] = [X,02Y],

Lemma 4.4. The group structure on [X,Y] in def. 4.3 is abelian and composition in
Ho(Spectra) is bilinear with respect to this group structure. (Hence this makes Ho(Spectra) an
Ab-enriched category.)

Proof. Recall (prop, rmk.) that the group structure is given by concatenation of loops

x 22 xxx L9 orx x 0zx — 05X |

That the group structure is abelian follows via the Eckmann-Hilton argument from the fact
that there is always a compatible second (and indeed arbitrarily many compatible) further
group structures, since, by stability

[X,Y] = [X,02Y] = [X,020(2X) 0 ZY] = [X,0°2?%Y] .

That composition of morphisms distributes over the operation in this group is evident for
precomposition. Let f:W — X then clearly

1 [X,05Y] — [W,02Y]

preserves the group structure induced by the group structure on QXY. That the same holds
for postcomposition may be immediately deduced from noticing that this group structure is
also the same as that induced by the cogroup structure on 202X, so that with g:Y - Z then

g, : [Z0X,Y] — [20X,Z]
preserves group structure.

More explicitly, we may see the respect for groupstructure structure of the postcomposition
opeation from the naturality of the loop composition map which is manifest when
representing loop spectra via the standard topological loop space object

NX = fib(Maps(I,,X) » X x X) (rmk.) under smash powering (def. 1.6).

To make this fully explicit, consider the following diagram in Ho(Spectra):
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YXY 5 0¥ xQXY = Q(Maps(S',ZY), x Maps(S',2Y),) — Q(Maps(Sjz,2Y)), = 0IY = Y

9x9g | l!)ng!ZZg J(Q(Maps(Sl,Z'g)*><Maps(51,.(2):g)*) lQ(Maps(S[lo_Z].Eg)*) lﬂ):g 19,
ZxZ S 0XZx0XZ = Q(Maps(S',2Z), x Maps(S',22),) — Q(Maps(Sjoq,22),) = 0QIZ = Z
where Sj, ;; denotes the sphere of length 2.

Here the leftmost square and the rightmost square are the naturality squares of the
equivalence of categories (X 4 2) (theorem 3.23).

The second square from the left and the second square from the right exhibit the equivalent
expression of 2 as the right derived functor of (either the standard or the alternative, by
lemma 3.22) degreewise loop space functor. Here we let XX denote any fibrant
representative, for notational brevity, and use that the derived functor of a right Quillen
functor is given on fibrant objects by the original functor followed by cofibrant replacement
(prop.).

The middle square is the image under Q of the evident naturality square for concatenation of
loops. This is where we use that we have the standard model for forming loop spaces and
concatenation of loops (rmk.): the diagram commutes because the loops are always
poinwise pushed forward along the map . B

It is conventional (Adams 74, p. 138) to furthermore make the following definition:

Definition 4.5. For X,Y € Ho(Spectra) two spectra, define the Z-graded abelian group

[X,Y], € Ab”

to be in degree n the abelian hom group of lemma 4.4 out of X into the n-fold suspension
of Y (lemma 3.22):

[X,Y] = [X,Z7"Y].
Defining the composition of f, € [X, Y]n1 with f, € [Y,Z]n2 to be the composite

£712(f )
S

XglfnlY ryMrTmzy=xy ™2z

gives the stable homotopy category the structure of an Ab%-enriched category.

Example 4.6. (generalized cohomology groups)

Let E € Sequec(Tong) be an Omega-spectrum (def. 1.16) and let X € Topc*g/ be a pointed

topological space with ¥*X its suspension spectrum (example 1.3). Then the graded
abelian group (by prop. 4.4, def. 4.5)

E'(X) = [Z"X,E]_,
= [2%X,2°E]
~ [X,0°2°E],
= [X,E.],

is also called the reduced cohomology of X in the generalized (Eilenberg-Steenrod)
cohomology theory that is represented by E.

Here the equivalences used are
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1. the adjunction isomorphism of (Z* 4 2®) from theorem 3.25;

2. the isomorphism X = [1] of suspension with the shift spectrum (def. 1.31) on
Ho(Spectra) of lemma 3.14, together with the nature of 2® from prop. 1.10.

The latter expression
E"(X) = [X, En],

(on the right the hom in in the classical homotopy category Ho(Top*/) of pointed
topological spaces) is manifestly the definition of reduced generalized (Eilenberg-
Steenrod) cohomology as discussed in part S in the section on the Brown representability
theorem.

Suppose E here is not necessarily given as an Omega-spectrum. In general the
hom-groups [X,E] = [X,E] ., iNn the stable homotopy category are given by the naive
homotopy classes of maps out of a cofibrant resolution of X into a fibrant resolution of E
(by this lemma). By theorem 3.11 a fibrant replacement of E is given by Omega-
spectrification QE (def. 1.19). Since the stable model structure of theorem 3.11 is a left

Bousfield localization of the strict model structure from theorem 2.3, and since for the
latter all objects are fibrant, it follows that

[X, E] = [X, QE]

stable strict’

and hence

E°(X) = [2°X, E]

stable

= [X%X, QE]

strict
7

= [X,Q7QE],
= [X, (QE), ],
where the last two hom-sets are again those of the classical homotopy category. Now if E

happens to be a CW-spectrum, then by remark 1.21 its Omega-spectrification is given
simply by (QE), = li_m)kﬂ"EnH) and hence in this case

E°X) ~[X, lim 0B,

If X here is moreover a compact topological space, then it may be taken inside the colimit
(e.g. Weibel 94, topology exercise 10.9.2), and using the (X 4 2)-adjunction this is
rewritten as

E°(X) = lim [X,Q%E, ],
= lim [(Z*X, E,].

(e.g. Adams 74, prop. 2.8).

This last expression is sometimes used to define cohomology with coefficients in an
arbitrary spectrum. For examples see in the part S the section Orientation in generalized

cohomology.

More generally, it is immediate now that there is a concept of E-cohomology not only for
spaces and their suspension spectra, but also for general spectra: for X € Ho(Spectra) be
any spectrum, then
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E'(X) =[X,2°E]
is called the reduced E-cohomology of the spectrum X.
Beware that here one usually drops the tilde sign.

In summary, lemma 4.2 and lemma 4.4 state that the stable homotopy category is an
Ab-enriched category with finite coproducts. This is called an additive category:

Definition 4.7. An additive category is a category which is

1. an Ab-enriched category;

(sometimes called a pre-additive category-this means that each hom-set carries the
structure of an abelian group and composition is bilinear)

2. which admits finite coproducts

(and hence, by prop. 4.8 below, finite products which coincide with the coproducts,
hence finite biproducts).

Proposition 4.8. In an Ab-enriched category, a finite product is also a coproduct, and
dually.

This statement includes the zero-ary case: any terminal object is also an initial object,
hence a zero object (and dually), hence every additive category (def. 4.7) has a zero
object.

More precisely, for {X;},_, a finite set of objects in an Ab-enriched category, then the

unique morphism
15— [Tx

i€l jel
whose components are identities for i = j and are zero otherwise, is an isomorphism.

Proof. Consider first the zero-ary case. Given an initial object @ and a terminal object ,
observe that since the hom-sets Hom(®, @) and Hom(, =) by definition contain a single
element, this element has to be the zero element in the abelian group structure. But it also
has to be the identity morphism, and hence id, = 0 and id, = 0. It follows that the 0-element
in Hom( *, @) is a left and right inverse to the unique element in Hom(®, =), and so this is an

isomorphism

0:0> .

Consider now the case of binary (co-)products. Using the existence of the zero object, hence
of zero morphisms, then in addition to its canonical projection maps p,:X; x X, — X;, any

binary product also receives “injection” maps X; - X; X X,, and dually for the coproduct:

Xy X, X4 X
(140 (0id) , \iX1 ix, y
dx, 1 X, X X, ll X5 , idy, l X, UX, .],ld-Xz
'/le Px, » ‘/(id,o) (0,id) N
Xy X, Xy X

Observe some basic compatibility of the Ab-enrichment with the product:
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First, for (ay,B,), (az,B8,):R = X1 X X, then
(x)  (ay,B)) +(az2,B,) = (a1 + az, B, +B,)

(using that the projections p, and p, are linear and by the universal property of the
porduct).

Second, (id,0) e p, and (0,id) o p, are two projections on X; X X, whose sum is the identity:
(xx)  (id,0) op, + (0,id) o p, = idy, xx, -

(We may check this, via the Yoneda lemma on generalized elements: for (a,8):R - X; X X,
any morphism, then (id,0) o p, ° (a, ) = («,0) and (0,id) e p, ° (&, ) = (0, ), so the statement
follows with equation (x).)

Now observe that for f, : X; - Q@ any two morphisms, the sum
()b = f1°p1+f20p2 :X1XX2_>Q

gives a morphism of cocones

X1 X,
W40 (0id) ,
1y ) X, % X, 119x2
X, s X,
f1 N \/fz
Q

Moreover, this is unique: suppose ¢’ is another morphism filling this diagram, then, by using
equation (x x), we get
(p—¢d)=(@—¢)e idxlxxz
= (¢ —¢") o ((idy,,0) e p, +(0,idx,) o p,)
=(p—¢')eo(idx,,0)ep, + (¢ —¢') 2 (0,idy,) o p,

=0 =0

=0

and hence ¢ = ¢'. This means that X, x X, satisfies the universal property of a coproduct.

By a dual argument, the binary coproduct X, u X, is seen to also satisfy the universal
property of the binary product. By induction, this implies the statement for all finite
(co-)products. N

Remark 4.9. Finite coproducts coinciding with products as in prop. 4.8 are also called
biproducts or direct sums, denoted

X1 ®X2 :=X1 UXZ z)(1 XXZ .
The zero object is denoted “0”, of course.

Conversely:

Definition 4.10. A semiadditive category is a category that has all finite products which,
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moreover, are biproducts in that they coincide with finite coproducts as in def. 4.8.

Proposition 4.11. In a semiadditive category, def. 4.10, the hom-sets acquire the structure
of commutative monoids by defining the sum of two morphisms f,g : X — Y to be

A &) v
frg=xZxxx=xoxXyor=vurZy.

With respect to this operation, composition is bilinear.

Proof. The associativity and commutativity of + follows directly from the corresponding
properties of @. Bilinearity of composition follows from naturality of the diagonal 4, and

codiagonal Vy:

w X wxw S wew
le lexe le@e
A [43) \%
x 2% xxx =~ xox X vyey ~ vuy Xy

Vz
Z®Z = ZUZ > Z

Proposition 4.12. Given an additive category according to def. 4.7, then the enrichement
in commutative monoids which is induced on it via prop. 4.8 and prop. 4.11 from its
underlying semiadditive category structure coincides with the original enrichment.

Proof. By the proof of prop. 4.8, the codiagonal on any object in an additive category is the
sum of the two projections:

+
vy xox 2 %y,

Therefore (checking on generalized elements, as in the proof of prop. 4.8) for all morphisms
f,g:X - Y we have commuting squares of the form

+
x 29y

AX»L

XPX YPY
@@@

Remark 4.13. Prop. 4.12 says that being an additive category is an extra property on a
category, not extra structure. We may ask whether a given category is additive or not,
without specifying with respect to which abelian group structure on the hom-sets.

In conclusion we have:

Proposition 4.14. The stable homotopy category (def. 4.1) is an additive category (def.
4.7).

Hence prop. 4.8 implies that in the stable homotopy category finite coproducts (wedge
sums) and finite products agree, in that they are finite biproducts (direct sums).

V =~ X = @ € Ho(Spectra) .

Proof. By lemma 4.2 and lemma 4.4. &
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Triangulated structure

We have seen above that the stable homotopy category Ho(Spectra) is an additive category.
In the context of homological algebra, when faced with an additive category one next asks
for the existence of kernels (fibers) and cokernels (cofibers) to yield a pre-abelian category,
and then asks that these are suitably compatible, to yield an abelian category.

Now here in stable homotopy theory, the concept of kernels and cokernels is replaced by
that of homotopy fibers and homotopy cofibers. That these certainly exist for homotopy
theories presented by model categories was the topic of the general discussion in the section
Homotopy theory — Homotopy fibers. Various of the properties they satisfy was the topic of
the sections Homotopy theory - Long sequences and Homotopy theory — Homotopy
pullbacks.. For the special case of stable homotopy theory we will find a crucial further
property relating homotopy fibers to homotopy cofibers.

The axiomatic formulation of a subset of these properties of stable homotopy fibers and
stable homotopy cofibers is called a triangulated category structure. This is the analog in
stable homotopy theory of abelian category structure in homological algebra.

category of abelian stable homotopy category
groups

direct sums and hom-abelian additive category additive category

groups

(homotopy) fibers and cofibers . homotopy category of a model

) pre-additive category
exist category
(homotopy) fibers and cofibers are . .
. abelian category triangulated category
compatible

Literature (Hubery, Schwede 12, 11.2)

Definition 4.15. A triangulated category is

1. an additive category Ho (def. 4.7);

2. a functor, called the suspension functor or shift functor
XY : Ho = Ho

which is required to be an equivalence of categories;

3. a sub-class CofSeq c Mor(Ho?®)) of the class of triples of composable morphisms, called
the class of distinguished triangles, where each element that starts at A ends at
YA; we write these as

A— B —B/A— XA,

or

(whence the name triangle);
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such that the following conditions hold:
e TO For every morphism f:A4 — B, there does exist a distinguished triangle of the form
AL B B/A—zaA.

If (f,g,h) is a distinguished triangle and there is a commuting diagram in Ho of the
form

f g h
A — B — B/A — XA

lEIso lEIso lEIso lelso

’f’ 9 v M l
A — B — B'JA' — XA

(with all vertical morphisms being isomorphisms) then (f',g’,h") is also a
distinguished triangle.

e T1 For every object X € Ho then (0,idy, 0) is a distinguished triangle
idy

0—=X—-X—0;

e T2 If (f,g,h) is a distinguished triangle, then so is (g,h, —2f); hence if

AL %pialssa
is, then so is
g h -Zf
B—B/A—XYA— JXB.

e T3 Given a commuting diagram in Ho of the form

A — B — B/A — XA
194 %8
A —- B — B'J/A — ZA

where the top and bottom are distinguished triangles, then there exists a morphism
B/A - B' /A" such as to make the completed diagram commute

A — B — B/A — XA
14 %8 \? 1504
A — B — B /A — XA

e T4 (octahedral axiom) For every pair of composable morphisms f:4 - B and
f':B - D then there is a commutative diagram of the form
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A L B % Bal osa
= 1y Lx L=
A — D — D/A — XA
frof gn hn
9| er
D/B — D/B
hoy l(zg)ohr
SB — JIB/A
zg

such that the two top horizontal sequences and the two middle vertical sequences
each are distinguished triangles.

Proposition 4.16. The stable homotopy category Ho(Spectra) from def. 4.1, equipped with
the canonical suspension functor X :Ho(Spectra) = Ho(Spectra) (according to this prop.) is a
triangulated category (def. 4.15) for the distinguished triangles being the closure under
isomorphism of triangles of the images (under localization Sequec(Tong)Stalble — Ho(Spectra)

(prop.) of the stable model category of theorem 3.11) of the canonical long homotopy
cofiber sequences (prop.)

4L B = hocofib(f) — Z4 .

(e.g. Schwede 12, chapter II, theorem 2.9)

Proof. By prop. 4.14 the stable homotopy category is additive, by theorem 3.23 the functor
X is an equivalence.

The axioms TO and T1 are immediate from the definition of homotopy cofiber sequences.

The axiom T2 is the very characterization of long homotopy cofiber sequences (from this
prop.).

Regarding axiom T3:

By the factorization axioms of the model category we may represent the morphisms 4 —» A’
and B - B’ in the homotopy category by cofibrations in the model category. Then B - B/A
and B’ - B' /A’ are represented by their ordinary cofibers (def., prop.).

We may assume without restriction (lemma) that the commuting square

A i> B
ba | 198
A — B
fr

in the homotopy category is the image of a commuting square (not just commuting up to
homotopy) in SeqSpec(Top,.). In this case then the morphism B/A - B’ /A’ is induced by the

universal property of ordinary cofibers. To see that this also completes the last vertical
morphism, observe that by the small object argument (prop.) we have functorial
factorization (def.).

With this, again the universal property of the ordinary cofiber gives the fourth vertical
morphism needed for T3.

Axiom T4 follows in the same fashion: we may represent all spectra by CW-spectra and
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represent f and f’, hence also f' o f, by cofibrations. Then forming the functorial mapping
cones as above produces the commuting diagram

A L B % L osa
=L @@ 1=
A — D — D/A — XA
f/of agn hn
91 @3

D/B - D/B
hoy l(zg)ohr

SB — IBJ/A
2g

The fact that the second horizontal morphism from below is indeed an isomorphism follows
by applying the pasting law for homotopy pushouts twice (prop.):

A * Draw all homotopy cofibers as homotopy

pushout squares (def.) with one edge
f going to the point. Then assemble the
squares (1)-(3) in the pasting composite
the left face of the top cube, (2) as the
B
-

of two cubes on top of each other: (1) as
middle face where the two cubes touch,
and (3) as the front face of the bottom
/44 cube. All remaining edges are points. This
way the rear and front face of the top
cube and the left and right face of the
bottom cube are homotopy pushouts by
g i
D D/A construction. Also the top face

g

flof B

A — =
=1 )
g" * * A — x

is a homotopy pushout, since two
opposite edges of it are weak

D/B D/A equivalences (prop.). From this the
B/A pasting law for homotopy pushouts
(prop.) gives that also the middle square
(2) is a homotopy pushout. Applying the
pasting law once more this way, now for the bottom cube, gives that the bottom square

) \)
D/B — (D/A)/(B/A)

is @ homotopy pushout. Since here the left edge is a weak equivalence, necessarily, so is the
right edge (prop.), which hence exhibits the claimed identification

D/B=(D/A)/(B/A) .

Remark 4.17. All we used in the proof (of prop. 4.16) of the octahedral axiom (T4) is the
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existence and nature of homotopy pushouts. In fact one may show that the octahedral
axiom is equivalent to the existence of homotopy pushouts, in the sense of axiom B in
(Hubery).

Long fiber-cofiber sequences

In homotopy theory there are generally long homotopy fiber sequences to the left and long
homotopy cofiber sequences to the right, as discussed in the section Homotopy theory -
Long sequences. We prove now, in the generality of the axiomatics of triangulated
categories (since the stable homotopy category is triangulated by prop. 4.16), that in stable
homotopy theory both these sequences are long in both directions, and in fact coincide.

Literature (Schwede 12, 11.2)

Lemma 4.18. For (Ho, X, CofSeq) a triangulated category, def. 4.15, and

AL B % B/alisa
a distinguished triangle, then
g o f = 0

is the zero morphism.

Proof. Consider the commuting diagram

id
A5 45 0 — x4

L V

h
AL B L Al sa

Observe that the top part is a distinguished triangle by axioms T1 and T2 in def. 4.15. Hence
by T3 there is an extension to a commuting diagram of the form

id
A5 45 0 — x4

L V l 1%

h
AL B L Bl sa

Now the commutativity of the middle square proves the claim. N

Proposition 4.19. Let (Ho, 2, CofSeq) be a triangulated category, def. 4.15, with hom-functor
denoted by [—, —],:Ho°" x Ho — Ab. For X € Ho any object, and for D € CofSeq any
distinguished triangle

f g h
D=(A—B—B/A— XA

then the sequences of abelian groups

1. (long cofiber sequence)
[h. X1, lg.X], [f. X1,
[ZA,X], — [B/A, X], — [B,X], — [A, X],

2. (long fiber sequence)
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[X.f1, [X.g], [X,h],
[X,A], — [X,B], — [X,B/A], — [X, ZA],

are long exact sequences.

Proof. Regarding the first case:

Since g f = 0 by lemma 4.18, we have an inclusion im([g, X],) < ker([f,X],). Hence it is
sufficient to show that if y:B - X is in the kernel of [f,X], in that ¢ o f =0, then there is
¢:B/A - X with ¢ o g = 1. To that end, consider the commuting diagram

AL B % Bl sa
l

L
id
0O - X —- X — 0
where the commutativity of the left square exhibits our assumption.

The top part of this diagram is a distinguished triangle by assumption, and the bottom part
is by condition T1 in def. 4.15. Hence by condition T3 there exists ¢ fitting into a commuting
diagram of the form

AL B % B4l osa
l

vy 19 1.

id
0O — X — X — 0

Here the commutativity of the middle square exhibits the desired conclusion.

This shows that the first sequence in question is exact at [B, X] . Applying the same
reasoning to the distinguished triangle (g, h, —2f) provided by T2 yields exactness at

[B/AX],.
Regarding the second case:
Again, from lemma 4.18 it is immediate that

im([X, f],) < ker([X, g].)

so that we need to show that for :X — B in the kernel of [X, g]_, hence such that goy =0,
then there exists ¢:X - A with fo¢ = 1.

To that end, consider the commuting diagram

—-rid
X — 0 — XX — XX

¥ ! ,

g h -Zf
B — B/A — XA — 2XB

where the commutativity of the left square exhibits our assumption.

Now the top part of this diagram is a distinguished triangle by conditions T1 and T2 in def.
4.15, while the bottom part is a distinguished triangle by applying T2 to the given
distinguished triangle. Hence by T3 there exists ¢:2X — XA such as to extend to a
commuting diagram of the form
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—Xid
X — 0 — XX — XX
e ! 1® 15y
g h zf

B - B/A — A — IB

At this point we appeal to the condition in def. 4.15 that ¥:Ho — Ho is an equivalence of
categories, so that in particular it is a fully faithful functor. It being a full functor implies that
there exists ¢:X — A with ¢ = Z¢. It being faithful then implies that the whole commuting
square on the right is the image under » of a commuting square

—id
X — X
) ¥

A — B
-f

This concludes the exactness of the second sequence at [X, B],. As before, exactness at

[X,B/A], follows with the same argument applied to the shifted triangle, via T2. 1

Lemma 4.20. Consider a morphism of distinguished triangles in a triangulated category
(def. 4.15):

g h
A — B — B/A — XA
la J,b lC lz‘a.
A —- B — B /A — XA
If two out of {a,b,c} are isomorphisms, then so is the third.

Proof. Consider the image of the situation under the hom-functor [X, —], out of any object
X:

(XAl — [X.B. > [X.B/Al. > [X,ZA]. — [X,ZB],
L 1P Lo L& L&
X,4']. — [XB]. — [XB /A, — [X,ZA'], — [XZB'],

where we extended one step to the right using axiom T2 (def. 4.15).

By prop. 4.19 here the top and bottom are exact sequences.

So assume the case that a and b are isomorphisms, hence that a,, b., (Za), and (Zb), are

isomorphisms. Then by exactness of the horizontal sequences, the five lemma implies that c,
is an isomorphism. Since this holds naturally for all X, the Yoneda lemma (fully faithfulness
of the Yoneda embedding) then implies that ¢ is an isomorphism.

If instead b and ¢ are isomorphisms, apply this same argument to the triple (b,¢,2a) to
conclude that Xa is an isomorphism. Since X is an equivalence of categories, this implies
then that a is an isomorphism.

Analogously for the third case. N

Lemma 4.21. If (g,h, —2f) is a distinguished triangle in a triangulated category (def. 4.15),
then so is (f,g,h).

Proof. By TO there is some distinguished triangle of the form (f,g’,h’). By T2 this gives a
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distinguished triangle (-2f, —2g', —Xh'). By T3 there is a morphism ¢’ giving a commuting
diagram

- - —zh
sa L s 29 3¢ oy

=1 =1 ol =1

sa 2L xp 2% 3o 2 52y
Now lemma 4.20 gives that ¢’ is an isomorphism. Since ¥ is an equivalence of categories,
there is an isomorphism ¢ such that ¢’ = Zc. Since ¥ is in particular a faithful functor, this ¢
exhibits an isomorphism between (f,g,h) and (f,g',h'). Since the latter is distinguished, so is
the former, by TO. N

In conclusion:
Proposition 4.22. [et

xLyvSz

be a homotopy cofiber sequence (def.) of spectra in the stable homotopy category (def.
4.1) Ho(Spectra). Let A € Ho(Spectra) be any other spectrum. Then the abelian hom-groups

of the stable homotopy category (def. 4.3, lemma 4.4) sit in long exact sequences of the
form

_(‘Qg)* f* Ix _(Ef)*
= [A, QY] —= [4,07Z] = [AX] = [AY] = [AZ] — [A2X] —= [4,2Y] — -

Proof. By prop. 4.16 the above abstract reasoning in triangulated categories applies. By
prop. 4.19 we have long exact sequences to the right as shown. By lemma 4.21 these also
extend to the left as shown. W

This suggests that homotopy cofiber sequences coincide with homotopy fiber sequence in
the stable homotopy category. This is indeed the case:

Proposition 4.23. In the stable homotopy category, a sequence of morphisms is a
homotopy cofiber sequence precisely if it is a homotopy fiber sequence.

Specifically for f:X — Y any morphism in Ho(Spectra), then there is an isomorphism

¢ : hofib(f) = 2 hocof(f)

between the homotopy fiber and the looping of the homotopy cofiber, which fits into a
commuting diagram in the stable homotopy category Ho(Spectra) of the form

Y — hofib(f) — X
=1l W =,
NY — QNhocof(f) — XX

where the top row is the homotopy fiber sequence of f, while the bottom row is the image
under the looping functor 0 of the homotopy cofiber sequence of f.

(Lewis-May-Steinberger 86, chapter III, theorem 2.4)

Proof. Label the diagram in question as follows
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ar 5 hofib(f) > X
=l (D) ¢ B
nY — Nhocof(f) - NxX

Let X be represented by a CW-spectrum (by prop. 2.16), hence in particular by a cofibrant
sequential spectrum (by prop. 2.12). By prop. 2.13 and the factorization lemma (lemma)
this implies that the standard mapping cone construction on f (def.) is a model for the

homotopy cofiber of f (exmpl.):

hocof(f) = Cone(f) .

By construction of mapping cones, this sits in the following commuting squares in
Sequec(Tong).

—  Cone(X)
(po)
—  Cone(f) .

(po) 1
— 2X

— < o« X

*

Consider then the commuting diagram

v % hofib(f) 5 Qhocof(f) 5 0IX ~X
\) \) \) \)
- X —  Cone(X) — Cone(X),
! Vv ! !
Yy — Y — Cone(f) — X

in the stable homotopy category Ho(Spectra) (def. 4.1). Here the bottom commuting squares
are the images under localization y : Sequec(Tong) — Ho(Spectra) (thm.) of the above
commuting squares in the definition of the mapping cone, and the top row of squares are
the morphisms induced via the universal property of fibers by forming homotopy fibers of
the bottom vertical morphisms (fibers of fibration replacements, which may be chosen
compatibly, either by pullback or by invoking the small object argument).

First of all, this exhibits the composition of the left two horizontal morphisms ¢ o a = ¢ in the
above diagram as the left part (1) of the commuting diagram to be proven.

Now observe that the pasting composite of the two rectangles on the right of the previous
diagram is isomorphic, in Ho(Spectra), to the following pasting composite:

. b n

hofib(f) — X — QXX =X

) ) )

X Lt X — Cone(X) -

) ) )

Y — * —> 2X

This is because the pasting composite of the bottom squares is isomorphic already in
SeqSpec(Top,,) by the above commuting diagrams for the mapping cone and the suspension,
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and then using again the universal property of homotopy fibers.

Hence the top composite morphisms coincide, by universality of homotopy fibers, with the
previous top composite:

nob=dod¢.
This is the commutativity of the right part (2) of the diagram to be proven.
So far we have shown that
Y — hofib(f) — X
=1 L? L=
QY — QNhocof(f) — X

commutes in the stable homotopy category. It remains to see that ¢ is an isomorphism.

To that end, consider for any A € Ho(Spectra) the image of this commuting diagram,
prolonged to the left and right, under the hom-functor [4, —], of the stable homotopy

category:

[4,0X] — [A0Y] — [Ahofib(f)] — [4X] — [AY]

= = el 1= =

[4,0X] — [A,02Y] — [A Rhocof(f)] — [4,02X] — [A 0N2Y]

Here the top row is long exact, since it is the long homotopy fiber sequence to the left that
holds in the homotopy category of any model catgeory (prop.). Moreover, the bottom
sequence is long exact by prop. 4.22. Hence the five lemma implies that [4, ¢], is an
isomorphism. Since this is the case for all 4, the Yoneda lemma (faithfulness of the Yoneda
embedding) implies that ¢ itself is an isomorphism. &

Remark 4.24. Prop. 4.23 is the homotopy theoretic analog of the clause that makes a
pre-abelian category into an abelian category:

A pre-abelian category is an additive category in which fibers (kernels) and cofibers
(cokernels) exist. This is an abelian category if the cofiber of the fiber of any morphism
equals coincides with the fiber of the cofiber of that morphism.

Here we see that in stable homotopy theory, whose homotopy category is additive, and in
which homotopy fibers and homotopy cofibers exist, the analogous statement is true even
in a stronger form: the homotopy cofiber projection of the homotopy fiber inclusion of any
morphism coincides with that morphism, and so does the homotopy fiber projection of the
homotopy cofiber inclusion.

In particular there are long exact sequences of stable homotopy groups extending in both
directions:

Lemma 4.25. [et X € SeqSpec(Top,,) be any sequential spectrum, then there is an
isomorphism
mo(X) =[S, X]
between its stable homotopy group in degree 0 (def. 1.11) and the hom-group (according

to def. 4.7, prop. 4.14) in the stable homotopy category (def. 4.1) from the sphere
spectrum (def. 1.4) into X.
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Generally, with respect to the graded hom-groups of def. 4.5 we have
m.(X) = [S,X], .
Proof. The hom-set in the homotopy category is equivalently given by the left homotopy-

equivalence classes out of a cofibrant representative of S into a fibrant representative of X
(lemma).

The standard sphere spectrum Sgq == 2°S° is a CW-spectrum and hence cofibrant, by prop.
2.12. Moreover, this implies by prop. 2.13 that left homotopies out of S, are represented by
the standard sequential cylinder spectrum

Ssta A (1) = Z2°(1,)

By theorem 3.11, fibrant replacement for X is provided by its spectrification QX according to
def. 1.19.

So it follows that [S, X], is given by left homotopy classes of morphisms
2°§% =S4 — 0X
in Sequec(Tong). By the (2 4 2%)-adjunction (prop. 1.10) these are equivalently morphisms
57— (@X),
in Topc*g/. Hence equivalently morphisms
* — (QX),

in Topcg, hence equivalently points in (QX),. Analogously, a left homotopy

2%(1) — (QX),
in Sequec(Tong) is equivalently a path
I — (QX),
in Topcg.
In conclusion this establishes an isomorphism
[S, X], = mo((QX),)

with m, of the 0-component of @QX. With this the statement follows with example 1.18, since
QX is an Omega-spectrum, by prop. 1.20.

From this the last statement follows from the identity

Mo (27 (=) = mn ()

As a consequence:

Proposition 4.26. Let
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be a homotopy cofiber sequence (def.) in the stable homotopy category (def. 4.1). Then
there is induced a long exact sequence of stable homotopy groups (def. 1.11) of the form

c o (D) — ) B rm B @) -0 —
Proof. Via lemmma 4.25 this is a special case of prop. 4.22. 11

As an example, we check explicitly what we already deduced abstractly in prop. 4.14, that in
the stable homotopy category wedge sum and Cartesian product of spectra agree and
constitute a biproduct/direct sum:

Example 4.27. For X,Y € Sequec(Tong), then the canonical morphism
XVY —>XXY

out of the coproduct (wedge sum, example 1.27) into the product (via prop. 1.25), given
by

\ix ix s
idy | Xuy Lidy

‘/(id, 0) (0,id) N

(id,0) (0id) ,

iy xxy %

\/pX Py N

X Y

represents an isomorphism in the stable homotopy category.

Proof. By prop. 2.16, we may represent both X and Y by CW-spectra (def. 2.7) in
(Sequec(Tong)stable)c[Ws‘tl]. Then the canonical morphism

iy: X —>XVY

is a cofibration according to theorem 2.3, because X,,, U SHXVY) =X, 1 VS'AY,,.
stax,

Hence its ordinary cofiber, which is Y, is its homotopy cofiber (def.), and so we have a
homotopy cofiber sequence

X—XvY—>Y.

Moreover, under forming stable homotopy groups (def. 1.11), the inclusion map evidently
gives an injection, and the projection map gives a surjection. Hence the long exact sequence
of stable homotopy groups from prop. 4.26 gives the short exact sequence

0-n.(X) —m(XVY)—>m(Y)—0.

Finally, due to the fact that the inclusion and projection for one of the two summands
constitute a retraction, this is a split exact sequence, hence exhibits an isomorphism

(X VY) = m(X) @ mp (V) = mp(X) X m (V) = (X X Y)

for all k. But this just says that XvY —» X x Y is a stable weak homotopy equivalence. B
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Final Remark 4.28. For a tower of fibrations of spectra, the long sequences of stable
homotopy groups associated with any (co-)fiber sequence of spectra, from prop. 4.26,
combine to an exact couple. The induced spectral sequence of a tower of fibrations is the
central tool of computation in stable homotopy theory.

We discuss how these spectral sequences arise in the section Interlude -- Spectral
sequences.

We discuss in detail the special case of the Adams spectral sequences in the section Part 2
-- Adams spectral sequences.

But for handling any of these spectral sequences it is convenient, or, in many cases,
necessary to have multiplicative structure available, induced from a symmetric monoidal
smash product of spectra. This we turn to in part 1.2 -- Structured spectra.

5. References

We give the modern picture of the stable homotopy category, for which a quick survey may
be found in

e Cary Malkiewich, The stable homotopy category, 2014 (pdf).

A classical textbook on stable homotopy theory for “unstructured” spectra is

e Frank Adams, part III sections 2, 4-7 of Stable homotopy and generalized homology,
Chicago Lectures in mathematics, 1974

For establishing the stable model structure on spectra we use the Bousfield-Friedlander
theorem as discussed in

e Paul Goerss, Rick Jardine, section X.4 of Simplicial homotopy theory, (1996)

and as applied for general Omega-spectrification functors in

e Stefan Schwede, Spectra in model categories and applications to the algebraic
cotangent complex, Journal of Pure and Applied Algebra 120 (1997) 77-104 (pdf)

For the discussion of the stability of the homotopy theory of sequential spectra we follow

e John F. Jardine, sections 10.3 and 10.4 of Local homotopy theory, 2016

For the definition of triangulated categories and a discussion of various equivalent versions
of the octahedral axiom the following brief note is useful:

e Andrew Hubery, Notes on the octahedral axiom, (pdf)

For the discussion of the triangulated structure of the stable homotopy category we follow

e Stefan Schwede, section I1.2 of Symmetric spectra, 2012 (pdf)
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nLab
* Introduction to Stable homotopy theory -- 1-2

We give an introduction to the stable homotopy category and to its key computational tool, the Adams
spectral sequence. To that end we introduce the modern tools, such as model categories and highly
structured ring spectra. In the accompanying seminar we consider applications to cobordism theory and
complex oriented cohomology such as to converge in the end to a glimpse of the modern picture of
chromatic homotopy theory.

Lecture notes.

Main page: Introduction to Stable homotopy theory.

Previous section: Prelude -- Classical homotopy theory

This section: Part 1 -- Stable homotopy theory

Previous subsection: Part 1.1 -- Stable homotopy theory -- Sequential spectra

This subsection: Part 1.2 - Stable homotopy theory - Structured spectra

Next section: Part 2 -- Adams spectral sequences

Stable homotopy theory — Structured spectra

1. Categorical algebra
Monoidal topological categories

Algebras and modules

Topological ends and coends

Topological Day convolution

Functors with smash product

2. S-Modules
Pre-Excisive functors

Symmetric and orthogonal spectra

As diagram spectra

Stable weak homotopy equivalences

Free spectra and Suspension spectra

3. The strict model structure on structured spectra
Topological enrichment

Monoidal model structure

Suspension and looping

4. The stable model structure on structured spectra
Proof of the model structure

Stability of the homotopy theory

Monoidal model structure

5. The monoidal stable homotopy category
Tensor triangulated structure

Homotopy ring spectra

6. Examples
Sphere spectrum

Eilenberg-MaclLane spectra

Thom spectra
7. Conclusion

8. References

The key result of part 1.1 was (thm.) the construction of a stable homotopy theory of spectra, embodied by
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a stable model structure on topological sequential spectra SeqSpec(Top ) iple (thm.) with its corresponding
stable homotopy category Ho(Spectra), which stabilizes the canonical looping/suspension adjunction on

pointed topological spaces in that it fits into a diagram of (Quillen-)adjunctions of the form

s
*/ — */ z
(Topcg) ill (TOp ) ill */ — */
Quillen i, Cg /Quillen HO(TOp ) i HO(TOp )
0 2
o o o o 4 =] o
S L 410 - 2% 41 04
b s
— —
Sequec(Topcg)Sta1ble iQ Sequec(Topcg)Stable Ho(Spectra) % Ho(Spectra)
0

But fitting into such a diagram does not yet uniquely characterize the stable homotopy category. For
instance the trivial category on a single object would also form such a diagram. On the other hand, there is
more canonical structure on the category of pointed topological spaces which is not yet reflected here.

Namely the smash product
A : Ho(Top*/) — Ho(Top*/)

of pointed topological spaces gives it the structure of a monoidal category (def. 1.1 below), and so it is
natural to ask that the above stabilization diagram reflects and respects that extra structure. This means
that there should be a smash product of spectra

A : Ho(Spectra) — Ho(Spectra)
such that (X 4 2*) is compatible, in that
IP(XAY) = (Z°X)A(Z7Y)

(a “strong monoidal functor”, def. 1.47 below).

We had already seen in part 1.1 that Ho(Spectra) is an additive category, where wedge sum of spectra is a
direct sum operation @. We discuss here that the smash product of spectra is the corresponding operation
analogous to a tensor product of abelian groups.

abelian groups spectra
@ direct sum v wedge sum

® tensor product/A smash product]

This further strenghtens the statement that spectra are the analog in homotopy theory of abelian groups. In
particular, with respect to the smash product of spectra, the sphere spectrum becomes a ring spectrum that
is the coresponding analog of the ring of integers.

With the analog of the tensor product in hand, we may consider doing algebra - the theory of rings and
their modules - internal to spectra. This “higher algebra” accordingly is the theory of ring spectra and
module spectra.

algebra homological algebrahigher algebra
abelian group|chain complex spectrum

ring dg-ring ring spectrum
module dg-module module spectrum

Where a ring is equivalently a monoid with respect to the tensor product of abelian groups, we are after a
corresponding tensor product of spectra. This is to be the smash product of spectra, induced by the smash
product on pointed topological spaces.

In particular the sphere spectrum becomes a ring spectrum with respect to this smash product and plays the
role analogous to the ring of integers in abelian groups

abelian groupsspectra
Z integers S sphere spectrum

Using this structure there is finally a full characterization of stable homotopy theory, we state (without
proof) this Schwede-Shipley uniqueness as theorem 5.13 below.

There is a key point to be dealt with here: the smash product of spectra has to exhibit a certain graded
commutativity. Informally, there are two ways to see this:

First, we have seen above that under the Dold-Kan correspondence chain complexes yield examples of
spectra. But the tensor product of chain complexes is graded commutative.
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Second, more fundamentally, we see in the discussion of the Brown representability theorem (here) that
every (sequential) spectrum A induces a generalized homology theory given by the formula X » n.(E A X)

(where the smash product is just the degreewise smash of pointed objects). By the suspension isomorphism
this is such that for X = S™ the n-sphere, then n.-((EAS™) = m,-,(E,). This means that instead of thinking of
a sequential spectrum (def.) as indexed on the natural numbers equipped with addition (N, +), it may be

more natural to think of sequential spectra as indexed on the n-spheres equipped with their smash product
of pointed spaces ({§™},, A).

Proposition 0.1. There are homeomorphisms between n-spheres and their smash products

. cng ny = cngtny
By P STIASTE DS

such that in Ho(Top) there are commuting diagrams like so:

(S™AS"2)AS™ = S"™A(S"2 AS™)
by ny A . lidA¢n2,n3
§nitnz 5 gh3 st pSM2t
Py tngng L bny g +ms

STL1 +TLZ +TL3

and
bny,n,
SMAST2 —5  St2aAS™M
¢n1,n2 1 l‘pnz:'}l
s tng Lnlnz, Ssnatnz

where here (—1)":S™ - S™ denotes the homotopy class of a continuous function of degree
(-D"€eZ=[S"S".

Proof. With the n-sphere S™ realized as the one-point compactification of the Cartesian space R", then ¢

nq,ny

is given by the identity on coordinates and the braiding homeomorphism

b csmasm2 L g2 g gm

nyny
is given by permuting the coordinates:

(xl""'xn1'y1""'yn2) - (y1""'yn2'x1""'xn1) .
This has degree (-1)™"2 . 1

This phenomenon suggests that as we “categorify” the natural numbers to the n-spheres, hence the integers
to the sphere spectrum, and as we think of the nth component space of a sequential spectrum as being the
value assigned to the n-sphere

E, =E(S™

then there should be a possibly non-trivial action of the symmetric group ¥, on E,, due to the fact that there
is such an action of S™ which is non-trivial according to prop. 0.1.

We discuss two ways of making this precise below in Symmetric and orthogonal spectra, and we discuss
how these are unified by a concept of module objects over a monoid object representing the sphere
spectrum below in S-modules.

