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Introduction to Homotopy Theory

This pages gives a detailed introduction to classical homotopy theory, starting with the concept
of homotopy in topological spaces and motivating from this the “abstract homotopy theory” in
general model categories.

For background on basic topology see at Introduction to Topology.

For application to homological algebra see at Introduction to Homological algebra.

For application to stable homotopy theory see at Introduction to Stable homotopy theory.
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While the field of algebraic topology clearly originates in topology, it is not actually interested in
topological spaces regarded up to topological isomorphism, namely homeomorphism (“point-set
topology”), but only in topological spaces regarded up to weak homotopy equivalence – hence it
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is interested only in the “weak homotopy types” of topological spaces. This is so notably because
ordinary cohomology groups are invariants of the (weak) homotopy type of topological spaces
but do not detect their homeomorphism class.

The category of topological spaces obtained by forcing weak homotopy equivalences to become
isomorphisms is the “classical homotopy category” Ho(Top). This homotopy category however
has forgotten a little too much information: homotopy theory really wants the weak homotopy
equivalences not to become plain isomorphisms, but to become actual homotopy equivalences.
The structure that reflects this is called a model category structure (short for “category of
models for homotopy types”). For classical homotopy theory this is accordingly called the
classical model structure on topological spaces. This we review here.

1. Topological homotopy theory

This section recalls relevant concepts from actual topology (“point-set topology”) and highlights
facts that motivate the axiomatics of model categories below. We prove two technical lemmas
(lemma 1.40 and lemma 1.52) that serve to establish the abstract homotopy theory of
topological spaces further below.

Literature (Hirschhorn 15)

Throughout, let Top denote the category whose objects are topological spaces and whose
morphisms are continuous functions between them. Its isomorphisms are the homeomorphisms.

(Further below we restrict attention to the full subcategory of compactly generated topological
spaces.)

Universal constructions

To begin with, we recall some basics on universal constructions in Top: limits and colimits of
diagrams of topological spaces; exponential objects.

Generally, recall:

Definition 1.1. A diagram in a category  is a small category  and a functor

• : ⟶

( ⟶ ) ↦ ( →⎯⎯⎯
( )

) .

A cone over this diagram is an object  equipped with morphisms : ⟶  for all ∈ , such

that all these triangles commute:

↙ ↘

→⎯⎯⎯
( )

.

Dually, a co-cone under the diagram is  equipped with morphisms : ⟶  such that all

these triangles commute

→⎯⎯⎯
( )

↘ ↙ .

A limit over the diagram is a universal cone, denoted lim←⎯⎯ ∈
, that is: a cone such that every
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other cone uniquely factors through it ⟶ lim←⎯⎯ ∈
, making all the resulting triangles

commute.

Dually, a colimit over the diagram is a universal co-cone, denoted lim
→⎯⎯ ∈

.

We now discuss limits and colimits in = Top. The key for understanding these is the fact that
there are initial and final topologies:

Definition 1.2. Let { = ( , ) ∈ Top} ∈  be a set of topological spaces, and let ∈ Set be a bare

set. Then

For { → } ∈  a set of functions out of , the initial topology ({ } ∈ ) is the

topology on  with the minimum collection of open subsets such that all
: ( , ({ } ∈ )) →  are continuous.

1. 

For { → } ∈  a set of functions into , the final topology ({ } ∈ ) is the topology on

 with the maximum collection of open subsets such that all : → ( , ({ } ∈ )) are

continuous.

2. 

Example 1.3. For  a single topological space, and : ↪ ( ) a subset of its underlying set,
then the initial topology ( ), def. 1.2, is the subspace topology, making

: ( , ( )) ↪

a topological subspace inclusion.

Example 1.4. Conversely, for : ( ) ⟶  an epimorphism, then the final topology ( ) on 

is the quotient topology.

Proposition 1.5. Let  be a small category and let • : ⟶ Top be an -diagram in Top (a functor
from  to Top), with components denoted = ( , ), where ∈ Set and  a topology on .
Then:

The limit of • exists and is given by the topological space whose underlying set is the
limit in Set of the underlying sets in the diagram, and whose topology is the initial
topology, def. 1.2, for the functions  which are the limiting cone components:

lim
←⎯⎯ ∈

↙ ↘

⟶

.

Hence

lim
←⎯⎯ ∈

≃ lim
←⎯⎯ ∈

, ({ } ∈ )

1. 

The colimit of • exists and is the topological space whose underlying set is the colimit in
Set of the underlying diagram of sets, and whose topology is the final topology, def. 1.2
for the component maps  of the colimiting cocone

⟶

↘ ↙

lim→⎯⎯ ∈

.

Hence

2. 
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lim
→⎯⎯ ∈

≃ lim
→⎯⎯ ∈

, ({ } ∈ )

(e.g. Bourbaki 71, section I.4)

Proof. The required universal property of lim
←⎯⎯ ∈

, ({ } ∈ )  (def. 1.1) is immediate: for

( , )

↙ ↘

⟶

any cone over the diagram, then by construction there is a unique function of underlying sets
⟶ lim

←⎯⎯ ∈
 making the required diagrams commute, and so all that is required is that this

unique function is always continuous. But this is precisely what the initial topology ensures.

The case of the colimit is formally dual.  ▮

Example 1.6. The limit over the empty diagram in Top is the point * with its unique topology.

Example 1.7. For { } ∈  a set of topological spaces, their coproduct ⊔
∈

∈ Top is their disjoint

union.

In particular:

Example 1.8. For ∈ Set, the -indexed coproduct of the point, ∐ ∈ *  is the set  itself

equipped with the final topology, hence is the discrete topological space on .

Example 1.9. For { } ∈  a set of topological spaces, their product ∏ ∈ ∈ Top is the Cartesian

product of the underlying sets equipped with the product topology, also called the Tychonoff
product.

In the case that  is a finite set, such as for binary product spaces × , then a sub-basis for
the product topology is given by the Cartesian products of the open subsets of (a basis for)
each factor space.

Example 1.10. The equalizer of two continuous functions , : ⟶⟶  in Top is the equalizer of
the underlying functions of sets

eq( , ) ↪ ⟶⟶

(hence the largets subset of  on which both functions coincide) and equipped with the
subspace topology, example 1.3.

Example 1.11. The coequalizer of two continuous functions , : ⟶⟶  in Top is the coequalizer
of the underlying functions of sets

⟶⟶ ⟶ coeq( , )

(hence the quotient set by the equivalence relation generated by ( ) ∼ ( ) for all ∈ ) and
equipped with the quotient topology, example 1.4.

Example 1.12. For
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⟶

↓

two continuous functions out of the same domain, then the colimit under this diagram is also
called the pushout, denoted

⟶

↓ ↓ *

⟶ ⊔ .

.

(Here 
*

 is also called the pushout of , or the cobase change of  along .)

This is equivalently the coequalizer of the two morphisms from  to the coproduct of  with 
(example 1.7):

⟶⟶ ⊔ ⟶ ⊔ .

If  is an inclusion, one also writes ∪  and calls this the attaching space.

By example 1.11 the
pushout/attaching space is the
quotient topological space

⊔ ≃ ( ⊔ )/ ∼

of the disjoint union of  and 
subject to the equivalence relation
which identifies a point in  with a

point in  if they have the same pre-image in .

(graphics from Aguilar-Gitler-Prieto 02)

Notice that the defining universal property of this colimit means that completing the span

⟶

↓

to a commuting square

⟶

↓ ↓

⟶

is equivalent to finding a morphism

⊔ ⟶ .

Example 1.13. For ↪  a topological subspace inclusion, example 1.3, then the pushout

↪

↓ (po) ↓

* ⟶ /

is the quotient space or cofiber, denoted / .
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Example 1.14. An important special case of example 1.12:

For ∈ ℕ write

≔ {⇀ ∈ ℝ | |⇀| ≤ 1} ↪ ℝ  for the standard topological n-disk (equipped with its
subspace topology as a subset of Cartesian space);

− = ∂ ≔ {⇀ ∈ ℝ | |⇀| = 1} ↪ ℝ  for its boundary, the standard topological n-sphere.

Notice that − = ∅ and that = * ⊔ * .

Let

: − ⟶

be the canonical inclusion of the standard (n-1)-sphere as the boundary of the standard n-disk
(both regarded as topological spaces with their subspace topology as subspaces of the
Cartesian space ℝ ).

Then the colimit in Top under the diagram

⟵ − ⟶ ,

i.e. the pushout of  along itself, is the
n-sphere :

− ⟶

↓ (po) ↓

⟶

.

(graphics from Ueno-Shiga-Morita 95)

Another kind of colimit that will play a role for certain technical constructions is transfinite
composition. First recall

Definition 1.15. A partial order is a set  equipped with a relation ≤ such that for all elements
, , ∈

1) (reflexivity) ≤ ;

2) (transitivity) if ≤  and ≤  then ≤ ;

3) (antisymmetry) if ≤  and b ≤  then = .

This we may and will equivalently think of as a category with objects the elements of  and a
unique morphism →  precisely if ≤ . In particular an order-preserving function between
partially ordered sets is equivalently a functor between their corresponding categories.

A bottom element ⊥ in a partial order is one such that ⊥ ≤  for all a. A top element ⊤ is one
for wich ≤ ⊤ .

A partial order is a total order if in addition

4) (totality) either ≤  or ≤ .

A total order is a well order if in addition

5) (well-foundedness) every non-empty subset has a least element.

An ordinal is the equivalence class of a well-order.
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The successor of an ordinal is the class of the well-order with a top element freely adjoined.

A limit ordinal is one that is not a successor.

Example 1.16. The finite ordinals are labeled by ∈ ℕ, corresponding to the well-orders
{0 ≤ 1 ≤ 2⋯ ≤ − 1}. Here ( + 1) is the successor of . The first non-empty limit ordinal is

= [(ℕ, ≤ )].

Definition 1.17. Let  be a category, and let ⊂ Mor( ) be a class of its morphisms.

For  an ordinal (regarded as a category), an -indexed transfinite sequence of elements in 
is a diagram

• : ⟶

such that

• takes all successor morphisms →
≤

+ 1 in  to elements in 

, + ∈

1. 

• is continuous in that for every nonzero limit ordinal < , • restricted to the
full-subdiagram { | ≤ } is a colimiting cocone in  for • restricted to { | < }.

2. 

The corresponding transfinite composition is the induced morphism

⟶ ≔ lim→⎯⎯ •

into the colimit of the diagram, schematically:

⎯⎯
,

⎯⎯
,

→ ⋯

↘ ↓ ↙ ⋯ .

We now turn to the discussion of mapping spaces/exponential objects.

Definition 1.18. For  a topological space and  a locally compact topological space (in that for
every point, every neighbourhood contains a compact neighbourhood), the mapping space

∈ Top

is the topological space

whose underlying set is the set Hom ( , ) of continuous functions → ,

whose open subsets are unions of finitary intersections of the following subbase elements
of standard open subsets:

the standard open subset ⊂ Hom ( , ) for

↪  a compact topological space subset

↪  an open subset

is the subset of all those continuous functions  that fit into a commuting diagram of the
form
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↪

↓ ↓

↪

.

Accordingly this is called the compact-open topology on the set of functions.

The construction extends to a functor

( −)( −) : Top × Top ⟶ Top .

Proposition 1.19. For  a topological space and  a locally compact topological space (in that
for each point, each open neighbourhood contains a compact neighbourhood), the
topological mapping space  from def. 1.18 is an exponential object, i.e. the functor ( −)

is right adjoint to the product functor × ( −): there is a natural bijection

Hom ( × , ) ≃ Hom ( , )

between continuous functions out of any product topological space of  with any ∈ Top and
continuous functions from  into the mapping space.

A proof is spelled out here (or see e.g. Aguilar-Gitler-Prieto 02, prop. 1.3.1).

Remark 1.20. In the context of prop. 1.19 it is often assumed that  is also a Hausdorff
topological space. But this is not necessary. What assuming Hausdorffness only achieves is
that all alternative definitions of “locally compact” become equivalent to the one that is
needed for the proposition: for every point, every open neighbourhood contains a compact
neighbourhood.

Remark 1.21. Proposition 1.19 fails in general if  is not locally compact. Therefore the plain
category Top of all topological spaces is not a Cartesian closed category.

This is no problem for the construction of the homotopy theory of topological spaces as such,
but it becomes a technical nuisance for various constructions that one would like to perform
within that homotopy theory. For instance on general pointed topological spaces the smash
product is in general not associative.

On the other hand, without changing any of the following discussion one may just pass to a
more convenient category of topological spaces such as notably the full subcategory of
compactly generated topological spaces Top ↪ Top (def. 3.35) which is Cartesian closed. This

we turn to below.

Homotopy

The fundamental concept of homotopy theory is clearly that of homotopy. In the context of
topological spaces this is about contiunous deformations of continuous functions parameterized
by the standard interval:

Definition 1.22. Write

≔ [0, 1] ↪ ℝ

for the standard topological interval, a compact connected topological subspace of the real
line.

Equipped with the canonical inclusion of its two endpoints

* ⊔ * →⎯⎯⎯⎯⎯
( , )

⟶
∃ !

*

this is the standard interval object in Top.
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For ∈ Top, the product topological space × , example 1.9, is called the standard cylinder
object over . The endpoint inclusions of the interval make it factor the codiagonal on 

∇ : ⊔ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
(( , ),( , ))

× ⟶ .

Definition 1.23. For , : ⟶  two continuous functions between topological spaces , , then a
left homotopy

: ⇒

is a continuous function

: × ⟶

out of the standard cylinder object over , def. 1.22, such that this fits into a commuting
diagram of the form

( , ) ↓ ↘

× ⟶

( , ) ↑ ↗

.

(graphics grabbed from J. Tauber here)

Example 1.24. Let  be a topological space
and let , ∈  be two of its points, regarded as functions , : * ⟶  from the point to . Then
a left homotopy, def. 1.23, between these two functions is a commuting diagram of the form

*

↓ ↘

⟶

↑ ↗

*

.

This is simply a continuous path in  whose endpoints are  and .

For instance:

Example 1.25. Let

const : ⟶ * ⟶

be the continuous function from the standard interval = [0, 1] to itself that is constant on the
value 0. Then there is a left homotopy, def. 1.23, from the identity function

: id ⇒ const

given by

( , ) ≔ (1 − ) .

A key application of the concept of left homotopy is to the definition of homotopy groups:

Definition 1.26. For  a topological space, then its set ( ) of connected components, also
called the 0-th homotopy set, is the set of left homotopy-equivalence classes (def. 1.23) of
points : * → , hence the set of path-connected components of  (example 1.24). By
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composition this extends to a functor

:Top ⟶ Set .

For ∈ ℕ, ≥ 1 and for : * →  any point, then the th homotopy group ( , ) of  at  is
the group

whose underlying set is the set of left homotopy-equivalence classes of maps ⟶  that
take the boundary of  to  and where the left homotopies  are constrained to be
constant on the boundary;

whose group product operation takes [ : → ] and [ : → ] to [ ⋅ ] with

⋅ : ⟶≃ ⊔
−

→⎯⎯⎯
( , )

,

where the first map is a homeomorphism from the unit -cube to the -cube with one side
twice the unit length (e.g. ( , , , ⋯) ↦ (2 , , , ⋯)).

By composition, this construction extends to a functor

• ≥ : Top * / ⟶ Grpℕ ≥

from pointed topological spaces to graded groups.

Notice that often one writes the value of this functor on a morphism  as 
*

= •( ).

Remark 1.27. At this point we don’t go further into the abstract reason why def. 1.26 yields
group structure above degree 0, which is that positive dimension spheres are H-cogroup
objects. But this is important, for instance in the proof of the Brown representability theorem.
See the section Brown representability theorem in Part S.

Definition 1.28. A continuous function : ⟶  is called a homotopy equivalence if there
exists a continuous function the other way around, : ⟶ , and left homotopies, def. 1.23,
from the two composites to the identity:

: ∘ ⇒ id

and

: ∘ ⇒ id .

If here  is constant along ,  is said to exhibit  as a deformation retract of .

Example 1.29. For  a topological space and ×  its standard cylinder object of def. 1.22, then
the projection : × ⟶  and the inclusion (id, ) : ⟶ ×  are homotopy equivalences, def.
1.28, and in fact are homotopy inverses to each other:

The composition

→⎯⎯⎯⎯
( , )

× ⟶

is immediately the identity on  (i.e. homotopic to the identity by a trivial homotopy), while
the composite

× ⟶ →⎯⎯⎯⎯
( , )

×

is homotopic to the identity on ×  by a homotopy that is pointwise in  that of example
1.25.
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Definition 1.30. A continuous function : ⟶  is called a weak homotopy equivalence if its
image under all the homotopy group functors of def. 1.26 is an isomorphism, hence if

( ) : ( ) ⟶≃ ( )

and for all ∈  and all ≥ 1

( ) : ( , ) ⟶≃ ( , ( )) .

Proposition 1.31. Every homotopy equivalence, def. 1.28, is a weak homotopy equivalence,
def. 1.30.

In particular a deformation retraction, def. 1.28, is a weak homotopy equivalence.

Proof. First observe that for all ∈ Top the inclusion maps

→⎯⎯⎯⎯
( , )

×

into the standard cylinder object, def. 1.22, are weak homotopy equivalences: by
postcomposition with the contracting homotopy of the interval from example 1.25 all homotopy
groups of ×  have representatives that factor through this inclusion.

Then given a general homotopy equivalence, apply the homotopy groups functor to the
corresponding homotopy diagrams (where for the moment we notationally suppress the choice
of basepoint for readability) to get two commuting diagrams

•( )

•( , ) ↓ ↘ •( ) ∘ •( )

•( × ) →⎯⎯⎯•( )
•( )

•( , ) ↑ ↗
•( )

•( )

,

•( )

•( , ) ↓ ↘ •( ) ∘ •( )

•( × ) →⎯⎯⎯•( )
•( )

•( , ) ↑ ↗
•( )

•( )

.

By the previous observation, the vertical morphisms here are isomorphisms, and hence these
diagrams exhibit •( ) as the inverse of •( ), hence both as isomorphisms.  ▮

Remark 1.32. The converse of prop. 1.31 is not true generally: not every weak homotopy
equivalence between topological spaces is a homotopy equivalence. (For an example with full
details spelled out see for instance Fritsch, Piccinini: “Cellular Structures in Topology”, p.
289-290).

However, as we will discuss below, it turns out that

every weak homotopy equivalence between CW-complexes is a homotopy equivalence
(Whitehead's theorem, cor. 3.8);

1. 

every topological space is connected by a weak homotopy equivalence to a CW-complex
(CW approximation, remark 3.12).

2. 

Example 1.33. For ∈ Top, the projection × ⟶  from the cylinder object of , def. 1.22, is a
weak homotopy equivalence, def. 1.30. This means that the factorization

∇ : ⊔ ↪ × ⟶≃

of the codiagonal ∇  in def. 1.22, which in general is far from being a monomorphism, may be
thought of as factoring it through a monomorphism after replacing , up to weak homotopy
equivalence, by × .

In fact, further below (prop. 1.25) we see that ⊔ → ×  has better properties than the
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generic monomorphism has, in particular better homotopy invariant properties: it has the left

lifting property against all Serre fibrations ⟶  that are also weak homotopy equivalences.

Of course the concept of left homotopy in def. 1.23 is accompanied by a concept of right
homotopy. This we turn to now.

Definition 1.34. For  a topological space, its standard topological path space object is the
topological mapping space , prop. 1.19, out of the standard interval  of def. 1.22.

Example 1.35. The endpoint inclusion into the standard interval, def. 1.22, makes the path
space  of def. 1.34 factor the diagonal on  through the inclusion of constant paths and the
endpoint evaluation of paths:

: →⎯⎯⎯⎯
→ *

→⎯⎯⎯⎯⎯⎯
* ⊔ * →

× .

This is the formal dual to example 1.22. As in that example, below we will see (prop. 3.14)
that this factorization has good properties, in that

→ * is a weak homotopy equivalence;1. 

* ⊔ * →  is a Serre fibration.2. 

So while in general the diagonal  is far from being an epimorphism or even just a Serre
fibration, the factorization through the path space object may be thought of as replacing , up
to weak homotopy equivalence, by its path space, such as to turn its diagonal into a Serre
fibration after all.

Definition 1.36. For , : ⟶  two continuous functions between topological spaces , , then a
right homotopy ⇒  is a continuous function

: ⟶

into the path space object of , def. 1.34, such that this fits into a commuting diagram of the
form

↗ ↑

⟶

↘ ↓

.

Cell complexes

We consider topological spaces that are built consecutively by attaching basic cells.

Definition 1.37. Write

≔ − ↪
∈ ℕ

⊂ Mor(Top)

for the set of canonical boundary inclusion maps of the standard n-disks, example 1.14. This
going to be called the set of standard topological generating cofibrations.

Definition 1.38. For ∈ Top and for ∈ ℕ, an -cell attachment to  is the pushout
(“attaching space”, example 1.12) of a generating cofibration, def. 1.37
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− ⟶

↓ (po) ↓

⟶ ⊔
−

= ∪

along some continuous function .

A continuous function : ⟶  is called a topological relative cell complex if it is exhibited
by a (possibly infinite) sequence of cell attachments to , in that it is a transfinite composition
(def. 1.17) of pushouts (example 1.12)

∐ − ⟶

∐
↓ (po) ↓

∐ ⟶ +

of coproducts (example 1.7) of generating cofibrations (def. 1.37).

A topological space  is a cell complex if ∅ ⟶  is a relative cell complex.

A relative cell complex is called a finite relative cell complex if it is obtained from a finite
number of cell attachments.

A (relative) cell complex is called a (relative) CW-complex if the above transfinite
composition is countable

= ⟶ ⟶ ⟶ ⋯

↘ ↓ ↙ ⋯

= lim→⎯⎯ •

and if  is obtained from −  by attaching cells precisely only of dimension .

Remark 1.39. Strictly speaking a relative cell complex, def. 1.38, is a function : → ,
together with its cell structure, hence together with the information of the pushout diagrams
and the transfinite composition of the pushout maps that exhibit it.

In many applications, however, all that matters is that there is some (relative) cell
decomosition, and then one tends to speak loosely and mean by a (relative) cell complex only
a (relative) topological space that admits some cell decomposition.

The following lemma 1.40, together with lemma 1.52 below are the only two statements of the
entire development here that involve the concrete particular nature of topological spaces
(“point-set topology”), everything beyond that is general abstract homotopy theory.

Lemma 1.40. Assuming the axiom of choice and the law of excluded middle, every compact
subspace of a topological cell complex, def. 1.38, intersects the interior of a finite number of
cells.

(e.g. Hirschhorn 15, section 3.1)

Proof. So let  be a topological cell complex and ↪  a compact subspace. Define a subset

⊂

by choosing one point in the interior of the intersection with  of each cell of  that intersects .

It is now sufficient to show that  has no accumulation point. Because, by the compactness of ,
every non-finite subset of  does have an accumulation point, and hence the lack of such shows
that  is a finite set and hence that  intersects the interior of finitely many cells of .
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To that end, let ∈  be any point. If  is a 0-cell in , write ≔ { }. Otherwise write  for the
unique cell of  that contains  in its interior. By construction, there is exactly one point of  in
the interior of . Hence there is an open neighbourhood ∈ ⊂  containing no further points
of  beyond possibly  itself, if  happens to be that single point of  in .

It is now sufficient to show that  may be enlarged to an open subset ˜  of  containing no
point of , except for possibly  itself, for that means that  is not an accumulation point of .

To that end, let  be the ordinal that labels the stage  of the transfinite composition in the

cell complex-presentation of  at which the cell  above appears. Let  be the ordinal of the full
cell complex. Then define the set

≔ ( , ) | ≤ ≤ , ⊂ , ∩ = , ∩ ∈ {∅, { }} ,

and regard this as a partially ordered set by declaring a partial ordering via

( , ) < ( , ) ⇔ < , ∩ = .

This is set up such that every element ( , ) of  with  the maximum value =  is an extension
˜  that we are after.

Observe then that for ( , ) ∈  a chain in ( , < ) (a subset on which the relation < restricts to a

total order), it has an upper bound in  given by the union ( ∪ , ∪ ). Therefore Zorn's

lemma applies, saying that ( , < ) contains a maximal element ( , ).

Hence it is now sufficient to show that = . We argue this by showing that assuming

<  leads to a contradiction.

So assume < . Then to construct an element of  that is larger than ( , ), consider

for each cell  at stage +  its attaching map ℎ : − →  and the corresponding

preimage open set ℎ − ( ) ⊂ − . Enlarging all these preimages to open subsets of  (such
that their image back in +  does not contain ), then ( , ) < ( + 1, ∪ ). This is

a contradiction. Hence = , and we are done.  ▮

It is immediate and useful to generalize the concept of topological cell complexes as follows.

Definition 1.41. For  any category and for ⊂ Mor( ) any sub-class of its morphisms, a
relative -cell complexes is a morphism in  which is a transfinite composition (def. 1.17) of
pushouts of coproducts of morphsims in .

Definition 1.42. Write

≔ ⎯⎯⎯
( , )

×
∈ ℕ

⊂ Mor(Top)

for the set of inclusions of the topological n-disks, def. 1.37, into their cylinder objects, def.
1.22, along (for definiteness) the left endpoint inclusion.

These inclusions are similar to the standard topological generating cofibrations  of def.
1.37, but in contrast to these they are “acyclic” (meaning: trivial on homotopy classes of maps
from “cycles” given by n-spheres) in that they are weak homotopy equivalences (by prop.
1.31).

Accordingly,  is to be called the set of standard topological generating acyclic

cofibrations.
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Lemma 1.43. For  a CW-complex (def. 1.38), then its inclusion →⎯⎯⎯⎯
( , )

×  into its standard
cylinder (def. 1.22) is a -relative cell complex (def. 1.41, def. 1.42).

Proof. First erect a cylinder over all 0-cells

∐ ∈ ⟶

↓ (po) ↓

∐ ∈ ⟶

.

Assume then that the cylinder over all -cells of  has been erected using attachment from .

Then the union of any ( + 1)-cell  of  with the cylinder over its boundary is homeomorphic to
+  and is like the cylinder over the cell “with end and interior removed”. Hence via attaching

along + → + ×  the cylinder over  is erected.  ▮

Lemma 1.44. The maps ↪ ×  in def. 1.42 are finite relative cell complexes, def. 1.38. In
other words, the elements of  are -relative cell complexes.

Proof. There is a homeomorphism

=
( , ) ↓ ↓

× ≃ +

such that the map on the right is the inclusion of one hemisphere into the boundary n-sphere of
+ . This inclusion is the result of attaching two cells:

− ⟶

↓ (po) ↓

⟶

↓=

⟶

+ ↓ (po) ↓

+ ⟶ +

.

here the top pushout is the one from example 1.14.  ▮

Lemma 1.45. Every -relative cell complex (def. 1.42, def. 1.41) is a weak homotopy

equivalence, def. 1.30.

Proof. Let ⟶ ^ = lim←⎯⎯ ≤
 be a -relative cell complex.

