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S4D2 – Graduate Seminar on Topology

Complex oriented cohomology

 Dr. Urs Schreiber

Abstract. The category of those generalized cohomology theories that are equipped with a universal
“complex orientation” happens to unify within it the abstract structure theory of stable homotopy theory
with the concrete richness of the differential topology of cobordism theory and of the arithmetic geometry of
formal group laws, such as elliptic curves. In the seminar we work through classical results in algebraic
topology, organized such as to give in the end a first glimpse of the modern picture of chromatic homotopy
theory.
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2. References

1. Seminar) Complex oriented cohomology

Outline. We start with two classical topics of algebraic topology that first run independently in parallel:

S.1) Generalized cohomology

S.2) Cobordism theory

The development of either of these happens to give rise to the concept of spectra and via this concept it
turns out that both topics are intimately related. The unification of both is our third topic

S.3) Complex oriented cohomology

Literature. (Kochman 96).

S.1) Generalized cohomology

Idea. The concept that makes algebraic topology be about methods of homological algebra applied to
topology is that of generalized homology and generalized cohomology: these are covariant functors or
contravariant functors, respectively,

Spaces ⟶ Abℤ
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from (sufficiently nice) topological spaces to ℤ-graded abelian groups, such that a few key properties of the
homotopy types of topological spaces is preserved as one passes them from Ho(Top) to the much more
tractable abelian category Ab.

Literature. (Aguilar-Gitler-Prieto 02, chapters 7,8 and 12, Kochman 96, 3.4, 4.2, Schwede 12, II.6)

Generalized cohomology functors

Idea. A generalized (Eilenberg-Steenrod) cohomology theory is such a contravariant functor which satisfies
the key properties exhibited by ordinary cohomology (as computed for instance by singular cohomology),
notably homotopy invariance and excision, except that its value on the point is not required to be
concentrated in degree 0. Dually for generalized homology. There are two versions of the axioms, one for
reduced cohomology, and they are equivalent if properly set up.

An important example of a generalised cohomology theory other than ordinary cohomology is topological
K-theory. The other two examples of key relevance below are cobordism cohomology and stable
cohomotopy.

Literature. (Switzer 75, section 7, Aguilar-Gitler-Prieto 02, section 12 and section 9, Kochman 96, 3.4).

Reduced cohomology

The traditional formulation of reduced generalized cohomology in terms of point-set topology is this:

Definition 1.1. A reduced cohomology theory is

a functor

˜ • : (Top * / ) ⟶ Abℤ

from the opposite of pointed topological spaces (CW-complexes) to ℤ-graded abelian groups
(“cohomology groups”), in components

˜ : ( ⟶ ) ↦ ( ˜
•
( ) ⟶

*
˜ •( )) ,

1. 

equipped with a natural isomorphism of degree +1, to be called the suspension isomorphism, of
the form

: ˜
•
(−) ⟶≃ ˜ • + ( − )

2. 

such that:

(homotopy invariance) If , : ⟶  are two morphisms of pointed topological spaces such that

there is a (base point preserving) homotopy ≃  between them, then the induced homomorphisms

of abelian groups are equal

* = * .

1. 

(exactness) For : ↪  an inclusion of pointed topological spaces, with : ⟶ Cone( ) the induced
mapping cone (def.), then this gives an exact sequence of graded abelian groups

˜ •(Cone( )) ⟶
*
˜ •( ) ⟶

*
˜ •( ) .

2. 

(e.g. AGP 02, def. 12.1.4)

This is equivalent (prop. 1.4 below) to the following more succinct homotopy-theoretic definition:

Definition 1.2. A reduced generalized cohomology theory is a functor

˜ • : Ho(Top * /) ⟶ Abℤ

from the opposite of the pointed classical homotopy category (def., def.), to ℤ-graded abelian groups, and
equipped with natural isomorphisms, to be called the suspension isomorphism of the form

: ˜
• +

( − ) ⟶≃ ˜ •(−)

such that:
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(exactness) it takes homotopy cofiber sequences in Ho(Top * /) (def.) to exact sequences.

As a consequence (prop. 1.4 below), we find yet another equivalent definition:

Definition 1.3. A reduced generalized cohomology theory is a functor

˜ • : (Top * /) ⟶ Abℤ

from the opposite of the category of pointed topological spaces to ℤ-graded abelian groups, such that

(WHE) it takes weak homotopy equivalences to isomorphisms

and equipped with natural isomorphism, to be called the suspension isomorphism of the form

: ˜
• +

( − ) ⟶≃ ˜ •(−)

such that

(exactness) it takes homotopy cofiber sequences in Ho(Top * /) (def.), to exact sequences.

Proposition 1.4. The three definitions

def. 1.1

def. 1.2

def. 1.3

are indeed equivalent.

Proof. Regarding the equivalence of def. 1.1 with def. 1.2:

By the existence of the classical model structure on topological spaces (thm.), the characterization of its
homotopy category (cor.) and the existence of CW-approximations, the homotopy invariance axiom in def.
1.1 is equivalent to the functor passing to the classical pointed homotopy category. In view of this and since
on CW-complexes the standard topological mapping cone construction is a model for the homotopy cofiber
(prop.), this gives the equivalence of the two versions of the exactness axiom.

Regarding the equivalence of def. 1.2 with def. 1.3:

This is the universal property of the classical homotopy category (thm.) which identifies it with the
localization (def.) of Top * / at the weak homotopy equivalences (thm.), together with the existence of CW
approximations (rmk.): jointly this says that, up to natural isomorphism, there is a bijection between
functors  and ˜  in the following diagram (which is filled by a natural isomorphism itself):

Top ⟶ Abℤ

↓ ↗ ˜

Ho(Top) ≃ (Top )/∼

where  sends weak homotopy equivalences to isomorphisms and where (−)∼ means identifying homotopic

maps.  ▮

Prop. 1.4 naturally suggests (e.g. Lurie 10, section 1.4) that the concept of generalized cohomology be
formulated in the generality of any abstract homotopy theory (model category), not necessarily that of
(pointed) topological spaces:

Definition 1.5. Let  be a model category (def.) with * / its pointed model category (prop.).

A reduced additive generalized cohomology theory on  is

a functor

˜ • : Ho( * /) ⟶ Abℤ

1. 

a natural isomorphism (“suspension isomorphisms”) of degree +1

: ˜
•
⟶ ˜ • + ∘

2. 

such that

(exactness) ˜ • takes homotopy cofiber sequences to exact sequences.

Introduction to Stable homotopy theory -- S in nLab https://ncatlab.org/nlab/print/Introduction+to+Stable+homotopy+theor...

4 of 78 27.12.2016 13:13



Finally we need the following terminology:

Definition 1.6. Let ˜
•
 be a reduced cohomology theory according to either of def. 1.1, def. 1.2, def. 1.3 or

def. 1.5.

We say ˜
•
 is additive if in addition

(wedge axiom) For { } ∈  any set of pointed CW-complexes, then the canonical morphism

˜ •( ∨ ∈ ) ⟶
∈

˜ •( )

from the functor applied to their wedge sum (def.), to the product of its values on the wedge
summands, is an isomorphism.

We say ˜
•
 is ordinary if its value on the 0-sphere  is concentrated in degree 0:

(Dimension) ˜ • ( ) ≃ 0.

If ˜
•
 is not ordinary, one also says that it is generalized or extraordinary.

A homomorphism of reduced cohomology theories

: ˜
•
⟶ ˜ •

is a natural transformation between the underlying functors which is compatible with the suspension
isomorphisms in that all the following squares commute

˜ •( ) ⟶ ˜ •( )

↓ ↓

˜ • + ( ) ®¾ ˜ • + ( )

.

We now discuss some constructions and consequences implied by the concept of reduced cohomology
theories:

Definition 1.7. Given a generalized cohomology theory ( •, ) on some  as in def. 1.5, and given a
homotopy cofiber sequence in  (prop.),

⟶ ⟶ ®¾¾¾
( )

,

then the corresponding connecting homomorphism is the composite

∂ : •( ) ⟶ • + ( ) ®¾¾¾
( )* • + ( ) .

Proposition 1.8. The connecting homomorphisms of def. 1.7 are parts of long exact sequences

⋯⟶ •( ) ⟶ •( ) ⟶ •( ) ⟶ • + ( ) → ⋯ .

Proof. By the defining exactness of •, def. 1.5, and the way this appears in def. 1.7, using that  is by
definition an isomorphism.  ▮

Unreduced cohomology

Given a reduced generalized cohomology theory as in def. 1.1, we may “un-reduce” it and evaluate it on
unpointed topological spaces  simply by evaluating it on + (def.). It is conventional to further generalize to
relative cohomology and evaluate on unpointed subspace inclusions : ↪ , taken as placeholders for their
mapping cones Cone( +) (prop.).

In the following a pair ( , ) refers to a subspace inclusion of topological spaces ↪ . Whenever only one
space is mentioned, the subspace is assumed to be the empty set ( , ∅). Write Top↪  for the category of

such pairs (the full subcategory of the arrow category of Top  on the inclusions). We identify Top ↪ Top↪

by ↦ ( ,∅).

Definition 1.9. A cohomology theory (unreduced, relative) is

a functor1. 
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•: (Top↪ ) → Abℤ

to the category of ℤ-graded abelian groups,

a natural transformation of degree +1, to be called the connecting homomorphism, of the form

( , ) :
•( , ∅) → • + ( , ) .

2. 

such that:

(homotopy invariance) For : ( , ) → ( , ) a homotopy equivalence of pairs, then

•( ) : •( , ) ⟶≃ •( , )

is an isomorphism;

1. 

(exactness) For ↪  the induced sequence

⋯ → ( , ) ⟶ ( ) ⟶ ( ) ⟶ + ( , ) → ⋯

is a long exact sequence of abelian groups.

2. 

(excision) For ↪ ↪  such that ̀̀ ⊂ Int( ), then the natural inclusion of the pair
: ( − , − ) ↪ ( , ) induces an isomorphism

•( ) : ( , ) ⟶≃ ( − , − )

3. 

We say • is additive if it takes coproducts to products:

(additivity) If ( , ) = ∐ ( , ) is a coproduct, then the canonical comparison morphism

( , ) ⟶≃ ( , )

is an isomorphism from the value on ( , ) to the product of values on the summands.

We say • is ordinary if its value on the point is concentrated in degree 0

(Dimension): • ( * , ∅) = 0.

A homomorphism of unreduced cohomology theories

: • ⟶ •

is a natural transformation of the underlying functors that is compatible with the connecting
homomorphisms, hence such that all these squares commute:

•( , ∅) ®¾¾
( ,∅) •( , ∅)

↓ ↓

• + ( , ) ®¾¾¾
( , ) • + ( , )

.

e.g. (AGP 02, def. 12.1.1).

Lemma 1.10. The excision axiom in def. 1.9 is equivalent to the following statement:

For all , ↪  with = Int( ) ∪ Int( ), then the inclusion

: ( , ∩ ) ⟶ ( , )

induces an isomorphism,

* : •( , ) ⟶≃ •( , ∩ )

(e.g Switzer 75, 7.2)

Proof. In one direction, suppose that • satisfies the original excision axiom. Given ,  with
= Int ( ) ∪ Int( ), set ≔ −  and observe that
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`̀ = −`̀ `̀ `̀

= − Int( )

⊂ Int( )

and that

( − , − ) = ( , ∩ ) .

Hence the excision axiom implies •( , ) ⟶≃ •( , ∩ ).

Conversely, suppose • satisfies the alternative condition. Given ↪ ↪  with ̀̀ ⊂ Int( ), observe that we
have a cover

Int( − ) ∪ Int( ) = ( −̀` ) ∩ Int ( )

⊃ ( − Int( )) ∩ Int( )

=

and that

( − , ( − ) ∩ ) = ( − , − ) .

Hence

•( − , − ) ≃ •( − , ( − ) ∩ ) ≃ •( , ) .

  ▮

The following lemma shows that the dependence in pairs of spaces in a generalized cohomology theory is
really a stand-in for evaluation on homotopy cofibers of inclusions.

Lemma 1.11. Let • be an cohomology theory, def. 1.9, and let ↪ . Then there is an isomorphism

•( , ) ⟶≃ •( ∪ Cone( ), * )

between the value of • on the pair ( , ) and its value on the unreduced mapping cone of the inclusion
(rmk.), relative to a basepoint.

If moreover ↪  is (the retract of) a relative cell complex inclusion, then also the morphism in
cohomology induced from the quotient map : ( , ) ⟶ ( / , * ) is an isomorphism:

•( ) : •( / , * ) ⟶
•( , ) .

(e.g AGP 02, corollary 12.1.10)

Proof. Consider ≔ (Cone( ) − × {0}) ↪ Cone( ), the cone on  minus the base . We have

( ∪ Cone( ) − , Cone( ) − ) ≃ ( , )

and hence the first isomorphism in the statement is given by the excision axiom followed by homotopy
invariance (along the contraction of the cone to the point).

Next consider the quotient of the mapping cone of the inclusion:

( ∪ Cone( ), Cone( )) ⟶ ( / , * ) .

If ↪  is a cofibration, then this is a homotopy equivalence since Cone( ) is contractible and since by the
dual factorization lemma (lem.) and by the invariance of homotopy fibers under weak equivalences (lem.),
∪ Cone( ) → /  is a weak homotopy equivalence, hence, by the universal property of the classical

homotopy category (thm.) a homotopy equivalence on CW-complexes.

Hence now we get a composite isomorphism

•( / , * ) ⟶
≃ •( ∪ Cone( ), Cone( )) ⟶≃ •( , ) .

  ▮

Example 1.12. As an important special case of : Let ( , ) be a pointed CW-complex. For
: (Cone( ), ) → ( , { }) the quotient map from the reduced cone on  to the reduced suspension, then

•( ) : •(Cone( ), ) ⟶≃ •( , { })
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is an isomorphism.

Proposition 1.13. (exact sequence of a triple)

For • an unreduced generalized cohomology theory, def. 1.9, then every inclusion of two consecutive
subspaces

↪ ↪

induces a long exact sequence of cohomology groups of the form

⋯ → − ( , ) ⟶
¯

( , ) ⟶ ( , ) ⟶ ( , ) → ⋯

where

¯ : − ( , ) ⟶ − ( ) ⟶ ( , ) .

Proof. Apply the braid lemma to the interlocking long exact sequences of the three pairs ( , ), ( , ), ( , ):

(graphics from this Maths.SE comment, showing the dual situation for homology)

See here for details.  ▮

Remark 1.14. The exact sequence of a triple in prop. 1.13 is what gives rise to the Cartan-Eilenberg
spectral sequence for -cohomology of a CW-complex .

Example 1.15. For ( , ) a pointed topological space and Cone( ) = ( ∧ ( +))/  its reduced cone, the long
exact sequence of the triple ({ }, , Cone( )), prop. 1.13,

0 ≃ (Cone( ), { }) ⟶ ( , { }) ⟶
¯

+ (Cone( ), ) ⟶ + (Cone( ), { }) ≃ 0

exhibits the connecting homomorphism ¯  here as an isomorphism

¯ : ( , { }) ⟶≃ + (Cone( ), ) .

This is the suspension isomorphism extracted from the unreduced cohomology theory, see def. 1.17
below.

Proposition 1.16. (Mayer-Vietoris sequence)

Given • an unreduced cohomology theory, def. 1.9. Given a topological space covered by the interior of
two spaces as = Int( ) ∪ Int( ), then for each ⊂ ∩  there is a long exact sequence of cohomology
groups of the form

⋯ → − ( ∩ , ) ⟶
¯

( , ) ⟶ ( , ) ⊕ ( , ) ⟶ ( ∩ , ) → ⋯ .

e.g. (Switzer 75, theorem 7.19, Aguilar-Gitler-Prieto 02, theorem 12.1.22)

Relation between unreduced and reduced cohomology

Definition 1.17. (unreduced to reduced cohomology)

Let • be an unreduced cohomology theory, def. 1.9. Define a reduced cohomology theory, def. 1.1 ( ˜
•
, )

as follows.

For : * →  a pointed topological space, set

˜ •( , ) ≔ •( , { }) .

This is clearly functorial. Take the suspension isomorphism to be the composite
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: ˜
• +

( ) = • + ( , { }) ®¾
•( ) • + (Cone( ), ) ®¾

¯ −
•( , { }) = ˜ •( )

of the isomorphism •( ) from example 1.12 and the inverse of the isomorphism ¯  from example 1.15.

Proposition 1.18. The construction in def. 1.17 indeed gives a reduced cohomology theory.

(e.g Switzer 75, 7.34)

Proof. We need to check the exactness axiom given any ↪ . By lemma 1.11 we have an isomorphism

˜ •( ∪ Cone( )) = •( ∪ Cone( ), { * }) ⟶
≃ •( , ) .

Unwinding the constructions shows that this makes the following diagram commute:

˜ •( ∪ Cone( )) ⟶≃ •( , )

↓ ↓

˜ •( ) = •( , { })

↓ ↓

˜ •( ) = •( , { })

,

where the vertical sequence on the right is exact by prop. 1.13. Hence the left vertical sequence is exact.  ▮

Definition 1.19. (reduced to unreduced cohomology)

Let ( ˜
•
, ) be a reduced cohomology theory, def. 1.1. Define an unreduced cohomolog theory •, def. 1.9,

by

•( , ) ≔ ˜ •( + ∪ Cone( +))

and let the connecting homomorphism be as in def. 1.7.

Proposition 1.20. The construction in def. 1.19 indeed yields an unreduced cohomology theory.

e.g. (Switzer 75, 7.35)

Proof. Exactness holds by prop. 1.8. For excision, it is sufficient to consider the alternative formulation of
lemma 1.10. For CW-inclusions, this follows immediately with lemma 1.11.  ▮

Theorem 1.21. The constructions of def. 1.19 and def. 1.17 constitute a pair of functors between then
categories of reduced cohomology theories, def. 1.1 and unreduced cohomology theories, def. 1.9 which
exhbit an equivalence of categories.

Proof. (…careful with checking the respect for suspension iso and connecting homomorphism..)

To see that there are natural isomorphisms relating the two composites of these two functors to the identity:

One composite is

• ↦ ( ˜
•
: ( , ) ↦ •( , { }))

↦ (( ′ )• : ( , ) ↦ •( + ∪ Cone( +)), * )
,

where on the right we have, from the construction, the reduced mapping cone of the original inclusion ↪
with a base point adjoined. That however is isomorphic to the unreduced mapping cone of the original
inclusion (prop.- P#UnreducedMappingConeAsReducedConeOfBasedPointAdjoined)). With this the natural
isomorphism is given by lemma 1.11.

The other composite is

˜ • ↦ ( • : ( , ) ↦ ˜ •( + ∪ Cone( +)))

↦ (( ˜ ′ )• : ↦ ˜ •( + ∪ Cone( *+ )))

where on the right we have the reduced mapping cone of the point inclusion with a point adoined. As before,
this is isomorphic to the unreduced mapping cone of the point inclusion. That finally is clearly homotopy
equivalent to , and so now the natural isomorphism follows with homotopy invariance.  ▮

Finally we record the following basic relation between reduced and unreduced cohomology:

Proposition 1.22. Let • be an unreduced cohomology theory, and ˜
•
 its reduced cohomology theory from
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def. 1.17. For ( , * ) a pointed topological space, then there is an identification

•( ) ≃ ˜ •( ) ⊕ •( * )

of the unreduced cohomology of  with the direct sum of the reduced cohomology of  and the unreduced
cohomology of the base point.

Proof. The pair * ↪  induces the sequence

⋯ → • − ( * ) ⟶ ˜ •( ) ⟶ •( ) ⟶ •( * ) ⟶ ˜ • + ( ) → ⋯

which by the exactness clause in def. 1.9 is exact.

Now since the composite * → → *  is the identity, the morphism •( ) → •( * ) has a section and so is in
particular an epimorphism. Therefore, by exactness, the connecting homomorphism vanishes, = 0 and we
have a short exact sequence

0 → ˜ •( ) ⟶ •( ) ⟶ •( * ) → 0

with the right map an epimorphism. Hence this is a split exact sequence and the statement follows.  ▮

Generalized homology functors

All of the above has a dual version with generalized cohomology replaced by generalized homology. For ease
of reference, we record these dual definitions:

Definition 1.23. A reduced homology theory is a functor

˜
• : (Top *

/ ) ⟶ Abℤ

from the category of pointed topological spaces (CW-complexes) to ℤ-graded abelian groups (“homology
groups”), in components

˜
• : ( ⟶ ) ↦ ( ˜ •( ) ⟶* ˜

•( )) ,

and equipped with a natural isomorphism of degree +1, to be called the suspension isomorphism, of
the form

: ˜ •(−) ⟶
≃ ˜

• + ( − )

such that:

(homotopy invariance) If , : ⟶  are two morphisms of pointed topological spaces such that

there is a (base point preserving) homotopy ≃  between them, then the induced homomorphisms

of abelian groups are equal

* = * .

1. 

(exactness) For : ↪  an inclusion of pointed topological spaces, with : ⟶ Cone( ) the induced
mapping cone, then this gives an exact sequence of graded abelian groups

˜
•( ) ⟶* ˜

•( ) ⟶* ˜
•(Cone( )) .

2. 

We say ˜ • is additive if in addition

(wedge axiom) For { } ∈  any set of pointed CW-complexes, then the canonical morphism

⊕ ∈
˜
•( ) ⟶ ˜ •( ∨ ∈ )

from the direct sum of the value on the summands to the value on the wedge sum (prop.-
P#WedgeSumAsCoproduct)), is an isomorphism.

We say ˜ • is ordinary if its value on the 0-sphere  is concentrated in degree 0:

(Dimension) ˜
• ( ) ≃ 0.

A homomorphism of reduced cohomology theories

: ˜ • ⟶ ˜
•
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is a natural transformation between the underlying functors which is compatible with the suspension
isomorphisms in that all the following squares commute

˜
•( ) ⟶ ˜

•( )

↓ ↓

˜
• + ( ) ®¾ ˜

• + ( )

.

Definition 1.24. A homology theory (unreduced, relative) is a functor

• : (Top
↪ ) ⟶ Abℤ

to the category of ℤ-graded abelian groups, as well as a natural transformation of degree +1, to be called
the connecting homomorphism, of the form

( , ) : • + ( , ) ⟶ •( , ∅) .

such that:

(homotopy invariance) For : ( , ) → ( , ) a homotopy equivalence of pairs, then

•( ) : •( , ) ⟶≃ •( , )

is an isomorphism;

1. 

(exactness) For ↪  the induced sequence

⋯ → + ( , ) ⟶ ( ) ⟶ ( ) ⟶ ( , ) → ⋯

is a long exact sequence of abelian groups.

2. 