The general abstract theory for handling this is monoidal and enriched category theory. We first develop the
relevant basics in Categorical algebra.

1. Categorical algebra

When defining a commutative ring as an abelian group A equipped with an associative, commutative and
untial bilinear pairing

AR, A (—)'(—)A

one evidently makes crucial use of the tensor product of abelian groups ®,. That tensor product itself gives
the category Ab of all abelian groups a structure similar to that of a ring, namely it equips it with a pairing

Ab x Ab 22 ap
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that is a functor out of the product category of Ab with itself, satisfying category-theoretic analogs of the
properties of associativity, commutativity and unitality.

One says that a ring 4 is a commutative monoid in the category Ab of abelian groups, and that this concept
makes sense since Ab itself is a symmetric monoidal category.

Now in stable homotopy theory, as we have seen above, the category Ab is improved to the stable
homotopy category Ho(Spectra) (def. \ref{TheStableHomotopyCategory}), or rather to any stable model
structure on spectra presenting it. Hence in order to correspondingly refine commutative monoids in Ab
(namely commutative rings) to commutative monoids in Ho(Spectra) (namely commutative ring spectra),
there needs to be a suitable symmetric monoidal category structure on the category of spectra. Its analog of
the tensor product of abelian groups is to be called the symmetric monoidal smash product of spectra. The
problem is how to construct it.

The theory for handling such a problem is categorical algebra. Here we discuss the minimum of categorical
algebra that will allow us to elegantly construct the symmetric monoidal smash product of spectra.

Monoidal topological categories

We want to lift the concepts of ring and module from abelian groups to spectra. This requires a general idea
of what it means to generalize these concepts at all. The abstract theory of such generalizations is that of
monoid in a monoidal category.

We recall the basic definitions of monoidal categories and of monoids and modules internal to monoidal
categories. We list archetypical examples at the end of this section, starting with example 1.9 below. These
examples are all fairly immediate. The point of the present discussion is to construct the non-trivial example
of Day convolution monoidal stuctures below.

Definition 1.1. A (pointed) topologically enriched monoidal category is a (pointed) topologically
enriched category ¢ (def.) equipped with

1. a (pointed) topologically enriched functor (def.)

®:xC—C

out of the (pointed) topologival product category of ¢ with itself (def. 1.26), called the tensor
product,

2. an object
lecC
called the unit object or tensor unit,

3. a natural isomorphism (def.)

a: (D (NRH)=>(R((H®(-)
called the associator,

4. a natural isomorphism

2:(1® ()= (-)
called the left unitor, and a natural isomorphism
r:(9)®1>(-)

called the right unitor,

such that the following two kinds of diagrams commute, for all objects involved:

1. triangle identity:

ax,1,y

DYy — xQ(1QY)
Px®1y\ /1X®Ay

xQy

2. the pentagon identity:

https://ncatlab.org/nlab/print/Introduction+to+Stable+homotopy+theor...
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w1 & B2
wRxyz p \VIwxy ®z
(WY Qz W x® (y®2))
aw,x,y ®idz | pidw ®ax,y,z
WO E®y)®z P wR (x®y) ®2)

Lemma 1.2. (Kelly 64)

Let (C, ®,1) be a monoidal category, def. 1.1. Then the left and right unitors ¢ and r satisfy the following
conditions:

1.6=7:10151;

2. for all objects x,y € C the following diagrams commutes:

130 R®y

a1y | ox ®idy

10 x®y) o *®y

’

and

LA NG
aixy 1 \idx®ry

x®Y®L — xRy
"xX®y

For proof see at monoidal category this lemma and this lemma.

Remark 1.3. Just as for an associative algebra it is sufficient to demand 1a = a and al = a and (ab)c = a(bc)
in order to have that expressions of arbitrary length may be re-bracketed at will, so there is a coherence
theorem for monoidal categories which states that all ways of freely composing the unitors and associators
in @ monoidal category (def. 1.1) to go from one expression to another will coincide. Accordingly, much as
one may drop the notation for the bracketing in an associative algebra altogether, so one may, with due
care, reason about monoidal categories without always making all unitors and associators explicit.

(Here the qualifier “freely” means informally that we must not use any non-formal identification between
objects, and formally it means that the diagram in question must be in the image of a strong monoidal
functor from a free monoidal category. For example if in a particular monoidal category it so happens that
the object X ® (Y ® Z) is actually equal to (X ® Y) ® Z, then the various ways of going from one expression
to another using only associators and this equality no longer need to coincide.)

Definition 1.4. A (pointed) topological braided monoidal category, is a (pointed) topological monoidal
category € (def. 1.1) equipped with a natural isomorphism

Tx‘y:x®y—>y®x

called the braiding, such that the following two kinds of diagrams commute for all objects involved
(“hexagon identities”):

Ax,y,z TxyQz
—

x®y®z xRz — YR«

l":x,y®1d lay,Z.x

Ay, x,z 1d® 7y, ,
-

0B®N®z YRO(x®2) —— y®(E®x)

and

x@®2) 25 x®)®z 22 ;0 x®y)
lId@Ty,z lai}'y

a;’}’ Tx,z ®1d
QY —3 (x®2)Qy —— (zQNQy
where a,,,:(x ®y) @z~ x ® (y ® z) denotes the components of the associator of co®,

Definition 1.5. A (pointed) topological symmetric monoidal category is a (pointed) topological
braided monoidal category (def. 1.4) for which the braiding

Tx,y:x®y—>y®x

50f 75 09.05.17, 15:55



Introduction to Stable homotopy theory -- 1-2 in nLab

6 of 75

satisfies the condition:
Tyx ° Try = L@y

for all objects x,y

Remark 1.6. In analogy to the coherence theorem for monoidal categories (remark 1.3) there is a
coherence theorem for symmetric monoidal categories (def. 1.5), saying that every diagram built freely
(see remark 1.6) from associators, unitors and braidings such that both sides of the diagram correspond
to the same permutation of objects, coincide.

Definition 1.7. Given a (pointed) topological symmetric monoidal category € with tensor product ® (def.
1.5) it is called a closed monoidal category if for each Y € € the functor Y ® (-) = (-) ® Y has a right
adjoint, denoted hom(Y, —)

hence if there are natural bijections

Hom:(X ® Y,Z) =~ Hom, C(X,hom(Y,Z))
for all objects X,Z € C.
Since for the case that X = 1 is the tensor unit of ¢ this means that
Hom¢ (1, hom(Y, Z)) = Hom(Y,Z2),

the object hom(Y,Z) € € is an enhancement of the ordinary hom-set Hom¢(Y,Z) to an object in C.
Accordingly, it is also called the internal hom between Y and Z.

In a closed monoidal category, the adjunction isomorphism between tensor product and internal hom even
holds internally:

Proposition 1.8. In a symmetric closed monoidal category (def. 1.7) there are natural isomorphisms

hom(X ® Y,Z) = hom(X,hom(Y,Z2))

whose image under Home(1, —) are the defining natural bijections of def. 1.7.

Proof. Let A € ¢ be any object. By applying the defining natural bijections twice, there are composite natural
bijections
Home (A, hom(X ® Y,Z)) ~ Home(AQRQ (X ® Y),Z)
= Home(A® X) ® Y, 2)
=~ Hom¢(A ® X, hom(Y, 2))
=~ Hom¢ (A4, hom(X, hom(Y, 2)))
Since this holds for all 4, the Yoneda lemma (the fully faithfulness of the Yoneda embedding) says that there

is an isomorphism hom(X ® Y,Z) =~ hom(X,hom(Y, Z)). Moreover, by taking A = 1 in the above and using the left
unitor isomorphisms AQ (X ®Y) =XQ®Y and A ® X = X we get a commuting diagram

Hom¢(1,hom(X ® Y,)) — Home(1, hom(X,hom(Y,Z2)))
=1 =
Homq(X ® Y, Z) = Home (X, hom(Y, Z))

Example 1.9. The category Set of sets and functions between them, regarded as enriched in discrete
topological spaces, becomes a symmetric monoidal category according to def. 1.5 with tensor product the
Cartesian product x of sets. The associator, unitor and braiding isomorphism are the evident (almost
unnoticable but nevertheless nontrivial) canonical identifications.

Similarly the category Top,, of compactly generated topological spaces (def.) becomes a symmetric
monoidal category with tensor product the corresponding Cartesian products, hence the operation of
forming k-ified (cor.) product topological spaces (exmpl.). The underlying functions of the associator,
unitor and braiding isomorphisms are just those of the underlying sets, as above.

Symmetric monoidal categories, such as these, for which the tensor product is the Cartesian product are
called Cartesian monoidal categories.
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Both examples are closed monoidal categories (def. 1.7), with internal hom the mapping spaces (prop.).

Example 1.10. The category Topc*g/ of pointed compactly generated topological spaces with tensor product
the smash product A (def.)

is a symmetric monoidal category (def. 1.5) with unit object the pointed 0-sphere s°.

The components of the associator, the unitors and the braiding are those of Top as in example 1.9,
descended to the quotient topological spaces which appear in the definition of the smash product. This
works for pointed compactly generated spaces (but not for general pointed topological spaces) by this

prop..

The category Topc*g/ is also a closed monoidal category (def. 1.7), with internal hom the pointed mapping
space Maps(—, —), (exmpl.)

Example 1.11. The category Ab of abelian groups, regarded as enriched in discrete topological spaces,
becomes a symmetric monoidal category with tensor product the actual tensor product of abelian groups
®, and with tensor unit the additive group Z of integers. Again the associator, unitor and braiding

isomorphism are the evident ones coming from the underlying sets, as in example 1.9.

This is a closed monoidal category with internal hom hom(4, B) being the set of homomorphisms
Hom,y, (4, B) equipped with the pointwise group structure for ¢, ¢, € Homy, (4, B) then

(¢, +¢,)(@) = ¢, (a) + ¢,(b) €B.

This is the archetypical case that motivates the notation “®" for the pairing operation in a monoidal
category:

Example 1.12. The category category of chain complexes Ch,, equipped with the tensor product of chain
complexes is a symmetric monoidal category (def. 1.5).

In this case the braiding has a genuinely non-trivial aspect to it, beyond just the swapping of coordinates
as in examples 1.9, 1.10 and def. 1.11, namely for X,Y € Ch, then

(X ® Y)n = ® an ®Z an

ni+ny=n

and in these components the braiding isomorphism is that of Ab, but with a minus sign thrown in whener
two odd-graded components are commuted.

This is a first shadow of the graded-commutativity that also exhibited by spectra.

(e.g. Hovey 99, prop. 4.2.13)

Algebras and modules

Definition 1.13. Given a (pointed) topological monoidal category (¢, ® ,1), then a monoid internal to
¢ ®,1)is

1. an object A€ ¢C;
2. a morphism e : 1 — A (called the unit)
3. a morphism u: A® A — A (called the product);

such that

1. (associativity) the following diagram commutes

ARHBA 24 4euen 2L 404
A | W
AQA - L a4

where a is the associator isomorphism of C;

2. (unitality) the following diagram commutes:
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e®id id®e

1A — AQRA «— AR1
N L zy
A

where ¢ and r are the left and right unitor isomorphisms of C.

Moreover, if (G, ®,1) has the structure of a symmetric monoidal category (def. 1.5) (G, ®,1,B) with
symmetric braiding 7, then a monoid (4, u,e) as above is called a commutative monoid in (¢, ®,1,B) if in
addition

e (commutativity) the following diagram commutes

AQRA - AR A

A homomorphism of monoids (A, u,,e1) — (4z,4,, f,) IS @ morphism
fiA4; — 4,

in ¢, such that the following two diagrams commute

fefr
A ®A — A, QA

=) LH2

Ay 7> A,

and

Write Mon(C, ®,1) for the category of monoids in ¢, and CMon(C, ®,1) for its subcategory of
commutative monoids.

Example 1.14. Given a (pointed) topological monoidal category (G, ®,1), then the tensor unit 1 is a monoid

in ¢ (def. 1.13) with product given by either the left or right unitor
=7 1151,

By lemma 1.2, these two morphisms coincide and define an associative product with unit the identity
id:1 - 1.

If (¢, ®,1) is a symmetric monoidal category (def. 1.5), then this monoid is a commutative monoid.

Example 1.15. Given a symmetric monoidal category (¢, ® ,1) (def. 1.5), and given two commutative
monoids (E;, u;, e;) i € {1,2} (def. 1.13), then the tensor product E; ® E, becomes itself a commutative
monoid with unit morphism

e Qey

e: 1511 —3E, QE,

(where the first isomorphism is, £;* = ;! (lemma 1.2)) and with product morphism given by

id®7g, F, ®id

i Qu
E'QE, QE,QE; 51®E1®Ez®521—2’51®52

(where we are notationally suppressing the associators and where t denotes the braiding of €).

That this definition indeed satisfies associativity and commutativity follows from the corresponding
properties of (E; u;,e;), and from the hexagon identities for the braiding (def. 1.4) and from symmetry of

the braiding.

Similarly one checks that for E;, = E, = E then the unit maps
E~E®@1-25EQE

F~1QE 3 EQE

and the product map
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u:EQE—E
and the braiding
Tp EQE—>EQE
are monoid homomorphisms, with E ® E equipped with the above monoid structure.

Definition 1.16. Given a (pointed) topological monoidal category (¢, ® ,1) (def. 1.1), and given (4,u,e) a
monoid in (6, ®,1) (def. 1.13), then a left module object in (¢, ®,1) over (4, e) is

1. an object N € C;

2. a morphism p : AQ N — N (called the action);

such that

1. (unitality) the following diagram commutes:

id
10N 25 AN
PV N
N

where ¢ is the left unitor isomorphism of C.

2. (action property) the following diagram commutes

A®HON 2 40ueNn 25 aeN
KON | P
AQN - L 0N

A homomorphism of left A-module objects
(Nl'Pl) - (NZ'pz)
is @ morphism
f:Ni— N,

in ¢, such that the following diagram commutes:

AN, 2L a@n,

P1 | P2

N — N
1 f 2

For the resulting category of modules of left A-modules in ¢ with A-module homomorphisms between
them, we write

AMod(C) .

This is naturally a (pointed) topologically enriched category itself.

Example 1.17. Given a monoidal category (G, ®,1) (def. 1.1) with the tensor unit 1 regarded as a monoid
in a monoidal category via example 1.14, then the left unitor

. :1®C—C

makes every object C € € into a left module, according to def. 1.16, over C. The action property holds due
to lemma 1.2. This gives an equivalence of categories

€ = 1Mod(C)

of ¢ with the category of modules over its tensor unit.

Example 1.18. The archetypical case in which all these abstract concepts reduce to the basic familiar ones
is the symmetric monoidal category Ab of abelian groups from example 1.11.

1. A monoid in (Ab, ®,,Z) (def. 1.13) is equivalently a ring.

2. A commutative monoid in in (Ab, ®,,Z) (def. 1.13) is equivalently a commutative ring R.
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3. An R-module object in (Ab, ®,,Z) (def. 1.16) is equivalently an R-module;

4. The tensor product of R-module objects (def. 1.21) is the standard tensor product of modules.

5. The category of module objects R Mod(Ab) (def. 1.21) is the standard category of modules R Mod.

Example 1.19. Closely related to the example 1.18, but closer to the structure we will see below for
spectra, are monoids in the category of chain complexes (Ch., ® ,Z) from example 1.12. These monoids

are equivalently differential graded algebras.

Proposition 1.20. In the situation of def. 1.16, the monoid (A, u,e) canonically becomes a left module over
itself by setting p = u. More generally, for C € C any object, then A ® C naturally becomes a left A-module
by setting:

p:A®(A®C)¢%A'C>(A®A)®C@>A®C.

The A-modules of this form are called free modules.
The free functor F constructing free A-modules is left adjoint to the forgetful functor U which sends a
module (N, p) to the underlying object U(N, p) := N.

AMod(C) L C.

Ql}—T'ﬂ

Proof. A homomorphism out of a free A-module is a morphism in ¢ of the form
f:AQC—N

fitting into the diagram (where we are notationally suppressing the associator)

A4®c %L agN

u®id l lP
ARQC 7 N

Consider the composite

-~ £ i
Frcli1ecagctn,

i.e. the restriction of f to the unit “in” A. By definition, this fits into a commuting square of the form (where
we are now notationally suppressing the associator and the unitor)

d®f

ARQC —> AQ®N
id®e®idl l:
ARARQC id_®} AQRN

Pasting this square onto the top of the previous one yields

idQfF

ARQC —> AQ®N
id®e®idl l:

AR4®c &5 a@ N
ﬂ®idl lP

ARQC 7 N

where now the left vertical composite is the identity, by the unit law in A. This shows that f is uniquely
determined by f via the relation

f=pe(da®f).
This natural bijection between f and f establishes the adjunction. W

Definition 1.21. Given a (pointed) topological closed symmetric monoidal category (G, ® ,1) (def. 1.5, def.
1.7), given (4,p,e) a commutative monoid in (¢, ® ,1) (def. 1.13), and given (Ny,p,) and (N,,p,) two left
A-module objects (def.1.13), then

1. the tensor product of modules N; ®, N, is, if it exists, the coequalizer
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N1®p,
e coeq
N, ®AQ®N, Ny ®N; — Ny Q, N,
p1°(TN,,A®N3)

and if A® (-) preserves these coequalizers, then this is equipped with the left A-action induced from
the left A-action on N,

2. the function module hom,(N,, N,) is, if it exists, the equalizer

hom(p,,N7)

hom, (N1, Ny) =5 hom(Ny, Ny) hom(4 ® Ny, N,) .
hom(A®N1,p,)° (AR (-))

equipped with the left A-action that is induced by the left A-action on N, via

A @ hom(X,N,) — hom(X,N,)

- .
A®hom(X,N) @ X 2% 4@ N, 22 N,

(e.g. Hovey-Shipley-Smith 00, lemma 2.2.2 and lemma 2.2.8)

Proposition 1.22. Given a (pointed) topological closed symmetric monoidal category (C, ®,1) (def. 1.5,
def. 1.7), and given (A,u,e) a commutative monoid in (€, ® ,1) (def. 1.13). If all coequalizers exist in C,
then the tensor product of modules @ , from def. 1.21 makes the category of modules AMod(C) into a
symmetric monoidal category, (AMod, ®,,A) with tensor unit the object A itself, regarded as an A-module
via prop. 1.20.

If moreover all equalizers exist, then this is a closed monoidal category (def. 1.7) with internal hom given
by the function modules hom, of def. 1.21.

(e.g. Hovey-Shipley-Smith 00, lemma 2.2.2, lemma 2.2.8)

Proof sketch. The associators and braiding for ® , are induced directly from those of ® and the universal
property of coequalizers. That A is the tensor unit for @, follows with the same kind of argument that we
give in the proof of example 1.23 below. N

Example 1.23. For (4,u,e) a monoid (def. 1.13) in a symmetric monoidal category (G, ® ,1) (def. 1.1), the
tensor product of modules (def. 1.21) of two free modules (def. 1.20) A® €, and A ® C, always exists and
is the free module over the tensor product in € of the two generators:

(ABCHV,(ARC)=AR(C1R®C,) .

Hence if ¢ has all coequalizers, so that the category of modules is a monoidal category (AMod, ®,,4)
(prop. 1.22) then the free module functor (def. 1.20) is a strong monoidal functor (def. 1.47)

F:( ®,1) = (AMod, ®,,4) .

Proof. It is sufficient to show that the diagram

u®id

LN u
AQARA AQA— A

id®u

is a coequalizer diagram (we are notationally suppressing the associators), hence that A ®, A =~ 4, hence
that the claim holds for ¢; =1 and ¢, = 1.

To that end, we check the universal property of the coequalizer:

First observe that u indeed coequalizes id ® u with ¢ ® id, since this is just the associativity clause in def.
1.13. So for f:A® A — Q any other morphism with this property, we need to show that there is a unique
morphism ¢:4 — Q@ which makes this diagram commute:

u

ARA — A
fl g
Q

We claim that
r1 id®e f
¢:A7A®1—>A®A—>Q,

where the first morphism is the inverse of the right unitor of C.

First to see that this does make the required triangle commute, consider the following pasting composite of
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commuting diagrams

AR A — A
id®r’1l I

A401 Y8 A®1

id®e | ~Lid®.€

AR4AR4 “CS A®a

deu | lf
AR A - Q
Here the the top square is the naturality of the right unitor, the middle square commutes by the functoriality

of the tensor product ® : € x ¢ — € and the definition of the product category (def. 1.26), while the
commutativity of the bottom square is the assumption that f coequalizes id ® u with ¢ ® id.

Here the right vertical composite is ¢, while, by unitality of (4, y e), the left vertical composite is the identity
on A, Hence the diagram says that ¢ o u = f, which we needed to show.

It remains to see that ¢ is the unique morphism with this property for given f. For that let q:4 - Q be any
other morphism with g o u = f. Then consider the commuting diagram

AR1 & A
id®el N

-

3

ARA 5 4
i Z,
Q

where the top left triangle is the unitality condition and the two isomorphisms are the right unitor and its
inverse. The commutativity of this diagram says thatq=¢. N1

Definition 1.24. Given a monoidal category of modules (4AMod, ® ,,4) as in prop. 1.22, then a monoid
(E,u,e) in (AMod, ®,,A) (def. 1.13) is called an A-algebra.

Propposition 1.25. Given a monoidal category of modules (AMod, ® ,,A) in a monoidal category (€, ®,1)
as in prop. 1.22, and an A-algebra (E,u,e) (def. 1.24), then there is an equivalence of categories

AAlg (€) == CMon(AMod) = CMon(C’)A/

comm

between the category of commutative monoids in AMod and the coslice category of commutative monoids
in ¢ under A, hence between commutative A-algebras in C and commutative monoids E in C that are
equipped with a homomorphism of monoids A — E.

(e.g. EKMM 97, VII lemma 1.3)

Proof. In one direction, consider a A-algebra E with unit e; : A — E and product Hg a0 E Q4 E— E. There is
the underlying product u,

coeq

EQAQE __ E®E ~5 E®,E

HE/A
YL

E

By considering a diagram of such coequalizer diagrams with middle vertical morphism ez o e,, one find that
this is a unit for u, and that (E, u,, ez o e,) is @ commutative monoid in (¢, ®,1).

Then consider the two conditions on the unit e;: 4 — E. First of all this is an A-module homomorphism, which
means that

id
A4 B 4xE

(*) “Al 1P
A — E

commutes. Moreover it satisfies the unit property
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es®id
=

AQ,E EQ,E
-\ l”E/A
E
By forgetting the tensor product over 4, the latter gives

AQE &Y E®E

! 1 AQE ep ®id EQE
AR, E 28 F@,E = Pl e,

= i”E/A E E) E
E = E

where the top vertical morphisms on the left the canonical coequalizers, which identifies the vertical
composites on the right as shown. Hence this may be pasted to the square () above, to yield a commuting

square
id® ®id ®
AQA 5 AQE 25 EQE AQA E25 FQE
Ha | Pl HE = Ha | LHE
A — E — E A — E
eg id ep

This shows that the unit e, is a homomorphism of monoids (4,u,,e,) — (E, pi,, eg © e4)-

Now for the converse direction, assume that (4,u,,e,) and (E,u,,e'y) are two commutative monoids in
(6, ®,1) with ez : A - E a monoid homomorphism. Then E inherits a left A-module structure by

p  AQEA®SEQE"EE.

By commutativity and associativity it follows that u, coequalizes the two induced morphisms

EFERAR E:E ® E. Hence the universal property of the coequalizer gives a factorization through some
Mg a0 E @y E— E. This shows that (E\ g, 40 €5) is a commutative A-algebra.

Finally one checks that these two constructions are inverses to each other, up to isomorphism. N

Topological ends and coends

For working with pointed topologically enriched functors, a certain shape of limits/colimits is particularly
relevant: these are called (pointed topological enriched) ends and coends. We here introduce these and then
derive some of their basic properties, such as notably the expression for topological left Kan extension in
terms of coends (prop. 1.38 below). Further below it is via left Kan extension along the ordinary smash
product of pointed topological spaces (*Day convolution”) that the symmetric monoidal smash product of
spectra is induced.

Definition 1.26. Let ¢, D be pointed topologically enriched categories (def.), i.e. enriched categories over
(Top, A,S°) from example 1.10.

1. The pointed topologically enriched opposite category ¢ is the topologically enriched category
with the same objects as ¢, with hom-spaces

CP(X,Y) = C(Y,X)
and with composition given by braiding followed by the composition in C:
COP(X, Y) ACOP(Y,Z) = C(Y,X) AC(Z,Y) — C(Z,Y) AC(Y,X) 225 0(Z,X) = €P(X,2) .

2. the pointed topological product category ¢ x D is the topologically enriched category whose
objects are pairs of objects (c,d) with ¢ € ¢ and d € D, whose hom-spaces are the smash product of
the separate hom-spaces

(€ xXD)((c1,d1), (€2,d3)) = C(cy,¢2) AD(dy,d7)

and whose composition operation is the braiding followed by the smash product of the separate
composition operations:

13 of 75 09.05.17, 15:55



Introduction to Stable homotopy theory -- 1-2 in nLab https://ncatlab.org/nlab/print/Introduction+to+Stable+homotopy+theor...

(€ X D)((€1,d1), (€2,d2)) A(CXD)((c2,dz), (c3,d3))
=1l
(C(c1,€2) AD(dy,d3)) A(C(cz,c3) AD(dy, d3))
,LT

(°cq,c0,c3 INC°d,,dy,ds )
(C(c1,¢2) AC(cy c)) A (D(dy, dp) AD(dy,dy)) — —228 B, e cy) AD(dy, d3)

-
(€ xD)((c1,d1), (€3,d3))

Example 1.27. A pointed topologically enriched functor (def.) into Topc*g/ (exmpl.) out of a pointed
topological product category as in def. 1.26

F: €xD — Top,)
(a “pointed topological bifunctor”) has component maps of the form
Feyd)(cpdy) * C(c1,€2) AD(dy, dz) — Maps(Fo((c1,d1)), Fo((c2,d2))), -
By functoriality and under passing to adjuncts (cor.) this is equivalent to two commuting actions

P (d) : C(cq,c2) AFo((c1,d)) — Fo((cz2, D))

c1,C2

and
Pa,.a,(€) : D(d1,d2) AFo((c,d1)) — Fo((c,d2)) -

In the special case of a functor out of the product category of some € with its opposite category (def.
1.26)

F: €% x € — Top,/

then this takes the form of a “pullback action” in the first variable

P (d) : C(cy,c2) ANFo((c2,d)) — Fo((c1,d))

C2,C1
and a “pushforward action” in the second variable
Pa,.a,(©) : C(d1,d2) AFo((c,d1)) — Fo((c,d2)) -

Definition 1.28. Let ¢ be a small pointed topologically enriched category (def.), i.e. an enriched category
over (Topc*g/, A,S% from example 1.10. Let

F: €% x € — Top,/

be a pointed topologically enriched functor (def.) out of the pointed topological product category of ¢ with
its opposite category, according to def. 1.26.

cec

1. The coend of F, denoted [ F(c,c), is the coequalizer in Tong (prop., exmpl., prop., cor.) of the two
actions encoded in F via example 1.27:

caPed@

cec
U (e, d) AF(d,c) UF(C, o) <9 f F(cc) .

cdec C"Jdp(d,c)(c) cec

2. The end of F, denoted [ F(c,c), is the equalizer in Top;‘g/ (prop., exmpl., prop., cor.) of the adjuncts
cecC
of the two actions encoded in F via example 1.27:

P (d)

fF(c, ) = l_[ F(c,0) 1_[ Maps(C(c,d), F(c,d)), .

A cec cudﬁ(c,d)(c) cec
c ,

Example 1.29. Let G be a topological group. Write B(G..) for the pointed topologically enriched category
that has a single object *, whose single hom-space is G, (G with a basepoint freely adjoined (def.))

B(G)(*, *) =Gy

and whose composition operation is the product operation (-) - (-) in ¢ under adjoining basepoints
(exmpl.)
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(=) ()
Gy NGy = (GXG), — G .

Then a topologically enriched functor

(X,p) : B(G,) — Topg,
is a pointed topological space X := F(*) equipped with a continuous function
p G ANX—X

satisfying the action property. Hence this is equivalently a continuous and basepoint-preserving left action
(non-linear representation) of G on X.

The opposite category (def. 1.26) (B(G.))°? comes from the opposite group

(B(G,))* = B(GP) .

(The canonical continuous isomorphism G = ¢°? induces a canonical eugivalence of topologically enriched
categories (B(G,))°® ~ B(G,).)

So a topologically enriched functor
(¥.p,) : (B(G1))*® — Top,,
is equivalently a basepoint preserving continuous right action of G.
Therefore the coend of two such functors (def. 1.28) coequalizes the relation
(xg, y) ~ (% gy)

(where juxtaposition denotes left/right action) and hence is equivalently the canonical smash product of a
right G-action with a left G-action, hence the quotient of the plain smash product by the diagonal action of
the group G:

*€B(G4)

(V,p)(*) A (X,p)(*) = YAGX .

Example 1.30. Let ¢ be a small pointed topologically enriched category (def.). For F,G : ¢ — Topc*g/ two
pointed topologically enriched functors, then the end (def. 1.28) of Maps(F(-),G(-)), is a topological space
whose underlying pointed set is the pointed set of natural transformations F — G (def.):

U( f Maps(F(c),G(c))*) = Hom, o, (F6).

cec

Proof. The underlying pointed set functor U:Topc*g/ - Set*/ preserves all limits (prop., prop., prop.). Therefore
there is an equalizer diagram in Set*/ of the form

U, U(pg, (@)

U( f Maps(F(c),G(c))*) cay 1_[HomTopé J(F(©),6(0) 1_[ Hom, ./ (C(c, ), Maps(F(e), G(d)).) -

ceC U UPca)(©)cdec
cec cd @d

Here the object in the middle is just the set of collections of component morphisms {F(c) X G(c)} . The two
ce

parallel maps in the equalizer diagram take such a collection to the functions which send any ¢ EN d to the
result of precomposing

F(c)
JON

F(d) o> G(d)

and of postcomposing

F(c) — G(c)
160

G(d)

each component in such a collection, respectively. These two functions being equal, hence the collection
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{n.}.cc being in the equalizer, means precisley that for all ¢,d and all f:c - d the square

F© 5 6o

F) | 160

F(d) w2 G(9)
d

is a commuting square. This is precisley the condition that the collection {n_} ., be a natural
transformation. W

Conversely, example 1.30 says that ends over bifunctors of the form Maps(F(-),G(-))), constitute
hom-spaces between pointed topologically enriched functors:

Definition 1.31. Let ¢ be a small pointed topologically enriched category (def.). Define the structure of a
pointed topologically enriched category on the category [C, Topc"g/] of pointed topologically enriched functors
to Topjg/ (exmpl.) by taking the hom-spaces to be given by the ends (def. 1.28) of example 1.30:

[, Top./1(F,G) = f Maps(F(c), G(c)),

cec

The composition operation on these is defined to be the one induced by the composite maps

(°F(c),G(c), )
F(c),G(c),H(c) )cee l_[Maps(F(c),H((

ceC

( f Maps(F(c), G(c))*) /\( f Maps(G(c),H(c))*) — [ [Maps(E(@), 6, A Maps(Ge), H(e)),
ceC cec cee
where the first, morphism is degreewise given by projection out of the limits that defined the ends. This

composite evidently equalizes the two relevant adjunct actions (as in the proof of example 1.30) and
hence defines a map into the end

( fMaps(F(c),G(c))*) A( fMaps(G(c),H(c))*) — fMaps(F(c),H(c))* .
cec cec cec

The resulting pointed topologically enriched category [C, Topc*g/

category over ¢ with coefficients in Topc*g/.

] is also called the Top;‘g/-enriched functor

This yields an equivalent formulation in terms of ends of the pointed topologically enriched Yoneda lemma
(prop.):

Proposition 1.32. (topologically enriched Yoneda lemma)

Let ¢ be a small pointed topologically enriched categories (def.). For F:C - Topc*g/ a pointed topologically
enriched functor (def.) and for ¢ € C an object, there is a natural isomorphism

[€, Topgg 1(C(c, =), F) = F(c)

between the hom-space of the pointed topological functor category, according to def. 1.31, from the
functor represented by ¢ to F, and the value of F on c.

In terms of the ends (def. 1.28) defining these hom-spaces, this means that

Maps(C(c, d), F(d)), = F(c) .
aec

In this form the statement is also known as Yoneda reduction.

The proof of prop. 1.32 is formally dual to the proof of the next prop. 1.33.

Now that natural transformations are expressed in terms of ends (example 1.30), as is the Yoneda lemma
(prop. 1.32), it is natural to consider the dual statement involving coends:

Proposition 1.33. (co-Yoneda lemma)

Let ¢ be a small pointed topologically enriched category (def.). For F:C — Topjg/ a pointed topologically
enriched functor (def.) and for ¢ € C an object, there is a natural isomorphism
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cec

F(-) = f Clc, =) NF(c) .

Moreover, the morphism that hence exhibits F(c) as the coequalizer of the two morphisms in def. 1.28 is
componentwise the canonical action

e(c,d) AF(c) — F(d)

which is adjunct to the component map €(d, c) — Maps(F(c), F(d)), of the topologically enriched functor F.

(e.g. MMSS 00, lemma 1.6)

Proof. The coequalizer of pointed topological spaces that we need to consider has underlying it a
coequalizer of underlying pointed sets (prop., prop., prop.). That in turn is the colimit over the diagram of
underlying sets with the basepointe adjoined to the diagram (prop.). For a coequalizer diagram adding that
extra point to the diagram clearly does not change the colimit, and so we need to consider the plain
coequalizer of sets.

That is just the set of equivalence classes of pairs

(c = ¢, x) €C(c,co) NF(0),
where two such pairs
(c EA co» XEF(c)), (d 5 Co, ¥ EF(d))

are regarded as equivalent if there exists

such that
f=9°¢, and y=¢).

(Because then the two pairs are the two images of the pair (g,x) under the two morphisms being
coequalized.)

But now considering the case that d = ¢, and g = id., so that f = ¢ shows that any pair

2 ¢, x€F)
is identified, in the coequalizer, with the pair
(id¢,, @(x) € F(co)),
hence with ¢(x) € F(c).

This shows the claim at the level of the underlying sets. To conclude it is now sufficient (prop.) to show that
the topology on F(cy) € Topc*g/ is the final topology (def.) of the system of component morphisms

C(d,c) NF(c) — f@(c, co) NF(c)

which we just found. But that system includes
C(c,c) NF(c) — F(c)
which is a retraction
id : F(c) — €(c,c) AF(c) = F(c)

and so if all the preimages of a given subset of the coequalizer under these component maps is open, it
must have already been open in F(c). N

Remark 1.34. The statement of the co-Yoneda lemma in prop. 1.33 is a kind of categorification of the
following statement in analysis (whence the notation with the integral signs):

For X a topological space, f:X — R a continuous function and §(—,x,) denoting the Dirac distribution, then

f 8(x,x0)f(x) = f(xo) -
xEX
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It is this analogy that gives the name to the following statement:
Proposition 1.35. (Fubini theorem for (co)-ends)

For F a pointed topologically enriched bifunctor on a small pointed topological product category €, X C,
(def. 1.26), i.e.

F: (€ % €)™ x (€, X €;) — Top,/

then its end and coend (def. 1.28) is equivalently formed consecutively over each variable, in either order:

(c1,¢2) €1 €3 €3 €1

f F((CDCZ)' (CI'CZ)) = ffF((CI'CZ)' (CI'CZ)) = ffF((Cl'CZ)' (CI'CZ))
fF((CDCZ)'(Cl'CZ)) = ffF((Cl'Cz)'(Cl'Cz)) = ffF((Cl'Cz)'(Cl'Cz))-

(c1,¢2) c1 ¢ ¢z €1

and

Proof. Because limits commute with limits, and colimits commute with colimits. R

Remark 1.36. Since the pointed compactly generated mapping space functor (exmpl.)
/\°P N N
Maps(—, —), : (Topcg/) X Topcg/ — Topcg/

takes colimits in the first argument and limits in the second argument to limits (cor.), it in particular takes
coends in the first argument and ends in the second argument, to ends (def. 1.28):

Maps(X, fF(c, 0), = fMaps(X,F(c, c),)

c

and

Maps(f F(cc), Y), = fMaps(F(c, c),Y),.

c

With this coend calculus in hand, there is an elegant proof of the defining universal property of the smash
tensoring of topologically enriched functors [C, Top;g] (def.)

Proposition 1.37. For C a pointed topologically enriched category, there are natural isomorphisms

[€, Top,/I(X AK, ¥) = Maps(K, [€,Topg/|(X,V)).
and
[€, Top,/1(X, Maps(K,Y),) = Maps(K, [C,Top./](X,Y))
for all X, € [¢,Top./] and all K € Top,.
In particular there is the combined natural isomorphism
[C.Top/IX AK,Y) = [€,Top./](X, Maps(K,Y),)

exhibiting a pair of adjoint functors

(—)AK
e, Topc*g/] L [CTopg].
Maps(K, -),

Proof. Via the end-expression for [C, Topc"g/](—, —) from def. 1.31 and the fact (remark 1.36) that the pointed
mapping space construction Maps(—, —), preserves ends in the second variable, this reduces to the fact that
Maps(—, —), is the internal hom in the closed monoidal category Topc*g/ (example 1.10) and hence satisfies the
internal tensor/hom-adjunction isomorphism (prop. 1.8):
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[, Tope, 1(X AK,Y) = [Maps((X AK)(c), Y(c)),

~ {Maps(X(c) AK,Y(x)),

~ { Maps(K, Maps(X(c), Y(c)),),

~ Maps(K, { Maps(X(c), Y(c))),

= Maps(K, [€, Top./1(X, 1)),

and
(€, Tope{ 1(X, Maps(K, ¥),) = [ Maps(X(c), (Maps(K, 1)) (©)),

~ {Maps(X(C).MaPS(K, Y(e),),
~ { Maps(X(c) AK,Y(c)),
~ { Maps(K, Maps(X(c), Y(c)),).,
~ Maps(K, { Maps(X(c), Y(c)),),

= Maps(K, [C, Top./](X, Y)), -

Proposition 1.38. (left Kan extension via coends)

Let ¢,D be small pointed topologically enriched categories (def.) and let

p:C—D

be a pointed topologically enriched functor (def.). Then precomposition with p constitutes a functor

p* : [D,Top,]] — [C,Top, ]

G = G o p. This functor has a left adjoint Lan,,, called left Kan extension along p

Lanp
D,Top./]1 L [C, Top./
[D,Topg] L [C Topg]
o

which is given objectwise by a coend (def. 1.28):

cec

(Lan, F) : d v fD(p(c),d)/\F(c).

Proof. Use the expression of natural transformations in terms of ends (example 1.30 and def. 1.31), then
use the respect of Maps(—, —), for ends/coends (remark 1.36), use the smash/mapping space adjunction
(cor.), use the Fubini theorem (prop. 1.35) and finally use Yoneda reduction (prop. 1.32) to obtain a
sequence of natural isomorphisms as follows:

[D, Tong/](Lanp F,6)= | Maps((Lan, F)(d), G(d)),
deD

CEC

= dngaps( J Dp(c),d) AF(c), G(d)).

R

J | Maps(D(p(c),d) AF(c), G(d)),
d€eDceC

R

Ci Mg ,Maps(F (), Maps(D(p(©), ), G(d).).

IR

cchaps(F(c), diD Maps(D(p(c), d), G(d)),),
~ cchaps(F(C). G(p(0)),

= [C, Top./1(F,p"G)

Topological Day convolution

Given two functions f,,f,:G — C on a group (or just a monoid) G, then their convolution product is,
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whenever well defined, given by the sum

Forfyigm ) F0) f,09,)

91°92=9

The operation of Day convolution is the categorification of this situation where functions are replaced by
functors and monoids by monoidal categories. Further below we find the symmetric monoidal smash product
of spectra as the Day convolution of topologically enriched functors over the monoidal category of finite
pointed CW-complexes, or over sufficiently rich subcategories thereof.

Definition 1.39. Let (¢, ®,1) be a small pointed topological monoidal category (def. 1.1).

Then the Day convolution tensor product on the pointed topological enriched functor category [C, Topc*g/]
(def. 1.31) is the functor

®pay * [C Topc*g/] x [C, Topc*g/] — [C, Topc*g/]

out of the pointed topological product category (def. 1.26) given by the following coend (def. 1.28)

(c1,c3)ECXC

XQpayYic m Clc; ® cy, ) ANX(c ) ANY(cy) -

Example 1.40. Let Seq denote the category with objects the natural numbers, and only the zero morphisms
and identity morphisms on these objects (we consider this in a braoder context below in def. 2.4):

0 _
S° ifny =n,

Seq(nq,ny) :={ B
*  otherwise

Regard this as a pointed topologically enriched category in the unique way. The operation of addition of
natural numbers ® = + makes this a monoidal category.

An object X. € [Seq, Topc*g/] is an N-sequence of pointed topological spaces. Given two such, then their Day
convolution according to def. 1.39 is

(nq,n2)

(X ®pay V), = [ Seq(n; +n,,n) AXn, NXn,

= [Iny+n, (Xn1 /\an)

=n

We observe now that Day convolution is equivalently a left Kan extension (def. 1.38). This will be key for
understanding monoids and modules with respect to Day convolution.