First observe that with the elements ↪ ×  of  being homotopy equivalences for all ∈ ℕ

(by example 1.29), each of the stages ⟶ +  in the relative cell complex is also a homotopy
equivalence. We make this fully explicit:

By definition, such a stage is a pushout of the form

⊔
∈

⟶

⊔
∈

( , )
↓ (po) ↓

⊔
∈

× ⟶ +

.
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Then the fact that the projections : × →  are strict left inverses to the inclusions (id, )

gives a commuting square of the form

⊔
∈

⟶

⊔
∈

( , )
↓ ↓

⊔
∈

×

⊔
∈ ↓ ↓

⊔
∈

⟶

and so the universal property of the colimit (pushout) +  gives a factorization of the identity
morphism on the right through +

⊔
∈

⟶

⊔
∈

( , )
↓ ↓

⊔
∈

× ⟶ +

⊔
∈ ↓ ↓

⊔
∈

⟶

which exhibits + →  as a strict left inverse to → + . Hence it is now sufficient to show
that this is also a homotopy right inverse.

To that end, let

: × ⟶ ×

be the left homotopy that exhibits  as a homotopy right inverse to  by example 1.29. For

each ∈ [0, 1] consider the commuting square

⊔
∈

⟶

↓ ↓

⊔
∈

× +

( −, )
↓ ↓

⊔
∈

× ⟶ +

.

Regarded as a cocone under the span in the top left, the universal property of the colimit
(pushout) +  gives a continuous function

( −, ) : + ⟶ +

for each ∈ [0, 1]. For = 0 this construction reduces to the provious one in that
( −, 0) : + → → +  is the composite which we need to homotope to the identity; while
( −, 1) is the identity. Since (−, ) is clearly also continuous in  it constitutes a continuous

function

: + × ⟶ +

which exhibits the required left homotopy.

So far this shows that each stage → +  in the transfinite composition defining ^ is a
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homotopy equivalence, hence, by prop. 1.31, a weak homotopy equivalence.

This means that all morphisms in the following diagram (notationally suppressing basepoints
and showing only the finite stages)

( ) ⟶≃ ( ) ⟶≃ ( ) ⟶≃ ( ) ⟶≃ ⋯

≃ ↘ ↓≃ ↙≃ ⋯

lim←⎯⎯ ( )

are isomorphisms.

Moreover, lemma 1.40 gives that every representative and every null homotopy of elements in

(^) already exists at some finite stage . This means that also the universally induced
morphism

lim←⎯⎯ ( ) ⟶≃ (^)

is an isomorphism. Hence the composite ( ) ⟶≃ (^) is an isomorphism.  ▮

Fibrations

Given a relative -cell complex : → , def. 1.41, it is typically interesting to study the extension
problem along , i.e. to ask which topological spaces  are such that every continuous function

: ⟶  has an extension ˜  along 

⟶

↓ ↗∃ ˜ .

If such extensions exists, it means that  is sufficiently “spread out” with respect to the maps in
. More generally one considers this extension problem fiberwise, i.e. with both  and  (hence

also ) equipped with a map to some base space :

Definition 1.46. Given a category  and a sub-class ⊂ Mor( ) of its morphisms, then a
morphism : ⟶  in  is said to have the right lifting property against the morphisms in  if
every commuting diagram in  of the form

⟶

↓ ↓

⟶

,

with ∈ , has a lift ℎ, in that it may be completed to a commuting diagram of the form

⟶

↓ ↗ ↓

⟶

.

We will also say that  is a -injective morphism if it satisfies the right lifting property
against .

Definition 1.47. A continuous function : ⟶  is called a Serre fibration if it is a
-injective morphism; i.e. if it has the right lifting property, def. 1.46, against all topological

generating acylic cofibrations, def. 1.42; hence if for every commuting diagram of continuous
functions of the form
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⟶

( , ) ↓ ↓

× ⟶

,

has a lift ℎ, in that it may be completed to a commuting diagram of the form

⟶

( , ) ↓ ↗ ↓

× ⟶

.

Remark 1.48. Def. 1.47 says, in view of the definition of left homotopy, that a Serre fibration
is a map with the property that given a left homotopy, def. 1.23, between two functions into
its codomain, and given a lift of one the two functions through , then also the homotopy
between the two lifts. Therefore the condition on a Serre fibration is also called the homotopy
lifting property for maps whose domain is an n-disk.

More generally one may ask functions  to have such homotopy lifting property for functions
with arbitrary domain. These are called Hurewicz fibrations.

Remark 1.49. The precise shape of  and ×  in def. 1.47 turns out not to actually matter
much for the nature of Serre fibrations. We will eventually find below (prop. 3.5) that what
actually matters here is only that the inclusions ↪ ×  are relative cell complexes (lemma
1.44) and weak homotopy equivalences (prop. 1.31) and that all of these may be generated
from them in a suitable way.

But for simple special cases this is readily seen directly, too. Notably we could replace the
n-disks in def. 1.47 with any homeomorphic topological space. A choice important in the
comparison to the classical model structure on simplicial sets (below) is to instead take the
topological n-simplices . Hence a Serre fibration is equivalently characterized as having lifts
in all diagrams of the form

⟶
( , ) ↓ ↓

× ⟶

.

Other deformations of the -disks are useful in computations, too. For instance there is a
homeomorphism from the -disk to its “cylinder with interior and end removed”, formally:

( × {0}) ∪ ( ∂ × ) ≃

↓ ↓

× ≃ ×

and hence  is a Serre fibration equivalently also if it admits lifts in all diagrams of the form

( × {0}) ∪ ( ∂ × ) ⟶

( , ) ↓ ↓

× ⟶

.

The following is a general fact about closure of morphisms defined by lifting properties which we
prove in generality below as prop. 2.10.

Proposition 1.50. A Serre fibration, def. 1.47 has the right lifting property against all retracts
(see remark 2.12) of -relative cell complexes (def. 1.42, def. 1.38).

The following statement is foreshadowing the long exact sequences of homotopy groups (below)
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induced by any fiber sequence, the full version of which we come to below (example 4.37) after
having developed more of the abstract homotopy theory.

Proposition 1.51. Let : ⟶  be a Serre fibration, def. 1.47, let : * →  be any point and
write

↪ ⟶

for the fiber inclusion over that point. Then for every choice : * →  of lift of the point 
through , the induced sequence of homotopy groups

•( , ) ⟶*
•( , ) ⟶*

•( )

is exact, in that the kernel of 
*
 is canonically identified with the image of *:

ker(
*
) ≃ im( *) .

Proof. It is clear that the image of * is in the kernel of 
*
 (every sphere in ↪  becomes

constant on , hence contractible, when sent forward to ).

For the converse, let [ ] ∈ •( , ) be represented by some : − → . Assume that [ ] is in the
kernel of 

*
. This means equivalently that  fits into a commuting diagram of the form

− ⟶

↓ ↓

⟶

,

where  is the contracting homotopy witnessing that 
*
[ ] = 0.

Now since  is a lift of , there exists a left homotopy

: ⇒ const

as follows:

− ⟶

↓ ↓

⟶

↓( , ) ↓

→⎯⎯⎯⎯
( , )

× ⟶

↓ ↓

* ⟶

(for instance: regard  as embedded in ℝ  such that 0 ∈ ℝ  is identified with the basepoint on
the boundary of  and set (⇀, ) ≔ ( ⇀)).

The pasting of the top two squares that have appeared this way is equivalent to the following
commuting square

− ⟶ ⟶

( , ) ↓ ↓

− × →⎯⎯⎯⎯
( , )

× ⟶

.
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Because  is a Serre fibration and by lemma 1.43 and prop. 1.50, this has a lift

˜ : − × ⟶ .

Notice that ˜  is a basepoint preserving left homotopy from = ˜ |  to some ′ ≔ ˜ | . Being

homotopic, they represent the same element of − ( , ):

[ ′ ] = [ ] .

But the new representative ′  has the special property that its image in  is not just trivializable,
but trivialized: combining ˜  with the previous diagram shows that it sits in the following
commuting diagram

′ : − →⎯⎯⎯⎯
( , ) − × ⟶

˜

↓ ↓( , ) ↓

→⎯⎯⎯⎯
( , )

× ⟶

↓ ↓

* ⟶

.

The commutativity of the outer square says that 
*

′  is constant, hence that ′  is entirely

contained in the fiber . Said more abstractly, the universal property of fibers gives that ′

factors through ↪ , hence that [ ′ ] = [ ] is in the image of *.  ▮

The following lemma 1.52, together with lemma 1.40 above, are the only two statements of the
entire development here that crucially involve the concrete particular nature of topological
spaces (“point-set topology”), everything beyond that is general abstract homotopy theory.

Lemma 1.52. The continuous functions with the right lifting property, def. 1.46 against the set
= { − ↪ } of topological generating cofibrations, def. 1.37, are precisely those which

are both weak homotopy equivalences, def. 1.30 as well as Serre fibrations, def. 1.47.

Proof. We break this up into three sub-statements:

A) -injective morphisms are in particular weak homotopy equivalences

Let : ^ →  have the right lifting property against 

− ⟶ ^

↓ ∃ ↗ ↓

⟶

We check that the lifts in these diagrams exhibit •( ) as being an isomorphism on all homotopy
groups, def. 1.26:

For = 0 the existence of these lifts says that every point of  is in the image of , hence that

(^) → ( ) is surjective. Let then = * ∐ * ⟶ ^ be a map that hits two connected
components, then the existence of the lift says that if they have the same image in ( ) then

they were already the same connected component in ^. Hence (^) → ( ) is also injective and
hence is a bijection.

Similarly, for ≥ 1, if → ^ represents an element in (^) that becomes trivial in ( ), then
the existence of the lift says that it already represented the trivial element itself. Hence

(^) → ( ) has trivial kernel and so is injective.
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Finally, to see that (^) → ( ) is also surjective, hence bijective, observe that every elements
in ( ) is equivalently represented by a commuting diagram of the form

− ⟶ * ⟶ ^

↓ ↓ ↓

⟶ =

and so here the lift gives a representative of a preimage in (^).

B) -injective morphisms are in particular Serre fibrations

By an immediate closure property of lifting problems (we spell this out in generality as prop.
2.10, cor. 2.11 below) an -injective morphism has the right lifting property against all
relative cell complexes, and hence, by lemma 1.44, it is also a -injective morphism, hence a

Serre fibration.

C) Acyclic Serre fibrations are in particular -injective morphisms

(Hirschhorn 15, section 6).

Let : →  be a Serre fibration that induces isomorphisms on homotopy groups. In degree 0
this means that  is an isomorphism on connected components, and this means that there is a
lift in every commuting square of the form

− = ∅ ⟶

↓ ↓

= * ⟶

(this is ( ) being surjective) and in every commuting square of the form

⟶

↓ ↓

= * ⟶

(this is ( ) being injective). Hence we are reduced to showing that for ≥ 2 every diagram of
the form

− ⟶

↓ ↓

⟶

has a lift.

To that end, pick a basepoint on −  and write  and  for its images in  and , respectively

Then the diagram above expresses that 
*
[ ] = 0 ∈ − ( , ) and hence by assumption on  it

follows that [ ] = 0 ∈ − ( , ), which in turn mean that there is ′  making the upper triangle of
our lifting problem commute:

− ⟶

↓ ↗ .

It is now sufficient to show that any such ′  may be deformed to a ′  which keeps making this
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upper triangle commute but also makes the remaining lower triangle commute.

To that end, notice that by the commutativity of the original square, we already have at least
this commuting square:

− ⟶

↓ ↓ ∘

⟶

.

This induces the universal map ( , ∘ ′) from the pushout of its cospan in the top left, which is
the n-sphere (see this example):

− ⟶

↓ (po) ↓ ∘

⟶

↘( , ∘ )

.

This universal morphism represents an element of the th homotopy group:

[( , ∘ ′ )] ∈ ( , ) .

By assumption that  is a weak homotopy equivalence, there is a [ ] ∈ ( , ) with

*
[ ] = [( , ∘ ′)]

hence on representatives there is a lift up to homotopy

↗⇓ ↓

→⎯⎯⎯⎯⎯⎯
( , ∘ )

.

Morever, we may always find  of the form ( ′ , ′ ) for some ′ : → . (“Paste ′  to the reverse
of .”)

Consider then the map

→⎯⎯⎯⎯⎯⎯
( ∘ , )

and observe that this represents the trivial class:

[( ∘ ′ , )] = [( ∘ ′ , ∘ ′ )] + [( ∘ ′ , )]

=
*
[( ′ , ′ )]

= [ ]

+ [( ∘ ′ , )]

= [( , ∘ ′)] + [( ∘ ′ , )]

= 0

.

This means equivalently that there is a homotopy

: ∘ ′ ⇒

fixing the boundary of the -disk.

Hence if we denote homotopy by double arrows, then we have now achieved the following
situation
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− ⟶

↓ ↗
⇓

↓

⟶

and it now suffices to show that  may be lifted to a homotopy of just ′ , fixing the boundary,
for then the resulting homotopic ″  is the desired lift.

To that end, notice that the condition that : × →  fixes the boundary of the -disk means
equivalently that it extends to a morphism

− ⊔
− ×

× →⎯⎯⎯⎯⎯
( ∘ , )

out of the pushout that identifies in the cylinder over  all points lying over the boundary.
Hence we are reduced to finding a lift in

⟶

↓ ↓

− ⊔
− ×

× →⎯⎯⎯⎯⎯
( ∘ , )

.

But inspection of the left map reveals that it is homeomorphic again to → × , and hence
the lift does indeed exist.  ▮

2. Abstract homotopy theory

In the above we discussed three classes of continuous functions between topological spaces

weak homotopy equivalences;1. 

relative cell complexes;2. 

Serre fibrations3. 

and we saw first aspects of their interplay via lifting properties.

A fundamental insight due to (Quillen 67) is that in fact all constructions in homotopy theory are
elegantly expressible via just the abstract interplay of these classes of morphisms. This was
distilled in (Quillen 67) into a small set of axioms called a model category structure (because
it serves to make all objects be models for homotopy types.)

This abstract homotopy theory is the royal road for handling any flavor of homotopy theory, in
particular the stable homotopy theory that we are after in Part 1. Here we discuss the basic
constructions and facts in abstract homotopy theory, then below we conclude section P1) by
showing that the above system of classes of maps of topological spaces is indeed an example.

Literature (Dwyer-Spalinski 95)

Definition 2.1. A category with weak equivalences is

a category ;1. 

a sub-class ⊂ Mor( ) of its morphisms;2. 

such that

 contains all the isomorphisms of ;1. 
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 is closed under two-out-of-three: in every commuting diagram in  of the form

↗ ↘

⟶

if two of the three morphisms are in , then so is the third.

2. 

Remark 2.2. It turns out that a category with weak equivalences, def. 2.1, already determines
a homotopy theory: the one given given by universally forcing weak equivalences to become
actual homotopy equivalences. This may be made precise and is called the simplicial
localization of a category with weak equivalences (Dwyer-Kan 80a, Dwyer-Kan 80b,
Dwyer-Kan 80c). However, without further auxiliary structure, these simplicial localizations are
in general intractable. The further axioms of a model category serve the sole purpose of
making the universal homotopy theory induced by a category with weak equivalences be
tractable:

Definition 2.3. A model category is

a category  with all limits and colimits (def. 1.1);1. 

three sub-classes , Fib, Cof ⊂ Mor( ) of its morphisms;2. 

such that

the class  makes  into a category with weak equivalences, def. 2.1;1. 

The pairs ( ∩ Cof , Fib) and (Cap , ∩ Fib) are both weak factorization systems, def. 2.5.2. 

One says:

elements in  are weak equivalences,

elements in Cof are cofibrations,

elements in Fib are fibrations,

elements in ∩ Cof are acyclic cofibrations,

elements in ∩ Fib are acyclic fibrations.

The form of def. 2.3 is due to (Joyal, def. E.1.2). It implies various other conditions that (Quillen
67) demands explicitly, see prop. 2.10 and prop. 2.14 below.

We now dicuss the concept of weak factorization systems appearing in def. 2.3.

Factorization systems

Definition 2.4. Let  be any category. Given a diagram in  of the form

⟶

↓

then an extension of the morphism  along the morphism  is a completion to a commuting
diagram of the form
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⟶

↓ ↗ ˜ .

Dually, given a diagram of the form

↓

⟶

then a lift of  through  is a completion to a commuting diagram of the form

˜ ↗ ↓

⟶

.

Combining these cases: given a commuting square

⟶

↓ ↓

⟶

then a lifting in the diagram is a completion to a commuting diagram of the form

⟶

↓ ↗ ↓

⟶

.

Given a sub-class of morphisms ⊂ Mor( ), then

a morphism  as above is said to have the right lifting property against  or to be a

-injective morphism if in all square diagrams with  on the right and any ∈  on

the left a lift exists.

dually:

a morphism  is said to have the left lifting property against  or to be a

-projective morphism if in all square diagrams with  on the left and any ∈  on

the left a lift exists.

Definition 2.5. A weak factorization system (WFS) on a category  is a pair (Proj, Inj) of
classes of morphisms of  such that

Every morphism : →  of  may be factored as the composition of a morphism in Proj
followed by one in Inj

: →⎯⎯⎯⎯
∈

→⎯⎯⎯
∈

.

1. 

The classes are closed under having the lifting property, def. 2.4, against each other:

Proj is precisely the class of morphisms having the left lifting property against every
morphisms in Inj;

1. 

2. 
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Inj is precisely the class of morphisms having the right lifting property against every
morphisms in Proj.

2. 

Definition 2.6. For  a category, a functorial factorization of the morphisms in  is a functor

fact : [ ] ⟶ [ ]

which is a section of the composition functor : [ ] → [ ].

Remark 2.7. In def. 2.6 we are using the following standard notation, see at simplex category
and at nerve of a category:

Write [1] = {0 → 1} and [2] = {0 → 1 → 2} for the ordinal numbers, regarded as posets and hence
as categories. The arrow category Arr( ) is equivalently the functor category

[ ] ≔ Funct( [1], ), while [ ] ≔ Funct( [2], ) has as objects pairs of composable morphisms
in . There are three injective functors : [1] → [2], where  omits the index  in its image. By

precomposition, this induces functors : [ ] ⟶ [ ]. Here

 sends a pair of composable morphisms to their composition;

 sends a pair of composable morphisms to the first morphisms;

 sends a pair of composable morphisms to the second morphisms.

Definition 2.8. A weak factorization system, def. 2.5, is called a functorial weak
factorization system if the factorization of morphisms may be chosen to be a functorial
factorization fact, def. 2.6, i.e. such that ∘ fact lands in Proj and ∘ fact in Inj.

Remark 2.9. Not all weak factorization systems are functorial, def. 2.8, although most
(including those produced by the small object argument (prop. 2.17 below), with due care)
are.

Proposition 2.10. Let  be a category and let ⊂ Mor( ) be a class of morphisms. Write Proj
and Inj, respectively, for the sub-classes of -projective morphisms and of -injective
morphisms, def. 2.4. Then:

Both classes contain the class of isomorphism of .1. 

Both classes are closed under composition in .

Proj is also closed under transfinite composition.

2. 

Both classes are closed under forming retracts in the arrow category [ ] (see remark
2.12).

3. 

Proj is closed under forming pushouts of morphisms in  (“cobase change”).

Inj is closed under forming pullback of morphisms in  (“base change”).

4. 

Proj is closed under forming coproducts in [ ].

Inj is closed under forming products in [ ].

5. 

Proof. We go through each item in turn.

containing isomorphisms

Given a commuting square
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→

∈ ↓ ↓

⟶

with the left morphism an isomorphism, then a lift is given by using the inverse of this

isomorphism ∘ −
. Hence in particular there is a lift when ∈  and so ∈ Proj. The other

case is formally dual.

closure under composition

Given a commuting square of the form

⟶

↓ ↓ ∈

∈ ↓ ↓ ∈

⟶

consider its pasting decomposition as

⟶

↓ ↘ ↓ ∈

∈ ↓ ↓ ∈

⟶

.

Now the bottom commuting square has a lift, by assumption. This yields another pasting
decomposition

⟶

∈ ↓ ↓ ∈

↓ ↗ ↓ ∈

⟶

and now the top commuting square has a lift by assumption. This is now equivalently a lift in the
total diagram, showing that ∘  has the right lifting property against  and is hence in Inj.

The case of composing two morphisms in Proj is formally dual. From this the closure of Proj
under transfinite composition follows since the latter is given by colimits of sequential
composition and successive lifts against the underlying sequence as above constitutes a cocone,
whence the extension of the lift to the colimit follows by its universal property.

closure under retracts

Let  be the retract of an ∈ Proj, i.e. let there be a commuting diagram of the form.

id : ⟶ ⟶

↓ ↓ ∈ ↓

id : ⟶ ⟶

.

Then for
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⟶

↓ ↓ ∈

⟶

a commuting square, it is equivalent to its pasting composite with that retract diagram

⟶ ⟶ ⟶

↓ ↓ ∈ ↓ ↓ ∈

⟶ ⟶ ⟶

.

Here the pasting composite of the two squares on the right has a lift, by assumption:

⟶ ⟶ ⟶

↓ ↓ ↗ ↓ ∈

⟶ ⟶ ⟶

.

By composition, this is also a lift in the total outer rectangle, hence in the original square. Hence
 has the left lifting property against all ∈  and hence is in Proj. The other case is formally

dual.

closure under pushout and pullback

Let ∈ Inj and and let

× ⟶

* ↓ ↓

⟶

be a pullback diagram in . We need to show that *  has the right lifting property with respect
to all ∈ . So let

⟶ ×

∈ ↓ ↓
*

⟶

be a commuting square. We need to construct a diagonal lift of that square. To that end, first
consider the pasting composite with the pullback square from above to obtain the commuting
diagram

⟶ × ⟶

↓ ↓
*

↓

⟶ ⟶

.

By the right lifting property of , there is a diagonal lift of the total outer diagram

⟶

↓ ( )^
↗ ↓

⟶

.

By the universal property of the pullback this gives rise to the lift ^ in
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× ⟶

^ ↗ ↓
*

↓

⟶ ⟶

.

In order for ^ to qualify as the intended lift of the total diagram, it remains to show that

⟶ ×

↓ ^ ↗

commutes. To do so we notice that we obtain two cones with tip :

one is given by the morphisms

→ × →1. 

→ →2. 

with universal morphism into the pullback being

→ ×

the other by

→ →
^

× →1. 

→ → .2. 

with universal morphism into the pullback being

→ →
^

× .

The commutativity of the diagrams that we have established so far shows that the first and
second morphisms here equal each other, respectively. By the fact that the universal morphism
into a pullback diagram is unique this implies the required identity of morphisms.

The other case is formally dual.

closure under (co-)products

Let {( → ) ∈ Proj} ∈  be a set of elements of Proj. Since colimits in the presheaf category
[ ] are computed componentwise, their coproduct in this arrow category is the universal

morphism out of the coproduct of objects ∐ ∈  induced via its universal property by the set of

morphisms :

⊔
∈

→⎯⎯⎯⎯⎯
( ) ∈ ⊔

∈
.

Now let

⊔
∈

⟶

( ) ∈ ↓ ↓ ∈

⊔
∈

⟶

be a commuting square. This is in particular a cocone under the coproduct of objects, hence by
the universal property of the coproduct, this is equivalent to a set of commuting diagrams
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⎧

⎨

⎩

⎪

⎪

⟶

∈ ↓ ↓ ∈

⟶

⎫

⎬

⎭

⎪

⎪
∈

.

By assumption, each of these has a lift ℓ . The collection of these lifts

⎧

⎨

⎩

⎪

⎪

⟶

∈ ↓ ℓ ↗ ↓ ∈

⟶

⎫

⎬

⎭

⎪

⎪
∈

is now itself a compatible cocone, and so once more by the universal property of the coproduct,
this is equivalent to a lift (ℓ ) ∈  in the original square

⊔
∈

⟶

( ) ∈ ↓ (ℓ ) ∈ ↗ ↓ ∈

⊔
∈

⟶

.

This shows that the coproduct of the  has the left lifting property against all ∈  and is hence
in Proj. The other case is formally dual.  ▮

An immediate consequence of prop. 2.10 is this:

Corollary 2.11. Let  be a category with all small colimits, and let ⊂ Mor( ) be a sub-class of
its morphisms. Then every -injective morphism, def. 2.4, has the right lifting property, def.
2.4, against all -relative cell complexes, def. 1.41 and their retracts, remark 2.12.

Remark 2.12. By a retract of a morphism ⟶  in some category  we mean a retract of  as

an object in the arrow category [ ], hence a morphism ⟶  such that in [ ] there is a
factorization of the identity on  through 

id : ⟶ ⟶ .

This means equivalently that in  there is a commuting diagram of the form

id : ⟶ ⟶

↓ ↓ ↓

id : ⟶ ⟶

.

Lemma 2.13. In every category  the class of isomorphisms is preserved under retracts in the
sense of remark 2.12.

Proof. For

id : ⟶ ⟶

↓ ↓ ↓

id : ⟶ ⟶

.

a retract diagram and →  an isomorphism, the inverse to →  is given by the composite

⟶

↑
−

⟶

.
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  ▮

More generally:

Proposition 2.14. Given a model category in the sense of def. 2.3, then its class of weak
equivalences is closed under forming retracts (in the arrow category, see remark 2.12).

(Joyal, prop. E.1.3)

Proof. Let

id : ⟶ ⟶

↓ ↓ ↓

id: ⟶ ⟶

be a commuting diagram in the given model category, with ∈  a weak equivalence. We need
to show that then also ∈ .

First consider the case that ∈ Fib.

In this case, factor  as a cofibration followed by an acyclic fibration. Since ∈  and by
two-out-of-three (def. 2.1) this is even a factorization through an acyclic cofibration followed by
an acyclic fibration. Hence we obtain a commuting diagram of the following form:

id : ⟶ →⎯⎯⎯⎯

↓ ↓ ∈ ∩ ↓

id : ′ ⟶ ′ →⎯⎯⎯⎯⎯ ′

∈ ↓ ↓ ∈ ∩ ↓ ∈

id : ⟶ →⎯⎯⎯⎯

,

where  is uniquely defined and where  is any lift of the top middle vertical acyclic cofibration
against . This now exhibits  as a retract of an acyclic fibration. These are closed under retract
by prop. 2.10.

Now consider the general case. Factor  as an acyclic cofibration followed by a fibration and form
the pushout in the top left square of the following diagram

id : ⟶ →⎯⎯⎯⎯

∈ ∩ ↓ (po) ↓ ∈ ∩ ↓ ∈ ∩

id : ′ ⟶ ′ →⎯⎯⎯⎯ ′

∈ ↓ ↓ ∈ ↓ ∈

id : ⟶ →⎯⎯⎯⎯

,

where the other three squares are induced by the universal property of the pushout, as is the
identification of the middle horizontal composite as the identity on ′ . Since acyclic cofibrations
are closed under forming pushouts by prop. 2.10, the top middle vertical morphism is now an
acyclic fibration, and hence by assumption and by two-out-of-three so is the middle bottom
vertical morphism.