(excision) For ↪ ↪  such that ̀̀ ⊂ Int( ), then the natural inclusion of the pair
: ( − , − ) ↪ ( , ) induces an isomorphism

•( ) : ( − , − ) ⟶≃ ( , )

3. 

We say • is additive if it takes coproducts to direct sums:

(additivity) If ( , ) = ∐ ( , ) is a coproduct, then the canonical comparison morphism

⊕ ( , ) ⟶≃ ( , )

is an isomorphismfrom the direct sum of the value on the summands, to the value on the total pair.

We say • is ordinary if its value on the point is concentrated in degree 0

(Dimension): • ( * , ∅) = 0.

A homomorphism of unreduced homology theories

: • ⟶ •

is a natural transformation of the underlying functors that is compatible with the connecting
homomorphisms, hence such that all these squares commute:

• + ( , ) ®¾¾¾
( , )

• + ( , )

↓ ↓

•( , ∅) ®¾¾
( ,∅) •( , ∅)

.

Multiplicative cohomology theories

The generalized cohomology theories considered above assign cohomology groups. It is familiar from
ordinary cohomology with coefficients not just in a group but in a ring, that also the cohomology groups
inherit compatible ring structure. The generalization of this phenomenon to generalized cohomology theories
is captured by the concept of multiplicative cohomology theories:

Definition 1.25. Let , ,  be three unreduced generalized cohomology theories (def.). A pairing of
cohomology theories
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: □ ⟶

is a natural transformation (of functors on (Top↪ × Top↪ ) ) of the form

, : ( , ) ⊗ ( , ) ⟶ + ( × , × ∪ × )

such that this is compatible with the connecting homomorphisms  of , in that the following are
commuting squares

( ) ⊗ ( , ) ®¾¾¾
⊗ + ( , ) ⊗ ( , )

, ↓ ↓ + ,

≃+
( × ∪ × , × )

+
( × , × )

⟶ + + ( × , × )

and

( , ) ⊗ ( ) ®¾¾¾¾¾
(− ) ⊗ + ( , ) ⊗ ( , )

, ↓ ↓ , +

≃+
( × ∪ × , × )

+
( × , × )

⟶ + + ( × , × )

,

where the isomorphisms in the bottom left are the excision isomorphisms.

Definition 1.26. An (unreduced) multiplicative cohomology theory is an unreduced generalized
cohomology theory theory  (def. 1.9) equipped with

(external multiplication) a pairing (def. 1.25) of the form : □ ⟶ ;1. 

(unit) an element 1 ∈ ( * )2. 

such that

(associativity) ∘ (id ⊗ ) = ∘ ( ⊗ id);1. 

(unitality) (1 ⊗ ) = ( ⊗ 1) =  for all ∈ ( , ).2. 

The mulitplicative cohomology theory is called commutative (often considered by default) if in addition

(graded commutativity)

( , ) ⊗ ( , ) ®¾¾¾¾¾¾¾¾¾
( ⊗ )↦(− ) ( ⊗ )

( , ) ⊗ ,

, ↓ ↓ ,

+ ( × , × ∪ × ) ®¾¾¾¾¾¾¾
( ( , ),( , ))*

+ ( × , × ∪ × )

.

Given a multiplicative cohomology theory ( , , 1), its cup product is the composite of the above external
multiplication with pullback along the diagonal maps ( , ) : ( , ) ⟶ ( × , × ∪ × );

(−) ∪ (−) : ( , ) ⊗ ( , ) ®¾¾¾
, + ( × , × ∪ × ) ®¾¾¾

( , )*
+ ( , ∪ ) .

e.g. (Tamaki-Kono 06, II.6)

Proposition 1.27. Let ( , , 1) be a multiplicative cohomology theory, def. 1.26. Then

For every space  the cup product gives •( ) the structure of a ℤ-graded ring, which is graded-
commutative if ( , , 1) is commutative.

1. 

For every pair ( , ) the external multiplication  gives •( , ) the structure of a left and right module
over the graded ring •( * ).

2. 

All pullback morphisms respect the left and right action of •( * ) and the connecting homomorphisms
respect the right action and the left action up to multiplication by (−1)

3. 

Proof. Regarding the third point:

For pullback maps this is the naturality of the external product: let : ( , ) ⟶ ( , ) be a morphism in Top↪
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then naturality says that the following square commutes:

( * ) ⊗ ( , ) ®¾¾¾
, + ( , )

( , *) ↓ ↓
*

( * ) ⊗ ( , ) ®¾¾¾
, + ( , )

.

For connecting homomorphisms this is the (graded) commutativity of the squares in def. 1.26:

( * ) ⊗ ( ) ®¾¾¾¾¾
(− ) ( , )

( * ) ⊗
+ ( )

, ↓ ↓ ,

+ ( ) ⟶ + + ( , )

.

  ▮

Brown representability theorem

Idea. Given any functor such as the generalized (co)homology functor above, an important question to ask
is whether it is a representable functor. Due to the ℤ-grading and the suspension isomorphisms, if a
generalized (co)homology functor is representable at all, it must be represented by a ℤ-indexed sequence of
pointed topological spaces such that the reduced suspension of one is comparable to the next one in the list.
This is a spectrum or more specifically: a sequential spectrum .

Whitehead observed that indeed every spectrum represents a generalized (co)homology theory. The Brown
representability theorem states that, conversely, every generalized (co)homology theory is represented by a
spectrum, subject to conditions of additivity.

As a first application, Eilenberg-MacLane spectra representing ordinary cohomology may be characterized
via Brown representability.

Literature. (Switzer 75, section 9, Aguilar-Gitler-Prieto 02, section 12, Kochman 96, 3.4)

Traditional discussion

Write Top≥
* / ↪ Top * / for the full subcategory of connected pointed topological spaces. Write Set * / for the

category of pointed sets.

Definition 1.28. A Brown functor is a functor

: Ho(Top≥
* / ) ⟶ Set * /

(from the opposite of the classical homotopy category (def., def.) of connected pointed topological spaces)
such that

(additivity)  takes small coproducts (wedge sums) to products;1. 

(Mayer-Vietoris) If = Int( ) ∪ Int( ) then for all ∈ ( ) and ∈ ( ) such that ( ) | ∩ = ( )| ∩

then there exists ∈ ( ) such that = ( )|  and = ( )| .

2. 

Proposition 1.29. For every additive reduced cohomology theory ˜ •(−) :Ho(Top * /) → Set * / (def. 1.2) and

for each degree ∈ ℕ, the restriction of ˜ (−) to connected spaces is a Brown functor (def. 1.28).

Proof. Under the relation between reduced and unreduced cohomology above, this follows from the
exactness of the Mayer-Vietoris sequence of prop. 1.16.  ▮

Theorem 1.30. (Brown representability)

Every Brown functor  (def. 1.28) is representable, hence there exists ∈ Top≥
* /  and a natural

isomorphism

[−, ]
*
⟶≃ (−)

(where [−, −]
*
 denotes the hom-functor of Ho(Top≥

* / ) (exmpl.)).

(e.g. AGP 02, theorem 12.2.22)
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Remark 1.31. A key subtlety in theorem 1.30 is the restriction to connected pointed topological spaces in
def. 1.28. This comes about since the proof of the theorem requires that continuous functions : ⟶
that induce isomorphisms on pointed homotopy classes

[ , ]
*
⟶ [ , ]

*

for all  are weak homotopy equivalences (For instance in AGP 02 this is used in the proof of theorem
12.2.19 there). But [ , ]

*
= ( , ) gives the th homotopy group of only for the canonical basepoint,

while for a weak homotopy equivalence in general one needs to consider the homotopy groups at all
possible basepoints, at least one for each connected component. But so if one does assume that all spaces
involved are connected, hence only have one connected component, then indeed weak homotopy
equivalences are equivalently those maps →  making all the [ , ]

*
⟶ [ , ]

*
 into isomorphisms.

See also example 1.42 below.

The representability result applied degreewise to an additive reduced cohomology theory will yield (prop.
1.33 below) the following concept.

Definition 1.32. An Omega-spectrum  (def.) is

a sequence { } ∈ℕ of pointed topological spaces ∈ Top * /1. 

weak homotopy equivalences

˜ : ®¾¾
∈

˜
+

for each ∈ ℕ, form each space to the loop space of the following space.

2. 

Proposition 1.33. Every additive reduced cohomology theory ˜ •(−):(Top* ) ⟶ Abℤ according to def. 1.2,

is represented by an Omega-spectrum  (def. 1.32) in that in each degree ∈ ℕ

˜ (−) is represented by some ∈ Ho(Top * /);1. 

the suspension isomorphism  of ˜
•
 is represented by the structure map ˜  of the Omega-spectrum

in that for all ∈ Top * / the following diagram commutes:

˜ ( ) ®¾¾
( )

⟶ ˜ +
( )

≃ ↓ ↓≃

[ , ]
*

®¾¾¾
[ , ˜ ]

* [ , + ]
*

≃ [ , + ]
*

,

where [−, −]
*
≔ Hom

( ≥
* / )

 denotes the hom-sets in the classical pointed homotopy category (def.)

and where in the bottom right we have the ( ⊣ )-adjunction isomorphism (prop.).

2. 

Proof. If it were not for the connectedness clause in def. 1.28 (remark 1.31), then theorem 1.30 with prop.
1.29 would immediately give the existence of the { } ∈ℕ and the remaining statement would follow

immediately with the Yoneda lemma, which says in particular that morphisms between representable
functors are in natural bijection with the morphisms of objects that represent them.

The argument with the connectivity condition in Brown representability taken into account is essentially the
same, just with a little bit more care:

For  a pointed topological space, write ( ) for the connected component of its basepoint. Observe that the
loop space of a pointed topological space only depends on this connected component:

≃ ( ( )) .

Now for ∈ ℕ, to show that ˜ (−) is representable by some ∈ Ho(Top * /), use first that the restriction of
˜ +

 to connected spaces is represented by some +
( ) . Observe that the reduced suspension of any

∈ Top * / lands in Top≥
* / . Therefore the ( ⊣ )-adjunction isomorphism (prop.) implies that ˜

+
( (−)) is

represented on all of Top * / by +
( ) :

˜ +
( ) ≃ [ , +

( ) ]
*
≃ [ , +

( ) ]
*
≃ [ , + ]

*
,

where +  is any pointed topological space with the given connected component +
( ) .
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Now the suspension isomorphism of ˜  says that ∈ Ho(Top * /) representing ˜  exists and is given by +
( ) :

˜ ( ) ≃ ˜ +
( , ) ≃ [ , + ]

for any +  with connected component +
( ) .

This completes the proof. Notice that running the same argument next for ( + 1) gives a representing space

+  such that its connected component of the base point is +
( )  found before. And so on.  ▮

Conversely:

Proposition 1.34. Every Omega-spectrum , def. 1.32, represents an additive reduced cohomology theory

def. 1.1 ˜ • by

˜ ( ) ≔ [ , ]
*

with suspension isomorphism given by

: ˜ ( ) = [ , ]
*

®¾¾
[ , ˜ ]

[ , + ]
*
→≃ [ , + ] = ˜ +

( ) .

Proof. The additivity is immediate from the construction. The exactnes follows from the long exact
sequences of homotopy cofiber sequences given by this prop..  ▮

Remark 1.35. If we consider the stable homotopy category Ho(Spectra) of spectra (def.) and consider any
topological space  in terms of its suspension spectrum ∈ Ho(Spectra) (exmpl.), then the statement of
prop. 1.34 is more succinctly summarized by saying that the graded reduced cohomology groups of a
topological space  represented by an Omega-spectrum  are the hom-groups

˜ •( ) ≃ [ , • ]

in the stable homotopy category, into all the suspensions (thm.) of .

This means that more generally, for ∈ Ho(Spectra) any spectrum, it makes sense to consider

˜ •( ) ≔ [ , • ]

to be the graded reduced generalized -cohomology groups of the spectrum .

See also in part 1 this example.

Application to ordinary cohomology

Example 1.36. Let  be an abelian group. Consider singular cohomology (−, ) with coefficients in . The
corresponding reduced cohomology evaluated on n-spheres satisfies

˜ ( , ) ≃
if =

0 otherwise

Hence singular cohomology is a generalized cohomology theory which is “ordinary cohomology” in the
sense of def. 1.6.

Applying the Brown representability theorem as in prop. 1.33 hence produces an Omega-spectrum (def.
1.32) whose th component space is characterized as having homotopy groups concentrated in degree 
on . These are called Eilenberg-MacLane spaces ( , )

( ( , )) ≃
if =

0 otherwise
.

Here for > 0 then ( , ) is connected, therefore with an essentially unique basepoint, while ( , 0) is
(homotopy equivalent to) the underlying set of the group .

Such spectra are called Eilenberg-MacLane spectra :

( ) ≃ ( , ) .

As a consequence of example 1.36 one obtains the uniqueness result of Eilenberg-Steenrod:

Proposition 1.37. Let ˜  and ˜  be ordinary (def. 1.6) generalized (Eilenberg-Steenrod) cohomology
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theories. If there is an isomorphism

˜ ( ) ≃ ˜ ( )

of cohomology groups of the 0-sphere, then there is an isomorphism of cohomology theories

˜ ⟶≃ ˜ .

(e.g. Aguilar-Gitler-Prieto 02, theorem 12.3.6)

Homotopy-theoretic discussion

Using abstract homotopy theory in the guise of model category theory (see the lecture notes on classical
homotopy theory), the traditional proof and further discussion of the Brown representability theorem above
becomes more transparent (Lurie 10, section 1.4.1, for exposition see also Mathew 11).

This abstract homotopy-theoretic proof uses the general concept of homotopy colimits in model categories
as well as the concept of derived hom-spaces (“∞-categories”). Even though in the accompanying Lecture
notes on classical homotopy theory these concepts are only briefly indicated, the following is included for
the interested reader.

Definition 1.38. Let  be a model category. A functor

: Ho( ) ⟶ Set

(from the opposite of the homotopy category of  to Set)

is called a Brown functor if

it sends small coproducts to products;1. 

it sends homotopy pushouts in → Ho( ) to weak pullbacks in Set (see remark 1.39).2. 

Remark 1.39. A weak pullback is a diagram that satisfies the existence clause of a pullback, but not
necessarily the uniqueness condition. Hence the second clause in def. 1.38 says that for a homotopy
pushout square

⟶

↓ ⇙ ↓

⟶ ⊔

in , then the induced universal morphism

( ⊔ ) ⟶ ( ) ×
( )

( )

into the actual pullback is an epimorphism.

Definition 1.40. Say that a model category  is compactly generated by cogroup objects closed
under suspensions if

 is generated by a set

{ ∈ } ∈

of compact objects (i.e. every object of  is a homotopy colimit of the objects .)

1. 

each  admits the structure of a cogroup object in the homotopy category Ho( );2. 

the set { } is closed under forming reduced suspensions.3. 

Example 1.41. (suspensions are H-cogroup objects)

Let  be a model category and * / its pointed model category (prop.) with zero object (rmk.). Write
: ↦ 0∐ 0 for the reduced suspension functor.

Then the fold map

≃ 0 ⊔ 0 ⊔ 0 ⟶ 0 ⊔ ⊔ 0 ≃ 0 ⊔ 0 ≃
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exhibits cogroup structure on the image of any suspension object  in the homotopy category.

This is equivalently the group-structure of the first (fundamental) homotopy group of the values of functor
co-represented by :

Ho( )( , −) : ↦ Ho( )( , ) ≃ Ho( )( , ) ≃ Ho( )( , ) .

Example 1.42. In bare pointed homotopy types = Top * / , the (homotopy types of) n-spheres  are
cogroup objects for ≥ 1, but not for = 0, by example 1.41. And of course they are compact objects.

So while { } ∈ℕ generates all of the homotopy theory of Top * /, the latter is not an example of def. 1.40

due to the failure of  to have cogroup structure.

Removing that generator, the homotopy theory generated by { } ∈ℕ

≥

 is Top≥
* / , that of connected pointed

homotopy types. This is one way to see how the connectedness condition in the classical version of Brown
representability theorem arises. See also remark 1.31 above.

See also (Lurie 10, example 1.4.1.4)

In homotopy theories compactly generated by cogroup objects closed under forming suspensions, the
following strenghtening of the Whitehead theorem holds.

Proposition 1.43. In a homotopy theory compactly generated by cogroup objects { } ∈  closed under

forming suspensions, according to def. 1.40, a morphism : ⟶  is an equivalence precisely if for each
∈  the induced function of maps in the homotopy category

Ho( )( , ) : Ho( )( , ) ⟶ Ho( )( , )

is an isomorphism (a bijection).

(Lurie 10, p. 114, Lemma star)

Proof. By the ∞-Yoneda lemma, the morphism  is a weak equivalence precisely if for all objects ∈  the
induced morphism of derived hom-spaces

( , ) : ( , ) ⟶ ( , )

is an equivalence in Top . By assumption of compact generation and since the hom-functor (−, −)

sends homotopy colimits in the first argument to homotopy limits, this is the case precisely already if it is
the case for ∈ { } ∈ .

Now the maps

( , ) : ( , ) ⟶ ( , )

are weak equivalences in Top  if they are weak homotopy equivalences, hence if they induce

isomorphisms on all homotopy groups  for all basepoints.

It is this last condition of testing on all basepoints that the assumed cogroup structure on the  allows to do
away with: this cogroup structure implies that ( , −) has the structure of an -group, and this implies (by
group multiplication), that all connected components have the same homotopy groups, hence that all
homotopy groups are independent of the choice of basepoint, up to isomorphism.

Therefore the above morphisms are equivalences precisely if they are so under applying  based on the
connected component of the zero morphism

( , ) : ( , ) ⟶ ( , ) .

Now in this pointed situation we may use that

(−, −) ≃ (−, (−))

≃ ( (−), −)

≃ Ho( )( (−), −)

to find that  is an equivalence in  precisely if the induced morphisms

Ho( )( , ) : Ho( )( , ) ⟶ Ho( )( , )

are isomorphisms for all ∈  and ∈ ℕ.
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Finally by the assumption that each suspension  of a generator is itself among the set of generators, the
claim follows.  ▮

Theorem 1.44. (Brown representability)

Let  be a model category compactly generated by cogroup objects closed under forming suspensions,
according to def. 1.40. Then a functor

: Ho( ) ⟶ Set

(from the opposite of the homotopy category of  to Set) is representable precisely if it is a Brown functor,
def. 1.38.

(Lurie 10, theorem 1.4.1.2)

Proof. Due to the version of the Whitehead theorem of prop. 1.43 we are essentially reduced to showing
that Brown functors  are representable on the . To that end consider the following lemma. (In the
following we notationally identify, via the Yoneda lemma, objects of , hence of Ho( ), with the functors they
represent.)

Lemma (⋆): Given ∈  and ∈ ( ), hence : → , then there exists a morphism : → ′  and an
extension ′ : ′ →  of  which induces for each  a bijection ′ ∘ (−):PSh(Ho( ))( , ′ ) ⟶≃ Ho( )( , ) ≃ ( ).

To see this, first notice that we may directly find an extension  along a map →  such as to make a

surjection: simply take  to be the coproduct of all possible elements in the codomain and take

: ⊔
∈ ,

: →

⟶

to be the canonical map. (Using that , by assumption, turns coproducts into products, we may indeed treat
the coproduct in  on the left as the coproduct of the corresponding functors.)

To turn the surjection thus constructed into a bijection, we now successively form quotients of . To that
end proceed by induction and suppose that : →  has been constructed. Then for ∈  let

≔ ker Ho( )( , ) ®¾¾¾
∘(−)

( )

be the kernel of  evaluated on . These  are the pieces that need to go away in order to make a

bijection. Hence define +  to be their joint homotopy cofiber

+ ≔ coker ( ⊔
∈ ,

∈

) ®¾¾¾

( ) ∈
∈

.

Then by the assumption that  takes this homotopy cokernel to a weak fiber (as in remark 1.39), there
exists an extension +  of  along → + :

Then by the assumption that  takes this homotopy cokernel to a weak fiber (as in remark 1.39), there
exists an extension +  of  along → + :

( ⊔
∈

∈

) ®¾¾¾

( ) ∈
∈

⟶

↓ (po ) ↓ ↗∃ +

* ⟶ +

⇔

( + ) ⟶ *
∃ + ↗ ↓ ↓

* ⟶ ker(( *) ∈

∈

) ⟶ *

↘ ↓ (pb) ↓

( ) ®¾¾¾
( *) ∈

∈

∏ ∈

∈

( )

.

It is now clear that we want to take

′ ≔ lim⎯

and extend all the  to that colimit. Since we have no condition for evaluating  on colimits other than

pushouts, observe that this sequential colimit is equivalent to the following pushout:
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⊔ ⟶ ⊔

↓ ↓

⊔ + ⟶ ′

,

where the components of the top and left map alternate between the identity on  and the above successor
maps → + . Now the excision property of  applies to this pushout, and we conclude the desired
extension ′ : ′ → :

⊔

↙ ↘

⊔ + ⟶ ′ ⟵ ⊔

( + ) ↘ ↓∃ ↙( )

⇔

( ′)

∃ ↗ ↓

* ®¾¾
( )

lim¬¾ ( )

↙ ↘

∏ ( + ) ∏ ( )

↘ ↙

∏ ( )

,

It remains to confirm that this indeed gives the desired bijection. Surjectivity is clear. For injectivity use that
all the  are, by assumption, compact, hence they may be taken inside the sequential colimit:

( )

∃^ ↗ ↓

⟶ ′ = lim®¾

.

With this, injectivity follows because by construction we quotiented out the kernel at each stage. Because
suppose that  is taken to zero in ( ), then by the definition of +  above there is a factorization of 
through the point:

0: ⟶
^

( ) ⟶

↓ ↓

* ⟶ ( )+

↓

′

This concludes the proof of Lemma (⋆).

Now apply the construction given by this lemma to the case ≔ 0 and the unique :0 →
∃ !

. Lemma ( ⋆ )

then produces an object ′  which represents  on all the , and we want to show that this ′ actually
represents  generally, hence that for every ∈  the function

≔ ′ ∘ (−) : Ho( )( , ′) ⟶ ( )

is a bijection.

First, to see that  is surjective, we need to find a preimage of any : → . Applying Lemma ( ⋆ ) to
( ′ , ) : ′ ⊔ ⟶  we get an extension  of this through some ′ ⊔ ⟶  and the morphism on the right of
the following commuting diagram:

Ho( )(−, ′ ) ⟶ Ho( )(−, )

∘(−) ↘ ↙ ∘(−)

(−)

.

Moreover, Lemma ( ⋆ ) gives that evaluated on all , the two diagonal morphisms here become
isomorphisms. But then prop. 1.43 implies that ′ ⟶  is in fact an equivalence. Hence the component map
→ ≃  is a lift of  through .