Definition 1.41. Let ¢ be a small pointed topologically enriched category (def.). Its external tensor
product is the pointed topologically enriched functor

A G, Top;g/] x [C, Topc*g/] — [CXC, Topc*g/]

from pairs of topologically enriched functors over mmathcal C to topologically enriched functors over the
product category € x € (def. 1.26) given by

XAY = Ao(X,Y),

(XAY)(c1,c2) = X(c) AX(cz) -

Proposition 1.42. For (¢, ® 1) a pointed topologically enriched monoidal category (def. 1.1) the Day
convolution product (def. 1.39) of two functors is equivalently the left Kan extension (def. 1.38) of their
external tensor product (def. 1.41) along the tensor product ® :C x C: there is a natural isomorphism

X ®p,y ¥ = Lang (XAY) .

Hence the adjunction unit is a natural transformation of the form

XAY /
CxceC —>  Topg,
AV 7X @pay ¥’
c

This perspective is highlighted in (MMSS 00, p. 60).

Proof. By prop. 1.38 we may compute the left Kan extension as the following coend:
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(€1,¢2)

Lang (X AY)(c) = [ Clc; ®p ez, 0) AXAY)(cy,c5)

(€1,¢2)

= [ €1 ®cre) AX(c) AX(cr)

Proposition 1.42 implies the following fact, which is the key for the identification of “functors with smash
product” below and then for the description of ring spectra further below.

Corollary 1.43. The operation of Day convolution ®y,, (def. 1.39) is universally characterized by the
property that there are natural isomorphisms

[C,Topel1(X ®pay ¥, 2) = [€ X C,Topyd [XAY, Zo @),

where A is the external product of def. 1.41, hence that natural transformations of functors on C of the
form

(X ®pay V() — Z(c)

are in natural bijection with natural transformations of functors on the product category mmathcal C x C
(def. 1.26) of the form

X(c)AY(cz2) = Z(c; D cy) -
Write

y:CP? — [C,Topc*g/]

for the Topc*g/—Yoneda embedding, so that for ¢ € ¢ any object, y(c) is the corepresented functor

y(c):d - C(c,d).

Proposition 1.44. For (¢, ® ,1) a small pointed topological monoidal category (def. 1.1), the Day
convolution tensor product ®y,, of def. 1.39 makes the pointed topologically enriched functor category

([C. Topeg ], ®pay »y(1)

into a pointed topological monoidal category (def. 1.1) with tensor unit y(1) co-represented by the tensor
unit 1 of C.

Moreover, if (G, ®,1) is equipped with a (symmetric) braiding ¢ (def. 1.4), then so is
([€,Topgy ], @pay , ¥(1).

Proof. Regarding associativity, observe that

(c1,¢2) (dy,dz)
(X Qpay (Y ®pay £))(c) = J Cles®c nX(e)n [ Cldy ®dycy)(Y(dy) AZ(dy))
cq,dq,dyCp
= [ Jelei ®cyo)AC(dy ® dy,cz) A (X(cr) A (Y(dy) AZ(dR)))
=C(c1 ®(d1 ®¢ d3).0)

cq,dq,dy
= | Cle1 ® (dr ®dy),c) A(X(cr) A(Y(dr) AZ(d2)))

€1,€2,C3

= | €y ® (e ®c3),0) A(X(er) A(Y(e2) AZ(c3)))

where we used the Fubini theorem for coends (prop. 1.35) and then twice the co-Yoneda lemma (prop.

1.33). Similarly
(c1,¢2) (d1,d2)
((X ®pay ¥) Bpay 2)(c) = J elei®cnon [ Cdy @dycr) AX(dy) AY(d) AY(cy)

Cp,dq,dycq

= [ [l ®cyc)AC(dy ® dycy) A((X(dy) AY(dy)) AZ(cy))

=C((d1 ®dz)®c3)

Cp,dq,dy

= [ e((d ®dy) ®cy) A((X(dr) AY(dy)) AZ(cy))

= [ eler ® ) ® cs) A((X(er) AY(e)) AZ(es))

o/
So we obtain an associator by combining, in the integrand, the associator o€ of (¢, ® ,1) and t"°P<¢ of
(Top;/, A,5% (example 1.10):
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€1,69,C3
((X @pay ¥) Opay 2)(¢) = I elles ® ) ® e3) A ((X(er) AY(e)) AZ(c3))
a)]?’?,z(c) 1 1 v fz 3C(agl'cz'cs’C)Aax(o:c)%x(cz),x(q)
c1,65,C3
X Qpay (¥ Opay 2)(©) = [ Cler ® (c2 ® ¢3),¢) A(X(er) A (Y(e2) AZ(c3))

It is clear that this satisfies the pentagon identity, since ¢ and tT°P< do.

To see that y(1) is the tensor unit for ®p,,, use the Fubini theorem for coends (prop. 1.35) and then twice
the co-Yoneda lemma (prop. 1.33) to get for any X € [C,Topc*g/] that

cq1,c2€C
X ®pay ¥(1) = I Cler ®p ¢z =) AX(cr) AC(L,c))
c1 ECcyEC

f C(c1 Qe 2, =) AC(1,c3) ANX(cy)

R

¢, €EC

= fC(C1®81,—)/\X(C1)
c1 €EC

= [ Cler, ) AX(cy)

= X(-)

=X

Hence the right unitor of Day convolution comes from the unitor of ¢ under the integral sign:

fee ®1,0 %)

(X ®Day Y(l))(c) =
(o
SO . { e, onxien
51
X(c) =~ [e(cr,0) AX(cy)

Analogously for the left unitor. Hence the triangle identity for ®y,,, follows from the triangle identity in ¢
under the integral sign.

Similarly, if ¢ has a braiding ¢, it induces a braiding t°® under the integral sign:

T ety ® c30) AX(er) AY(c2)

(X ®Day Y)(c) =
c1,Cp «/
XY © | ! €y N (1), X (e)
€1,C2
Y ®Day X)(c) = ) C(c; @ ci,0) NY(cy) ANX(cq)

«/
and the hexagon identity for tP% follows from that for z¢ and 7Pz 1
Moreover:

Proposition 1.45. For (C, ® ,1) a small pointed topological symmetric monoidal category (def. 1.5), the
monoidal category with Day convolution ([C, Topc*g/ 1, ®pay,¥(1)) from def. 1.44 is a closed monoidal

category (def. 1.7). Its internal hom [—, is given by the end (def. 1.28)

_] Day

[X, Y],y (0) = fMapS(C’(C ® c1,¢2), Maps(X(c1), Y(c2)),), -

c1,¢2

Proof. Using the Fubini theorem (def. 1.35) and the co-Yoneda lemma (def. 1.33) and in view of definition
1.31 of the enriched functor category, there is the following sequence of natural isomorphisms:

[C.VI(X. 1Y, Z]p,,) = [Maps(X(c), | Maps(C(c ® c1,¢;), Maps(¥(€1),2(c)),),)

*

=[ [ Maps(C(c® c1,¢2) AX(c) AY(c1), Z(cy)),

ccy,cp

= [ Maps( | Clc ® cy,c2) AX(S) AY(ey), Z(cy)).

= [ Maps((X @pay 1)(c2), 2(c2)),

= [CV](X ®pay Y. 2)
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Proposition 1.46. In the situation of def. 1.44, the Yoneda embedding c - C(c, —) constitutes a strong
monoidal functor (def. 1.47)

€ ®,1) 5 ([CV], ®pay . y(D) -

Proof. That the tensor unit is respected is part of prop. 1.44. To see that the tensor product is respected,
apply the co-Yoneda lemma (prop. 1.33) twice to get the following natural isomorphism

dq,dy
((€1) ®pay ¥(€))(©) = [ €(dy ® dy,¢) AC(cy,dy) AC(cy, dy)
=~ C(c; @ c3,0)
=y(c1 ® ¢)(0)

Functors with smash product

Since the symmetric monoidal smash product of spectra discussed below is an instance of Day convolution
(def. 1.39), and since ring spectra are going to be the monoids (def. 1.13) with respect to this tensor
product, we are interested in characterizing the monoids with respect to Day convolution. These turn out to
have a particularly transparent expression as what is called functors with smash product, namely lax
monoidal functors from the base monoidal category to Top;‘g/. Their components are pairing maps of the form

Rnl A an - Rnl +ny

satisfying suitable conditions. This is the form in which the structure of ring spectra usually appears in
examples. It is directly analogous to how a dg-algebra, which is equivalently a monoid with respect to the
tensor product of chain complexes (example 1.19), is given in components .

Here we introduce the concepts of monoidal functors and of functors with smash product and prove that
they are equivalently the monoids with respect to Day convolution.

Definition 1.47. Let (G, ®.,1¢) and (D, ®,,15) be two (pointed) topologically enriched monoidal categories
(def. 1.1). A topologically enriched lax monoidal functor between them is

1. a topologically enriched functor

F:¢c—D,
2. a morphism
€:1p — F(1p)

3. a natural transformation

Hey t F(O) ®p F(¥) = F(x ®¢ ¥)
forallx,yec
satisfying the following conditions:

1. (associativity) For all objects x,y,z € C the following diagram commutes

oD
F(x),F(y),F(z)

(F(x) ®p F(¥)) ®y F(2) F(x) @p (F(y) ®p F(2))
Hyy ®id | 4@y,

F(x ®c¥) ®p F(2) F(x) ®p (F(x Qe ¥) -
Hx®c v,z 1 l”x.y®el

F((x ®c y) ®c 2) — Fx Qe (v Q¢ 2))

F(a;?,y,z)
where af and a® denote the associators of the monoidal categories;

2. (unitality) For all x € ¢ the following diagrams commutes

®id
1p ®p FX) == F(le) ®p F(x)
[?(x) 1 l”lc,x

FeS)

F(x) — F1Q®:x)

and
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e
F(O) ®plp —5 F(x) ®p F(le)
"RG0 1 e

F(r)

F(x) — Fx®:1)

where £, £2, r¢, P denote the left and right unitors of the two monoidal categories, respectively.

If e and alll Ky, are isomorphisms, then F is called a strong monoidal functor.

If moreover (G, ®.,1¢) and (D, ®,,1p) are equipped with the structure of braided monoidal categories
(def. 1.4) with braidings ¢ and 2, respectively, then the lax monoidal functor F is called a braided
monoidal functor if in addition the following diagram commutes for all objects x,y € ¢

D
TF(x),F(y)

F) ®c F(y) —— F(») ®p F(x)
Hxy | LHyx

F(x®cy) — F(y ® x)
F(tx,y)
A homomorphism f : (Fy,u,,€) — (F2,u,,€;) between two (braided) lax monoidal functors is a monoidal
natural transformation, in that it is a natural transformation f, : F;(x) — F,(x) of the underlying
functors

compatible with the product and the unit in that the following diagrams commute for all objects x,y € C:

£ ®p f)
F1(%) @p F1(y) ——— F5(x) @ F2(¥)
(”l)x,y 1 l(ﬂz)x,y
Fi(x Q¢ y) ey Fa(x Qe y)
and
1p
€1y \ €2
Fi(1e) m Fy(1e)

We write MonFun(C, D) for the resulting category of lax monoidal functors between monoidal categories ¢
and D, similarly BraidMonFun(C, D) for the category of braided monoidal functors between braided monoidal
categories, and SymMonFun(C, D) for the category of braided monoidal functors between symmetric
monoidal categories.

Remark 1.48. In the literature the term “monoidal functor” often refers by default to what in def. 1.47 is
called a strong monoidal functor. But for the purpose of the discussion of functors with smash product
below, it is crucial to admit the generality of lax monoidal functors.

If (6, ®¢,1¢) and (D, ®4,1p) are symmetric monoidal categories (def. 1.5) then a braided monoidal
functor (def. 1.47) between them is often called a symmetric monoidal functor.

Proposition 1.49. For ¢ Lo 5 etwo composable lax monoidal functors (def. 1.47) between monoidal
categories, then their composite F o G becomes a lax monoidal functor with structure morphisms

G F
€ 1, 5 6(1p) “5 G(F(1e)
and

BE ey F(cy 6w, c,)
HEF  G(F(e1) ® GF(2)) — 2B G(F(er) ®p F(e2)) — 22 G(F (e @ ¢)) -

1

Proposition 1.50. Let (€, ®.,1;) and (D, @, ,1p) be two monoidal categories (def. 1.1) and let F : ¢ — D be
a lax monoidal functor (def. 1.47) between them.

Then for (A,u,,e,) @ monoid in C (def. 1.13), its image F(A) € D becomes a monoid (F(A), g a0 €F(a) by

setting
Flpa)
ga)  F(A) @ F(A) — F(A @ A) =% F(A)

(where the first morphism is the structure morphism of F) and setting
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F(ea)
erea) + 1p = F(1e) = F(4)

(where again the first morphism is the corresponding structure morphism of F).

This construction extends to a functor

Mon(F) : Mon(C, ®¢,1¢) — Mon(D, ®,,1p)

from the category of monoids of C (def. 1.13) to that of D.

Moreover, if ¢ and D are symmetric monoidal categories (def. 1.5) and F is a braided monoidal functor
(def. 1.47) and A is a commutative monoid (def. 1.13) then so is F(A), and this construction extends to a
functor

CMon(F) : CMon(C, ®,.,1:) — CMon(D, ®,,1p) .

Proof. This follows immediately from combining the associativity and unitality (and symmetry) constraints
of F with those of A. R

Definition 1.51. Let (¢, ®.,1¢) and (D, ®;,1p) be two (pointed) topologically enriched monoidal categories
(def. 1.1), and let F : ¢ — D be a topologically enriched lax monoidal functor between them, with product
operation pu.

Then a left module over the lax monoidal functor is

1. a topologically enriched functor

G:C—D;

2. a natural transformation

Pry  FO) ®p G) — G(x B¢ y)
such that

e (action property) For all objects x,y,z € C the following diagram commutes

a?
F(x),F(y) F(z)

(F(x) ®p F(¥)) ®p G(2) F(x) ®p (F(y) ®p G(2))
Hy,y ®id | 1194®py,2
Fx ®cy) ®p G(2) F(x) ®p (G(x Qe y)) -
Px Qe v,z l lpx,y Rcz
G((x ®p y) ®c 2) — Cx Qe (v B¢ 2))

F(agyz)
A homomorphism f : (G1,p,) — (G2, p,) between two modules over a monoidal functor (F,u,e€) is

¢ a natural transformation f : G;(x) — G,(x) of the underlying functors

compatible with the action in that the following diagram commutes for all objects x,y € C:

id®qp f(¥)
F(x) ®p G1(y) —— F(x) ®p G2(y)
(Pl)x,y 1 l(rhiz )x,y
G1(x Qe ¥) m G (x ®c )

We write F Mod for the resulting category of modules over the monoidal functor F.

Now we may finally state the main proposition on functors with smash product:

Proposition 1.52. Let (C, ®,1) be a pointed topologically enriched (symmetric) monoidal category (def.
1.1). Regard (Topc*g/ , A,S% as a topological symmetric monoidal category as in example 1.10.

Then (commutative) monoids in (def. 1.13) the Day convolution monoidal category ([C, Topc*g/], Opay »¥(1e))
of prop. 1.44 are equivalent to (braided) lax monoidal functors (def. 1.47) of the form

(€ ®,1) — (Top,,, A,S%),

called functors with smash products on C, i.e. there are equivalences of categories of the form
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Mon([C, Top,/ ], ®pay »¥(1e)) = MonFunc(C, Top,,)

CMon([C, Top;g/], ®pay »¥(1e)) = SymMonFunc(C, Topc*g/)

Moreover, module objects over these monoid objects are equivalent to the corresponding modules over
monoidal functors (def. 1.51).

This is stated in some form in (Day 70, example 3.2.2). It is highlighted again in (MMSS 00, prop. 22.1).

Proof. By definition 1.47, a lax monoidal functor F:¢ —» Topjg/ is a topologically enriched functor equipped
with a morphism of pointed topological spaces of the form

S°— F(1e)

and equipped with a natural system of maps of pointed topological spaces of the form

F(c1) NF(cy) — F(cy Qe c2)
for all ¢,,¢c, €C.
Under the Yoneda lemma (prop. 1.32) the first of these is equivalently a morphism in [C,Topc"g/] of the form

y(§9 —F.

Moreover, under the natural isomorphism of corollary 1.43 the second of these is equivalently a morphism in
[, Top,¢] of the form

FQpay F—F.

Translating the conditions of def. 1.47 satisfied by a lax monoidal functor through these identifications gives
precisely the conditions of def. 1.13 on a (commutative) monoid in object F under &y, .

Similarly for module objects and modules over monoidal functors. W

Proposition 1.53. Let f : ¢ — D be a lax monoidal functor (def. 1.47) between pointed topologically
enriched monoidal categories (def. 1.1). Then the induced functor

f*: [D,Top.l] — [C Top,,]
given by (f'X)(c) = X(f(c)) preserves monoids under Day convolution

f* s Mon([D, Topey ], @pay »¥(15)) — Mon([€, Topl,], ®pay »¥(1e)

Moreover, if C and D are symmetric monoidal categories (def. 1.5) and f is a braided monoidal functor
(def. 1.47), then f* also preserves commutative monoids

f*: CMon([D, Top,{ ], ®pay »¥(1p)) — CMon([C, Top;,], ®pay ,¥(1e) -
Similarly, for
A € Mon([D, Topc*g/], ®pay »¥(1p))
any fixed monoid, then f* sends A-modules to f*(A)-modules
"+ AMod(D) — (f*A)Mod(C) .

Proof. This is an immediate corollary of prop. 1.52, since the composite of two (braided) lax monoidal
functors is itself canonically a (braided) lax monoidal functor by prop. 1.49. K

2. S-Modules

We give a unified discussion of the categories of

1. sequential spectra

2. symmetric spectra

3. orthogonal spectra

4. pre-excisive functors

(all in topological spaces) as categories of modules with respect to Day convolution monoidal structures on
Top-enriched functor categories over restrictions to faithful sub-sites of the canonical representative of the
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sphere spectrum as a pre-excisive functor on Top;/.

This approach is due to (Mandell-May-Schwede-Shipley 00) following (Hovey-Shipley-Smith 00).

Pre-Excisive functors

We consider an almost tautological construction of a pointed topologically enriched category equipped with a
closed symmetric monoidal product: the category of pre-excisive functors. Then we show that this
tautological category restricts, in a certain sense, to the category of sequential spectra. However, under this
restriction the symmetric monoidal product breaks, witnessing the lack of a functorial smash product of
spectra on sequential spectra. However from inspection of this failure we see that there are categories of
structured spectra “in between” those of all pre-excisive functors and plain sequential spectra, notably the
categories of orthogonal spectra and of symmetric spectra. These intermediate categories retain the
concrete tractable nature of sequential spectra, but are rich enough to also retain the symmetric monoidal
product inherited from pre-excisive functors: this is the symmetric monoidal smash product of spectra that
we are after.

Literature (MMSS 00, Part I and Part III)

Definition 2.1. Write
tin : Top'/ & Top’/
fin * Pcg fin Pcg

for the full subcategory of pointed compactly generated topological spaces (def.) on those that admit the
structure of a finite CW-complex (a CW-complex (def.) with a finite number of cells).

We say that the pointed topological enriched functor category (def. 1.31)

Exc(Top,,) = [Top g i, Top,g |

is the category of pre-excisive functors. (We had previewed this in Part P, this example).

Write

Sexc = ¥(S°) = Tope, 1 (S°, —)

for the functor co-represented by 0-sphere. This is equivalently the inclusion , itself:
Sexc = lin : K K .
We call this the standard incarnation of the sphere spectrum as a pre-excisive functor.

By prop. 1.44 the smash product of pointed compactly generated topological spaces induces the structure
of a closed (def. 1.7) symmetric monoidal category (def. 1.5)

(Exc(Tong), A= Qpay, Sexc)
with

1. tensor unit the sphere spectrum S,.;

2. tensor product the Day convolution product ®,, from def. 1.39,

called the symmetric monoidal smash product of spectra for the model of pre-excisive functors;

3. internal hom the dual operation [—, from prop. 1.45,

_]Day
called the mapping spectrum construction for pre-excisive functors.

Remark 2.2. By example 1.14 the sphere spectrum incarnated as a pre-excisive functor S.,. (according to
def. 2.1) is canonically a commutative monoid in the category of pre-excisive functors (def. 1.13).

Moreover, by example 1.17, every object of Exc(Top,,) (def. 2.1) is canonically a module object over Sgy..

We may therefore tautologically identify the category of pre-excisive functors with the module category
over the sphere spectrum:

Exc(Tong) =~ S Mod .

Lemma 2.3. Identified as a functor with smash product under prop. 1.52, the pre-excisive sphere spectrum
Sexc from def. 2.1 is given by the identity natural transformation
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#(Kviz) : Sexc(Kl) A Sexc(KZ) = Kl AKZ = Kl AKZ = §exc(Kl AKZ) .

Proof. We claim that this is in fact the unique structure of a monoidal functor that may be imposed on the
canonical inclusion ¢ : Topc*g/,fin © Topc*g/, hence it must be the one in question. To see the uniqueness, observe
that naturality of the matural transformation p in particular says that there are commuting squares of the
form

soAs® = s9a8°
xl,le lxl,xz

KiAK, —— K;AK,

HK1,Ko
where the vertical morphisms pick any two points in K, and K,, respectively, and where the top morphism is
necessarily the canonical identification since there is only one single isomorphism $° - 5°, namely the

identity. This shows that the bottom horizontal morphism has to be the identity on all points, hence has to
be the identity. N

We now consider restricting the domain of the pre-excisive functors of def. 2.1.

Definition 2.4. Define the following pointed topologically enriched (def.) symmetric monoidal categories
(def. 1.5):

1. Seq is the category whose objects are the natural numbers and which has only identity morphisms
and zero morphisms on these objects, hence the hom-spaces are

s° forn, =n,
Seq(ny,n,) = )
*  otherwise

The tensor product is the addition of natural numbers, ® = +, and the tensor unit is 0. The braiding
is, necessarily, the identity.

2. Sym is the standard skeleton of the core of FinSet with zero morphisms adjoined: its objects are the
finite sets 7 := {1,---,n} for n € N (hence 0 is the empty set), all non-zero morphisms are
automorphisms and the automorphism group of {1,---,n} is the symmetric group X(n) on n elements,
hence the hom-spaces are the following discrete topological spaces:

(Z(ny)), forny =n,
Sym(ny,n,) = ,
* otherwise

The tensor product is the disjoint union of sets, tensor unit is the empty set. The braiding

Sym R — — J—
Tom, 1M UM, — 7, Uy

is given by the canonical permutation in Z(n; + n,) that shuffles the first n, elements past the
remaining n, elements.

(MMSS 00, example 4.2)

3. Orth has as objects the finite dimenional real linear inner product spaces (R" (—, —)) and as non-zero
morphisms the linear isometric isomorphisms between these; hence the automorphism group of the
object (R" (-, —)) is the orthogonal group 0(n); the monoidal product is direct sum of linear spaces,
the tensor unit is the 0-vector space; again we turn this into a Topc*g/-enriched category by adjoining a
basepoint to the hom-spaces;

0(Vy), fordim(V,) = dim(V;)
Orth(V4,V,) = 0 )
* otherwise

The tensor product is the direct sum of linear inner product spaces, tensor unit is the 0-vector space.
The braiding

Tlg)lr‘tgz Vi@V, -V, eV,
is the canonical orthogonal transformation that switches the summands.

(MMSS 00, example 4.4)

Notice that in the notation of example 1.29

1. the full subcategory of Orth on V is B(O(V),);

2. the full subcategory of Sym on {1,--,n} is BZ(n),);
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3. the full subcategory of Seq on n is B(1,).

Moreover, after discarding the zero morphisms, then these categories are the disjoint union of categories
of the form BO(n), BX(n) and B1 = =, respectively.
There is a sequence of canonical faithful pointed topological subcategory inclusions

seq sym orth /
Seq — Sym — Orth — Top gy,

n - {1,-,n » R"' o s"

into the pointed topological category of pointed compactly generated topological spaces of finite CW-type
(def. 2.1).

Here S¥ denotes the one-point compactification of V. On morphisms sym:(Z,), © (0()), is the canonical
inclusion of permutation matrices into orthogonal matrices and orth:0(V), Aut(s") is on 0(V) the

topological subspace inclusions of the pointed homeomorphisms $¥ - sV that are induced under forming
one-point compactification from linear isometries of V (“representation spheres”).

Below we will often use these identifications to write just “n” for any of these objects, leaving implicit the
identifications n - {1,---,n} » S™.

Consider the pointed topological diagram categries (def. 1.31, exmpl.) over these categories:

® [Seq, Topc*g/] is called the category of sequences of pointed topological spaces (e.g. HSS 00, def.
2.3.1);

. [Sym,TopC*g/] is called the category of symmetric sequences (e.g. HSS 00, def. 2.1.1);

e [Orth, Topc*g/] is called the category of orthogonal sequences.

Consider the sequence of restrictions of topological diagram categories, according to prop. 1.53 along the
above inclusions:

Exc(Top,.) = [Orth, Top./] £ [Sym, Top:/] =% [Seq, Top;/
xe(Top,g) ©™ [Orth, Top;/] 2™ [Sym, Top:/] % [Seq, Top./] .

Write
Sorth = orth’ Sexc Ssym = sym” Soren Sseq = seq” Ssym

for the restriction of the excisive functor incarnation of the sphere spectrum (from def. 2.1) along these
inclusions.

Proposition 2.5. The functors seq, sym and orth in def. 2.4 become strong monoidal functors (def. 1.47)
when equipped with the canonical isomorphisms

seq(n,) Useq(n,) = {1,--,n }U{l, -, ny} = {1,-,ny +n,} = seq(n, +n,)
and
sym({1,-,n}) @ sym({1,---,n,}) = R" @ R"2 =~ R" "2 = sym({1,--,n} U {1, n,})
and
orth(V,) Aorth(V,) = V1 AS"2 = §¥19V2 — orth(v, @ V,) .

Moreover, orth and sym are braided monoidal functors (def. 1.47) (hence symmetric monoidal functors,
remark 1.48). But seq is not braided monoidal.

Proof. The first statement is clear from inspection.

For the second statement it is sufficient to observe that all the nontrivial braiding of n-spheres in Topc*g/ is
given by the maps induced from exchanging coordinates in the realization of n-spheres as one-point
compactifications of Cartesian spaces S™ ~ (R™)". This corresponds precisely to the action of the symmetric
group inside the orthogonal group acting via the canonical action of the orthogonal group on R". This shows
that sym and orth are braided, for they include precisely these objects (the n-spheres) with these braidings
on them. Finally it is clear that seq is not braided, because the braiding on Seq is trivial, while that on Sym is
not, so seq necessrily fails to preserve precisely these non-trivial isomorphisms. W

Remark 2.6. Since the standard excisive incarnation S, of the sphere spectrum (def. 2.1) is the tensor
unit with repect to the Day convolution product on pre-excisive functors, and since it is therefore
canonically a commutative monoid, by example 1.14, prop. 1.53 says that the restricted sphere spectra
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Sorths Ssym @nd Sgq are still monoids, and that under restriction every pre-excisive functor, regarded as a
Sexc-module via remark 2.2, canonically becomes a module under the restricted sphere spectrum:

orth™: Exc(Top,,) = Sexc Mod — S, Mod

sym”™: Exc(Topcg) = Seyc Mod — Sgym Mod .

seq”: Exc(Topcg) = Seyc Mod — Sgeq Mod
Since all three functors orth, sym and seq are strong monoidal functors by prop. 2.5, all three restricted
sphere spectra Sq.n, Ssym and Sgeq canonically are monoids, by prop. 1.53. Moreover, according to prop.

2.5, orth and sym are braided monoidal functors, while functor seq is not braided, therefore prop. 1.53
furthermore gives that S, and S, are commutative monoids, while S, is not commutative:

sphere spectrum  Scyc Sorth Ssym Sseq

monoid yes|yes |yes |yes

commutative monoid|yes|yes |yes |no

tensor unit yesino |no |no
Explicitly:

Lemma 2.7. The monoids Sg;, from def. 2.4 are, when identified as functors with smash product via prop.
1.52 given by assigning

Sgeq : = S™
Seym : A S™
Sorth : VHSV'

respectively, with product given by the canonical isomorphisms
S"1ASs"2 — §V1®Vz

Proof. By construction these functors with smash products are the composites, according to prop. 1.49, of
the monoidal functors seq, sym, orth, respectively, with the lax monoidal functor corresponding to S.,.. The

former have as structure maps the canonical identifications by definition, and the latter has as structure
map the canonical identifications by lemmma 2.3. R

Proposition 2.8. There is an equivalence of categories

()% : Sgeq Mod — SeqSpec(Top,,)

which identifies the category of modules (def. 1.16) over the monoid S, (remark 2.6) in the Day

convolution monoidal structure (prop. 1.44) over the topological functor category [Seq, Topc*g/ ] from def. 2.4
with the category of sequential spectra (def.)

Under this equivalence, an Sy.q-module X is taken to the sequential pre-spectrum Xx*¢*9 whose component
spaces are the values of the pre-excisive functor X on the standard n-sphere " = (SH)""

X*°9),, = X(seq(m)) = X(S™
and whose structure maps are the images of the action morphisms
Sseq ®Day X—X
under the isomorphism of corollary 1.43
Sseq(M1) AX(n1) — X, 10,
evaluated atn, =1
Sseq(DAX(M) — Xpiq
=1 1=
SYAXn — Xni1

(Hovey-Shipley-Smith 00, prop. 2.3.4)

Proof. After unwinding the definitions, the only point to observe is that due to the action property,

id ®Day P
gseq ®Day Sseq ®Day X Sseq ®Day X
U ®pay id l 1P
Sseq ®Day X — X
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any S,eq-action
P i Sseq Opay X — X
is indeed uniquely fixed by the components of the form
Sseq(D AX(M) — X(n) .

This is because under corollary 1.43 the action property is identified with the componentwise property

APy, ng
—=3

S"™ AS"Z A Xn, SMAX

ny+ng
=~ lpnl,nz +ng

EREIN Xng N

an +ny +n3
Pny +ny,n3

where the left vertical morphism is an isomorphism by the nature of Ss,. Hence this fixes the components
Pn n to be the n'-fold composition of the structure maps o, == p(1,n). B

However, since, by remark 2.8, S, is not commutative, there is no tensor product induced on Sequec(Tong)

under the identification in prop. 2.8. But since S, and S, are commutative monoids by remark 2.8, it
makes sense to consider the following definition.

Definition 2.9. In the terminology of remark 2.6 we say that
OrthSpec(Tong) = S,tn Mod
is the category of orthogonal spectra; and that
SymSpec(Tong) = Sgym Mod
is the category of symmetric spectra.

By remark 2.6 and by prop. 1.22 these categories canonically carry a symmetric monoidal tensor product
®syrin and ®Sseq' respectively. This we call the symmetric monoidal smash product of spectra. We
usually just write for short

A= ®§0rth : OrthSpec(Topcg) X OrthSpec(Tong) — OrthSpec(Tong)
and
A = ®§Sym : SymSpec(Tong) X SymSpec(Topcg) — SymSpec(Topcg)

In the next section we work out what these symmetric monoidal categories of orthogonal and of symmetric
spectra look like more explicitly.

Symmetric and orthogonal spectra
We now define symmetric spectra and orthogonal spectra and their symmetric monoidal smash product. We

proceed by giving the explicit definitions and then checking that these are equivalent to the abstract
definition 2.9 from above.

Literature. ( Hovey-Shipley-Smith 00, section 1, section 2, Schwede 12, chapter I)

Definition 2.10. A topological symmetric spectrum X is

1. a sequence {X, € Top;‘g/ | n € N} of pointed compactly generated topological spaces;

2. a basepoint preserving continuous right action of the symmetric group X(n) on X,;;
3. a sequence of morphisms a,,:S'AX,, — X,,1
such that
e for all n,k € N the composite
id id _
SEAX, =~ SKTIASIAK, I gkt Ay = SKTRASIAY, ,, ot Tkt

intertwines the X(n) x Z(k)-action.

A homomorphism of symmetric spectra f:X — Y is
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* a sequence of maps f, :X, — Y,
such that

1. each f, intetwines the X(n)-action;

2. the following diagrams commute

£, Aid

S'AX, =— S'AY,

Lo e
fn+1

Xn+1 — yn+1
We write SymSpec(Top,,) for the resulting category of symmetric spectra.

(Hovey-Shipley-Smith 00, def. 1.2.2, Schwede 12, I, def. 1.1)

The definition of orthogonal spectra has the same structure, just with the symmetric groups replaced by the
orthogonal groups.

Definition 2.11. A topological orthogonal spectrum X is

1. a sequence {X, € Topc*g/ | n € N} of pointed compactly generated topological spaces;

2. a basepoint preserving continuous right action of the orthogonal group 0(n) on X,;

3. a sequence of morphisms ¢,,:S*A X, — X1
such that

e for all n,k € N the composite

SEAX, = SKTIASIAK, k-1 Ay o~ gk ZAglAx,,, SN Tntkoty
intertwines the 0(n) x Ok()-action.

A homomorphism of orthogonal spectra f:X — Y is

¢ a sequence of maps f,:X, — Y,
such that

1. each f, intetwines the 0(n)-action;

2. the following diagrams commute

S'AX, & S'AY,
L% L

Xnv1 — Yapu
We write OrthSpec(Top,,) for the resulting category of orthogonal spectra.

(e.g. Schwede 12, I, def. 7.2)

Proposition 2.12. Definitions 2.10 and 2.11 are indeed equivalent to def. 2.9:
orthogonal spectra are eugqivalently the module objects over the incarnation S,.., of the sphere spectrum
OrthSpec(Topcg) =~ S, .n Mod

and symmetric spectra sre equivalently the module objects over the incarnation S, of the sphere
spectrum

SymSpec(Tong) =~ Ss¢ym Mod .

(Hovey-Shipley-Smith 00, prop. 2.2.1)

Proof. We discuss this for symmetric spectra. The proof for orthogonal spectra is of the same form.

First of all, by example 1.29 an object in [Sym, Topc"g/] is equivalently a “symmetric sequence”, namely a
sequence of pointed topological spaces X,, for k € N, equipped with an action of ¥(k) (def. 2.4).

32 0f 75 09.05.17, 15:55



Introduction to Stable homotopy theory -- 1-2 in nLab https://ncatlab.org/nlab/print/Introduction+to+Stable+homotopy+theor...

By corollary 1.43 and lemma 2.7, the structure morphism of an Sg,,-module object on X
Ssym ®Day X—X

is equivalently (as a functor with smash products) a natural transformation

Snl /\an - XTL1+TL2
over Sym x Sym. This means equivalently that there is such a morphism for all n;,n, € N and that it is
X (ny) x X(ny)-equivariant.

Hence it only remains to see that these natural transformations are uniquely fixed once the one forn, =1 is
given. To that end, observe that lemma 2.7 says that in the following commuting squares (exhibiting the
action property on the level of functors with smash product, where we are notationally suppressing the
associators) the left vertical morphisms are isomorphisms:

SMASZ AKXy, — SMAX
=l l

ng +ny
S AXn3 - Xn1+n2+n3

ny +1'1.3

This says exactly that the action of $™""2 has to be the composite of the actions of 5™ followed by that of
S™. Hence the statement follows by induction.

Finally, the definition of homomorphisms on both sides of the equivalence are just so as to preserve
precisely this structure, hence they conincide under this identification. N

Definition 2.13. Given X,Y € SymSpec(Topcg) two symmetric spectra, def. 2.10, then their smash product of
spectra is the symmetric spectrum

XAY € SymSpec(Tong)
with component spaces the coequalizer

coeq

1 L’
\/ Sp+1+a), | A X AS'AY, \/ Sp+a), A X AYe SR AN
pt+1+qg=n proinaa T ptq=n pea

where ¢ has components given by the structure maps
1 id/\aq
X, ASTAY, — X, AY,

while r has components given by the structure maps conjugated by the braiding in Top;‘g/ and the
permutation action y,, , (that shuffles the element on the right to the left)

*/
TTOPC% Aid o Aid Xp 1 Nid
1 D’ 1 14 p.1
XpASTAXy —— S"AX, A Xy —— Xy  AXg—— X1y A Xy .
Finally The structure maps of X AY are those induced under the coequalizer by

1 1 a{,(/\id
SYAX,AY A) = (STAX)AY, —— X, AY, .

Analogously for orthogonal spectra.

(Schwede 12, p. 82)

Proposition 2.14. Under the identification of prop. 2.12, the explicit smash product of spectra in def. 2.13
is equivalent to the abstractly defined tensor product in def. 2.9:

in the case of symmetric spectra:

A= ®§sym

in the case of orthogonal spectra:

N = .
Sorth

(Schwede 12, E.1.16)

Proof. By def. 1.21 the abstractly defined tensor product of two S,,,-modules X and Y is the coequalizer
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X®p
—2> coeq
X ®pay Ssym ®pay Y — XQY—X®s,, Y.
P1° (T Sy @D

The Day convolution product appearing here is over the category Sym from def. 2.4. By example 1.29 and
unwinding the definitions, this is for any two symmetric spectra A and B given degreewise by the wedge sum
of component spaces summing to that total degree, smashed with the symmetric group with basepoint
adjoined and then quotiented by the diagonal action of the symmetric group acting on the degrees
separately:

nq,ny

Il
—

(4 ®Day B)(n) X(ny +ny,n) /\An1 ABn1
Z(ng+nyn)y ifng+ny=n

N .
otherwise i

= an +ny=n Z(nl + n2)+ 0(n1)<<\0(n2) (An1 A an)
This establishes the form of the coequalizer diagram. It remains to see that under this identification the two
abstractly defined morphisms are the ones given in def. 2.13.

To see this, we apply the adjunction isomorphism between the Day convolution product and the external
tensor product (cor. 1.43) twice, to find the following sequence of equivalent incarnations of morphisms:

(X ®Day (Sorth ®Day Y))(n) - (X ®Day Y)(n) - Zn
an A (Ssym ®Day y)(nIZ) - an A Y(nlz) - an +nry
(Ssym ®Day Y) (nIZ ) - y(nlz ) - Maps(an ’ an +nry )

s"z AYn, - Yo, ins — Maps(Xp,, Zn, +ny+n3)

an/\Snszn3 - an/\yn2+n3 - Zn1+n2+n3

This establishes the form of the morphism ¢. By the same reasoning as in the proof of prop. 2.12, we may
restrict the coequalizer to n, = 1 without changing it.

The form of the morphism r is obtained by the analogous sequence of identifications of morphisms, now
+/
with the parenthesis to the left. That it involves TPz and the permutation action 5™ as shown above
follows from the formula for the braiding of the Day convolution tensor product from the proof of prop. 1.44:
nq,ny

*

/
Day _ Sym Topg;

TaB m = Sym(Tnlynz ;M) A TAnl'gnz

by translating it to the components of the precomposition

LDay
X,Ssym
X ®pay Ssym > Ssym @pay X — X

via the formula from the proof of prop. 1.38 for the left Kan extension A ®y,, B = Lang AA B (prop. 1.42):

nq,ny */
* D Top
[Sym, Topcg 1ty o X) = [Maps( [ Sym(zT, m) ATy ™ Eng, X(),

*/
~ Maps(‘L’TOpcg

sym
S (A
nq,m;, 1

This last expression is the function on morphisms which precomposes components under the coend with the

o */

braiding r}T( p‘fnz in topological spaces and postcomposes them with the image of the functor X of the
nqy

braiding in Sym. But the braiding in Sym is, by def. 2.4, given by the respective shuffle permutations

sym

A S and by prop. 2.12 the image of these under X is via the given Z,, ,, -action on X, ., .

Finally to see that the structure map is as claimed: By prop. 2.12 the structure morphisms are the degree-1
components of the Sgy,-action, and by prop. 1.21 the S,,,,-action on a tensor product of S,,,,-modules is
induced via the action on the left tensor factor. W

Definition 2.15. A commutative symmetric ring spectrum E is
1. a sequence of component spaces E,, € Top:g/ forneN;

2. a basepoint preserving continuous left action of the symmetric group X(n) on E,;

3. for all n,,n, € N a multiplication map
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Koy En1 /\Enz - En1 +ny
(a morphism in Top,,)
4. two unit maps

t0:50—>E0
4y St —E,

such that

1. (equivariance) [T intertwines the X(n,) x X(n,)-action;

2. (associativity) for all n,,n,,n; € N the following diagram commutes (where we are notationally
suppressing the associators of (Top./, A,S°))

id/\“nz,n3
En, NEn, NE,, ——= En NEp, in,

Hny,n, Md 1 i”nl,nz 413

—_—
En1+n2 /\En3 " En1+n2+n3
nq+nyz,n3

3. (unitality) for all n € N the following diagram commutes

0 g Aid
S°AE, ¥ E,AE,

AN LHon
Top,
%, g
En
and
o idAgy
E, NS — E,AE,
RN LHno
Topcg ’
TEn
ETl

where the diagonal morphisms ¢ and r are the left and right unitors in (Topc*g/, A,S%), respectively.

4. (commutativity) for all n,,n, € N the following diagram commutes

Toped

Enl’EnZ
Epy AEn, ——3 En, AEn,

Hnqiny ! l“nz,nﬁ

E

_ E

nq +n:
1 2 an.nz

ny +nq
where the top morphism 7 is the braiding in (Topjg/, A,S% (def. 1.10) and where Xnyn, € Z(n, +ny)
denotes the permutation action which shuffles the first n, elements past the last n, elements.