Thus the previous case now gives that the bottom left vertical morphism is a weak equivalence,
and hence the total left vertical composite is.  ▮

Lemma 2.15. (retract argument)

Consider a composite morphism
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: ⟶ ⟶ .

If  has the left lifting property against , then  is a retract of .1. 

If  has the right lifting property against , then  is a retract of .2. 

Proof. We discuss the first statement, the second is formally dual.

Write the factorization of  as a commuting square of the form

⟶

↓ ↓

=

.

By the assumed lifting property of  against  there exists a diagonal filler  making a
commuting diagram of the form

⟶

↓ ↗ ↓

=

.

By rearranging this diagram a little, it is equivalent to

=

↓ ↓

id : ⟶ ⟶

.

Completing this to the right, this yields a diagram exhibiting the required retract according to
remark 2.12:

id : = =

↓ ↓ ↓

id : ⟶ ⟶

.

  ▮

Small object argument

Given a set ⊂ Mor( ) of morphisms in some category , a natural question is how to factor any
given morphism : ⟶  through a relative -cell complex, def. 1.41, followed by a -injective
morphism, def. 1.46

: →⎯⎯⎯⎯⎯
∈ ^ →⎯⎯⎯⎯

∈
.

A first approximation to such a factorization turns out to be given simply by forming ^ =  by
attaching all possible -cells to . Namely let

( / ) ≔

⎧

⎨
⎩

⎪

⎪

dom( ) ⟶

∈ ↓ ↓

cod( ) ⟶

⎫

⎬
⎭

⎪

⎪

be the set of all ways to find a -cell attachment in , and consider the pushout ^ of the
coproduct of morphisms in  over all these:
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∐ ∈ ( / ) dom( ) ⟶

∐ ∈ ( / ) ↓ (po) ↓

∐ ∈ ( / ) cod( ) ⟶

.

This gets already close to producing the intended factorization:

First of all the resulting map →  is a -relative cell complex, by construction.

Second, by the fact that the coproduct is over all commuting squres to , the morphism  itself
makes a commuting diagram

∐ ∈ ( / ) dom( ) ⟶

∐ ∈ ( / ) ↓ ↓

∐ ∈ ( / ) cod( ) ⟶

and hence the universal property of the colimit means that  is indeed factored through that
-cell complex ; we may suggestively arrange that factorizing diagram like so:

∐ ∈ ( / ) dom( ) ⟶

↓ ↓

∐ ∈ ( / ) dom( )

∐ ∈ ( / ) ↓ ↗ ↓

∐ ∈ ( / ) cod( ) ⟶

.

This shows that, finally, the colimiting co-cone map – the one that now appears diagonally –
almost exhibits the desired right lifting of →  against the ∈ . The failure of that to hold on
the nose is only the fact that a horizontal map in the middle of the above diagram is missing:
the diagonal map obtained above lifts not all commuting diagrams of ∈  into , but only those
where the top morphism dom( ) →  factors through → .

The idea of the small object argument now is to fix this only remaining problem by iterating the
construction: next factor →  in the same way into

⟶ ⟶

and so forth. Since relative -cell complexes are closed under composition, at stage  the
resulting ⟶  is still a -cell complex, getting bigger and bigger. But accordingly, the failure
of the accompanying ⟶  to be a -injective morphism becomes smaller and smaller, for it
now lifts against all diagrams where dom( ) ⟶  factors through − ⟶ , which intuitively is
less and less of a condition as the −  grow larger and larger.

The concept of small object is just what makes this intuition precise and finishes the small object
argument. For the present purpose we just need the following simple version:

Definition 2.16. For  a category and ⊂ Mor( ) a sub-set of its morphisms, say that these
have small domains if there is an ordinal  (def. 1.15) such that for every ∈  and for every
-relative cell complex given by a transfinite composition (def. 1.17)

: → → → ⋯ → → ⋯ ⟶ ^

every morphism dom( ) ⟶ ^ factors through a stage → ^ of order < :
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↗ ↓

dom( ) ⟶ ^
.

The above discussion proves the following:

Proposition 2.17. (small object argument)

Let  be a locally small category with all small colimits. If a set ⊂ Mor( ) of morphisms has all
small domains in the sense of def. 2.16, then every morphism : ⟶  in  factors through a
-relative cell complex, def. 1.41, followed by a -injective morphism, def. 1.46

: →⎯⎯⎯⎯⎯
∈ ^ →⎯⎯⎯⎯

∈
.

(Quillen 67, II.3 lemma)

Homotopy

We discuss how the concept of homotopy is abstractly realized in model categories, def. 2.3.

Definition 2.18. Let  be a model category, def. 2.3, and ∈  an object.

A path space object Path( ) for  is a factorization of the diagonal : → ×  as

: →⎯⎯
∈

Path( ) →⎯⎯⎯⎯⎯
∈

( , )
× .

where → Path( ) is a weak equivalence and Path( ) → ×  is a fibration.

A cylinder object Cyl( ) for  is a factorization of the codiagonal (or “fold map”)
∇ : ⊔ →  as

∇ : ⊔ →⎯⎯⎯⎯
∈

( , )
Cyl( ) →⎯⎯

∈
.

where Cyl( ) →  is a weak equivalence. and ⊔ → Cyl( ) is a cofibration.

Remark 2.19. For every object ∈  in a model category, a cylinder object and a path space
object according to def. 2.18 exist: the factorization axioms guarantee that there exists

a factorization of the codiagonal as

∇ : ⊔ →⎯⎯⎯
∈

Cyl( ) →⎯⎯⎯⎯⎯⎯
∈ ∩

1. 

a factorization of the diagonal as

: →⎯⎯⎯⎯⎯⎯
∈ ∩

Path( ) →⎯⎯⎯
∈

× .

2. 

The cylinder and path space objects obtained this way are actually better than required by def.
2.18: in addition to Cyl( ) →  being just a weak equivalence, for these this is actually an
acyclic fibration, and dually in addition to → Path( ) being a weak equivalence, for these it is
actually an acyclic cofibrations.

Some authors call cylinder/path-space objects with this extra property “very good”
cylinder/path-space objects, respectively.

One may also consider dropping a condition in def. 2.18: what mainly matters is the weak
equivalence, hence some authors take cylinder/path-space objects to be defined as in def.
2.18 but without the condition that ⊔ → Cyl( ) is a cofibration and without the condition
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that Path( ) →  is a fibration. Such authors would then refer to the concept in def. 2.18 as
“good” cylinder/path-space objects.

The terminology in def. 2.18 follows the original (Quillen 67, I.1 def. 4). With the induced
concept of left/right homotopy below in def. 2.22, this admits a quick derivation of the key
facts in the following, as we spell out below.

Lemma 2.20. Let  be a model category. If ∈  is cofibrant, then for every cylinder object
Cyl( ) of , def. 2.18, not only is ( , ) : ⊔ →  a cofibration, but each

, : ⟶ Cyl( )

is an acyclic cofibration separately.

Dually, if ∈  is fibrant, then for every path space object Path( ) of , def. 2.18, not only is
( , ) : Path( ) → ×  a cofibration, but each

, : Path( ) ⟶

is an acyclic fibration separately.

Proof. We discuss the case of the path space object. The other case is formally dual.

First, that the component maps are weak equivalences follows generally: by definition they have
a right inverse Path( ) →  and so this follows by two-out-of-three (def. 2.1).

But if  is fibrant, then also the two projection maps out of the product × →  are fibrations,
because they are both pullbacks of the fibration → *

× ⟶

↓ (pb) ↓

⟶ *

.

hence : Path( ) → × →  is the composite of two fibrations, and hence itself a fibration, by

prop. 2.10.  ▮

Path space objects are very non-unique as objects up to isomorphism:

Example 2.21. If ∈  is a fibrant object in a model category, def. 2.3, and for Path ( ) and
Path ( ) two path space objects for , def. 2.18, then the fiber product Path ( ) × Path ( ) is
another path space object for : the pullback square

⟶ ×

↓ ↓

Path ( ) × Path ( ) ⟶ Path ( ) × Path ( )

∈ ↓ (pb) ↓ ∈

× × →⎯⎯⎯⎯⎯⎯⎯
( , , )

× × ×

↓ ∈

( , )
↓( , )

× = ×

gives that the induced projection is again a fibration. Moreover, using lemma 2.20 and
two-out-of-three (def. 2.1) gives that → Path ( ) × Path ( ) is a weak equivalence.

For the case of the canonical topological path space objects of def 1.34, with
Path ( ) = Path ( ) = = [ , ] then this new path space object is ∨ = [ , ], the mapping
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space out of the standard interval of length 2 instead of length 1.

Definition 2.22. Let , : ⟶  be two parallel morphisms in a model category.

A left homotopy : ⇒  is a morphism : Cyl( ) ⟶  from a cylinder object of , def.
2.18, such that it makes this diagram commute:

⟶ Cyl( ) ⟵

↘ ↓ ↙ .

A right homotopy : ⇒  is a morphism : → Path( ) to some path space object of ,
def. 2.18, such that this diagram commutes:

↙ ↓ ↘

⟵ Path( ) ⟶

.

Lemma 2.23. Let , : →  be two parallel morphisms in a model category.

Let  be cofibrant. If there is a left homotopy ⇒  then there is also a right homotopy
⇒  (def. 2.22) with respect to any chosen path space object.

1. 

Let  be fibrant. If there is a right homotopy ⇒  then there is also a left homotopy
⇒  with respect to any chosen cylinder object.

2. 

In particular if  is cofibrant and  is fibrant, then by going back and forth it follows that every
left homotopy is exhibited by every cylinder object, and every right homotopy is exhibited by
every path space object.

Proof. We discuss the first case, the second is formally dual. Let : Cyl( ) ⟶  be the given left
homotopy. Lemma 2.20 implies that we have a lift ℎ in the following commuting diagram

⟶
∘

Path( )

∈ ∩ ↓ ↗ ↓ ∈

,

Cyl( ) →⎯⎯⎯⎯⎯
( ∘ , )

×

,

where on the right we have the chosen path space object. Now the composite ˜ ≔ ℎ ∘  is a right
homotopy as required:

Path( )

↗ ↓ ∈

,

⟶ Cyl( ) →⎯⎯⎯⎯⎯
( ∘ , )

×

.

  ▮

Proposition 2.24. For  a cofibrant object in a model category and  a fibrant object, then the
relations of left homotopy ⇒  and of right homotopy ⇒  (def. 2.22) on the hom set
Hom( , ) coincide and are both equivalence relations.

Proof. That both relations coincide under the (co-)fibrancy assumption follows directly from
lemma 2.23.

The symmetry and reflexivity of the relation is obvious.
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That right homotopy (hence also left homotopy) with domain  is a transitive relation follows
from using example 2.21 to compose path space objects.  ▮

The homotopy category

We discuss the construction that takes a model category, def. 2.3, and then universally forces all
its weak equivalences into actual isomorphisms.

Definition 2.25. Let  be a model category, def. 2.3. Write Ho( ) for the category whose

objects are those objects of  which are both fibrant and cofibrant;

morphisms are the homotopy classes of morphisms of , hence the equivalence classes of
morphism under the equivalence relation of prop. 2.24;

and whose composition operation is given on representatives by composition in .

This is, up to equivalence of categories, the homotopy category of the model category .

Proposition 2.26. Def. 2.25 is well defined, in that composition of morphisms between fibrant-
cofibrant objects in  indeed passes to homotopy classes.

Proof. Fix any morphism →  between fibrant-cofibrant objects. Then for precomposition

( −) ∘ [ ] : Hom ( )( , ) → Hom ( ( , ))

to be well defined, we need that with ( ∼ ℎ) : →  also ( ∼ ℎ) : → . But by prop 2.24 we
may take the homotopy ∼ to be exhibited by a right homotopy : → Path( ), for which case the
statement is evident from this diagram:

↗ ↑

⟶ ⟶ Path( )

↘ ↓

.

For postcomposition we may choose to exhibit homotopy by left homotopy and argue dually.  ▮

We now spell out that def. 2.25 indeed satisfies the universal property that defines the
localization of a category with weak equivalences at its weak equivalences.

Lemma 2.27. (Whitehead theorem in model categories)

Let  be a model category. A weak equivalence between two objects which are both fibrant
and cofibrant is a homotopy equivalence.

Proof. By the factorization axioms in the model category  and by two-out-of-three (def. 2.1),
every weak equivalence : ⟶  factors through an object  as an acyclic cofibration followed by
an acyclic fibration. In particular it follows that with  and  both fibrant and cofibrant, so is ,
and hence it is sufficient to prove that acyclic (co-)fibrations between such objects are homotopy
equivalences.

So let : ⟶  be an acyclic fibration between fibrant-cofibrant objects, the case of acyclic
cofibrations is formally dual. Then in fact it has a genuine right inverse given by a lift −  in the
diagram
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∅ →

∈ ↓
−

↗ ↓ ∈ ∩

=

.

To see that −  is also a left inverse up to left homotopy, let Cyl( ) be any cylinder object on 
(def. 2.18), hence a factorization of the codiagonal on  as a cofibration followed by a an acyclic
fibration

⊔ ⟶ Cyl( ) ⟶

and consider the commuting square

⊔ →⎯⎯⎯⎯⎯⎯⎯⎯
( − ∘ , )

∈ ↓ ↓∈ ∩

Cyl( ) →⎯⎯
∘

,

which commutes due to −  being a genuine right inverse of . By construction, this commuting
square now admits a lift , and that constitutes a left homotopy : − ∘ ⇒ id.  ▮

Definition 2.28. Given a model category , consider a choice for each object ∈  of

a factorization ∅ →⎯⎯⎯
∈

→⎯⎯⎯⎯⎯⎯
∈ ∩

 of the initial morphism, such that when  is already

cofibrant then = id ;

1. 

a factorization →⎯⎯⎯⎯⎯⎯
∈ ∩

→⎯⎯⎯
∈ *  of the terminal morphism, such that when  is already

fibrant then = id .

2. 

Write then

, : ⟶ Ho( )

for the functor to the homotopy category, def. 2.25, which sends an object  to the object 
and sends a morphism : ⟶  to the homotopy class of the result of first lifting in

∅ ⟶

↓ ↗ ↓

→⎯⎯⎯⎯
∘

and then lifting (here: extending) in

→⎯⎯⎯⎯⎯⎯
∘

↓ ↗ ↓

⟶ *

.

Lemma 2.29. The construction in def. 2.28 is indeed well defined.

Proof. First of all, the object  is indeed both fibrant and cofibrant (as well as related by a
zig-zag of weak equivalences to ):
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∅
∈ ↓ ↘ ∈

→⎯⎯⎯⎯⎯⎯
∈ ∩

→⎯⎯⎯
∈ *

∈ ↓

.

Now to see that the image on morphisms is well defined. First observe that any two choices
( )  of the first lift in the definition are left homotopic to each other, exhibited by lifting in

⊔ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
(( ) ,( ) )

∈ ↓ ↓ ∈ ∩

Cyl( ) →⎯⎯⎯⎯⎯⎯⎯⎯
∘ ∘

.

Hence also the composites ∘ ( )  are left homotopic to each other, and since their domain is

cofibrant, then by lemma 2.23 they are also right homotopic by a right homotopy . This implies
finally, by lifting in

⟶ Path( )

∈ ∩ ↓ ↓ ∈

→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( ( ) , ( ) )

×

that also ( )  and ( )  are right homotopic, hence that indeed  represents a well-defined

homotopy class.

Finally to see that the assignment is indeed functorial, observe that the commutativity of the
lifting diagrams for  and  imply that also the following diagram commutes

⟵ →⎯⎯

↓ ↓ ↓

⟵ →⎯⎯

.

Now from the pasting composite

⟵ →⎯⎯

↓ ↓ ↓

⟵ →⎯⎯

↓ ↓ ↓

⟵ →⎯⎯

one sees that ( ) ∘ ( ) is a lift of ∘  and hence the same argument as above gives that it
is homotopic to the chosen ( ∘ ).  ▮

For the following, recall the concept of natural isomorphism between functors: for , : ⟶
two functors, then a natural transformation : ⇒  is for each object ∈ Obj( ) a morphism

: ( ) ⟶ ( ) in , such that for each morphism : →  in  the following is a commuting

square:
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( ) ⟶ ( )

( ) ↓ ↓ ( )

( ) ⟶ ( )

.

Such  is called a natural isomorphism if its  are isomorphisms for all objects .

Definition 2.30. For  a category with weak equivalences, its localization at the weak
equivalences is, if it exists,

a category denoted [ − ]1. 

a functor

: ⟶ [ − ]

2. 

such that

 sends weak equivalences to isomorphisms;1. 

 is universal with this property, in that:

for : ⟶  any functor out of  into any category , such that  takes weak
equivalences to isomorphisms, it factors through  up to a natural isomorphism

⟶

↘ ⇓ ↗ ˜

Ho( )

and this factorization is unique up to unique isomorphism, in that for ( ˜ , ) and ( ˜ , )

two such factorizations, then there is a unique natural isomorphism : ˜ ⇒ ˜  making the
evident diagram of natural isomorphisms commute.

2. 

Theorem 2.31. For  a model category, the functor ,  in def. 2.28 (for any choice of  and )

exhibits Ho( ) as indeed being the localization of the underlying category with weak
equivalences at its weak equivalences, in the sense of def. 2.30:

=

, ↓ ↓

Ho( ) ≃ [ − ]

.

(Quillen 67, I.1 theorem 1)

Proof. First, to see that that ,  indeed takes weak equivalences to isomorphisms: By two-out-

of-three (def. 2.1) applied to the commuting diagrams shown in the proof of lemma 2.29, the
morphism  is a weak equivalence if  is:

⟵
≃

→⎯⎯
≃

↓ ↓ ↓

⟵≃ →⎯⎯≃

With this the “Whitehead theorem for model categories”, lemma 2.27, implies that 
represents an isomorphism in Ho( ).
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Now let : ⟶  be any functor that sends weak equivalences to isomorphisms. We need to
show that it factors as

⟶

↘ ⇓ ↗ ˜

Ho( )

uniquely up to unique natural isomorphism. Now by construction of  and  in def. 2.28, ,  is

the identity on the full subcategory of fibrant-cofibrant objects. It follows that if ˜  exists at all, it

must satisfy for all →  with  and  both fibrant and cofibrant that

˜ ([ ]) ≃ ( ) ,

(hence in particular ˜ ( , ( )) = ( )).

But by def. 2.25 that already fixes ˜  on all of Ho( ), up to unique natural isomorphism. Hence it
only remains to check that with this definition of ˜  there exists any natural isomorphism  filling
the diagram above.

To that end, apply  to the above commuting diagram to obtain

( ) ←⎯⎯⎯⎯
( )

( ) →⎯⎯⎯⎯⎯
( )

( )

( ) ↓ ↓ ( ) ↓ ( )

( ) ←⎯⎯⎯⎯
( )

( ) →⎯⎯⎯⎯⎯
( )

( )

.

Here now all horizontal morphisms are isomorphisms, by assumption on . It follows that
defining ≔ ( ) ∘ ( ) −  makes the required natural isomorphism:

: ( ) →⎯⎯⎯⎯⎯⎯
( ) −

( ) →⎯⎯⎯⎯⎯
( )

( ) = ˜ ( , ( ))

( ) ↓ ↓ ( ) ↓
˜ ( , ( ))

: ( ) →⎯⎯⎯⎯⎯⎯
( ) − ( ) →⎯⎯⎯⎯⎯

( )
( ) = ˜ ( , ( ))

.

  ▮

Remark 2.32. Due to theorem 2.31 we may suppress the choices of cofibrant  and fibrant
replacement  in def. 2.28 and just speak of the localization functor

: ⟶ Ho( )

up to natural isomorphism.

In general, the localization [ − ] of a category with weak equivalences ( , ) (def. 2.30) may
invert more morphisms than just those in . However, if the category admits the structure of a
model category ( , , Cof, Fib), then its localiztion precisely only inverts the weak equivalences.

Proposition 2.33. Let  be a model category (def. 2.3) and let : ⟶ Ho( ) be its localization
functor (def. 2.28, theorem 2.31). Then a morphism  in  is a weak equivalence precisely if

( ) is an isomorphism in Ho( ).

(e.g. Goerss-Jardine 96, II, prop 1.14)

While the construction of the homotopy category in def. 2.25 combines the restriction to good
(fibrant/cofibrant) objects with the passage to homotopy classes of morphisms, it is often useful
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to consider intermediate stages:

Definition 2.34. Given a model category , write

↙ ↘

↘ ↙

for the system of full subcategory inclusions of:

the category of fibrant objects1. 

the category of cofibrant objects ,2. 

the category of fibrant-cofibrant objects ,3. 

all regarded a categories with weak equivalences (def. 2.1), via the weak equivalences
inherited from , which we write ( , ), ( , ) and ( , ).

Remark 2.35. Of course the subcategories in def. 2.34 inherit more structure than just that of
categories with weak equivalences from .  and  each inherit “half” of the factorization
axioms. One says that  has the structure of a “fibration category” called a “Brown-category
of fibrant objects”, while  has the structure of a “cofibration category”.

We discuss properties of these categories of (co-)fibrant objects below in Homotopy fiber
sequences.

The proof of theorem 2.31 immediately implies the following:

Corollary 2.36. For  a model category, the restriction of the localization functor : ⟶ Ho( )

from def. 2.28 (using remark 2.32) to any of the sub-categories with weak equivalences of
def. 2.34

↙ ↘

↘ ↙

↓

Ho( )

exhibits Ho( ) equivalently as the localization also of these subcategories with weak
equivalences, at their weak equivalences. In particular there are equivalences of categories

Ho( ) ≃ [ − ] ≃ [ − ] ≃ [ − ] ≃ [ − ] .

The following says that for computing the hom-sets in the homotopy category, even a mixed
variant of the above will do; it is sufficient that the domain is cofibrant and the codomain is
fibrant:

Lemma 2.37. For , ∈  with  cofibrant and  fibrant, and for ,  fibrant/cofibrant
replacement functors as in def. 2.28, then the morphism

Hom ( )( , ) = Hom ( , )/∼ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( , )

Hom ( , )/∼
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(on homotopy classes of morphisms, well defined by prop. 2.24) is a natural bijection.

(Quillen 67, I.1 lemma 7)

Proof. We may factor the morphism in question as the composite

Hom ( , )/∼ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( , )/∼ Hom ( , )/∼ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

( , )/∼ Hom ( , )/∼ .

This shows that it is sufficient to see that for  cofibrant and  fibrant, then

Hom (id , )/∼ : Hom ( , )/∼ → Hom ( , )/∼

is an isomorphism, and dually that

Hom ( , id )/∼ : Hom ( , )/∼ → Hom ( , )/∼

is an isomorphism. We discuss this for the former; the second is formally dual:

First, that Hom (id , ) is surjective is the lifting property in

∅ ⟶

∈ ↓ ↓∈ ∩

⟶

,

which says that any morphism : →  comes from a morphism ^ : →  under postcomposition

with →⎯ .

Second, that Hom (id , ) is injective is the lifting property in

⊔ →⎯⎯⎯
( , )

∈ ↓ ↓ ∈ ∩

Cyl( ) ⟶

,

which says that if two morphisms , : →  become homotopic after postcomposition with
: → , then they were already homotopic before.  ▮

We record the following fact which will be used in part 1.1 (here):

Lemma 2.38. Let  be a model category (def. 2.3). Then every commuting square in its
homotopy category Ho( ) (def. 2.25) is, up to isomorphism of squares, in the image of the
localization functor ⟶ Ho( ) of a commuting square in  (i.e.: not just commuting up to
homotopy).

Proof. Let

⟶

↓ ↓

′ ⟶ ′

∈ Ho( )

be a commuting square in the homotopy category. Writing the same symbols for fibrant-
cofibrant objects in  and for morphisms in  representing these, then this means that in  there
is a left homotopy of the form
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⟶

↓ ↓

Cyl( ) ⟶ ′

↑ ↑

⟶ ′

.

Consider the factorization of the top square here through the mapping cylinder of 

⟶

↓ (po) ↓ ∈

Cyl( ) ⟶ Cyl( )

↑ ↘ ↓

′

↘ ↑

′

This exhibits the composite → Cyl( ) → Cyl( ) as an alternative representative of  in Ho( ), and
Cyl( ) → ′  as an alternative representative for , and the commuting square

⟶ Cyl( )

↓ ↓

′ ⟶ ′

as an alternative representative of the given commuting square in Ho( ).  ▮

Derived functors

Definition 2.39. For  and  two categories with weak equivalences, def. 2.1, then a functor
: ⟶  is called a homotopical functor if it sends weak equivalences to weak equivalences.

Definition 2.40. Given a homotopical functor : ⟶  (def. 2.39) between categories with
weak equivalences whose homotopy categories Ho( ) and Ho( ) exist (def. 2.30), then its
(“total”) derived functor is the functor Ho( ) between these homotopy categories which is
induced uniquely, up to unique isomorphism, by their universal property (def. 2.30):

⟶

↓ ⇙≃ ↓

Ho( ) →⎯⎯⎯⎯⎯
∃ ( )

Ho( )

.

Remark 2.41. While many functors of interest between model categories are not homotopical in
the sense of def. 2.39, many become homotopical after restriction to the full subcategories
of fibrant objects or of cofibrant objects, def. 2.34. By corollary 2.36 this is just as good for
the purpose of homotopy theory.

Therefore one considers the following generalization of def. 2.40:

Definition 2.42. Consider a functor : ⟶  out of a model category  (def. 2.3) into a
category with weak equivalences  (def. 2.1).

If the restriction of  to the full subcategory  of fibrant object becomes a homotopical
functor (def. 2.39), then the derived functor of that restriction, according to def. 2.40, is

1. 
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called the right derived functor of  and denoted by ℝ :

↪ ⟶

↓ ⇙≃ ↓

ℝ : [ − ] ≃ Ho( ) →⎯⎯⎯⎯
( )

Ho( )

,

where we use corollary 2.36.

If the restriction of  to the full subcategory  of cofibrant object becomes a homotopical
functor (def. 2.39), then the derived functor of that restriction, according to def. 2.40, is
called the left derived functor of  and denoted by :

↪ ⟶

↓ ⇙≃ ↓

: [ − ] ≃ Ho( ) →⎯⎯⎯⎯
( )

Ho( )

,

where again we use corollary 2.36.

2. 

The key fact that makes def. 2.42 practically relevant is the following:

Proposition 2.43. (Ken Brown's lemma)

Let  be a model category with full subcategories , of fibrant objects and of cofibrant
objects respectively (def. 2.34). Let  be a category with weak equivalences.

A functor out of the category of fibrant objects

: ⟶

is a homotopical functor, def. 2.39, already if it sends acylic fibrations to weak
equivalences.

1. 

A functor out of the category of cofibrant objects

: ⟶

is a homotopical functor, def. 2.39, already if it sends acylic cofibrations to weak
equivalences.

2. 

The following proof refers to the factorization lemma, whose full statement and proof we
postpone to further below (lemma 4.9).

Proof. We discuss the case of a functor on a category of fibrant objects , def. 2.34. The other
case is formally dual.