Second, to see that  is injective, suppose , : → ′  have the same image under . Then consider their
homotopy pushout
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⊔ ®¾
( , )

′

↓ ↓

⟶

along the codiagonal of . Using that  sends this to a weak pullback by assumption, we obtain an extension
¯  of ′  along ′ → . Applying Lemma ( ⋆ ) to this gives a further extension ¯ ′ : ′ →  which now makes the
following diagram

Ho( )(−, ′ ) ⟶ Ho( )(−, )

∘(−) ↘ ↙ ¯ ∘(−)

(−)

such that the diagonal maps become isomorphisms when evaluated on the . As before, it follows via prop.
1.43 that the morphism ℎ: ′ ⟶ ′  is an equivalence.

Since by this construction ℎ ∘  and ℎ ∘  are homotopic

⊔ ®¾
( , )

′

↓ ↓ ↘≃

⟶ ⟶ ′

it follows with ℎ being an equivalence that already  and  were homotopic, hence that they represented the
same element.  ▮

Proposition 1.45. Given a reduced additive cohomology functor • :Ho( ) → Abℤ, def. 1.5, its underlying
Set-valued functors :Ho( ) → Ab → Set are Brown functors, def. 1.38.

Proof. The first condition on a Brown functor holds by definition of •. For the second condition, given a
homotopy pushout square

⟶

↓ ↓

⟶

in , consider the induced morphism of the long exact sequences given by prop. 1.8

•(coker( )) ⟶ •( ) ⟶
*

•( ) ⟶ • + ( coker( ))

≃ ↓ ↓ ↓ ↓≃

•(coker( )) ⟶ •( ) ⟶
*

•( ) ⟶ • + ( coker( ))

Here the outer vertical morphisms are isomorphisms, as shown, due to the pasting law (see also at fiberwise
recognition of stable homotopy pushouts). This means that the four lemma applies to this diagram.
Inspection shows that this implies the claim.  ▮

Corollary 1.46. Let  be a model category which satisfies the conditions of theorem 1.44, and let ( •, ) be
a reduced additive generalized cohomology functor on , def. 1.5. Then there exists a spectrum object
∈ Stab( ) such that

•  is degreewise represented by :

• ≃ Ho( )(−, •) ,

1. 

the suspension isomorphism  is given by the structure morphisms ˜ : → +  of the spectrum, in
that

: (−) ≃ Ho( )(−, ) ®¾¾¾¾¾
( )(−, ˜ )

Ho( )(−, + ) ≃ Ho( )( (−), + ) ≃ + ( (−)) .

2. 

Proof. Via prop. 1.45, theorem 1.44 gives the first clause. With this, the second clause follows by the
Yoneda lemma.  ▮

Milnor exact sequence

Idea. One tool for computing generalized cohomology groups via “inverse limits” are Milnor exact
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sequences. For instance the generalized cohomology of the classifying space (1) plays a key role in the
complex oriented cohomology-theory discussed below, and via the equivalence (1) ≃ ℂ  to the homotopy
type of the infinite complex projective space (def. 1.134), which is the direct limit of finite dimensional
projective spaces ℂ , this is an inverse limit of the generalized cohomology groups of the ℂ s. But what
really matters here is the derived functor of the limit-operation – the homotopy limit – and the Milnor exact
sequence expresses how the naive limits receive corrections from higher “lim^1-terms”. In practice one
mostly proceeds by verifying conditions under which these corrections happen to disappear, these are the
Mittag-Leffler conditions.

We need this for instance for the computation of Conner-Floyd Chern classes below.

Literature. (Switzer 75, section 7 from def. 7.57 on, Kochman 96, section 4.2, Goerss-Jardine 99, section
VI.2, )

Lim

Definition 1.47. Given a tower • of abelian groups

⋯ → → → →

write

∂ : ⟶

for the homomorphism given by

∂ : ( ) ∈ℕ ↦ ( − ( + )) ∈ℕ .

Remark 1.48. The limit of a sequence as in def. 1.47 – hence the group lim¬¾  universally equipped with

morphisms lim¬¾ ®¾  such that all

lim¬¾

+ ↙ ↘

+ ⟶

commute – is equivalently the kernel of the morphism ∂ in def. 1.47.

Definition 1.49. Given a tower • of abelian groups

⋯ → → → →

then lim¬¾ • is the cokernel of the map ∂ in def. 1.47, hence the group that makes a long exact sequence

of the form

0 → lim¬¾ ⟶ ⟶ ⟶ lim¬¾ → 0 ,

Proposition 1.50. The functor lim¬¾ :Ab(ℕ, ≥) ⟶ Ab (def. 1.49) satisfies

for every short exact sequence 0 → • → • → • → 0 ∈ Ab(ℕ, ≥) then the induced sequence

0 → lim¬¾ → lim¬¾ → lim¬¾ → lim¬¾ → lim¬¾ → lim¬¾ → 0

is a long exact sequence of abelian groups;

1. 

if • is a tower such that all maps are surjections, then lim¬¾ ≃ 0.2. 

(e.g. Switzer 75, prop. 7.63, Goerss-Jardine 96, section VI. lemma 2.11)

Proof. For the first property: Given • a tower of abelian groups, write
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•( •) ≔

⎡

⎣

⎢
⎢⎢
⎢

0 → ⟶ → 0

⎤

⎦

⎥
⎥⎥
⎥

for the homomorphism from def. 1.47 regarded as the single non-trivial differential in a cochain complex of
abelian groups. Then by remark 1.48 and def. 1.49 we have ( ( •)) ≃ lim¬¾ • and ( ( •)) ≃ lim¬¾ •.

With this, then for a short exact sequence of towers 0 → • → • → • → 0 the long exact sequence in question
is the long exact sequence in homology of the corresponding short exact sequence of complexes

0 → •( •) ⟶
•( •) ⟶

•( •) → 0 .

For the second statement: If all the  are surjective, then inspection shows that the homomorphism ∂ in

def. 1.47 is surjective. Hence its cokernel vanishes.  ▮

Lemma 1.51. The category Ab(ℕ, ≥ ) of towers of abelian groups has enough injectives.

Proof. The functor (−) :Ab(ℕ, ≥) → Ab that picks the -th component of the tower has a right adjoint , which

sends an abelian group  to the tower

≔ ⋯ → → ⏟
=( ) +

→ ⏟
=( )

→ 0⏟
=( ) −

→ 0 → ⋯ → 0 → 0 .

Since (−)  itself is evidently an exact functor, its right adjoint preserves injective objects (prop.).

So with • ∈ Ab
(ℕ, ≥), let ↪ ˜  be an injective resolution of the abelian group , for each ∈ ℕ. Then

• ®¾¾¾
( ) ∈ℕ

∈ℝ

↪
∈ℕ

˜

is an injective resolution for •.  ▮

Proposition 1.52. The functor lim¬¾ :Ab(ℕ, ≥) ⟶ Ab (def. 1.49) is the first right derived functor of the limit

functor lim¬¾:Ab
(ℕ, ≥ ) ⟶ Ab.

Proof. By lemma 1.51 there are enough injectives in Ab(ℕ, ≥). So for • ∈ Ab
(ℕ, ≥) the given tower of abelian

groups, let

0 → • ⟶ • ⟶ • ⟶ • ⟶⋯

be an injective resolution. We need to show that

lim¬¾ • ≃ ker(lim¬¾( ))/im(lim¬¾( )) .

Since limits preserve kernels, this is equivalently

lim¬¾ • ≃ (lim¬¾(ker( )•))/im(lim¬¾( ))

Now observe that each injective •  is a tower of epimorphism. This follows by the defining right lifting
property applied against the monomorphisms of towers of the following form

⋯ → 0 → 0 ⟶ 0 ⟶ ℤ ⟶ ⋯ ⟶ ℤ ⟶ ℤ

⋯ ↓ ↓ ↓ ↓ ↓ ↓

⋯ → 0 → 0 → ℤ ⟶ ℤ ⟶ ⋯ ⟶ ℤ ⟶ ℤ

Therefore by the second item of prop. 1.50 the long exact sequence from the first item of prop. 1.50 applied
to the short exact sequence

0 → • ⟶ • ⟶ ker( )• → 0

becomes

0 → lim¬¾ • ®¾¾¬¾ lim¬¾ • ®¾¾¬¾ lim¬¾(ker( )•) ⟶ lim¬¾ • ⟶ 0 .

Introduction to Stable homotopy theory -- S in nLab https://ncatlab.org/nlab/print/Introduction+to+Stable+homotopy+theor...

22 of 78 27.12.2016 13:13



Exactness of this sequence gives the desired identification lim¬¾ • ≃ (lim¬¾(ker( )•))/im(lim¬¾( )) .   ▮

Proposition 1.53. The functor lim¬¾ :Ab(ℕ, ≥) ⟶ Ab (def. 1.49) is in fact the unique functor, up to natural

isomorphism, satisfying the conditions in prop. 1.53.

Proof. The proof of prop. 1.52 only used the conditions from prop. 1.50, hence any functor satisfying these
conditions is the first right derived functor of lim¬¾, up to natural isomorphism.  ▮

The following is a kind of double dual version of the lim  construction which is sometimes useful:

Lemma 1.54. Given a cotower

• = ( → → → ⋯)

of abelian groups, then for every abelian group ∈ Ab there is a short exact sequence of the form

0 → lim¬¾Hom( , ) ⟶ Ext (lim®¾ , ) ⟶ lim¬¾ Ext ( , ) → 0 ,

where Hom(−, −) denotes the hom-group, Ext (−, −) denotes the first Ext-group (and so
Hom(−, −) = Ext (−, −)).

Proof. Consider the homomorphism

∂̃ : ⊕ ⟶ ⊕

which sends ∈  to − ( ). Its cokernel is the colimit over the cotower, but its kernel is trivial (in

contrast to the otherwise formally dual situation in remark 1.48). Hence (as opposed to the long exact
sequence in def. 1.49) there is a short exact sequence of the form

0 → ⊕ ⟶
˜
⊕ ⟶ lim®¾ → 0 .

Every short exact sequence gives rise to a long exact sequence of derived functors (prop.) which in the
present case starts out as

0 → Hom(lim®¾ , ) ⟶ Hom( , ) ⟶ Hom( , ) ⟶ Ext (lim®¾ , ) ⟶ Ext ( , ) ⟶ Ext ( , ) ⟶ ⋯

where we used that direct sum is the coproduct in abelian groups, so that homs out of it yield a product,
and where the morphism ∂ is the one from def. 1.47 corresponding to the tower

Hom( • , ) = (⋯ → Hom( , ) → Hom( , ) → Hom( , )) .

Hence truncating this long sequence by forming kernel and cokernel of ∂, respectively, it becomes the short
exact sequence in question.  ▮

Mittag-Leffler condition

Definition 1.55. A tower • of abelian groups

⋯ → → → →

is said to satify the Mittag-Leffler condition if for all  there exists ≥  such that for all ≥ ≥  the
image of the homomorphism →  equals that of →

im( → ) ≃ im( → ) .

(e.g. Switzer 75, def. 7.74)

Example 1.56. The Mittag-Leffler condition, def. 1.55, is satisfied in particular when all morphisms + →
are epimorphisms (hence surjections of the underlying sets).

Proposition 1.57. If a tower • satisfies the Mittag-Leffler condition, def. 1.55, then its lim⎯  vanishes:

lim¬¾ • = 0 .

e.g. (Switzer 75, theorem 7.75, Kochmann 96, prop. 4.2.3, Weibel 94, prop. 3.5.7)

Proof idea. One needs to show that with the Mittag-Leffler condition, then the cokernel of ∂ in def. 1.47

Introduction to Stable homotopy theory -- S in nLab https://ncatlab.org/nlab/print/Introduction+to+Stable+homotopy+theor...

23 of 78 27.12.2016 13:13



vanishes, hence that ∂ is an epimorphism in this case, hence that every ( ) ∈ℕ ∈ ∏  has a preimage

under ∂. So use the Mittag-Leffler condition to find pre-images of  by induction over .  ▮

Mapping telescopes

Given a sequence

• = ⟶ ⟶ ⟶⋯

of (pointed) topological spaces, then its mapping telescope is the result of forming the (reduced) mapping
cylinder Cyl( ) for each  and then attaching all these cylinders to each other in the canonical way

Definition 1.58. For

• = ⟶ ⟶ ⟶⋯

a sequence in Top, its mapping telescope is the quotient topological space of the disjoint union of
product topological spaces

Tel( •) ≔ ( ⊔
∈ℕ

( × [ , + 1]))/∼

where the equivalence relation quotiented out is

( , ) ∼ ( ( ), + 1)

for all ∈ ℕ and ∈ .

Analogously for • a sequence of pointed topological spaces then use reduced cylinders (exmpl.) to set

Tel( •) ≔ ⊔
∈ℕ

( ∧ [ , + 1]+) /∼ .

Lemma 1.59. For • the sequence of stages of a (pointed) CW-complex = lim¬¾ , then the canonical map

Tel( •) ⟶

from the mapping telescope, def. 1.58, is a weak homotopy equivalence.

Proof. Write in the following Tel( ) for Tel( •) and write Tel( ) for the mapping telescop of the substages of
the finite stage  of . It is intuitively clear that each of the projections at finite stage

Tel( ) ⟶

is a homotopy equivalence, hence (prop.) a weak homotopy equivalence. A concrete construction of a
homotopy inverse is given for instance in (Switzer 75, proof of prop. 7.53).

Moreover, since spheres are compact, so that elements of homotopy groups (Tel( )) are represented at
some finite stage (Tel( )) it follows that

lim®¾ (Tel( )) ⟶≃ (Tel( ))

are isomorphisms for all ∈ ℕ and all choices of basepoints (not shown).

Together these two facts imply that in the following commuting square, three morphisms are isomorphisms,
as shown.

lim¬¾ (Tel( )) ⟶≃ (Tel( ))

≃ ↓ ↓

lim¬¾ ( ) ⟶
≃

( )

.

Therefore also the remaining morphism is an isomorphism (two-out-of-three). Since this holds for all  and
all basepoints, it is a weak homotopy equivalence.  ▮

Milnor exact sequences

Proposition 1.60. (Milnor exact sequence for homotopy groups)
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Let

⋯ → ⟶ ⟶ ⟶

be a tower of fibrations (Serre fibrations (def.)). Then for each ∈ ℕ there is a short exact sequence

0 → lim¬¾ + ( ) ⟶ (lim¬¾ ) ⟶ lim¬¾ ( ) → 0 ,

for • the homotopy group-functor (exact as pointed sets for = 0, as groups for ≥ 1) which says that

the failure of the limit over the homotopy groups of the stages of the tower to equal the homotopy
groups of the limit of the tower is at most in the kernel of the canonical comparison map;

1. 

that kernel is the lim¬¾  (def. 1.49) of the homotopy groups of the stages.2. 

An elementary but tedious proof is indicated in (Bousfield-Kan 72, chapter IX, theorem 3.1. The following is
a neat model category-theoretic proof following (Goerss-Jardine 96, section VI. prop. 2.15), which however
requires the concept of homotopy limit over towers.

Proof. With respect to the classical model structure on simplicial sets or the classical model structure on
topological spaces, a tower of fibrations as stated is a fibrant object in the injective model structure on
functors [(ℕ, ≥ ), sSet]  ([(ℕ, ≥ ), Top] ) (prop). Hence the plain limit over this diagram represents the

homotopy limit. By the discussion there, up to weak equivalence that homotopy limit is also the pullback in

holim • ⟶ ∏ Path( )

↓ (pb) ↓

∏ ®¾¾¾
( , )

∏ ×

,

where on the right we have the product over all the canonical fibrations out of the path space objects. Hence
also the left vertical morphism is a fibration, and so by taking its fiber over a basepoint, the pasting law
gives a homotopy fiber sequence

⟶ holim • ⟶ .

The long exact sequence of homotopy groups of this fiber sequence goes

⋯ → + ( ) ⟶ + ( ) ⟶ (lim¬¾ •) ⟶ ( ) ⟶ ( ) → ⋯ .

Chopping that off by forming kernel and cokernel yields the claim for positive . For = 0 it follows by
inspection.  ▮

Proposition 1.61. (Milnor exact sequence for generalized cohomology)

Let  be a pointed CW-complex, = lim®¾  and let ˜
•
 an additive reduced cohomology theory, def. 1.1.

Then the canonical morphisms make a short exact sequence

0 → lim¬¾
˜ • − ( ) ⟶ ˜ •( ) ⟶ lim¬¾

˜ •( ) → 0 ,

saying that

the failure of the canonical comparison map ˜
•
( ) → lim¬¾

˜ •( ) to the limit of the cohomology groups

on the finite stages to be an isomorphism is at most in a non-vanishing kernel;

1. 

this kernel is precisely the lim  (def. 1.49) of the cohomology groups at the finite stages in one
degree lower.

2. 

e.g. (Switzer 75, prop. 7.66, Kochmann 96, prop. 4.2.2)

Proof. For

• = ↪ ↪ ↪ ⋯

the sequence of stages of the (pointed) CW-complex = lim¬¾ , write
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≔ ⊔
∈ℕ

× [2 , 2 + 1];

≔ ⊔
∈ℕ ( + ) × [2 + 1, 2 + 2] .

for the disjoint unions of the cylinders over all the stages in even and all those in odd degree, respectively.

These come with canonical inclusion maps into the mapping telescope Tel( •) (def.), which we denote by

↘ ↙

Tel( •)

.

Observe that

∪ ≃ Tel( •);1. 

∩ ≃ ⊔
∈ℕ

;2. 

and that there are homotopy equivalences

≃ ⊔
∈ℕ +1. 

≃ ⊔
∈ℕ

2. 

Tel( •) ≃ .3. 

The first two are obvious, the third is this proposition.

This implies that the Mayer-Vietoris sequence (prop.) for ˜
•
 on the cover ⊔ →  is isomorphic to the

bottom horizontal sequence in the following diagram:

˜ • − ( ) ⊕ ˜ • − ( ) ⟶ ˜ • − ( ∩ ) ⟶ ˜ •( ) ®¾¾¾¾¾
( )*−( )*

˜ •( ) ⊕ ˜ •( ) ⟶ ˜ •( ∩ )

↓≃ ↓≃ ↓= ( , − ) ↓≃ ↓≃

∏ ˜ • − ( ) ⟶ ∏ ˜ • − ( ) ⟶ ˜ •( ) ®¾
( * )

∏ ˜ •( ) ⟶ ∏ ˜ •( )

,

hence that the bottom sequence is also a long exact sequence.

To identify the morphism ∂, notice that it comes from pulling back -cohomology classes along the inclusions
∩ →  and ∩ → . Comonentwise these are the inclusions of each  into the left and the right end of

its cylinder inside the mapping telescope, respectively. By the construction of the mapping telescope, one of
these ends is embedded via : ↪ +  into the cylinder over + . In conclusion, ∂ acts by

∂ : ( ) ∈ℕ ↦ ( − * ( + )) .

(The relative sign is the one in ( )*−( )* originating in the definition of the Mayer-Vietoris sequence and

properly propagated to the bottom sequence while ensuring that ˜
•
( ) → ∏ ˜ •( ) is really ( * )  and not

(−1) ( * ) , as needed for the statement to be proven.)

This is the morphism from def. 1.47 for the sequence

⋯ → ˜ •( + ) ⟶
*
˜ •( ) ⟶

*
˜ •( − ) → ⋯ .

Hence truncating the above long exact sequence by forming kernel and cokernel of ∂, the result follows via
remark 1.48 and definition 1.49.  ▮

In contrast:

Proposition 1.62. Let  be a pointed CW-complex, = lim¬¾ .

For ˜ • an additive reduced generalized homology theory, then

lim®¾
˜
•( ) ⟶≃ ˜

•( )

is an isomorphism.

(Switzer 75, prop. 7.53)
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There is also a version for cohomology of spectra:

For , ∈ Ho(Spectra) two spectra, then the -generalized cohomology of  is the graded group of homs in the
stable homotopy category (def., exmpl.)

•( ) ≔ [ , ]−•

≔ [ • , ]
.

The stable homotopy category is, in particular, the homotopy category of the stable model structure on
orthogonal spectra, in that its localization at the stable weak homotopy equivalences is of the form

: OrthSpec(Top ) ⟶ Ho(Spectra) .

In the following when considering an orthogonal spectrum ∈ OrthSpec(Top ), we use, for brevity, the same

symbol for its image under .

Proposition 1.63. For , ∈ OrthSpec(Top ) two orthogonal spectra (or two symmetric spectra such that  is

a semistable symmetric spectrum) then there is a short exact sequence of the form

0 → lim¬¾
• + − ( ) ⟶ •( ) ⟶ lim¬¾

• + ( ) → 0

where lim¬¾  denotes the lim^1, and where this and the limit on the right are taken over the following

structure morphisms

• + + ( + ) ®¾¾¾¾¾
• + + ( ) • + + ( ∧ ) ⟶≃ • + ( ) .

(Schwede 12, chapter II prop. 6.5 (ii)) (using that symmetric spectra underlying orthogonal spectra are
semistable (Schwede 12, p. 40))

Corollary 1.64. For , ∈ Ho(Spectra) two spectra such that the tower ↦ − ( ) satisfies the Mittag-
Leffler condition (def. 1.55), then two morphisms of spectra ⟶  are homotopic already if all their
morphisms of component spaces →  are.

Proof. By prop. 1.57 the assumption implies that the lim -term in prop. 1.63 vanishes, hence by exactness
it follows that in this case there is an isomorphism

[ , ] ≃ ( ) ⟶≃ lim¬¾ [ , ] .

  ▮

Serre-Atiyah-Hirzebruch spectral sequence

Idea. Another important tool for computing generalized cohomology is to reduce it to the computation of
ordinary cohomology with coefficients. Given a generalized cohomology theory , there is a spectral
sequence known as the Atiyah-Hirzebruch spectral sequence (AHSS) which serves to compute -cohomology
of -fiber bundles over a simplicial complex  in terms of ordinary cohomology with coefficients in the
generalized cohomology •( ) of the fiber. For = HA this is known as the Serre spectral sequence.

The Atiyah-Hirzebruch spectral sequence in turn is a consequence of the “Cartan-Eilenberg spectral
sequence” which arises from the exact couple of relative cohomology groups of the skeleta of the
CW-complex, and whose first page is the relative cohomology groups for codimension-1 skeleta.

We need the AHSS for instance for the computation of Conner-Floyd Chern classes below.

Literature. (Kochman 96, section 2.2 and 4.2)

See also the accompanying lecture notes on spectral sequences.

Converging spectral sequences

Definition 1.65. A cohomology spectral sequence { , , } is

a sequence { • , •} (for ∈ ℕ, ≥ 1) of bigraded abelian groups (the “pages”);1. 

a sequence of linear maps (the “differentials”)

{ : • , • ⟶ • + , • − + }

2. 
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such that

+
•, •  is the cochain cohomology of , i.e. +

• , • = ( • , • , ), for all ∈ ℕ, ≥ 1.