A homomorphism of symmetric commutative ring spectra f:E — E' is a sequence f, : E, — E', of
X(n)-equivariant pointed continuous functions such that the following diagrams commute for all n,,n, € N

fnyMn, , ,
Enl/\E.,12 " En1 /\E.,12
Hny,ny l LHngng
En1+n2 X ? En2 +nq
nq,my

and foi =t and f, oy =1.
Write
CRing(SymSpec(Tong))

for the resulting category of symmetric commutative ring spectra.

We regard a symmetric ring spectrum in particular as a symmetric spectrum (def. 2.10) by taking the
structure maps to be
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1 11 Aid Hin
on: SANE,— E,NE,—E, 1.
This defines a forgetful functor
CRing(SymSpec(Topcg)) — SymSpec(Topcg)

There is an analogous definition of orthogonal ring spectrum and we write

CRing(OrthSpec(Topcg))
for the category that these form.

(e.g. Schwede 12, def. 1.3)

We discuss examples below in a dedicated section Examples.

Proposition 2.16. The symmetric (orthogonal) commutative ring spectra in def. 2.15 are equivalently the
commutative monoids in (def. 1.13) the symmetric monoidal category Sg,m, Mod (S, Mod) of def. 2.9 with
respect to the symmetric monoidal smash product of spectra A = ®§Sym (AN = ®s,rn ). Hence there are

equivalences of categories

CRing(SymSpec(Topcg)) =~ CMon(Ssyny, Mod, ®§Sym ) Ssym)

and
CRing(OrthSpec(Topcg)) =~ CMon(Srtn Mod, ®§0rth , Sorth) -
Moreover, under these identifications the canonical forgetful functor
CMon(Sgym Mod, ®§sym »Ssym) — SymSpec(Topcg)

and

CMon(Sytn Mod, ®§orth , Sorth) — OrthSpec(Tong)

coincides with the forgetful functor defined in def. 2.15.
Proof. We discuss this for symmetric spectra. The proof for orthogonal spectra is directly analogous.

By prop. 1.25 and def. 2.9, the commutative monoids in S, Mod are equivalently commtutative monoids E
in ([Sym,Topjg/], ®pay »¥(0)) equipped with a homomorphism of monoids Sy, — E. In turn, by prop. 1.52 this

are equivalently braided lax monoidal functors (which we denote by the same symbols, for convenience) of
the form

E : (Sym, +,0) — (Top,/, A,S%)

equipped with a monoidal natural transformation (def. 1.47)

t: Sgym — E.

The structure morphism of such a lax monoidal functor E has as components precisely the morphisms

iy, Eng NEny = Eqyim, - In terms of these, the associativity and braiding condition on the lax monoidal

functor are manifestly the above associativity and commutativity conditions.
Moreover, by the proof of prop. 1.25 the S;,,,-module structure on an an S, -algebra E has action given by
eAid u
Ssym AE— EANE —E,

which shows, via the identification in prop 2.12, that the forgetful functors to underlying symmetric spectra
coincide as claimed.

Hence it only remains to match the nature of the units. The above unit morphism  has components
ty : ST E,

for all n € N, and the unitality condition for ¢, and ¢, is manifestly as in the statement above.

We claim that the other components are uniquely fixed by these:

By lemma 2.7, the product structure in Sy, is by isomorphisms $™ A $"2 ~ §"1%"2, so that the commuting
square for the coherence condition of this monoidal natural transformation
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tn, An
n. n 1 2
SMAST? — EnlAEnz
= l“nl,nz

gn1tng

. Enl +ny
n1+n2

says that ¢, n, = oy, s © (tn, Atny). This means that 1, , is uniquely fixed once i, and (, are given.

Finally it is clear that homomorphisms on both sides of the equivalence precisely respect all this structure
under both sides of the equivalence. N

Similarly:

Definition 2.17. Given a symmetric (orthogonal) commutative ring spectrum E (def. 2.15), then a left
symmetric (orthogonal) module spectrum N over E is

1. a sequence of component spaces N, € Topc"g/ forneN;

2. a basepoint preserving continuous left action of the symmetric group X(n) on N,;

3. for all n,,n, € N an action map
Pnyny + Eng ANny = Ny iy
(a morphism in Top,,)
such that

1. (equivariance) oy ny intertwines the X(n,) x X(n,)-action;

2. (action property) for all ny,n,,n; € N the following diagram commutes (where we are notationally
suppressing the associators of (Top./, A,S°))

id/\pnz,n3
Ep, AEn, AN,, ——= E, AN

ny +TL3

Hny,m, AMd 1 ipnl,nz +n3

En1+n2 /\Nn3 —

an +ny+ng
Pny +ny,m3

3. (unitality) for all n € N the following diagram commutes

S°AN, fotl¢ Eo AN,

RN LHon

iITv:chg .
Ny

A homomorphism of left E-module spectra f : N — N’ is a sequence of pointed continuous functions
f, : Nn — N, such that for all n;,n, € N the following diagrams commute:

idA Sy, ,

Epy ANy, —3 En AN,
Pnymy l 1Pnyng
N P N,nl +ny

nq+n
1772 faing

We write
EMod(SymSpec(Topcg)) , EMod(OrthSpec(Topcg))
for the resulting category of symmetric (orthogonal) E-module spectra.

(e.g. Schwede 12, I, def. 1.5)

Proposition 2.18. Under the identification, from prop. 2.16, of commutative ring spectra with commutative
monoids with respect to the symmetric monoidal smash product of spectra, the E-module spectra of def.

2.17 are equivalently the left module objects (def. 1.16) over the respective monoids, i.e. there are
equivalences of categories

EMod(SymSpec(Tong)) =~ F Mod([Sym, Topc*g/], ®pay »¥(0))

and
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EMod(OrthSpec(Topcg)) =~ F Mod([Orth, Topc*g/], ®pay »¥(0)),

where on the right we have the categories of modules from def. 1.16.

Proof. The proof is directly analogous to that of prop. 2.16. Now prop. 1.25 and prop. 1.52 give that the
module objects in question are equivalently modules over a monoidal functor (def. 1.51) and writing these
out in components yields precisely the above structures and properties. N

As diagram spectra

In Introduction to Stable homotopy theory -- 1-1 we obtained the strict/level model structure on topological
seqguential spectra by identifying the category SeqSpec(Top,,) of sequential spectra with a category of

topologically enriched functors with values in Topjg/ (prop.) and then invoking the general existence of the
projective model structure on functors (thm.).

Here we discuss the analogous construction for the more general structured spectra from above.

Proposition 2.19. Let (C, ®.,1¢) be a topologically enriched monoidal category (def. 1.1), and let
A € Mon([C, Topc*g/ I, ®pay »¥(1e)) be @ monoid in (def. 1.13) the pointed topological Day convolution monoidal
category over C from prop. 1.44.

Then the category of left A-modules (def. 1.16) is a pointed topologically enriched functor category
category (exmpl.)

AMod = [AFree,Mod®?, Topc*g/],

over the category of free modules over A (prop. 1.20) on objects in C (under the Yoneda embedding
y:CP > [C, Topjg/ ]1). Hence the objects of AFree;Mod are identified with those of C, and its hom-spaces are

AFreecMod(cy,¢2) = AMod(A ®p,, ¥(c1), A Qp,y ¥(€2)) -

(MMSS 00, theorem 2.2)

Proof. Use the identification from prop. 1.52 of 4 with a lax monoidal functor and of any A-module object N
as a functor with the structure of a module over a monoidal functor, given by natural transformations

Pcq,cn
Ac1) ® N(cz) — N(c; ® ¢3) .

Notice that these transformations have just the same structure as those of the enriched functoriality of N
(def.) of the form

C(c1,2) ® N(cq) — N(cz) -

Hence we may unify these two kinds of transformations into a single kind of the form

id®p63' 1

Ce3 R c1,¢2) ® A(c3) ® N(cq) - C(c3 ® c1,62) @ N(e3 ® ) — N(c2)

and subject to certain identifications.
Now observe that the hom-objects of AFree.Mod have just this structure:
AFreecMod(cz, ¢1) = AMod(4 Qp,y, ¥(c2), A Qpay ¥(€1))

= [C, TOp;g/]()’(Cz)'A ®Day Y(Cl))
= (A Qpay ¥(c1))(c2)

= | Cles ® car ) AA(c3) AC(cyc4)
= fC’(c3 ® c1,¢3) NA(c3)

Here we used first the free-forgetful adjunction of prop. 1.20, then the enriched Yoneda lemma (prop. 1.32),
then the coend-expression for Day convolution (def. 1.39) and finally the co-Yoneda lemma (prop. 1.33).

Then define a topologically enriched category D to have objects and hom-spaces those of 4 Free.Mod°® as
above, and whose composition operation is defined as follows:
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D(cz,¢3) AD(cq,¢5) = (fC(cs ®¢ c2,C3) /\A(Cs)) A (f C(cy Qe €1,C3) /\A(c4))

C4,Cs

= [ e(cs ®e €2,63) ANC(cy ®p €1,¢2) NA(cs) N A(cy)

C4,Cs

— [ C(cs Qe €2,63) ANC(cs B €4 Q¢ €1, 65 R €3) AA(cs B €4)’
C4,C5

- f C(cs ®g Cy ®c C1,Cs ®c CZ) AA(CS ®c C4)
Cq

- fc(c4 Q¢ €1,¢3) y A(cq)

where

1. the equivalence is braiding in the integrand (and the Fubini theorem, prop. 1.35);

2. the first morphism is, in the integrand, the smash product of

1. forming the tensor product of hom-objects of ¢ with the identity morphism on c¢;;

2. the monoidal functor incarnation A(cs) A A(c,) — A(cs @, c,) of the monoid structure on 4;
3. the second morphism is, in the integrand, given by composition in C;

4. the last morphism is the morphism induced on coends by regarding extranaturality in ¢, and c;
separately as a special case of extranaturality in ¢; = ¢, ® cs (and then renaming).

With this it is fairly straightforward to see that
AMod = [D, Top,, ],

because, by the above definition of composition, functoriality over D manifestly encodes the A-action
property together with the functoriality over C.

This way we are reduced to showing that actually D ~ A FreecMod°P.

But by construction, the image of the objects of D under the Yoneda embedding are precisely the free
A-modules over objects of C:

D(c, —) = AFreecMod(—, ¢) = (A Qp,y ¥(€))(-) .

Since the Yoneda embedding is fully faithful, this shows that indeed

D°P ~ AFree.Mod > AMod .

Example 2.20. For the sequential case Dia = Seq in def. 2.4, then the opposite category of free modules on
objects in Seq over S, (def.) is identified as the category StdSpheres (def.):

Sseq FreeseqMod®® = StdSpheres

Accordingly, in this case prop. 2.19 reduces to the identification (prop.) of sequential spectra as
topological diagrams over StdSpheres:

[Sseq FreeseqMod P, Topc*g/] ~ [StdSpheres, Topc*g/] = SeqSpec(Top,,) -

Proof. There is one object y(n) for each n € N. Moreover, from the expression in the proof of prop. 2.19 we
compute the hom-spaces between these to be

n
Sseq FreeseqMOd(Sseq ®Day ykz' Sseq ®Day }’kl) = fSeq(n + klﬁ kz) A Sseq (n)

skz=k1 if ke, > ky

~

* otherwise

These are the objects and hom-spaces of the category StdSpheres. It is straightforward to check that the
definition of composition agrees, too. H

Stable weak homotopy equivalences

We consider the evident version of stable weak homotopy equivalences for structured spectra and prove a
few technical lemmas about them that are needed in the proof of the stable model structure below

Definition 2.21. For Dia € {Top(fg/_ﬁn,Orth, Sym, Seq} one of the shapes of structured spectra from def. 2.4, let
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S4ia Mod be the corresponding category of structured spectra (def. 2.1, prop. 2.8, def. 2.9).

1. The stable homotopy groups of an object X € S4;, Mod are those of the underlying sequential spectrum
(def.):

m.(X) ==m.(seq" X) .

2. An object X € S4, Mod is a structured Omega-spectrum if the underlying sequential spectrum seq*X
(def. 2.4) is a sequential Omega spectrum (def.)

3. A morphism f in Sy;, Mod is a stable weak homotopy equivalence (or: n.-isomorphism) if the
underlying morphism of sequential spectra seq*(f) is a stable weak homotopy equivalence of
sequential spectra (def.);

4. a morphism f is a stable cofibration if it is a cofibration in the strict model structure
OrthSpec(Top,,) from prop. 3.1.

strict

(MMSS 00, def. 8.3 with the notation from p. 21, Mandell-May 02, III, def. 3.1, def. 3.2)

Lemma 2.22. Given a morphism f : X — Y in S4;, Mod, then there are long exact sequences of stable
homotopy groups (def. 2.21) of the form

o T4 (1) = m(Path, () — m(X) 25 m(¥) = .y (Path. () — -
and
>, (V) — m, 1 (Cone(f)) — m.(X) LN m.(Y) — m.(Cone(f)) — -,

where Cone(f) denotes the mapping cone and Path,(f) the mapping cocone of f (def.) formed with respect
to the standard cylinder spectrum X A (I,) hence formed degreewise with respect to the standard reduced
cylinder of pointed topological spaces.

(MMSS 00, theorem 7.4 (vi))

Proof. Since limits and colimits in the diagram category S4;, Mod are computed objectwise, the functor seq*
that restricts S4;,-modules to their underlying sequential spectra preserves both limits and colimits, hence it
is sufficient to consider the statement for sequential spectra.

For the first case, there is degreewise the long exact sequence of homotopy groups to the left of pointed
topological spaces (exmpl.)

o my(¥) — my (Path, (F)) — 1, (X) 25 7, () — m(Path, () — 10(X,) 25 m0(¥o) .

Observe that the sequential colimit that defines the stable homotopy groups (def.) preserves exact
sequences of abelian groups, because generally filtered colimits in Ab are exact functors (prop.). This
implies that by taking the colimit over n in the above sequences, we obtain a long exact sequence of stable
homotopy groups as shown.

Now use that in sequential spectra the canonical morphism morphism Path,(f) — 2 Cone(f) is a stable weak
homotopy equivalence and is compatible with the map f (prop.) so that there is a commuting diagram of the
form

Do ) —  mPath(f) — mX) D m) — m i (Path.(f)) — -
= = - - =
Do M) — mgCone(f) — m) B om) —  m(Cone(f)) — -

Since the top sequence is exact, and since all vertical morphisms are isomorphisms, it follows that also the
bottom sequence is exact. W

Lemma 2.23. For K € Top;‘g{ n @ CW-complex then the operation of smash tensoring (—) AK preserves stable
weak homotopy equivalences in Sgi, Mod.

Proof. Since limits and colimits in the diagram category S4;, Mod are computed objectwise, the functor seq*
that restricts S4,-modules to their underlying sequential spectra preserves both limits and colimits, and it
also preserves smash tensoring. Hence it is sufficient to consider the statement for sequential spectra.

Fist consider the case of a finite cell complex K.

Write

* =Ko OK 9K 95K
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for the stages of the cell complex K, so that for each i there is a pushout diagram in Top,, of the form

sni—1 K; — *
l (po) 1  (po) ! .

DMt — Ky — S

Equivalently these are pushoutdiagrams in Topc*g/ of the form

S:lrl — K; — %
l (po) 1 (po) ! .
Dzrlrl — Kiyy — S™

Notice that it is indeed S™ that appears in the top right, not S}.

Now forming the smash tensoring of any morphism f:X — Y in Sg;, Mod(Topcg) by the morphisms in the
pushout on the right yields a commuting diagram in Sg;, Mod of the form
XAK;, — XAK;,, — XAS™
! ) )
YAK; — YAK;,; — YAS™
Here the horizontal morphisms on the left are degreewise cofibrations in Top;‘g/, hence the morphism on the
right is degreewise their homotopy cofiber. This way lemma 2.22 implies that there are commuting diagrams
Toi1(XAS™M) — m(XAK) — m(XAKip) — mXAS™) — m._1(XAK))
l l ARG 1 . ,
To (YAS™) — w(YAK) — m.(YAKi ) — m(YAS™) — m,_(XAK))

where the top and bottom are long exact sequences of stable homotopy groups.

Now proceed by induction. For i = 0 then clearly smash tensoring with K, = * preserves stable weak
homotopy equivalences. So assume that smash tensoring with K; does, too. Observe that (—) AS™ preserves
stable weak homotopy equivalences, since XX[1] - X is a stable weak homotopy equivalence (lemma). Hence
in the above the two vertical morphisms on the left and the two on the right are isomorphism. Now the five
lemma implies that also f AK;,, is an isomorphism.

Finally, the statement for a non-finite cell complex follows with these arguments and then using that spheres
are compact and hence maps out of them into a transfinite composition factor through some finite stage
(prop.). N

Lemma 2.24. The pushout in S4, Mod of a stable weak homotopy equivalence along a morphism that is
degreewise a cofibration in (Topc*g/ is again a stable weak homotopy equivalence.

)Quillen

Proof. Given a pushout square

x 5 7z

fl (o) L
Yy — YI)J(Z

observe that the pasting law implies an isomorphism between the horizontal cofibers

x 5 Z  — cofib(g)

fl (o) L =
Yy — YI)_(IZ — cofib(g)

Moreover, since cofibrations in (Top;‘g/)Quillen are preserves by pushout, and since pushout of spectra are
computed degreewise, both the top and the bottom horizontal sequences here are degreewise homotopy

cofiber sequence in (Topc*g/)QumEH. Hence lemma 2.22 applies and gives a commuting diagram

m.41(cofib(g)) — m(X) — w.(Z) — m.(cofib(g)) — m._1(X)
= w0y ! = =

.11 (cofib(g)) — m(Y) — m(YUZ) — m(cofib(g)) — m.1(¥)

where the top and the bottom row are both long exact sequences of stable homotopy groups. Hence the
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claim now follows by the five lemma. N

Free spectra and Suspension spectra

The concept of free spectrum is a generalization of that of suspension spectrum. In fact the stable homotopy
types of free spectra are precisely those of iterated loop space objects of suspension spectra. But for the
development of the theory what matters is free spectra before passing to stable homotopy types, for as
such they play the role of the basic cells for the stable model structures on spectra analogous to the role of
the n-spheres in the classical model structure on topological spaces (def. 3.2 below).

Moreover, while free sequential spectra are just re-indexed suspension spectra, free symmetric spectra and
free orthogonal spectra in addition come with suitably freely generated actions of the symmetric group and
the orthogonal group. It turns out that this is not entirely trivial; it leads to a subtle issue (lemma 2.33
below) where the adjuncts of certain canonical inclusions of free spectra are stable weak homotopy
equivalences for sequential and orthogonal spectra, but not for symmetric spectra.

Definition 2.25. For Dia € {Topf*i,/,,Orth, Sym, Seq} any one of the four diagram shapes of def. 2.4, and for each
n € N, the functor

* = x
(=), : Sqia Mod =, Sseq Mod = Sequec(Topcg) -3 Topcg/

that sends a structured spectrum to the nth component space of its underlying sequential spectrum has,
by prop. 1.38, a left adjoint

Fdia . Top*/ — S, Mod .
This is called the free structured spectrum-functor.

For the special case n =0 it is also called the structured suspension spectrum functor and denoted

I8.K = Fdiag

(Hovey-Shipley-Smith 00, def. 2.2.5, MMSS 00, section 8)

Lemma 2.26. Let Dia € {Top;‘if],Orth, Sym, Seq} be any one of the four diagram shapes of def. 2.4. Then

1. the free spectrum on K € Top;‘g/ (def. 2.25) is equivalently the smash tensoring with K (def.) of the
free module (def. 1.20) over Sg;, (remark 2.6) on the representable y(n) € [Dia, Top;‘g/ ]

FRK = (Saia ®pay YW) AK
= Sgia @pay P AK)

2. 0onn' €Dia? 2 [Dia, Topc*g/ ] its value is given by the following coend expression (def. 1.28)

nq €Dia

(FYagY(n') = Dia(n; @ n,n' ) AS™ AK .

In particular the structured sphere spectrum is the free spectrum in degree 0 on the 0-sphere:
Saia = F§'°S°
and generally for K € Top,, then
FIRK ~ Sy ANK
is the smash tensoring of the strutured sphere spectrum with K.

(Hovey-Shipley-Smith 00, below def. 2.2.5, MMSSO00, p. 7 with theorem 2.2)

Proof. Under the equivalence of categories

Saia Mod = [Sgia FreegiaMod®, Top,/ |

from prop. 2.19, the expression for F32K is equivalently the smash tensoring with K of the functor that n
represents over Sg;, Freegqi,Mod:

diag
Fn K = ySdia FreeDiaMod(n’) NK

= Sgia FreegiaMod(—, Sqia A Y, (W) AK

(by fully faithfulness of the Yoneda embedding).
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This way the first statement is a special case of the following general fact: For ¢ a pointed topologically
enriched category, and for ¢ € C any object, then there is an adjunction

y(E©A(=)
¢ Top /1" L Top.!
[C, Tope, ] ODg
(e

(saying that evaluation at ¢ is right adjoint to smash tensoring the functor represented by c¢) witnessed by
the following composite natural isomorphism:

[€, Top,/1(¥(c) AK,F) = Maps(K, [C, Top./1(y(c), F)), = Maps(K,F(c)), = Tops, (K,F(c)) .

The first is the characteristic isomorphism of tensoring from prop. 1.37, while the second is the enriched
Yoneda lemma of prop. 1.32.

From this, the second statement follows by the proof of prop. 2.19.

For the last statement it is sufficient to observe that y(0) is the tensor unit under Day convolution by prop.
1.44 (since 0 is the tensor unit in Dia), so that

F§S® = Sgia @pay (7(0) AS®)
= S4ia ® y(S%)

= Sgia

Proposition 2.27. Explicitly, the free spectra according to def. 2.25, look as follows:

For sequential spectra:

ST"AK ifg=n

Seq
(Fn 'K), =
" a * otherwise

for symmetric spectra:

(FSymK) - Z(q)+ /\z(q_n) Sq_n/\K lfq >n
n
1 * otherwise

for orthogonal spectra:

(FOrthg) z{o(q)+ Nog-ny NSTPAK ifg=n
n q B

* otherwise
where "A;” is as in example 1.29.

(e.g. Schwede 12, example 3.20)

Proof. With the formula in item 2 of lemma 2.26 we have for the case of orthogonal spectra

nq €0rth

(FOMKY(RY =~ [ Orth(ng, +n,q) ASMAK
_—
B 0(q); ifng+n=gq
- otherwise

ny =+ €B(0(qg—m)) n

- . =
- 0(q)+o(q/ln)5 AK ifg=n

* otherwise

where in the second line we used that the coend collapses to n; = ¢ —n ranging in the full subcategory

B(0(q —n),) © Orth

on the object R~ ™ and then we applied example 1.29. The case of symmetric spectra is verbatim the same,

with the symmetric group replacing the orthogonal group, and the case of sequential spectra is again
verbatim the same, with the orthogonal group replaced by the trivial group. N

Lemma 2.28. For Dia € {Orth,Sym, Seq} the diagram shape for orthogonal spectra, symmetric spectra or
sequential spectra, then the free structured spectra

Fdiagl e s, Mod

from def. 2.25 have component spaces that admit the structure of CW-complexes.
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Proof. We consider the case of orthogonal spectra. The case of symmetric spectra works verbatim the
same, and the case of sequential spectra is tivial.

By prop. 2.27 we have to show that for all ¢ > n € N the topological spaces of the form
0(q), Nog-nm ST ™ € Topc*g/
admit the structure of CW-complexes.
To that end, use the homeomorphism
§9TM = paTm/gpan

which is a diffeomorphism away from the basepoint and hence such that the action of the orthogonal group
0(q —n) induces a smooth action on DY~ " (which happens to be constant on 9D ™).

Also observe that we may think of the above quotient by the group action
(x,9y) = (xg,5)
as being the quotient by the diagonal action
0(q—n) x (0(q), AST™™) — (0(q), AST™™
given by
(9.(xy) = (xg~gy) .

Using this we may rewrite the space in question as

R

(0@, Nog-m ST ™ = (0(@), AST"™)/0(q—n)

0 pa—n
= A0 /0(g—n)

o(q)xapd—™
_ _O(@xpi~™m _
= 0@t/ 0@=™
~ _(0@xDp1"™/0(@@-n)

(3(0(@)xpI™™)/0(q—n)

Here 0(q) x DY~™ has the structure of a smooth manifold with boundary and equipped with a smooth action
of the compact Lie group 0(q —n). Under these conditions (Illman 83, corollary 7.2) states that 0(q) x D™ "
admits the structure of a G-CW complex for G = 0(q —n), and moreover (Illman 83, line above theorem 7.1)
states that this may be chosen such that the boundary is a G-CW subcomplex.

Now the quotient of a G-CW complex by G is a CW complex, and so the last expression above exhibits the
quotient of a CW-complex by a subcomplex, hence exhibits CW-complex structure. N

Proposition 2.29. et Dia € {Topc*g/_ an, Orth, Sym} be the diagram shape of either pre-excisive functors,

orthogonal spectra or symmetric spectra. Then under the symmetric monoidal smash product of spectra
(def. 2.1, def. 2.1, def.2.9) the free structured spectra of def. 2.25 behave as follows

FR(Ky) ®sy, Fry (K2) = Fpyin, (K1 AK) .

In particular for structured suspension spectra 23, = F&? (def., 2.25) this gives isomorphisms
Zgoia(Kl) ®§dia 23?3(1(2) = Zéﬁa(l(l /\KZ) .

Hence the structured suspension spectrum functor g, is a strong monoidal functor (def. 1.47) and in fact
a braided monoidal functor (def. \ref{braided monoidal functor}) from pointed topological spaces
equipped with the smash product of pointed objects, to structured spectra equipped with the symmetric
monoidal smash product of spectra

I§a t (Topgg, A,S%) = (Saia Mod, g, Saia) -

More generally, for X € S4;, Mod then

X @, E&aK) =X AK,

where on the right we have the smash tensoring of X with K € Topc*g/ .

(MMSS 00, lemma 1.8 with theorem 2.2, Mandell-May 02, prop. 2.2.6)

Proof. By lemma 2.26 the free spectra are free modules over the structured sphere spectrum Sg;, of the
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form FI3(K) = Syia ®pay (M) AK). By example 1.23 the tensor product of such free modules is given by
(Saia ®pay F011) AKD)) ®pay (Stia Opay Y(12) AK2)) = Saia ®pay /(11) AK) ®pyy, (1) AK) .

Using the co-Yoneda lemma (prop. 1.33) the expression on the right is

(G0 MK @y 12) AK )@ = | Dia(ey +2,0) A¥(ny)(er) AKy AY(ny)(er) AK,

cq1,¢2
~ [ Dia(c; + ¢, ¢) ADia(ny, c;) ADia(ny, c;) AKy AK, .

=~ Dia(n; +n,,c) AK; AK,
= (y(nq +mz) A (K1 AK3))(C)

For the last statement we may use that Zg,K = Sgi, A K, by lemma 2.26), and that Sg;, is the tensor unit for

®§dia by prop. 1.22.

To see that 2§, is braided, write Z3,K ~ SAK. We need to see that

(SAK1) Qs (SAK,) — (SAK;) Qs (SAK,)
l l
SA(K AK,)  —  SAK,AK,)

commutes. Chasing the smash factors through this diagram and using symmetry (def. 1.5) and the hexagon
identities (def. 1.4) shows that indeed it does. N

One use of free spectra is that they serve to co-represent adjuncts of structure morphisms of spectra. To
this end, first consider the following general existence statement.

Lemma 2.30. For each n € N there exists a morphism
Ayt F2 5T — Fiago

between free spectra (def. 2.25) such that for every structured spectrum X € S4, Mod precomposition 1,
forms a commuting diagram of the form

R
l

Saia Mod(F125°, x) Top™/(S°X,) = X,

* ~ X
1A 1on

’

Saia Mod (32,57, X)

R

Top*/ (S, Xni1) = X4y

where the horizontal equivalences are the adjunction isomorphisms and the canonical identification, and
where the right morphism is the (X 4 2)-adjunct of the structure map o, of the sequential spectrum seq* X

underlying X (def. 2.4).

Proof. Since all prescribed morphisms in the diagram are natural transformations, this is in fact a diagram
of copresheaves on Sg;, Mod

R

Sqia Mod(F's°, —) Top™/(5°,(-),)

R
~
L
3

! 1on

Saia Mod(F1S%, =) = Top™/(S%(-),,,) = 2(-),,,

R

With this the statement follows by the Yoneda lemma. N
Now we say explicitly what these maps are:
Definition 2.31. For n € N, write
Ap : Fpy ST — F,S°

for the adjunct under the (free structured spectrum 4 n-component)-adjunction in def. 2.25 of the
composite morphism

2%
— n .
STS (FRSY),,, s (Flas)

where the first morphism is via prop. 2.27 and the second comes from the adjunction units according to
def. 2.25.

(MMSS 00, def. 8.4, Schwede 12, example 4.26)
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Lemma 2.32. The morphisms of def. 2.31 are those whose existence is asserted by prop. 2.30.

(MMSS 00, lemma 8.5, following Hovey-Shipley-Smith 00, remark 2.2.12)

Proof. Consider the case Dia = Seq and n = 0. All other cases work analogously.

By lemma 2.27, in this case the morphism 1, has components like so:

id

s = s
2 4 g
st 4 e
* i) SO

A
F,st 25 RS0

Now for X any sequential spectrum, then a morphism f:F,S° - X is uniquely determined by its Oth
components fO:S0 - X, (that’s of course the very free property of F,$°); as the compatibility with the
structure maps forces the first component, in particular, to be % o 2f:

z
550 Z X,

= laé(
o‘Xolf
st 0 X,

But that first component is just the component that similarly determines the precompositon of f with 2,,
hence Aqf is fully fixed as being the map of - 2f. Therefore 4; is the function

. 0 y o fmodf 1
Ay @ Xo = Maps(S-,Xy) ——— Maps (S, X;) = 02X, .
It remains to see that this is the (2 4 2)-adjunct of ¢¥. By the general formula for adjuncts, this is
0 X
¥ x, L arx, =25 ox, .
To compare to the above, we check what this does on points: §° LS X, is sent to the composite
o fo n ﬂ"-é{
ST — Xy — 22X, — 0X, .

To identify this as a map $' — X, we use the adjunction isomorphism once more to throw all the 2-s on the
right back to X-s the left, to finally find that this is indeed

X
P
oXosf:st=35"Lsx, Dx, .

Lemma 2.33. The maps A, : Fp,1S* — F,S° in def. 2.31 are

1. stable weak homotopy equivalences for sequential spectra, orthogonal spectra and pre-excisive
functors, i.e. for Dia € {Top*/,Orth, Seq};

2. not stable weak homotopy equivalences for the case of symmetric spectra Dia = Sym.

(Hovey-Shipley-Smith 00, example 3.1.10, MMSS 00, lemma 8.6, Schwede 12, example 4.26)

Proof. This follows by inspection of the explicit form of the maps, via prop. 2.27. We discuss each case
separately:

sequential case

Here the components of the morphism eventually stabilize to isomorphisms
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A)y,s S —  S°
M)y, S — S?

A

0
A),: = — S
* — *
* — *
) “

Ap: FpyiS* — FoS°

and this immediately gives that 4, is an isomorphism on stable homotopy groups.

orthogonal case
Here for g = n+ 1 the g-component of 1, is the quotient map
(ln)q : 0(q)+ No(g-n-1) s = O(q)+ No(g-n-1) StAsITt— 0(q)+ No(g—n) s,

By the suspension isomorphism for stable homotopy groups, 2, is a stable weak homotopy equivalence
precisely if any of its suspensions is. Hence consider instead 2"4, := S™ A 4,,, whose g-component is

(anln)q : 0(q)+ No(g-n-1) $1— O(q)+ No(g—n) s,

Now due to the fact that 0(q — k)-action on 57 lifts to an 0(g)-action, the quotients of the diagonal action of
0(q — k) equivalently become quotients of just the left action. Formally this is due to the existence of the
commuting diagram

id id
0@, AST S 0(@),AST S 0(g), AST
! ) LP2
QD N1 ST — QD Mo ST = 57

which says that the image of any (g,s) € 0(q), AS“ in the quotient Q(q), M-k S? is labeled by ([g],s).

It follows that (Z"An)q is the smash product of a projection map of coset spaces with the identity on the
sphere:

(Z"An), = proj, Aidga : 0(q)/0(q —n—1), AST— 0(q)/0(q—n), AS?.
Now finally observe that this projection function
proj : 0(q)/0(q—n—1) — 0(q)/0(q —n)
is (3 —n — 1)-connected (see here). Hence its smash product with 5% is (2q — n — 1)-connected.

The key here is the fast growth of the connectivity with g. This implies that for each s there exists g such
that ns+q((2"/1n)q) becomes an isomorphism. Hence "1, is a stable weak homotopy equivalence and

therefore so is 4,,.
symmetric case

Here the morphism A,, has the same form as in the orthogonal case above, except that all occurences of
orthogonal groups are replaced by just their sub-symmetric groups.

Accordingly, the analysis then proceeds entirely analogously, with the key difference that the projection
Z(@)/2(q-—n—-1) = 2(@)/2(q—n)

does not become highly connected as g increases, due to the discrete topological space underlying the
symmetric group. Accordingly the conclusion now is the opposite: 4, is not a stable weak homotopy
equivalence in this case. N

Another use of free spectra is that their pushout products may be explicitly analyzed, and checking the
pushout-product axiom for general cofibrations may be reduced to checking it on morphisms between free
spectra.

Lemma 2.34. The symmetric monoidal smash product of spectra of the free spectrum constructions (def.
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2.25) on the generating cofibrations {S™* 3 D™, of the classical model structure on topological spaces
is given by addition of indices

(Fkinl) D§dia (Ft’inz) = Fk+t’(in1+n2) .

Proof. By lemma 2.29 the commuting diagram defining the pushout product of free spectra

ng—1 ny -1

FieSE " Asy,, FoST

' N
1 -1 -1
FyDI* Asy, FoSY? FiSY 7 Asy,, FeD?
N /
-1 -1
Fi D7 Ay, FiDY?
is equivalent to this diagram:
Fipo((S™ 7t x 8™ )
' N
Fiio((D™ xS™71) ) Fiyo((S™71xD™2) ).
N '

Fp (D™ xD"2) )
Since the free spectrum construction is a left adjoint, it preserves pushouts, and so
(Fkinl) DSdia (Ft’inz) = Fk+i(in1 o inz) = Fk+l(in1+n2)'
where in the second step we used this lemma. N
3. The strict model structure on structured spectra

Theorem 3.1. The four categories of

1. pre-excisive functors Exc(Tong) ;

2. orthogonal spectra OrthSpec(Topcg) = Soren Mod;

3. symmetric spectra SymSpec(Top,,) = Ssym Mod;

4. sequential spectra SeqSpec(Top,,) = Sseq Mod

(from def. 2.1, prop. 2.8, def. 2.9) each admit a model category structure (def.) whose weak equivalences
and fibrations are those morphisms which induce on all component spaces weak equivalences or
fibrations, respectively, in the classical model structure on pointed topological spaces (Topc*g/ )Quillen® (thm.,

prop.). These are called the strict model structures (or level model structures) on structured spectra.

Moreover, under the equivalences of categories of prop. 2.8 and prop. 2.12, the restriction functors in def.
2.4 constitute right adjoints of Quillen adjunctions (def.) between these model structures:

EXC(TOng)strict Orthspec(TOpcg)strict Symspec(Topcg)strict SequeC(Topcg)strict
= = = =
orth, sym, seq,
— — —
S MOdstrict L SOr':h MOdstrict L SSym MOdstrict s SSeq MOdstrict
orth” sym* seq”

(MMSS 00, theorem 6.5)

Proof. By prop. 2.19 all four categories are equivalently categories of pointed topologically enriched
functors

Sdia Mod = [Sg4;, Freeg;,Mod, Topc*g/]

and hence the existence of the model structures with componentwise weak equivalences and fibrations is a
special case of the general existence of the projective model structure on enriched functors (thm.).

The three restriction functors dia” each have a left adjoint dia, by topological left Kan extension (prop. 1.38).

Moreover, the three right adjoint restriction functors are along inclusions of objects, hence evidently
preserve componentwise weak equivalences and fibrations. Hence these are Quillen adjunctions. N
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Definition 3.2. Recall the sets

_, (g
ITop*/ =7 — Di}en
LUy
Jroyr = 102 5 07 D),

of generating cofibrations and generating acyclic cofibrations, respectively, of the classical model structure
on pointed topological spaces (def.)

Write

I3 = {FO2 () )}

c€Dia,neN

for the set of images under forming free spectra, def. 2.25, on the morphisms in ITOP*/ from above.

Similarly, write
Jane = {FE G, D)
for the set of images under forming free spectra of the morphisms in ]Top*/.
cg

Proposition 3.3. The sets IS5 and ];gf“t from def. 3.2 are, respectively sets of generating cofibrations and
generating acyclic cofibrations that exhibit the strict model structure Sp;; Modg,ir from theorem 3.1 as a

cofibrantly generated model category (def.).

(MMSS 00, theorem 6.5)

Proof. By theorem 3.1 the strict model structure is equivalently the projective pointed model structure on
topologically enriched functors

Spia Modsgrice = [Spia FreepiaMod®, Top*/]proi

of the opposite of the category of free spectra on objects in ¢ - [C, Topc*g/].
By the general discussion in Part P -- Classical homotopy theory (this theorem) the projective model

structure on functors is cofibrantly generated by the smash tensoring of the representable functors with the
elements in ITOP*/ and ]Top*/. By the proof of lemma 2.26, these are precisely the morphisms of free spectra
cg cg

in I35 and J31, respectively. W

Topological enrichment

By the general properties of the projective model structure on topologically enriched functors, theorem 3.1
implies that the strict model category of structured spectra inherits the structure of an enriched model
category, enriched over the classical model structure on pointed topological spaces. This proceeds verbatim
as for sequential spectra (in part 1.1 — Topological enrichement), but for ease of reference we here make it
explicit again.

Definition 3.4. Let Dia € {Topc*g/_ﬁn,Orth, Sym, Seq} one of the shapes for structured spectra from def. 2.4.
Let f : X » Y be a morphism in Sg;, Mod (as in prop. 3.1) and let i : A —» B a morphism in Topc*g/.

Their pushout product with respect to smash tensoring is the universal morphism
foi=((d,0), (f,id))

in

XNA

rid) NI
YAA (po) XAB
\ v/ ,
(YAA) U (XAB)
1 (G, (i)

YAB

where

(=) A (=) : Sgia Mod X Topc*g/ =~ [S4ia FreqiaMod®®, Topc*g/] x Topc*g/ — [Sgia FreqiaMod P, Topc*g/] >~ S4ia Mod

denotes the smash tensoring of pointed topologically enriched functors with pointed topological spaces
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(def.)
Dually, their pullback powering is the universal morphism

7" = (Maps(B, f),, Maps(i, X),)

in

Maps(B, X),

1 (Maps(B.f),,Maps(i.X).)
Maps(B,Y), Maps>(<A,Y)* Maps(4, X),
/ N ’
Maps(B,Y), (pb) Maps(4, X),
Maps(iy), ¥ < Maps(4p),

Maps(4,Y),

where

Maps(—, —), : (Tong)op X Sgia Mod = (Topc*g/)op X [Sgia Freep;Mod P, Topc*g/] — [Sgia Freep;aMod °P, Topc*g/] = S4ia Mod

denotes the smash powering (def.).

Finally, for f:X - Y and i: A - B both morphisms in Sg;, Mod, then their pullback powering is the universal
morphism

£ = (Sqia Mod(B, f), Saia Mod (i, X))

Sqia Mod(B, X)

| (Sdia Mod(B,1),Saia Mod(i.X))

Sgia Mod(B,Y) Sai MoaAy) Sqia Mod(4, X)
1a d

4 N ,
Sdia Mod(B,Y) (pb) S4ia Mod(4, X)

Sdia Mod(i,y) YS gia Mod(4,p)

Sdia MOd(A, Y)
where now Sg;, Mod(—, —) is the hom-space functor of Sg;, Mod = [Sq;, Freep;;Mod P, Topc*g/] from def. 1.31.

Proposition 3.5. The operations of forming pushout products and pullback powering with respect to smash
tensoring in def. 3.4 is compatible with the strict model structure Sg;, Modgic On Structured spectra from
theorem 3.1 and with the classical model structure on pointed topological spaces (Topc"g/ )Quillen (thm.,
prop.) in that pushout product takes two cofibrations to a cofibration, and to an acyclic cofibration if at
least one of the inputs is acyclic, and pullback powering takes a fibration and a cofibration to a fibration,
and to an acylic one if at least one of the inputs is acyclic:

COfstrict o COfcl c COfstrict
COfstrict O (COfcl O Wcl) c COfstrict n Wstrict .
(COfstrict n Wstrict) o COfcl c COfstrict n Wstrict

Dually, the pullback powering (def. 3.4) satisfies

.. OCof) .
Flbstrict c Flbstrict

o(Cofe NWep)
strict

Fib c Fibstrict n Wstrict .

. oCof, ;
(Flbstrict n Wstrict) dc Flbstrict n Wstrict

Proof. The statement concering the pullback powering follows directly from the analogous statement for
topological spaces (prop.) by the fact that, via theorem 3.1, the fibrations and weak equivalences in

S4ia Modricr @re degree-wise those in (T"p:g/)qmnenr and since smash tensoring and powering is defined
degreewise. From this the statement about the pushout product follows dually by Joyal-Tierney calculus

(prop.). N

Remark 3.6. In the language of model category-theory, prop. 3.5 says that Sg;, Modgic: iS an enriched
model category, the enrichment being over (Topc*g/)QumEH. This is often referred to simply as a “topological
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model category”.
We record some immediate consequences of prop. 3.5 that will be useful.