Let : ⟶  be a weak equivalence in . Choose a path space object Path( ) (def. 2.18) and
consider the diagram

Path( ) →⎯⎯⎯⎯⎯⎯
∈ ∩

∈

*
↓ (pb) ↓ ∈

Path( ) →⎯⎯⎯⎯⎯⎯
∈ ∩

∈ ∩ ↓

,
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where the square is a pullback and Path( ) on the top left is our notation for the universal cone
object. (Below we discuss this in more detail, it is the mapping cocone of , def. 4.1).

Here:

 are both acyclic fibrations, by lemma 2.20;1. 

Path( ) →  is an acyclic fibration because it is the pullback of .2. 

*  is a weak equivalence, because the factorization lemma 4.9 states that the composite

vertical morphism factors  through a weak equivalence, hence if  is a weak equivalence,
then *  is by two-out-of-three (def. 2.1).

3. 

Now apply the functor  to this diagram and use the assumption that it sends acyclic fibrations
to weak equivalences to obtain

(Path( )) →⎯⎯
∈

( )

( * )
↓ ↓ ( )

(Path( )) →⎯⎯⎯⎯
∈

( )
( )

∈

( )
↓

.

But the factorization lemma 4.9, in addition says that the vertical composite ∘ *  is a

fibration, hence an acyclic fibration by the above. Therefore also ( ∘ * ) is a weak

equivalence. Now the claim that also ( ) is a weak equivalence follows with applying two-out-
of-three (def. 2.1) twice.  ▮

Corollary 2.44. Let ,  be model categories and consider : ⟶  a functor. Then:

If  preserves cofibrant objects and acyclic cofibrations between these, then its left
derived functor (def. 2.42)  exists, fitting into a diagram

⟶

↓ ⇙≃ ↓

Ho( ) ⟶ Ho( )

1. 

If  preserves fibrant objects and acyclic fibrants between these, then its right derived
functor (def. 2.42) ℝ  exists, fitting into a diagram

⟶

↓ ⇙≃ ↓

Ho( ) ⟶
ℝ

Ho( )

.

2. 

Proposition 2.45. Let : ⟶  be a functor between two model categories (def. 2.3).

If  preserves fibrant objects and weak equivalences between fibrant objects, then the
total right derived functor ℝ ≔ ℝ( ∘ ) (def. 2.42) in

⟶

↓ ⇙≃ ↓

Ho( ) ⟶
ℝ

Ho( )

1. 
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is given, up to isomorphism, on any object ∈ ⟶ Ho( ) by appying  to a fibrant
replacement  of  and then forming a cofibrant replacement ( ( )) of the result:

ℝ ( ) ≃ ( ( )) .

If  preserves cofibrant objects and weak equivalences between cofibrant objects, then
the total left derived functor ≔ ( ∘ ) (def. 2.42) in

⟶

↓ ⇙≃ ↓

Ho( ) ⟶ Ho( )

is given, up to isomorphism, on any object ∈ ⟶ Ho( ) by appying  to a cofibrant
replacement  of  and then forming a fibrant replacement ( ( )) of the result:

1. 

( ) ≃ ( ( )) .

Proof. We discuss the first case, the second is formally dual. By the proof of theorem 2.31 we
have

ℝ ( ) ≃ ( ( ))

≃ ( ( ( )))
.

But since  is a homotopical functor on fibrant objects, the cofibrant replacement morphism
( ( ( ))) → ( ( )) is a weak equivalence in , hence becomes an isomorphism under .

Therefore

ℝ ( ) ≃ ( ( ( ))) .

Now since  is assumed to preserve fibrant objects, ( ( )) is fibrant in , and hence  acts on

it (only) by cofibrant replacement.  ▮

Quillen adjunctions

In practice it turns out to be useful to arrange for the assumptions in corollary 2.44 to be
satisfied by pairs of adjoint functors. Recall that this is a pair of functors  and  going back and
forth between two categories

⟶
⟵

such that there is a natural bijection between hom-sets with  on the left and those with  on
the right:

, : Hom ( ( ), ) ⟶
≃

Hom ( , ( ))

for all objects ∈  and ∈ . This being natural means that : Hom ( ( −), −) ⇒ Hom ( −, ( −)) is
a natural transformation, hence that for all morphisms : →  and : →  the following is a
commuting square:

Hom ( ( ), ) →⎯⎯⎯⎯⎯
≃

,
Hom ( , ( ))

( ) ∘ (−)∘ ↓ ↓ ∘ ( −) ∘ ( )

Hom ( ( ), ) →⎯⎯⎯⎯⎯
,

≃ Hom ( , ( ))

.
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We write ( ⊣ ) to indicate an adjunction and call  the left adjoint and  the right adjoint of the
adjoint pair.

The archetypical example of a pair of adjoint functors is that consisting of forming Cartesian
products × ( −) and forming mapping spaces ( −) , as in the category of compactly generated
topological spaces of def. 3.35.

If : ( ) →  is any morphism, then the image , ( ) : → ( ) is called its adjunct, and

conversely. The fact that adjuncts are in bijection is also expressed by the notation

( ) ⟶

⟶
˜

( )
.

For an object ∈ , the adjunct of the identity on  is called the adjunction unit : ⟶ .

For an object ∈ , the adjunct of the identity on  is called the adjunction counit : ⟶ .

Adjunction units and counits turn out to encode the adjuncts of all other morphisms by the
formulas

( → ) = ( → →⎯ )

( → ) = ( → → ).

Definition 2.46. Let ,  be model categories. A pair of adjoint functors between them

( ⊣ ) :
⟶
⟵

is called a Quillen adjunction (and ,  are called left/right Quillen functors, respectively) if
the following equivalent conditions are satisfied

 preserves cofibrations and  preserves fibrations;1. 

 preserves acyclic cofibrations and  preserves acyclic fibrations;2. 

 preserves cofibrations and acylic cofibrations;3. 

 preserves fibrations and acyclic fibrations.4. 

Proposition 2.47. The conditions in def. 2.46 are indeed all equivalent.

(Quillen 67, I.4, theorem 3)

Proof. First observe that

(i) A left adjoint  between model categories preserves acyclic cofibrations precisely if its
right adjoint  preserves fibrations.

(ii) A left adjoint  between model categories preserves cofibrations precisely if its right
adjoint  preserves acyclic fibrations.

We discuss statement (i), statement (ii) is formally dual. So let : →  be an acyclic cofibration
in  and : →  a fibration in . Then for every commuting diagram as on the left of the
following, its ( ⊣ )-adjunct is a commuting diagram as on the right here:
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⟶ ( )

↓ ↓ ( )

⟶ ( )

,

( ) ⟶

( ) ↓ ↓

( ) ⟶

.

If  preserves acyclic cofibrations, then the diagram on the right has a lift, and so the
( ⊣ )-adjunct of that lift is a lift of the left diagram. This shows that ( ) has the right lifting
property against all acylic cofibrations and hence is a fibration. Conversely, if  preserves
fibrations, the same argument run from right to left gives that  preserves acyclic fibrations.

Now by repeatedly applying (i) and (ii), all four conditions in question are seen to be
equivalent.  ▮

Lemma 2.48. Let ⟶
⟵

 be a Quillen adjunction, def. 2.46.

For ∈  a fibrant object and Path( ) a path space object (def. 2.18), then (Path( )) is a
path space object for ( ).

1. 

For ∈  a cofibrant object and Cyl( ) a cylinder object (def. 2.18), then (Cyl( )) is a
path space object for ( ).

2. 

Proof. Consider the second case, the first is formally dual.

First Observe that ( ⊔ ) ≃ ⊔  because  is left adjoint and hence preserves colimits, hence
in particular coproducts.

Hence

(X ⊔ ⎯⎯
∈

Cyl( )) = ( ( ) ⊔ ( ) ⎯⎯
∈

(Cyl( )))

is a cofibration.

Second, with  cofibrant then also ⊔ Cyl( ) is a cofibrantion, since → ⊔  is a cofibration
(lemma 2.20). Therefore by Ken Brown's lemma (prop. 2.43)  preserves the weak equivalence

Cyl( ) →⎯⎯
∈

.  ▮

Proposition 2.49. For 
⟶

⟵  a Quillen adjunction, def. 2.46, then also the corresponding left

and right derived functors, def. 2.42, via cor. 2.44, form a pair of adjoint functors

Ho( ) ⊥
⟶
ℝ

⟵
Ho( ) .

(Quillen 67, I.4 theorem 3)

Proof. By def. 2.42 and lemma 2.37 it is sufficient to see that for , ∈  with  cofibrant and 
fibrant, then there is a natural bijection

Hom ( , )/∼ ≃ Hom ( , )/∼ .

Since by the adjunction isomorphism for ( ⊣ ) such a natural bijection exists before passing to
homotopy classes ( −)/∼ , it is sufficient to see that this respects homotopy classes. To that end,

use from lemma 2.48 that with Cyl( ) a cylinder object for , def. 2.18, then (Cyl( )) is a
cylinder object for ( ). This implies that left homotopies

( ⇒ ) : ⟶
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given by

: Cyl( ) = Cyl( ) ⟶

are in bijection to left homotopies

( ˜ ⇒ ˜ ) : ⟶

given by

˜ : Cyl( ) ⟶ .

  ▮

Definition 2.50. For ,  two model categories, a Quillen adjunction (def.2.46)

( ⊣ ) : ⊥
⟶
⟵

is called a Quillen equivalence, to be denoted

≃
⟶
⟵ ,

if the following equivalent conditions hold.

The right derived functor of  (via prop. 2.47, corollary 2.44) is an equivalence of
categories

ℝ : Ho( ) ⟶≃ Ho( ) .

1. 

The left derived functor of  (via prop. 2.47, corollary 2.44) is an equivalence of
categories

:Ho( ) ⟶≃ Ho( ) .

2. 

For every cofibrant object ∈ , the “derived adjunction unit”, hence the composite

⟶ ( ( )) →⎯⎯⎯⎯⎯⎯
( ( ))

( ( ( )))

(of the adjunction unit with any fibrant replacement  as in def. 2.28) is a weak
equivalence;

and for every fibrant object ∈ , the “derived adjunction counit”, hence the composite

( ( ( ))) →⎯⎯⎯⎯⎯⎯
( ( ))

( ( )) ⟶

(of the adjunction counit with any cofibrant replacement as in def. 2.28) is a weak
equivalence in .

3. 

For every cofibrant object ∈  and every fibrant object ∈ , a morphism ⟶ ( ) is a
weak equivalence precisely if its adjunct morphism ( ) →  is:

→⎯⎯⎯
∈

( )

( ) →⎯⎯⎯
∈ .

4. 

Poposition 2.51. The conditions in def. 2.50 are indeed all equivalent.

(Quillen 67, I.4, theorem 3)
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Proof. That 1) ⇔ 2) follows from prop. 2.49 (if in an adjoint pair one is an equivalence, then so
is the other).

To see the equivalence 1), 2) ⇔ 3), notice (prop.) that a pair of adjoint functors is an equivalence
of categories precisely if both the adjunction unit and the adjunction counit are natural
isomorphisms. Hence it is sufficient to show that the morphisms called “derived adjunction
(co-)units” above indeed represent the adjunction (co-)unit of ( ⊣ ℝ ) in the homotopy
category. We show this now for the adjunction unit, the case of the adjunction counit is formally
dual.

To that end, first observe that for ∈ , then the defining commuting square for the left derived
functor from def. 2.42

⟶

↓ ⇙≃ ↓ ,

Ho( ) ⟶ Ho( )

(using fibrant and fibrant/cofibrant replacement functors , ,  from def. 2.28 with their

universal property from theorem 2.31, corollary 2.36) gives that

( ) ≃ ≃ ∈ Ho( ) ,

where the second isomorphism holds because the left Quillen functor  sends the acyclic
cofibration : →  to a weak equivalence.

The adjunction unit of ( ⊣ ℝ ) on ∈ Ho( ) is the image of the identity under

Hom ( )(( ) , ( ) ) →≃ Hom ( )( , (ℝ )( ) ) .

By the above and the proof of prop. 2.49, that adjunction isomorphism is equivalently that of
( ⊣ ) under the isomorphism

Hom ( )( , ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯
( , )

Hom ( , )/∼

of lemma 2.37. Hence the derived adjunction unit is the ( ⊣ )-adjunct of

⟶ → ,

which indeed (by the formula for adjuncts) is

⟶ →⎯⎯⎯⎯
( )

.

To see that 4) ⇒ 3):

Consider the weak equivalence →⎯⎯ . Its ( ⊣ )-adjunct is

⟶ →⎯⎯⎯

by assumption 4) this is again a weak equivalence, which is the requirement for the derived unit
in 3). Dually for derived counit.

To see 3) ⇒ 4):

Consider any : →  a weak equivalence for cofibrant , firbant . Its adjunct ˜  sits in a
commuting diagram
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˜ : ⟶ ⟶

= ↓ ↓ ↓

→⎯⎯
∈

→⎯⎯

,

where  is any lift constructed as in def. 2.28.

This exhibits the bottom left morphism as the derived adjunction unit, hence a weak equivalence
by assumption. But since  was a weak equivalence, so is  (by two-out-of-three). Thereby also

 and , are weak equivalences by Ken Brown's lemma 2.43 and the assumed fibrancy of .

Therefore by two-out-of-three (def. 2.1) also the adjunct ˜  is a weak equivalence.  ▮

In certain situations the conditions on a Quillen equivalence simplify. For instance:

Proposition 2.52. If in a Quillen adjunction ⊥
→
←  (def. 2.46) the right adjoint  “creates

weak equivalences” (in that a morphism  in  is a weak equivalence precisly if ( ) is) then
( ⊣ ) is a Quillen equivalence (def. 2.50) precisely already if for all cofibrant objects ∈  the
plain adjunction unit

⟶ ( ( ))

is a weak equivalence.

Proof. By prop. 2.51, generally, ( ⊣ ) is a Quillen equivalence precisely if

for every cofibrant object ∈ , the “derived adjunction unit”

⟶ ( ( )) →⎯⎯⎯⎯⎯⎯
( ( ))

( ( ( )))

is a weak equivalence;

1. 

for every fibrant object ∈ , the “derived adjunction counit”

( ( ( ))) →⎯⎯⎯⎯⎯⎯
( ( ))

( ( )) ⟶

is a weak equivalence.

2. 

Consider the first condition: Since  preserves the weak equivalence ( ), then by two-out-

of-three (def. 2.1) the composite in the first item is a weak equivalence precisely if  is.

Hence it is now sufficient to show that in this case the second condition above is automatic.

Since  also reflects weak equivalences, the composite in item two is a weak equivalence
precisely if its image

( ( ( ( )))) →⎯⎯⎯⎯⎯⎯⎯⎯
( ( ( )))

( ( ( ))) →⎯⎯
( )

( )

under  is.

Moreover, assuming, by the above, that ( ( )) on the cofibrant object ( ( )) is a weak

equivalence, then by two-out-of-three this composite is a weak equivalence precisely if the
further composite with  is

( ( )) →⎯⎯⎯⎯⎯⎯
( ( ))

( ( ( ( )))) →⎯⎯⎯⎯⎯⎯⎯⎯
( ( ( )))

( ( ( ))) →⎯⎯
( )

( ) .
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By the formula for adjuncts, this composite is the ( ⊣ )-adjunct of the original composite,
which is just ( )

( ( ( ))) →⎯⎯⎯⎯⎯⎯
( ( ))

( ( )) ⟶

( ( )) →⎯⎯⎯
( )

( )
.

But ( ) is a weak equivalence by definition of cofibrant replacement.  ▮

3. The model structure on topological spaces

We now discuss how the category Top of topological spaces satisfies the axioms of abstract
homotopy theory (model category) theory, def. 2.3.

Definition 3.1. Say that a continuous function, hence a morphism in Top, is

a classical weak equivalence if it is a weak homotopy equivalence, def. 1.30;

a classical fibration if it is a Serre fibration, def. 1.47;

a classical cofibration if it is a retract (rem. 2.12) of a relative cell complex, def. 1.38.

and hence

a acyclic classical cofibration if it is a classical cofibration as well as a classical weak
equivalence;

a acyclic classical fibration if it is a classical fibration as well as a classical weak
equivalence.

Write

, Fib , Cof ⊂ Mor(Top)

for the classes of these morphisms, respectively.

We first prove now that the classes of morphisms in def. 3.1 satisfy the conditions for a model
category structure, def. 2.3 (after some lemmas, this is theorem 3.7 below). Then we discuss
the resulting classical homotopy category (below) and then a few variant model structures
whose proof follows immediately along the line of the proof of Top :

The model structure on pointed topological spaces Top * / ;

The model structure on compactly generated topological spaces (Top )  and

(Top * /) ;

The model structure on topologically enriched functors [ , (Top ) ]  and

[ , (Top* ) ] .

Proposition 3.2. The classical weak equivalences, def. 3.1, satify two-out-of-three (def. 2.1).

Proof. Since isomorphisms (of homotopy groups) satisfy 2-out-of-3, this property is directly
inherited via the very definition of weak homotopy equivalence, def. 1.30.  ▮

Lemma 3.3. Every morphism : ⟶  in Top factors as a classical cofibration followed by an
acyclic classical fibration, def. 3.1:
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: →⎯⎯⎯⎯⎯
∈ ^ →⎯⎯⎯⎯⎯⎯⎯⎯⎯

∈ ∩
.

Proof. By lemma 1.40 the set = { − ↪ } of topological generating cofibrations, def. 1.37,
has small domains, in the sense of def. 2.16 (the n-spheres are compact). Hence by the small
object argument, prop. 2.17,  factors as an -relative cell complex, def. 1.41, hence just a
plain relative cell complex, def. 1.38, followed by an -injective morphisms, def. 1.46:

: →⎯⎯⎯⎯⎯
∈ ^ →⎯⎯⎯⎯⎯⎯⎯

∈
.

By lemma 1.52 the map ^ →  is both a weak homotopy equivalence as well as a Serre
fibration.  ▮

Lemma 3.4. Every morphism : ⟶  in Top factors as an acyclic classical cofibration followed
by a fibration, def. 3.1:

: →⎯⎯⎯⎯⎯⎯⎯⎯⎯
∈ ∩ ^ →⎯⎯⎯⎯

∈
.

Proof. By lemma 1.40 the set = { ↪ × } of topological generating acyclic cofibrations,

def. 1.42, has small domains, in the sense of def. 2.16 (the n-disks are compact). Hence by the
small object argument, prop. 2.17,  factors as an -relative cell complex, def. 1.41, followed

by a -injective morphisms, def. 1.46:

: →⎯⎯⎯⎯⎯⎯⎯⎯
∈ ^ →⎯⎯⎯⎯⎯⎯⎯

∈
.

By definition this makes ^ →  a Serre fibration, hence a fibration.

By lemma 1.44 a relative -cell complex is in particular a relative -cell complex. Hence

→ ^ is a classical cofibration. By lemma 1.45 it is also a weak homotopy equivalence, hence a
clasical weak equivalence.  ▮

Lemma 3.5. Every commuting square in Top with the left morphism a classical cofibration and
the right morphism a fibration, def. 3.1

⟶
∈

↓ ↓

∈

⟶

admits a lift as soon as one of the two is also a classical weak equivalence.

Proof. A) If the fibration  is also a weak equivalence, then lemma 1.52 says that it has the
right lifting property against the generating cofibrations , and cor. 2.11 implies the claim.

B) If the cofibration  on the left is also a weak equivalence, consider any factorization into a
relative -cell complex, def. 1.42, def. 1.41, followed by a fibration,

: →⎯⎯⎯⎯⎯⎯⎯⎯
∈

→⎯⎯⎯⎯
∈

,

as in the proof of lemma 3.4. By lemma 1.45 the morphism →⎯⎯⎯⎯⎯⎯⎯⎯
∈

 is a weak homotopy
equivalence, and so by two-out-of-three (prop. 3.2) the factorizing fibration is actually an acyclic
fibration. By case A), this acyclic fibration has the right lifting property against the cofibration 
itself, and so the retract argument, lemma 2.15 gives that  is a retract of a relative -cell

complex. With this, finally cor. 2.11 implies that  has the right lifting property against .  ▮

Finally:
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Proposition 3.6. The systems (Cof , ∩ Fib ) and ( ∩ Cof , Fib ) from def. 3.1 are weak
factorization systems.

Proof. Since we have already seen the factorization property (lemma 3.3, lemma 3.4) and the
lifting properties (lemma 3.5), it only remains to see that the given left/right classes exhaust the
class of morphisms with the given lifting property.

For the classical fibrations this is by definition, for the the classical acyclic fibrations this is by
lemma 1.52.

The remaining statement for Cof  and ∩ Cof  follows from a general argument (here) for
cofibrantly generated model categories (def. 3.9), which we spell out:

So let : ⟶  be in ( Inj)Proj, we need to show that then  is a retract (remark 2.12) of a
relative cell complex. To that end, apply the small object argument as in lemma 3.3 to factor 
as

: →⎯⎯⎯⎯⎯⎯ ^ →⎯⎯⎯⎯⎯⎯⎯
∈

.

It follows that  has the left lifting property against ^ → , and hence by the retract argument

(lemma 2.15) it is a retract of ⎯⎯ ^. This proves the claim for Cof .

The analogous argument for ∩ Cof , using the small object argument for , shows that

every ∈ ( Inj)Proj is a retract of a -cell complex. By lemma 1.44 and lemma 1.45 a

-cell complex is both an -cell complex and a weak homotopy equivalence. Retracts of the

former are cofibrations by definition, and retracts of the latter are still weak homotopy
equivalences by lemma 2.13. Hence such  is an acyclic cofibration.  ▮

In conclusion, prop. 3.2 and prop. 3.6 say that:

Theorem 3.7. The classes of morphisms in Mor(Top) of def. 3.1,

= weak homotopy equivalences,

Fib = Serre fibrations

Cof = retracts of relative cell complexes

define a model category structure (def. 2.3) Top , the classical model structure on

topological spaces or Serre-Quillen model structure .

In particular

every object in Top  is fibrant;1. 

the cofibrant objects in Top  are the retracts of cell complexes.2. 

Hence in particular the following classical statement is an immediate corollary:

Corollary 3.8. (Whitehead theorem)

Every weak homotopy equivalence (def. 1.30) between topological spaces that are
homeomorphic to a retract of a cell complex, in particular to a CW-complex (def. 1.38), is a
homotopy equivalence (def. 1.28).

Proof. This is the “Whitehead theorem in model categories”, lemma 2.27, specialized to
Top  via theorem 3.7.  ▮

In proving theorem 3.7 we have in fact shown a bit more that stated. Looking back, all the
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structure of Top  is entirely induced by the set  (def. 1.37) of generating cofibrations and

the set  (def. 1.42) of generating acyclic cofibrations (whence the terminology). This

phenomenon will keep recurring and will keep being useful as we construct further model
categories, such as the classical model structure on pointed topological spaces (def. 3.31), the
projective model structure on topological functors (thm. 3.76), and finally various model
structures on spectra which we turn to in the section on stable homotopy theory.

Therefore we make this situation explicit:

Definition 3.9. A model category  (def. 2.3) is called cofibrantly generated if there exists
two subsets

, ⊂ Mor( )

of its class of morphisms, such that

 and  have small domains according to def. 2.16,1. 

the (acyclic) cofibrations of  are precisely the retracts, of -relative cell complexes
( -relative cell complexes), def. 1.41.

2. 

Proposition 3.10. For  a cofibrantly generated model category, def. 3.9, with generating
(acylic) cofibrations  ( ), then its classes , Fib, Cof of weak equivalences, fibrations and
cofibrations are equivalently expressed as injective or projective morphisms (def. 2.4) this
way:

Cof = ( Inj)Proj1. 

∩ Fib = Inj;2. 

∩ Cof = ( Inj)Proj;3. 

Fib = Inj;4. 

Proof. It is clear from the definition that ⊂ ( Inj)Proj, so that the closure property of prop. 2.10
gives an inclusion

Cof ⊂ ( Inj)Proj .

For the converse inclusion, let ∈ ( Inj)Proj. By the small object argument, prop. 2.17, there is a

factorization : →⎯⎯⎯⎯
∈

→⎯⎯ . Hence by assumption and by the retract argument lemma 2.15,  is a
retract of an -relative cell complex, hence is in Cof.

This proves the first statement. Together with the closure properties of prop. 2.10, this implies
the second claim.

The proof of the third and fourth item is directly analogous, just with  replaced for .  ▮

The classical homotopy category

With the classical model structure on topological spaces in hand, we now have good control over
the classical homotopy category:

Definition 3.11. The Serre-Quillen classical homotopy category is the homotopy category,
def. 2.25, of the classical model structure on topological spaces Top  from theorem 3.7:

we write

Ho(Top) ≔ Ho(Top ) .
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Remark 3.12. From just theorem 3.7, the definition 2.25 (def. 3.11) gives that

Ho(Top ) ≃ (Top ( ))/∼

is the category whose objects are retracts of cell complexes (def. 1.38) and whose morphisms
are homotopy classes of continuous functions. But in fact more is true:

Theorem 3.7 in itself implies that every topological space is weakly equivalent to a retract of a
cell complex, def. 1.38. But by the existence of CW approximations, this cell complex may
even be taken to be a CW complex.

(Better yet, there is Quillen equivalence to the classical model structure on simplicial sets

which implies a functorial CW approximation |Sing | →⎯⎯⎯⎯
∈

 given by forming the geometric
realization of the singular simplicial complex of .)

Hence the Serre-Quillen classical homotopy category is also equivalently the category of just
the CW-complexes whith homotopy classes of continuous functions between them

Ho(Top ) ≃ (Top ( ))/∼

≃ (Top )/∼

.

It follows that the universal property of the homotopy category (theorem 2.31)

Ho(Top ) ≃ Top[ − ]

implies that there is a bijection, up to natural isomorphism, between

functors out of Top  which agree on homotopy-equivalent maps;1. 

functors out of all of Top which send weak homotopy equivalences to isomorphisms.2. 

This statement in particular serves to show that two different axiomatizations of generalized
(Eilenberg-Steenrod) cohomology theories are equivalent to each other. See at Introduction to
Stable homotopy theory -- S the section generalized cohomology functors (this prop.)

Beware that, by remark 1.32, what is not equivalent to Ho(Top ) is the category

hTop ≔ Top/∼

obtained from all topological spaces with morphisms the homotopy classes of continuous
functions. This category is “too large”, the correct homotopy category is just the genuine full
subcategory

Ho(Top ) ≃ (Top ( ))/∼ ≃ Top/∼ = ↪ hTop .

Beware also the ambiguity of terminology: “classical homotopy category” some literature
refers to hTop instead of Ho(Top ). However, here we never have any use for hTop and will

not mention it again.

Proposition 3.13. Let  be a CW-complex, def. 1.38. Then the standard topological cylinder of
def. 1.22

⊔ →⎯⎯⎯⎯
( , )

× ⟶

(obtained by forming the product with the standard topological intervall = [0, 1]) is indeed a
cylinder object in the abstract sense of def. 2.18.