Given a ℤ-graded abelian group_ • equipped with a decreasing filtration

• ⊃ ⋯ ⊃ • ⊃ + • ⊃ ⋯ ⊃ 0

such that

• = ∪ • and 0 = ∩ •

then the spectral sequence is said to converge to •, denoted,

• , • ⇒ •

if

in each bidegree ( , ) the sequence { , }  eventually becomes constant on a group

, ≔ ≫
, ;

1. 

• , • is the associated graded of the filtered • in that

, ≃ + / + + .

2. 

The converging spectral sequence is called a multiplicative spectral sequence if

{ • , •} is equipped with the structure of a bigraded algebra;1. 

• • is equipped with the structure of a filtered graded algebra ( ⋅ ⊂ + + );2. 

such that

each  is a derivation with respect to the (induced) algebra structure on • , •, graded of degree 1
with respect to total degree;

1. 

the multiplication on • , • is compatible with that on •.2. 

Remark 1.66. The point of spectral sequences is that by subdividing the data in any graded abelian group
• into filtration stages, with each stage itself subdivided into bidegrees, such that each consecutive stage

depends on the previous one in way tightly controled by the bidegrees, then this tends to give much
control on the computation of •. For instance it often happens that one may argue that the differentials in
some spectral sequence all vanish from some page on (one says that the spectral sequence collapses at
that page) by pure degree reasons, without any further computation.

Example 1.67. The archetypical example of (co-)homology spectral sequences as in def. 1.65 are induced
from a filtering on a (co-)chain complex, converging to the (co-)chain homology of the chain complex by
consecutively computing relative (co-)chain homologies, relative to decreasing (increasing) filtering
degrees. For more on such spectral sequences of filtered complexes see at Interlude -- Spectral sequences
the section For filtered complexes.

A useful way to generate spectral sequences is via exact couples:

Definition 1.68. An exact couple is three homomorphisms of abelian groups of the form

⟶

↖ ↙

such that the image of one is the kernel of the next.

im(ℎ) = ker( ) , im( ) = ker( ) , im( ) = ker( ) .

Given an exact couple, then its derived exact couple is

im( ) ⟶ im( )

↖ ↙ ∘ −

( , ℎ ∘ )

,
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where −  denotes the operation of sending one equivalence class to the equivalenc class of any preimage
under  of any of its representatives.

Proposition 1.69. (cohomological spectral sequence of an exact couple)

Given an exact couple, def. 1.68,

⟶

↖ ↙

its derived exact couple

⟶

↖ ↙

is itself an exact couple. Accordingly there is induced a sequence of exact couples

⟶

↖ ↙ .

If the abelian groups  and  are equipped with bigrading such that

deg( ) = (0, 0) , deg( ) = (−1, 1) , deg(ℎ) = (1, 0)

then { • , • , } with

≔ ℎ ∘

= ℎ ∘ − + ∘

is a cohomological spectral sequence, def. 1.65.

(As before in prop. 1.69, the notation −  with ∈ ℕ denotes the function given by choosing, on
representatives, a preimage under = ∘ ⋯ ∘ ∘ , with the implicit claim that all possible choices

represent the same equivalence class.)

If for every bidegree ( , ) there exists , ≫ 1 such that for all ≥ ,

: + , − ⟶≃ + − , − − ;1. 

: − + , + − ⟶ − , + −2. 

then this spectral sequence converges to the inverse limit group

• ≔ lim ⋯ → , • − ⟶ − , • − + → ⋯

filtered by

• ≔ ker( • → − , • − + ) .

(e.g. Kochmann 96, lemma 2.6.2)

Proof. We check the claimed form of the -page:

Since ker(ℎ) = im( ) in the exact couple, the kernel

ker( − ) ≔ ker(ℎ ∘ − + ∘ )

consists of those elements  such that − + ( ( )) = ( ), for some , hence

ker( − ) , ≃ − ( − ( + − , − + )) .

By assumption there is for each ( , ) an ,  such that for all ≥ ,  then ker( − ) ,  is independent of .

Moreover, im( − ) consists of the image under ℎ of those ∈ − ,  such that − ( ) is in the image of ,
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hence (since im( ) = ker( ) by exactness of the exact couple) such that − ( ) is in the kernel of , hence
such that  is in the kernel of − . If >  then by assumption − | − , = 0 and so then im( − ) = im(ℎ).

(Beware this subtlety: while , | − ,  vanishes by the convergence assumption, the expression
, | + − , − +  need not vanish yet. Only the higher power , + + , + + | + − , − +  is again guaranteed

to vanish. )

It follows that

, − = ker( )/im( )

≃ − (im( − ))/im(ℎ)

⟶
≃
im( − ) ∩ im( )

≃ im( − ) ∩ ker( )

where in last two steps we used once more the exactness of the exact couple.

(Notice that the above equation means in particular that the -page is a sub-group of the image of the
-page under .)

The last group above is that of elements ∈  which map to zero in − , − +  and where two such are
identified if they agree in , − , hence indeed

, − ≃ / + .

  ▮

Remark 1.70. Given a spectral sequence (def. 1.65), then even if it converges strongly, computing its
infinity-page still just gives the associated graded of the filtered object that it converges to, not the filtered
object itself. The latter is in each filter stage an extension of the previous stage by the corresponding
stage of the infinity-page, but there are in general several possible extensions (the trivial extension or
some twisted extensions). The problem of determining these extensions and hence the problem of actually
determining the filtered object from a spectral sequence converging to it is often referred to as the
extension problem.

More in detail, consider, for definiteness, a cohomology spectral sequence converging to some filtered • •

, ⇒ • .

Then by definition of convergence there are isomorphisms

, • ≃ + •/ + + • .

Equivalently this means that there are short exact sequences of the form

0 → + + • ↪ + • ⟶ , • → 0 .

for all . The extension problem then is to inductively deduce • from knowledge of + • and , •.

In good cases these short exact sequences happen to be split exact sequences, which means that the
extension problem is solved by the direct sum

+ • ≃ + + • ⊕ , • .

But in general this need not be the case.

One sufficient condition that these exact sequences split is that they consist of homomorphisms of
-modules, for some ring , and that , • are projective modules (for instance free modules) over .

Because then the Ext-group Ext ( , • , −) vanishes, and hence all extensions are trivial, hence split.

So for instance for every spectral sequence in vector spaces the extension problem is trivial (since every
vector space is a free module).

The AHSS

The following proposition requires, in general, to evaluate cohomology functors not just on CW-complexes,
but on all topological spaces. Hence we invoke prop. 1.4 to regard a reduced cohomology theory as a
contravariant functor on all pointed topological spaces, which sends weak homotopy equivalences to
isomorphisms (def. 1.3).
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Proposition 1.71. (Serre-Cartan-Eilenberg-Whitehead-Atiyah-Hirzebruch spectral sequence)

Let • be a an additive unreduced generalized cohomology functor (def.). Let  be a CW-complex and let

→  be a Serre fibration (def.), such that all its fibers are weakly contractible or such that  is simply
connected. In either case all fibers are identified with a typical fiber  up to weak homotopy equivalence
by connectedness (this example), and well defined up to unique iso in the homotopy category by simply
connectedness:

⟶

↓ ∈.

If at least one of the following two conditions is met

 is finite-dimensional as a CW-complex;

•( ) is bounded below in degree and the sequences ⋯ → ( + ) → ( ) → ⋯ satisfy the Mittag-
Leffler condition (def. 1.55) for all ;

then there is a cohomology spectral sequence, def. 1.65, whose -page is the ordinary cohomology
•( , •( )) of  with coefficients in the -cohomology groups •( ) of the fiber, and which converges to

the -cohomology groups of the total space

, = ( , ( )) ⇒ •( )

with respect to the filtering given by

•( ) ≔ ker •( ) → •( − ) ,

where ≔ − ( ) is the fiber over the th stage of the CW-complex = lim¬¾ .

Proof. The exactness axiom for  gives an exact couple, def. 1.68, of the form

∏ ,
+ ( ) ⟶ ∏ ,

+ ( )

↖ ↙

∏ ,
+ ( , − )

⎛

⎝

⎜⎜

+ ( ) ⟶ + ( − )

↑ ↓
+ ( , − ) + + ( , − )

⎞

⎠

⎟⎟
,

where we take ≫ =  and = ∅.

In order to determine the -page, we analyze the -page: By definition

, = + ( , − )

Let ( ) be the set of -dimensional cells of , and notice that for ∈ ( ) then

( − ( ), − (∂ )) ≃ ( , − ) × ,

where  is weakly homotopy equivalent to  (exmpl.).

This implies that

, ≔ + ( , − )

≃ ˜ +
( / − )

≃ ˜ +
( ∨

∈ ( )
∧ +)

≃ ∏ ∈ ( )
˜ +

( ∧ +)

≃ ∏ ∈ ( )
˜ ( +)

≃ ∏ ∈ ( ) ( )

≃ ( , ( ))

,

where we used the relation to reduced cohomology ˜ , prop. 1.19 together with lemma 1.11, then the wedge
axiom and the suspension isomorphism of the latter.

The last group ( , ( )) appearing in this sequence of isomorphisms is that of cellular cochains (def.) of
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degree  on  with coefficients in the group ( ).

Since cellular cohomology of a CW-complex agrees with its singular cohomology (thm.), hence with its
ordinary cohomology, to conclude that the -page is as claimed, it is now sufficient to show that the
differential  coincides with the differential in the cellular cochain complex (def.).

We discuss this now for = id, hence =  and = * . The general case works the same, just with various
factors of  appearing in the following:

Consider the following diagram, which commutes due to the naturality of the connecting homomorphism  of
•:

∂* : − ( , ( * )) = ∏ ∈ −
( * ) ⟶ ∏ ∈ ( * ) = ( , ( * ))

≃ ↓ ↓≃

∏ ∈ −
˜ + −

( − ) ∏ ∈
˜ +

( )

≃ ↓ ↓≃

: + − ( − , − ) ⟶ + − ( − ) ⟶ + ( , − )

↓ ↓ ↓

+ − ( − , ∅) ⟶ + − ( − ) ⟶ + ( , − )

.

Here the bottom vertical morphisms are those induced from any chosen cell inclusion ( , − ) ↪ ( , − ).

The differential  in the spectral sequence is the middle horizontal composite. From this the vertical
isomorphisms give the top horizontal map. But the bottom horizontal map identifies this top horizontal
morphism componentwise with the restriction to the boundary of cells. Hence the top horizontal morphism is
indeed the coboundary operator ∂* for the cellular cohomology of  with coefficients in •( * ) (def.). This
cellular cohomology coincides with singular cohomology of the CW-complex  (thm.), hence computes the
ordinary cohomology of .

Now to see the convergence. If  is finite dimensional then the convergence condition as stated in prop.
1.69 is met. Alternatively, if •( ) is bounded below in degree, then by the above analysis the -page has a
horizontal line below which it vanishes. Accordingly the same is then true for all higher pages, by each of
them being the cohomology of the previous page. Since the differentials go right and down, eventually they
pass beneath this vanishing line and become 0. This is again the condition needed in the proof of prop. 1.69
to obtain convergence.

By that proposition the convergence is to the inverse limit

lim¬¾(⋯ → •( + ) ⟶ •( ) → ⋯) .

If  is finite dimensional or more generally if the sequences that this limit is over satisfy the Mittag-Leffler
condition (def. 1.55), then this limit is •( ), by prop. 1.57.  ▮

Multiplicative structure

Proposition 1.72. For • a multiplicative cohomology theory (def. 1.26), then the Atiyah-Hirzebruch
spectral sequences (prop. 1.71) for •( ) are multiplicative spectral sequences.

A decent proof is spelled out in (Kochman 96, prop. 4.2.9). Use the graded commutativity of smash
products of spheres to get the sign in the graded derivation law for the differentials. See also the proof via
Cartan-Eilenberg systems at multiplicative spectral sequence – Examples – AHSS for multiplicative
cohomology.

Proposition 1.73. Given a multiplicative cohomology theory ( , , 1) (def. 1.26), then for every Serre
fibration →  (def.) all the differentials in the corresponding Atiyah-Hirzebruch spectral sequence of prop.
1.71

•( , •( )) ⇒ •( )

are linear over •( * ).

Proof. By the proof of prop. 1.71, the differentials are those induced by the exact couple
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∏ ,
+ ( ) ⟶ ∏ ,

+ ( )

↖ ↙

∏ ,
+ ( , − )

⎛

⎝

⎜⎜

+ ( ) ⟶ + ( − )

↑ ↓
+ ( , − ) + + ( , − )

⎞

⎠

⎟⎟
.

consisting of the pullback homomorphisms and the connecting homomorphisms of .

By prop. 1.69 its differentials on page  are the composites of one pullback homomorphism, the preimage of
( − 1) pullback homomorphisms, and one connecting homomorphism of . Hence the statement follows with
prop. 1.27.  ▮

Proposition 1.74. For  a homotopy commutative ring spectrum (def.) and  a finite CW-complex, then
the Kronecker pairing

⟨−, −⟩ : • ( ) ⊗ • ( ) ⟶ • − • ( )

extends to a compatible pairing of Atiyah-Hirzebruch spectral sequences.

(Kochman 96, prop. 4.2.10)

S.2) Cobordism theory

Idea. As one passes from abelian groups to spectra, a miracle happens: even though the latter are just the
proper embodiment of linear algebra in the context of homotopy theory (“higher algebra”) their inspection
reveals that spectra natively know about deep phenomena of differential topology, index theory and in fact
string theory (for instance via a close relation between genera and partition functions).

A strong manifestation of this phenomenon comes about in complex oriented cohomology theory/chromatic
homotopy theory that we eventually come to below. It turns out to be higher algebra over the complex
Thom spectrum MU.

Here we first concentrate on its real avatar, the Thom spectrum MO. The seminal result of Thom's theorem
says that the stable homotopy groups of MO form the cobordism ring of cobordism-equivalence classes of
manifolds. In the course of discussing this cobordism theory one encounters various phenomena whose
complex version also governs the complex oriented cohomology theory that we are interested in below.

Literature. (Kochman 96, chapter I and sections II.2, II6). A quick efficient account is in (Malkiewich 11).
See also (Aguilar-Gitler-Prieto 02, section 11).

Classifying spaces and -Structure

Idea. Every manifold  of dimension  carries a canonical vector bundle of rank : its tangent bundle. There
is a universal vector bundle of rank , of which all others arise by pullback, up to isomorphism. The base
space of this universal bundle is hence called the classifying space and denoted GL( ) ≃ ( ) (for ( ) the
orthogonal group). This may be realized as the homotopy type of a direct limit of Grassmannian manifolds.
In particular the tangent bundle of a manifold  is classified by a map ⟶ ( ), unique up to homotopy.
For  a subgroup of ( ), then a lift of this map through the canonical map ⟶ ( ) of classifying spaces
is a G-structure on 

↗ ↓

⟶ ( )

for instance an orientation for the inclusion SO( ) ↪ ( ) of the special orthogonal group, or an almost
complex structure for the inclusion ( ) ↪ (2 ) of the unitary group.

All this generalizes, for instance from tangent bundles to normal bundles with respect to any embedding. It
also behaves well with respect to passing to the boundary of manifolds, hence to bordism-classes of
manifolds. This is what appears in Thom's theorem below.

Literature. (Kochman 96, 1.3-1.4), for stable normal structures also (Stong 68, beginning of chapter II)

Coset spaces

Proposition 1.75. For  a smooth manifold and  a compact Lie group equipped with a free smooth action
on , then the quotient projection
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⟶ /

is a -principal bundle (hence in particular a Serre fibration).

This is originally due to (Gleason 50). See e.g. (Cohen, theorem 1.3)

Corollary 1.76. For  a Lie group and ⊂  a compact subgroup, then the coset quotient projection

⟶ /

is an -principal bundle (hence in particular a Serre fibration).

Proposition 1.77. For  a compact Lie group and ⊂ ⊂ closed subgroups, then the projection map on
coset spaces

: / ⟶ /

is a locally trivial / -fiber bundle (hence in particular a Serre fibration).

Proof. Observe that the projection map in question is equivalently

× ( / ) ⟶ / ,

(where on the left we form the Cartesian product and then divide out the diagonal action by ). This exhibits
it as the / -fiber bundle associated to the -principal bundle of corollary 1.76.  ▮

Orthogonal and Unitary groups

Proposition 1.78. The orthogonal group ( ) is compact topological space, hence in particular a compact
Lie group.

Proposition 1.79. The unitary group ( ) is compact topological space, hence in particular a compact Lie
group.

Example 1.80. The n-spheres are coset spaces of orthogonal groups:

≃ ( + 1)/ ( ) .

The odd-dimensional spheres are also coset spaces of unitary groups:

+ ≃ ( + 1)/ ( )

Proof. Regarding the first statement:

Fix a unit vector in ℝ + . Then its orbit under the defining ( + 1)-action on ℝ +  is clearly the canonical
embedding ↪ ℝ + . But precisely the subgroup of ( + 1) that consists of rotations around the axis
formed by that unit vector stabilizes it, and that subgroup is isomorphic to ( ), hence ≃ ( + 1)/ ( ).

The second statement follows by the same kind of reasoning:

Clearly ( + 1) acts transitively on the unit sphere +  in ℂ + . It remains to see that its stabilizer
subgroup of any point on this sphere is ( ). If we take the point with coordinates (1, 0, 0,⋯, 0) and regard
elements of ( + 1) as matrices, then the stabilizer subgroup consists of matrices of the block diagonal form

1 0⇀

0⇀

where ∈ ( ).  ▮

Proposition 1.81. For , ∈ ℕ, ≤ , then the canonical inclusion of orthogonal groups

( ) ↪ ( )

is an (n-1)-equivalence, hence induces an isomorphism on homotopy groups in degrees < − 1 and a
surjection in degree − 1.

Proof. Consider the coset quotient projection

( ) ⟶ ( + 1) ⟶ ( + 1)/ ( ) .
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By prop. 1.78 and by corollary 1.76, the projection ( + 1) → ( + 1)/ ( ) is a Serre fibration. Furthermore,
example 1.80 identifies the coset with the n-sphere

≃ ( + 1)/ ( ) .

Therefore the long exact sequence of homotopy groups (exmpl.)of the fiber sequence ( ) → ( + 1) →
has the form

⋯ → • + ( ) ⟶ •( ( )) ⟶ •( ( + 1)) ⟶ •( ) → ⋯

Since ( ) = 0, this implies that

− ( ( )) ⟶≃ − ( ( + 1))

is an isomorphism and that

− ( ( )) ⟶≃ − ( ( + 1))

is surjective. Hence now the statement follows by induction over − .  ▮

Similarly:

Proposition 1.82. For , ∈ ℕ, ≤ , then the canonical inclusion of unitary groups

( ) ↪ ( )

is a 2n-equivalence, hence induces an isomorphism on homotopy groups in degrees < 2  and a surjection
in degree 2 .

Proof. Consider the coset quotient projection

( ) ⟶ ( + 1) ⟶ ( + 1)/ ( ) .

By prop. 1.79 and corollary 1.76, the projection ( + 1) → ( + 1)/ ( ) is a Serre fibration. Furthermore,
example 1.80 identifies the coset with the (2n+1)-sphere

+ ≃ ( + 1)/ ( ) .

Therefore the long exact sequence of homotopy groups (exmpl.)of the fiber sequence ( ) → ( + 1) → +

is of the form

⋯ → • + ( + ) ⟶ •( ( )) ⟶ •( ( + 1)) ⟶ •(
+ ) → ⋯

Since ≤ ( + ) = 0, this implies that

( ( )) ⟶≃ ( ( + 1))

is an isomorphism and that

( ( )) ⟶≃ ( ( + 1))

is surjective. Hence now the statement follows by induction over − .  ▮

Stiefel manifolds and Grassmannians

Throughout we work in the category Top  of compactly generated topological spaces (def.). For these the

Cartesian product × (−) is a left adjoint (prop.) and hence preserves colimits.

Definition 1.83. For , ∈ ℕ and ≤ , then the th real Stiefel manifold of ℝ  is the coset topological
space.

(ℝ ) ≔ ( )/ ( − ) ,

where the action of ( − ) is via its canonical embedding ( − ) ↪ ( ).

Similarly the th complex Stiefel manifold of ℂ  is

(ℂ ) ≔ ( )/ ( − ) ,

here the action of ( − ) is via its canonical embedding ( − ) ↪ ( ).
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Definition 1.84. For , ∈ ℕ and ≤ , then the th real Grassmannian of ℝ  is the coset topological
space.

Gr (ℝ ) ≔ ( )/( ( ) × ( − )) ,

where the action of the product group is via its canonical embedding ( ) × ( − ) ↪ ( ) into the
orthogonal group.

Similarly the th complex Grassmannian of ℂ  is the coset topological space.

Gr (ℂ ) ≔ ( )/( ( ) × ( − )) ,

where the action of the product group is via its canonical embedding ( ) × ( − ) ↪ ( ) into the unitary
group.

Example 1.85.

(ℝ + ) ≃ ℝ  is real projective space of dimension .

(ℂ + ) ≃ ℂ  is complex projective space of dimension  (def. 1.134).

Proposition 1.86. For all ≤ ∈ ℕ, the canonical projection from the Stiefel manifold (def. 1.83) to the
Grassmannian is a ( )-principal bundle

( ) ↪ (ℝ )

↓

Gr (ℝ )

and the projection from the complex Stiefel manifold to the Grassmannian us a ( )-principal bundle:

( ) ↪ (ℂ )

↓

Gr (ℂ )

.

Proof. By prop 1.76 and prop 1.77.  ▮

Proposition 1.87. The real Grassmannians Gr (ℝ ) and the complex Grassmannians Gr (ℂ ) of def. 1.84
admit the structure of CW-complexes. Moreover the canonical inclusions

Gr (ℝ ) ↪ Gr (ℝ + )

are subcomplex incusion (hence relative cell complex inclusions).

Accordingly there is an induced CW-complex structure on the classifying space (def. 1.91).

( ) ≃ lim®¾ Gr (ℝ ) .

A proof is spelled out in (Hatcher, section 1.2 (pages 31-34)).

Proposition 1.88. The Stiefel manifolds (ℝ ) and (ℂ ) from def. 1.83 admits the structure of a
CW-complex.

e.g. (James 59, p. 3, James 76, p. 5 with p. 21, Blaszczyk 07)

(And I suppose with that cell structure the inclusions (ℝ ) ↪ (ℝ + ) are subcomplex inclusions.)

Proposition 1.89. The real Stiefel manifold (ℝ ) (def. 1.83) is (k-n-1)-connected.

Proof. Consider the coset quotient projection

( − ) ⟶ ( ) ⟶ ( )/ ( − ) = (ℝ ) .