Proposition 3.7. Let K € Tong be a retract of a cell complex (def.), then the smash-tensoring/powering
adjunction from prop. 1.37 is a Quillen adjunction (def.) for the strict model structure from theorem 3.1

(-)AK
Sdia Mod(Topcg) 1 Sdia Mod(Tong)

strict ———
Maps(K, -),

strict *

Proof. By assumption, K is a cofibrant object in the classical model structure on pointed topological spaces
(thm., prop.), hence = - K is a cofibration in (Top;‘g/)Qumen. Observe then that the the pushout product of any
morphism f with = - K is equivalently the smash tensoring of f with K:

fo(x->K) =fAK.

This way prop. 3.5 implies that (—) A K preserves cofibrations and acyclic cofibrations, hence is a left Quillen
functor. B

Lemma 3.8. Let X € Sy, Modgic: be a structured spectrum, regarded in the strict model structure of theorem
3.1.

1. The smash powering of X with the standard topological interval I, (exmpl.) is a good path space
object (def.)

EWstrict € Fibggrict
Ay i X X'+ XxX.

2. If X is cofibrant, then its smash tensoring with the standard topological interval I, (exmpl.) is a good
cylinder object (def.)

€ Cofstrict strict

EW
Uyt XVX —S ¥ A () —S x

Proof. 1t is clear that we have weak equivalences as shown (I - = is even a homotopy equivalence), what
requires proof is that the path object is indeed good in that XU+) - X x X is a fibration, and the cylinder
object is indeed good in that XvX - X A (I,) is indeed a cofibration.

For the first statement, notice that the pullback powering (def. 3.4) of = u = %) I 'into the terminal

morphism X — * is the same as the powering x(o:i1);
(X - *)E\(io'iﬂ) ~ xUoin)

But since every object in S4i, Modgic IS fibrant, so that X —» = is a fibration, and since (i,,i,) is a relative cell

complex inclusion and hence a cofibration in (Topc*g/)Qumn, prop. 3.5 says that x(o-i); x!+ X x X is a fibration.

Dually, observe that
(x =2 X)0 (g, iy) = XA(ig ) -

Hence if X is assumed to be cofibrant, so that * — X is a cofibration, then prop. 3.5 implies that
XA (ig,i1):XAX - XA (1) is a cofibration. N

Proposition 3.9. For X € Sy;, Mod a structured spectrum, f € Mor(Sg. Mod) any morphism of structured

spectra, and for g € Mor(Top;‘p/t) a morphism of pointed topological spaces, then the hom-spaces of def.

1.31 (via prop. 2.19) interact with the pushout-product and pullback-powering from def. 3.4 in that there
is a natural isomorphism

Sqia Mod(f O g, X) = (Sgia Mod(f, X))™ .
Proof. Since the pointed compactly generated mapping space functor (exmpl.)
«/\ °P * *
Maps(—, —), : (Topcg/) X Topcg/ — Topcg/
takes colimits in the first argument to limits (cor.) and ends in the second argument to ends (remark 1.36),

and since limits and colimits in S4;, Mod are computed objectswise (this prop. via prop. 2.19) this follows
with the end-formula for the mapping space (def. 1.31):
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Suia Mod(£ 019, X) = [ Maps((f 0.9)(e), X(©)),
= [Maps(f()n g, X(c),
= [ Maps(f(c), X(c))
= (/Maps(f(©), X(c)).)™

= (Sqia Mod(f, X))

Proposition 3.10. For X,Y € Sy, Mod(Top,,) two structured spectra with X cofibrant in the strict model
structure of def. 3.1, then there is a natural bijection

MpSgia Mod(X,Y) = [X,Y]

strict

between the connected components of the hom-space (def. 1.31 via prop. 2.19) and the hom-set in the
homotopy category (def.) of the strict model structure from theorem 3.1.

Proof. By prop. 1.37 the path components of the hom-space are the left homotopy classes of morphisms of
structured spectra with respect to the standard cylinder spectrum X A (I,):

I, — SeqSpec(X,Y)
Xn(Iy) —Y

Moreover, by lemma 3.8 the degreewise standard reduced cylinder X A (I..) of structured spectra is a good
cylinder object on X in S4i, Modgic:. Hence hom-sets in the strict homotopy category out of a cofibrant into a
fibrant object are given by standard left homotopy classes of morphisms

[X’ y]strict = Hodeia Mod (X’ Y)/ ~
(this lemma). Since X is cofibrant by assumption and since every object is fibrant in Sy;, Modg., this is the
case. Hence the notion of left homotopy here is that seen by the standard interval, and so the claim

follows. W

Monoidal model structure

We now combine the concepts of model category (def.) and monoidal category (def. 1.1).

Given a category C that is equipped both with the structure of a monoidal category and of a model category,
then one may ask whether these two structures are compatible, in that the left derived functor (def.) of the
tensor product exists to equip also the homotopy category with the structure of a monoidal category. If so,
then one may furthermore ask if the localization functor y : ¢ — Ho(C) is a monoidal functor (def. 1.47).

The axioms on a monoidal model category (def. 3.11 below) are such as to ensure that this is the case.

A key consequence is that, via prop. 1.50, for a monoidal model category the localization functor y carries
monoids to monoids. Applied to the stable model category of spectra established below, this gives that
structured ring spectra indeed represent ring spectra in the homotopy category. (In fact much more is true,
but requires further proof: there is also a model structure on monoids in the model structure of spectra, and
with respect to that the structured ring spectra represent A-infinity rings/E-infinity rings.)

Definition 3.11. A (symmetric) monoidal model category is a model category ¢ (def.) equipped with the
structure of a closed (def. 1.7) symmetric (def. 1.5) monoidal category (G, ® ,I) (def. 1.1) such that the
following two compatibility conditions are satisfied

1. (pushout-product axiom) For every pair of cofibrations f:X - Y and f':X' - Y’, their pushout-
product, hence the induced morphism out of the cofibered coproduct over ways of forming the tensor
product of these objects

foeg = X®Y) U YOX)—Y®Y,
is itself a cofibration, which, furthermore, is acyclic if at least one of f or f' is.

(Equivalently this says that the tensor product ® :€ x € - C is a left Quillen bifunctor.)

2. (unit axiom) For every cofibrant object X and every cofibrant resolution @ £cof Q1 Z—W> 1 of the tensor
1
unit 1, the resulting morphism

Q1®XP1®X1®XEIs:cWX
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is a weak equivalence.

(Hovey 99, def. 4.2.6 Schwede-Shipley 00, def. 3.1, remark 3.2)

Observe some immediate consequences of these axioms:

Remark 3.12. Since a monoidal model category (def. 3.11) is assumed to be closed monoidal (def. 1.7), for
every object X the tensor product X ® (-) = (-) ® X is a left adjoint and hence preserves all colimits. In

particular it preserves the initial object @ (which is the colimit over the empty diagram).

If follows that the tensor-pushout-product axiom in def. 3.11 implies that for X a cofibrant object, then the
functor X ® (—) preserves cofibrations and acyclic cofibrations, since

fog(@-X)=fRX.

This implies that if the tensor unit 1 happens to be cofibrant, then the unit axiom in def. 3.11 is already
implied by the pushout-product axiom. This is because then we have a lift in

®» — Q1

Py

€ Cof
oL 2 Uy

1 =1

This lift is a weak equivalence by two-out-of-three (def.). Since it is hence a weak equivalence between
cofibrant objects, it is preserved by the left Quillen functor (—) ® X (for any cofibrant X) by Ken Brown's
lemma (prop.). Hence now p, ® X is a weak equivalence by two-out-of-three.

Since for all the categories of spectra that we are interested in here the tensor unit is always cofibrant (it
is always a version of the sphere spectrum, being the image under the left Quillen functor zg, of the
cofibrant pointed space $°, prop. 3.18), we may ignore the unit axiom.

Proposition 3.13. Let (C, ®,I) be a monoidal model category (def. 3.11) with cofibrant tensor unit 1.

Then the left derived functor @" (def.) of the tensor product @ exsists and makes the homotopy category
(def.) into a monoidal category (Ho(C), ®",y(1)) (def. 1.1) such that the localization functor y:C, - Ho(C)

(thm.) on the category of cofibrant objects (def.) carries the structure of a strong monoidal functor (def.
1.47)

y: (€ ®,1) — (Ho(@), ®",y(1)) .

The first statement is also for instance in (Hovey 99, theorem 4.3.2).

Proof. For the left derived functor (def.) of the tensor product

R CxXC—C
to exist, it is sufficient that its restriction to the subcategory

(€xC), =C.xC,

of cofibrant objects preserves acyclic cofibrations (by Ken Brown's lemma, here).

Every morphism (f, g) in the product category C, x C. (def. 1.26) may be written as a composite of a pairing
with an identity morphisms

(idclvg) (f.ich)
(f,9) i (c1,dy) — (€c1,d3) — (€2,d3) -

Now since the pushout product (with respect to tensor product) with the initial morphism (x - ¢;) is
equivalently the tensor product

(* »c)Ogg = id, @g

and

R

fog (x »¢) = fR®id,

the pushout-product axiom (def. 3.11) implies that on the subcategory of cofibrant objects the functor ®

preserves acyclic cofibrations. (This is why one speaks of a Quillen bifunctor, see also Hovey 99, prop.
4.3.1).

Hence ® exists.

By the same decomposition and using the universal property of the localization of a category (def.) one finds
that for ¢ and D any two categories with weak equivalences (def.) then the localization of their product
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category is the product category of their localizations:

(EXDY[(We x Wp) '] = (C[We']) x (DIW5]) .

With this, the universal property as a localization (def.) of the homotopy category of a model category

(thm.) induces associators a’ and unitors #%, L on (Ho(C, ®*)):

First write

py(9)® () Sv(-) ()

for (the inverse of) the corresponding natural isomorphism in the localization diagram

Then consider the associators:

cexe % e

-1

Yxvy | Vis l)’

Ho(C) X Ho(C) ; Ho(C)

L

The essential uniqueness of derived functors shows that the left derived functor of (=) ® ((-) ® (-)) and of
((-) ® (-) ® (-) is the composite of two applications of ®", due to the factorization

Ho(C) x Ho(C) x Ho(C)

Ce X Ce X C,

YXYXY |

(V)R ()

C, X C, % C, GEeE) e
vy | ¢ I
— . Ho(©)
L((5)® (- ®(-))
id
48 ¢, xC, 8 e
&idxﬂ—l Yxv ] ﬂﬂ—l Y

Ho(C) x Ho(C) x Ho(C) m Ho(C) x Ho(C) ;L Ho(C)

i L

and similarly for the case with the parenthesis to the left.

So let
BN (- OO (-
C. X C, X C, (DR (-NR®(-) c C. X C, X C, ()V((H®(-) e
yxyxy | 2 u=1. (u=1xid) v ) [adag’ Zu-1.Gaxp 1) v
Seliyel Selioy el
Ho(€) x Ho(C) x Ho(€) “2& "D 1 yie) Ho(€) x Ho(C) x Ho(€¢) & % Ny

be the natural isomorphism exhibiting the derived functors of the two possible tensor products of three
objects, as shown at the top. By pasting the second with the associator natural isomorphism of ¢ we obtain
another such factorization for the first, as shown on the left below,

((DBO(N®()

(DB (=N® ()

C. X C. X C, 164 CeXC X C _ ¢
=1 1= yXyxy | ”u—l_(idxu) ly
()R(HB(-) Ny
(%) Co X € X €, — ¢ = Ho(C) x Ho(€) x Ho(¢) 222 € ) yoiey
YxXyxy | 2 =1 (idxp 1) Y =1 793 1=

Ho(C) x Ho(C) x Ho(C)

ek -

a

Ho(C) x Ho(€C) X Ho(€() ————— Ho(0)
Ho(€) LR )

and hence by the universal property of the factorization through the derived functor, there exists a unique
natural isomorphism a’ such as to make this composite of natural isomorphisms equal to the one shown on
the right. Hence the pentagon identity satisfied by a implies a pentagon identity for !, and so a* is an

associator for @,

Moreover, this equation of natural isomorphisms says that on components the following diagram commutes

L
%y (X),¥(Y),¥(Z)
—_—

G " y() @' y@) X)) ®" (V) @ v(2))
pTt e txid) ¢ puT e dxph
Y((XQ®Y)R® 2) -— X ® (Y ®2)

y(a)

This is just the coherence law for the the compatibility of the monoidal functor u with the associators.

Similarly consider now the unitors.
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The essential uniqueness of the derived functors gives that the left derived functor of 1 ® (-) is y(1) ®" (-)

_ Jid
c. B3 ¢ c. ¥ exee 2 ¢
vy 4 ~ vy Yxrl 2y, -1 24
Ho(C) e Ho(C) Ho(C) T Ho(C) x Ho(C) @7 Ho(C)

Hence the left unitor ¢ of ¢ induces a derived unitor £* by the following factorization

. 29 ¢ . — &
rLoe, W A ity Y

T = o ™29 Hoge) -
vl v -1 ¢, =

I3

Ho(€) -7 Ho(C) Ho(¢) =  Ho(©)

Moreover, in components this equation of natural isomorphism expresses the coherence law stating the
compatibility of the monoidal functor u with the unitors.

Similarly for the right unitors. N

The restriction to cofibrant objects in prop. 3.13 serves the purpose of giving explicit expressions for the
associators and unitors of the derived tensor product ®"* and hence to establish the monoidal category
structure (Ho(C), ®*,y(1)) on the homotopy category of a monoidal model category. With that in hand, it is
natural to ask how the localization functor on all of ¢ interacts with the monoidal structure:

Proposition 3.14. For (¢, ® ,1) a monoidal model category (def. 3.11) then the localization functor to its
monoidal homotopy category (prop. 3.13) is a lax monoidal functor

y: (€ ®,1) — (Ho(C), ®",y(1)) .

The explicit proof of prop. 3.14 is tedious. An abstract proof using tools from homotopical 2-category theory

is here.

Definition 3.15. Given monoidal model categories (€, ®.,1¢) and (D, ®;,1p) (def. 3.11) with cofibrant
tensor units 1, and 15, then a strong monoidal Quillen adjunction between them is a Quillen
adjunction

cC.1D

xll—Tr-

such that L (hence equivalently R) has the structure of a strong monoidal functor.

Proposition 3.16. Given a strong monoidal Quillen adjunction (def. 3.15)

cCL1LD

xll—Th

between monoidal model categories (€, Q. ,1¢) and (D, ®,,,1p) with cofibrant tensor units 1, and 14, then
the left derived functor of L canonically becomes a strong monoidal functor between homotopy categories

]LL : (HO(C)' ®8 'y(l)c) - (HO(D)' ®D 'y(l)p) .

Proof. As in the proof of prop. 3.13, consider the following pasting composite of commuting diagams:

®p L
D, XD, (X—)Z; D, i> C, D XD, - D, - G
=1 . 1= YpX¥p l YD LYe
LXL Qe ~ ®L
D, x D, — CcxC = € = Ho(D)xHoD) 3 Ho(D) -5 Ho(C)
YpX¥Yp ! chXYc ll’e = v 1=
Ho(D) x Ho(D) TTH Ho(C) x Ho(C) @—Jé) Ho(C) Ho(D) x Ho(D) T, Ho(© x Ho(€) — Ho(C)
®¢

On the top left we have the natural transformation that exhibits L as a strong monoidal functor. By
universality of localization and derived functors (def.) this induces the unique factorization through the
natural transformation on the bottom right. This exhibits strong monoidal structure on the left derived
functor LL. W
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With some general monoidal homotopy theory established, we now discuss that structured spectra indeed
constitute an example. The version of the following theorem for the stable model structure of actual interest
is theorem 4.14 further below.

Theorem 3.17.

1. The classical model structure on pointed topological spaces equipped with the smash product is a
monoidal model category

((Top‘fg/)Quillen' A, SO) '

2. Let Dia € {Top;‘g/_ sn» Orth, Sym}. The strict model structures on structured spectra modeled on Dia from

theorem 3.1 equipped with the symmetric monoidal smash product of spectra (def. 2.1, def. 2.9) is a
monoidal model category (def. 3.11)

(Sdia MOdstrict' AN = ®§dia ’ Sdia\) .

(MMSS 00, theorem 12.1 (iii) with prop. 12.3)

Proof. By cofibrant generation of both model structures (this theorem and prop. 3.3) it is sufficient to check
the pushout-product axiom on generating (acylic) cofibrations (this is as in the proof of this proposition).

Those of Topc*g/ are as recalled in def. 4.4. These satisfy (exmpl.) the relations
Uiy Ol = Uy +ky
and
Uy Oy = Jiey iy -
This shows that

I L. . cl

Top*/ D®§dia Top Top*/
and

ITop*/ D®§dia ]Top*/ c ]Top*/

which implies the pushout-product axiom for Topgg/. (However the monoid axiom (def.\ref{MonoidAxiom}) is
problematic.)

Now by def. 3.2 the generating (acyclic) cofibrations of S, Modsyicc are of the form F5(iy), and Fp(j,),,
respectively. By prop. 2.29 these satisfy

Fr (), On Fry (i), = Fnyn, (g Oale,),
and
Fry () B FryUp,)y = Fryiny (g B,
Hence with the previous set of relations this shows that
strict strict c Ifili:;ict

lgia U®s 4ia Liia

and

strict

strict strict
lgia D®s 4 Jaia < Jdia

and so the pushout-product axiom follows also for Sg;, Modgyict -

It is clear that in both cases the tensor unit is cofibrant: for Topjg/ the tensor unit is the 0-sphere, which
clearly is a CW-complex and hence cofibrant. For Sy, Mod the tensor unit is the standard sphere spectrum,
which, by prop. 2.26 is the free structured spectrum (def. 2.25) on the 0-sphere

Sqia = F§(5°) .

Now the free structured spectrum functor is a left Quillen functor (prop. 3.18) and hence Sg;, is cofibrant. N

Suspension and looping

For the strict model structure on topological sequential spectra, forming suspension spectra consitutes a
Quillen adjunction (Z® 4 2*) with the classical model structure on pointed topological spaces (prop.) which is
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the precursor of the stabilization adjunction involving the stable model structure (thm.). Here we briefly
discuss the lift of this strict adjunction to structured spectra.

Proposition 3.18. Let Dia € {Topc*g/_ fin» OTth, Sym, Seq} be one of the shapes of structured spectra from def. 2.4.
For every n € N, the functors Ev3® of extracting the nth component space of a structured spectrum, and
the functors F3? of forming the free structured spectrum in degree n (def. 2.25) constitute a Quillen
adjunction (def.) between the strict model structure on structured spectra from theorem 3.1 and the
classical model structure on pointed topological spaces (thm., prop.):

nga
€ x/
Sdia MOdstrict L (T()pcg

- )Quillen )
Ev,‘%lla

For n =0 and writing 23, = F&? and 03, = Evd3, ¥$. this yields a strong monoidal Quillen adjunction (def.
3.15)

>
LI
Sdia MOdstrict i} (TOpcg

o0
24ia

)Quillen )

Moreover, these Quillen adjunctions factor as

Seql EDO
—

oo © — *
(ZFa 4 282)  Saia Mod(Top ), e, L SeaSpec(Top,,) e L, (Topey)
nOO

strict —
seq™
where the Quillen adjunction (seq, 4 seq”) is that from theorem 3.1 and where (¥ - 2%) is the suspension
spectrum adjunction for sequential spectra (prop.).

Proof. By the very definition of the projective model structure on functors (thm.) it is immediate that Evi2
preserves fibrations and weak equivalences, hence it is a right Quillen functor. FJi# is its left adjoint by
definition.

That Z§, is a strong monoidal functor is part of the statement of prop. 2.29.

Moreover, it is clear from the definitions that
0, = 2% oseq”,
hence the last statement follows by uniqueness of adjoints. W

Remark 3.19. In summary, we have established the following situation. There is a commuting diagram of
Quillen adjunctions of the form

z
(Top.)) T (Top.)
ng Quillen = ng Quillen
0
2y 4 2 2y 4 2
z
— .
Seqspec(Topcg)strict i} Seqspec(Topcg)strict
0
diay | Tdia* diay |, Tclia"
Sdia MOdstrict Sdia MOdstrict

The top square stabilizes to the actual stable homotopy theory (thm.). On the other hand, the top square
does not reflect the symmetric monoidal smash product of spectra (by remark 2.6). But the total vertical
composite 2§, = dia, ” does, in that it is a strong monoidal Quillen adjunction (def. 3.15) by prop. 3.18.

Hence to obtain a stable model category which is also a monoidal model category with respect to the
symmetric monoidal smash product of spectra, it is now sufficient to find such a monoidal model structure
on Sgi, Mod such that (seq, - seq”) becomes a Quillen equivalence (def.)

This we now turn to in the section The stable model structure on structured spectra.

4. The stable model structure on structured spectra

Theorem 4.1. The category OrthSpec(Top,,) of orthogonal spectra carries a model category structure (def.)
where

e the weak equivalences W, are the stable weak homotopy equivalences (def. 2.21);
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e the cofibrations Cof,y . are the cofibrations of the strict model stucture of prop. 3.1;

e the fibrant objects are precisely the Omega-spectra (def. 2.21).

Moreover, this is a cofibrantly generated model category (def.) with generating (acyclic) cofibrations the
sets [stble (jstable) from def, 3.2.

(Mandell-May 02, theorem 4.2)

We give the proof below, after

Proof of the model structure

The generating cofibrations and acylic cofibrations are going to be the those induced via tensoring of
representables from the classical model structure on topological spaces (giving the strict model structure),
together with an additional set of morphisms to the generating acylic cofibrations that will force fibrant
objects to be Omega-spectra. To that end we need the following little preliminary.

Definition 4.2. Forne N let

k.
ApiFpiaS* 3 Cyl(4,) — F,S°

be the factorization as in the factorization lemma of the morphism 2,, of lemma 2.30 through its mapping
cylinder (prop.) formed with respect to the standard cylinder spectrum (F,,{S% A (I,):

Notice that:

Lemma 4.3. The factorization in def. 4.2 is through a cofibration followed followed by a left homotopy
equivalence in Sgi, Mod(Tong)Strict

Proof. Since the cell s* is cofibrant in (Topc*g/)Qumen, and since F,,,(—) is a left Quillen functor by prop. 3.18,
the free spectrum F,,,S* is cofibrant in S, Mod(Tong)smct. Therefore lemma 3.8 says that its standard

cylinder spectrum is a good cylinder object and then the factorization lemma (lemma) says that k,, is a
cofibration. Moreover, the morphism out of the standard mapping cylinder is a homotopy equivalence, with
homotopies induced under tensoring from the standard homotopy contracting the standard cylinder. N

With this we may state the classes of morphisms that are going to be shown to be the classes of generating
(acyclic) cofibrations for the stable model structures:

Definition 4.4. Recall the sets of generating (acyclic) cofibrations of the strict model structre def. 3.2. Set

[Stable .= strict
Sdia Mod(Topcg) ™ “Sqja Mod(Topcg)
and
stable strict .
= U {k,oi
]Sdia Mod(Top.g) ]Sdia Mod(Topg) {knOi Inen

iel

for the disjoint union of the strict acyclic generating cofibration with the pushout products under smash
tensoring of the resolved maps k, from def. 4.2 with the elements in I.

(MMSS 00, def.6.2, def. 9.3)

Lemma 4.5. Let Dia € {Topc*gﬁn,Orth,Seq} (but not Sym). Then every element in jgzglaodmp ; (def. 4.4) is
: o
both:

1. a cofibration with respect to the strict model structure (prop. 3.1);

2. a stable weak homotopy equivalence (def. 2.21).

Proof. First regarding strict cofibrations:

By the Yoneda lemma, the elements in J have right lifting property against the strict fibrations, hence in
particular they are strict cofibrations. Moreover, by Joyal-Tierney calculus (prop.), k, oi, has left lifting
against any acyclic strict fibration f precisely if k, has left lifting against f°'. By prop. 3.5 the latter is still a
strict acyclic fibration. Since k,, by construction is a strict cofibration, the lifting follows and hence also k, oi,
is a strict cofibration.

Now regarding stable weak homotopy equivalences:

The morphisms in J5* by design are strict weak equivalences, hence they are in particular stable weak
homotopy equivalences. The morphisms k, are stable weak homotopy equivalences by lemma 2.33 and by
two-out-of-three.
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To see that also the pushout products k, 0(i,), are stable weak homotopy equivalences. (e.g. Mandell-May
02, p.46):

First k, A (5"‘1)+ is still a stable weak homotopy equivalence, by lemma. 2.23.

Moreover, observe that dom(k,) Ai, is degreewise a relative cell complex inclusion, hence degreewise a

cofibration in the classical model structure on pointed topological spaces. This follows from lemma 2.28,
which says that dom(k,) Ai, is degreewise the smash product of a CW complex with i, , and from the fact

that smashing with CW-complexes is a left Quillen functor (Top;‘g/)QLlillen — (Topc"g/)Quillen (prop.) and hence
preserves cofibrations.

Altogether this implies by lemma 2.24 that the pushout of the stable weak homotopy equivalence
kn A (5"‘1)+ along the degreewise cofibration dom(k,) A i, is still a stable weak homtopy equivalence, and so

the pushout product k,, oi, is, too, by two-out-of-three. W

The point of the class K in def. 3.2 is to make the following true:

stable

Lemma 4.6. A morphism f:X - Y in Sy, Mod is a | -injective morphism (for K from def. 4.4) precisely if

1. it is a fibration in the strict model structure (hence degreewise a fibration);

2. for all n € N the commuting squares of structure map compatibility on the underlying sequential

spectra
Xp 5 0%
l l
Yo — QVnyq

o

are homotopy pullbacks (def.).

(MMSS 00, prop. 9.5)

Proof. By prop 3.3, lifting against Jst alone characterizes strict fibrations, hence degreewise fibrations.
Lifting against the remaining pushout product morphism k, oi, is, by Joyal-Tierney calculus, equivalent to
left lifting i, against the dual pullback product of 2%, which means that %~ is a weak homotopy
equivalence. But by construction of k, and by lemma 2.30, f™ is the comparison morphism into the
homotopy pullback under consideration. N

Corollary 4.7. The Js%'e-injective objects are precisely the Omega-spectra (def. 2.21).

Lemma 4.8. A morphism in S4i, Mod which is both
1. a stable weak homotopy equivalence (def. 2.21);

2. a Js®-jnjective morphisms

is an acyclic fibration in the strict model structure of prop. 3.1, hence is degreewise a weak homotopy
equivalence and Serre fibration of topological spaces;

(MMSS 00, corollary 9.8)

Proof. Let f:X — B be both a stable weak homotopy equivalence as well as a J*@P'*-injective morphism.

Since J5#P!¢ contains, by prop. 3.3, the generating acyclic cofibrations for the strict model structure of prop.
3.1, fis in particular a strict fibration, hence a degreewise fibration. Therefore the fiber F of f is its
homotopy fiber in the strict model structure.

Hence by lemma 2.22 there is an exact sequence of stable homotopy groups of the form

a2 - - "B .
By exactness and by the assumption that n.(f) is an isomorphism, this implies that n.(F) =~ 0, hence that
F — = is a stable weak homotopy equivalence.

Observe also that F, being the pullback of a J5%P"*-injective morphisms (by the standard closure properties)

is a Js'e-injective object, so that by corollary 4.7 F is an Omega-spectrum. Since stable weak homotopy
equivalences between Omega-spectra are already degreewise weak homotopy equivalences, together this
says that F - = is a weak equivalence in the strict model structure, hence degreewise a weak homotopy
equivalence. From this the long exact sequence of homotopy groups implies that .., (f,) is a weak

homotopy equivalence for all n and for each homotopy group in positive degree.

To deduce the remaining case that also n,(f,) is an isomorphism, observe that, by assumption of
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Jstable_jnjectivity, lemma 4.6 gives that f, is @ homotopy pullback (in topological spaces) of 2(f, , ). But, by
the above, Q(f, . ,) is a weak homotopy equivalence, since m.(2(-)) = n.,,(—). Therefore f,_ is the homotopy
pullback of a weak homotopy equivalence and hence itself a weak homotopy equivalence. N

stable

Lemma 4.9. The retracts of | -relative cell complexes are precisely the morphisms which are

1. stable weak homotopy equivalences (def. 2.21),
2. as well as cofibrations with respect to the strict model structure of prop. 3.1.

(MMSS 00, prop. 9.9 (i))

Proof. Since all elements of J5P!® are stable weak homotopy equivalences as well as strict cofibrations by
lemma 4.5, it follows that every retract of a relative K-cell complex has the same property.

In the other direction, if f is a stable weak homotopy equivalence and a strict cofibration, by the small

stable stable

object argument it factors f: 5 5 as a relative ] -cell complex i followed by a J -injective morphism
p. By the previous statement i is a stable weak homotopy equivalence, and so by assumption and by
two-out-of-three so is p. Therefore lemma 4.8 implies that p is a strict acyclic fibration. But then the
assumption that f is a strict cofibration means that it has the left lifting property against p, and so the
retract argument implies that f is a retract of the relative K-cell complex i. N

Corollary 4.10. The Js%°-injective morphisms are precisely those which are injective with respect to the
cofibrations of the strict model structure that are also stable weak homotopy equivalences.

(MMSS 00, prop. 9.9 (ii))

Lemma 4.11. A morphism in Sg, Mod (for Diq # Sym) is both
1. a stable weak homotopy equivalence (def. \ref{StableEquivalencesForDiagramSpectra})

2. injective with respect to the cofibrations of the strict model structure that are also stable weak
homotopy equivalences;

precisely if it is an acylic fibration in the strict model structure of theorem 3.1.

(MMSS 00, prop. 9.9 (iii))

Proof. Every acyclic fibration in the strict model structure is injective with respect to strict cofibrations by
the strict model structure; and it is a clearly a stable weak homotopy equivalence.

Conversely, a morphism injective with respect to strict cofibrations that are stable weak homotopy
equivalences is a J**®'-injective morphism by corollary 4.10, and hence if it is also a stable equivalence
then by lemma 4.8 it is a strict acylic fibration. R

Proof. (of theorem 4.1)

The non-trivial points to check are the two weak factorization systems.

That (cofsiapie N Weq,
argument.

stable » [1Dstable) 1S @ Weak factorization system follows from lemma 4.9 and the small object

By lemma 4.11 the stable acyclic fibrations are equivalently the strict acyclic fibrations and hence the weak
factorization system (cofgiapie » fibstapie N Westable) 1S identified with that of the strict model structure

(COfstrict ’ flbstrict n Westrict)' .

Stability of the homotopy theory

We show now that the model structure on orthogonal spectra OrthSpec(Top ,) ¢apie from theorem 4.1 is Quillen
equivalent (def.) to the stable model structure on topological sequential spectra SeqSpec(Top,,) (thm.),

hence that they model the same stable homotopy theory.

stable

Theorem 4.12. The free-forgetful adjunction (seq, 4 seq”) of def. 2.4 and theorem 3.1 is a Quillen

equivalence (def.) between the stable model structure on topological sequential spectra (thm.) and the
stable model structure on orthogonal spectra from theorem 4.1.

seq,
OrthspeC(Topcg)Stable =Quillen Seqspec(Topcg)stable
_—

seq*

(MMSS 00, theorem 10.4)

Proof. Since the forgetful functor seq* “creates weak equivalences”, in that a morphism of orthogonal
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spectra is a weak equivalence precisely if the underlying morphism of sequential spectra is (by def. 2.21) it
is sufficient to show (by this prop.) that for every cofibrant sequential spectrum X, the adjunction unit

X — seq’seq, X

is a stable weak homotopy equivalence.

By cofibrant generation of the stable model structure on topological sequential spectra SeqSpec(Top ) iapie
(thm.) every cofibrant sequential spectrum is a retract of an Issgzb‘e—relative cell complex (def., def.), where

ny —1 Fny Ung)4

ey = {Fnlw ﬁFnln’P}.

Since seq, and seq” both preserve colimits (seq” because it evaluates at objects and colimits in the diagram
category OrthSpec are computed objectwise, and seq, because it is a left adjoint) we have for X = lim X; a
: 13

relative I55°'°-decompositon of X, that n,:X — seq’seq, X is equivalently
li_)mi My, li_)mi X, — li_)miseq!seq X; .

Now observe that the colimits involved in a relative Issggble—complex (the coproducts, pushouts, transfinite
compositions) are all homotopy colimits (def.): First, all objects involved are cofibrant. Now for the
transfinite composition all the morphisms involved are cofibrations, so that their colimit is a homotopy
colimit by this example, while for the pushout one of the morphisms out of the “top” objects is a cofibration,
so that this is a homotopy pushout by (def.).

It follows that if all n, are weak equivalences, then so is n = lim 7, .
13 i 3

Unwinding this, one finds that it is sufficient to show that
t Fp, SY2 ‘seq, Fp, S™
My, stz * Fny S+° — seq’seq, F,
is a stable weak homotopy equivalence for all n,,n, € N.
Consider this for n, = n,. Then there are canonical morphisms

Fp 8"z — FoS™2 ™™

whose components in degree g > n, are the identity. These are the composites of the maps 1, AS¥T™2"™ for
k <n; with 4, from def. \reg{CorepresentationOfAdjunctsOfStructureMaps}. By prop. 2.33 also seq‘seq, 1,
are weak homotopy equivalences. Hence we have commuting diagrams of the form

FRiisne — FoS™2 ™M
nl = )
seq” Fgrthsnz—nl N Seq*FgrthSnz—nl
1
where the horizontal maps are stable weak homotopy equivalences by the previous argument and the right

vertical morphism is an isomorphism by the formula in prop. 2.27.Hence the left vertical morphism is a
stable weak homotopy equivalence by two-out-of-three.

If n, <n, then one reduces this to the above case by smashing with 5™~ "2,

and

Remark 4.13. Theorem 4.12 means that the homotopy categories of SeqSpec(Top,,)
OrthSpec(Top,,) are equivalent (prop.) via

stable

stable

Lseq,
Ho(OrthSpec(Topcg)stable) =~ Ho(Sequec(Tong)stable).
Rseq*

Since SeqSpec(Top ) iapie is a stable model category (thm.) in that the derived suspension looping
adjunction is an equivalence of categories, and and since this is a condition only on the homotopy
categories, and since Rseq?* manifestly preserves the construction of loop space objects, this implies that
we have a commuting square of adjoint equivalences of homotopy categories

z
Ho(Sequec(Topcg)stable) g Ho(Sequec(Topcg)Stable)
Io}

Lseq, | ~ Tleeq* Lseq, 1l ~ T]Rseq*

z
Pl
Ho(OrthSpec(Tong)Stable) = Ho(OrthSpec(Tong)Stable)
I}
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is a stable model category.

and so in particular also OrthSpec(Topy)ap1e

Due to the vertical equivalences here we will usually not distinguish between these homotopy categories
and just speak of the stable homotopy category (def.)

Ho(Spectra) := Ho(Sequec(Topcg) ) = Ho(OrthSpec(Tong)

stable stable) :

Monoidal model structure

We now discuss that the monoidal model category structure of the strict model structure on orthogonal
spectra OrthspeC(Topcg)strict (theorem 3.17) remains intact as we pass to the stable model structure

OrthSpec(Top,,) of theorem 4.1.

stable

Theorem 4.14. The stable model structure Orthspec(Topcg)stable of theorem 4.1 equipped with the symmetric

monoidal smash product of spectra (def. 2.9) is a monoidal model category (def. 3.11) with cofibrant
tensor unit

(OrthSpec(Top,), A = ®s_ .+ Sorth) -

(MMSS 00, prop. 12.6)

Proof. Since Cofy,1e = Cofyrice, the fact that the pushout product of two stable cofibrations is again a stable
cofibration is part of theorem 3.17.

It remains to show that if at least one of them is a stable weak homotopy equivalence (def. 2.21), then so is
the pushout-product.

Since Or‘thSpec(Topcg) is a cofibrantly generated model category by theorem 4.1 and since it has internal
homs (mapping spectra) with respect to Osyia (prop. 1.45), it suffices (as in the proof of this prop.) to check

this on generating (acylic) cofibrations, i.e. to check that

stable stable
I D® ] c Wstable n COfstable .

Now [stable — ystrict g jstable _ gstrict || ¢ 0 } so that the special case
Istable I:I® ]strict — Istrict D® ]strict

c Wstrict n COfstrict

c Wstable n COfstable

follows again from the monoidal stucture on the strict model category of theorem 3.17.
It hence remains to see that
IStriCt Og (knl O (in2)+) c Wstable n COfstable

for all ny,n, €N.

By lemma 4.5 k, oi, is in Cofy and hence

[striet g (kp, B (iny),) € Cofgyrice

follows, once more, from the monoidalness of the strict model structure.
Hence it only remains to show that

P 0g (ky, O (in,),) € Wgple -
This we now prove by inspection:

By two-out-of-three applied to the definition of the pushout product, it is sufficient to show that for every
Fp, (iy,), in I°™%, the right vertical morphism in the pushout diagram

Fng (iny) 4 ® dom(kn, Oing)y)

dom(Fn3 (in4)®(kn1 D(in2)+) 1

(po) 4

—

is a stable weak homotopy equivalence. Since seq* preserves pushouts, we may equivalently check this on
the underlying sequential spectra.

Consider first the top horizontal morphism in this square.
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We may rewrite it as

Fag (in,), ® (dom(kn,) O (in,) ) = Fry (in,), ® (Fay SOAST2™" 0 Fp1STADI?)
Fny+1STASY?
= Fp, (in,), ® Fn, S°AST2T" u ny 1 Frs (iny), ® Fpy 415" ADY?

; 1

Frg(ing )y ®Fny 115 ASy
- . ny—1
= Fnying (ing ) ASY u nz—anl

. 1 ny
L +nz+1(ng ), ASTADY
Fry+ng+1(ng) 4 ASy

where we used that X ® (—) is a left adjoint and hence preserves colimits, and we used prop. 2.29 to
evaluate the smash product of free spectra.

Now by lemma 2.28 the morphism

ng—1 1 ny,—1 Mg —1 1 n
Fn1+n3+15+4 ASTASL? _’FnlJrn3+15+4 AS"AD?

is degreewise the smash product of a CW-complex with a relative cell complex inclusion, hence is itself
degreewise a relative cell complex inclusion, and therefore its pushout

ng—1

Friting St " @ Fny SOAST T — Fp (S™71), ® dom(kn, O (in,),)

is degreewise a retract of a relative cell complex inclusion. But since it is the identity on the smash factor

Sf“’l in the argument of the free spectra as above, the morphism is degreewise the smash tensoring with

s™ 1 of a retract of a relative cell complex inclusion. Since the domain is degreewise a CW-complex by
ng—1

lemma 2.28, F,, (5"4’1)Jr ® dom(ky, O(in,),) is degreewise the smash tensoring with Sy of a retract of a
cell complex.

The same argument applies to the domain of Fp, (i,), ® (dom(k,) o (iz),), and so in conclusion this morphism
is degreewise the smash product of a cofibration with a cofibrant object in (Top,, and hence is itself

D

g 7/ Quillen’
degreewise a cofibration.
Now consider the vertical morphism in the above square

The same argument that we just used shows that this is the smash tensoring of the stable weak homotopy
equivalence k,, o (i,,), with a CW-complex. Hence by lemma 2.23 the left vertical morphism is a stable

weak homotopy equivalence.

In conclusion, the right vertical morphism is the pushout of a stable weak homotopy equivalence along a
degreewise cofibration of pointed topological spaces. Hence lemma 2.24 implies that it is itself a stable weak
homotopy equivalence. N

Corollary 4.15. The strong monoidal Quillen adjunction (def. 3.15) (Zgn 1 Qo) ON the strict model

structure (prop. 3.18) descends to a strong monoidal Quillen adjunction on the stable monoidal model
category from theorem 4.14:

Z3tth
OrthSpec(Top ) 1L (Top./, A,S%
p pcg stable — ng' ’ Quillen *
2orth

Proof. The stable model structure OrthSpec(Top,) apie is a left Bousfield localization of the strict model

structure (def.) in that it has the same cofibrations and a larger class of acyclic cofibrations. Hence Xg, is
still a left Quillen functor also to the stable model structure. N

5. The monoidal stable homotopy category

We discuss now the consequences for the stable homotopy category (def.) of the fact that by theorem 4.12
and theorem 4.14 it is equivalently the homotopy category of a stable monoidal model category. This makes
the stable homotopy category become a tensor triangulated category (def. 5.3) below. The abstract
structure encoded by this governs much of stable homotopy theory (Hovey-Palmieri-Strickland 97). In
particular it is this structure that gives rise to the E-Adams spectral sequences which we discuss in Part 2.

Corollary 5.1. The stable homotopy category Ho(Spectra) (remark 4.13) inherits the structure of a
symmetric monoidal category

(Ho(Spectra), A",S = ¥(Sortn))

with tensor product the left derived functor A* of the symmetric monoidal smash product of spectra (def.
2.9, def. 2.13, prop. 2.14) and with tensor unit the sphere spectrum S (the image in Ho(Spectra) of any of
the structured sphere spectra from def. 2.4).
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Moreover, the localization functor (def.) is a lax monoidal functor

y: (OrthSpec(Topcg), A, Sortn) — (Ho(Spectra), AL, y(S)) .
Proof. In view of theorem 4.14 this is a special case of prop. 3.13. 1

Remark 5.2. Let 4, X € Ho(Spectra) be two spectra in the stable homotopy category, then the stable
homotopy groups (def.) of their derived symmetric monoidal smash product of spectra (corollary 5.1) is
also called the generalized homology of X with coefficients in A and denoted

A(X) =T (ANX) .