Proof. We describe the proof informally. It is immediate how to turn this into a formal proof, but
the notation becomes tedious. (One place where it is spelled out completely is Ottina 14, prop.
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2.9.)

So let → → → ⋯ →  be a presentation of  as a CW-complex. Proceed by induction on
the cell dimension.

First observe that the cylinder ×  over  is a cell complex: First  itself is a disjoint union of
points. Adding a second copy for every point (i.e. attaching along − → ) yields ⊔ , then
attaching an inteval between any two corresponding points (along → ) yields × .

So assume that for ∈ ℕ it has been shown that ×  has the structure of a CW-complex of
dimension ( + 1). Then for each cell of + , attach it twice to × , once at × {0}, and once
at × {1}.

The result is +  with a hollow cylinder erected over each of its ( + 1)-cells. Now fill these
hollow cylinders (along + → + ) to obtain + × .

This completes the induction, hence the proof of the CW-structure on × .

The construction also manifestly exhibits the inclusion ⊔ →⎯⎯⎯⎯
( , )

 as a relative cell complex.

Finally, it is clear (prop. 1.31) that × →  is a weak homotopy equivalence.  ▮

Conversely:

Proposition 3.14. Let  be any topological space. Then the standard topological path space
object (def. 1.34)

⟶ →⎯⎯⎯⎯⎯⎯⎯
( , )

×

(obtained by forming the mapping space, def. 1.18, with the standard topological intervall
= [0, 1]) is indeed a path space object in the abstract sense of def. 2.18.

Proof. To see that const : →  is a weak homotopy equivalence it is sufficient, by prop. 1.31, to
exhibit a homotopy equivalence. Let the homotopy inverse be : → . Then the composite

→⎯⎯⎯⎯ →⎯⎯

is already equal to the identity. The other we round, the rescaling of paths provides the required
homotopy

× →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( , ) ↦ ( ⋅( −)) .

To see that → ×  is a fibration, we need to show that every commuting square of the form

⟶

↓ ↓

× ⟶ ×

has a lift.

Now first use the adjunction ( × ( −)) ⊣ (−)  from prop. 1.19 to rewrite this equivalently as the
following commuting square:

⊔ →⎯⎯⎯⎯
( , )

( × ) ⊔ ( × )

( , ) ↓ ↓

× ⟶

.
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This square is equivalently (example 1.12) a morphism out of the pushout

× ⊔
⊔

(( × ) ⊔ ( × )) ⟶ .

By the same reasoning, a lift in the original diagram is now equivalently a lifting in

× ⊔
⊔

(( × ) ⊔ ( × )) ⟶

↓ ↓

( × ) × ⟶ *

.

Inspection of the component maps shows that the left vertical morphism here is the inclusion
into the square times  of three of its faces times . This is homeomorphic to the inclusion

+ → + ×  (as in remark 1.49). Therefore a lift in this square exsists, and hence a lift in the
original square exists.  ▮

Model structure on pointed spaces

A pointed object ( , ) is of course an object  equipped with a point : * → , and a morphism of
pointed objects ( , ) ⟶ ( , ) is a morphism ⟶  that takes  to . Trivial as this is in itself, it is
good to record some basic facts, which we do here.

Passing to pointed objects is also the first step in linearizing classical homotopy theory to stable
homotopy theory. In particular, every category of pointed objects has a zero object, hence has
zero morphisms. And crucially, if the original category had Cartesian products, then its pointed
objects canonically inherit a non-cartesian tensor product: the smash product. These ingredients
will be key below in the section on stable homotopy theory.

Definition 3.15. Let  be a category and let ∈  be an object.

The slice category /  is the category whose

objects are morphisms ↓ in ;

morphisms are commuting triangles

⟶

↘ ↙  in .

Dually, the coslice category / is the category whose

objects are morphisms ↓ in ;

morphisms are commuting triangles ↙ ↘

⟶

 in .

There are the canonical forgetful functors

: / , / ⟶

given by forgetting the morphisms to/from .

We here focus on this class of examples:
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Definition 3.16. For  a category with terminal object *, the coslice category (def. 3.15) * / is
the corresponding category of pointed objects: its

objects are morphisms in  of the form * →  (hence an object  equipped with a choice
of point; i.e. a pointed object);

morphisms are commuting triangles of the form

*

↙ ↘

⟶

(hence morphisms in  which preserve the chosen points).

Remark 3.17. In a category of pointed objects * /, def. 3.16, the terminal object coincides with
the initial object, both are given by * ∈  itself, pointed in the unique way.

In this situation one says that * is a zero object and that * / is a pointed category.

It follows that also all hom-sets Hom * / ( , ) of * / are canonically pointed sets, pointed by the

zero morphism

0 : ⟶
∃ !

0 ⟶
∃ !

.

Definition 3.18. Let  be a category with terminal object and finite colimits. Then the forgetful
functor : * / →  from its category of pointed objects, def. 3.16, has a left adjoint

* / ⊥→⎯⎯⎯
←⎯⎯⎯
( −)+

given by forming the disjoint union (coproduct) with a base point (“adjoining a base point”).

Proposition 3.19. Let  be a category with all limits and colimits. Then also the category of
pointed objects * /, def. 3.16, has all limits and colimits.

Moreover:

the limits are the limits of the underlying diagrams in , with the base point of the limit
induced by its universal property in ;

1. 

the colimits are the limits in  of the diagrams with the basepoint adjoined.2. 

Proof. It is immediate to check the relevant universal property. For details see at slice category
– limits and colimits.  ▮

Example 3.20. Given two pointed objects ( , ) and ( , ), then:

their product in * / is simply ( × , ( , ));1. 

their coproduct in * / has to be computed using the second clause in prop. 3.19: since
the point * has to be adjoined to the diagram, it is given not by the coproduct in , but by
the pushout in  of the form:

* ⟶

↓ (po) ↓

⟶ ∨

.

2. 
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This is called the wedge sum operation on pointed objects.

Generally for a set { } ∈  in Top * /

their product is formed in Top as in example 1.9, with the new basepoint canonically
induced;

1. 

their coproduct is formed by the colimit in Top over the diagram with a basepoint
adjoined, and is called the wedge sum ∨ ∈ .

2. 

Example 3.21. For  a CW-complex, def. 1.38 then for every ∈ ℕ the quotient (example 1.13)
of its -skeleton by its ( − 1)-skeleton is the wedge sum, def. 3.20, of -spheres, one for each
-cell of :

/ − ≃ ∨
∈

.

Definition 3.22. For * / a category of pointed objects with finite limits and finite colimits, the
smash product is the functor

( −) ∧ ( −) : * / × * / ⟶ * /

given by

∧ ≔ * ⊔
⊔

( × ) ,

hence by the pushout in 

⊔ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( , ),( , )

×

↓ ↓

* ⟶ ∧

.

In terms of the wedge sum from def. 3.20, this may be written concisely as

∧ =
×
∨

.

Remark 3.23. For a general category  in def. 3.22, the smash product need not be associative,
namely it fails to be associative if the functor ( −) ×  does not preserve the quotients involved
in the definition.

In particular this may happen for = Top.

A sufficient condition for ( −) ×  to preserve quotients is that it is a left adjoint functor. This is
the case in the smaller subcategory of compactly generated topological spaces, we come to
this in prop. 3.44 below.

These two operations are going to be ubiquituous in stable homotopy theory:

symbolname category theory
∨ wedge sum coproduct in * /

∧ smash product tensor product in * /

Example 3.24. For , ∈ Top, with +, + ∈ Top * /, def. 3.18, then

+ ∨ + ≃ ( ⊔ )+;

+ ∧ + ≃ ( × )+.
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Proof. By example 3.20, + ∨ + is given by the colimit in Top over the diagram

*

↙ ↘

* *

.

This is clearly ⊔ * ⊔ . Then, by definition 3.22

+ ∧ + ≃
( ⊔ *)× ( ⊔ *)

( ⊔ *) ∨ ( ⊔ *)

≃
× ⊔ ⊔ ⊔ *

⊔ ⊔ *

≃ × ⊔ * .

  ▮

Example 3.25. Let * / = Top * / be pointed topological spaces. Then

+ ∈ Top * /

denotes the standard interval object = [0, 1] from def. 1.22, with a djoint basepoint adjoined,
def. 3.18. Now for  any pointed topological space, then

∧ ( +) = ( × )/({ } × )

is the reduced cylinder over : the result of forming the ordinary cyclinder over  as in def.
1.22, and then identifying the interval over the basepoint of  with the point.

(Generally, any construction in  properly adapted to pointed objects * / is called the
“reduced” version of the unpointed construction. Notably so for “reduced suspension” which
we come to below.)

Just like the ordinary cylinder ×  receives a canonical injection from the coproduct ⊔
formed in Top, so the reduced cyclinder receives a canonical injection from the coproduct ⊔
formed in Top * /, which is the wedge sum from example 3.20:

∨ ⟶ ∧ ( +) .

Example 3.26. For ( , ), ( , ) pointed topological spaces with  a locally compact topological
space, then the pointed mapping space is the topological subspace of the mapping space of
def. 1.18

Maps(( , ), ( , ))
*

↪ ( , const )

on those maps which preserve the basepoints, and pointed by the map constant on the
basepoint of .

In particular, the standard topological pointed path space object on some pointed  (the
pointed variant of def. 1.34) is the pointed mapping space Maps( +, )

*
.

The pointed consequence of prop. 1.19 then gives that there is a natural bijection

Hom * / (( , ) ∧ ( , ), ( , )) ≃ Hom * / (( , ), Maps(( , ), ( , ))
*
)

between basepoint-preserving continuous functions out of a smash product, def. 3.22, with
pointed continuous functions of one variable into the pointed mapping space.

Example 3.27. Given a morphism : ⟶  in a category of pointed objects * /, def. 3.16, with
finite limits and colimits,
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its fiber or kernel is the pullback of the point inclusion

fib( ) ⟶

↓ (pb) ↓

* ⟶

1. 

its cofiber or cokernel is the pushout of the point projection

⟶

↓ (po) ↓

* ⟶ cofib( )

.

2. 

Remark 3.28. In the situation of example 3.27, both the pullback as well as the pushout are
equivalently computed in . For the pullback this is the first clause of prop. 3.19. The second
clause says that for computing the pushout in , first the point is to be adjoined to the
diagram, and then the colimit over the larger diagram

*

↘

⟶

↓

*

be computed. But one readily checks that in this special case this does not affect the result.
(The technical jargon is that the inclusion of the smaller diagram into the larger one in this
case happens to be a final functor.)

Proposition 3.29. Let  be a model category and let ∈  be an object. Then both the slice
category /  as well as the coslice category /, def. 3.15, carry model structures themselves

– the model structure on a (co-)slice category, where a morphism is a weak equivalence,
fibration or cofibration iff its image under the forgetful functor  is so in .

In particular the category * / of pointed objects, def. 3.16, in a model category  becomes
itself a model category this way.

The corresponding homotopy category of a model category, def. 2.25, we call the pointed
homotopy category Ho( * /).

Proof. This is immediate:

By prop. 3.19 the (co-)slice category has all limits and colimits. By definition of the weak
equivalences in the (co-)slice, they satisfy two-out-of-three, def. 2.1, because the do in .

Similarly, the factorization and lifting is all induced by : Consider the coslice category /, the
case of the slice category is formally dual; then if

↙ ↘

⟶

commutes in , and a factorization of  exists in , it uniquely makes this diagram commute

↙ ↓ ↘

⟶ ⟶

.
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Similarly, if

⟶

↓ ↓

⟶

is a commuting diagram in /, hence a commuting diagram in  as shown, with all objects
equipped with compatible morphisms from , then inspection shows that any lift in the diagram
necessarily respects the maps from , too.  ▮

Example 3.30. For  any model category, with * / its pointed model structure according to
prop. 3.29, then the corresponding homotopy category (def. 2.25) is, by remark 3.17,
canonically enriched in pointed sets, in that its hom-functor is of the form

[ −, −]
*

: Ho( * /) × Ho( * /) ⟶ Set * / .

Definition 3.31. Write Top * /  for the classical model structure on pointed topological
spaces, obtained from the classical model structure on topological spaces Top  (theorem

3.7) via the induced coslice model structure of prop. 3.29.

Its homotopy category, def. 2.25,

Ho(Top * /) ≔ Ho(Top * / )

we call the classical pointed homotopy category.

Remark 3.32. The fibrant objects in the pointed model structure * /, prop. 3.29, are those that
are fibrant as objects of . But the cofibrant objects in * are now those for which the
basepoint inclusion is a cofibration in .

For * / = Top * /  from def. 3.31, then the corresponding cofibrant pointed topological spaces
are tyically referred to as spaces with non-degenerate basepoints or . Notice that the point
itself is cofibrant in Top , so that cofibrant pointed topological spaces are in particular

cofibrant topological spaces.

While the existence of the model structure on Top * / is immediate, via prop. 3.29, for the
discussion of topologically enriched functors (below) it is useful to record that this, too, is a
cofibrantly generated model category (def. 3.9), as follows:

Definition 3.33. Write

* / = +
− →⎯⎯⎯

( )+
+ ⊂ Mor(Top * /)

and

* / = + →⎯⎯⎯⎯⎯⎯
( , )+ ( × )+ ⊂ Mor(Top * /) ,

respectively, for the sets of morphisms obtained from the classical generating cofibrations, def.
1.37, and the classical generating acyclic cofibrations, def. 1.42, under adjoining of basepoints
(def. 3.18).

Theorem 3.34. The sets * /  and * /  in def. 3.33 exhibit the classical model structure on

pointed topological spaces Top * /  of def. 3.31 as a cofibrantly generated model category,
def. 3.9.

(This is also a special case of a general statement about cofibrant generation of coslice model
structures, see this proposition.)
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Proof. Due to the fact that in * /  a basepoint is freely adjoined, lemma 1.52 goes through

verbatim for the pointed case, with  replaced by * / , as do the other two lemmas above

that depend on point-set topology, lemma 1.40 and lemma 1.45. With this, the rest of the proof
follows by the same general abstract reasoning as above in the proof of theorem 3.7.  ▮

Model structure on compactly generated spaces

The category Top has the technical inconvenience that mapping spaces  (def. 1.18) satisfying
the exponential property (prop. 1.19) exist in general only for  a locally compact topological
space, but fail to exist more generally. In other words: Top is not cartesian closed. But cartesian
closure is necessary for some purposes of homotopy theory, for instance it ensures that

the smash product (def. 3.22) on pointed topological spaces is associative (prop. 3.44
below);

1. 

there is a concept of topologically enriched functors with values in topological spaces, to
which we turn below;

2. 

geometric realization of simplicial sets preserves products.3. 

The first two of these are crucial for the development of stable homotopy theory in the next
section, the third is a great convenience in computations.

Now, since the homotopy theory of topological spaces only cares about the CW approximation to
any topological space (remark 3.12), it is plausible to ask for a full subcategory of Top which still
contains all CW-complexes, still has all limits and colimits, still supports a model category
structure constructed in the same way as above, but which in addition is cartesian closed, and
preferably such that the model structure interacts well with the cartesian closure.

Such a full subcategory exists, the category of compactly generated topological spaces. This we
briefly describe now.

Literature (Strickland 09)

Definition 3.35. Let  be a topological space.

A subset ⊂  is called compactly closed (or -closed) if for every continuous function
: ⟶  out of a compact Hausdorff space , then the preimage − ( ) is a closed subset of .

The space  is called compactly generated if its closed subsets exhaust (hence coincide
with) the -closed subsets.

Write

Top ↪ Top

for the full subcategory of Top on the compactly generated topological spaces.

Definition 3.36. Write

Top ⟶ Top ↪ Top

for the functor which sends any topological space = ( , ) to the topological space ( , ) with
the same underlying set , but with open subsets  the collection of all -open subsets with
respect to .

Lemma 3.37. Let ∈ Top ↪ Top and let ∈ Top. Then continuous functions
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⟶

are also continuous when regarded as functions

⟶ ( )

with  from def. 3.36.

Proof. We need to show that for ⊂  a -closed subset, then the preimage − ( ) ⊂  is closed
subset.

Let : ⟶  be any continuous function out of a compact Hausdorff space . Since  is -closed
by assumption, we have that ( ∘ ) − ( ) = − ( − ( )) ⊂  is closed in . This means that − ( )

is -closed in . But by the assumption that  is compactly generated, it follows that − ( ) is
already closed.  ▮

Corollary 3.38. For ∈ Top  there is a natural bijection

Hom ( , ) ≃ Hom ( , ( )) .

This means equivalently that the functor  (def. 3.36) together with the inclusion from def.
3.35 forms an pair of adjoint functors

Top ⊥⟵
⎯

Top .

This in turn means equivalently that Top ↪ Top is a coreflective subcategory with coreflector

. In particular  is idemotent in that there are natural homeomorphisms

( ( )) ≃ ( ) .

Hence colimits in Top  exists and are computed as in Top. Also limits in Top  exists, these are

obtained by computing the limit in Top and then applying the functor  to the result.

The following is a slight variant of def. 1.18, appropriate for the context of Top .

Definition 3.39. For , ∈ Top  (def. 3.35) the compactly generated mapping space

∈ Top  is the compactly generated topological space whose underlying set is the set ( , )

of continuous functions : → , and for which a subbase for its topology has elements ( ),
for ⊂  any open subset and : →  a continuous function out of a compact Hausdorff space

 given by

( ) ≔ { ∈ ( , ) | ( ( )) ⊂ } .

Remark 3.40. If  is (compactly generated and) a Hausdorff space, then the topology on the
compactly generated mapping space  in def. 3.39 agrees with the compact-open topology of
def. 1.18. Beware that it is common to say “compact-open topology” also for the topology of
the compactly generated mapping space when  is not Hausdorff. In that case, however, the
two definitions in general disagree.

Proposition 3.41. The category Top  of def. 3.35 is cartesian closed:

for every ∈ Top  then the operation × ( −) × ( −) ×  of forming the Cartesian product in

Top  (which by cor. 3.38 is  applied to the usual product topological space) together with the

operation ( −)  of forming the compactly generated mapping space (def. 3.39) forms a pair of
adjoint functors
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Top ⊥→⎯⎯⎯⎯⎯
( −)

←⎯⎯⎯⎯⎯
× ( −)

Top .

For proof see for instance (Strickland 09, prop. 2.12).

Corollary 3.42. For , ∈ Top * /, the operation of forming the pointed mapping space (example
3.26) inside the compactly generated mapping space of def. 3.39

Maps( , )
*

≔ fib →⎯⎯ ,

is left adjoint to the smash product operation on pointed compactly generated topological
spaces.

Top * / ⊥
→⎯⎯⎯⎯⎯⎯⎯⎯

( , −)
*

←⎯⎯⎯⎯⎯⎯⎯⎯
∧ (−)

Top * / .

Corollary 3.43. For  a small category and • : → Top * / a diagram, then the compactly
generated mapping space construction from def. 3.39 preserves limits in its covariant
argument and sends colimits in its contravariant argument to limits:

Maps( , lim←⎯⎯ )
*

≃ lim←⎯⎯Maps( , )
*

and

Maps(lim→⎯⎯ , )
*

≃ lim←⎯⎯Maps( , )
*

.

Proof. The first statement is an immediate implication of Maps( , −)
*
 being a right adjoint,

according to cor. 3.42.

For the second statement, we use that by def. 3.35 a compactly generated topological space is
uniquely determined if one knows all continuous functions out of compact Hausdorff spaces into
it. Hence it is sufficient to show that there is a natural isomorphism

Hom * / , Maps(lim→⎯⎯ , )
*

≃ Hom * / , lim←⎯⎯Maps( , )
*

for  any compact Hausdorff space.

With this, the statement follows by cor. 3.42 and using that ordinary hom-sets take colimits in
the first argument and limits in the second argument to limits:

Hom * / , Maps(lim
→⎯⎯

, )
*

≃ Hom * / ∧ lim
→⎯⎯

,

≃ Hom * / lim
→⎯⎯

( ∧ ),

≃ lim←⎯⎯
æ
èçç
Hom * / ( ∧ , )ö

ø÷÷

≃ lim
←⎯⎯

Hom * / ( , Maps( , )
*
)

≃ Hom * / , lim
←⎯⎯

Maps( , )
*

.

  ▮

Moreover, compact generation fixes the associativity of the smash product (remark 3.23):

Proposition 3.44. On pointed (def. 3.16) compactly generated topological spaces (def. 3.35)
the smash product (def. 3.22)
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( −) ∧ ( −) : Top * / × Top * / ⟶ Top * /

is associative and the 0-sphere is a tensor unit for it.

Proof. Since (−) ×  is a left adjoint by prop. 3.41, it presevers colimits and in particular

quotient space projections. Therefore with , , ∈ Top * / then

( ∧ ) ∧ =
×

×{ } ⊔{ } × ×

( ∧ ) × { } ⊔ {[ ] = [ ]}×

≃
× ×

×{ }× ⊔{ }× ×

× × { }

≃
× ×

∨ ∨

.

The analogous reasoning applies to yield also ∧ ( ∧ ) ≃
× ×

∨ ∨
.

The second statement follows directly with prop. 3.41.  ▮

Remark 3.45. Corollary 3.42 together with prop. 3.44 says that under the smash product the
category of pointed compactly generated topological spaces is a closed symmetric monoidal
category with tensor unit the 0-sphere.

(Top * /, ∧ , ), .

Notice that by prop. 3.41 also unpointed compactly generated spaces under Cartesian product
form a closed symmetric monoidal category, hence a cartesian closed category

(Top , × , * ) .

The fact that Top * / is still closed symmetric monoidal but no longer Cartesian exhibits Top * / as
being “more linear” than Top . The “full linearization” of Top  is the closed symmteric

monoidal category of structured spectra under smash product of spectra which we discuss in
section 1.

Due to the idempotency ∘ ≃  (cor. 3.38) it is useful to know plenty of conditions under which
a given topological space is already compactly generated, for then applying  to it does not
change it and one may continue working as in Top.

Example 3.46. Every CW-complex is compactly generated.

Proof. Since a CW-complex is a Hausdorff space, by prop. 3.53 and prop. 3.54 its -closed
subsets are precisely those whose intersection with every compact subspace is closed.

Since a CW-complex  is a colimit in Top over attachments of standard n-disks  (its cells), by
the characterization of colimits in Top (prop.) a subset of  is open or closed precisely if its
restriction to each cell is open or closed, respectively. Since the -disks are compact, this implies
one direction: if a subset  of  intersected with all compact subsets is closed, then  is closed.

For the converse direction, since a CW-complex is a Hausdorff space and since compact
subspaces of Hausdorff spaces are closed, the intersection of a closed subset with a compact
subset is closed.  ▮

For completeness we record further classes of examples:

Example 3.47. The category Top  of compactly generated topological spaces includes

all locally compact topological spaces,1. 

all first-countable topological spaces,2. 
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hence in particular

all metrizable topological spaces,1. 

all discrete topological spaces,2. 

all codiscrete topological spaces.3. 

(Lewis 78, p. 148)

Recall that by corollary 3.38, all colimits of compactly generated spaces are again compactly
generated.

Example 3.48. The product topological space of a CW-complex with a compact CW-complex,
and more generally with a locally compact CW-complex, is compactly generated.

(Hatcher “Topology of cell complexes”, theorem A.6)

More generally:

Proposition 3.49. For  a compactly generated space and  a locally compact Hausdorff space,
then the product topological space ×  is compactly generated.

e.g. (Strickland 09, prop. 26)

Finally we check that the concept of homotopy and homotopy groups does not change under
passing to compactly generated spaces:

Proposition 3.50. For every topological space , the canonical function ( ) ⟶  (the
adjunction unit) is a weak homotopy equivalence.

Proof. By example 3.46, example 3.48 and lemma 3.37, continuous functions → ( ) and
their left homotopies × → ( ) are in bijection with functions →  and their homotopies

× → .  ▮

Theorem 3.51. The restriction of the model category structure on Top  from theorem 3.7

along the inclusion Top ↪ Top of def. 3.35 is still a model category structure, which is

cofibrantly generated by the same sets  (def. 1.37) and  (def. 1.42) The coreflection of

cor. 3.38 is a Quillen equivalence (def. 2.50)

(Top ) ⊥
⟵
⎯

Top .

Proof. By example 3.46, the sets  and  are indeed in Mor(Top ). By example 3.48 all

arguments above about left homotopies between maps out of these basic cells go through
verbatim in Top . Hence the three technical lemmas above depending on actual point-set

topology, topology, lemma 1.40, lemma 1.45 and lemma 1.52, go through verbatim as before.
Accordingly, since the remainder of the proof of theorem 3.7 of Top  follows by general

abstract arguments from these, it also still goes through verbatim for (Top )  (repeatedly

use the small object argument and the retract argument to establish the two weak factorization
systems).

Hence the (acyclic) cofibrations in (Top )  are identified with those in Top , and so the

inclusion is a part of a Quillen adjunction (def. 2.46). To see that this is a Quillen equivalence
(def. 2.50), it is sufficient to check that for  a compactly generated space then a continuous
function : ⟶  is a weak homotopy equivalence (def. 1.30) precisely if the adjunct ˜ : → ( )

is a weak homotopy equivalence. But, by lemma 3.37, ˜  is the same function as , just
considered with different codomain. Hence the result follows with prop. 3.50.  ▮
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Compactly generated weakly Hausdorff topological spaces

While the inclusion Top ↪ Top of def. 3.35 does satisfy the requirement that it gives a cartesian

closed category with all limits and colimits and containing all CW-complexes, one may ask for
yet smaller subcategories that still share all these properties but potentially exhibit further
convenient properties still.

A popular choice introduced in (McCord 69) is to add the further restriction to topopological
spaces which are not only compactly generated but also weakly Hausdorff. This was motivated
from (Steenrod 67) where compactly generated Hausdorff spaces were used by the observation
((McCord 69, section 2)) that Hausdorffness is not preserved my many colimit operations,
notably not by forming quotient spaces.

On the other hand, in above we wouldn’t have imposed Hausdorffness in the first place. More
intrinsic advantages of Top  over Top  are the following:

every pushout of a morphism in Top ↪ Top along a closed subspace inclusion in Top is

again in Top

in Top  quotient spaces are not only preserved by cartesian products (as is the case for

all compactly generated spaces due to × ( −) being a left adjoint, according to cor. 3.38)
but by all pullbacks

in Top  the regular monomorphisms are the closed subspace inclusions

We will not need this here or in the following sections, but we briefly mention it for completenes:

Definition 3.52. A topological space  is called weakly Hausdorff if for every continuous
function

: ⟶

out of a compact Hausdorff space , its image ( ) ⊂  is a closed subset of .

Proposition 3.53. Every Hausdorff space is a weakly Hausdorff space, def. 3.52.