By prop. 1.78 and by corollary 1.76, the projection ( ) → ( )/ ( − ) is a Serre fibration. Therefore there
is induced the long exact sequence of homotopy groups of this fiber sequence, and by prop. 1.81 it has the
following form in degrees bounded by :

⋯ → • ≤ − − ( ( − )) ⟶ • ≤ − − ( ( )) ⟶ • ≤ − − ( (ℝ )) ⟶ • − − − ( ( )) ⟶≃ • − − − ( ( − )) → ⋯ .

This implies the claim. (Exactness of the sequence says that every element in • ≤ − ( (ℝ )) is in the kernel
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of zero, hence in the image of 0, hence is 0 itself.)  ▮

Similarly:

Proposition 1.90. The complex Stiefel manifold (ℂ ) (def. 1.83) is 2(k-n)-connected.

Proof. Consider the coset quotient projection

( − ) ⟶ ( ) ⟶ ( )/ ( − ) = (ℂ ) .

By prop. 1.79 and by corollary 1.76 the projection ( ) → ( )/ ( − ) is a Serre fibration. Therefore there
is induced the long exact sequence of homotopy groups of this fiber sequence, and by prop. 1.82 it has the
following form in degrees bounded by :

⋯ → • ≤ ( − )( ( − )) ⟶ • ≤ ( − )( ( )) ⟶ • ≤ ( − )( (ℂ )) ⟶ • − ( − )( ( )) ⟶≃ • − ( − )( ( − )) → ⋯ .

This implies the claim.  ▮

Classifying spaces

Definition 1.91. By def. 1.84 there are canonical inclusions

Gr (ℝ ) ↪ Gr (ℝ + )

and

Gr (ℂ ) ↪ Gr (ℂ + )

for all ∈ ℕ. The colimit (in Top, see there, or rather in Top , see this cor.) over these inclusions is

denoted

( ) ≔ lim®¾ Gr (ℝ )

and

( ) ≔ lim®¾ Gr (ℂ ) ,

respectively.

Moreover, by def. 1.83 there are canonical inclusions

(ℝ ) ↪ (ℝ + )

and

(ℂ ) ↪ (ℂ + )

that are compatible with the ( )-action and with the ( )-action, respectively. The colimit (in Top, see
there, or rather in Top , see this cor.) over these inclusions, regarded as equipped with the induced

( )-action, is denoted

( ) ≔ lim®¾ (ℝ )

and

( ) ≔ lim®¾ (ℂ ) ,

respectively.

The inclusions are in fact compatible with the bundle structure from prop. 1.86, so that there are induced
projections

⎛

⎝
⎜⎜

( )

↓

( )

⎞

⎠
⎟⎟

≃ lim®¾
⎛

⎝

⎜⎜

(ℝ )

↓

Gr (ℝ )

⎞

⎠

⎟⎟

and
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⎛

⎝
⎜⎜

( )

↓

( )

⎞

⎠
⎟⎟

≃ lim®¾
⎛

⎝

⎜⎜

(ℂ )

↓

Gr (ℂ )

⎞

⎠

⎟⎟
,

respectively. These are the standard models for the universal principal bundles for  and ,
respectively. The corresponding associated vector bundles

( ) ×
( )

ℝ

and

( ) ×
( )

ℂ

are the corresponding universal vector bundles.

Since the Cartesian product ( ) × (−) in compactly generated topological spaces preserves colimits, it
follows that the colimiting bundle is still an ( )-principal bundle

( ( ))/ ( ) ≃ (lim®¾ (ℝ ))/ ( )

≃ lim®¾ ( (ℝ )/ ( ))

≃ lim®¾ Gr (ℝ )

≃ ( )

,

and anlogously for ( ).

As such this is the standard presentation for the ( )-universal principal bundle and ( )-universal principal
bundle, respectively. Its base space ( ) is the corresponding classifying space.

Definition 1.92. There are canonical inclusions

Gr (ℝ ) ↪ Gr + (ℝ + )

and

Gr (ℂ ) ↪ Gr + (ℂ + )

given by adjoining one coordinate to the ambient space and to any subspace. Under the colimit of def.
1.91 these induce maps of classifying spaces

( ) ⟶ ( + 1)

and

( ) ⟶ ( + 1) .

Definition 1.93. There are canonical maps

Gr (ℝ ) × Gr (ℝ ) ⟶ Gr + (ℝ + )

and

Gr (ℂ ) × Gr (ℂ ) ⟶ Gr + (ℂ + )

given by sending ambient spaces and subspaces to their direct sum.

Under the colimit of def. 1.91 these induce maps of classifying spaces

( ) × ( ) ⟶ ( + )

and

( ) × ( ) ⟶ ( + )

Proposition 1.94. The colimiting space ( ) = lim®¾ (ℝ ) from def. 1.91 is weakly contractible.

The colimiting space ( ) = lim®¾ (ℂ ) from def. 1.91 is weakly contractible.
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Proof. By propositions 1.89, and 1.90, the Stiefel manifolds are more and more highly connected as 
increases. Since the inclusions are relative cell complex inclusions by prop. 1.88, the claim follows.  ▮

Proposition 1.95. The homotopy groups of the classifying spaces ( ) and ( ) (def. 1.91) are those of
the orthogonal group ( ) and of the unitary group ( ), respectively, shifted up in degree: there are
isomorphisms

• + ( ( )) ≃ • ( )

and

• + ( ( )) ≃ • ( )

(for homotopy groups based at the canonical basepoint).

Proof. Consider the sequence

( ) ⟶ ( ) ⟶ ( )

from def. 1.91, with ( ) the fiber. Since (by prop. 1.77) the second map is a Serre fibration, this is a fiber
sequence and so it induces a long exact sequence of homotopy groups of the form

⋯ → •( ( )) ⟶ •( ( )) ⟶ •( ( )) ⟶ • − ( ( )) ⟶ • − ( ( )) → ⋯ .

Since by cor. 1.94 •( ( )) = 0, exactness of the sequence implies that

•( ( )) ⟶≃ • − ( ( ))

is an isomorphism.

The same kind of argument applies to the complex case.  ▮

Proposition 1.96. For ∈ ℕ there are homotopy fiber sequence (def.)

⟶ ( ) ⟶ ( + 1)

and

+ ⟶ ( ) ⟶ ( + 1)

exhibiting the n-sphere ((2 + 1)-sphere) as the homotopy fiber of the canonical maps from def. 1.92.

This means (thm.), that there is a replacement of the canonical inclusion ( ) ↪ ( + 1) (induced via
def. 1.91) by a Serre fibration

( ) ↪ ( + 1)

↓ ↗ .

˜ ( )

such that  is the ordinary fiber of ( ) → ˜ ( + 1), and analogously for the complex case.

Proof. Take ˜ ( ) ≔ ( ( + 1))/ ( ).

To see that the canonical map ( ) ⟶ ( ( + 1))/ ( ) is a weak homotopy equivalence consider the
commuting diagram

( ) ⟶ ( )

↓ ↓

( ) ⟶ ( + 1)

↓ ↓

( ) ⟶ ( ( + 1))/ ( )

.

By prop. 1.77 both bottom vertical maps are Serre fibrations and so both vertical sequences are fiber
sequences. By prop. 1.95 part of the induced morphisms of long exact sequences of homotopy groups looks
like this
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•( ( )) ⟶ •(( ( + 1))/ ( ))

≃ ↓ ↓≃

• − ( ( )) ⟶= • − ( ( ))

,

where the vertical and the bottom morphism are isomorphisms. Hence also the to morphisms is an
isomorphism.

That ( ) → ˜ ( + 1) is indeed a Serre fibration follows again with prop. 1.77, which gives the fiber
sequence

( + 1)/ ( ) ⟶ ( ( + 1))/ ( ) ⟶ ( ( + 1))/ ( + 1) .

The claim then follows with the identification

( + 1)/ ( ) ≃

of example 1.80.

The argument for the complex case is directly analogous, concluding instead with the identification

( + 1)/ ( ) ≃ +

from example 1.80.  ▮

-Structure on the Stable normal bundle

Definition 1.97. Given a smooth manifold  of dimension  and equipped with an embedding

: ↪ ℝ

for some ∈ ℕ, then the classifying map of its normal bundle is the function

: → Gr − (ℝ ) ↪ ( − )

which sends ∈  to the normal of the tangent space

= ( ) ↪ ℝ

regarded as a point in − (ℝ ).

The normal bundle of  itself is the subbundle of the tangent bundle

ℝ ≃ ℝ × ℝ

consisting of those vectors which are orthogonal to the tangent vectors of :

≔ ∈ , ∈ ( )ℝ | ⊥ * ⊂ ( )ℝ .

Definition 1.98. A ( , )-structure is

for each ∈ ℕ a pointed CW-complex ∈ Top * /1. 

equipped with a pointed Serre fibration

↓

( )

to the classifying space ( ) (def.);

2. 

for all ≤  a pointed continuous function

, : ⟶

which is the identity for = ;

3. 

such that for all ≤ ∈ ℕ these squares commute
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®¾¾¾
,

↓ ↓

( ) ⟶ ( )

,

where the bottom map is the canonical one from def. 1.92.

The ( , )-structure is multiplicative if it is moreover equipped with a system of maps

, : × → +  which cover the canonical multiplication maps (def.)

× ®¾¾¾
,

+

×
↓ ↓ +

( ) × ( ) ⟶ ( + )

and which satisfy the evident associativity and unitality, for = *  the unit, and, finally, which commute
with the maps  in that all , , ∈ ℕ these squares commute:

× ®¾¾¾¾¾
× , +

× +

, ↓ ↓ , +

+ ®¾¾¾¾¾¾¾
+ , + +

+ +

and

× ®¾¾¾¾¾
, + ×

+ ×

, ↓ ↓ + ,

+ ®¾¾¾¾¾¾¾
+ , + +

+ +

.

Similarly, an -( , )-structure is a compatible system

: ⟶ (2 )

indexed only on the even natural numbers.

Generally, an -( , )-structure for ∈ ℕ, ≥ 1 is a compatible system

: ⟶ ( )

for all ∈ ℕ, hence for all ∈ ℕ.

Example 1.99. Examples of ( , )-structures (def. 1.98) include the following:

= ( ) and = id is orthogonal structure (or “no structure”);1. 

= ( ) and  the universal principal bundle-projection is framing-structure;2. 

= SO( ) = ( )/SO( ) the classifying space of the special orthogonal group and  the canonical

projection is orientation structure;

3. 

= Spin( ) = ( )/Spin( ) the classifying space of the spin group and  the canonical projection is

spin structure.

4. 

Examples of -( , )-structures (def. 1.98) include

= ( ) = (2 )/ ( ) the classifying space of the unitary group, and  the canonical projection

is almost complex structure (or rather: almost Hermitian structure).

1. 

= Sp(2 ) = (2 )/Sp(2 ) the classifying space of the symplectic group, and  the canonical

projection is almost symplectic structure.

2. 

Examples of -( , )-structures (def. 1.98) include

= ℍ( ) = (4 )/ ℍ( ) the classifying space of the quaternionic unitary group, and  the

canonical projection is almost quaternionic structure.

1. 
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Definition 1.100. Given a smooth manifold  of dimension , and given a ( , )-structure as in def. 1.98,
then a ( , )-structure on the stable normal bundle of the manifold is an equivalence class of the
following structure:

an embedding : ↪ ℝ  for some ∈ ℕ;1. 

a homotopy class of a lift ^ of the classifying map  of the normal bundle (def. 1.97)

−

^ ↗ ↓ −

⟶ ( − )

.

2. 

The equivalence relation on such structures is to be that generated by the relation (( ) , ^ ) ∼ (( ),
^ ) if

≥1. 

the second inclusion factors through the first as

( ) : ⎯⎯⎯
( )

ℝ ↪ ℝ

2. 

the lift of the classifying map factors accordingly (as homotopy classes)

^ : ⟶
^

− ®¾¾¾¾¾
− , −

− .

3. 

Thom spectra

Idea. Given a vector bundle  of rank  over a compact topological space, then its one-point
compactification is equivalently the result of forming the bundle ( ) ↪  of unit n-balls, and identifying with
one single point all the boundary unit n-spheres ( ) ↪ . Generally, this construction Th( ) ≔ ( )/ ( ) is
called the Thom space of .

Thom spaces occur notably as codomains for would-be left inverses of embeddings of manifolds ↪ . The
Pontrjagin-Thom collapse map → Th( ) of such an embedding is a continuous function going the other
way around, but landing not quite in  but in the Thom space of the normal bundle of  in . Composing this
further with the classifying map of the normal bundle lands in the Thom space of the universal vector bundle
over the classifying space ( ), denoted ( ). In particular in the case that =  is an n-sphere (and
every manifold embeds into a large enough -sphere, see also at Whitney embedding theorem), the
Pontryagin-Thom collapse map hence associates with every manifold an element of a homotopy group of a
universal Thom space ( ).

This curious construction turns out to have excellent formal properties: as the dimension ranges, the
universal Thom spaces arrange into a spectrum, called the Thom spectrum, and the homotopy groups
defined by the Pontryagin-Thom collapse pass along to the stable homotopy groups of this spectrum.

Moreover, via Whitney sum of vector bundle the Thom spectrum naturally is a homotopy commutative ring
spectrum (def.), and under the Pontryagin-Thom collapse the Cartesian product of manifolds is compatible
with this ring structure.

Literature. (Kochman 96, 1.5, Schwede 12, chapter I, example 1.16)

Thom spaces

Definition 1.101. Let  be a topological space and let →  be a vector bundle over  of rank , which is
associated to an O(n)-principal bundle. Equivalently this means that →  is the pullback of the universal
vector bundle → ( ) (def. 1.91) over the classifying space. Since ( ) preserves the metric on ℝ , by
definition, such  inherits the structure of a metric space-fiber bundle. With respect to this structure:

the unit disk bundle ( ) →  is the subbundle of elements of norm ≤ 1;1. 

the unit sphere bundle ( ) →  is the subbundle of elements of norm = 1;

( ) ↪ ( ) ↪ ;

2. 

the Thom space Th( ) is the cofiber (formed in Top (prop.)) of 

Th( ) ≔ cofib( )

3. 
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canonically regarded as a pointed topological space.

( ) ⟶ ( )

↓ (po) ↓

* ⟶ Th( )

.

If →  is a general real vector bundle, then there exists an isomorphism to an ( )-associated bundle
and the Thom space of  is, up to based homeomorphism, that of this orthogonal bundle.

Remark 1.102. If the rank of  is positive, then ( ) is non-empty and then the Thom space (def. 1.101) is
the quotient topological space

Th( ) ≃ ( )/ ( ) .

However, in the degenerate case that the rank of  vanishes, hence the case that = ×ℝ ≃ , then
( ) ≃ ≃ , but ( ) = ∅. Hence now the pushout defining the cofiber is

∅ ⟶

↓ (po) ↓

* ⟶ Th( ) ≃ *

,

which exhibits Th( ) as the coproduct of  with the point, hence as  with a basepoint freely adjoined.

Th( × ℝ ) = Th( ) ≃ + .

Proposition 1.103. Let →  be a vector bundle over a CW-complex . Then the Thom space Th( ) (def.
1.101) is equivalently the homotopy cofiber (def.) of the inclusion ( ) ⟶ ( ) of the sphere bundle into
the disk bundle.

Proof. The Thom space is defined as the ordinary cofiber of ( ) → ( ). Under the given assumption, this
inclusion is a relative cell complex inclusion, hence a cofibration in the classical model structure on
topological spaces (thm.). Therefore in this case the ordinary cofiber represents the homotopy cofiber
(def.).  ▮

The equivalence to the following alternative model for this homotopy cofiber is relevant when discussing
Thom isomorphisms and orientation in generalized cohomology:

Proposition 1.104. Let →  be a vector bundle over a CW-complex . Write −  for the complement of
its 0-section. Then the Thom space Th( ) (def. 1.101) is homotopy equivalent to the mapping cone of the
inclusion ( − ) ↪  (hence to the pair ( , − ) in the language of generalized (Eilenberg-Steenrod)
cohomology).

Proof. The mapping cone of any map out of a CW-complex represents the homotopy cofiber of that map
(exmpl.). Moreover, transformation by (weak) homotopy equivalences between morphisms induces a (weak)
homotopy equivalence on their homotopy fibers (prop.). But we have such a weak homotopy equivalence,
given by contracting away the fibers of the vector bundle:

− ⟶
∈ ↓ ↓ ∈

( ) ↪ ( )

.

  ▮

Proposition 1.105. Let , →  be two real vector bundles. Then the Thom space (def. 1.101) of the
direct sum of vector bundles ⊕ →  is expressed in terms of the Thom space of the pullbacks | ( )

and | ( ) of  to the disk/sphere bundle of  as

Th( ⊕ ) ≃ Th( | ( ) )/Th( | ( ) ) .

Proof. Notice that

( ⊕ ) ≃ ( | ( ) ) ∪ ( );1. 

( ⊕ ) ≃ ( | ( ) ) ∪ Int ( | ( ) ).2. 

(Since a point at radius  in ⊕  is a point of radius ≤  in  and a point of radius −  in .)  ▮
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Proposition 1.106. For  a vector bundle then the Thom space (def. 1.101) of ℝ ⊕ , the direct sum of
vector bundles with the trivial rank  vector bundle, is homeomorphic to the smash product of the Thom
space of  with the -sphere (the -fold reduced suspension).

Th(ℝ ⊕ ) ≃ ∧ Th( ) = Th( ) .

Proof. Apply prop. 1.105 with = ℝ  and = . Since  is a trivial bundle, then

| ( ) ≃ ×

(as a bundle over × ) and similarly

| ( ) ≃ × .

  ▮

Example 1.107. By prop. 1.106 and remark 1.102 the Thom space (def. 1.101) of a trivial vector bundle of
rank  is the -fold suspension of the base space

Th( × ℝ ) ≃ ∧ Th( × ℝ )

≃ ∧ ( +)
.

Therefore a general Thom space may be thought of as a “twisted suspension”, with twist encoded by a
vector bundle (or rather by its underlying spherical fibration). See at Thom spectrum – For infinity-module
bundles for more on this.

Correspondingly the Thom isomorphism (prop. 1.129 below) for a given Thom space is a twisted version
of the suspension isomorphism (above).

Proposition 1.108. For →  and →  to vector bundles, let ⊠ → ×  be the direct sum of
vector bundles of their pullbacks to × . The corresponding Thom space (def. 1.101) is the smash
product of the individual Thom spaces:

Th( ⊠ ) ≃ Th( ) ∧ Th( ) .

Remark 1.109. Given a vector bundle →  of rank , then the reduced ordinary cohomology of its Thom
space Th( ) (def. 1.101) vanishes in degrees < :

˜ • (Th( )) ≃ • ( ( ), ( )) ≃ 0 .

Proof. Consider the long exact sequence of relative cohomology (from above)

⋯ → • − ( ( )) ⟶
*

• − ( ( )) ⟶ •( ( ), ( )) ⟶ •( ( )) ⟶
*

•( ( )) → ⋯ .

Since the cohomology in degree  only depends on the -skeleton, and since for <  the -skeleton of ( )
equals that of , and since ( ) is even homotopy equivalent to , the morhism * is an isomorphism in
degrees lower than . Hence by exactness of the sequence it follows that • ( ( ), ( )) = 0.  ▮

Universal Thom spectra 

Proposition 1.110. For each ∈ ℕ the pullback of the rank-( + 1) universal vector bundle to the classifying
space of rank  vector bundles is the direct sum of vector bundles of the rank  universal vector bundle
with the trivial rank-1 bundle: there is a pullback diagram of topological spaces of the form

ℝ⊕ ( ( ) ×
( )

ℝ ) ⟶ ( + 1) ×
( + )

ℝ +

↓ (pb) ↓

( ) ⟶ ( + 1)

,

where the bottom morphism is the canonical one (def.).

(e.g. Kochmann 96, p. 25)

Proof. For each ∈ ℕ, ≥  there is such a pullback of the canonical vector bundles over Grassmannians
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⊂ℝ ,

∈ , + ∈ℝ
⟶

+ ⊂ℝ + ,

∈ +

↓ ↓

Gr (ℝ ) ⟶ Gr + (ℝ + )

where the bottom morphism is the canonical inclusion (def.).

Now we claim that taking the colimit in each of the four corners of this system of pullback diagrams yields
again a pullback diagram, and this proves the claim.

To see this, remember that we work in the category Top  of compactly generated topological spaces (def.).

By their nature, we may test the universal property of a would-be pullback space already by mapping
compact topological spaces into it. Now observe that all the inclusion maps in the four corners of this system
of diagrams are relative cell complex inclusions, by prop. 1.87. Together this implies (via this lemma) that
we may test the universal property of the colimiting square at finite stages. And so this implies the claim by
the above fact that at each finite stage there is a pullback diagram.  ▮

Definition 1.111. The universal real Thom spectrum  is the spectrum, which is represented by the
sequential prespectrum (def.) whose th component space is the Thom space (def. 1.101)

( ) ≔ Th( ( ) ×
( )

ℝ )

of the rank- universal vector bundle, and whose structure maps are the image under the Thom space
functor Th(−) of the top morphisms in prop. 1.110, via the homeomorphisms of prop. 1.106:

: ( ) ≃ Th(ℝ⊕ ( ( ) ×
( )

ℝ )) ⟶ Th( ( + 1) ×
( + )

ℝ + ) = ( ) + .

More generally, there are universal Thom spectra associated with any other tangent structure (“[[(B,f)]-
structure]]”), notably for the orthogonal group replaced by the special orthogonal groups SO( ), or the spin
groups Spin( ), or the string 2-group String( ), or the fivebrane 6-group Fivebrane( ),…, or any level in the
Whitehead tower of ( ). To any of these groups there corresponds a Thom spectrum (denoted, respectively,
SO, MSpin, String, Fivebrane, etc.), which is in turn related to oriented cobordism, spin cobordism, string

cobordism, et cetera.:

Definition 1.112. Given a (B,f)-structure ℬ (def. 1.98), write ℬ for the pullback of the universal vector
bundle (def. 1.91) to the corresponding space of the ( , )-structure and with

ℬ ⟶ ( ) ×
( )

ℝ

↓ (pb) ↓

⟶ ( )

and we write ,  for the maps of total space of vector bundles over the , :

ℬ ®¾¾¾
, ℬ

↓ (pb) ↓

®¾¾¾
,

.

Observe that the analog of prop. 1.110 still holds:

Proposiiton 1.113. Given a (B,f)-structure ℬ (def. 1.98), then the pullback of its rank-( + 1) vector bundle

+
ℬ  (def. 1.112) along the map , + : → +  is the direct sum of vector bundles of the rank-  bundle
ℬ with the trivial rank-1-bundle: there is a pullback square

ℝ⊕ ℬ ®¾¾¾
, +

+
ℬ

↓ (pb) ↓

®¾¾¾
, +

+

.