This is conceptually dual to the concept of generalized (Eilenberg-Steenrod) cohomology (example)

A'(X) = [X,4], .
Notice that (def., lemma)

A.(X)=m.(ANX)
=[S, ANX],

In the special case that X = ¥¥K is a suspension spectrum, then

AJ(X) =T, (ANK)
(by prop. 2.29 ) and this is called the generalized A-homology of the topological space K € Topc*g/.

Since the sphere spectrum § is the tensor unit for the derived smash product of spectra (corollary 5.1) we
have

E.(S) =n.(E) .
For that reason often one also writes for short
E.=mn,(E).

Notice that similarly the E-generalized cohomology (exmpl.) of the sphere spectrum is

E":=E(S)
=[S E]_,

=~ .(E)
~F .,

(Beware that, as usual, here we are not displaying a tilde-symbol to indicate reduced cohomology).
Tensor triangulated structure

We discuss that the derived smash product of spectra from corollary 5.1 on the stable homotopy category
interacts well with its structure of a triangulated category (def.).

Definition 5.3. A tensor trianqulated category is a category Ho equipped with

1. the structure of a symmetric monoidal category (Ho, ®,1,7) (def. 1.5);

2. the structure of a triangulated category (Ho, %, CofSeq) (def.);

3. for all objects X,Y € Ho natural isomorphisms
exy : CX)QY S Z(XQY)
such that

1. (tensor product is additive) for all V € Ho the functors V ® (-) = (-) ® V preserve finite direct sums
(are additive functors);

2. (tensor product is exact) for each object V € Ho the functors V ® (-) = (-) ® V preserves
distinguished triangles in that for

in CofSeq, then also
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idy ® f idy ®g

id
VX VX vy e

V@@ ~sveX)

is in CofSeq, where the equivalence at the end is ey o 7y 5y.

Jointly this says that for all objects V the equivalences e give V ® (—) the structure of a triangulated
functor.

(Balmer 05, def. 1.1)

In addition we ask that

1. (coherence) for all X,Y,Z € Ho the following diagram commutes

conenez X sxermez 2% xxeve2)
AZXY,Z | lfax,y,z ,
JN®Y®2) —, JX® (Y ®2))

exXY®z
where « is the associator of (Ho, ® ,1).

2. (graded commutativity) for all n,,n, € Z the following diagram commutes

M) (2M1) = gmtnteg

ny-nz
,

Triy,zM21 | 1D
EmHE™MY) — M
where the horizontal isomorphisms are composites of the e. . and the braidings.

(Hovey-Palmieri-Strickland 97, def. A.2.1)

Proposition 5.4. The stable homotopy category Ho(Spectra) (def.) equipped with

1. its triangulated category structure (Ho(Spectra), X, CofSeq) for distinguished triangles the homotopy
cofiber sequences (prop.;

2. the derived symmetric monoidal smash product of spectra (Ho(Spectra), AL, S) (corollary 5.1)

is a tensor triangulated category in the sense of def. 5.3.

(e.g. Hovey-Palmieri-Strickland 97, 9.4)

We break up the proof into lemma 5.5, lemma 5.6, lemma 5.7 and lemma 5.9.

Lemma 5.5. For V € Ho(Spectra) any spectrum in the stable homotopy category (remark 4.13), then the
derived symmetric monoidal smash product of spectra (corollary 5.1)

V AL (=) : Ho(Spectra) — Ho(Spectra)
preserves direct sums, in that for all X,Y € Ho(Spectra) then
VAL X B Y)=VALX) D (VALY).

Proof. The direct sum in Ho(Spectra) is represented by the wedge sum in SeqSpec(Top,,) (prop., prop.). Since
wedge sum of sequential spectra is the coproduct in SeqSpec(Top,,) (exmpl.) and since the forgetful functor
seq’: OrthSpec(Top ) — SeqSpec(Top ) preserves colimits (since by prop. 2.19 it acts by precomposition on

functor categories, and since for these colimits are computed objectwise), it follows that also wedge sum of
orthogonal spectra represents the direct sum operation in the stable homotopy category.

Now assume without restriction that v, X and Y are cofibrant orthogonal spectra representing the objects of
the same name in the stable homotopy catgeory. Since wedge sum is coproduct, it follows that also the
wedge sum X vY is cofibrant.

Since V AL (—) is a left Quillen functor by theorem 4.14, it follows that the derived tensor product VAL (X @ Y)
is represented by the plain symmetric monoidal smash product of spectra VA (XVvY). By def. 2.9 (or more
explicitly by prop. 2.14) this is the coequalizer

_— coeq
4 ®Day Sorth ®Day (X vY) 14 ®Day (XV Y) —V ®Sorth xv Y) .

Inserting the definition of Day convolution (def. 1.39), the middle term here is
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7 Orth(c, ®gpep €20 =) AVE) AV Y)(E) = | Orth(c; @pey 2 =) AV(er) A (X(e2) V Y(c3))

C1,C2

€q1,C3
[ Orth(c, ®orth €20 =) AV(c)) AX(cy) V [ Orth(c, ®oren €20 =) AV(c1) AY(cy)
= V®DayX \ V®DayY

where in the second but last step we used that the smash product in Topjg/ distributes over wedge sum and
that coends commute with wedge sums (both being colimits).

The analogous analysis applies to the left term in the coequalizer diagram. Hence the whole diagram splits
as the wedge sum of the respective diagrams for VAX and VAY. I

Lemma 5.6. For X € Ho(Spectra) any spectrum in the stable homotopy category (remark 4.13), then the
derived symmetric monoidal smash product of spectra (corollary 5.1)

X AL (=) : Ho(Spectra) — Ho(Spectra)

preserves homotopy cofiber sequences.

Proof. We may choose a cofibrant representative of X in OrthSpec(Topcg)
symbol. Then the functor

which we denote by the same

stable’

XAN(=): OrthSpec(Tong) — OrthSpec(Tong)

stable stablestable

is a left Quillen functor in that it preserves cofibrations and acyclic cofibrations by theorem 4.14 and it is a
left adjoint by prop. 1.22. Hence its left derived functor is equivalently its restriction to cofibrant objects
followed by the localization functor.

But now every homotopy cofiber (def.) is represented by the ordinary cofiber of a cofibration. The left
Quillen functor preserves both the cofibration as well as its cofiber. N

Lemma 5.7. The canonical suspension functor on the stable homotopy category

2 : Ho(Spectra) — Ho(Spectra)

commutes with forming the derived symmetric monoidal smash product of spectra A from corollary 5.1 in
that for X,Y € Ho(Spectra) any two spectra, then there are isomorphisms

S(XALY) = EX)ALY = X AL (ZY) .

Proof. By theorem 4.14 the symmetric monoidal smash product of spectra is a left Quillen functor, and by
prop. 3.7 and lemma 3.8 the canonical suspension operation is the left derived functor of the left Quillen
functor (—) AS* of smash tensoring with S*. Therefore all three expressions are represented by application of
the underived functors on cofibrant representatives in OrthSpec(Top,,) (the fibrant replacement that is part of

the derived functor construction is preserved by left Quillen functors).

So for X and Y cofibrant orthogonal spectra (which we denote by the same symbol as the objects in the
homotopy category which they represent), by def. 2.9 (or more explicitly by prop. 2.14), the object
Z(X ALY) € Ho(Spectra) is represented by the coequalizer

1 coeq

—_—
(X ®pay Sortn @ V) AS? X ®pay VN AST— (X ®s, . VI A st,

where the two morphisms bing coequalized are the images of those of def. 2.9 under smash tensoring with
s, Now it is sufficient to observe that for any K € Topjg/ we have canonical isomorphisms

(X ®pay V) AK = (X ®p,, (Y AK)) = (XAK) ®p,, Y)
and similarly for the triple Day tensor product.

This follows directly from the definition of the Day convolution product (def. 1.39)

ViVs
(X ®pay NAKIV) = [ Orth(Vy @V, V) AX(Vy) AY(V2) AK

and the symmetry of the smash product on Topc*g/ (example 1.10). N

Example 5.8. For A € Ho(Spectra) a spectrum, then the A-generalized homology (according to remark 5.2) of
a suspension of the spectrum is the stable homotopy groups of 4 in shifted degree:

A.(Z"S) =T, _,(A) .

Proof. We compute
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A.(Z"S) = m.(AAE"S)
~ T, (Z"(ANS))
=m,(2"4)
=[S, 5"4]
=[S,4]_
=1, _n(4)

n

Here we use

e first the definition (remark 5.2);

e then the fact that suspension commutes with smash product (lemma 5.7, part of the tensor
triangulated structure of prop. 5.4);

e then the fact that the sphere spectrum is the tensor unit of the smash product of spectra (cor. 5.1);

e then the isomorphism of stable homotopy groups with graded homs out of the spjere spectrum
(lemma).

Lemma 5.9. For n,,n, € Z then the following diagram commutes in Ho(Spectra):

E™MS) AL (ZT2S) S pmtzg
Trhis zm2s | 1D
E™MS) AL (ZMS) — rhmtreg
Proof. It is sufficient to prove this for n,,n, € N & Z. From this the general statement follows by looping and
using lemma 5.7.

So assume ny,n,; > 0.

Observe that the sphere spectrum S = y(S,.) € Ho(Spectra) is represented by the orthogonal sphere
spectrum Sy, = 22, 8° (def. 2.25) and since £2,, is a left Quillen functor (prop. 3.18) and 5° € (Topc*g/)Quillen
is cofibrant, this is a cofibrant orthogonal spectrum. Hence, as in the proof of lemma 5.7, ™S is
represented by

SAS™M = 38,S™ .

Since Yq IS @ symmetric monoidal functor by prop. 2.29, it makes the following diagram commute

OrthSpec(Topcg))
Tsas™,sA5M2

(SAS™) ®g . (SAS™) (SAS™) @ (SAS™)

l l
SA(S™ AS™2) —_— SA(S"2AS™)
TOch/
S(TS"I,S”Z)
Topgg/ .
Now the homotopy class of Tgny gnp IN

[Snl +n2,5n2 +n1]* = My iy (Sn1 +n2) ~7

Tovég{ 1 ifny -n, even

T = .
[Tgm sne] -1 ifn, -n, odd
. Topég/ . e .
This translates to S Atn, n, under the identification (lemma)
[S,X], = m.(X)

and using the adjunction (—) A (S™t*"2) 4 Maps($™ *"2, —)_from prop. 1.37:

[SA(S™772), S A (S™11"2)] = [S, S A Maps(S™ * "2, §™1+"2)] .

Homotopy ring spectra
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We discuss commutative monoids in the tensor triangulated stable homotopy category (prop. 5.4).

In this section the only tensor product that plays a role is the derived smash product of spectra from
corollary 5.1. Therefore to ease notation, in this section (and in all of Part 2) we write for short

A= AL

Definition 5.10. A commutative monoid (E, u,e) (def. 1.13) in the monoidal stable homotopy category
(Ho(Spectra), A,S) of corollary 5.1 is called a homotopy commutative ring spectrum.

A module object (def. 1.16) over E is accordingly called a homotopy module spectrum.

Proposition 5.11. For (E,u,e) a homotopy commutative ring spectrum (def. 5.10), its stable homotopy
groups (def.)

. (E)

canonically inherit the structure of a Z-graded-commutative ring.

Moreover, for X € Ho(Spectra) any spectrum, then the generalized homology (remark 5.2)

E.(X) = m.(E A X)

(i.e. the stable homotopy groups of the free module over E on X (prop. 1.20)) canonically inherits the
structure of a left graded n.(E)-module, and similarly

X.(E) =mn.(XAE)
canonically inherits the structure of a right graded n.(E)-module.
Proof. Under the identification (lemma)
. (E) =[S, E],

~[S,2"E]
= [Z°S, E]

let
a;: 2MS — E
for i € {1,2} be two elements of r,(E).
Observe that there is a canonical identification
rmtreg ~ yM§ A Z2S

since S ~ SAS is the tensor unit (cor. 5.1, lemma 1.2) using lemma 5.7 (part of the tensor triangulated
structure from prop. 5.4). With this we may form the composite

~ A
Qs ZMtres = pmgartes L% pap B g

That this pairing is associative and unital follows directly from the associativity and unitality of x and the
coherence of the isomorphism on the left (prop. 5.4). Evidently the pairing is graded. That it is bilinear
follows since addition of morphisms in the stable homotopy category is given by forming their direct sum
(prop.) and since A distributes over direct sum (lemma 5.5, part of the tensor triangulated structure of prop.

5.4)).
It only remains to show graded-commutivity of the pairing. This is exhibited by the following commuting
diagram:
(,1)"1‘”2
Pt +n2§ PN ym +n2§
=1 =
IMS A S SIS g p g
ahag | ¥z
EAE EE EAE
p N Yy
E

Here the top square is that of lemma 5.9 (part of the tensor triangulated structure of prop. 5.4)), the middle
square is the naturality square of the braiding (def. 1.4, cor. 5.1), and the bottom triangle commutes by
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definition of (E,u, e) being a commutative monoid (def. 1.13).
Similarly given
a:XMS —>E
as before and
v:IZmS —>EAX,
then an action is defined by the composite
a-v:zmtneg = gmgages Y A aAx S Eax

This is clearly a graded pairing, and the action property and unitality follow directly from the associativity
and unitality, respectively, of (E,u,e).

Analogously for the right action on X.(E). N

Example 5.12. (ring structure on the stable homotopy groups of spheres)

The sphere spectrum $ = y(S,) iS @ homotopy commutative ring spectrum (def. 5.10).

On the one hand this is because it is the tensor unit for the derived smash product of spectra (by cor. 5.1),
and by example 1.14 every such is canonically a (commutative) monoid. On the other hand we have the
explicit representation by the orthogonal ring spectrum (def. 2.15) S, according to lemma 2.7, and the
localization functor y is a symmetric lax monoidal functor (prop. 3.14, and in fact a strong monoidal
functor on cofibrant objects such as S,.;, according to prop. 3.13) and hence preserves commutative
monoids (prop. 1.50).

The stable homotopy groups of the sphere spectrum are of course the stable homotopy groups of spheres
(exmpl.)

m = m(S) = lim, 7. (SY) .

Now prop. 5.11 gives the stable homotopy groups of spheres the structure of a graded commutative ring.
By the proof of prop. 5.11, the product operation in that ring sends elements «;:2™S — S to

S
grmtnzg = ymg A gnzs PR g a5 s,

where now not only the first morphism, but also the last morphism is an isomorphism (the isomorphism
from lemma 1.2). Hence up to isomorphism, the ring structure on the stable homotopy groups of spheres
is the derived smash product of spectra.

This implies that for X,Y € Ho(Spectra) any two spectra, then the graded abelian group [X,Y], (def.) of
morphisms from X to Y in the stable homotopy category canonically becomes a module over the ring =

QX Y], — [X,Y],
by
cmusSs), xSy o (2“1+”2X 3 ymgaziex Msay 3 Y) .

In particular for every spectrum X € Ho(Spectra), its stable homotopy groups m.(X) = [S,X], (lemma)

canonically form a module over r$. If X = E happens to carry the structure of a homotopy commutative
ring spectrum, then this module structure coincides the one induced from the unit

w.(e) : i =m.(S) — w.(E)
under prop. 5.11.

(It is straightforward to unwind all this categorical algebra to concrete component expressions by
proceeding as in the proof of this lemma).)

This finally allows to uniquely characterize the stable homotopy theory that we have been discussing:

Theorem 5.13. (Schwede-Shipley uniqueness theorem)

The homotopy category Ho(C) (def.) of every stable homotopy category C (def.) canonically has graded
hom-groups with the structure of modules over n{ = n,(S) (example 5.12). In terms of this, the following
are equivalent:
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1. There is a zig-zag of Quillen equivalences (def.) between C and the stable model structure on
topological sequential spectra (thm.) (equivalently (thm. 4.12) the stable model structure on
orthogonal spectra)

—
¢ zQ‘l :QU :QU Orthspec(Topcg)stable zQ“ Seqspec(Topcg)stable

2. there is an equivalence of categories between the homotopy category Ho(C) and the stable homotopy
category Ho(Spectra) (def.)

Ho(C) = Ho(Spectra)
which is wi-linear on all hom-groups.

(Schwede-Shipley 02, Uniqueness theorem)

6. Examples

For reference, we consider some basic examples of orthogonal ring spectra (def. 2.15) E. By prop. 2.16 and
corollary 5.1 each of these examples in particular represents a homotopy commutative ring spectrum (def.
5.10) in the tensor triangulated stable homotopy category (prop. 5.4).

We make use of these examples of homotopy commutative ring spectra E in Part 2 in the computation of
E-Adams spectral sequences.

For constructing representations as orthogonal ring spectra of spectra that are already known as sequential
spectra (def.) two principles are usefully kept in mind:

1. by prop. 2.16 it is sufficient to give an equivariant multiplicative pairing E,, AE,, = Ey, 14, and
equivariant unit maps S° - E,, S* —» E,, from these the structure maps s™ ANEy, = En ip, are already
uniquely induced;

2. the choice of 0(n)-action on E,, is governed mainly by the demand that the unit map S™ - E,, has to be

equivariant, with respect to the 0(n)-action on S™ induced by regarding S™ as the one-point
compactification of the defining 0(n)-representation on R™ (“representation sphere”).

Sphere spectrum

We already described the orthogonal sphere spectrum § as an orthogonal ring spectrum in lemma 2.7. The
component spaces are the spheres S™ with their 0(n)-action as representation spheres, and the
multiplication maps are the canonical identifications

Sﬂ.l /\Snz — STL1 +TLZ .

More generally, by prop. 2.29 the orthogonal suspension spectrum functor is a strong monoidal functor, and
so by prop. 2.16 the suspension spectrum of a monoid in Top;‘g/ (for instance G, for G a topological group)
canonically carries the structure of an orthogonal ring spectrum.

The orthogonal sphere spectrum is the special case of this with S, = 22, S° for $° the tensor unit in Topc*g/
(example 1.10) and hence a monoid by example 1.14.

Eilenberg-MacLane spectra

We discuss the model of Eilenberg-Maclane spectra as symmetric spectra and orthogonal spectra. To that
end, notice the following model for Eilenberg-MaclLane spaces.

Definition 6.1. For A an abelian group and n € N, the reduced A-linearization A[S"], of the n-sphere S™ is

the topological space, whose underlying set is the quotient of the tensor product with A of the free abelian

group on the underlying set of ™,
AR, [S™ = A[S™] — A[S™],

by the relation that identifies every formal linear combination of the basepoint of S™ with 0. The topology
is the induced quotient topology

k ny k n
L AR (S — Als™,

(of the disjoint union of product topological spaces, where A is equipped with the discrete topology).

(Aguilar-Gitler-Prieto 02, def. 6.4.20)
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Proposition 6.2. For A a countable abelian group, then the reduced A-linearization A[S™], (def. 6.1) is an
Eilenberg-MacLane space, in that its homotopy groups are

n A ifg=n
e (A[S™],) = .
* otherwise

(in particular for n > 1 then there is a unique connected component and hence we need not specify a
basepoint for the homotopy group).

(Aguilar-Gitler-Prieto 02, corollary 6.4.23)

Definition 6.3. For A a countable abelian group, then the orthogonal Eilenberg-MacLane spectrum HA
is the orthogonal spectrum (def. 2.11) with

e component spaces
(HA), = A[S"],

being the reduced A-linearization (def. 6.1) of the representation sphere S™;

e O(n)-action on A[S™], induced from the canonical O(n)-action on S™ (representation sphere);

e structure maps

oy : SYHA), — (HA),,,

hence
SYAA[S™ — A[S™Y
given by

(x, (Z aiyi),> - Z a;(x,y,) -

13 L

The incarnation of HA as a symmetric spectrum is the same, with the group action of 0(n) replaced by the
subgroup action of the symmetric group 2(n) < 0(n).

If R is a commutative ring, then the Eilenberg-MacLane spectrum HR becomes a commutative orthogonal
ring spectrum or symmetric ring spectrum (def. 2.15) by

1. taking the multiplication

(HR), A(HR), =R[S"™] AR[S"™], — R[S"""] = (HR)

nq +ny

to be given by

<(Z a"xi)’ <Z b,—y}.)) ” Z (a;-bp)(xiy;)
i j ij
2. taking the unit maps
S™ — A[S™]. = (HR),
to be given by the canonical inclusion of generators
x-1x.

(Schwede 12, example 1.1.14)

Proposition 6.4. The stable homotopy groups (def. 2.21) of an Eilenberg-MacLane spectrum HA (def. 6.3)
are

A ifg=0

n,(HA) =
q( ) 0 otherwise

Thom spectra

We discuss the realization of Thom spectra as orthogonal ring spectra. For background on Thom spectra
realized as sequential spectra see Part S the section Thom spectra.
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Definition 6.5. As an orthogonal ring spectrum (def. 2.15), the universal Thom spectrum MO0 has

e component spaces

o— n
(M), = EO(n), A S

the Thom spaces (def.) of the universal vector bundle (def.) of rank n;

e |left O(n)-action induced by the remaining canonical left action of EO(n);
e canonical multiplication maps (def.)

111 TLZ 111 +TLZ
(EO(m), (n S™)A(EO(S), (A S™ = EO(m +m5), \ A S

® unit maps
Sn = 0(n)+ AO(TL) Sn — EO(n)+ AO(n) Sn
induced by the fiber inclusion 0(V) - EO(V).

(Schwede 12, I, example 1.16)

For the universal complex Thom spectrum MU the construction is a priori directly analogous, but with the
real Cartesian space R" replace by the complex vector space C" thoughout. This makes the n-sphere
s™=s®" pe replaced by the 2n-sphere s2" =~ s¢" throughout. Hence the construction requires a second step
in which the resulting s?-spectrum (def.) is turned into an actual orthogonal spectrum. This proceeds
differently than for sequential spectra (lemma) due to the need to have compatible orthogonal group-action
on all spaces.

Definition 6.6. The universal complex Thom spectrum MU is represented as an orthogonal ring
spectrum (def. 2.15) as follows

First consider the component spaces

n
Un = EU(M), Ay S

given by the Thom spaces (def.) of the complex universal vector bundle (def.) of rank n, and equipped
with the 0(n)-action which is induced via the canonical inclusions

O(n) > U(n) - EU(n) .
Regard these as equipped with the canonical pairing maps (def.)

: MUy, AMU,, — MU, i, -

[
These are U(n)-equivariant, hence in particular 0(n)-equivariant.
Then take the actual components spaces to be loop spaces of these:
MU, := Maps(S™, MU,,)

and regard these as equipped with the conjugation action by 0(n) induced by the above action on MU,, and

the canonical action on s™ ~ S®",
Define the actual pairing maps

By @ MUpy AMUy, — MUy 4,
via

Maps(S™t, MU, ) A Maps(S"2, MU,,,) — Maps(S™*"2, MU, ,n,)
(ay,az) » Haym, © (a; Aap) .
Finally in order to define the unit maps, consider the isomorphism
g2 o Sc" ~ Sm"@im" ~STpAST

and then take the unit maps

S™ — (MU), = Maps(S",MU,)

to be the adjuncts of the canonical embeddings
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STAS" = S = Un), Ay S© — EUM), Ayemy SC .

(Schwede 12, I, example 1.18)

~. Conclusion

We summarize the results about stable homotopy theory obtained above.

First of all we have established a commuting diagram of Quillen adjunctions and Quillen equivalences of the

form
5
Ton"/ T Ton/
( OP¢g )Quillen = ( Opcg)Q“me“
2
4 197 5° 4 0%
z
Pl
Seqspec(TOch)strict i Seqspec(Topcg)strict
2
id) 4 qid id | | qid
z
il
SeqSpec(Top ) apte =0  S€qSPec(Top ) apie
o
seq | * seq | .
tlo=g rsed ) L
OrthSpec(Top o). apie OrthSpec(Top )¢ ape
where
. (Topc"g/)Quillen is the classical model structure on pointed topological spaces (thm., thm.);

is the stable model structure on topological sequential spectra (thm.);

. Sequec(Topcg)

stable

is the stable model structure on orthogonal spectra from theorem 4.1.

. OrthSpec(Topcg)

stable

Here the top part of the diagram is from remark 3.19, while the vertical Quillen equivalence (seq, 4 seq”) is
from theorem 4.1.

Moreover, the top and bottom model categories are monoidal model categories (def. 3.11): Topc"g/ with

respect to the smash product of pointed topological spaces (theorem 3.17) and OrthSpec(Top,,) as well as
OrthSpec(Topcg)Stable
theorem 4.14); and the compsite vertical adjunction

strict
with respect to the symmetric monoidal smash product of spectra (theorem 3.17 and

(Topsd, A,S°)
Z3tth 14 Tﬂg?rth

(OrthSpec(Top,,), A, Sorth)

is a strong monoidal Quillen adjunction (def. 3.15, corollary 4.15), and so also the induced adjunction of
derived functors

(Ho(Top*/), AL,5%)
RIS G
(Ho(Spectra), AL,S)

is a strong monoidal adjunction (by prop. 3.16) from the the derived smash product of pointed topological
spaces to the derived symmetric smash product of spectra.

Under passage to homotopy categories this yields a commuting diagram of derived adjoint functors

gy e .
Ho(Top*/) R Ho(Top*/)
0
S R
z
Ho(Spectra) E Ho(Spectra)
0

between the (Serre-Quillen-)classical homotopy category Ho(Top*/) and the stable homotopy category
Ho(Spectra) (remark 4.13). The latter is an additive category (def.) with direct sum the wedge sum of spectra
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@® = v (lemma, lemma) and in fact a triangulated category (def.) with distinguished triangles the homotopy
cofiber sequences of spectra (prop.).

While this is the situation already for sequential spectra (thm.), in addition we have now that both the
classical homotopy category as well as the stable homotopy category are symmetric monoidal categories
with respect to derived smash product of pointed topological spaces and the derived symmetric monoidal
smash product of spectra, respectively (corollary 5.1).

Moreover, the derived smash product of spectra is compatible with the additive category structure (direct
sums) and the triangulated category structure (homotopy cofiber sequences), this being a tensor
triangulated category (prop. 5.4).

abelian groups spectra

integers Z sphere spectrum S
Ab =~ 7Z Mod Spectra = S Mod

direct sum @ wedge sum v
tensor product ®,/smash product of spectra Ag
kernels/cokernels homotopy fibers/homotopy cofibers

The commutative monoids with respect to this smash product of spectra are precisely the commutative

orthogonal ring spectra (def. 2.15, prop. 2.16) and the module objects over these are precisely the
orthogonal module spectra (def. 2.17, prop. 2.18).

algebra homological algebrahigher algebra
abelian group|chain complex spectrum

ring dg-ring ring spectrum
module dg-module module spectrum

The localization functors y (def.) from the monoidal model categories to their homotopy categories are lax
monoidal functors (cor. 5.1)

(Toped, A,S°) — (Ho(Top"/), A*,y(S)
(OrthSpec(Topcg), A,Sortn) — (Ho(Spectra), AL, y(S)) .

This implies that for E € OrthSpec(Tong) a commutativeorthogonal ring spectrum, then its image y(E) in the

stable homotopy category is a homotopy commutative ring spectrum (def. 5.10) and similarly for module
spectra (prop. 1.50).

monoidal stable model category -localization— tensor triangulated category
stable model structure on orthogonal spectra stable homotopy category
OrthSpec(Tong)Stable Ho(Spectra)
symmetric monoidal smash product of spectra derived smash product of spectra
. ) o ) homot commutative rin
commutative orthogonal ring spectrum (E-infinity ring) omotopy co uta g
spectrum

Finally, the graded hom-groups [X,Y], (def.) in the tensor triangulated stable homotopy category are

canonically graded modules over the graded commutative ring of stable homotopy groups of spheres
(exmpl. 5.12)

[X,Y], € m.(S)Mod .

Hence the next question is how to actually compute any of these. This is the topic of Part 2 -- The Adams
spectral sequence.
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This page is an introduction to spectral sequences. We motivate spectral sequences of filtered complexes
from the computation of cellular cohomology via stratum-wise relative cohomology. In the end we generalize
to spectral sequences of filtered spectra.

For background on homological algebra see at Introduction to Homological algebra.

For background on stable homotopy theory see at Introduction to Stable homotopy theory.

For application to complex oriented cohomology see at Introduction to Cobordism and Complex Oriented
Cohomology.

For application to the Adams spectral sequence see Introduction to Adams spectral sequences.

Contents

1. For filtered complexes
Ordinary homology

Cellular homology

Filtered chain complexes

Comparing cellular and singular homology

2. For filtered spectra

3. References

In Introduction to Stable homotopy theory we have set up the concept of spectra X and their stable
homotopy groups =.(X) (def.). More generally for X and Y two spectra then there is the graded stable
homotopy group [X,Y], of homotopy classes of maps bewteen them (def.). These may be thought of as
generalized cohomology groups (exmpl.). Moreover, in part 1.2 we discussed the symmetric monoidal smash
product of spectra X AY. The stable homotopy groups of such a smash product spectrum may be thought of
as generalized homology groups (rmk.).

These stable homotopy and generalized (co-)homology groups are the fundamental invariants in algebraic
topology. In general they are as rich and interesting as they are hard to compute, as famously withessed by
the stable homotopy groups of spheres, some of which we compute in part 2.

In general the only practicable way to carry out such computations is by doing them along a decomposition
of the given spectrum into a “sequence of stages” of sorts. The concept of spectral sequence is what
formalizes this idea.

(Here the re-occurence of the root “spectr-" it is a historical coincidence, but a lucky one.)

Here we give a expository introduction to the concept of spectral sequences, building up in detail to the
spectral sequence of a filtered complex.

We put these spectral sequences to use in

e part 2 -- Adams spectral sequences.

e part S -- Complex oriented cohomology theory

1. For filtered complexes

We begin with recalling basics of ordinary relative homology and then seamlessly derive the notion of
spectral sequences from that as the natural way of computing the ordinary cohomology of a CW-complex
stagewise from the relative cohomology of its skeleta. This is meant as motivation and warmup. What we
are mostly going to use further below are spectral sequences induced by filtered spectra, this we turn to
next.

Ordinary homology
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Let X be a topological space and A & X a topological subspace. Write C,(X) for the chain complex of singular
homology on X and C.(4) & C.(X) for the chain map induced by the subspace inclusion.

Definition 1.1. The (degreewise) cokernel of this inclusion, hence the quotient C.(X)/C.(A4) of C.(X) by the
image of C.(4) under the inclusion, is the chain complex of 4A-relative singular chains.

e A boundary in this quotient is called an A-relative singular boundary,

e a cycle is called an A-relative singular cycle.

e The chain homology of the quotient is the A-relative singular homology of X
Hp(X,A) = Hyp(C.(X)/C.(4)) .

Remark 1.2. This means that a singular (n + 1)-chain c € C, ., (X) is an A-relative cycle precisely if its
boundary dc € C,(X) is, while not necessarily 0, contained in the n-chains of A: ac € C,(4) > C,(X). So the
boundary vanishes possibly only “up to contributions coming from A".

We record two evident but important classes of long exact sequences that relative homology groups sit in:

Proposition 1.3. Let A Sx be a topological subspace inclusion. The corresponding relative singular
homology, def. 1.1, sits in a long exact sequence of the form

Hp (D) Sp—1 Hp—1()
i Hn(A) — Hn(X) - Hn(X'A) — Hn—l(A) I Hn—l(X) - Hn—l(X'A) =

The connecting homomorphism &,:H,,(X,A) - H,(A) sends an element [c] € H,, (X, A) represented by an
A-relative cycle c € C,,1(X), to the class represented by the boundary 3*c € C,(A) & C,(X).

Proof. This is the homology long exact sequence, induced by the defining short exact sequence
0-C.(4) S C.(X) - coker(i) = C,(X)/C.(A) - 0 of chain complexes. N

Proposition 1.4. Let B A 5 X be a sequence of two topological subspace inclusions. Then there is a long
exact sequence of relative singular homology groups of the form

= Hn(AB) = Hy(X,B) = Ho (X, 4) =» Hy_1(4,B) = -

Proof. Observe that we have a short exact sequence of chain complexes, def.
\ref{ShortExactSequenceOfChainComplexes}

0 - C.(A)/C.(B) - C.(X)/C.(B) = C.(X)/C.(A) > 0.

The corresponding homology long exact sequence, prop. \ref{HomologyLongExactSequence}, is the long
exact sequence in question. N

We look at some concrete fundamental examples in a moment. But first it is useful to make explicit the
following general sub-notion of relative homology.

Let X still be a given topological space.

Definition 1.5. The augmentation map for the singular homology of X is the homomorphism of abelian
groups

e:Co(X) > Z

which adds up all the coefficients of all 0-chains:
6::Zni0i L d Zni .

Since the boundary of a 1-chain is in the kernel of this map, by example
\ref{BasicExamplesOfChainBoundaries?}, it constitutes a chain map
eC.(X)-1Z,

where now Z is regarded as a chain complex concentrated in degree 0.

Definition 1.6. The reduced singular chain complex C,(X) of X is the kernel of the augmentation map,
the chain complex sitting in the short exact sequence

0-C.(C)>C.(X)SZ-0.

The reduced singular homology A.(X) of X is the chain homology of the reduced singular chain complex
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H.(X):=H.(C.(X)) .
Equivalently:

Definition 1.7. The reduced singular homology of X, denoted f.(X), is the chain homology of the
augmented chain complex

01 dg €
=)= CXN) =2 C(X)>Z—>0.

Let X be a topological space, H.(X) its singular homology and H.(X) its reduced singular homology, def. 1.6.

Proposition 1.8. For n € N there is an isomorphism

H,(X) forn>1
Hy(X) =9
Ho(X)®DZ forn=0

Proof. The homology long exact sequence, prop. \ref{HomologyLongExactSequence}, of the defining short
exact sequence C,(C) - C.(X) Sz is, since Z here is concentrated in degree 0, of the form

o Hy(X) > Hy(X) 5 05 5 0 = - > Hy (X) > Hy(X) > 0 = Ho(X) = Ho(X) S Z 0.

Here exactness says that all the morphisms H,(X) - H,(X) for positive n are isomorphisms. Moreover, since Z
is a free abelian group, hence a projective object, the remaining short exact sequence

0- Hy(X) > Hy(X) »Z—0
is split, by prop. \ref{SplittingLemma}, and hence Hy(X) =~ H,(X) ®Z. N
Proposition 1.9. For X = = the point, the morphism
Ho(e):Hy(X) - Z
is an isomorphism. Accordingly the reduced homology of the point vanishes in every degree:
H(*)=0.
Proof. By the discussion in section 2) we have that

Ho(+) Z forn=0
* ) ~ .
n 0 otherwise

Moreover, it is clear that e:Cy(*) - Z is the identity map. N

Now we can discuss the relation between reduced homology and relative homology.

Proposition 1.10. For X an inhabited topological space, its reduced singular homology, def. 1.6, coincides
with its relative singular homology relative to any base point x:* — X:

H.(X) =~ Ho(X, *) .

Proof. Consider the sequence of topological subspace inclusions

@‘—)*‘ix,

By prop. 1.4 this induces a long exact sequence of the form

= Hy1(#) = Hpy1(X) = Hug1 (X, %) = Ho(#) = Hy(0) = Ha(X, ) = =+ = Hy(X) = Hy (X, #) = Ho(#) 25 Hy(X) - Hy(X, *) =

Here in positive degrees we have H,(*) ~ 0 and therefore exactness gives isomorphisms

Hn(X) > Hn(X' *) vn21
and hence with prop. 1.8 isomorphisms
I:In(X) S Hp(X, %) Vpsq .

It remains to deal with the case in degree 0. To that end, observe that Hy(x):Ho(*) » Ho(X) is a
monomorphism: for this notice that we have a commuting diagram
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id
Ho(*¥) = Ho(*)
Ho(x) | Ho() » | Ho(®

H
Hox) ™9 7

where f:X — = is the terminal map. That the outer square commutes means that H,(e) o Hy(x) = Hy(¢) and
hence the composite on the left is an isomorphism. This implies that H,(x) is an injection.

Therefore we have a short exact sequence as shown in the top of this diagram

Ho (%)
0 = Ho(x¥) — Ho(X) —» Ho(X,*) = 0

N\ 1Ho(®

Z
Using this we finally compute

Hy(X) = ker Hy(€)
= coker(Hy(x)) -
= Ho (X, *)

With this understanding of homology relative to a point in hand, we can now characterize relative homology
more generally. From its definition in def. 1.1, it is plausible that the relative homology group H,(X, A)
provides information about the quotient topological space X/A. This is indeed true under mild conditions:

Definition 1.11. A topological subspace inclusion A © X is called a good pair if

1. A is closed inside X;

2. A has an neighbourhood A © U & X such that A » U has a deformation retract.

Proposition 1.12. If A - X is a topological subspace inclusion which is good in the sense of def. 1.11, then
the A-relative singular homology of X coincides with the reduced singular homology, def. 1.6, of the
quotient space X /A:

Hy(X/A) = H (X, A) .

The proof of this is spelled out at Relative homology - relation to quotient topological spaces. It needs the
proof of the Excision property of relative homology. While important, here we will not further dwell on this.
The interested reader can find more information behind the above links.

Cellular homology

With the general definition of relative homology in hand, we now consider the basic cells such that cell
complexes built from such cells have tractable relative homology groups. Actually, up to weak homotopy
equivalence, every Hausdorff topological space is given by such a cell complex and hence its relative
homology, then called cellular homology, is a good tool for computing singular homology rather generally.

Definition 1.13. For n € N write
e D" o R™ e Top for the standard n-disk;
e s"" 1o R™ e Top for the standard (n — 1)-sphere;

(notice that the 0-sphere is the disjoint union of two points, S° = * [[ *, and by definition the
(—1)-sphere is the empty set)

e s~ & D™ for the continuous function that includes the (n — 1)-sphere as the boundary of the n-disk.

Example 1.14. The reduced singular homology of the n-sphere ™ equals the S™ *-relative homology of the
n-disk with respect to the canonical boundary inclusion $"~* < p™: for allne N

H,(S™ = H,(D™,s"™ ).
Proof. The n-sphere is homeomorphic to the n-disk with its entire boundary identified with a point:
Sn ~ Dn/sn—l .

Moreover the boundary inclusion is a good pair in the sense of def. 1.11. Therefore the example follows with
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prop. 1.12. N1
When forming cell complexes from disks, then each relative dimension will be a wedge sum of disks:

Definition 1.15. For {x;: = - X;}, a set of pointed topological spaces, their wedge sum v; X; is the result of
identifying all base points in their disjoint union, hence the quotient

(LIx)ALT+)-

L L

Example 1.16. The wedge sum of two pointed circles is the “figure 8”-topological space.

Proposition 1.17. Let {+ - X;}, be a set of pointed topological spaces. Write v; X; € Top for their wedge sum
and write ;:X; - V; X; for the canonical inclusion functions.

Then for each n € N the homomorphism
(Hn(w);: ®; Ho(X)) = Ha( Vi X))

is an isomorphism.

Proof. By prop. 1.12 the reduced homology of the wedge sum is equivalently the relative homology of the
disjoint union of spaces relative to their disjoint union of basepoints

Aa(vix) = o] [ %0 [

i

The relative homology preserves these coproducts (sends them to direct sums) and so

Hn(]__[xi.]__[ ) = @ Hy(Xp, ) .

The following defines topological spaces which are inductively built by gluing disks to each other.

Definition 1.18. A CW complex of dimension (-1) is the empty topological space.

By induction, for n € N a CW complex of dimension = is a topological space X,, obtained from

1. a C(W-complex X,_, of dimension n—1;
2. an index set Cell(X),, € Set;

3. a set of continuous maps (the attaching maps) {fl.:S"’1 = Xn_1}

ieCell(X),
as the pushout

we( 1] o) 11 m

jEeCell(X), jecell(x),s" 1
in
)
n-1 J
]-IjECell(X)n — Xna
l L
n
U]'ECell(X)n D - X

hence as the topological space obtained from X,,_; by gluing in n-disks D" for each j € Cell(X), along the
given boundary inclusion f}.:S"’1 > Xp_q-

By this construction, an n-dimensional CW-complex is canonically a filtered topological space, hence a
sequence of topological subspace inclusions of the form

PoXgoX,o X, 19X,
which are the right vertical morphisms in the above pushout diagrams.

A general CW complex X then is a topological space which is the limiting space of a possibly infinite such
sequence, hence a topological space given as the sequential colimit over a tower diagram each of whose
morphisms is such a filter inclusion

https://ncatlab.org/nlab/show/Introduction+to+Spectral+Sequences
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POXy0 X 00X,

The following basic facts about the singular homology of CW complexes are important.

Now we can state a variant of singular homology adapted to CW complexes which admits a more systematic
way of computing its homology groups. First we observe the following.

Proposition 1.19. The relative singular homology, def. 1.1, of the filtering degrees of a CW complex X, def.
1.18, is

Z[Cells(X),] ifk=n
Hp(Xp Xi—1) = o
0 otherwise

where Z[Cells(X),, ] denotes the free abelian group on the set of n-cells.