Proof. Since compact subspaces of Hausdorff spaces are closed.  ▮

Proposition 3.54. For  a weakly Hausdorff topological space, def. 3.52, then a subset ⊂  is
-closed, def. 3.35, precisely if for every subset ⊂  that is compact Hausdorff with respect

to the subspace topology, then the intersection ∩  is a closed subset of .

e.g. (Strickland 09, lemma 1.4 (c))

Topological enrichment

So far the classical model structure on topological spaces which we established in theorem 3.7,
as well as the projective model structures on topologically enriched functors induced from it in
theorem 3.76, concern the hom-sets, but not the hom-spaces (def. 3.65), i.e. the model
structure so far has not been related to the topology on hom-spaces. The following statements
say that in fact the model structure and the enrichment by topology on the hom-spaces are
compatible in a suitable sense: we have an “enriched model category”. This implies in particular
that the product/hom-adjunctions are Quillen adjunctions, which is crucial for a decent discusson
of the derived functors of the suspension/looping adjunction below.

Definition 3.55. Let : →  and : →  be morphisms in Top , def. 3.35. Their pushout

product
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□ ≔ ((id, ), ( , id))

is the universal morphism in the following diagram

×

( , ) ↙ ↘( , )

× (po) ×

↘ ↙

( × ) ⊔
×

( × )

↓(( , ),( , ))

×

Example 3.56. If : ↪  and : ↪  are inclusions, then their pushout product □  from
def. 3.55 is the inclusion

( × ∪ × ) ↪ × .

For instance

({0} ↪ ) □ ({0} ↪ )

is the inclusion of two adjacent edges of a square into the square.

Example 3.57. The pushout product with an initial morphism is just the ordinary Cartesian
product functor

(∅ → ) □ ( −) ≃ × ( −) ,

i.e.

(∅ → ) □ ( → ) ≃ ( × →⎯⎯⎯
×

× ) .

Proof. The product topological space with the empty space is the empty space, hence the map

∅ × →⎯⎯⎯⎯
( , )

∅ ×  is an isomorphism, and so the pushout in the pushout product is × . From this
one reads off the universal map in question to be × :

∅ ×

↙ ↘≃

× (po) ∅ ×

≃ ↘ ↙

×

↓(( , ), ∃ !)

×

.

  ▮

Example 3.58. With

: { − ↪ } and : { ↪ × }

the generating cofibrations (def. 1.37) and generating acyclic cofibrations (def. 1.42) of
(Top )  (theorem 3.51), then their pushout-products (def. 3.55) are
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□ ≃ +

□ ≃ +

.

Proof. To see this, it is profitable to model n-disks and n-spheres, up to homeomorphism, as
-cubes ≃ [0, 1] ⊂ ℝ  and their boundaries − ≃ ∂[0, 1]  . For the idea of the proof, consider

the situation in low dimensions, where one readily sees pictorially that

□ : ( = ∪ | | ) ↪ □

and

□ : ( = ∪ | ) ↪ □ .

Generally,  may be represented as the space of -tuples of elements in [0, 1], and  as the
suspace of tuples for which at least one of the coordinates is equal to 0 or to 1.

Accordingly, × ↪ +  is the subspace of ( + )-tuples, such that at least one of the
first  coordinates is equal to 0 or 1, while × ↪ +  is the subspace of ( + )-tuples
such that east least one of the last  coordinates is equal to 0 or to 1. Therefore

× ∪ × ≃ + .

And of course it is clear that × ≃ + . This shows the first case.

For the second, use that × ×  is contractible to ×  in × × , and that
×  is a subspace of × .  ▮

Definition 3.59. Let : →  and : →  be two morphisms in Top , def. 3.35. Their pullback

powering is

□ ≔ ( , )

being the universal morphism in

↓( , )

×

↙ ↘

(pb)

↘ ↙

Proposition 3.60. Let , ,  be three morphisms in Top , def. 3.35. Then for their pushout-

products (def. 3.55) and pullback-powerings (def. 3.59) the following lifting properties are
equivalent (“Joyal-Tierney calculus”):

□ has LLP against

⇔ has LLP against □

⇔ has LLP against □

.

Proof. We claim that by the cartesian closure of Top , and carefully collecting terms, one finds

a natural bijection between commuting squares and their lifts as follows:
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⟶

↓ ↓
□

→⎯⎯⎯⎯⎯
( , )

×

↔

× ⊔
×

× →⎯⎯⎯⎯
( ˜ , ˜ )

□ ↓ ↓

× ⟶̃

,

where the tilde denotes product/hom-adjuncts, for instance

⟶

× ⟶
˜

etc.

To see this in more detail, observe that both squares above each represent two squares from the
two components into the fiber product and out of the pushout, respectively, as well as one more
square exhibiting the compatibility condition on these components:

⟶

↓ ↓
□

→⎯⎯⎯⎯⎯
( , )

×

≃

⎧

⎨

⎩

⎪

⎪

⟶

↓ ↓

⟶

,

⟶

↓ ↓

⟶

,

⟶

↓ ↓

⟶

⎫

⎬

⎭

⎪

⎪

↔

⎧

⎨

⎩

⎪

⎪

× ⟶
˜

( , ) ↓ ↓

× ⟶̃

,

× →⎯⎯⎯⎯
( , )

×

( , ) ↓ ↓
˜

× ⟶̃

,

× ⟶
˜

( , ) ↓ ↓

× ⟶̃

⎫

⎬

⎭

⎪

⎪

≃

× ⊔
×

× →⎯⎯⎯⎯
( ˜ , ˜ )

□ ↓ ↓

× ⟶̃

.

  ▮

Proposition 3.61. The pushout-product in Top  (def. 3.35) of two classical cofibrations is a

classical cofibration:

Cof □ Cof ⊂ Cof .

If one of them is acyclic, then so is the pushout-product:

Cof □ ( ∩ Cof ) ⊂ ∩ Cof .

Proof. Regarding the first point:

By example 3.58 we have

□ ⊂

Hence
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□ has LLP against ∩ Fib

⇔ has LLP against ( ∩ Fib )□

⇒ Cof has LLP against ( ∩ Fib )□

⇔ □ Cof has LLP against ∩ Fib

⇔ has LLP against ( ∩ Fib )

⇒ Cof has LLP against ( ∩ Fib )

⇔ Cof □ Cof has LLP against ∩ Fib

,

where all logical equivalences used are those of prop. 3.60 and where all implications appearing
are by the closure property of lifting problems, prop. 2.10.

Regarding the second point: By example 3.58 we moreover have

□ ⊂

and the conclusion follows by the same kind of reasoning.  ▮

Remark 3.62. In model category theory the property in proposition 3.61 is referred to as
saying that the model category (Top )  from theorem \ref{ModelStructureOnTopcg}

is a monoidal model category with respect to the Cartesian product on Top ;1. 

is an enriched model category, over itself.2. 

A key point of what this entails is the following:

Proposition 3.63. For ∈ (Top )  cofibrant (a retract of a cell complex) then the product-

hom-adjunction for  (prop. 3.41) is a Quillen adjunction

(Top ) ⊥→⎯⎯⎯⎯⎯
( −)

←⎯⎯⎯⎯⎯
× ( −)

(Top ) .

Proof. By example 3.57 we have that the left adjoint functor is equivalently the pushout product
functor with the initial morphism of :

× (−) ≃ (∅ → ) □ ( −) .

By assumption (∅ → ) is a cofibration, and hence prop. 3.61 says that this is a left Quillen
functor.  ▮

The statement and proof of prop. 3.63 has a direct analogue in pointed topological spaces

Proposition 3.64. For ∈ (Top * /)  cofibrant with respect to the classical model structure on

pointed compactly generated topological spaces (theorem 3.51, prop. 3.29) (hence a retract
of a cell complex with non-degenerate basepoint, remark 3.32) then the pointed product-
hom-adjunction from corollary 3.42 is a Quillen adjunction (def. 2.46):

(Top * /) ⊥ →⎯⎯⎯⎯⎯⎯⎯⎯
( , −)

*

←⎯⎯⎯⎯⎯⎯⎯⎯
∧ ( −)

(Top * /) .

Proof. Let now □∧ denote the smash pushout product and (−)□( −) the smash pullback
powering defined as in def. 3.55 and def. 3.59, but with Cartesian product replaced by smash
product (def. 3.22) and compactly generated mapping space replaced by pointed mapping
spaces (def. 3.26).

By theorem 3.34 (Top * /)  is cofibrantly generated by * / = ( )+ and * / = ( )+.
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Example 3.24 gives that for ∈  and ∈  then

( )+ □∧ ( )+ ≃ ( + )+

and

( )+ ∧∧ ( )+ ≃ ( + )+ .

Hence the pointed analog of prop. 3.61 holds and therefore so does the pointed analog of the
conclusion in prop. 3.63.  ▮

Model structure on topological functors

With classical topological homotopy theory in hand (theorem 3.7, theorem 3.51), it is
straightforward now to generalize this to a homotopy theory of topological diagrams. This is
going to be the basis for the stable homotopy theory of spectra, because spectra may be
identified with certain topological diagrams (prop.).

Technically, “topological diagram” here means “Top-enriched functor”. We now discuss what this
means and then observe that as an immediate corollary of theorem 3.7 we obtain a model
category structure on topological diagrams.

As a by-product, we obtain the model category theory of homotopy colimits in topological
spaces, which will be useful.

In the following we say Top-enriched category and Top-enriched functor etc. for what often is
referred to as “topological category” and “topological functor” etc. As discussed there, these
latter terms are ambiguous.

Literature (Riehl, chapter 3) for basics of enriched category theory; (Piacenza 91) for the
projective model structure on topological functors.

Definition 3.65. A topologically enriched category  is a Top -enriched category, hence:

a class Obj( ), called the class of objects;1. 

for each , ∈ Obj( ) a compactly generated topological space (def. 3.35)

( , ) ∈ Top ,

called the space of morphisms or the hom-space between  and ;

2. 

for each , , ∈ Obj( ) a continuous function

∘ , , : ( , ) × ( , ) ⟶ ( , )

out of the cartesian product (by cor. 3.38: the image under  of the product topological
space), called the composition operation;

3. 

for each ∈ Obj( ) a point Id ∈ ( , ), called the identity morphism on 4. 

such that the composition is associative and unital.

Similarly a pointed topologically enriched category is such a structure with Top  replaced

by Top * / (def. 3.16) and with the Cartesian product replaced by the smash product (def. 3.22)
of pointed topological spaces.

Remark 3.66. Given a (pointed) topologically enriched category as in def. 3.65, then forgetting
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the topology on the hom-spaces (along the forgetful functor : Top → Set) yields an ordinary

locally small category with

Hom ( , ) = ( ( , )) .

It is in this sense that  is a category with extra structure, and hence “enriched”.

The archetypical example is Top  itself:

Example 3.67. The category Top  (def. 3.35) canonically obtains the structure of a

topologically enriched category, def. 3.65, with hom-spaces given by the compactly generated
mapping spaces (def. 3.39)

Top ( , ) ≔

and with composition

× ⟶

given by the adjunct under the (product⊣ mapping-space)-adjunction from prop. 3.41 of the
evaluation morphisms

× × →⎯⎯⎯⎯
( , )

× ⟶ .

Similarly, pointed compactly generated topological spaces Top * / form a pointed topologically
enriched category, using the pointed mapping spaces from example 3.26:

Top * /( , ) ≔ Maps( , )
*

.

Definition 3.68. A topologically enriched functor between two topologically enriched categories

: ⟶

is a Top -enriched functor, hence:

a function

: Obj( ) ⟶ Obj( )

of objects;

1. 

for each , ∈ Obj( ) a continuous function

, : ( , ) ⟶ ( ( ), ( ))

of hom-spaces,

2. 

such that this preserves composition and identity morphisms in the evident sense.

A homomorphism of topologically enriched functors

: ⇒

is a Top -enriched natural transformation: for each ∈ Obj( ) a choice of morphism

∈ ( ( ), ( )) such that for each pair of objects , ∈  the two continuous functions

∘ ( −) : ( , ) ⟶ ( ( ), ( ))

and

( −) ∘ : ( , ) ⟶ ( ( ), ( ))
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agree.

We write [ , ] for the resulting category of topologically enriched functors.

Remark 3.69. The condition on an enriched natural transformation in def. 3.68 is just that on
an ordinary natural transformation on the underlying unenriched functors, saying that for
every morphisms : →  there is a commuting square

↦

( , ) × ⟶ ( )

( , ) ↓ ↓ ( )

( , ) × ⟶ ( )

.

Example 3.70. For  any topologically enriched category, def. 3.65 then a topologically
enriched functor (def. 3.68)

: ⟶ Top

to the archetical topologically enriched category from example 3.67 may be thought of as a
topologically enriched copresheaf, at least if  is small (in that its class of objects is a proper
set).

Hence the category of topologically enriched functors

[ , Top ]

according to def. 3.68 may be thought of as the (co-)presheaf category over  in the realm of
topological enriched categories.

A functor ∈ [ , Top ] is equivalently

a compactly generated topological space ∈ Top  for each object ∈ Obj( );1. 

a continuous function

× ( , ) ⟶

for all pairs of objects , ∈ Obj( )

2. 

such that composition is respected, in the evident sense.

For every object ∈ , there is a topologically enriched representable functor, denoted ( ) or
( , −) which sends objects to

( )( ) = ( , ) ∈ Top

and whose action on morphisms is, under the above identification, just the composition
operation in .

Proposition 3.71. For  any small topologically enriched category, def. 3.65 then the enriched
functor category [ , Top ] from example 3.70 has all limits and colimits, and they are

computed objectwise:

if

• : ⟶ [ , Top ]

is a diagram of functors and ∈  is any object, then

(lim←⎯⎯ )( ) ≃ lim←⎯⎯( ( )) ∈ Top
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and

(lim→⎯⎯ )( ) ≃ lim→⎯⎯ ( ( )) ∈ Top .

Proof. First consider the underlying diagram of functors ∘ where the topology on the
hom-spaces of  and of Top  has been forgotten. Then one finds

(lim←⎯⎯
∘)( ) ≃ lim←⎯⎯( ∘( )) ∈ Set

and

(lim→⎯⎯
∘)( ) ≃ lim→⎯⎯ ( ∘( )) ∈ Set

by the universal property of limits and colimits. (Given a morphism of diagrams then a unique
compatible morphism between their limits or colimits, respectively, is induced as the universal
factorization of the morphism of diagrams regarded as a cone or cocone, respectvely, over the
codomain or domain diagram, respectively).

Hence it only remains to see that equipped with topology, these limits and colimits in Set become
limits and colimits in Top . That is just the statement of prop. 1.5 with corollary 3.38.  ▮

Definition 3.72. Let  be a topologically enriched category, def. 3.65, with [ , Top ] its category

of topologically enriched copresheaves from example 3.70.

Define a functor

(−) ⋅ ( −) : [ , Top ] × Top ⟶ [ , Top ]

by forming objectwise cartesian products (hence  of product topological spaces)

⋅ : ↦ ( ) × .

This is called the tensoring of [ , Top ] over Top .

1. 

Define a functor

(−)(−) : (Top ) × [ , Top ] ⟶ [ , Top ]

by forming objectwise compactly generated mapping spaces (def. 3.39)

: ↦ ( ) .

This is called the powering of [ , Top ] over Top .

2. 

Analogously, for  a pointed topologically enriched category, def. 3.65, with [ , Top * /] its
category of pointed topologically enriched copresheaves from example 3.70, then:

Define a functor

( −) ∧ ( −) : [ , Top * /] × Top * / ⟶ [ , Top * /]

by forming objectwise smash products (def. 3.22)

∧ : ↦ ( ) ∧ .

This is called the smash tensoring of [ , Top * /] over Top * /.

1. 

Define a functor2. 
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Maps( −, −)
*

: Top * / × [ , Top * /] ⟶ [ , Top * /]

by forming objectwise pointed mapping spaces (example 3.26)

: ↦ Maps( , ( ))
*

.

This is called the pointed powering of [ , Top ] over Top .

There is a full blown Top -enriched Yoneda lemma. The following records a slightly simplified

version which is all that is needed here:

Proposition 3.73. (topologically enriched Yoneda-lemma)

Let  be a topologically enriched category, def. 3.65, write [ , Top ] for its category of

topologically enriched (co-)presheaves, and for ∈ Obj( ) write ( ) = ( , −) ∈ [ , Top ] for the

topologically enriched functor that it represents, all according to example 3.70. Recall the
tensoring operation ( , ) ↦ ⋅  from def. 3.72.

For ∈ Obj( ), ∈ Top  and ∈ [ , Top ], there is a natural bijection between

morphisms ( ) ⋅ ⟶  in [ , Top ];1. 

morphisms ⟶ ( ) in Top .2. 

In short:

( ) ⋅ ⟶
⟶ ( )

Proof. Given a morphism : ( ) ⋅ ⟶  consider its component

: ( , ) × ⟶ ( )

and restrict that to the identity morphism id ∈ ( , ) in the first argument

(id , −) : ⟶ ( ) .

We claim that just this (id , −) already uniquely determines all components

: ( , ) × ⟶ ( )

of , for all ∈ Obj( ): By definition of the transformation  (def. 3.68), the two functions

(−) ∘ : ( , ) ⟶ ( ) ( , ) ×

and

∘ ( , −) × : ( , ) ⟶ ( ) ( , ) ×

agree. This means (remark 3.69) that they may be thought of jointly as a function with values in
commuting squares in Top  of this form:

↦

( , ) × ⟶ ( )

( , ) ↓ ↓ ( )

( , ) × ⟶ ( )

For any ∈ ( , ), consider the restriction of
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∘ ( , ) ∈ ( ) ( , ) ×

to id ∈ ( , ), hence restricting the above commuting squares to

↦

{id } × ⟶ ( )

( , ) ↓ ↓( )

{ } × ⟶ ( )

This shows that  is fixed to be the function

( , ) = ( ) ∘ (id , )

and this is a continuous function since all the operations it is built from are continuous.

Conversely, given a continuous function : ⟶ ( ), define for each  the function

: ( , ) ↦ ( ) ∘ .

Running the above analysis backwards shows that this determines a transformation
: ( ) × → .  ▮

Definition 3.74. For  a small topologically enriched category, def. 3.65, write

≔ ( ) ⋅ ( − ⟶ ) ∈ ℕ,

∈ ( )

and

≔ ( ) ⋅ ( →⎯⎯⎯⎯
( , )

× ) ∈ ℕ,

∈ ( )

for the sets of morphisms given by tensoring (def. 3.72) the representable functors (example
3.70) with the generating cofibrations (def.1.37) and acyclic generating cofibrations (def.
1.42), respectively, of (Top )  (theorem 3.51).

These are going to be called the generating cofibrations and acyclic generating
cofibrations for the projective model structure on topologically enriched functors over .

Analgously, for  a pointed topologically enriched category, write

* / ≔ ( ) ∧ ( +
− →⎯⎯⎯

( )+
+) ∈ ℕ,

∈ ( )

and

* / ≔ ( ) ∧ ( + →⎯⎯⎯⎯⎯⎯
( , )+ ( × )+) ∈ ℕ,

∈ ( )

for the analogous construction applied to the pointed generating (acyclic) cofibrations of def.
3.33.

Definition 3.75. Given a small (pointed) topologically enriched category , def. 3.65, say that a
morphism in the category of (pointed) topologically enriched copresheaves [ , Top ]

([ , Top * /]), example 3.70, hence a natural transformation between topologically enriched
functors, : →  is

a projective weak equivalence, if for all ∈ Obj( ) the component : ( ) → ( ) is a
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weak homotopy equivalence (def. 1.30);

a projective fibration if for all ∈ Obj( ) the component : ( ) → ( ) is a Serre

fibration (def. 1.47);

a projective cofibration if it is a retract (rmk. 2.12) of an -relative cell complex
(def. 1.41, def. 3.74).

Write

[ , (Top ) ]

and

[ , (Top * /) ]

for the categories of topologically enriched functors equipped with these classes of morphisms.

Theorem 3.76. The classes of morphisms in def. 3.75 constitute a model category structure on
[ , Top ] and [ , Top * /], called the projective model structure on enriched functors

[ , (Top ) ]

and

[ , (Top * /) ]

These are cofibrantly generated model category, def. 3.9, with set of generating (acyclic)
cofibrations the sets ,  and * / , * /  from def. 3.74, respectively.

(Piacenza 91, theorem 5.4)

Proof. By prop. 3.71 the category has all limits and colimits, hence it remains to check the
model structure

But via the enriched Yoneda lemma (prop. 3.73) it follows that proving the model structure
reduces objectwise to the proof of theorem 3.7, theorem 3.51. In particular, the technical
lemmas 1.40, 1.45 and 1.52 generalize immediately to the present situation, with the evident
small change of wording:

For instance, the fact that a morphism of topologically enriched functors : →  that has the
right lifting property against the elements of  is a projective weak equivalence, follows by
noticing that for fixed : →  the enriched Yoneda lemma prop. 3.73 gives a natural bijection of
commuting diagrams (and their fillers) of the form

⎛

⎝

⎜⎜

( ) ⋅ − ⟶

( ⋅ ) ↓ ↓

( ) ⋅ ⟶

⎞

⎠

⎟⎟
↔

⎛

⎝

⎜⎜

− ⟶ ( )

↓ ↓

⟶ ( )

⎞

⎠

⎟⎟
,

and hence the statement follows with part A) of the proof of lemma 1.52.

With these three lemmas in hand, the remaining formal part of the proof goes through verbatim
as above: repeatedly use the small object argument (prop. 2.17) and the retract argument
(prop. 2.15) to establish the two weak factorization systems. (While again the structure of a
category with weak equivalences is evident.)  ▮

Example 3.77. Given examples 3.67 and 3.70, the next evident example of a pointed
topologically enriched category besides Top * / itself is the functor category
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[Top * /, Top * /] .

The only technical problem with this is that Top * / is not a small category (it has a proper class
of objects), which means that the existence of all limits and colimits via prop. 3.71 may (and
does) fail.

But so we just restrict to a small topologically enriched subcategory. A good choice is the full
subcategory

Top ,
* / ↪ Top * /

of topological spaces homoemorphic to finite CW-complexes. The resulting projective model
category (via theorem 3.76)

[Top ,
* / , (Top * /) ]

is also also known as the strict model structure for excisive functors. (This terminology is
the special case for = 1 of the terminology “n-excisive functors” as used in “Goodwillie
calculus”, a homotopy-theoretic analog of differential calculus.) After enlarging its class of
weak equivalences while keeping the cofibrations fixed, this will become Quillen equivalent to
a model structure for spectra. This we discuss in part 1.2, in the section on pre-excisive
functors.

One consequence of theorem 3.76 is the model category theoretic incarnation of the theory of
homotopy colimits.

Observe that ordinary limits and colimits (def. 1.1) are equivalently characterized in terms of
adjoint functors:

Let  be any category and let  be a small category. Write [ , ] for the corresponding functor
category. We may think of its objects as -shaped diagrams in , and of its morphisms as
homomorphisms of these diagrams. There is a canonical functor

const : ⟶ [ , ]

which sends each object of  to the diagram that is constant on this object. Inspection of the
definition of the universal properties of limits and colimits on one hand, and of left adjoint and
right adjoint functors on the other hand, shows that

precisely when  has all colimits of shape , then the functor const  has a left adjoint functor,
which is the operation of forming these colimits:

[ , ] ⊥←⎯⎯⎯⎯
→⎯⎯⎯⎯

→⎯⎯⎯

1. 

precisely when  has all limits of shape , then the functor const  has a right adjoint functor,
which is the operation of forming these limits.

[ , ] ⊥
→⎯⎯⎯⎯

←⎯⎯⎯

←⎯⎯⎯⎯

2. 

Proposition 3.78. Let  be a small topologically enriched category (def. 3.65). Then the
(lim→⎯⎯ ⊣ const )-adjunction

[ , (Top ) ] ⊥←⎯⎯⎯⎯
→⎯⎯⎯⎯

→⎯⎯⎯

(Top )
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is a Quillen adjunction (def. 2.46) between the projective model structure on topological
functors on , from theorem 3.76, and the classical model structure on topological spaces from
theorem 3.51.

Similarly, if  is enriched in pointed topological spaces, then for the classical model structure
on pointed topological spaces (prop. 3.29, theorem 3.34) the adjunction

[ , (Top * /) ] ⊥←⎯⎯⎯⎯
→⎯⎯⎯⎯→⎯⎯⎯

(Top * /)

is a Quillen adjunction.

Proof. Since the fibrations and weak equivalences in the projective model structure (def. 3.75)
on the functor category are objectwise those of (Top )  and of (Top * /) , respectively, it

is immediate that the functor const  preserves these. In particular it preserves fibrations and
acyclic fibrations and so the claim follows (prop. 2.47).  ▮

Definition 3.79. In the situation of prop. 3.78 we say that the left derived functor (def. 2.42) of
the colimit functor is the homotopy colimit

hocolim ≔ lim→⎯⎯ : Ho([ , Top]) ⟶ Ho(Top)

and

hocolim ≔ lim
→⎯⎯

: Ho([ , Top * /]) ⟶ Ho(Top * /) .

Remark 3.80. Since every object in (Top )  and in (Top * /)  is fibrant, the homotopy

colimit of any diagram •, according to def. 3.79, is (up to weak homotopy equivalence) the

result of forming the ordinary colimit of any projectively cofibrant replacement ^
• ⎯⎯⎯⎯

∈

•.

Example 3.81. Write ℕ≤ for the poset (def. 1.15) of natural numbers, hence for the small
category (with at most one morphism from any given object to any other given object) that
looks like

ℕ≤ = {0 → 1 → 2 → 3 → ⋯} .

Regard this as a topologically enriched category with the, necessarily, discrete topology on its
hom-sets.

Then a topologically enriched functor

• : ℕ≤ ⟶ Top

is just a plain functor and is equivalently a sequence of continuous functions (morphisms in
Top ) of the form (also called a cotower)

⟶ ⟶ ⟶ ⟶ ⋯ .

It is immediate to check that those sequences • which are cofibrant in the projective model
structure (theorem 3.76) are precisely those for which

all component morphisms  are cofibrations in (Top )  or (Top * /) , respectively,

hence retracts (remark 2.12) of relative cell complex inclusions (def. 1.38);

1. 

the object , and hence all other objects, are cofibrant, hence are retracts of cell
complexes (def. 1.38).

2. 

By example 3.81 it is immediate that the operation of forming colimits sends projective (acyclic)
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cofibrations between sequences of topological spaces to (acyclic) cofibrations in the classical
model structure on pointed topological spaces. On those projectively cofibrant sequences where
every map is not just a retract of a relative cell complex inclusion, but a plain relative cell
complex inclusion, more is true:

Proposition 3.82. In the projective model structures on cotowers in topological spaces,
[ℕ≤, (Top ) ]  and [ℕ≤, (Top * /) ]  from def. 3.81, the following holds:

The colimit functor preserves fibrations between sequences of relative cell complex
inclusions;

1. 

Let  be a finite category, let •( −) : → [ℕ≤, Top ] be a finite diagram of sequences of

relative cell complexes. Then there is a weak homotopy equivalence

lim
→⎯⎯

lim
←⎯⎯

( ) →⎯⎯⎯⎯
∈

lim
←⎯⎯

lim
→⎯⎯

( )

from the colimit over the limit sequnce to the limit of the colimits of sequences.

2. 