Proof. Unwinding the definitions, the pullback in question is
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( , + )* +
ℬ = ( , + )* +

* ( ( + 1) ×
( + )

ℝ + )

≃ ( , + ∘ + )*( ( + 1) ×
( + )

ℝ + )

≃ ( ∘ )*( ( + 1) ×
( + )

ℝ + )

≃ * * ( ( + 1) ×
( + )

ℝ + )

≃ * (ℝ⊕ ( ( ) ×
( )

ℝ ))

≃ ℝ⊕ ℬ ,

where the second but last step is due to prop. 1.110.  ▮

Definition 1.114. Given a (B,f)-structure ℬ (def. 1.98), its universal Thom spectrum ℬ is, as a
sequential prespectrum, given by component spaces being the Thom spaces (def. 1.101) of the
ℬ-associated vector bundles of def. 1.112

( ℬ) ≔ Th( ℬ)

and with structure maps given via prop. 1.106 by the top maps in prop. 1.113:

: ( ℬ) = Th( ℰ) ≃ Th(ℝ⊕ ℰ) ®¾¾¾¾
( , + )

Th( +
ℬ ) = ( ℬ) + .

Similarly for an − ( , )-structure indexed on every th natural number (such as almost complex
structure, almost quaternionic structure, example 1.99), there is the corresponding Thom spectrum as a
sequential  spectrum (def.).

If =  for some natural system of groups → ( ), then one usually writes  for ℬ. For instance
SO, MSpin, MU, MSp etc.

If the ( , )-structure is multiplicative (def. 1.98), then the Thom spectrum ℬ canonical becomes a ring
spectrum (for more on this see Part 1-2 the section on orthogonal Thom spectra ): the multiplication maps

× → +  are covered by maps of vector bundles

ℬ ⊠ ℬ ⟶ +
ℬ

and under forming Thom spaces this yields (via prop. 1.108) maps

( ℬ) ∧ ( ℬ) ⟶ ( ℬ) +

which are associative by the associativity condition in a multiplicative ( , )-structure. The unit is

( ℬ) = Th( ℬ) ≃ Th( * ) ≃ ,

by remark 1.102.

Example 1.115. The universal Thom spectrum (def. 1.114) for framing structure (exmpl.) is equivalently
the sphere spectrum (def.)

1 ≃ .

Because in this case ≃ *  and so ℬ ≃ ℝ , whence Th( ℬ) ≃ .

Pontrjagin-Thom construction

Definition 1.116. For  a smooth manifold and : ↪ ℝ  an embedding, then a tubular neighbourhood of
 is a subset of the form

≔ ∈ ℝ | ( , ( )) <

for some ∈ ℝ, > 0, small enough such that the map

⟶

from the normal bundle (def. 1.97) given by

( ( ), ) ↦ ( ( ), (1 − −| |) )

is a diffeomorphism.
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Proposition 1.117. (tubular neighbourhood theorem)

For every embedding of smooth manifolds, there exists a tubular neighbourhood according to def. 1.116.

Remark 1.118. Given an embedding : ↪ ℝ  with a tubuluar neighbourhood hookrigtharrowℝ  (def.
1.116) then by construction:

the Thom space (def. 1.101) of the normal bundle (def. 1.97) is homeomorphic to the quotient
topological space of the topological closure of the tubular neighbourhood by its boundary:

Th( ( )) ≃ ( )`̀ `̀ `̀ / ∂ ( )`̀ `̀ `̀ ;

1. 

there exists a continous function

ℝ ⟶ ( )`̀ `̀ `̀ / ∂ ( )`̀ `̀ `̀

which is the identity on ( ) ⊂ ℝ  and is constant on the basepoint of the quotient on all other points.

2. 

Definition 1.119. For  a smooth manifold of dimension  and for : ↪ ℝ  an embedding, then the
Pontrjagin-Thom collapse map is, for any choice of tubular neighbourhood ( ) ⊂ ℝ  (def. 1.116) the
composite map of pointed topological spaces

→≃ (ℝ )* ⟶ ( )`̀ `̀ `̀ / ∂ ( )`̀ `̀ `̀ →≃ Th( )

where the first map identifies the k-sphere as the one-point compactification of ℝ ; and where the second
and third maps are those of remark 1.118.

The Pontrjagin-Thom construction is the further composite

: ⟶ Th( ) ®¾¾¾
( )

Th( ( − ) ×
( − )

ℝ − ) ≃ ( ) −

with the image under the Thom space construction of the morphism of vector bundles

⟶ ( − ) ×
( − )

ℝ −

↓ (pb) ↓

⟶ ( − )

induced by the classifying map  of the normal bundle (def. 1.97).

This defines an element

[ +( − ) → ( ) − ] ∈

in the th stable homotopy group (def.) of the Thom spectrum  (def. 1.111).

More generally, for  a smooth manifold with normal (B,f)-structure ( , , ^ ) according to def. 1.100, then

its Pontrjagin-Thom construction is the composite

: ⟶ Th( ) ®¾¾¾
(^ )

Th( −
ℬ ) ≃ ( ℬ) −

with

⟶
^

−
ℬ

↓ (pb) ↓

⟶̂ ( − )

.

Proposition 1.120. The Pontrjagin-Thom construction (def. 1.119) respects the equivalence classes
entering the definition of manifolds with stable normal ℬ-structure (def. 1.100) hence descends to a
function (of sets)

:
-manifolds with stable

normal ℬ-structure
⟶ ( ℬ) .

Proof. It is clear that the homotopies of classifying maps of ℬ-structures that are devided out in def. 1.100
map to homotopies of representatives of stable homotopy groups. What needs to be shown is that the
construction respects the enlargement of the embedding spaces.
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Given a embedded manifold ↪ ℝ  with normal ℬ-structure

−

^
↗ ↓ −

⟶ ( − )

write

: +( − ) ⟶ Th( ℬ − )

for its image under the Pontrjagin-Thom construction (def. 1.119). Now given ∈ ℕ, consider the induced

embedding ↪ ℝ ↪ ℝ +  with normal ℬ-structure given by the composite

− ®¾¾¾¾¾¾¾
− , + −

+ −

^
↗ ↓ − ×

↓ + −

⟶ ( − ) ⟶ ( + − )

.

By prop. 1.113 and using the pasting law for pullbacks, the classifying map ^′  for the enlarged normal
bundle sits in a diagram of the form

( ⊕ ℝ ) ®¾¾¾
(^ ⊕ )

( −
ℬ ⊕ℝ ) ®¾¾¾¾¾¾

− , + −
+ −

ℬ

↓ (pb) ↓ (pb) ↓

⟶̂ − ®¾¾¾¾¾¾
− , + −

+ −

.

Hence the Pontrjagin-Thom construction for the enlarged embedding space is (using prop. 1.106) the
composite

: +( + − ) ≃ Th(ℝ ) ∧ +( − ) ⟶ Th(ℝ ) ∧ Th( ) ®¾¾¾¾¾
( )∧ (^ )

Th(ℝ ) ∧ Th( −
ℬ )) ®¾¾¾¾¾¾¾

( − , + − )
Th( + −

ℬ )

The composite of the first two morphisms here is ∧ , while last morphism Th(^ − , + − ) is the

structure map in the Thom spectrum (by def. 1.114):

: ∧ +( − ) ®¾¾¾
∧

∧ Th( + −
ℬ ) ®¾¾¾¾¾¾

− , + −
ℬ

Th( + −
ℬ )

This manifestly identifies  as being the image of  under the component map in the sequential colimit

that defines the stable homotopy groups (def.). Therefore  and , for all ∈ ℕ, represent the same

element in •( ℬ).  ▮

Bordism and Thom’s theorem

Idea. By the Pontryagin-Thom collapse construction above, there is an assignment

Manifolds ⟶ ( )

which sends disjoint union and Cartesian product of manifolds to sum and product in the ring of stable
homotopy groups of the Thom spectrum. One finds then that two manifolds map to the same element in the
stable homotopy groups •( ) of the universal Thom spectrum precisely if they are connected by a
bordism. The bordism-classes •  of manifolds form a commutative ring under disjoint union and Cartesian
product, called the bordism ring, and Pontrjagin-Thom collapse produces a ring homomorphism

• ⟶ •( ) .

Thom's theorem states that this homomorphism is an isomorphism.

More generally, for ℬ a multiplicative (B,f)-structure, def. 1.98, there is such an identification

•
ℬ ≃ •( ℬ)

between the ring of ℬ-cobordism classes of manifolds with ℬ-structure and the stable homotopy groups of
the universal ℬ-Thom spectrum.

Literature. (Kochman 96, 1.5)
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Bordism

Throughout, let ℬ be a multiplicative (B,f)-structure (def. 1.98).

Definition 1.121. Write ≔ [0, 1] for the standard interval, regarded as a smooth manifold with boundary.
For ∈ ℝ+ Consider its embedding

: ↪ ℝ⊕ℝ≥

as the arc

: ↦ cos( ) ⋅ + sin( ) ⋅ ,

where ( , ) denotes the canonical linear basis of ℝ , and equipped with the structure of a manifold with
normal framing structure (example 1.99) by equipping it with the canonical framing

fr : ↦ cos( ) ⋅ + sin( ) ⋅

of its normal bundle.

Let now ℬ be a (B,f)-structure (def. 1.98). Then for ↪ ℝ  any embedded manifold with ℬ-structure
^ : → −  on its normal bundle (def. 1.100), define its negative or orientation reversal −( , , ^) of

( , , ^) to be the restriction of the structured manifold

( × ⎯
( , )

ℝ + , ^ × fr)

to = 1.

Definition 1.122. Two closed manifolds of dimension  equipped with normal ℬ-structure ( , , ^ ) and

( , , ^ ) (def.) are called bordant if there exists a manifold with boundary  of dimension + 1 equipped

with ℬ-strcuture ( , , ^ ) if its boundary with ℬ-structure restricted to that boundary is the disjoint union

of  with the negative of , according to def. 1.121

∂( , , ^ ) ≃ ( , , ^ ) ⊔ −( , , ^ ) .

Proposition 1.123. The relation of ℬ-bordism (def. 1.122) is an equivalence relation.

Write •
ℬ for the ℕ-graded set of ℬ-bordism classes of ℬ-manifolds.

Proposition 1.124. Under disjoint union of manifolds, then the set of ℬ-bordism equivalence classes of def.
1.123 becomes an ℤ-graded abelian group

•
ℬ ∈ Abℤ

(that happens to be concentrated in non-negative degrees). This is called the ℬ-bordism group.

Moreover, if the (B,f)-structure ℬ is multiplicative (def. 1.98), then Cartesian product of manifolds followed
by the multiplicative composition operation of ℬ-structures makes the ℬ-bordism ring into a commutative
ring, called the ℬ-bordism ring.

•
ℬ ∈ CRingℤ .

e.g. (Kochmann 96, prop. 1.5.3)

Thom’s theorem

Recall that the Pontrjagin-Thom construction (def. 1.119) associates to an embbeded manifold ( , , ^) with
normal ℬ-structure (def. 1.100) an element in the stable homotopy group ( )( ℬ) of the universal

ℬ-Thom spectrum in degree the dimension of that manifold.

Lemma 1.125. For ℬ be a multiplicative (B,f)-structure (def. 1.98), the ℬ-Pontrjagin-Thom construction
(def. 1.119) is compatible with all the relations involved to yield a graded ring homomorphism

: •
ℬ ⟶ •( ℬ)

from the ℬ-bordism ring (def. 1.124) to the stable homotopy groups of the universal ℬ-Thom spectrum
equipped with the ring structure induced from the canonical ring spectrum structure (def. 1.114).
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Proof. By prop. 1.120 the underlying function of sets is well-defined before dividing out the bordism relation
(def. 1.122). To descend this further to a function out of the set underlying the bordism ring, we need to see
that the Pontrjagin-Thom construction respects the bordism relation. But the definition of bordism is just so
as to exhibit under  a left homotopy of representatives of homotopy groups.

Next we need to show that it is

a group homomorphism;1. 

a ring homomorphism.2. 

Regarding the first point:

The element 0 in the cobordism group is represented by the empty manifold. It is clear that the
Pontrjagin-Thom construction takes this to the trivial stable homotopy now.

Given two -manifolds with ℬ-structure, we may consider an embedding of their disjoint union into some ℝ
such that the tubular neighbourhoods of the two direct summands do not intersect. There is then a map
from two copies of the k-cube, glued at one face

□ ⊔
□ −

□ ⟶ ℝ

such that the first manifold with its tubular neighbourhood sits inside the image of the first cube, while the
second manifold with its tubular neighbourhood sits indide the second cube. After applying the
Pontryagin-Thom construction to this setup, each cube separately maps to the image under  of the
respective manifold, while the union of the two cubes manifestly maps to the sum of the resulting elements
of homotopy groups, by the very definition of the group operation in the homotopy groups (def.). This
shows that  is a group homomorphism.

Regarding the second point:

The element 1 in the cobordism ring is represented by the manifold which is the point. Without restriction
we may consoder this as embedded into ℝ , by the identity map. The corresponding normal bundle is of
rank 0 and hence (by remark 1.102) its Thom space is , the 0-sphere. Also ℬ is the rank-0 vector bundle
over the point, and hence ( ℬ) ≃  (by def. 1.114) and so ( * ) :( →≃ ) indeed represents the unit

element in •( ℬ).

Finally regarding respect for the ring product structure: for two manifolds with stable normal ℬ-structure,
represented by embeddings into ℝ , then the normal bundle of the embedding of their Cartesian product is
the direct sum of vector bundles of the separate normal bundles bulled back to the product manifold. In the
notation of prop. 1.108 there is a diagram of the form

⊠ ®¾¾¾
^ ⊠^

ℬ ⊠ ℬ ®¾¾¾
,

+
ℬ

↓ (pb) ↓ (pb) ↓

× ®¾¾¾
^ ×^

− × − ®¾¾¾¾¾
− , −

+ − −

.

To the Pontrjagin-Thom construction of the product manifold is by definition the top composite in the
diagram

+ +( + − − ) ⟶ Th( ⊠ ) ®¾¾¾¾
(^ ⊠^ )

Th( −
ℬ ⊠ −

ℬ ) ®¾¾¾¾¾
− , −

Th( + − −
ℬ )

≃ ↓ ↓≃ ↓≃ ↓=

+( − ) ∧ +( − ) ⟶ Th( ) ∧ Th( ) ®¾¾¾¾¾
(^ )∧ (^ )

Th( ℬ) ∧ Th( ℬ) ®¾¾¾¾¾
− , −

Th( + − −
ℬ )

,

which hence is equivalently the bottom composite, which in turn manifestly represents the product of the
separate PT constructions in •( ℬ).  ▮

Theorem 1.126. The ring homomorphsim in lemma 1.125 is an isomorphism.

Due to (Thom 54, Pontrjagin 55). See for instance (Kochmann 96, theorem 1.5.10).

Proof idea. Observe that given the result : +( − ) → Th( − ) of the Pontrjagin-Thom construction map,

the original manifold ↪ ℝ  may be recovered as this pullback:
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⟶ +( − )

↓ (pb) ↓

( − ) ⟶ Th( − )

.

To see this more explicitly, break it up into pieces:

⟶ + ↪ +( − )

↓ (pb) ↓ (pb) ↓

⟶ + ≃ Th( ) ®¾¾
( )

Th( )

↓ (pb) ↓ (pb) ↓

− ⟶ ( − )+ ≃ Th( − ) ®¾¾
( )

Th( −
ℬ )

↓ (pb) ↓ (pb) ↓

( − ) ⟶ ( ( − ))+ ≃ Th( ( − )) ⟶ Th( − )

.

Moreover, since the n-spheres are compact topological spaces, and since the classifying space ( ), and
hence its universal Thom space, is a sequential colimit over relative cell complex inclusions, the right vertical
map factors through some finite stage (by this lemma), the manifold  is equivalently recovered as a
pullback of the form

⟶ +( − )

↓ (pb) ↓

Gr − (ℝ ) ⟶ Th( − (ℝ ) ×
( − )

ℝ − )

.

(Recall that −
ℬ  is our notation for the universal vector bundle with ℬ-structure, while − (ℝ ) denotes a

Stiefel manifold.)

The idea of the proof now is to use this property as the blueprint of the construction of an inverse  to :
given an element in ( ℬ) represented by a map as on the right of the above diagram, try to define  and
the structure map  of its normal bundle as the pullback on the left.

The technical problem to be overcome is that for a general continuous function as on the right, the pullback
has no reason to be a smooth manifold, and for two reasons:

the map +( − ) → Th( − ) may not be smooth around the image of ;1. 

even if it is smooth around the image of , it may not be transversal to , and the intersection of two
non-transversal smooth functions is in general still not a smooth manifold.

2. 

The heart of the proof is in showing that for any  there are small homotopies relating it to an ′ that is both
smooth around the image of  and transversal to .

The first condition is guaranteed by Sard's theorem, the second by Thom's transversality theorem.

(…)  ▮

Thom isomorphism

Idea. If a vector bundle ⟶  of rank  carries a cohomology class ∈ (Th( ), ) that looks fiberwise like
a volume form – a Thom class – then the operation of pulling back from base space and then forming the
cup product with this Thom class is an isomorphism on (reduced) cohomology

((−) ∪ ) ∘ * : •( , ) ⟶≃ ˜ • + (Th( ), ) .

This is the Thom isomorphism. It follows from the Serre spectral sequence (or else from the Leray-Hirsch
theorem). A closely related statement gives the Thom-Gysin sequence.

In the special case that the vector bundle is trivial of rank , then its Thom space coincides with the -fold
suspension of the base space (example 1.107) and the Thom isomorphism coincides with the suspension
isomorphism. In this sense the Thom isomorphism may be regarded as a twisted suspension isomorphism.

We need this below to compute (co)homology of universal Thom spectra  in terms of that of the
classifying spaces .
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Composed with pullback along the Pontryagin-Thom collapse map, the Thom isomorphism produces maps in
cohomology that covariantly follow the underlying maps of spaces. These “Umkehr maps” have the
interpretation of fiber integration against the Thom class.

Literature. (Kochman 96, 2.6)

Thom-Gysin sequence

The Thom-Gysin sequence is a type of long exact sequence in cohomology induced by a spherical fibration
and expressing the cohomology groups of the total space in terms of those of the base plus correction. The
sequence may be obtained as a corollary of the Serre spectral sequence for the given fibration. It induces,
and is induced by, the Thom isomorphism.

Proposition 1.127. Let  be a commutative ring and let

⟶

↓

be a Serre fibration over a simply connected CW-complex with typical fiber (exmpl.) the n-sphere.

Then there exists an element ∈ + ( ; ) (in the ordinary cohomology of the total space with coefficients
in , called the Euler class of ) such that the cup product operation ∪ (−) sits in a long exact sequence
of cohomology groups of the form

⋯ → ( ; ) ⟶
*

( ; ) ⟶ − ( ; ) ®¾¾
∪(−) + ( ; ) → ⋯ .

(e.g. Switzer 75, section 15.30, Kochman 96, corollary 2.2.6)

Proof. Under the given assumptions there is the corresponding Serre spectral sequence

, = ( ; ( ; )) ⇒ + ( ; ) .

Since the ordinary cohomology of the n-sphere fiber is concentrated in just two degees

( ; ) =
for = 0 and =

0 otherwise

the only possibly non-vanishing terms on the  page of this spectral sequence, and hence on all the further
pages, are in bidegrees ( • , 0) and ( • , ):

• , ≃ •( ; ) , and • , ≃ •( ; ) .

As a consequence, since the differentials  on the th page of the Serre spectral sequence have bidegree
( + 1, − ), the only possibly non-vanishing differentials are those on the ( + 1)-page of the form

+
•, ≃ •( ; )

+ ↓

+
• + + , ≃ • + + ( ; )

.

Now since the coefficients  is a ring, the Serre spectral sequence is multiplicative under cup product and
the differential is a derivation (of total degree 1) with respect to this product. (See at multiplicative spectral
sequence – Examples – AHSS for multiplicative cohomology.)

To make use of this, write

≔ 1 ∈ ( ; ) ⟶≃ +
,

for the unit in the cohomology ring •( ; ), but regarded as an element in bidegree (0, ) on the ( + 1)-page
of the spectral sequence. (In particular  does not denote the unit in bidegree (0, 0), and hence + ( ) need
not vanish; while by the derivation property, it does vanish on the actual unit 1 ∈ ( ; ) ≃ +

, .)

Write

≔ + ( ) ∈ +
+ , ⟶≃ + ( ; )

for the image of this element under the differential. We will show that this is the Euler class in question.
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To that end, notice that every element in +
• ,  is of the form ⋅  for ∈ +

•, ≃ •( ; ).

(Because the multiplicative structure gives a group homomorphism ⋅ (−): •( ; ) ≃ +
, → +

, ≃ •( ; ),
which is an isomorphism because the product in the spectral sequence does come from the cup product in
the cohomology ring, see for instance (Kochman 96, first equation in the proof of prop. 4.2.9), and since
hence  does act like the unit that it is in •( ; )).

Now since +  is a graded derivation and vanishes on +
• ,  (by the above degree reasoning), it follows that

its action on any element is uniquely fixed to be given by the product with :

+ ( ⋅ ) = + ( ) ⋅ + (−1) ⋅ + ( )
=

= ⋅
.

This shows that +  is identified with the cup product operation in question:

+
, ≃ ( ; )

+ ↓ ↓ ∪(−)

+
+ + , ≃ + + ( ; )

.

In summary, the non-vanishing entries of the -page of the spectral sequence sit in exact sequences like
so

0

↓
,

( + ) ↓

+
, ≃ ( ; )

+ ↓ ↓ ∪(−)

+
+ + , ≃ + + ( ; )

( + ) ↓
+ + ,

↓

0

.

Finally observe (lemma 1.128) that due to the sparseness of the -page, there are also short exact
sequences of the form

0 → , ⟶ ( ; ) ⟶ − , → 0 .

Concatenating these with the above exact sequences yields the desired long exact sequence.  ▮

Lemma 1.128. Consider a cohomology spectral sequence converging to some filtered graded abelian group
• • such that

• = •;1. 

= 0;2. 

, = 0 unless = 0 or = ,3. 

for some ∈ ℕ, ≥ 1. Then there are short exact sequences of the form

0 → , ⟶ ⟶ − , → 0 .

(e.g. Switzer 75, p. 356)

Proof. By definition of convergence of a spectral sequence, the ,  sit in short exact sequences of the form

0 → + + ⟶ + ⟶ , → 0 .

So when , = 0 then the morphism  above is an isomorphism.