Proof. The inclusion X, _, © X, is a good pair in the sense of def. 1.11. The quotient X, /X,_, is by definition

of CW-complexes a wedge sum, def. 1.15, of k-spheres, one for each element in Cell(X),. Therefore by prop.
1.12 we have an isomorphism H,, (X, X;_1) = H,(Xi/Xr_1) With the reduced homology of this wedge sum. The
statement then follows by the respect of reduced homology for wedge sums, prop. 1.17. N

Proposition 1.20. For X a CW complex with skeletal filtration {X,}, as above, and with k,n € N we have for
the singular homology of X that

(k>n) = (Hi(Xn) = 0) .
In particular if X is a CW-complex of finite dimension dim X (the maximum degree of cells), then
(k> dimX) = (Hp(X) = 0).
Moreover, for k < n the inclusion
Hy(Xn) = Hi(X)
is an isomorphism and for k = n we have an isomorphism

image(Hy, (X,)) = Hy (X)) = Hy(X) .

Proof. By the long exact sequence in relative homology, prop. 1.3 we have an exact sequence of the form

Hk+1(Xn'Xn—1) - Hk(Xn—l) - Hk(Xn) - Hk(Xn'Xn—l) .

Now by prop. 1.19 the leftmost and rightmost homology groups here vanish when k#n and k#n—1 and
hence exactness implies that

Hy(Xp-1) > H(Xp)
is an isomorphism for k # n,n — 1. This implies the first claims by induction on n.
Finally for the last claim use that the above exact sequence gives
Hy141(Xn Xn—1) 2 Hoo1(Xn—1) > Hp 1 (X)) 2 0
and hence that with the above the map H,,_;(X,_1) - H,_1(X) is surjective. N

We may now discuss the cellular homology of a CW complex.

Definition 1.21. For X a CW-complex, def. 1.18, its cellular chain complex H*W(X) € Ch, is the chain
complex such that forne N

e the abelian group of chains is the relative singular homology group, def. 1.1, of X,, © X relative to
X,_10X:

HSW(X) =Hp(Xn, Xpn-1),
e the differential a5Yy, :HSY, (X) - HEW(X) is the composition
2 ;
arEW:Hn+1(Xn+1'Xn) = Hp(Xn) - Hy(Xn, Xn-1),

where d,, is the boundary map of the singular chain complex and where i, is the morphism on relative
homology induced from the canonical inclusion of pairs (X,,,8) - (X,,, Xn—1)-

Proposition 1.22. The composition at" o 5%, of two differentials in def. 1.21 is indeed zero, hence HE™(X)
is indeed a chain complex.
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ar(iW ° 6CW

Proof. On representative singular chains the morphism i, acts as the identity and hence n+1 acts as

the double singular boundary, 9,2 d,,, =0. R
Remark 1.23. This means that
e a cellular n-chain is a singular n-chain required to sit in filtering degree n, hence in X,, © X;

e a cellular n-cycle is a singular n-chain whose singular boundary is not necessarily 0, but is
contained in filtering degree (n —2), hence in X,,_, © X.

e a cellular n-boundary is a singular n-chain which is the boundary of a singular (n + 1)-chain coming
from filtering degree (n + 1).

This kind of situation - chains that are cycles only up to lower filtering degree and boundaries that come
from specified higher filtering degree - has an evident generalization to higher relative filtering degrees. And
in this greater generality the concept is of great practical relevance. Therefore before discussing cellular
homology further now, we consider this more general “higher-order relative homology” that it suggests
(namely the formalism of spectral sequences). After establishing a few fundamental facts about that we will
come back in prop. 1.46 below to analyse the above cellular situation using this conceptual tool.

In theorem 1.48 we conclude that cellular homology and singular homology agree of CW-complexes agres.

First we abstract the structure on chain complexes that in the above example was induced by the
CW-complex structure on the singular chain complex.

Filtered chain complexes

Definition 1.24. The structure of a filtered chain complex in a chain complex C, is a sequence of chain
map inclusions

o Fp 4C. 5 FC.5 5 C,.

The associated graded complex of a filtered chain complex, denoted G.C., is the collection of quotient
chain complexes

GpC. = F,C./Fp_4C. .
We say that element of G, C. are in filtering degree p.

Remark 1.25. In more detail this means that

a On—
1. [ 3¢, 23 C,_; — ] is a chain complex, hence {C,} are objects in A (R-modules) and {2, } are
morphisms (module homomorphisms) with d,,,, ° d,, = 0;

2. For each n € Z there is a filtering F.C, on C, and all these filterings are compatible with the
differentials in that

0(FpCn) € FyCn_y
3. The grading associated to the filtering is such that the p-graded elements are those in the guotient

F,C

G.C. =—P2"
P Fp1Ca

Since the differentials respect the grading we have chain complexes G,C. in each filtering degree p.

Hence elements in a filtered chain complex are bi-graded: they carry a degree as elements of C, as usual,
but now they also carry a filtering degree: for p,q € Z we therefore also write

Cpq=FpCpiq
and call this the collection of (p, q)-chains in the filtered chain complex.

Accordingly we have (p, q)-cycles and -boundaries. But for these we may furthermore refine to a notion
where also the filtering degree of the boundaries is constrained:

Definition 1.26. Let F.C. be a filtered chain complex. Its associated graded chain complex is the set of
chain complexes

G,C. = F,C./Fp_4C.

for all p.
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Then for r,p,q € Z we say that

1. G,Cp 4 is the module of (p, q)-chains or of (p + q)-chains in filtering degree p;

2. the module
Z;.q = {C € GyCpiqldc= Omode,rC,}
={ceF,Chiql0(c) EFp_rCpig1}/Fp-1Cpiq

is the module of r-almost (p, q)-cycles (the (p + ¢)-chains whose differential vanishes modulo terms
of filtering degree p —r);

3. Bzrz,q = 0(Fpsr-1Cp+q+1),
is the module of r-almost (p, q)-boundaries.
Similarly we set

Z;fq ={CEF,Cpyqldc=0}/Fp_1Cpiq =2Z(GpCpyigq)
Bpg = 0(FpCpiq+1) -

From this definition we immediately have that the differentials 9:C,. 4 - C,,4-, restrict to the r-almost
cycles as follows:

Proposition 1.27. The differentials of C. restrict on r-almost cycles to homomorphisms of the form
0" Zh g = Zyrqir—1 -
These are still differentials: 3* = 0.

Proof. By the very definition of Z,, , it consists of elements in filtering degree p on which d decreases the
filtering degree to p — r. Also by definition of differential on a chain complex, 9 decreases the actual degree
p + q by one. This explains that 9 restricted to Z, , lands in Z,_,. ,,,_,. Now the image constists indeed of
actual boundaries, not just r-almost boundaries. But since actual boundaries are in particular r-almost
boundaries, we may take the codomain to be Z;_, 4+,—1. N

As before, we will in general index these differentials by their codomain and hence write in more detail
Op,q:Zpq > Zp-rq+r—1 -
Proposition 1.28. We have a sequence of canonical inclusions
Bpq© Bpq© Bpq O Zpq S 9 Zpg S Zpg -

The following observation is elementary, and yet this is what drives the theory of spectral sequences, as it
shows that almost cycles may be computed iteratively by homological means themselves.

Proposition 1.29. The (r + 1)-almost cycles are the a"-kernel inside the r-almost cycles:

Zyht = ker(Z; , 2 Zy rgir—1) -
Proof. An element c € F,C,, 4 represents
1. an elementin zZ} , if 0c € Fp_,Cpiq_1
2. an elementin Z; 3" if even dc € Fp_,_1Cpigq-1 9 Fp_yCpiq-1-

The second condition is equivalent to dc representing the 0-element in the quotient
Fp_+Cpiq-1/Fp—r—1Cpsq—1. But thisis in turn equivalent to dc being 0 in
Z;—r,q+r—1 c Fp—GC+q—1/Fp—r—1Cp+q—1- .

With a definition of almost-cycles and almost-boundaries, of course we are now interested in the
corresponding homology groups:

Definition 1.30. For r,p,q € Z define the r-almost (p, g)-chain homology of the filtered complex to be the
quotient of the r-almost (p, q)-cycles by the r-almost (p, q)-boundaries, def. 1.26:

-
Zp.q
L
Bpq

oo
Ep.q '_

_ {xeFpCpiqlaxery rCpiq-1)

0Fp+r-1Cp+q+1)OFp-1Cp+q
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By prop. 1.27 the differentials of C, restrict on the r-almost homology groups to maps
0"} g = Ep_rqir—1 -

The central property of these r-almost homology groups now is their following iterative homological
characterization.

Proposition 1.31. With definition 1.30 we have that E7"" is the a"-chain homology of ET, . :

ker(0":Epq = Ep_rqsr—1)

. T, T T .
lm(a -Ep+r,q—r+1 _’Ep,q)

r+1 _
pq

Proof. By prop. 1.29. 1

This structure on the collection of r-almost cycles of a filtered chain complex thus obtained is called a
spectral sequence:

Definition 1.32. A homology spectral sequence of R-modules is

1. a set {E}, of R-modules;

'q}p,q,‘rEZ
2. aset {0pq:Epq = Ep—rqir—1},pqeq OF hOMoOmorphisms
such that
1. the @"s are differentials: V,, ;,(9p_r.q4r—1° 0pq = 0);

2. the modules E}}" are the 8"-homology of the modules in relative degree 7:

v E1-+1 ~ ker(a;—r,q+r—1)
np.q b.q lm(a;‘q)

One says that E7 . is the r-page of the spectral sequence.

Since this turns out to be a useful structure to make explicit, as the above motivation should already
indicate, one introduces the following terminology and basic facts to talk about spectral sequences.

Definition 1.33. Let {E;,q}mq be a spectral sequence, def. 1.32, such that for each p,q there is r(p,q) such
that for all r > r(p, q) we have

rzr(p.q) . pr®q9
Ep.q - ED.q .
Then one says that

1. the bigraded object

®._ ([ — (pT@D
E= {Ep'q}p,q = {Epq }p.q

is the limit term of the spectral sequence;
e the spectral sequence abuts to E”.

Example 1.34. If for a spectral sequence there is r; such that all differentials on pages after r; vanish,
d"="s = 0, then {ETS}M is a limit term for the spectral sequence. One says in this cases that the spectral

sequence degenerates at r.
Proof. By the defining relation
Eptt ~Kker(9y_yq4r—1)/im(dp,q) = Epq

the spectral sequence becomes constant in r from r; on if all the differentials vanish, so that ker(d,,) = E; 4
forall p,q. 1

Example 1.35. If for a spectral sequence {E;,q}rpq there is rg > 2 such that the r;th page is concentrated in

a single row or a single column, then the spectral sequence degenerates on this pages, example 1.34,
hence this page is a limit term, def. 1.33. One says in this case that the spectral sequence collapses on
this page.

Proof. For r > 2 the differentials of the spectral sequence
6T:E;,q - E;—r.q+r—1

have domain and codomain necessarily in different rows an columns (while for r = 1 both are in the same

9of 15
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row and for » = 0 both coincide). Therefore if all but one row or column vanish, then all these differentials
vanish. N

Definition 1.36. A spectral sequence {Ey,
traditionally denoted

rpa is said to converge to a graded object H, with filtering F.H.,

N
Epq=H.,

if the associated graded complex {G,Hy . q}, , = {FpHp+q/Fp-1Hp 4} Of H is the limit term of E, def. 1.33:

L ~
Epq = GpHpiq Yo.aq -

Remark 1.37. In practice spectral sequences are often referred to via their first non-trivial page, often also
the page at which it collapses, def. 1.35, often already the second page. Then one tends to use notation
such as

2
E;q = H.

to be read as “There is a spectral sequence whose second page is as shown on the left and which
converges to a filtered object as shown on the right.”

Definition 1.38. A spectral sequence {E}, ;} is called a bounded spectral sequence if for all n,r € Z the
number of non-vanishing terms of total degree n, hence of the form Ef,,,_,, is finite.

Definition 1.39. A spectral sequence {E,, 4} is called
¢ a first quadrant spectral sequence if all terms except possibly for p,q = 0 vanish;
¢ a third quadrant spectral sequence if all terms except possibly for p,q < 0 vanish.
Such spectral sequences are bounded, def. 1.38.
Proposition 1.40. A bounded spectral sequence, def. 1.38, has a limit term, def. 1.33.

Proof. First notice that if a spectral sequence has at most N non-vanishing terms of total degree n on page
r, then all the following pages have at most at these positions non-vanishing terms, too, since these are the
homologies of the previous terms.

r

Therefore for a bounded spectral sequence for each n there is L(n) € Z such that E;, ,,_,

all r. Similarly there is T(n) € Z such E;_, , = 0 for all ¢ < T(n) and all r.

=0 for all p < L(n) and

We claim then that the limit term of the bounded spectral sequence is in position (p,q) given by the value
Ep q for

r>max(p—L(p+q—1),q+1—-L(p+qg+1)).
This is because for such r we have

1. E}_,q+r—1 =0 because p —r < L(p + g — 1), and hence the kernel ker(8,_,4+r—1) = 0 vanishes;

2. Epirq-r+1 =0 because g —r+1 <T(p+q+1), and hence the image im(a[,,q) = 0 vanishes.
Therefore

E;;-Zl = ker(a;—r,qur—l)/im(a;,q)
= E;'q/o

~ T
=Epq

The central statement about the notion of the spectral sequence of a filtered chain complex then is the
following proposition. It says that the iterative computation of higher order relative homology indeed in the
limit computes the genuine homology.

Definition 1.41. For F,C, a filtered complex, write for p € Z
FpH.(C) = image(H.(F,C) - H.(0)) .
This defines a filtering F.H.(C) of the homology, regarded as a graded object.

Proposition 1.42. If the spectral sequence of a filtered complex F.C, of prop. 1.31 has a limit term, def.
1.33 then it converges, def. 1.36, to the chain homology of C.
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Epq = Hpq(C),
i.e. for sufficiently large r we have
Epq = GyHp.q(0),

where on the right we have the associated graded object of the filtering of def. 1.41.

Proof. By assumption, there is for each p,q an r(p, q) such that for all r > r(p, q) the r-almost cycles and
r-almost boundaries, def. 1.26, in F,C,., are the ordinary cycles and boundaries. Therefore for r > r(p, q)
def. 1.30 gives E, ; = G,H,,4(0). B

This says what these spectral sequences are converging to. For computations it is also important to know
how they start out for low r. We can generally characterize £y, , for very low values of r simply as follows:

Proposition 1.43. We have

® Epg=GpCpiq=FpCpsq/Fp-1Cpiq

is the associated p-graded piece of Cpq;
® Epg=Hpiq(GyC.)

Proof. For r = 0 def. 1.30 restricts to

— FpCerq =G.C
Fp*16p+q ’

0

Epq pta

because for c € F\,C,,, Wwe automatically also have ac € F,,C,,, since the differential respects the filtering
degree by assumption.

For r = 1 def. 1.30 gives

1 _ {c€GLChiql0c=0€GLChyg}
P4 0(FpCpiq)

= Hyyq(G,C.) .

Remark 1.44. There is, in general, a decisive difference between the homology of the associated graded
complex H,,4(G,C.) and the associated graded piece of the genuine homology G,H,.4(C.): in the former
the differentials of cycles are required to vanish only up to terms in lower degree, but in the latter they
are required to vanish genuinely. The latter expression is instead the value of the spectral sequence for
r — o, see prop. 1.42 below.

Comparing cellular and singular homology

These general facts now allow us, as a first simple example for the application of spectral sequences to see
transparently that the cellular homology of a CW complex, def. 1.21, coincides with its genuine singular
homology.

First notice that of course the structure of a CW-complex on a topological space X, def. 1.18 naturally
induces on its singular simplicial complex C.(X) the structure of a filtered chain complex, def. 1.24:

Definition 1.45. For X, © X; & - o X a CW complex, and p € N, write
FpC.(X) = C.(Xp)

for the singular chain complex of X,, < X. The given topological subspace inclusions X,, < X, induce chain
map inclusions F,C.(X) © F,,,1C.(X) and these equip the singular chain complex C.(X) of X with the
structure of a bounded filtered chain complex

05 FyC.(X) © F1C.(X) © F5C.(X) & - & FouCu(X) = C.(X) .

(If X is of finite dimension dim X then this is a bounded filtration.)

Write {E, ,(X)} for the spectral sequence of a filtered complex corresponding to this filtering.

Proposition 1.46. The spectral sequence {E, ,(X)} of singular chains in a CW complex X, def. 1.45
converges, def. 1.36, to the singular homology of X:

Epq(X) = H.(X) .

Proof. The spectral sequence {E; ,(X)} is clearly a first-quadrant spectral sequence, def. 1.39. Therefore it is
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a bounded spectral sequence, def. 1.38 and hence has a limit term, def. 1.40. So the statement follows with
prop. 1.42. N

We now identify the low-degree pages of {E, ,(X)} with structures in singular homology theory.
Proposition 1.47.

o r=0-Ep (X)=Cpiq(Xp)/Cpsq(Xp_1) is the group of X,,_,-relative (p+q)-chains, def. 1.1, in X,;

o r=1-Ey,(X)=H,,,(Xp,Xp_1) is the X,_,-relative singular homology, def. 1.1, of X,;

HSWX) forg=0
o r=2-FE3,(X)= p0) fora
0 otherwise

o r=00 - Ep (X)=FyHp,q(X)/Fp_1Hpiq(X).
Proof. By straightforward and immediate analysis of the definitions. W

As a result of these general considerations we now obtain the promised isomorphism between the cellular
homology and the singular homology of a CW-complex X:

Theorem 1.48. For X € Top a CW complex, def. 1.18, its cellular homology, def. 1.21 HW(X) coincides with
its singular homology H.(X):

HEY(X) =~ H.(X) .

Proof. By the third item of prop. 1.47 the (r = 2)-page of the spectral sequence {E}, ,(X)} is concentrated in
the (¢ = 0)-row and hence it collapses there, def. 1.35. Accordingly we have

Epe(X) =~ E} ,(X)
for all p, q. By the third and fourth item of prop. 1.47 this non-trivial only for ¢ = 0 and there it is equivalently
GpH,p(X) = HSV (X) .

Finally observe that G,H,(X) = H,(X) by the definition of the filtering on the homology, def. 1.41, and using
prop. 1.20. N

2. For filtered spectra

Definition 2.1. A filtered spectrum is a spectrum X equipped with a sequence X.:(N, >) — Spectra of spectra
of the form

f f f
o Xy DX, DX, DX, =X

Remark 2.2. More generally a filtering on an object X in (stable or not) homotopy theory is a Z-graded
sequence X. such that X is the homotopy colimit X =~ lim X.. But for the present purpose we stick with the

simpler special case of def. 2.1.

Remark 2.3. There is no condition on the morphisms in def. 2.1. In particular, they are not required to be
n-monomorphisms or n-epimorphisms for any n.

On the other hand, while they are also not explicitly required to have a presentation by cofibrations or
fibrations, this follows automatically: by the existence of model structures for spectra, every filtering on a
spectrum is equivalent to one in which all morphisms are represented by cofibrations or by fibrations.

This means that we may think of a filtration on a spectrum X in the sense of def. 2.1 as equivalently being
a tower of fibrations over X.

The following remark 2.4 unravels the structure encoded in a filtration on a spectrum, and motivates the
concepts of exact couples and their spectral sequences from these.

Remark 2.4. Given a filtered spectrum as in def. 2.1, write 4, for the homotopy cofiber of its kth stage,
such as to obtain the diagram

f2 f2 f1

- X; = X, & X — X
l l l l
A3 Az A1 4o

where each stage
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Tk
X1 — Xi
L€ofib(fE)
Ay

is a homotopy fiber sequence.

To break this down into invariants, apply the stable homotopy groups-functor (def.). This yields a diagram
of Z-graded abelian groups of the form

o (f (f (f
— ) ooy B oneg B nox)

l l l l
7. (A3) m.(4z) m.(A1) 7. (Ap)

Each hook at stage k extends to a long exact sequence of homotopy groups (prop.) via connecting
homomorphisms &%

8%, T (fg) sk
o T (A) = Te(KXpr1) — T(Xi) = W(Ag) = Mo g (Kir1) =

If we understand the connecting homomorphism

Ot (Ay) — mo(Xie41)

as a morphism of degree -1, then all this information fits into one diagram of the form

«(f2) «(f2) «(f1)
— 7.(X3) n—2> m.(X3) n_2> m.(X1) n_1> 7. (Xo)

l 5 N l 5 N l 5 N L,
7. (A3) m.(Az) m.(A1) 7. (Ap)

where each triangle is a rolled-up incarnation of a long exact sequence of homotopy groups (and in
particular is not a commuting diagram!).

If we furthermore consider the bigraded abelian groups =.(X.) and =.(4.), then this information may
further be rolled-up to a single diagram of the form

s

nx) =99 mx)

RN | (cofib(£.)
m.(A.)
where the morphisms n.(f,), m.(cofib(f,)) and § have bi-degree (0, —1), (0,0) and (—1,1), respectively.

Here it is convenient to shift the bigrading, equivalently, by setting

D% = Tp—s(Xs)
et = Te—s(4s),

because then t counts the cycles of going around the triangles:

e L PSTLEFL Tt—sUs) psit ¢ —s(cofib(fs)) est 3 pSTLE .

Data of this form is called an exact couple, def. 2.6 below.

Definition 2.5. An unrolled exact couple (of Adams-type) is a diagram of abelian groups of the form

_, pie la, p2e N pLe o, Do+
j j

LR 20 g n i s

&> &>e e £oe

such that each triangle is a rolled-up long exact sequence of abelian groups of the form
e DSHLEFL S st Is, st ks psvre

The collection of this “un-rolled” data into a single diagram of abelian groups is called the corresponding
exact couple.

Definition 2.6. An exact couple is a diagram (non-commuting) of abelian groups of the form
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D—i>D

N U
3

such that this is exact sequence exact in each position, hence such that the kernel of every morphism is
the image of the preceding one.

The concept of exact couple so far just collects the sequences of long exact sequences given by a filtration.
Next we turn to extracting information from this sequence of sequences.

Remark 2.7. The sequence of long exact sequences in remark 2.4 is inter-locking, in that every m,_¢(X;)
appears twice:

Ty s—1(Xs11)

51‘?—5 2 \"tfsfl(COfib(ferﬂ) 2
def: aStLt
e s(As) m Te—s—1(As41) - Te—s—2(As+2)
s dy
d sty ™ 71te— s (cofib(fg s 5))
Ty —s—2(Xsy2)
7 N

This gives rise to the horizontal composites d}, as show above, and by the fact that the diagonal
sequences are long exact, these are differentials: d? = 0, hence give a chain complex:

i,t di+1,t
- Ty s(As) - T s-1(Asy1) I Ty —s—2(Asy2) -

We read off from the interlocking long exact sequences what these differentials mean: an element
c € m_(Ay) lifts to an element ¢ € m,_,_,(Xs.,) precisely if d,c = 0:
A
CE M5 1(Xs12)
\‘"tfsfl(fs+1)
Ty —s—1(Xs+1)
5-s » s —1(cofib(Fs4 1))

cE nt—s(As) dTl)t nt—s—l(As+1)
1

This means that the cochain cohomology of the complex (m,(4.),d,) produces elements of =, (X.) and hence
of m.(X).

In order to organize this observation, notice that in terms of the exact couple of remark 2.4, the
differential

At = m_s_q(cofib(f,, )) o 85

is a component of the composite

d=jok.
Some terminology:
Definition 2.8. Given an exact couple, def. 2.6,
Do _l) D
NV
cne
its page is the chain complex
(E**,d=jok).

Definition 2.9. Given an exact couple, def. 2.6, then the induced derived exact couple is the diagram
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)
l -
S

o

™Ml

with
1. & = ker(d)/im(d);
2. D= im(i);
3.1:= Uiy s
4.j=jo (im@®)
5. k= Klygra)-
Proposition 2.10. A derived exact couple, def. 2.9, is again an exact couple, def. 2.6.

Definition 2.11. Given an exact couple, def. 2.6, then the induced spectral sequence, def. 1.32, is the
sequence of pages, def. 2.8, of the induced sequence of derived exact couples, def. 2.9, prop. 2.10.

Example 2.12. Consider a filtered spectrum, def. 2.1,

f f f
- X3 5 x, 3 x, 5 X
l l l l
Az A, A, Ao

and its induced exact couple of stable homotopy groups, from remark 2.4

(-1,-1)

D i> D D — D
j 0,0
LR wo S L0
& &

with bigrading as shown on the right.

As we pass to derived exact couples, by def. 2.9, the

bidegree of i and k is preserved, but that of j increases by 0
2

(1,1) in each step, since X

deg(j) = deg(j o im(i) %) = deg(j) + (1,1) .

Therefore the induced spectral sequence has differentials of Ti7a) |

.

the form \

. oSt s+rt+r—1
d, : & — & .

This is also called the Adams-type spectral sequence of the 0 2 4 6 8 t—s
tower of fibrations X, ;1 - X,

This we discuss in detail in part 2 -- Adams spectral sequences.

3. References

A gentle exposition of the general idea of spectral sequences is in
e John McCleary, A User’s Guide to Spectral Sequences, Cambridge University Press (1985, 2001)
A concise account streamlined for our purposes is in section 2 of

e John Rognes, The Adams spectral sequence (following Bruner), 2012 (pdf)
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nLab
* Introduction to the Adams Spectral Sequence

This page gives a detailed introduction to the Adams spectral sequence in its general spectral form (Adams-
Novikov spectral sequence).

For background on spectral sequences see Introduction to Spectral Sequences.

For background on stable homotopy theory see Introduction to Stable homotopy theory.

For background on complex oriented cohomology see Introduction to Cobordism and Complex Oriented
Cohomology.

Contents

1. The spectral sequence
Filtered spectra

E-Adams filtrations

2. The first page
Flat homotopy ring spectra

The E-Steenrod algebra

Comodules over the E-Steenrod algebra

Universal coefficient theorem

3. The second page
E-Adams resolutions

Homological co-algebra

4. Convergence
Primary decomposition of abelian groups

Localization and adic completion of abelian groups

Localization and nilpotent completion of spectra

Convergence theorems

5. Classical Adams spectral sequence (E = HF,, X =S)
The dual Steenrod algebra

The cobar complex

The May spectral sequence

The second page
The first dozen stable stems

6. The case E = HF, and X = MU

7. Adams-Novikov spectral sequence (E = MU, X =S)

8. References

The main result of Part 1.1 was the construction of the stable homotopy category Ho(Spectra) (thm., def.) as
a triangulated category (prop.) with graded abelian hom groups [X,Y], (def.).

These are the basic invariants of stable homotopy theory, the stable homotopy groups. They are as rich and
interesting as they are, in general, hard to compute. The archetypical example for this phenonemon are the
stable homotopy groups of spheres =.(S). (We compute the first dozen of these, 2-locally, below.)

In order to get more control over Ho(Spectra), the main result of Part 1.2 was the construction of tensor
triangulated category structure on Ho(Spectra) (prop.), induced form a symmetric monoidal smash product of
spectra A (thm.)

(Ho(Spectra), A,S) .
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As discussed in Part I (and briefly reviewed below), the tool of choice to break up the computation of stable
homotopy groups in stable homotopy theory into tractable computations in homological algebra are spectral
sequences. These break up computations of stable homotopy groups along chosen filtrations on spectra.
Using the tensor triangulated structure, it turns out that every homotopy commutative ring spectrum E
(def.) induces a well-adapted filtration on spectra that allows to compute the “formal neighbourhood around
E” in any spectrum (called the E-nilpotent completion) via a spectral sequence. This is the E-Adams spectral
sequence which we discuss here.

Where the Atiyah-Hirzebruch spectral sequence (see part S, this prop.) approximates [X,Y], via the ordinary
cohomology H*(X,m.(Y)), the idea of the Adams spectral sequence is to make use of an auxiliary homotopy
commutative ring spectrum E and approximate maps of spectra X — Y via their image E.(X) - E.(Y) in
E-generalized homology (rmk).

But in order for maps of homology groups to have a chance to retain enough information, they should be
forced to be equivariant with respect to extra structure inherited by forming E-homology.

For instance if E = HF, then the dual Steenrod algebra A (co-)acts on E,(X) = H,(X,F,) and a necessary
condition for a morphism of homology groups to come from a morphism of spectra is that it is a
homomorphism with respect to this co-action. The classical Adams spectral sequence (discussed below),
accordingly, approximates [X,Y], by Hom4(H.(X,F,), H.(Y,F)).

More generally, since spectra are equivalently module spectra over the sphere spectrum S, the operation of
forming E-homology spectra X » E A S is equivalently the extension of scalars along the ring unit S — E. This
means that the extra structure inherited by E-homology groups contains the information given by the
further extensions along the cosimplicial diagram

. =

S—-E—EANE—>EANEANE— -

In good cases this gives E.(X) the structure of a module over the Hopf algebroid 7, (E AE) = E.(E) < E. of
“dual E-Steenrod operations”. Accordingly the general E-Adams spectral sequence approximates [X,Y], by

HOmE. (E) (E. (X)v E- (Y)) .

For E = MU, BP, this is the Adams-Novikov spectral sequence, considered below.

We discuss first the

e General theory of E-Adams spectral sequences

and then consider the classical

e Examples and applications

First we set up the general theory of E-Adams spectral sequences. (We consider examples and applications
further below.)

Literature (Adams 74, part II1.15, Bousfield 79, sections 5 and 6, Ravenel 86, appendix A)

1. The spectral sequence
Filtered spectra

We introduce the types of spectral sequences of which the E-Adams spectral sequences (def. 1.14 below)
are an example.

Definition 1.1. A filtered spectrum is a spectrum Y € Ho(Spectra) equipped with a sequence
Y.:(N, >) — Ho(Spectra) in the stable homotopy category (def.) of the form

f f f
oY, DY, DY, DY, =Y.

Remark 1.2. More generally a filtering on an object X in (stable or not) homotopy theory is a Z-graded
sequence X, such that X is the homotopy colimit X =~ limX.. But for the present purpose we stick with the

simpler special case of def. 1.1.

Remark 1.3. There is no condition on the morphisms in def. 1.1. In particular, they are not required to be
n-monomorphisms or n-epimorphisms for any n.

On the other hand, while they are also not explicitly required to have a presentation by cofibrations or
fibrations, this follows automatically: by the existence of the model structure on topological sequential

https://ncatlab.org/nlab/print/Introduction+to+the+Adams+Spectral+S...
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spectra (thm.) or equivalently (thm.) the model structure on orthogonal spectra (thm.), every filtering on
a spectrum is equivalent to one in which all morphisms are represented by cofibrations or by fibrations.

This means that we may think of a filtration on a spectrum in the sense of def. 1.1 as equivalently being a
tower of fibrations over that spectrum.

The following definition 1.4 unravels the structure encoded in a filtration on a spectrum, and motivates the
concepts of exact couples and their spectral sequences from these.

Definition 1.4. (exact couple of a filtered spectrum)

Consider a spectrum X € Ho(Spectra) and a filtered spectrum Y, as in def. 1.1.

Write A, for the homotopy cofiber of its kth stage, such as to obtain the diagram

— Y, LEN Y, EAN Y, Ty y
N
43 4, 4 4o

where each stage

is a homotopy cofiber sequence (def.), hence equivalently (prop.) a homotopy fiber sequence, hence
where

f g h
Vipr = Vi =5 A =5 5o
is an exact triangle (prop.).

Apply the graded hom-group functor [X, —], (def.) to the above tower. This yields a diagram of Z-graded
abelian groups of the form

X.fols X.f1le X.fole
S AN S A S A L )

l[x'93]. l[xvgzl. l[x'gl]. l[xvg(;].

[X, As], [X, Az], (X, Adl, [X, Aol,

where each hook at stage k extends to a long exact sequence of homotopy groups (prop.) via connecting
homomorphisms [X, k],

[thk].+1 [X.f k. [X.9]. [X, hgl,

o X Ay (X, Yisa], == [K, Y], — [X, Ax], — [X,Yieqa], ;= -

o +1

If we regard the connecting homomorphism [X, k] as a morphism of degree -1, then all this information
fits into one diagram of the form

X, fol. X,fql. X,fole
— vl 2 v,y Bk vy 2k vy,

N N L1*agl.
[X,ha], [X,hq]. [X.hol.

[X, As], [X, 4], [X, Aq], [X, Aol,

where each triangle is a rolled-up incarnation of a long exact sequence of homotopy groups (and in
particular is not a commuting diagram!).

If we furthermore consider the bigraded abelian groups [X,Y.], and [X, A.],, then this information may
further be rolled-up to a single diagram of the form

v, =L v,
K], N l[xvg..].
[X,A.],

Specifically, regard the terms here as bigraded in the following way

DX, Y) = [X, Y],

N

ESHX,Y) = [X,Aq],

N

https://ncatlab.org/nlab/print/Introduction+to+the+Adams+Spectral+S...
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Then the bidegree of the morphisms is

morphismbidegree
[X f] (-1 -1
[X. 9] (0,0)

[X, h] (1,0)

This way t counts the cycles of going around the triangles:

e DS+1,t+1(X’y) M Ds't(X,Y) [X_'gl Es't(X,Y) [X_'hl DS+1,t(X’Y) = .

Data of this form is called an exact couple, def. 1.6 below.

Definition 1.5. An unrolled exact couple (of Adams-type) is a diagram of abelian groups of the form

_, D3 X p2e A pLe o, Do
LoR2L R Ry

ko ky ko 0

¥ & et £or

such that each triangle is a rolled-up long exact sequence of abelian groups of the form

i J k
e > PSTLEFL S, st IS est Ks s

The collection of this “un-rolled” data into a single diagram of abelian groups is called the corresponding
exact couple.

Definition 1.6. An exact couple is a diagram (non-commuting) of abelian groups of the form

p 5L D

N U
€

such that this is exact in each position, hence such that the kernel of every morphism is the image of the
preceding one.

The concept of exact couple so far just collects the sequences of long exact sequences given by a filtration.
Next we turn to extracting information from this sequence of sequences.

Remark 1.7. The sequence of long exact sequences in def. 1.4 is inter-locking, in that every [X,Y,],__
appears twice:

v 7
X Ysial, 5y
X1l » X9l 7
d
(X, 4, o (X Asiale sy = (X Asiale s,
7 PO Ix.g)
[X' YS+2]t7572
2 N

This gives rise to the horizontal ("splicing”) composites d,, as shown, and by the fact that the diagonal
sequences are long exact, these are differentials in that they square to zero: (d;)? = 0. Hence there is a
cochain complex:

d d
- XA, & [XAsal, ., — [XAl, ., —

We may read off from these interlocking long exact sequences what these differentials mean, as follows.
An element c € [X, A,],_, lifts to an element celx, Ysi2l,_,_, Precisely if d;c = 0:

A
CE [X'YS+2]t7571

NP
[X,Ysral,_s 4
[X.h] A \[X9]
ce [X As], o (X Asial, 54
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In order to organize this observation, notice that in terms of the exact couple of remark 1.4, the
differential

dy = [X,g]e[X,h]

is the composite

d=jok.
Some terminology:
Definition 1.8. Given an exact couple, def. 1.6,
i
poe L opee
NV
P
observe that the composite
d:= ] ok

is a differential in that it squares to 0, due to the exactness of the exact couple:

dod:jokojok
=0

=0

One says that the page of the exact couple is the graded chain complex

€ d=jok).

Given a cochain complex like this, we are to pass to its cochain cohomology. Since the cochain complex
here has the extra structure that it arises from an exact couple, its cohomology groups should still

remember some of that extra structure. Indeed, the following says that the remaining extract structure on

the cohomology of the page of an exact couple is itself again an exact couple, called the “derived exact
couple”.

Definition 1.9. Given an exact couple, def. 1.6, then its derived exact couple is the diagram

o 1 ;
D - D im(i) —  im(j)

NV E FEN Ljoi™
2 H(E jo k)

with

1. & =ker(d)/im(d) (with d := jo k from def. 1.8);

2. D= im();
3. 1=l s

4.j:=joi * (where i !is the operation of choosing any preimage under i);

5. k= Klyep(q -

Lemma 1.10. The derived exact couple in def. 1.9 is well defined and is itself an exact couple, def. 1.6.
Proof. This is straightforward to check. For completeness we spell it out:

First consider that the morphisms are well defined in the first place.

It is clear that i is well-defined.

That j lands in ker(d): it lands in the image of j which is in the kernel of k, by exactness, hence in the kernel
of d by definition.

That j is independent of the choice of preimage: For any x € D = im(i), let y,y’ € D be two preimages under i,
hence i(y) = i(y") = x. This means that i(y' —y) = 0, hence that y' —y € ker(i), hence that y' —y € im(k), hence
there exists z € € such that y' = y + k(2), hence j(¥') = j(y) + j(k(2)) = j(¥) + d(z), but d(z) =0 in &.

That k vanishes on im(d): because im(d) c im(j) and hence by exactness.

https://ncatlab.org/nlab/print/Introduction+to+the+Adams+Spectral+S...
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That k lands in im(i): since it is defined on ker(d) = ker(j o k) it lands in ker(j). By exactness this is im(i).
That the sequence of maps is again exact:

The kernel of j is those x € im (i) such that their preimage i “*(x) is still in im(x) (by exactness of the original
exact couple) hence such that x € M| hence such that x € im(%).
The kernel of k is the intersection of the kernel of k with the kernel of d = j o k, wich is still the kernel of k,
hence the image of j, by exactness. Indeed this is also still the image of j, since for every x € D then

J) = jx).

The kernel of 7 is ker(i) nim(i) =~ im(k) N im(i), by exactness. Let x € € such that k(x) € im(i), then by exactness
k(x) € ker(j) hence j(k(x)) = d(x) = 0, hence x € ker(d) and so k(x) = k(x). N

Definition 1.11. Given an exact couple, def. 1.6, then the induced spectral sequence of the exact
couple is the sequence of pages, def. 1.8, of the induced sequence of derived exact couples, def. 1.9,
lemma 1.10.

The rth page of the spectral sequence is the page (def. 1.8) of the rth exact couple, denoted
{€nd,} .

Remark 1.12. So the spectral sequence of an exact couple (def. 1.11) is a sequence of cochain complexes
(&r,d,), where the cohomology of one is the terms of the next one:

Erv1 = H(Edy)

In practice this is used as a successive stagewise approximation to the computation of a limiting term &.
What that limiting term is, if it exists at all, is the subject of convergence of the spectral sequence, we
come to this below.

Def. 1.11 makes sense without a (bi-)grading on the terms of the exact couple, but much of the power of
spectral sequences comes from the cases where such a bigrading is given, since together with the sequence
of pages of the spectral sequence, this tends to organize computation of the successive cohomology groups
in an efficient way. Therefore consider:

Definition 1.13. Given a filtered spectrum as in def. 1.1,

f f f
- Xy X, S5 ox, S5 X
193 192 191 190
As A, Ay Ao

and given another spectrum X € Ho(Spectra), the induced spectral sequence of a filtered spectrum is
the spectral sequence that is induced, by def. 1.11 from the exact couple (def. 1.6) given by def. 1.4:

i [X.f] [X.f]
D ; D e35,1: DS't(X'y) - EBs,tDS't(X'Y) eas,t [X’YS]t—s - eas,t [X'YS]t—s
X N ‘L] = h LN l[xrg] = h N l[X"g]
£ @, E'(X,Y) (X, As], s

with the following bidegree of the differentials:

(-1,-1)
D —> D
deg=  ,~ LO9
&
In particular the first page is
&' =X, 4,
dy=[X,g°h].

As we pass to derived exact couples, by def. 1.9, the bidegree of i and k is preserved, but that of j
increases by (1,1) with each page, since (by def. 1.8)

deg(j) = deg(joi ")
= deg(j) — deg(?) -
=deg(N+ (1D

Similarly the first differential has degree

https://ncatlab.org/nlab/print/Introduction+to+the+Adams+Spectral+S...
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deg(j o k) = deg(j) + deg(k)
=(1,0) + (0,0)
=(1,0)

and so the differentials on the rth page are of the form

. oSt s+rt+r—1 %
d: & — & .

d3(c)

It is conventional to depict this in tables where s increases o \
vertically and upwards and t — s increases horizontally and to 7Ta)

the right, so that d, goes up r steps and always one step to ? % \
the left. This is the "Adams type” grading convention for el e
spectral sequences (different from the Serre-Atiyah-
Hirzebruch spectral sequence convention (prop.)). One also
says that U

0

o
N
=
o
T
"

e s is the filtration degree;
e t —s is the total degree;
e ¢t is the internal degree.
A priori all this is N x Z-graded, but we regard it as being Z x Z-graded by setting
DSOc g  £5<0 =

and trivially extending the definition of the differentials to these zero-groups.

E-Adams filtrations

Given a homotopy commutative ring spectrum (E, 4, e), then an E-Adams spectral sequence is a spectral
sequence as in def. 1.13, where each cofiber is induced from the unit morphisme : S — E:

Definition 1.14. Let X,Y € Ho(Spectra) be two spectra (def.), and let (E, u,e) € CMon(Ho(Spectra), A,S) be a

homotopy commutative ring spectrum (def.) in the tensor triangulated stable homotopy category
(Ho(Spectra), A,S) (prop.).

Then the E-Adams spectral sequence for the computation of the graded abelian group

[X, Y], =[X,27"Y]

of morphisms in the stable homotopy category (def.) is the spectral sequence of a filtered spectrum (def.
1.13) of the image under [X, —], of the tower

fgl

Ys = EAYs =4,

Y, = EAY, =4,,
fol

Y. =5 EAY, = A
fol

Y= Y, B EAY, =4,

where each hook is a homotopy fiber sequence (equivalently a homotopy cofiber sequence, prop.), hence
where each

f h
Vi DY A, B2,
is an exact triangle (prop.), where inductively
A, =ENAY,

is the derived smash product of spectra (corollary) of E with the stage Y,, (cor.), and where

4’)7,; eAid
g, : Yn?S/\Yn—>EAYn
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is the composition of the inverse derived unitor on Y, (cor.) with the derived smash product of spectra of
the unit e of E and the identity on v,,.