Proof. Regarding the first statement:

Use that both (Top )  and (Top * /)  are cofibrantly generated model categories (theorem

3.34) whose generating acyclic cofibrations have compact topological spaces as domains and
codomains. The colimit over a sequence of relative cell complexes (being a transfinite
composition) yields another relative cell complex, and hence lemma 1.40 says that every
morphism out of the domain or codomain of a generating acyclic cofibration into this colimit
factors through a finite stage inclusion. Since a projective fibration is a degreewise fibration, we
have the lifting property at that finite stage, and hence also the lifting property against the
morphisms of colimits.

Regarding the second statement:

This is a model category theoretic version of a standard fact of plain category theory, which says
that in the category Set of sets, filtered colimits commute with finite limits in that there is an
isomorphism of sets of the form which we have to prove is a weak homotopy equivalence of
topological spaces. But now using that weak homotopy equivalences are detected by forming
homotopy groups (def. 1.26), hence hom-sets out of n-spheres, and since -spheres are
compact topological spaces, lemma 1.40 says that homming out of -spheres commutes over
the colimits in question. Moreover, generally homming out of anything commutes over limits, in
particular finite limits (every hom functor is left exact functor in the second variable). Therefore
we find isomorphisms of the form

Hom , lim→⎯⎯ lim←⎯⎯ ( ) ≃ lim→⎯⎯ lim←⎯⎯Hom( , ( )) ⟶∼ lim←⎯⎯ lim→⎯⎯ Hom( ( )) ≃ Hom , lim←⎯⎯ lim→⎯⎯ ( )

and similarly for the left homotopies Hom( × , −) (and similarly for the pointed case). This
implies the claimed isomorphism on homotopy groups.  ▮

4. Homotopy fiber sequences

A key aspect of homotopy theory is that the universal constructions of category theory, such as
limits and colimits, receive a refinement whereby their universal properties hold not just up to
isomorphism but up to (weak) homotopy equivalence. One speaks of homotopy limits and
homotopy colimits.

We consider this here just for the special case of homotopy fibers and homotopy cofibers,
leading to the phenomenon of homotopy fiber sequences and their induced long exact
sequences of homotopy groups which control much of the theory to follow.
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Mapping cones

In the context of homotopy theory, a pullback diagram, such as in the definition of the fiber in
example 3.27

fib( ) ⟶

↓ ↓

* ⟶

ought to commute only up to a (left/right) homotopy (def. 2.22) between the outer composite
morphisms. Moreover, it should satisfy its universal property up to such homotopies.

Instead of going through the full theory of what this means, we observe that this is plausibly
modeled by the following construction, and then we check (below) that this indeed has the
relevant abstract homotopy theoretic properties.

Definition 4.1. Let  be a model category, def. 2.3 with * / its model structure on pointed
objects, prop. 3.29. For : ⟶  a morphism between cofibrant objects (hence a morphism in
( * /) ↪ * /, def. 2.34), its reduced mapping cone is the object

Cone( ) ≔ * ⊔ Cyl( ) ⊔

in the colimiting diagram

⟶

↓ ↓

⟶ Cyl( )

↓ ↘ ↓

* ⟶ ⟶ Cone( )

,

where Cyl( ) is a cylinder object for , def. 2.18.

Dually, for : ⟶  a morphism between fibrant objects (hence a morphism in ( *) ↪ * /, def.

2.34), its mapping cocone is the object

Path*( ) ≔ * × Path( ) ×

in the following limit diagram

Path*( ) ⟶ ⟶

↓ ↘ ↓

Path( ) ⟶

↓ ↓

* ⟶

,

where Path( ) is a path space object for , def. 2.18.

Remark 4.2. When we write homotopies (def. 2.22) as double arrows between morphisms,
then the limit diagram in def. 4.1 looks just like the square in the definition of fibers in
example 3.27, except that it is filled by the right homotopy given by the component map
denoted :
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Path*( ) ⟶

↓ ⇙ ↓

* ⟶

.

Dually, the colimiting diagram for the mapping cone turns to look just like the square for the
cofiber, except that it is filled with a left homotopy

⟶

↓ ⇙ ↓

* ⟶ Cone( )

Proposition 4.3. The colimit appearing in the definition of the reduced mapping cone in def.
4.1 is equivalent to three consecutive pushouts:

⟶

↓ (po) ↓

⟶ Cyl( ) ⟶ Cyl( )

↓ (po) ↓ (po) ↓

* ⟶ Cone( ) ⟶ Cone( )

.

The two intermediate objects appearing here are called

the plain reduced cone Cone( ) ≔ * ⊔ Cyl( );

the reduced mapping cylinder Cyl( ) ≔ Cyl( ) ⊔ .

Dually, the limit appearing in the definition of the mapping cocone in def. 4.1 is equivalent to
three consecutive pullbacks:

Path*( ) ⟶ Path( ) ⟶

↓ (pb) ↓ (pb) ↓

Path*( ) ⟶ Path( ) ⟶

↓ (pb) ↓

* ⟶

.

The two intermediate objects appearing here are called

the based path space object Path*( ) ≔ * ∏ Path( );

the mapping path space or mapping co-cylinder Path( ) ≔ × Path( ).

Definition 4.4. Let ∈ * / be any pointed object.

The mapping cone, def. 4.3, of → *  is called the reduced suspension of , denoted

= Cone( → * ) .

Via prop. 4.3 this is equivalently the coproduct of two copies of the cone on  over their
base:

1. 
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⟶ *

↓ (po) ↓

⟶ Cyl( ) ⟶ Cone( )

↓ (po) ↓ (po) ↓

* ⟶ Cone( ) ⟶

.

This is also equivalently the cofiber, example 3.27 of ( , ), hence (example 3.20) of the
wedge sum inclusion:

∨ = ⊔ →⎯⎯⎯⎯
( , )

Cyl( ) →⎯⎯⎯⎯⎯⎯⎯⎯
( , )

.

The mapping cocone, def. 4.3, of * →  is called the loop space object of , denoted

= Path*( * → ) .

Via prop. 4.3 this is equivalently

⟶ Path*( ) ⟶ *

↓ (pb) ↓ (pb) ↓

Path*( ) ⟶ Path( ) ⟶

↓ (pb) ↓

* ⟶

.

This is also equivalently the fiber, example 3.27 of ( , ):

→⎯⎯⎯⎯⎯⎯⎯
( , )

Path( ) →⎯⎯⎯⎯⎯
( , )

× .

2. 

Proposition 4.5. In pointed topological spaces Top * /,

the reduced suspension objects (def. 4.4) induced from the standard reduced cylinder
( −) ∧ ( +) of example 3.25 are isomorphic to the smash product (def. 3.22) with the
1-sphere, for later purposes we choose to smash on the left and write

cofib( ∨ → ∧ ( +)) ≃ ∧ ,

Dually:

the loop space objects (def. 4.4) induced from the standard pointed path space object
Maps( +, −)

*
 are isomorphic to the pointed mapping space (example 3.26) with the

1-sphere

fib(Maps( +, )
*

→ × ) ≃ Maps( , )
*

.

Proof. By immediate inspection: For instance the fiber of Maps( +, )
*

⟶ ×  is clearly the

subspace of the unpointed mapping space  on elements that take the endpoints of  to the
basepoint of .  ▮

Example 4.6. For = Top with Cyl( ) = ×  the standard cyclinder object, def. 1.22, then by
example 1.12, the mapping cone, def. 4.1, of a continuous function : ⟶  is obtained by

forming the cylinder over ;1. 

attaching to one end of that cylinder the space  as specified by the map .2. 

shrinking the other end of the cylinder to the point.3. 
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Accordingly the
suspension of a
topological space is the
result of shrinking both
ends of the cylinder on
the object two the
point. This is
homeomoprhic to
attaching two copies of
the cone on the space
at the base of the cone.

(graphics taken from
Muro 10)

Below in example 4.19
we find the homotopy-
theoretic interpretation
of this standard
topological mapping cone as a model for the homotopy cofiber.

Remark 4.7. The formula for the mapping cone in prop. 4.3 (as opposed to that of the mapping
co-cone) does not require the presence of the basepoint: for : ⟶  a morphism in  (as
opposed to in * /) we may still define

Cone′ ( ) ≔ ⊔ Cone′( ) ,

where the prime denotes the unreduced cone, formed from a cylinder object in .

Proposition 4.8. For : ⟶  a morphism in Top, then its unreduced mapping cone, remark
4.7, with respect to the standard cylinder object ×  def. 1.22, is isomorphic to the reduced
mapping cone, def. 4.1, of the morphism + : + → + (with a basepoint adjoined, def. 3.18)

with respect to the standard reduced cylinder (example 3.25):

Cone′( ) ≃ Cone( +) .

Proof. By prop. 3.19 and example 3.24, Cone( +) is given by the colimit in Top over the following

diagram:

* ⟶ ⊔ * →⎯⎯⎯
( , )

⊔ *

↓ ↓ ↓

⊔ * ⟶ ( × ) ⊔ *

↓ ↓

* ⟶ ⟶ Cone( +)

.

We may factor the vertical maps to give

* ⟶ ⊔ * →⎯⎯⎯
( , )

⊔ *

↓ ↓ ↓

⊔ * ⟶ ( × ) ⊔ *

↓ ↓

* ⊔ * ⟶ ⟶ Cone′( )+

↓ ↓

* ⟶ ⟶ Cone′ ( )

.
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This way the top part of the diagram (using the pasting law to compute the colimit in two
stages) is manifestly a cocone under the result of applying ( −)+ to the diagram for the

unreduced cone. Since (−)+ is itself given by a colimit, it preserves colimits, and hence gives the

partial colimit Cone′ ( )+ as shown. The remaining pushout then contracts the remaining copy of

the point away.  ▮

Example 4.6 makes it clear that every cycle →  in  that happens to be in the image of  can
be continuously translated in the cylinder-direction, keeping it constant in , to the other end of
the cylinder, where it shrinks away to the point. This means that every homotopy group of ,
def. 1.26, in the image of  vanishes in the mapping cone. Hence in the mapping cone the
image of  under  in  is removed up to homotopy. This makes it intuitively clear how
Cone( ) is a homotopy-version of the cokernel of . We now discuss this formally.

Lemma 4.9. (factorization lemma)

Let  be a category of cofibrant objects, def. 2.34. Then for every morphism : ⟶  the
mapping cylinder-construction in def. 4.3 provides a cofibration resolution of , in that

the composite morphism ⟶ Cyl( ) →⎯⎯⎯⎯
( )

* Cyl( ) is a cofibration;1. 

 factors through this morphism by a weak equivalence left inverse to an acyclic
cofibration

: →⎯⎯⎯⎯⎯⎯
∈

( )
*

∘
Cyl( ) →⎯⎯

∈
,

2. 

Dually:

Let  be a category of fibrant objects, def. 2.34. Then for every morphism : ⟶  the
mapping cocylinder-construction in def. 4.3 provides a fibration resolution of , in that

the composite morphism Path( ) →⎯⎯
*

Path( ) ⟶  is a fibration;1. 

 factors through this morphism by a weak equivalence right inverse to an acyclic
fibration:

: →⎯⎯
∈

Path( ) →⎯⎯⎯⎯⎯⎯
∈

∘ *
,

2. 

Proof. We discuss the second case. The first case is formally dual.

So consider the mapping cocylinder-construction from prop. 4.3

Path( ) →⎯⎯⎯⎯⎯⎯
∈ ∩

*
↓ (pb) ↓

Path( ) →⎯⎯⎯⎯⎯⎯
∈ ∩

∈ ∩ ↓

.

To see that the vertical composite is indeed a fibration, notice that, by the pasting law, the
above pullback diagram may be decomposed as a pasting of two pullback diagram as follows
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Path( ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
∈

( , )*( , )
× ⎯

↓ ↓( , ) ↓

Path( ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯
( , ) ∈

× ⟶

↓ ↙
∈

.

Both squares are pullback squares. Since pullbacks of fibrations are fibrations by prop. 2.10, the
morphism Path( ) → ×  is a fibration. Similarly, since  is fibrant, also the projection map

× →  is a fibration (being the pullback of → *  along → * ).

Since the vertical composite is thereby exhibited as the composite of two fibrations

Path( ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( , )*( , )

× →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
∘( , ) =

,

it is itself a fibration.

Then to see that there is a weak equivalence as claimed:

The universal property of the pullback Path( ) induces a right inverse of Path( ) →  fitting into
this diagram

id : →⎯⎯
∈

∃
Path( ) →⎯⎯⎯⎯⎯⎯

∈ ∩

↓ ↓ ↓

id : →⎯⎯
∈

Path( ) →

↘ ↓

,

which is a weak equivalence, as indicated, by two-out-of-three (def. 2.1).

This establishes the claim.  ▮

Categories of fibrant objects

Below we discuss the homotopy-theoretic properties of the mapping cone- and mapping cocone-
constructions from above. Before we do so, we here establish a collection of general facts that
hold in categories of fibrant objects and dually in categories of cofibrant objects, def. 2.34.

Literature (Brown 73, section 4).

Lemma 4.10. Let : ⟶  be a morphism in a category of fibrant objects, def. 2.34. Then given
any choice of path space objects Path( ) and Path( ), def. 2.18, there is a replacement of

Path( ) by a path space object Path( ) along an acylic fibration, such that Path( ) has a
morphism  to Path( ) which is compatible with the structure maps, in that the following
diagram commutes
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⟶

↙ ↓ ↓

Path( ) ←⎯⎯⎯⎯⎯⎯
∈ ∩

Path( ) ⟶ Path( )

( , )
↘ ↓( , ) ↓( ˜ , ˜ )

× →⎯⎯⎯
( , )

×

.

(Brown 73, section 2, lemma 2)

Proof. Consider the commuting square

⟶ ⟶ Path( )

↓ ↓( , )

Path( ) →⎯⎯⎯⎯⎯⎯
( , )

× →⎯⎯⎯
( , )

×

.

Then consider its factorization through the pullback of the right morphism along the bottom
morphism,

⟶ ( ∘ , ∘ )*Path( ) ⟶ Path( )

∈ ↘ ↓ ∈ ∩ ↓ ∈

( , )

Path( ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( ∘ , ∘ )

×

.

Finally use the factorization lemma 4.9 to factor the morphism → ( ∘ , ∘ )*Path( ) through

a weak equivalence followed by a fibration, the object this factors through serves as the desired
path space resolution

→⎯⎯
∈

Path( ) ⟶ Path( )

∈ ↘ ↓ ∈ ∩ ↓( , )

Path( ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( ∘ , ∘ )

×

.

  ▮

Lemma 4.11. In a category of fibrant objects , def. 2.34, let

⟶

∈ ↘ ↙ ∈

be a morphism over some object  in  and let : ′ →  be any morphism in . Let

* →⎯⎯
*

*

∈ ↘ ↙ ∈

′

be the corresponding morphism pulled back along .

Then

if  is a fibration then also *  is a fibration;
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if  is a weak equivalence then also *  is a weak equivalence.

(Brown 73, section 4, lemma 1)

Proof. For ∈ Fib the statement follows from the pasting law which says that if in

′ × ⟶

↓
* ∈ ↓ ∈

′ × ⟶

↓ ∈ ↓ ∈

′ ⟶

the bottom and the total square are pullback squares, then so is the top square. The same
reasoning applies for ∈ ∩ Fib.

Now to see the case that ∈ :

Consider the full subcategory ( / )  of the slice category /  (def. 3.15) on its fibrant objects,

i.e. the full subcategory of the slice category on the fibrations

↓ ∈

into . By factorizing for every such fibration the diagonal morphisms into the fiber product ×

through a weak equivalence followed by a fibration, we obtain path space objects Path ( )

relative to :

( )/ : →⎯⎯
∈

Path ( ) →⎯⎯⎯
∈

×

∈ ↘ ↓ ↙ ∈
.

With these, the factorization lemma (lemma 4.9) applies in ( / ) .

(Notice that for this we do need the restriction of /  to the fibrations, because this ensures that

the projections : × →  are still fibrations, which is used in the proof of the factorization

lemma (here).)

So now given any

→⎯⎯
∈

∈ ↘ ↙ ∈

apply the factorization lemma in ( / )  to factor it as

→⎯⎯⎯
∈

Path ( ) →⎯⎯⎯⎯⎯⎯
∈ ∩

∈ ↘ ↓ ↙∈
.

By the previous discussion it is sufficient now to show that the base change of  to ′  is still a
weak equivalence. But by the factorization lemma in ( / ) , the morphism  is right inverse to
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another acyclic fibration over :

id : →⎯⎯⎯
∈

Path ( ) →⎯⎯⎯⎯⎯⎯
∈ ∩

∈ ↘ ↓ ↙ ∈
.

(Notice that if we had applied the factorization lemma of  in  instead of ( )/  in ( / ) then

the corresponding triangle on the right here would not commute.)

Now we may reason as before: the base change of the top morphism here is exhibited by the
following pasting composite of pullbacks:

′ × ⟶

↓ (pb) ↓

′ × Path ( ) ⟶ Path ( )

↓ (pb) ↓ ∈ ∩

′ × ⟶

↓ (pb) ↓

′ ⟶

.

The acyclic fibration Path ( ) is preserved by this pullback, as is the identity id : → Path ( ) → .
Hence the weak equivalence → Path ( ) is preserved by two-out-of-three (def. 2.1).

Lemma 4.12. In a category of fibrant objects, def. 2.34, the pullback of a weak equivalence
along a fibration is again a weak equivalence.

(Brown 73, section 4, lemma 2)

Proof. Let : ′ →  be a weak equivalence and : →  be a fibration. We want to show that the
left vertical morphism in the pullback

× ′ ⟶ ′

↓ ⇒ ∈ ↓ ∈

→⎯⎯⎯
∈

is a weak equivalence.

First of all, using the factorization lemma 4.9 we may factor ′ →  as

′ →⎯⎯
∈

Path( ) →⎯⎯⎯⎯⎯
∈ ∩

with the first morphism a weak equivalence that is a right inverse to an acyclic fibration and the
right one an acyclic fibration.

Then the pullback diagram in question may be decomposed into two consecutive pullback
diagrams

× ′ → ′

↓ ↓

⎯⎯
∈

Path( )

↓ ∈ ∩ ↓ ∈ ∩

→⎯⎯⎯
∈

,
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where the morphisms are indicated as fibrations and acyclic fibrations using the stability of these
under arbitrary pullback.

This means that the proof reduces to proving that weak equivalences : ′ ⎯
∈

 that are right

inverse to some acyclic fibration : ⎯⎯⎯⎯
∈ ∩

′  map to a weak equivalence under pullback along a
fibration.

Given such  with right inverse , consider the pullback diagram

( , )

∈ ↓ ↘

≔ × →⎯⎯⎯⎯⎯⎯
∈ ∩

↓ ∈ ↓ ∈

(pb)

↓ ↓ ∈ ∩

→⎯⎯⎯⎯⎯⎯⎯
∈ ∩

′

.

Notice that the indicated universal morphism × Id : ⎯
∈

 into the pullback is a weak
equivalence by two-out-of-three (def. 2.1).

The previous lemma 4.11 says that weak equivalences between fibrations over  are themselves
preserved by base extension along : ′ → . In total this yields the following diagram

* = ′ × ⟶

*( × )

∈ ↓
×

∈ ↓ ↘

* ⟶ →⎯⎯⎯⎯⎯⎯
∈ ∩

↓ ∈ ↓ ∈ ↓ ∈

↓ ↓ ↓ ∈ ∩

′ ⟶ →⎯⎯⎯⎯⎯⎯⎯
∈ ∩

′

so that with × Id: →  a weak equivalence also *( × Id) is a weak equivalence, as indicated.

Notice that * = ′ × →  is the morphism that we want to show is a weak equivalence. By
two-out-of-three (def. 2.1) for that it is now sufficient to show that * →  is a weak
equivalence.

That finally follows now since, by assumption, the total bottom horizontal morphism is the
identity. Hence so is the top horizontal morphism. Therefore * →  is right inverse to a weak
equivalence, hence is a weak equivalence.  ▮

Lemma 4.13. Let ( * /)  be a category of fibrant objects, def. 2.34 in a model structure on

pointed objects (prop. 3.29). Given any commuting diagram in  of the form

′ →⎯⎯
∈

⟶⟶

↓ ∈ ↓ ∈

⟶
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(meaning: both squares commute and  equalizes  with ) then the localization functor

: ( * /) → Ho( * /) (def. 2.28, cor 2.36) takes the morphisms fib( ) ⟶⟶ fib( ) induced by  and

 on fibers (example 3.27) to the same morphism, in the homotopy category.

(Brown 73, section 4, lemma 4)

Proof. First consider the pullback of  along : this forms the same kind of diagram but with

the bottom morphism an identity. Hence it is sufficient to consider this special case.

Consider the full subcategory ( /
* / )  of the slice category /

* /  (def. 3.15) on its fibrant objects,

i.e. the full subcategory of the slice category on the fibrations

↓ ∈

into . By factorizing for every such fibration the diagonal morphisms into the fiber product ×

through a weak equivalence followed by a fibration, we obtain path space objects Path ( )

relative to :

( )/ : →⎯⎯
∈

Path ( ) →⎯⎯⎯
∈

×

∈ ↘ ↓ ↙ ∈
.

With these, the factorization lemma (lemma 4.9) applies in ( /
* / ) .

Let then → Path ( ) ⎯⎯⎯⎯
( , )

×  be a path space object for  in the slice over  and
consider the following commuting square

′ ⟶ Path ( )

∈ ↓ ↓ ∈

( , )

→⎯⎯⎯
( , )

×

.

By factoring this through the pullback ( , )*( , ) and then applying the factorization lemma

4.9 and then two-out-of-three (def. 2.1) to the factoring morphisms, this may be replaced by a
commuting square of the same form, where however the left morphism is an acyclic fibration

″ ⟶ Path ( )

∈ ∩ ↓ ↓ ∈

( , )

→⎯⎯⎯
( , )

×

.

This makes also the morphism ″ →  be a fibration, so that the whole diagram may now be
regarded as a diagram in the category of fibrant objects ( / )  of the slice category over .

As such, the top horizontal morphism now exhibits a right homotopy which under localization
: ( / ) ⟶ Ho( / ) (def. 2.28) of the slice model structure (prop. 3.29) we have

( ) = ( ) .

The result then follows by observing that we have a commuting square of functors
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( /
* / ) ⟶ * /

↓ ⇙ ↓

Ho( /
* / ) ⟶ Ho( * /)

,

because, by lemma 4.11, the top and right composite sends weak equivalences to
isomorphisms, and hence the bottom filler exists by theorem 2.31. This implies the claim.  ▮

Homotopy fibers

We now discuss the homotopy-theoretic properties of the mapping cone- and mapping cocone-
constructions from above.

Literature (Brown 73, section 4).

Remark 4.14. The factorization lemma 4.9 with prop. 4.3 says that the mapping cocone of a
morphism , def. 4.1, is equivalently the plain fiber, example 3.27, of a fibrant resolution ˜  of
:

Path*( ) ⟶ Path( )

↓ (pb) ↓
˜

* ⟶

.

The following prop. 4.15 says that, up to equivalence, this situation is independent of the
specific fibration resolution ˜  provided by the factorization lemma (hence by the prescription for
the mapping cocone), but only depends on it being some fibration resolution.

Proposition 4.15. In the category of fibrant objects ( * /) , def. 2.34, of a model structure on

pointed objects (prop. 3.29) consider a morphism of fiber-diagrams, hence a commuting
diagram of the form

fib( ) ⟶ →⎯⎯⎯
∈

↓ ↓ ↓

fib( ) ⟶ →⎯⎯⎯
∈

.

If  and  weak equivalences, then so is ℎ.

Proof. Factor the diagram in question through the pullback of  along 

fib( ) ⟶

↓ ∈ ↓ ↘

fib( * ) ⟶ * →⎯⎯⎯
∈

*

↓≃ ↓ ∈ ↓ ∈

fib( ) ⟶ →⎯⎯⎯
∈

and observe that

fib( * ) = pt* * = pt* = fib( );1. 

* →  is a weak equivalence by lemma 4.12;2. 

→ *  is a weak equivalence by assumption and by two-out-of-three (def. 2.1);3. 
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Moreover, this diagram exhibits ℎ: fib( ) → fib( * ) = fib( ) as the base change, along * → , of

→ * . Therefore the claim now follows with lemma 4.11.  ▮

Hence we say:

Definition 4.16. Let  be a model category and * / its model category of pointed objects, prop.
3.29. For : ⟶  any morphism in its category of fibrant objects ( * /) , def. 2.34, then its

homotopy fiber

hofib( ) ⟶

is the morphism in the homotopy category Ho( * /), def. 2.25, which is represented by the

fiber, example 3.27, of any fibration resolution ˜  of  (hence any fibration ˜  such that  factors
through a weak equivalence followed by ˜ ).

Dually:

For : ⟶  any morphism in its category of cofibrant objects ( * /) , def. 2.34, then its

homotopy cofiber

⟶ hocofib( )

is the morphism in the homotopy category Ho( ), def. 2.25, which is represented by the

cofiber, example 3.27, of any cofibration resolution of  (hence any cofibration ˜  such that 
factors as ˜  followed by a weak equivalence).

Proposition 4.17. The homotopy fiber in def. 4.16 is indeed well defined, in that for  and 

two fibration replacements of any morphisms  in , then their fibers are isomorphic in
Ho( * /).

Proof. It is sufficient to exhibit an isomorphism in Ho( * /) from the fiber of the fibration
replacement given by the factorization lemma 4.9 (for any choice of path space object) to the
fiber of any other fibration resolution.

Hence given a morphism : ⟶  and a factorization

: →⎯⎯
∈

^ →⎯⎯⎯
∈

consider, for any choice Path( ) of path space object (def. 2.18), the diagram

Path( ) →⎯⎯⎯⎯⎯⎯
∈ ∩

∈ ↓ (pb) ↓ ∈

Path( ) →⎯⎯⎯⎯⎯⎯
∈ ∩ ^

∈ ↓ (pb) ↓ ∈

Path( ) →⎯⎯⎯⎯⎯⎯
∈ ∩

∈ ∩ ↓

as in the proof of lemma 4.9. Now by repeatedly using prop. 4.15:

the bottom square gives a weak equivalence from the fiber of Path( ) → Path( ) to the fiber

of ;

1. 
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The square

Path( ) ⟶ Path( )

↓ ↓

Path( ) ⟶

gives a weak equivalence from the fiber of Path( ) → Path( ) to the fiber of Path( ) → .

2. 

Similarly the total vertical composite gives a weak equivalence via

Path( ) →⎯⎯
∈

Path( )

↓ ↓

⟶

3. 

from the fiber of Path( ) →  to the fiber of Path( ) → .