We may use this to either shift away the filtering degree
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if ≥  then + = ( − )+ ( − )+( + ) ®¾
≃

−
( − )+( + ) = + ≃ + ;

or to shift away the offset of the filtering to the total degree:

if 0 ≤ − 1 ≤ − 1 then + + = + ( + )+( − ) ®¾¾¾
≃

−( − )
+ ( + )+( − ) = + +

Moreover, by the assumption that if < 0 then + = 0, we also get

≃ , .

In summary this yields the vertical isomorphisms

0 → + + ⟶ + ⟶ , → 0
−( − )

↓≃
−

↓≃ ↓=

0 → + + ≃ + , ⟶ + ⟶ , → 0

and hence with the top sequence here being exact, so is the bottom sequence.  ▮

Thom isomorphism

Proposition 1.129. Let →  be a topological vector bundle of rank > 0 over a simply connected
CW-complex . Let  be a commutative ring.

There exists an element ∈ (Th( ); ) (in the ordinary cohomology, with coefficients in , of the Thom
space of , called a Thom class) such that forming the cup product with  induces an isomorphism

•( ; ) ®¾¾¾
∪(−) ˜ • + (Th( ); )

of degree  from the unreduced cohomology group of  to the reduced cohomology of the Thom space of
.

Proof. Choose an orthogonal structure on . Consider the fiberwise cofiber

≔ ( )/ ( )

of the inclusion of the unit sphere bundle into the unit disk bundle of  (def. 1.101).

− ↪ ⟶

↓ ↓ ↓

( ) ↪ ( ) ⟶

↓ ↓ ↓

= =

Observe that this has the following properties

→  is an n-sphere fiber bundle, hence in particular a Serre fibration;1. 

the Thom space Th( ) ≃ /  is the quotient of  by the base space, because of the pasting law applied
to the following pasting diagram of pushout squares

( ) ⟶ ( )

↓ (po) ↓

⟶ ( )/ ( )

↓ (po) ↓

* ⟶ Th( )

2. 

hence the reduced cohomology of the Thom space is (def.) the relative cohomology of  relative 

˜ •(Th( ); ) ≃ •( , ; ) .

3. 

→  has a global section →  (given over any point ∈  by the class of any point in the fiber of
( ) →  over ; or abstractly: induced via the above pushout by the commutation of the projections

from ( ) and from ( ), respectively).

4. 
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In the following we write •(−) ≔ •(−; ), for short.

By the first point, there is the Thom-Gysin sequence (prop. 1.127), an exact sequence running vertically in
the following diagram

•( )

* ↓ ↘≃

˜ •(Th( )) ⟶ •( ) ⟶
*

•( )

↓
• − ( )

.

By the second point above this is split, as shown by the diagonal isomorphism in the top right. By the third
point above there is the horizontal exact sequence, as shown, which is the exact sequence in relative
cohomology ⋯ → •( , ) → •( ) → •( ) → ⋯ induced from the section ↪ .

Hence using the splitting to decompose the term in the middle as a direct sum, and then using horizontal
and vertical exactness at that term yields

•( )

( , ) ↓ ↘≃

˜ •(Th( )) ⎯⎯⎯
( , )

˜ •(Th( )) ⊕ •( ) ®¾¾
( , )

•( )

↓( , )

• − ( )

and hence an isomorphism

˜ •(Th( )) ⟶≃ • − ( ) .

To see that this is the inverse of a morphism of the form ∪ (−), inspect the proof of the Gysin sequence.
This shows that • − ( ) here is identified with elements that on the second page of the corresponding Serre
spectral sequence are cup products

∪

with  fiberwise the canonical class 1 ∈ ( ) and with ∈ •( ) any element. Since •(−; ) is a
multiplicative cohomology theory (because the coefficients form a ring ), cup producs are preserved as one
passes to the -page of the spectral sequence, and the morphism •( ) → •( ) above, hence also the

isomorphism ˜
•
(Th( )) → •( ), factors through the -page (see towards the end of the proof of the Gysin

sequence). Hence the image of  on the -page is the Thom class in question.  ▮

Orientation in generalized cohomology

Idea. From the way the Thom isomorphism via a Thom class works in ordinary cohomology (as above), one
sees what the general concept of orientation in generalized cohomology and of fiber integration in
generalized cohomology is to be.

Specifically we are interested in complex oriented cohomology theories , characterized by an orientation
class on infinity complex projective space ℂ  (def. 1.134), the classifying space for complex line bundles,
which restricts to a generator on ↪ ℂ .

(Another important application is given by taking = KU to be topological K-theory. Then orientation is
spin^c structure and fiber integration with coefficients in  is fiber integration in K-theory. This is classical
index theory.)

Literature. (Kochman 96, section 4.3, Adams 74, part III, section 10, Lurie 10, lecture 5)

Riccardo Pedrotti, Complex oriented cohomology – Orientation in generalized cohomology, 2016 (pdf)

Universal -orientation

Definition 1.130. Let  be a multiplicative cohomology theory (def. 1.26) and let →  be a topological

Introduction to Stable homotopy theory -- S in nLab https://ncatlab.org/nlab/print/Introduction+to+Stable+homotopy+theor...

55 of 78 27.12.2016 13:13



vector bundle of rank . Then an -orientation or -Thom class on  is an element of degree 

∈ ˜ (Th( ))

in the reduced -cohomology ring of the Thom space (def. 1.101) of , such that for every point ∈  its
restriction *  along

: ≃ Th(ℝ ) ®¾¾¾
( )

Th( )

(for ℝ ⎯  the fiber of  over ) is a generator, in that it is of the form

* = ⋅

for

∈ ˜ ( ) a unit in •;

∈ ˜ ( ) the image of the multiplicative unit under the suspension isomorphism ˜ ( ) →≃ ˜ ( ).

(e.g. Kochmann 96, def. 4.3.4)

Remark 1.131. Recall that a (B,f)-structure ℬ (def. 1.98) is a system of Serre fibrations ⟶ ( ) over
the classifying spaces for orthogonal structure equipped with maps

, + : ⟶ +

covering the canonical inclusions of classifying spaces. For instance for → ( ) a compatible system of
topological group homomorphisms, then the ( , )-structure given by the classifying spaces  (possibly
suitably resolved for the maps → ( ) to become Serre fibrations) defines G-structure.

Given a ( , )-structure, then there are the pullbacks ℬ ≔ * ( ( ) ×
( )

ℝ ) of the universal vector bundles

over ( ), which are the universal vector bundles equipped with ( , )-structure

ℬ ⟶ ( ) ×
( )

ℝ

↓ (pb) ↓

⟶ ( )

.

Finally recall that there are canonical morphisms (prop.)

: ℝ ⊕ ℬ ⟶ +
ℬ

Definition 1.132. Let  be a multiplicative cohomology theory and let ℬ be a multiplicative (B,f)-structure.
Then a universal -orientation for vector bundles with ℬ-structure is an -orientation, according to
def. 1.130, for each rank-  universal vector bundle with ℬ-structure:

∈ ˜ (Th( ℬ)) ∀ ∈ ℕ

such that these are compatible in that

for all ∈ ℕ then

= *
+ ,

where

∈ ˜ (Th( )) ≃ ˜ +
( Th( )) ≃ ˜ +

(Th(ℝ⊕ ))

(with the first isomorphism is the suspension isomorphism of  and the second exhibiting the
homeomorphism of Thom spaces Th(ℝ⊕ ) ≃ Th( ) (prop. 1.106) and where

* : ˜
+
(Th( + )) ⟶ ˜ +

(Th(ℝ⊕ ))

is pullback along the canonical :ℝ⊕ → +  (prop. 1.110).

1. 

for all , ∈ ℕ then

+ ⋅ + = + .

2. 
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Proposition 1.133. A universal -orientation, in the sense of def. 1.132, for vector bundles with (B,f)-
structure ℬ, is equivalently (the homotopy class of) a homomorphism of ring spectra

: ℬ ⟶

from the universal ℬ-Thom spectrum to a spectrum which via the Brown representability theorem
(theorem 1.30) represents the given generalized (Eilenberg-Steenrod) cohomology theory  (and which
we denote by the same symbol).

Proof. The Thom spectrum ℬ has a standard structure of a CW-spectrum. Let now  denote a sequential
Omega-spectrum representing the multiplicative cohomology theory of the same name. Since, in the
standard model structure on topological sequential spectra, CW-spectra are cofibrant (prop.) and Omega-
spectra are fibrant (thm.) we may represent all morphisms in the stable homotopy category (def.) by actual
morphisms

: ℬ ⟶

of sequential spectra (due to this lemma).

Now by definition (def.) such a homomorphism is precissely a sequence of base-point preserving continuous
functions

: ( ℬ) = Th( ℬ) ⟶

for ∈ ℕ, such that they are compatible with the structure maps  and equivalently with their
( ∧ (−) ⊣ Maps( , −)

*
)-adjuncts ˜ , in that these diagrams commute:

∧ Th( ℬ) ®¾¾¾
∧

∧
ℬ
↓ ↓

Th( +
ℬ ) ®¾¾

+
+

↔

Th( ℬ) ⟶

˜ ℬ
↓ ↓ ˜

Maps( , Th( +
ℬ )) ®¾¾¾¾¾

( , + )
*

Maps( , + )
*

for all ∈ ℕ.

First of all this means (via the identification given by the Brown representability theorem, see prop. 1.33,
that the components  are equivalently representatives of elements in the cohomology groups

∈ ˜ (Th( ℬ))

(which we denote by the same symbol, for brevity).

Now by the definition of universal Thom spectra (def. 1.111, def. 1.114), the structure map ℬ is just the
map :ℝ⊕ Th( ℬ) → Th( +

ℬ ) from above.

Moreover, by the Brown representability theorem, the adjunct ˜ ∘  (on the right) of ∘ ∧  (on the left)

is what represents (again by prop. 1.33) the image of

∈ (Th( ℬ))

under the suspension isomorphism. Hence the commutativity of the above squares is equivalently the first
compatibility condition from def. 1.132: ≃ *

+  in ˜
+
(Th(ℝ⊕ ℬ))

Next,  being a homomorphism of ring spectra means equivalently (we should be modelling ℬ and  as
structured spectra (here.) to be more precise on this point, but the conclusion is the same) that for all
, ∈ ℕ then

Th( ℬ ) ∧ Th( ℬ ) ⟶ Th( + )

∧
↓ ↓ +

∧ ⟶
⋅ +

.

This is equivalently the condition ⋅ ≃ + .

Finally, since ℬ is a ring spectrum, there is an essentially unique multiplicative homomorphism from the
sphere spectrum

⟶ ℬ .
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This is given by the component maps

: ≃ Th(ℝ ) ⟶ Th( ℬ)

that are induced by including the fiber of ℬ.

Accordingly the composite

⟶ ℬ⟶

has as components the restrictions *  appearing in def. 1.130. At the same time, also  is a ring spectrum,

hence it also has an essentially unique multiplicative morphism → , which hence must agree with * , up
to homotopy. If we represent  as a symmetric ring spectrum, then the canonical such has the required
property:  is the identity element in degree 0 (being a unit of an ordinary ring, by definition) and hence 
is necessarily its image under the suspension isomorphism, due to compatibility with the structure maps and
using the above analysis.  ▮

Complex projective space

For the fine detail of the discussion of complex oriented cohomology theories below, we recall basic facts
about complex projective space.

Complex projective space ℂ  is the projective space  for = ℂ being the complex numbers (and for
∈ ℕ), a complex manifold of complex dimension  (real dimension 2 ). Equivalently, this is the complex

Grassmannian Gr (ℂ + ) (def. 1.84). For the special case = 1 then ℂ ≃  is the Riemann sphere.

As  ranges, there are natural inclusions

* = ℂ ↪ ℂ ↪ ℂ ↪ ℂ ↪ ⋯ .

The sequential colimit over this sequence is the infinite complex projective space ℂ . This is a model for
the classifying space (1) of circle principal bundles/complex line bundles (an Eilenberg-MacLane space
(ℤ, 2)).

Definition 1.134. For ∈ ℕ, then complex -dimensional complex projective space is the complex
manifold (often just regarded as its underlying topological space) defined as the quotient

ℂ ≔ (ℂ + − {0})/∼

of the Cartesian product of ( + 1)-copies of the complex plane, with the origin removed, by the
equivalence relation

( ∼ ) ⇔ ( = ⋅ )

for some ∈ ℂ − {0} and using the canonical multiplicative action of ℂ on ℂ + .

The canonical inclusions

ℂ + ↪ ℂ +

induce canonical inclusions

ℂ ↪ ℂ + .

The sequential colimit over this sequence of inclusions is the infinite complex projective space

ℂ ≔ lim¬¾ ℂ .

The following equivalent characterizations are immediate but useful:

Proposition 1.135. For ∈ ℕ then complex projective space, def. 1.134, is equivalently the complex
Grassmannian

ℂ ≃ Gr (ℂ + ) .

Proposition 1.136. For ∈ ℕ then complex projective space, def. 1.134, is equivalently

the coset

ℂ ≃ ( + 1)/( ( ) × (1)) ,

1. 
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the quotient of the (2n+1)-sphere by the circle group ≃ { ∈ ℂ|| | = 1}2. 

ℂ ≃ + / .

Proof. To see the second characterization from def. 1.134:

With | − | :ℂ ⟶ ℝ the standard norm, then every element ⇀ ∈ ℂ +  is identified under the defining
equivalence relation with

1
|⇀|

⇀ ∈ − ↪ ℂ +

lying on the unit (2 − 1)-sphere. This fixes the action of ℂ − 0 up to a remaining action of complex numbers
of unit absolute value. These form the circle group .

The first characterization follows via prop. 1.135 from the general discusion at Grassmannian. With this the
second characterization follows also with the coset identification of the (2 + 1)-sphere: + ≃ ( + 1)/ ( )

(exmpl.).  ▮

Proposition 1.137. There is a CW-complex structure on complex projective space ℂ  (def. 1.134) for
∈ ℕ, given by induction, where ℂ +  arises from ℂ  by attaching a single cell of dimension 2( + 1) with

attaching map the projection + ⟶ ℂ  from prop. 1.136:

+ ⟶ + / ≃ ℂ

+ ↓ (po) ↓

+ ⟶ ℂ +

.

Proof. Given homogenous coordinates ( , , ⋯, , + , + ) ∈ ℂ +  for ℂ + , let

≔ −arg( + )

be the phase of + . Then under the equivalence relation defining ℂ +  these coordinates represent the
same element as

1
|⇀|

( , , ⋯, + , ) ,

where

= | + | ∈ [0, 1) ⊂ ℂ

is the absolute value of + . Representatives ⇀′ of this form (|⇀′ | = 1 and ′ + ∈ [0, 1]) parameterize the
2n+2-disk +  (2 + 3 real parameters subject to the one condition that the sum of their norm squares is
unity) with boundary the (2 + 1)-sphere at = 0. The only remaining part of the action of ℂ − {0} which fixes
the form of these representatives is  acting on the elements with = 0 by phase shifts on the , ⋯, + .
The quotient of this remaining action on ( + ) identifies its boundary + -sphere with ℂ , by prop.
1.136.  ▮

Proposition 1.138. For ∈ Ab any abelian group, then the ordinary homology groups of complex
projective space ℂ  with coefficients in  are

(ℂ , ) ≃
for even and ≤ 2

0 otherwise
.

Similarly the ordinary cohomology groups of ℂ  is

(ℂ , ) ≃
for even and ≤ 2

0 otherwise
.

Moreover, if  carries the structure of a ring = ( , ⋅ ), then under the cup product the cohomology ring of
ℂ  is the the graded ring

•(ℂ , ) ≃ [ ]/( + )

which is the quotient of the polynomial ring on a single generator  in degree 2, by the relation that
identifies cup products of more than -copies of the generator  with zero.

Finally, the cohomology ring of the infinite-dimensional complex projective space is the formal power
series ring in one generator:

Introduction to Stable homotopy theory -- S in nLab https://ncatlab.org/nlab/print/Introduction+to+Stable+homotopy+theor...

59 of 78 27.12.2016 13:13



•(ℂ , ) ≃ [[ ]] .

(Or else the polynomial ring [ ], see remark 1.139)

Proof. First consider the case that the coefficients are the integers = ℤ.

Since ℂ  admits the structure of a CW-complex by prop. 1.137, we may compute its ordinary homology
equivalently as its cellular homology (thm.). By definition (defn.) this is the chain homology of the chain
complex of relative homology groups

⋯ ®¾ + ((ℂ ) + , (ℂ ) + ) ®¾ + ((ℂ ) + , (ℂ ) ) ®¾ ((ℂ ) , (ℂ ) − ) ®¾ ⋯ ,

where (−)  denotes the th stage of the CW-complex-structure. Using the CW-complex structure provided

by prop. 1.137, then there are cells only in every second degree, so that

(ℂ ) + = (ℂ )

for all ∈ ℕ. It follows that the cellular chain complex has a zero group in every second degree, so that all
differentials vanish. Finally, since prop. 1.137 says that (ℂ ) +  arises from (ℂ ) + = (ℂ )  by

attaching a single 2 + 2-cell it follows that (by passage to reduced homology)

(ℂ , ℤ) ≃ ˜ ( )((ℂ ) /(ℂ ) − ) ≃ ˜ ( ) ≃ ℤ .

This establishes the claim for ordinary homology with integer coefficients.

In particular this means that (ℂ , ℤ) is a free abelian group for all . Since free abelian groups are the
projective objects in Ab (prop.) it follows (with the discussion at derived functors in homological algebra)
that the Ext-groups vanishe:

Ext ( (ℂ , ℤ), ) = 0

and the Tor-groups vanishes:

Tor ( (ℂ ), ) = 0 .

With this, the statement about homology and cohomology groups with general coefficients follows with the
universal coefficient theorem for ordinary homology (thm.) and for ordinary cohomology (thm.).

Finally to see the action of the cup product: by definition this is the composite

∪ : •(ℂ , ) ⊗ •(ℂ , ) ⟶ •(ℂ × ℂ , ) ⟶
*

•(ℂ , )

of the “cross-product” map that appears in the Kunneth theorem, and the pullback along the diagonal
:ℂ → ℂ × ℂ .

Since, by the above, the groups (ℂ , ) ≃ [2 ] and + (ℂ , ) = 0 are free and finitely generated, the
Kunneth theorem in ordinary cohomology applies (prop.) and says that the cross-product map above is an
isomorphism. This shows that under cup product pairs of generators are sent to a generator, and so the
statement •(ℂ , ) ≃ [ ]( + ) follows.

This also implies that the projection maps

•((ℂ ) + , ) = •(ℂ + , ) → •(ℂ + , ) = •((ℂ ) , )

are all epimorphisms. Therefore this sequence satisfies the Mittag-Leffler condition (def. 1.55, example
1.56) and therefore the Milnor exact sequence for cohomology (prop. 1.61) implies the last claim to be
proven:

•(ℂ , )

≃ •(lim¬¾ ℂ , )

≃ lim®¾
•(ℂ , )

≃ lim®¾ ( [ ]/(( ) + ))

≃ [[ ]] ,

where the last step is this prop..  ▮

Remark 1.139. There is in general a choice to be made in interpreting the cohomology groups of a
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multiplicative cohomology theory  (def. 1.26) as a ring:

a priori •( ) is a sequence

{ ( )} ∈ℤ

of abelian groups, together with a system of group homomorphisms

( ) ⊗ ( ) ⟶ + ( ) ,

one for each pair ( , ) ∈ ℤ × ℤ.

In turning this into a single ring by forming formal sums of elements in the groups ( ), there is in
general the choice of whether allowing formal sums of only finitely many elements, or allowing arbitrary
formal sums.

In the former case the ring obtained is the direct sum

⊕ ∈ℕ ( )

while in the latter case it is the Cartesian product

∈ℕ

( ) .

These differ in general. For instance if  is ordinary cohomology with integer coefficients and  is infinite
complex projective space ℂ , then (prop. 1.138))

( ) =
ℤ even

0 otherwise

and the product operation is given by

( ) ⊗ ( ) ⟶ ( + )( )

for all ,  (and zero in odd degrees, necessarily). Now taking the direct sum of these, this is the
polynomial ring on one generator (in degree 2)

⊕ ∈ℕ ( ) ≃ ℤ[ ] .

But taking the Cartesian product, then this is the formal power series ring

∈ℕ

( ) ≃ ℤ[[ ]] .

A priori both of these are sensible choices. The former is the usual choice in traditional algebraic topology.
However, from the point of view of regarding ordinary cohomology theory as a multiplicative cohomology
theory right away, then the second perspective tends to be more natural:

The cohomology of ℂ  is naturally computed as the inverse limit of the cohomolgies of the ℂ , each of
which unambiguously has the ring structure ℤ[ ]/(( ) + ). So we may naturally take the limit in the
category of commutative rings right away, instead of first taking it in ℤ-indexed sequences of abelian
groups, and then looking for ring structure on the result. But the limit taken in the category of rings gives
the formal power series ring (see here).

See also for instance remark 1.1. in Jacob Lurie: A Survey of Elliptic Cohomology.

Complex orientation

Definition 1.140. A multiplicative cohomology theory  (def. 1.26) is called complex orientable if the the
following equivalent conditions hold

The morphism

* : ( (1)) ⟶ ( )

is surjective.

1. 

The morphism2. 
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˜ * : ˜ ( (1)) ⟶ ˜ ( ) ≃ ( )

is surjective.

The element 1 ∈ ( ) is in the image of the morphism ˜*.3. 

A complex orientation on a multiplicative cohomology theory • is an element

∈ ˜ ( (1))

(the “first generalized Chern class”) such that

* = 1 ∈ ( ) .

Remark 1.141. Since (1) ≃ (ℤ, 2) is the classifying space for complex line bundles, it follows that a
complex orientation on • induces an -generalization of the first Chern class which to a complex line
bundle ℒ on  classified by : → (1) assigns the class (ℒ) ≔ * . This construction extends to a
general construction of -Chern classes.

Proposition 1.142. Given a complex oriented cohomology theory ( •, ) (def. 1.140), then there is an
isomorphism of graded rings

•(ℂ ) ≃ •( * )[[ ]]

between the -cohomology ring of infinite-dimensional complex projective space (def. 1.134) and the
formal power series (see remark 1.139) in one generator of even degree over the -cohomology ring of
the point.

Proof. Using the CW-complex-structure on ℂ  from prop. 1.137, given by inductively identifying ℂ +  with
the result of attaching a single 2 -cell to ℂ . With this structure, the unique 2-cell inclusion : ↪ ℂ  is
identified with the canonical map → (1).

Then consider the Atiyah-Hirzebruch spectral sequence (prop. 1.71) for the -cohomology of ℂ .

•(ℂ , •( * )) ⇒ •(ℂ ) .