Hence, by def 1.13, the first page is

EY'X,Y) = [X,A],_
dy =[X,goh)]

s

and the differentials are of the form
d, : ESY(X,Y) — ESTRHTTI(xY) |
A priori E;""(X,Y) is N x Z-graded, but we regard it as being Z x Z-graded by setting
ESSO"(X,Y)=0

and trivially extending the definition of the differentials to these zero-groups.

(Adams 74, theorem 15.1 page 318)

Remark 1.15. The morphism

[X,e/\idyk]
[X'gk] : [Xiyk]. — [X,E/\Yk]_

in def. 1.14 is sometimes called the Boardman homomorphism (Adams 74, p. 58).

For X = S the sphere spectrum it reduces to a canonical morphism from stable homotopy to generalized
homology (rmk.)

m.(g,) : m(Yie) = E(Yi)

For E = HA an Eilenberg-MaclLane spectrum (def.) this in turn reduces to the Hurewicz homomorphism
for spectra.

This way one may think of the E-Adams filtration on Y in def. 1.14 as the result of filtering any spectrum Y
by iteratively projecting out all its E-homology. This idea was historically the original motivation for the

construction of the classical Adams spectral sequence by John Frank Adams, see the first pages of (Bruner
09) for a historical approach.

It is convenient to adopt the following notation for E-Adams spectral sequences (def. 1.14):

Definition 1.16. For (E,u,e) € CMon(Ho(Spectra), A,S) a homotopy commutative ring spectrum (def.), write E
for the homotopy fiber of its unit e:$ — E, i.e. such that there is a homotopy fiber sequence (equivalently a
homotopy cofiber sequence, prop.) in the stable homotopy category Ho(Spectra) of the form

E—S—E,

equivalently an exact triangle (prop.) of the form

E—S-SE—JE.

(Adams 74, theorem 15.1 page 319) Beware that for instance (Hopkins 99, proof of corollary 5.3) uses “E”

not for the homotopy fiber of § 5 E but for its homotopy cofiber, hence for what is ZE according to (Adams
74).

Lemma 1.17. In terms of def. 1.16, the spectra entering the definition of the E-Adams spectral sequence in
def. 1.14 are equivalently

and

where we write

EP=EA--AEAY.

p factors

Hence the first page of the E-Adams spectral sequence reads equivalently

EY*(X,Y) = [X,EAE°AY],_

s
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(Adams 74, theorem 15.1 page 319)

Proof. By definition the statement holds for p = 0. Assume then by induction that it holds for some p > 0.
Since the smash product of spectra-functor (=) AE? AY preserves homotopy cofiber sequences (lemma, this
is part of the tensor triangulated structure of the stable homotopy category), its application to the homotopy
cofiber sequence

E—>SSE
from def. 1.16 yields another homotopy cofiber sequence, now of the form
— — g —
EPT'AY S EPAY BEAEP AY

where the morphism on the right is identified as 9, by the induction assumption, hence 4,,, = EAE"AY.
Since Y,,., is defined to be the homotopy fiber of g, it follows that ¥,,, ~E*""AY. B

Remark 1.18. Terminology differs across authors. The filtration in def. 1.14 in the rewriting by lemma 1.17
is due to (Adams 74, theorem 15.1), where it is not give any name. In (Ravenel 84, p. 356) it is called the
(canonical) Adams tower while in (Ravenel 86, def. 2.21) it is called the canonical Adams resolution.
Several authors follow the latter usage, for instance (Rognes 12, def. 4.1). But (Hopkins 99) uses “Adams
resolution” for the “E-injective resolutions” (see here) and uses “Adams tower” for yet another concept
(def.).

We proceed now to analyze the first two pages and then the convergence properties of E-Adams spectral
sequences of def. 1.14.

2, The first page
By lemma 1.17 the first page of an E-Adams spectral sequence (def. 1.14) looks like

EY*(X,Y) =~ [X,EAE°AY]_,
We discuss now how, under favorable conditions, these hom-groups may alternatively be computed as
morphisms of E-homology equipped with suitable comodule structure over a Hopf algebroid structure on the
dual E-Steenrod operations E.(E) (The E-generalized homology of E (rmk.)). Then below we discuss that, as
a result, the d,-cohomology of the first page computes the Ext-groups from the E-homology of Y to the
E-homology of X, regarded as E.(E)-comodules.

The condition needed for this to work is the following.

Flat homotopy ring spectra

Definition 2.1. Call a homotopy commutative ring spectrum (E,u,e) (def.) flat if the canonical right
m,(E)-module structure on E,(E) (prop.) (equivalently the canonical left module struture, see prop. 2.5
below) is a flat module.

The key consequence of the assumption that E is flat in the sense of def. 2.1 is the following.

Proposition 2.2. Let (E,u,e) be a homotopy commutative ring spectrum (def.) and let X € Ho(Spectra) be any
spectrum. Then there is a homomorphism of graded abelian groups of the form

E.(E) Qp, ) E.(X) = [SEAEANX], =n.(EAEAX)

(for E.(—) the canonical n.(E)-modules from this prop.) given on elements

n @1 n a2

S —->EANE , Y2S—>EAX
by
~ id id
@ ay s EMAns = smg A2 P2 pApAEAX X AR AKX

If E.(E) is a flat module over rn.(E) then this is an isomorphism.

(Adams 69, lecture 3, lemma 1 (p. 68), Adams 74, part III, lemma 12.5)

Proof. First of all, that the given pairing is a well defined homomorphism (descends from E,(E) x E.(X) to
E.(E) ®,, & E.(X)) follows from the associativity of u.

We discuss that it is an isomorphism when E,(E) is flat over =, (E):
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First consider the case that X = 2™S is a suspension of the sphere spectrum. Then (by this example, using
the tensor triangulated stucture on the stable homotopy category (prop.))

E.(X) =E.(Z"X) ~ 1. _,(E)
and
T.(EANEAX) =T, (EAEAZ"S) ~ E, _,(E)
and
E.(E) @y, (g Te-n(E) = E. _y(E)
Therefore in this case we have an isomorphism for all E.

For general X, we may without restriction assume that X is represented by a sequential CW-spectrum
(prop.). Then the homotopy cofibers of its cell attachment maps are suspensions of the sphere spectrum
(rmk.).

First consider the case that X is a CW-spectrum with finitely many cells. Consider the homotopy cofiber
sequence of the (k + 1)st cell attachment (by that remark):

IS — Xy — Xep, — IS — XX,

and its image under the natural morphism E.(E) ®,, ) E.(—) = m.([S,EAE A (-)]), which is a commuting
diagram of the form

E.(E) Op, r) E.E™7'S) — E.(E) On.g) E-(Xi) — E(E) O gy E.(Xi41) — E.(E) Op gy E.(2"S) — E.(E) O, (&) E. (27
l l l l l
[SEAEAZ™TS], — [SSEAEAXy], — [SSEAEAXy 4], — [S,EAEAZTS], — [S,EAEAZX,],

Here the bottom row is a long exact sequence since E AE A (—) preserves homotopy cofiber sequences (by
this lemma, part of the tensor triangulated structure on Ho(Spectra) prop.), and since [S, —], =~ n.(—) sends
homotopy cofiber sequences to long exact sequences (prop.). By the same reasoning, E.(-) of the
homotopy cofiber sequence is long exact; and by the assumption that E,(E) is flat, the functor

E.(E) ®,, ) (—) preserves this exactness, so that also the top row is a long exact sequence.

Now by induction over the cells of X, the outer four vertical morphisms are isomorphisms. Hence the
5-lemma implies that also the middle morphism is an isomorphism.

This shows the claim inductively for all finite CW-spectra. For the general statement, now use that
1. every CW-spectrum is the filtered colimit over its finite CW-subspectra;

2. the symmetric monoidal smash product of spectra A (def.) preserves colimits in its arguments
separately (since it has a right adjoint (prop.));

3. [S, -], = m.(—) commutes over filtered colimits of CW-spectrum inclusions (by this lemma, since spheres
are compact);

4. E.(E) ®,, () (—) distributes over colimits (it being a left adjoint).

Using prop. 2.2, we find below (theorem 2.34) that the first page of the E-Adams spectral sequence may be
equivalently rewritten as hom-groups of comodules over E,(E) regarded as a graded commutative Hopf
algebroid. We now first discuss what this means.

The E-Steenrod algebra

We discuss here all the extra structure that exists on the E-self homology E.(E) of a flat homotopy
commutative ring spectrum. For E = HF, the Eilenberg-Maclane spectrum on a prime field this reduces to
the classical structure in algebraic topology called the dual Steenrod algebra A,. Therefore one may
generally speak of E,(E) as being the dual E-Steenrod algebra.

Without the qualifier “dual” then “E-Steenrod algebra” refers to the E-self-cohomology E*(E). For E = HF,, this
Steenrod algebra A, (without “dual”) is traditionally considered first, and the classical Adams spectral
sequence was originally formulated in terms of A, instead of «A,. But one observes (Adams 74, p. 280) that
the “dual” Steenrod algebra E.(E) is much better behaved, at least as long as E is flat in the sense of def.
2.1.
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Moreover, the dual E-Steenrod algebra E.(E) is more fundamental in that it reflects a stacky geometry
secretly underlying the E-Adams spectral sequence (Hopkins 99). This is the content of the concept of
“commutative Hopf algebroid” (def. 2.9 below) which is equivalently the formal dual of a groupoid internal to
affine schemes, def. 2.6.

A simple illustrative archetype of the following construction of commutative Hopf algebroids from homotopy
commutative ring spectra is the following situation:

For X a finite set consider
XXXXX
l°=(pr1:pr3)
XXX
s=pry 11 lt:prz
X
as the (“codiscrete”) groupoid with X as objects and precisely one morphism from every object to every

other. Hence the composition operation o, and the source and target maps are simply projections as shown.
The identity morphism (going upwards in the above diagram) is the diagonal.

Then consider the image of this structure under forming the free abelian groups Z[X], regarded as
commutative rings under pointwise multiplication.

Since
Z[X x X] = Z[X] ® Z[X]
this yields a diagram of homomorphisms of commutative rings of the form

(Z[X] ® ZIX]) ®gpx) (Z[X] @ Z[X])
T
Z[X] ® Z[X]
Tl
Z[X]

satisfying some obvious conditions. Observe that here

1. the two morphisms Z[X] 3 Z[X] Q Z[X] are f » f Q e and f » e ® f, respectively, where e denotes the unit
element in Z[X];

2. the morphism Z[X] ® Z[X] - Z[X] is the multiplication in the ring Z[X];
3. the morphism
ZIX] @ Z[X] — Z[X] Q@ Z[C] @ Z[C] = (Z[X] ® Z[X]) ®qx) (Z[X] ® Z[X])
isgivenby fQgr- fR®e®g.
All of the following rich structure is directly modeled on this simplistic example. We simply

1. replace the commutative ring Z[X] with any flat homotopy commutative ring spectrum E,

2. replace tensor product of abelian groups ® with derived smash product of spectra;

3. and form the stable homotopy groups =.(—) of all resulting expressions.

Definition 2.3. Let (E,u,e) be a homotopy commutative ring spectrum (def.) which is flat according to def.
2.1.

Then the dual E-Steenrod algebra is the pair of graded abelian groups

(E.(E), m.(E))
(rmk.) equipped with the following structure:

1. the graded commutative ring structure

m.(E) ® m.(E) — m.(E)

induced from E being a homotopy commutative ring spectrum (prop.);
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2. the graded commutative ring structure

E.(E) ® E.(E) — E.(E)

induced from the fact that with E also E A E is canonically a homotopy commutative ring spectrum
(exmpl.), so that also E.(E) = n.(E AE) is a graded commutative ring (prop.);

3. the homomorphism of graded commutative rings

¥ E(E) = E.(E) ®p, (5 E.(E)

induced under m.(—) from
EAE S EAEAE
via prop. 2.2;
4. the homomorphisms of graded commutative rings
n, : m.(E) — E.(E)
and
Mg T(E) — E.(E)
induced under n,(—) from the homomorphisms of commutative ring spectra

idae

rgl
E?E/\S—>E/\E
and
egt idae
ETS/\E—>E/\E,

respectively (exmpl.);
5. the homomorphism of graded commutative rings
€:E.(E) = n.(E)
induced under n.(—) from
u:ENE—E
regarded as a homomorphism of homotopy commutative ring spectra (exmpl.);
6. the homomorphisms graded commutative rings
c: E.(E) —E.(E)
induced under m.(—) from the braiding
Tgp : ENE—ENAE
regarded as a homomorphism of homotopy commutative ring spectra (exmpl.).

(Adams 69, lecture 3, pages 66-68)

Notice that (as verified by direct unwinding of the definitions):

Lemma 2.4. For (E,u,e) a homotopy commutative ring spectrum (def.), consider E.(E) with its canonical left
and right ©.(E)-module structure as in this prop.. These module structures coincide with those induced by
the ring homomorphisms n, and n, from def. 2.3.

These two actions need not strictly coincide, but they are isomorphic:

Proposition 2.5. For (E,u,e) a homotopy commutative ring spectrum (def.), consider E.(E) with its
canonical left and right n,(E)-module structure (prop.). Since E is a commutative monoid, this right
module structure may equivalently be regarded as a left-module, too. Then the braiding

. (TEE)

E.(E) =m.(EAE) —5 n,(EAE) =~ E.(E)
constitutes a module isomorphism (def.) between these two left module structures.

Proof. On representatives as in the proof of (this propo.), the original left action is given by (we are
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notationally suppressing associators throughout)
EAEAE“SEAE,
while the other left action, induced from the canonical right action, is given by

T id
ENENE ZEYS EAEAE"SEN .

So in order that 7 ; represents a module homomorphism under =, (-), it is sufficient that the following
diagram commutes (we write E; := E for i € {1,2,3} to make the action of the braiding more manifest)

idAtTg, Bq
E,NE;NE; —— E;NE;AE,
id | 1TE1.E3NE2
E;ANE, NE; .
uAid ! lid/\”
ENE; — E; NE
TE,E4

But since (E, u, e) is a commutative monoid (def.), it satisfies u = u o 7 so that we may factor this diagram as
follows:

idAtTg, Bq
EsNE;,NE;, ——— E{ANE;NE,
TE1,E, Ad 1 |FE1LE3AE;
TE, AEq,E3
E,NE;NE; ——— E3;ANE,NE "
uAid l lid/\u
EANE; — EsAE
TE,E3

Here the top square commutes by coherence of the braiding (rmk) since both composite morphisms
correspond to the same permutation, while the bottom square commutesm due to the naturality of the
braiding. Hence the total rectangle commutes. 1

The dual E-Steenrod algebras of def. 2.3 evidently carry a lot of structure. The concept organizing this is
that of_commutative Hopf algebroids_.

Definition 2.6. A graded commutative Hopf algebroid is an internal groupoid in the opposite category
gCRing®? of Z-graded commutative rings, regarded with its cartesian monoidal category structure.

(e.g. Ravenel 86, def. A1.1.1)

Remark 2.7. We unwind def. 2.6. For R € gCRing, write Spec(R) for the same object, but regarded as an
object in gCRing®®.

An internal category in gCRing®? is a diagram in gCRing°? of the form
Spec(I) Spggm) Spec(I')
I
Spec(I') )
syt
Spec(4)
(where the fiber product at the top is over s on the left and t on the right) such that the pairing - defines

an associative composition over Spec(4), unital with respect to i. This is an internal groupoid if it is
furthemore equipped with a morphism

inv : Spec(I") — Spec(I")
acting as assigning inverses with respect to o.

The key basic fact to use in order to express this equivalently in terms of algebra is that tensor product of
commutative rings exhibits the cartesian monoidal category structure on CRing°?, see at CRing — Properties
- Cocartesian comonoidal structure:

Spec(R,) Spez<(R3) Spec(R;) = Spec(R, ®R3 R,) .

This means that the above is equivalently a diagram in gCRing of the form
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re,r
T‘I’
r
g€ TR
A
as well as

c:I'—>T
and satisfying formally dual conditions, spelled out as def. 2.9 below. Here
® 1,1, are called the left and right unit maps;
e ¢ is called the co-unit;
e ¥ is called the comultiplication;
e ¢ is called the antipode or conjugation

Remark 2.8. Generally, in a commutative Hopf algebroid, def. 2.6, the two morphisms n,,7,:4 —» I' from
remark 2.7 need not coincide, they make I genuinely into a bimodule over 4, and it is the tensor product
of bimodules that appears in remark 2.7. But it may happen that they coincide:

s

An internal groupoid g, :t?go for which the domain and codomain morphisms coincide, s = ¢, is euqivalently

a group object in the slice category over g, .

nL

Dually, a commutative Hopf algebroid I nf: A for which 5, and n, happen to coincide is equivalently a
R

commutative Hopf algebra I" over A.

Writing out the formally dual axioms of an internal groupoid as in remark 2.7 yields the following equivalent
but maybe more explicit definition of commutative Hopf algebroids, def. 2.6

Definition 2.9. A commutative Hopf algebroid is

1. two commutative rings, A and I’;

2. ring homomorphisms
1. (left/right unit)
NNgid—T;
2. (comultiplication)
Yr—rQ,r;
3. (counit)
e:I' — A;
4. (conjugation)
c:I'—>7T
such that
1. (co-unitality)
1. (identity morphisms respect source and target)
€om, =€om, =1idy;
2. (identity morphisms are units for composition)
(dr ®,€)e¥ =(e®,idr) e ¥ =idr;
3. (composition respects source and target)

1. Won,=(0{dQ®,n,) °N,;
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2.¥en, =, ®,id)en,
2. (co-associativity) (id; @, ¥) o ¥ = (¥ Q,id;) o ¥;
3. (inverses)
1. (inverting twice is the identity)
coc=idp;
2. (inversion swaps source and target)
con, =1, Con, =1,;

3. (inverse morphisms are indeed left and right inverses for composition)

the morphisms « and g induced via the coequalizer property of the tensor product from (-) - c(—)

and ¢(-) - (—), respectively

—

r®ARI — r®r == re,r
et e
r
and
r®ARI — Ir®r == re,r
v Y8
r
satisfy
aoll’anoe
and
Bo¥ =ny0€.

(Adams 69, lecture 3, pages 62-66, Ravenel 86, def. A1.1.1)

Remark 2.10. In (Adams 69, lecture 3, page 60) the terminology used is “Hopf algebra in a fully
satisfactory sense” with emphasis that the left and right module structure may differ. According to
(Ravenel 86, first page of appendix Al) the terminology “Hopf algebroid” for this situation is due to

Haynes Miller.

Example 2.11. For R a commutative ring, then R ® R becomes a commutative Hopf algebroid over R,
formally dual (via def. 2.6) to the pair groupoid on Spec(R) € CRing®®.

For X a finite set and R = Z[X], then this reduces to the motivating example from above.
It is now straightforward, if somewhat tedious, to check that:

Proposition 2.12. Let (E,u,e) be a homotopy commutative ring spectrum (def.) which is flat according to
def. 2.1, then the dual E-Steenrod algebra (E.(E),m.(E)) with the structure maps (n,,n,,€ ¢, %) from prop.
2.3 is a graded commutative Hopf algebroid according to def. 2.9:

(E.(E),m.(E)) € CommHopfAlgd

(Adams 69, lecture 3, pages 67-71, Ravenel 86, chapter II, prop. 2.2.8)

Proof. One observes that E A E satisfies the axioms of a commutative Hopf algebroid object in homotopy
commutative ring spectra, over E, by direct analogy to example 2.11 (one just has to verify that the
symmetric braidings go along coherently, which works by use of the coherence theorem for symmetric
monoidal categories (rmk.)). Applying the functor n,(—) that forms stable homotopy groups to all structure
morphisms of E A E yields the claimed structure morphisms of E.(E). N

We close this subsection on commutative Hopf algebroids by discussion of their isomorphism classes, when
regarded dually as affine groupoids:

Definition 2.13. Given an internal groupoid in gCRing®? (def. 2.6, remark 2.7)
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Spec(I) Spgé(A) Spec(I")
L
Spec(I") ,
SR
Spec(4)

then its affife scheme Spec(A)/~ of isomorphism classes of objects is the coequlizer? of the source and
target morphisms

s

«— equ
Spec(Gamma) Spec(4) — Spec(A)/~ .
t

Hence this is the formal dual of the equalizer of the left and right unit (def. 2.9)

A T.

L
—
—

R

By example 2.11 every commutative ring gives rise to a commutative Hopf algebroid R ® R over R. The core
of R is the formal dual of the corresponding affine scheme of isomorphism classes according to def. 2.13:

Definition 2.14. For R a commutative ring, its core cR is the equalizer in

ctR—RSR®R.
A ring which is isomorphic to its core is called a solid ring.

(Bousfield-Kan 72, §1, def. 2.1, Bousfield 79, 6.4)

Proposition 2.15. The core of any ring R is solid (def. 2.14):

ccR = cR .

(Bousfield-Kan 72, prop. 2.2)

Proposition 2.16. The following is the complete list of solid rings (def. 2.14) up to isomorphism:

1. The localization of the ring of integers at a set ] of prime numbers (def. 4.11)

z[] '
2. the cyclic rings
Z/nZ
forn=>2;
3. the product rings
Z[] 1 X Z/nZ,
for n > 2 such that each prime factor of n is contained in the set of primes J;

4. the ring cores of product rings

c@ x| | Z/p®),

where K c ] are infinite sets of primes and e(p) are positive natural numbers.

(Bousfield-Kan 72, prop. 3.5, Bousfield 79, p. 276)

Comodules over the E-Steenrod algebra

Definition 2.17. Let (E,u,¢) be a homotopy commutative ring spectrum (def.) which is flat according to def.
2.1.

For X € Ho(Spectra) any spectrum, say that the comodule structure on E.(X) (rmk.)) over the dual
E-Steenrod algebra (def. 2.3) is

1. the canonical structure of a n.(E)-module (according to this prop.);
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2. the homomorphism of =, (E)-modules
¥e,x) ¢ E.(X) = E.(E) ®p, ) E.(X)

induced under n,(—) and via prop. 2.2 from the morphism of spectra

idaenid
EANX~EANSAX——ENEANX.

Definition 2.18. Given a graded commutative Hopf algebroid I over 4 as in def. 2.9, hence an internal
groupoid in gCRing®?, then a comodule ring over it is an action in CRing®? of that internal groupoid.

In the same spirit, a comodule over a commutative Hopf algebroid (not necessarily a comodule ring) is a
guasicoherent sheaf on the corresponding internal groupoid (regarded as a (algebraic) stack) (e.g. Hopkins
99, prop. 11.6). Explicitly in components:

Definition 2.19. Given a Z-graded commutative Hopf algebroid I over 4 (def. 2.9) then a left comodule
over T is

1. a Z-graded A-module N;

2. (co-action) a homomorphism of graded A-modules

Yy:N—>TQ,N;
such that
1. (co-unitality)
(€@, idy) o Wy = idy;
2. (co-action property)
(Y ®,idy) o ¥y = (dr ®, Py) o Py

A homomorphism between graded comodules f:N; - N, is a homomorphism of underlying graded
A-modules such that the following diagram commutes

N, ER N,
Ny 12
r ®A Nl m r ®A N2
We write
I CoMod

for the resulting category of left comodules over I'. Analogously for right comodules. The notation for the
hom-sets in this category is abbreviated to

Homp(—, —) = Hompcomoda(— —) -

A priori this is an Ab-enriched category, but it is naturally further enriched in graded abelian groups:

we may drop in the above definition of comodule homomorphisms f:N, —» N, the condition that the
underlying morphism be grading-preserving. Say that f has degree n if it increases degree by n. This gives
a Z-graded hom-group

Hom;(—, =) .

Example 2.20. For (I, A) a commutative Hopf algebroid, then 4 becomes a left r-comodule (def. 2.19) with
coaction given by the right unit

AR r~r®,A.
Proof. The required co-unitality property is the dual condition in def. 2.9
€on, =idy
of the fact in def. 2.6 that identity morphisms respect sources:
id: AR r=re,A24540,4=4

The required co-action property is the dual condition
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lp"nR :(id®A77R)°77R

of the fact in def. 2.6 that composition of morphisms in a groupoid respects sources

R

A - r
R | W
I"ZF(X)AA W F®AF

Proposition 2.21. Let (E,u,e) be a homotopy commutative ring spectrum (def.) which is flat according to
def. 2.1, and for X € Ho(Spectra) any spectrum, then the morphism ¥y, , from def. 2.17 makes E.(X) into a
comodule (def. 2.19) over the dual E-Steenrod algebra (def. 2.3)

E.(X) € E.(E)CoMod .

(Adams 69, lecture 3, pages 67-71, Ravenel 86, chapter II, prop. 2.2.8)

Example 2.22. Given a commutative Hopf algebroid I' over 4, def. 2.9, then A itself becomes a left
r-comodule (def. 2.19) with coaction given by

P, ALr=r@,A
and a right r'-comodule with coaction given by
Y, ARr=r®,4.

More generally:

Proposition 2.23. Given a commutative Hopf algebroid I over A, there is a free-forgetful adjunction

forget

s
AMod L TI'CoMod
—_—

co—free

between the category of '-comodules, def. 2.19 and the category of modules over A, where the cofree
functor is right adjoint.

Moreover:

1. The co-free r'-comodule on an A-module C is I' ® , C equipped with the coaction induced by the
comultiplication ¥ in T.

2. The adjunct f of a comodule homomorphism
f
N>TIr®,C

is its composite with the counit e of T

~ ® 4 id
FinDre,c485ag,c=c.

The proof is formally dual to the proof that shows that constructing free modules is left adjoint to the
forgetful functor from a category of modules to the underlying monoidal category (prop.). But since the
details of the adjunction isomorphism are important for the following discussion, we spell it out:

Proof. A homomorphism into a co-free I'-comodule is a morphism of A-modules of the form
fiN>TQ®,C

making the following diagram commute

N — re,c

wN | L¥®ald,

F®AN m F®AF®AC

Consider the composite
®4 id

FinDre,c485ag,c=c,

i.e. the “corestriction” of f along the counit of I'. By definition this makes the following square commute
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id®g f
—_—

', N roe,re,c
=1 lid®A€®Aid

Pasting this square onto the bottom of the previous one yields

f

N — re,c
‘I’Nl lW®Aid
F®AN W F®AF®AC
=1 lid®A€®Aid

Now due to co-unitality, the right right vertical composite is the identity on I' ® , C. But this means by the
commutativity of the outer rectangle that f is uniquely fixed in terms of f by the relation

f=Gd@, o w.

This establishes a natural bijection

and hence the adjunction in question. N

Proposition 2.24. Consider a commutative Hopf algebroid I over A, def. 2.9. Any left comodule N over T
(def. 2.19) becomes a right comodule via the coaction

w - id®4 ¢
N—>T®,NS>NQ,IT——>NQ®,T,

where the isomorphism in the middle the is braiding in AMod and where c is the conjugation map of I.

Dually, a right comodule N becoomes a left comodule with the coaction

~ id
NEN®, rore, N A re, N,
Definition 2.25. Given a commutative Hopf algebroid I" over 4, def. 2.9, and given N, a right '-comodule

and N, a left comodule (def. 2.19), then their cotensor product N, o, N, is the kernel of the difference of
the two coaction morphisms:

¥y, ®4id—id @4 ¥y,

N,orN, = ker(Nl ®, N, N, ®AI"®ANZJ.

If both N; and N, are left comodules, then their cotensor product is the cotensor product of N, with N;
regarded as a right comodule via prop. 2.24.

e.g. (Ravenel 86, def. A1.1.4).

Example 2.26. Given a commutative Hopf algebroid I' over A, (def.), and given N a left '-comodule (def.).
Regard 4 itself canonically as a right r'-comodule via example 2.22. Then the cotensor product

Prim(N) = Ao N
is called the primitive elements of N:
Prim(N) ={neN | ¥y(n) =1Qn}.

Proposition 2.27. Given a commutative Hopf algebroid T over A, def. 2.9, and given N4,N, two left
r-comodules (def. 2.19), then their cotensor product (def. 2.25) is commutative, in that there is an
isomorphism

N,oN, = N,ON; .

(e.g. Ravenel 86, prop. A1.1.5)

Lemma 2.28. Given a commutative Hopf algebroid I over A, def. 2.9, and given N,,N, two left '-comodules
(def. 2.19), such that N, is projective as an A-module, then

1. The morphism
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Fr(d®4 fe¥n,
Hom,(N;,A) ——— > Hom,(N,,I’ ®, A) = Hom,(N,,I") = Homy(N;,A) ® , T

gives Hom, (N4, A) the structure of a right r'-comodule;

2. The cotensor product (def. 2.25) with respect to this right comodule structure is isomorphic to the
hom of r'-comodules:

Hom,(N,,A)0r N, = Hom (N4, N,) .
Hence in particular
Aop N, = Hom(4,N,)

(e.g. Ravenel 86, lemma Al1.1.6)

Remark 2.29. In computing the second page of E-Adams spectral sequences, the second statement in
lemma 2.28 is the key translation that makes the comodule Ext-groups on the page be equivalent to a
Cotor-groups. The latter lend themselves to computation, for instance via Lambda-algebra or via the May
spectral sequence.

Universal coefficient theorem

The key use of the Hopf coalgebroid structure of prop. 2.3 for the present purpose is that it is extra
structure inherited by morphisms in E-homology from morphisms of spectra. Namely forming E-homology
f.:E.(X) = E.(Y) of a morphism of a spectra f:X — Y does not just produce a morphism of E-homology groups

[X,Y], — Hom,, z(E.(X),E.(V))
but in fact produces homomorphisms of comodules over E,(E)
a: [X,Y], — Homg, g (E.(X),E.(Y)) .

This is the statement of lemma 2.30 below. The point is that E.(E)-comodule homomorphism are much more

rigid than general abelian group homomorphisms and hence closer to reflecting the underlying morphism of
spectra f:X > Y.

In good cases such an approximation of homotopy by homology is in fact accurate, in that « is an
isomorphism. In such a case (Adams 74, part III, section 13) speaks of a “universal coefficient theorem”
(the coefficients here being E.)

One such case is exhibited by prop. 2.33 below. This allows to equivalently re-write the first page of the
E-Adams spectral sequence in terms of E-homology homomorphisms in theorem 2.34 below.

Lemma 2.30. For X,Y € Ho(Spectra) any two spectra, the morphism (of Z-graded abelian) generalized
homology groups given by smash product with E (rmk.)

m(EA=) : [XY], — Hom: z(E.(X),E.(Y))
xLy o (E.(X)&E,(y))

factors through the forgetful functor from E.(E)-comodule homomorphisms (def. 2.19) over the dual
E-Steenrod algebra (def. 2.3):

Homé.(E) (E.(X)r E-(y))

EI ‘Lforget

[X,N] Hom}, z(E. (X), E.(Y))

¢ m(EA-)

where E.(X) and E.(Y) are regarded as E-Steenrod comodules according to def. 2.19, prop. 2.21.

Proof. By def. 2.19 we need to show that for X Lvya morphism in Ho(Spectra) then the following diagram
commutes

E.(X) LN E.(Y)

14 14
E.(X) l l E.(Y)

E(E) @piry B0 55—

—5 EE) @y E.)

By def. 2.19 and prop. 2.21 this is the image under foming stable homotopy groups =, (—) of the following
diagram in Ho(Spectra):
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idAf

EAX — EAY

=1 =
EASAX EASAY.
id/\e/\idl lid/\e/\id

EANEANX —— EANEAY
idAidAf

But that this diagram commutes is simply the functoriality of the derived smash product of spectra as a
functor on the product category Ho(Spectra) x Ho(Spectra). W

Proposition 2.31. Let (E,u,e) be a homotopy commutative ring spectrum (def.), and let X,Y € Ho(Spectra) be
two spectra such that E.(X) is a projective module over n.(E) (via this prop.).

Then the homomorphism of graded abelian groups

byc * [X,EAY], — Homy, ) (E.(X),E.(Y)),
given by
f idAf uAid
X —>EAY) » n,(EANX— EANEAY — ENAY)

is an isomorphism.
(Schwede 12, chapter 11, prop. 6.20)

Proof. First of all we claim that the morphism in question factors as
B:[XENY], S Hompyoq (EAX,EAY) > Hom;,, () (E.(X),E.(Y)),

where

1. EMod = E Mod(Ho(Spectra), A,S) denotes the category of homotopy module spectra over E (def.)

2. the first morphisms is the free-forgetful adjunction isomorphism for forming free (prop.) E-homotopy
module spectra

3. the second morphism is the respective component of the composite of the forgetful functor from
E-homotopy module spectra back to Ho(Spectra) with the functor =, that forms stable homotopy groups.

This is because (by this prop.) the first map is given by first smashing with E and then postcomposing with
the E-action on the free module E A X, which is the pairing EAE LE (prop.).

Hence it is sufficient to show that the morphism on the right is an isomorphism.

We show more generally that for N, N, any two E-homotopy module spectra (def.) such that =, (N,) is a
projective module over n.(E), then

Homj voa (N1, Nz) = Homy, () (. (N1), . (N2))
is an isomorphism.
To see this, first consider the case that n.(N,) is in fact a =, (E)-free module.
This implies that there is a basis B = {x;},_, and a homomorphism
Y EE — Ny

of E-homotopy module spectra, such that this is a stable weak homotopy equivalence.

Observe that this sits in a commuting diagram of the form

Hom;moa( ¥ ZIE,N;) = Homy, sy (r.( v Z7IE), 7. (N2))
= 1=
niEI[Z|Xi|§’N2]° - niel”"*’\xH(NZ)
where

1. the left vertical isomorphism exhibits wedge sum of spectra as the coproduct in the stable homotopy
category (lemma);
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2. the bottom isomorphism is from this prop.;

3. the right vertical isomorphism is that of the free-forgetful adjunction for modules over n.(E).

Hence the top horizontal morphism is an isomorphism, which was to be shown.

Now consider the general case that n,(N,) is a projective module over =, (E). Since (graded) projective
modules are precisely the retracts of (graded) free modules (prop.), there exists a diagram of =, (E)-modules
of the form

id : m.(N;) — n.(i\E/IZ""i'E) — m.(N;)
which induces the corresponding split idempotent of x,(E)-modules
(Vv Z¥IE) - 1,(N,) — (v ZWIE) .
i€l i€l

As before, by freeness this is actually the image under =, of an idempotent of homotopy ring spectra

e.: v Il v silg
i€l iel

and so in particular of spectra.

Now in the stable homotopy category Ho(Spectra) all idempotents split (prop.), hence there exists a diagram
of spectra of the form

e: vIWlE s x — v slEg
iel iel
with ,(e) =e..
Consider the composite
X— v IWE SN, .
iel

Since m.(e) = e, it follows that under =, this is an isomorphism, then that X ~ N, in the stable homotopy
category.

In conclusion this exhibits N; as a retract of an free E-homotopy module spectrum

id: N, » v Z%IE SN,
i€l

hence of a spectrum for which the morphism in question is an isomorphism. Since the morphism in question
is natural, its value on N, is a retract in the arrow category of an isomorphism, hence itself an isomorphism
(lemma). N

Remark 2.32. A stronger version of the statement of prop. 2.31, with the free homotopy E-module
spectrum E AY replaced by any homotopy E-module spectrum F, is considered in (Adams 74, chapter III,
prop. 13.5) (“universal coefficient theorem”). Strong conditions are considered that ensure that

F*(X) = [X,F], — Homy, (g (E.(X), 7. (F))
is an isomormphism (expressing the F-cohomology of X as the =, (E)-linear dual of the E-homology of X).

For the following we need only the weaker but much more general statement of prop. 2.31, and in fact
this is all that (Adams 74, p. 323) ends up using, too.

With this we finally get the following statement, which serves to identify maps of certain spectra with their
induced maps on E-homology:

Proposition 2.33. Let (E,u e) be a homotopy commutative ring spectrum (def.), and let X,Y € Ho(Spectra) be
two spectra such that

1. E is flat according to def. 2.1;

2. E.(X) is a projective module over n.(E) (via this prop.).

Then the morphism from lemma 2.30
T (EA-) . .
[X,EAY], == Homg, ) (E.(X), E.(E A Y))) = Homg, (5 (E.(X), E.(E) Qq, () E.(V)))

is an isomorphism (where the isomophism on the right is that of prop. 2.2).

(Adams 74, part III, page 323)
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Proof. Observe that the following diagram commutes:

[X,EAY], mE Homg, (g, (E. (X), E. (E) ® ) E.(Y)))

duc Y e@ido(-) )

Hom,',. (E) (E. (X): E. (y))

where
1. the top morphism is the one from lemma 2.30;

2. the right vertical morphism is the adjunction isomorphism from prop. 2.23;

3. the left diagonal morphism is the one from prop. 2.31.

To see that this indeed commutes, notice that

1. the top morphism sends (X LEn Y) to E.(X) =0 E.(EAY)=n,(EANEAY) by definition;

2. the right vertical morphism sends this further to E.(X) il . (EANEAY) i n.(E AY), by the proof of
prop. 2.23 (which says that the map is given by postcomposition with the counit of E,(E)) and def. 2.3
(which says that this counit is represented by p);

3. by prop. 2.31 this is the same as the action of the left diagonal morphism.
But now

1. the right vertical morphism is an isomorphism by prop. 2.2;

2. the left diagonal morphism is an isomorphism by prop. 2.31
and so it follows that the top horizontal morphism is an isomorphism, too. N

In conclusion:

Theorem 2.34. Let (E,u,e) be a homotopy commutative ring spectrum (def.), and let X,Y € Ho(Spectra) be
two spectra such that

1. E is flat according to def. 2.1;

2. E.(X) is a projective module over =,(E) (via this prop.).

Then the first page of the E-Adams spectral sequence, def. 1.14, for [Y,X], is isomorphic to the following
chain complex of graded homs of comodules (def. 2.19) over the dual E-Steenrod algebra (E.(E),n.(E))
(prop. 2.3):

E7'(X,Y) = Homg, ) (E.(X),E. s(4:) , di = Homg, g (E.(X),E.(g o h)

d d d
0 = Hom§, () (E.(X), E.(A¢)) — Hom, (g (E.(X),E._1(A;)) = Homf, (g (E.(X), E. _5(43)) — -

(Adams 74, theorem 15.1 page 323)

Proof. This is prop. 2.33 applied to def. 1.14:
EY'(X,Y) = [X,EAY], |
AS

= Hom{, ) (E.(X), E.(E A Y))
A
S

x Homf;.(E) (Eo(X): Eo —S(AS))

3. The second page

Theorem 3.1. Let (E,u,e) be a homotopy commutative ring spectrum (def.), and let X,Y € Ho(Spectra) be two
spectra such that

1. E is flat according to def. 2.1;

2. E.(X) is a projective module over =,(E) (via this prop.).
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Then the entries of the second page of the E-Adams spectral sequence for [X,Y], (def. 1.14) are the

Ext-groups of commutative Hopf algebroid-comodules (def. 2.19) over the commutative Hopf algebroid
structure on the dual E-Steenrod algebra E.(E) from prop. 2.3:

E3'(X,Y) = Exty’ ) (E.(X), E.(Y)) .

(On the right s is the degree that goes with any Ext-functor, and the “internal degree” t is the additional
degree of morphisms between graded modules from def. 2.19.)

In the special case that X =S is the sphere spectrum, then (by prop. 2.28) these are equivalently Cotor-
groups

ES*(X,Y) = Cotory’ (. (E), E.(Y)) .

(Adams 74, theorem 15.1, page 323)

Proof. By theorem 2.34, under the given assumptions the first page reads

EY'(X,Y) = Homg, g (E.(X),E. 5(As)) , dy = Homg g (E.(X),E.(g °h))

d d d
0 - Hom§, (&) (E.(X), E.(A)) — Hom§, g (E.(X), E. _1(41)) — Hom, ) (E.(X), E. _5(A;)) = -+ .

By remark 1.12 the second page is the cochain cohomology of this complex. Hence by the standard theory
of derived functors in homological algebra (see the section Via acyclic resolutions), it is now sufficient to see
that:

1. the category E.(E)CoMod (def. 2.19, prop. 2.12) is an abelian category with enough injectives (so that
all right derived functors on E,(E)CoMod exist);

2. the first page graded chain complex (E;"*(X,Y),d,) is the image under the hom-functor
F := Homg, (5)(E.(Y), —) of an F-acyclic resolution of E,(X) (so that its cohomology indeed computes the
Ext-derived functor (theorem)).

That E,(E)CoMod is an abelian category is lemma 3.3 below, and that it has enough injectives is lemma 3.4.

Lemma 3.2 below shows that E.(A.) is a resolution of E.(Y) in E.(E)CoMod. By prop. 2.2 it is a resolution by
cofree comodules (def. 2.23). That these are F-acyclic is lemma 3.5 below. N

E-Adams resolutions

We discuss that the first page of the E-Adams spectral sequence indeed exhibits a resolution as required by
the proof of theorem 3.1.

Lemma 3.2. Given an E-Adams spectral sequence (E3*(X,Y),d,) as in def. 1.14, then the sequences of
morphisms

E.(gp) Eu(hp)
0~ E.(Yp) — E.(4p) — E. 1 (Ypy1) > 0

are short exact, hence their splicing of short exact sequences

E.(9) [ a