Together this is a zig-zag of weak equivalences of the form

fib( ) ←⎯⎯
∈

fib(Path( ) → Path( )) →⎯⎯
∈

fib(Path( ) → ) ←⎯⎯
∈

fib(Path( ) → )

between the fiber of Path( ) →  and the fiber of . This gives an isomorphism in the homotopy

category.  ▮

Example 4.18. (fibers of Serre fibrations)

In showing that Serre fibrations are abstract fibrations in the sense of model category theory,
theorem 3.7 implies that the fiber  (example 3.27) of a Serre fibration, def. 1.47

⟶

↓

over any point is actually a homotopy fiber in the sense of def. 4.16. With prop. 4.15 this
implies that the weak homotopy type of the fiber only depends on the Serre fibration up to
weak homotopy equivalence in that if ′ : ′ → ′  is another Serre fibration fitting into a
commuting diagram of the form

→⎯⎯⎯
∈

′

↓ ↓

→⎯⎯⎯
∈

′

then →⎯⎯⎯⎯
∈

′ .

In particular this gives that the weak homotopy type of the fiber of a Serre fibration : →
does not change as the basepoint is moved in the same connected component. For let : ⟶
be a path between two points

, : * →⎯⎯⎯⎯
∈

,
⟶ .

Then since all objects in (Top )  are fibrant, and since the endpoint inclusions ,  are

weak equivalences, lemma 4.12 gives the zig-zag of top horizontal weak equivalences in the
following diagram:
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= * →⎯⎯⎯
∈

* ←⎯⎯⎯
∈

* =

↓ (pb) ↓
*

∈ (pb) ↓

* →⎯⎯⎯
∈

←⎯⎯⎯
∈

*

and hence an isomorphism ≃  in the classical homotopy category (def. 3.11).

The same kind of argument applied to maps from the square  gives that if , : →  are

two homotopic paths with coinciding endpoints, then the isomorphisms between fibers over
endpoints which they induce are equal. (But in general the isomorphism between the fibers
does depend on the choice of homotopy class of paths connecting the basepoints!)

The same kind of argument also shows that if  has the structure of a cell complex (def. 1.38)
then the restriction of the Serre fibration to one cell  may be identified in the homotopy
category with × , and may be canonically identified so if the fundamental group of  is
trivial. This is used when deriving the Serre-Atiyah-Hirzebruch spectral sequence for  (prop.).

Example 4.19. For every continuous function : ⟶  between CW-complexes, def. 1.38, then
the standard topological mapping cone is the attaching space (example 1.12)

∪ Cone( ) ∈ Top

of  with the standard cone Cone( ) given by collapsing one end of the standard topological
cyclinder ×  (def. 1.22) as shown in example 4.6.

Equipped with the canonical continuous function

⟶ ∪ Cone( )

this represents the homotopy cofiber, def. 4.16, of  with respect to the classical model
structure on topological spaces = Top  from theorem 3.7.

Proof. By prop. 3.13, for  a CW-complex then the standard topological cylinder object ×  is
indeed a cyclinder object in Top . Therefore by prop. 4.3 and the factorization lemma 4.9,

the mapping cone construction indeed produces first a cofibrant replacement of  and then the
ordinary cofiber of that, hence a model for the homotopy cofiber.  ▮

Example 4.20. The homotopy fiber of the inclusion of classifying spaces ( ) ↪ ( + 1) is the
n-sphere . See this prop. at Classifying spaces and G-structure.

Example 4.21. Suppose a morphism : ⟶  already happens to be a fibration between fibrant
objects. The factorization lemma 4.9 replaces it by a fibration out of the mapping cocylinder
Path( ), but such that the comparison morphism is a weak equivalence:

fib( ) ⟶ →⎯⎯⎯
∈

↓ ∈ ↓ ∈ ↓

fib( ˜ ) ⟶ Path( ) →⎯⎯⎯
∈

˜

.

Hence by prop. 4.15 in this case the ordinary fiber of  is weakly equivalent to the mapping
cocone, def. 4.1.

We may now state the abstract version of the statement of prop. 1.51:

Proposition 4.22. Let  be a model category. For : →  any morphism of pointed objects,
and for  a pointed object, def. 3.16, then the sequence
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[ , hofib( )]
*

⟶* [ , ]
*

⟶* [ , ]
*

is exact as a sequence of pointed sets.

(Where the sequence here is the image of the homotopy fiber sequence of def. 4.16 under the
hom-functor [ , −]

*
: Ho( * /) ⟶ Set * / from example 3.30.)

Proof. Let ,  and  denote fibrant-cofibrant objects in * / representing the given objects of
the same name in Ho( * /). Moreover, let  be a fibration in * / representing the given morphism
of the same name in Ho( * /).

Then by def. 4.16 and prop. 4.17 there is a representative hofib( ) ∈  of the homotopy fiber
which fits into a pullback diagram of the form

hofib( ) ⟶

↓ ↓

* ⟶

With this the hom-sets in question are represented by genuine morphisms in * /, modulo
homotopy. From this it follows immediately that im( *) includes into ker(

*
). Hence it remains to

show the converse: that every element in ker(
*
) indeed comes from im( *).

But an element in ker(
*
) is represented by a morphism : →  such that there is a left

homotopy as in the following diagram

⟶

↓ ˜ ↗ ↓

⟶ Cyl( ) ⟶

↓ ↓=

* ⟶

.

Now by lemma 2.20 the square here has a lift ˜ , as shown. This means that ∘ ˜  is left
homotopic to . But by the universal property of the fiber, ∘ ˜  factors through : hofib( ) → .  ▮

With prop. 4.15 it also follows notably that the loop space construction becomes well-defined on
the homotopy category:

Remark 4.23. Given an object ∈ * /, and picking any path space object Path( ), def. 2.18 with
induced loop space object , def. 4.4, write Path ( ) = Path( ) × Path( ) for the path space

object given by the fiber product of Path( ) with itself, via example 2.21. From the pullback
diagram there, the fiber inclusion → Path( ) induces a morphism

× ⟶ ( ) .

In the case where * / = Top * / and  is induced, via def. 4.4, from the standard path space
object (def. 1.34), i.e. in the case that

= fib(Maps( +, )
*

⟶ × ) ,

then this is the operation of concatenating two loops parameterized by = [0, 1] to a single loop
parameterized by [0, 2].

Proposition 4.24. Let  be a model category, def. 2.3. Then the construction of forming loop

space objects ↦ , def. 4.4 (which on * / depends on a choice of path space objects, def.
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2.18) becomes unique up to isomorphism in the homotopy category (def. 2.25) of the model
structure on pointed objects (prop. 3.29) and extends to a functor:

: Ho( * /) ⟶ Ho( * /) .

Dually, the reduced suspension operation, def. 4.4, which on * / depends on a choice of
cylinder object, becomes a functor on the homotopy category

: Ho( * /) ⟶ Ho( * /) .

Moreover, the pairing operation induced on the objects in the image of this functor via remark
4.23 (concatenation of loops) gives the objects in the image of group object structure, and
makes this functor lift as

: Ho( * /) ⟶ Grp(Ho( * /)) .

(Brown 73, section 4, theorem 3)

Proof. Given an object ∈ * / and given two choices of path space objects Path( ) and Path( ),
we need to produce an isomorphism in Ho( * /) between  and ˜ .

To that end, first lemma 4.10 implies that any two choices of path space objects are connected
via a third path space by a span of morphisms compatible with the structure maps. By two-out-
of-three (def. 2.1) every morphism of path space objects compatible with the inclusion of the
base object is a weak equivalence. With this, lemma 4.11 implies that these morphisms induce
weak equivalences on the corresponding loop space objects. This shows that all choices of loop
space objects become isomorphic in the homotopy category.

Moreover, all the isomorphisms produced this way are actually equal: this follows from lemma
4.13 applied to

⟶ Path( ) ⟶⟶ Path( )

↓ ↓

× ⟶ ×

.

This way we obtain a functor

: * / ⟶ Ho( * /) .

By prop. 4.15 (and using that Cartesian product preserves weak equivalences) this functor
sends weak equivalences to isomorphisms. Therefore the functor on homotopy categories now
follows with theorem 2.31.

It is immediate to see that the operation of loop concatenation from remark 4.23 gives the
objects ∈ Ho( * /) the structure of monoids. It is now sufficient to see that these are in fact
groups:

We claim that the inverse-assigning operation is given by the left map in the following pasting
composite

′ ⟶ Path′ ( ) ⟶ ×

↓≃ ↓≃ (pb) ↓

⟶ Path( ) →⎯⎯⎯⎯⎯
( , )

×

,

(where Path′( ), thus defined, is the path space object obtained from Path( ) by “reversing the
notion of source and target of a path”).
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To see that this is indeed an inverse, it is sufficient to see that the two morphisms

⟶⟶ ( )

induced from

Path( ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯
( ∘ , ∘ )

→⎯⎯⎯⎯⎯⎯⎯⎯⎯ Path( ) × Path′ ( )

coincide in the homotopy category. This follows with lemma 4.13 applied to the following
commuting diagram:

⟶ Path( ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯
( ∘ , ∘ )

→⎯⎯⎯⎯⎯⎯⎯⎯⎯ Path( ) × Path′( )

( , ) ↓ ↓

× →⎯⎯⎯⎯
∘

×

.

  ▮

Homotopy pullbacks

The concept of homotopy fibers of def. 4.16 is a special case of the more general concept of
homotopy pullbacks.

Definition 4.25. A model category  (def. 2.3) is called a right proper model category if
pullback along fibrations preserves weak equivalences.

Example 4.26. By lemma 4.12, a model category  (def. 2.3) in which all objects are fibrant is
a right proper model category (def. 4.25).

Definition 4.27. Let  be a right proper model category (def. 4.25). Then a commuting square

⟶

↓ ↓

⟶

in  is called a homotopy pullback (of  along  and equivalently of  along ) if the
following equivalent conditions hold:

for some factorization of the form

: →⎯⎯
∈ ^ →⎯⎯⎯

∈

the universally induced morphism from  into the pullback of ^ along  is a weak
equivalence:

⟶

∈ ↓ ↓ ∈

× ^ ⟶ ^

↓ (pb) ↓ ∈

⟶

.

1. 

for some factorization of the form

: →⎯⎯
∈ ^ →⎯⎯⎯

∈

2. 
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the universally induced morphism from  into the pullback of ^ along  is a weak
equivalence:

→⎯⎯
∈ ^ × .

the above two conditions hold for every such factorization.3. 

(e.g. Goerss-Jardine 96, II (8.14))

Proposition 4.28. The conditions in def. 4.27 are indeed equivalent.

Proof. First assume that the first condition holds, in that

⟶

∈ ↓ ↓ ∈

× ^ ⟶ ^

↓ (pb) ↓ ∈

⟶

.

Then let

: →⎯⎯
∈ ^ →⎯⎯⎯

∈

be any factorization of  and consider the pasting diagram (using the pasting law for pullbacks)

⟶ ^ × ⟶

∈ ↓ ↓ ∈ (pb) ↓ ∈

× ^ →⎯⎯
∈ ^ × ^ →⎯⎯⎯

∈ ^

↓ (pb) ↓
∈

(pb) ↓ ∈

→⎯⎯
∈

^ →⎯⎯⎯
∈

,

where the inner morphisms are fibrations and weak equivalences, as shown, by the pullback
stability of fibrations (prop. 2.10) and then since pullback along fibrations preserves weak
equivalences by assumption of right properness (def. 4.25). Hence it follows by two-out-of-three

(def. 2.1) that also the comparison morphism → ^ ×  is a weak equivalence.

In conclusion, if the homotopy pullback condition is satisfied for one factorization of , then it is
satisfied for all factorizations of . Since the argument is symmetric in  and , this proves the
claim.  ▮

Remark 4.29. In particular, an ordinary pullback square of fibrant objects, one of whose edges
is a fibration, is a homotopy pullback square according to def. 4.27.

Proposition 4.30. Let  be a right proper model category (def. 4.25). Given a diagram in  of
the form

⟶ ←⎯⎯⎯
∈

↓ ∈ ↓ ∈ ↓ ∈

⟶ ←⎯⎯⎯
∈

then the induced morphism on pullbacks is a weak equivalence
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× →⎯⎯
∈

× .

Proof. (The reader should draw the 3-dimensional cube diagram which we describe in words
now.)

First consider the universal morphism → ×  and observe that it is a weak equivalence by

right properness (def. 4.25) and two-out-of-three (def. 2.1).

Then consider the universal morphism × → × ( × ) and observe that this is also a weak

equivalence, since ×  is the limiting cone of a homotopy pullback square by remark 4.29, and

since the morphism is the comparison morphism to the pullback of the factorization constructed
in the first step.

Now by using the pasting law, then the commutativity of the “left” face of the cube, then the
pasting law again, one finds that × ( × ) ≃ × ( × ). Again by right properness this implies

that × ( × ) → ×  is a weak equivalence.

With this the claim follows by two-out-of-three.  ▮

Homotopy pullbacks satisfy the usual abstract properties of pullbacks:

Proposition 4.31. Let  be a right proper model category (def. 4.25). If in a commuting square
in  one edge is a weak equivalence, then the square is a homotopy pullback square precisely
if the opposite edge is a weak equivalence, too.

Proof. Consider a commuting square of the form

⟶

↓ ↓

→⎯⎯
∈

.

To detect whether this is a homotopy pullback, by def. 4.27 and prop. 4.28, we are to choose
any factorization of the right vertical morphism to obtain the pasting composite

⟶

↓ ↓ ∈

× ^ →⎯⎯
∈ ^

↓ (pb) ↓ ∈

→⎯⎯
∈

.

Here the morphism in the middle is a weak equivalence by right properness (def. 4.25). Hence it
follows by two-out-of-three that the top left comparison morphism is a weak equivalence (and
so the original square is a homotopy pullback) precisely if the top morphism is a weak
equivalence.  ▮

Proposition 4.32. Let  be a right proper model category (def. 4.25).

(pasting law) If in a commuting diagram

⟶ ⟶

↓ ↓ ↓

⟶ ⟶

the square on the right is a homotoy pullback (def. 4.27) then the left square is, too,

1. 
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precisely if the total rectangle is;

in the presence of functorial factorization (def. 2.6) through weak equivalences followed
by fibrations:

every retract of a homotopy pullback square (in the category □ of commuting squares in
) is itself a homotopy pullback square.

2. 

Proof. For the first statement: choose a factorization of ⎯
∈ ^ ⎯⎯

∈
, pull it back to a

factorization → ^ ⎯⎯
∈

 and assume that → ^ is a weak equivalence, i.e. that the right square
is a homotopy pullback. Now use the ordinary pasting law to conclude.

For the second statement: functorially choose a factorization of the two right vertical morphisms
of the squares and factor the squares through the pullbacks of the corresponding fibrations
along the bottom morphisms, respectively. Now the statement that the squares are homotopy
pullbacks is equivalent to their top left vertical morphisms being weak equivalences. Factor
these top left morphisms functorially as cofibrations followed by acyclic fibrations. Then the
statement that the squares are homotopy pullbacks is equivalent to those top left cofibrations
being acyclic. Now the claim follows using that the retract of an acyclic cofibration is an acyclic
cofibration (prop. 2.10).  ▮

Long sequences

The ordinary fiber, example 3.27, of a morphism has the property that taking it twice is always
trivial:

* ≃ fib(fib( )) ⟶ fib( ) ⟶ ⟶ .

This is crucially different for the homotopy fiber, def. 4.16. Here we discuss how this comes
about and what the consequences are.

Proposition 4.33. Let  be a category of fibrant objects of a model category, def. 2.34 and let
: ⟶  be a morphism in its category of pointed objects, def. 3.16. Then the homotopy fiber

of its homotopy fiber, def. 4.16, is isomorphic, in Ho( * /), to the loop space object  of 
(def. 4.4, prop. 4.24):

hofib(hofib( → )) ≃ .

Proof. Assume without restriction that : ⟶  is already a fibration between fibrant objects in
 (otherwise replace and rename). Then its homotopy fiber is its ordinary fiber, sitting in a

pullback square

hofib( ) ≃ ⟶

↓ ↓

* ⟶

.

In order to compute hofib(hofib( )), i.e. hofib( ), we need to replace the fiber inclusion  by a
fibration. Using the factorization lemma 4.9 for this purpose yields, after a choice of path space
object Path( ) (def. 2.18), a replacement of the form

→⎯⎯
∈

× Path( )

↘ ↓ ∈

˜ .

Hence hofib( ) is the ordinary fiber of this map:
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hofib(hofib( )) ≃ × Path( ) × * ∈ Ho( * /) .

Notice that

× Path( ) ≃ * × Path( )

because of the pasting law:

× Path( ) ⟶ Path( )

↓ (pb) ↓

⟶

↓ (pb) ↓

* ⟶

.

Hence

hofib(hofib( )) ≃ * × Path( ) × * .

Now we claim that there is a choice of path space objects Path( ) and Path( ) such that this
model for the homotopy fiber (as an object in * /) sits in a pullback diagram of the following
form:

* × Path( ) × * ⟶ Path( )

↓ ↓ ∈ ∩

⟶ Path( ) ×

↓ (pb) ↓

* ⟶ ×

.

By the pasting law and the pullback stability of acyclic fibrations, this will prove the claim.

To see that the bottom square here is indeed a pullback, check the universal property: A
morphism out of any  into * ×

×
Path( ) ×  is a morphism : → Path( ) and a morphism

: →  such that ( ) = * , ( ) = ( ) and = * . Hence it is equivalently just a morphism

: → Path( ) such that ( ) = *  and ( ) = * . This is the defining universal property of

≔ * × Path( ) × * .

Now to construct the right vertical morphism in the top square (Quillen 67, page 3.1): Let
Path( ) be any path space object for  and let Path( ) be given by a factorization

(id , ∘ , id ) : ⎯
∈

Path( ) →⎯⎯⎯
∈

× Path( ) ×

and regarded as a path space object of  by further comoposing with

(pr , pr ) : × Path( ) × →⎯⎯⎯
∈

× .

We need to show that Path( ) → Path( ) ×  is an acyclic fibration.

It is a fibration because × Path( ) × → Path( ) ×  is a fibration, this being the pullback of

the fibration → .

To see that it is also a weak equivalence, first observe that Path( ) × →⎯⎯⎯⎯⎯⎯
∈ ∩

, this being the
pullback of the acyclic fibration of lemma 2.20. Hence we have a factorization of the identity as

id : →⎯⎯
∈

Path( ) ⟶ Path( ) × →⎯⎯⎯⎯⎯⎯
∈ ∩
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and so finally the claim follows by two-out-of-three (def. 2.1).  ▮

Remark 4.34. There is a conceptual way to understand prop. 4.33 as follows: If we draw
double arrows to indicate homotopies, then a homotopy fiber (def. 4.16) is depicted by the
following filled square:

hofib( ) ⟶ *

↓ ⇙ ↓

⟶

just like the ordinary fiber (example 3.27) is given by a plain square

fib( ) ⟶ *

↓ ↓

⟶

.

One may show that just like the fiber is the universal solution to making such a commuting
square (a pullback limit cone def. 1.1), so the homotopy fiber is the universal solution up to
homotopy to make such a commuting square up to homotopy – a homotopy pullback
homotopy limit cone.

Now just like ordinary pullbacks satisfy the pasting law saying that attaching two pullback
squares gives a pullback rectangle, the analogue is true for homotopy pullbacks. This implies
that if we take the homotopy fiber of a homotopy fiber, thereby producing this double
homotopy pullback square

hofib( ) ⟶ hofib( ) ⟶ *

↓ ⇙ ↓ ⇙ ↓

* ⟶ ⟶

then the total outer rectangle here is itself a homotopy pullback. But the outer rectangle
exhibits the homotopy fiber of the point inclusion, which, via def. 4.4 and lemma 4.9, is the
loop space object:

⟶ *

↓ ⇙ ↓

* ⟶

.

Proposition 4.35. Let  be a model category and let : →  be morphism in the pointed
homotopy category Ho( * /) (prop. 3.29). Then:

There is a long sequence to the left in * / of the form

⋯ ⟶ ⟶
̅ ̅ ̅ ̅

⟶ hofib( ) ⟶ ⟶ ,

where each morphism is the homotopy fiber (def. 4.16) of the following one: the
homotopy fiber sequence of . Here ̅ ̅ ̅ ̅  denotes  followed by forming inverses with
respect to the group structure on (−) from prop. 4.24.

1. 

Moreover, for ∈ * / any object, then there is a long exact sequence

⋯ → [ , ]
*

⟶ [ , hofib( )]
*

⟶ [ , ]
*

⟶ [ , ] ⟶ [ , hofib( )]
*

⟶ [ , ]
*

⟶ [ , ]
*

of pointed sets, where [−, −]
*
 denotes the pointed set valued hom-functor of example 3.30.

Dually, there is a long sequence to the right in * / of the form1. 
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⟶ ⟶ hocofib( ) ⟶ ⟶
̅ ̅̅ ̅

→ ⋯ ,

where each morphism is the homotopy cofiber (def. 4.16) of the previous one: the
homotopy cofiber sequence of . Moreover, for ∈ * / any object, then there is a long
exact sequence

⋯ → [ , ]
*

⟶ [ hocofib( ), ]
*

⟶ [ , ]
*

⟶ [ , ] ⟶ [hocofib( ), ]
*

⟶ [ , ]
*

⟶ [ , ]
*

of pointed sets, where [ −, −]
*
 denotes the pointed set valued hom-functor of example

3.30.

(Quillen 67, I.3, prop. 4)

Proof. That there are long sequences of this form is the result of combining prop. 4.33 and
prop. 4.22.

It only remains to see that it is indeed the morphisms ̅ ̅ ̅ ̅  that appear, as indicated.

In order to see this, it is convenient to adopt the following notation: for : →  a morphism,
then we denote the collection of generalized element of its homotopy fiber as

hofib( ) = ( , ( ) ⇝ * )

indicating that these elements are pairs consisting of an element  of  and a “path” (an
element of the given path space object) from ( ) to the basepoint.

This way the canonical map hofib( ) →  is ( , ( ) ⇝ * ) ↦ . Hence in this notation the homotopy
fiber of the homotopy fiber reads

hofib(hofib( )) = (( , ( ) ⇝ * ), ⇝ * ) .

This identifies with  by forming the loops

⋅ ( ̅ ̅ ̅ )̅ ,

where the overline denotes reversal and the dot denotes concatenation.

Then consider the next homotopy fiber

hofib(hofib(hofib( ))) =

⎧

⎨

⎩

⎪
⎪

⎪
⎪

⎛

⎝

⎜
⎜⎜
⎜

(( , ( ) ⇝ * ), ⇝ * ),

⎛

⎝

⎜
⎜⎜
⎜

⇝ *

( ) ⇝
( )

*

↘ ⇒ ↙

*

⎞

⎠

⎟
⎟⎟
⎟

⎞

⎠

⎟
⎟⎟
⎟

⎫

⎬

⎭

⎪
⎪

⎪
⎪

,

where on the right we have a path in hofib( ) from ( , ( ) ⇝ * ) to the basepoint element. This is
a path  together with a path-of-paths which connects  to ( ).

By the above convention this is identified with the loop in  which is

⋅ ( ̅ ̅ ) .

But the map to hofib(hofib( )) sends this data to (( , ( ) ⇝ * ), ⇝ * ), hence to the loop
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⋅ ( ̅ ̅ ̅ )̅ ≃ ( ) ⋅ ( ̅ ̅ ̅ )̅

= ( ⋅ ̅ ̅ ̅ )̅

= ( ⋅ ̅ ̅̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ )̅

= ( ⋅ ̅ ̅ )̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅

,

hence to the reveral of the image under  of the loop in .  ▮

Remark 4.36. In (Quillen 67, I.3, prop. 3, prop. 4) more is shown than stated in prop. 4.35:
there the connecting homomorphism → hofib( ) is not just shown to exist, but is described
in detail via an action of  on hofib( ) in Ho( ). This takes a good bit more work. For our
purposes here, however, it is sufficient to know that such a morphism exists at all, hence that

≃ hofib(hofib( )).

Example 4.37. Let = (Top )  be the classical model structure on topological spaces

(compactly generated) from theorem 3.7, theorem 3.51. Then using the standard pointed
topological path space objects Maps( +, ) from def. 1.34 and example 3.26 as the abstract
path space objects in def. 2.18, via prop. 3.14, this gives that

[ * , ] ≃ ( )

is the th homotopy group, def. 1.26, of  at its basepoint.

Hence using = *  in the first item of prop. 4.35, the long exact sequence this gives is of the
form

⋯ → ( ) ⟶* ( ) ⟶ (hofib( )) ⟶ ( ) →⎯⎯
−

* ( ) ⟶ (hofib( )) ⟶ ( ) ⟶* ( ) ⟶ * .

This is called the long exact sequence of homotopy groups induced by .

Remark 4.38. As we pass to stable homotopy theory (in Part 1)), the long exact sequences in
example 4.37 become long not just to the left, but also to the right. Given then a tower of
fibrations, there is an induced sequence of such long exact sequences of homotopy groups,
which organizes into an exact couple. For more on this see at Interlude -- Spectral sequences
(this remark).

Example 4.39. Let again = (Top )  be the classical model structure on topological spaces

(compactly generated) from theorem 3.7, theorem 3.51, as in example 4.37. For ∈ Top * / any
pointed topological space and : ↪  an inclusion of pointed topological spaces, the exactness
of the sequence in the second item of prop. 4.35

⋯ → [hocofib( ), ] ⟶ [ , ]
*

⟶ [ , ]
*

→ ⋯

gives that the functor

[−, ]
*

: (Top * / ) ⟶ Set * /

behaves like one degree in an additive reduced cohomology theory (def.). The Brown
representability theorem (thm.) implies that all additive reduced cohomology theories are
degreewise representable this way (prop.).

5. The suspension/looping adjunction

We conclude this discussion of classical homotopy theory with the key statement that leads over
to stable homotopy theory in Introduction to Stable homotopy theory -- 1: the suspension and
looping adjunction on the classical pointed homotopy category.

Proposition 5.1. The canonical loop space functor  and reduced suspension functor  from
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prop. 4.24 on the classical pointed homotopy category from def. 3.31 are adjoint functors,
with left adjoint and right adjoint:

( ⊣ ) : Ho(Top * /) ⟶⟵ Ho(Top * /) .

Moreover, this is equivalently the adjoint pair of derived functors, according to prop. 2.49, of
the Quillen adjunction

(Top * /) ⊥
→⎯⎯⎯⎯⎯⎯⎯⎯⎯

( , −)
*

←⎯⎯⎯⎯⎯⎯⎯⎯⎯
∧ ( −)

(Top * /)

of cor. 3.42.

Proof. By prop. 4.24 we may represent  and  by any choice of cylinder objects and path
space objects (def. 2.18).

The standard topological path space ( −)  is generally a path space object by prop. 3.14. With
prop. 4.5 this shows that

≃ ℝ Maps( , −)
*

.

Moreover, by the existence of CW-approximations (remark 3.12) we may represent each object
in the homotopy category by a CW-complex. On such, the standard topological cylinder ( −) ×  is
a cylinder object by prop. 3.13. With prop. 4.5 this shows that

≃ ( ∧ ( −)) .

  ▮

Final remark 5.2. What is called stable homotopy theory is the result of universally forcing the
( ⊣ )-adjunction of prop. 5.1 to become an equivalence of categories.

This is the topic of the next section at Introduction to Stable homotopy theory -- 1.
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