Since, by prop. 1.138, the ordinary cohomology with integer coefficients of complex projective space is

•(ℂ , ℤ) ≃ ℤ[ ]/(( ) + ) ,

where  represents a unit in ( , ℤ) ≃ ℤ, and since similarly the ordinary homology of ℂ  is a free abelian
group, hence a projective object in abelian groups (prop.), the Ext-group vanishes in each degree
(Ext ( (ℂ ), •( * )) = 0) and so the universal coefficient theorem (prop.) gives that the second page of the
spectral sequence is

•(ℂ , •( * )) ≃
•( * )[ ]/( + ) .

By the standard construction of the Atiyah-Hirzebruch spectral sequence (here) in this identification the
element  is identified with a generator of the relative cohomology

((ℂ ) , (ℂ ) ) ≃ ˜ ( )

(using, by the above, that this  is the unique 2-cell of ℂ  in the standard cell model).

This means that  is a permanent cocycle of the spectral sequence (in the kernel of all differentials)
precisely if it arises via restriction from an element in (ℂ ) and hence precisely if there exists a complex
orientation  on . Since this is the case by assumption on ,  is a permanent cocycle. (For the fully
detailed argument see (Pedrotti 16)).

The same argument applied to all elements in •( * )[ ], or else the •( * )-linearity of the differentials (prop.
1.73), implies that all these elements are permanent cocycles.

Since the AHSS of a multiplicative cohomology theory is a multiplicative spectral sequence (prop.) this
implies that the differentials in fact vanish on all elements of •( * )[ ]/( + ), hence that the given AHSS
collapses on the second page to give

ℰ • , • ≃ •( * )[ ]/(( ) + )

or in more detail:
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ℰ , • ≃
•( * ) if ≤ 2 and even

0 otherwise
.

Moreover, since therefore all ℰ , • are free modules over •( * ), and since the filter stage inclusions
+ •( ) ↪ •( ) are •( * )-module homomorphisms (prop.) the extension problem (remark 1.70)

trivializes, in that all the short exact sequences

0 → + + •( ) ⟶ + •( ) ⟶ ℰ , • → 0

split (since the Ext-group Ext •(*)
(ℰ , • , −) = 0 vanishes on the free module, hence projective module ℰ , •).

In conclusion, this gives an isomorphism of graded rings

•(ℂ ) ≃ ⊕ ℰ , • ≃ •( * )[ ]/(( ) + ) .

A first consequence is that the projection maps

•((ℂ ) + ) = •(ℂ + ) → •(ℂ +) = •((ℂ ) )

are all epimorphisms. Therefore this sequence satisfies the Mittag-Leffler condition (def., exmpl.) and
therefore the Milnor exact sequence for generalized cohomology (prop.) finally implies the claim:

•( (1)) ≃ •(ℂ )

≃ •(lim¬¾ ℂ )

≃ lim®¾
•(ℂ )

≃ lim®¾ ( •( * )[ ]/(( ) + ))

≃ •( * )[[ ]] ,

where the last step is this prop..  ▮

S.3) Complex oriented cohomology

Idea. Given the concept of orientation in generalized cohomology as above, it is clearly of interest to
consider cohomology theories  such that there exists an orientation/Thom class on the universal vector
bundle over any classifying space  (or rather: on its induced spherical fibration), because then all
-associated vector bundles inherit an orientation.

Considering this for = ( ) the unitary groups yields the concept of complex oriented cohomology theory.

It turns out that a complex orientation on a generalized cohomology theory  in this sense is already given
by demanding that there is a suitable generalization of the first Chern class of complex line bundles in
-cohomology. By the splitting principle, this already implies the existence of generalized Chern classes

(Conner-Floyd Chern classes) of all degrees, and these are the required universal generalized Thom classes.

Where the ordinary first Chern class in ordinary cohomology is simply additive under tensor product of
complex line bundles, one finds that the composite of generalized first Chern classes is instead governed by
more general commutative formal group laws. This phenomenon governs much of the theory to follow.

Literature. (Kochman 96, section 4.3, Lurie 10, lectures 1-10, Adams 74, Part I, Part II, Pedrotti 16).

Chern classes

Idea. In particular ordinary cohomology HR is canonically a complex oriented cohomology theory. The
behaviour of general Conner-Floyd Chern classes to be discussed below follows closely the behaviour of the
ordinary Chern classes.

An ordinary Chern class is a characteristic class of complex vector bundles, and since there is the classifying
space  of complex vector bundles, the universal Chern classes are those of the universal complex vector
bundle over the classifying space , which in turn are just the ordinary cohomology classes in •( )

These may be computed inductively by iteratively applying to the spherical fibrations

− ⟶ ( − 1) ⟶ ( )
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the Thom-Gysin exact sequence, a special case of the Serre spectral sequence.

Pullback of Chern classes along the canonical map ( (1)) ⟶ ( ) identifies them with the elementary
symmetric polynomials in the first Chern class in ( (1)). This is the splitting principle.

Literature. (Kochman 96, section 2.2 and 2.3, Switzer 75, section 16, Lurie 10, lecture 5, prop. 6)

Existence

Proposition 1.143. The cohomology ring of the classifying space ( ) (for the unitary group ( )) is the
polynomial ring on generators { } =  of degree 2, called the Chern classes

•( ( ), ℤ) ≃ ℤ[ ,⋯, ] .

Moreover, for : ( ) ⟶ BU( ) the canonical inclusion for ≤ ∈ ℕ, then the induced pullback map on
cohomology

( )* : •( ( )) ⟶ •( ( ))

is given by

( )*( ) =
for 1 ≤ ≤

0 otherwise
.

(e.g. Kochmann 96, theorem 2.3.1)

Proof. For = 1, in which case (1) ≃ ℂ  is the infinite complex projective space, we have by prop. 1.138

•( (1)) ≃ ℤ[ ] ,

where  is the first Chern class. From here we proceed by induction. So assume that the statement has
been shown for − 1.

Observe that the canonical map ( − 1) → ( ) has as homotopy fiber the (2n-1)sphere (prop. 1.96)
hence there is a homotopy fiber sequence of the form

− ⟶ ( − 1) ⟶ ( ) .

Consider the induced Thom-Gysin sequence (prop. 1.127).

In odd degrees 2 + 1 < 2  it gives the exact sequence

⋯ → ( ( − 1)) ⟶ + − ( ( ))
≃

⟶ + ( ( )) ®¾
( )* + ( ( − 1))

≃

→ ⋯,

where the right term vanishes by induction assumption, and the middle term since ordinary cohomology
vanishes in negative degrees. Hence

+ ( ( )) ≃ 0 for 2 + 1 < 2

Then for 2 + 1 > 2  the Thom-Gysin sequence gives

⋯ → + − ( ( )) ⟶ + ( ( )) ®¾
( )* + ( ( − 1))

≃

→ ⋯ ,

where again the right term vanishes by the induction assumption. Hence exactness now gives that

+ − ( ( )) ⟶ + ( ( ))

is an epimorphism, and so with the previous statement it follows that

+ ( ( )) ≃ 0

for all .

Next consider the Thom Gysin sequence in degrees 2
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⋯ → − ( ( − 1))
≃

⟶ − ( ( )) ⟶ ( ( )) ®¾
( )*

( ( − 1)) ⟶ + − ( ( ))
≃

→ ⋯ .

Here the left term vanishes by the induction assumption, while the right term vanishes by the previous
statement. Hence we have a short exact sequence

0 → − ( ( )) ⟶ ( ( )) ®¾
( )*

( ( − 1)) → 0

for all . In degrees • ≤ 2  this says

0 → ℤ ®¾¾¾
∪(−) • ≤ ( ( )) ®¾

( )*
(ℤ[ ,⋯, − ])• ≤ → 0

for some Thom class ∈ ( ( )), which we identify with the next Chern class.

Since free abelian groups are projective objects in Ab, their extensions are all split (the Ext-group out of
them vanishes), hence the above gives a direct sum decomposition

• ≤ ( ( )) ≃ (ℤ[ ,⋯, − ])• ≤ ⊕ℤ⟨2 ⟩

≃ (ℤ[ ,⋯, ])• ≤
.

Now by another induction over these short exact sequences, the claim follows.  ▮

Splitting principle

Lemma 1.144. For ∈ ℕ let : ( (1) ) ⟶ ( ) be the canonical map. Then the induced pullback

operation on ordinary cohomology

* : •( ( ); ℤ) ⟶ •( (1) ; ℤ)

is a monomorphism.

A proof of lemma 1.144 via analysis of the Serre spectral sequence of ( )/ (1) → (1) → ( ) is
indicated in (Kochmann 96, p. 40). A proof via transfer of the Euler class of ( )/ (1)  is indicated at
splitting principle (here).

Proposition 1.145. For ≤ ∈ ℕ let : ( (1) ) ⟶ ( ) be the canonical map. Then the induced
pullback operation on ordinary cohomology is of the form

( )* : ℤ[ ,⋯, ] ⟶ ℤ[( ) ,⋯( ) ]

and sends the th Chern class  (def. 1.143) to the th elementary symmetric polynomial in the  copies
of the first Chern class:

( )* : ↦ (( ) ,⋯, ( ) ) ≔
≤ ≤⋯≤ ≤

( ) ⋯( ) .

Proof. First consider the case = 1.

The classifying space (1) (def. 1.91) is equivalently the infinite complex projective space ℂ . Its ordinary
cohomology is the polynomial ring on a single generator , the first Chern class (prop. 1.138)

•( (1)) ≃ ℤ[ ] .

Moreover,  is the identity and the statement follows.

Now by the Künneth theorem for ordinary cohomology (prop.) the cohomology of the Cartesian product of 
copies of (1) is the polynomial ring in  generators

•( (1) ) ≃ ℤ[( ) ,⋯, ( ) ] .

By prop. 1.143 the domain of ( )* is the polynomial ring in the Chern classes { }, and by the previous
statement the codomain is the polynomial ring on  copies of the first Chern class

( )* : ℤ[ ,⋯, ] ⟶ ℤ[( ) ,⋯, ( ) ] .

This allows to compute ( )*( ) by induction:
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Consider ≥ 2 and assume that ( − ) −
* ( ) = (( ) ,⋯, ( )( − )). We need to show that then also

( )*( ) = (( ) ,⋯, ( ) ).

Consider then the commuting diagram

(1) − ®¾¾¾− ( − 1)

^ ↓ ↓ ^

(1) ⟶ ( )

where both vertical morphisms are induced from the inclusion

ℂ − ↪ ℂ

which omits the th coordinate.

Since two embeddings ^ , ^ : ( − 1) ↪ ( ) differ by conjugation with an element in ( ), hence by an inner

automorphism, the maps ^  and ^  are homotopic, and hence ( ^)* = ( ^)*, which is the morphism from

prop. 1.143.

By that proposition, ( ^)* is the identity on  and hence by induction assumption

( − )*( ^)* = ( − )*

= (( ) ,⋯, ( ) ,⋯, ( ) )
.

Since pullback along the left vertical morphism sends ( )  to zero and is the identity on the other

generators, this shows that

( )*( ) ≃ (( ) ,⋯, ( ) ,⋯, ( ) ) mod( ) .

This implies the claim for < .

For the case =  the commutativity of the diagram and the fact that the right map is zero on  by prop.
1.143 shows that the element ( ^)*( )* = 0 for all 1 ≤ ≤ . But by lemma 1.144 the morphism ( )*, is

injective, and hence ( )*( ) is non-zero. Therefore for this to be annihilated by the morphisms that send
( )  to zero, for all , the element must be proportional to all the ( ) . By degree reasons this means that it

has to be the product of all of them

( )*( ) = ( ) ⊗ ( ) ⊗⋯⊗ ( )

= (( ) ,⋯, ( ) )
.

This completes the induction step, and hence the proof.  ▮

Proposition 1.146. For ≤ ∈ ℕ, consider the canonical map

, − : ( ) × ( − ) ⟶ ( )

(which classifies the Whitney sum of complex vector bundles of rank  with those of rank − ). Under
pullback along this map the universal Chern classes (prop. 1.143) are given by

( , − )*( ) =
=

⊗ − ,

where we take = 1 and = 0 ∈ •( ( )) if > .

So in particular

( , − )*( ) = ⊗ − .

e.g. (Kochmann 96, corollary 2.3.4)

Proof. Consider the commuting diagram
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•( ( )) ®¾¾¾
, −*

•( ( ))⊗ •( ( − ))

*
↓ ↓

* ⊗ −*

•( (1) ) ≃ •( (1) ) ⊗ •( (1) − )

.

This says that for all  then

( * ⊗ −
* ) , −

* ( ) = * ( )

= (( ) ,⋯, ( ) )
,

where the last equation is by prop. 1.145.

Now the elementary symmetric polynomial on the right decomposes as required by the left hand side of this
equation as follows:

(( ) ,⋯, ( ) ) =
=

(( ) ,⋯, ( ) − ) ⋅ − (( ) − + , ⋯, ( ) ) ,

where we agree with (( ) ,⋯, ( ) ) = 0 if > . It follows that

( * ⊗ −
* ) , −

* ( ) = ( * ⊗ −
* )

=

⊗ − .

Since ( * ⊗ −
* ) is a monomorphism by lemma 1.144, this implies the claim.  ▮

Conner-Floyd Chern classes

Idea. For  a complex oriented cohomology theory, then the generators of the -cohomology groups of the
classifying space  are called the Conner-Floyd Chern classes, in •( ).

Using basic properties of the classifying space (1) via its incarnation as the infinite complex projective
space ℂ , one finds that the Atiyah-Hirzebruch spectral sequences

(ℂ , ( )) ⇒ •(ℂ )

collapse right away, and that the inverse system which they form satisfies the Mittag-Leffler condition.
Accordingly the Milnor exact sequence gives that the ordinary first Chern class  generates, over •( ), all
Conner-Floyd classes over (1):

•( (1)) ≃ •( )[[ ]] .

This is the key input for the discussion of formal group laws below.

Combining the Atiyah-Hirzebruch spectral sequence with the splitting principle as for ordinary Chern classes
above yields, similarly, that in general Conner-Floyd classes are generated, over •( ), from the ordinary
Chern classes.

Finally one checks that Conner-Floyd classes canonically serve as Thom classes for -cohomology of the
universal complex vector bundle, thereby showing that complex oriented cohomology theories are indeed
canonically oriented on (spherical fibrations of) complex vector bundles.

Literature. (Kochman 96, section 4.3 Adams 74, part I.4, part II.2 II.4, part III.10, Lurie 10, lecture 5)

Proposition 1.147. Given a complex oriented cohomology theory  with complex orientation , then the
-generalized cohomology of the classifying space ( ) is freely generated over the graded commutative

ring •( ) (prop.) by classes  for 0 ≤ ≤  of degree 2 , these are called the Conner-Floyd-Chern
classes

•( ( )) ≃ •( )[[ , , ⋯, ]] .

Moreover, pullback along the canonical inclusion ( ) → ( + 1) is the identity on  for ≤  and sends

+  to zero.

For  being ordinary cohomology, this reduces to the ordinary Chern classes of prop. 1.143.

For details see (Pedrotti 16, prop. 3.1.14).
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Formal group laws of first CF-Chern classes

Idea. The classifying space (1) for complex line bundles is a homotopy type canonically equipped with
commutative group structure (infinity-group-structure), corresponding to the tensor product of complex line
bundles. By the above, for  a complex oriented cohomology theory the first Conner-Floyd Chern class of
these complex line bundles generates the -cohomology of (1), it follows that the cohomology ring
•( (1)) ≃ •( )[[ ]] behaves like the ring of •( )-valued functions on a 1-dimensional commutative formal

group equipped with a canonical coordinate function . This is called a formal group law over the graded
commutative ring •( ) (prop.).

On abstract grounds it follows that there exists a commutative ring  and a universal (1-dimensional
commutative) formal group law ℓ over . This is called the Lazard ring. Lazard's theorem identifies this ring
concretely: it turns out to simply be the polynomial ring on generators in every even degree.

Further below this has profound implications on the structure theory for complex oriented cohomology. The
Milnor-Quillen theorem on MU identifies the Lazard ring as the cohomology ring of the Thom spectrum MU,
and then the Landweber exact functor theorem, implies that there are lots of complex oriented cohomology
theories.

Literature. (Kochman 96, section 4.4, Lurie 10, lectures 1 and 2)

Formal group laws

Definition 1.148. An (commutative) adic ring is a (commutative) topological ring  and an ideal ⊂  such
that

the topology on  is the -adic topology;1. 

the canonical morphism

⟶ lim¬¾ ( / )

to the limit over quotient rings by powers of the ideal is an isomorphism.

2. 

A homomorphism of adic rings is a ring homomorphism that is also a continuous function (hence a
function that preserves the filtering ⊃ ⋯ ⊃ / ⊃ / ). This gives a category AdicRing and a subcategory
AdicCRing of commutative adic rings.

The opposite category of AdicRing (on Noetherian rings) is that of affine formal schemes.

Similarly, for  any fixed commutative ring, then adic rings under  are adic -algebras. We write Adic Alg
and Adic CAlg for the corresponding categories.

Example 1.149. For  a commutative ring and ∈ ℕ then the formal power series ring

[[ , , ⋯, ]]

in variables with coefficients in  and equipped with the ideal

= ( ,⋯, )

is an adic ring (def. 1.148).

Proposition 1.150. There is a fully faithful functor

AdicRing ↪ ProRing

from adic rings (def. 1.148) to pro-rings, given by

( , ) ↦ (( / •)) ,

i.e. for , ∈ AdicRing two adic rings, then there is a natural isomorphism

Hom ( , ) ≃ lim¬¾ lim®¾ Hom ( / , / ) .

Definition 1.151. For ∈ CRing a commutative ring and for ∈ ℕ, a formal group law of dimension  over
 is the structure of a group object in the category Adic CAlg  from def. 1.148 on the object [[ , ⋯, ]]

from example 1.149.
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Hence this is a morphism

: [[ ,⋯, ]] ⟶ [[ ,⋯, , , ⋯, ]]

in Adic CAlg satisfying unitality, associativity.

This is a commutative formal group law if it is an abelian group object, hence if it in addition satisfies
the corresponding commutativity condition.

This is equivalently a set of  power series  of 2  variables , …, , , …,  such that (in notation

= ( ,…, ), = ( ,…, ), ( , ) = ( ( , ), …, ( , )))

( , ( , )) = ( ( , ), )
( , ) = + + higher order terms

Example 1.152. A 1-dimensional commutative formal group law according to def. 1.151 is equivalently a
formal power series

( , ) =
, ≥

,

(the image ]under\muinR[x,y]oftheelementt \in R [t]$) such that

(unitality)

( , 0) =

1. 

(associativity)

( , ( , )) = ( ( , ), ) ;

2. 

(commutativity)

( , ) = ( , ) .

3. 

The first condition means equivalently that

, =
1 if = 0

0 otherwise
, , =

1 if = 0

0 otherwise
.

Hence  is necessarily of the form

( , ) = + +
, ≥

, .

The existence of inverses is no extra condition: by induction on the index  one finds that there exists a
unique

( ) =
≥

( )

such that

( , iota( )) = , ( ( ), ) = .

Hence 1-dimensional formal group laws over  are equivalently monoids in Adic CAlg  on [[ ]].

Formal group laws from complex orientation

Let again (1) be the classifying space for complex line bundles, modeled, in particular, by infinite complex
projective space ℂ ).

Lemma 1.153. There is a continuous function

: ℂ × ℂ ⟶ ℂ

which represents the tensor product of line bundles in that under the defining equivalence, and for  any
paracompact topological space, then

Introduction to Stable homotopy theory -- S in nLab https://ncatlab.org/nlab/print/Introduction+to+Stable+homotopy+theor...

69 of 78 27.12.2016 13:13



[ , ℂ × ℂ ] ≃ ℂ LineBund( )/ ∼ × ℂLineBund( )/ ∼

[ , ] ↓ ↓⊗

[ , ℂ ] ≃ ℂ LineBund( )/ ∼

,

where [−, −] denotes the hom-sets in the (Serre-Quillen-)classical homotopy category and ℂLineBund( )/ ∼
denotes the set of isomorphism classes of complex line bundles on .

Together with the canonical point inclusion * → ℂ , this makes ℂ  an abelian group object in the
classical homotopy category.

Proof. By the Yoneda lemma (the fully faithfulness of the Yoneda embedding) there exists such a morphism
ℂ × ℂ ⟶ ℂ  in the classical homotopy category. But since ℂ  admits the structure of a CW-complex
(prop. 1.137)) it is cofibrant in the standard model structure on topological spaces (thm.), as is its Cartesian
product with itself (prop.). Since moreover all spaces are fibrant in the classical model structure on
topological spaces, it follows (by this lemma) that there is an actual continuous function representing that
morphism in the homotopy category.

That this gives the structure of an abelian group object now follows via the Yoneda lemma from the fact that
each ℂLineBund( )/ ∼  has the structure of an abelian group under tensor product of line bundles, with the

trivial line bundle (wich is classified by maps factoring through * → ℂ ) being the neutral element, and that
this group structure is natural in .  ▮

Remark 1.154. The space (1) ≃ ℂ  has in fact more structure than that of a homotopy group from
lemma 1.153. As an object of the homotopy theory represented by the classical model structure on
topological spaces, it is a 2-group, a 1-truncated infinity-group.

Proposition 1.155. Let ( , ) be a complex oriented cohomology theory. Under the identification

•(ℂ ) ≃ •( )[[ ]] , •(ℂ × ℂ ) ≃ •( )[[ ⊗ 1, 1 ⊗ ]]

from prop. 1.142, the operation

•( )[[ ]] ≃ •(ℂ ) ⟶ •(ℂ × ℂ ) ≃ •( )[[ ⊗ 1, 1 ⊗ ]]

of pullback in -cohomology along the maps from lemma 1.153 constitutes a 1-dimensional graded-
commutative formal group law (example 1.152)over the graded commutative ring •( ) (prop.). If we
consider  to be in degree 2, then this formal group law is compatibly graded.

Proof. The associativity and commutativity conditions follow directly from the respective properties of the
map  in lemma 1.153. The grading follows from the nature of the identifications in prop. 1.142.  ▮

Remark 1.156. That the grading of  in prop. 1.155 is in negative degree is because by definition

•( ) = • =
−•

(rmk.).

Under different choices of orientation, one obtains different but isomorphic formal group laws.

The universal 1d commutative formal group law and Lazard’s theorem

It is immediate that there exists a ring carrying a universal formal group law. For observe that for
∑ , ,  an element in a formal power series algebra, then the condition that it defines a formal group law

is equivalently a sequence of polynomial equations on the coefficients . For instance the commutativity
condition means that

, = ,

and the unitality constraint means that

=
1 if = 1

0 otherwise
.

Similarly associativity is equivalently a condition on combinations of triple products of the coefficients. It is
not necessary to even write this out, the important point is only that it is some polynomial equation.

This allows to make the following definition
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Definition 1.157. The Lazard ring is the graded commutative ring generated by elenebts  in degree
2( + − 1) with , ∈ ℕ

= ℤ[ ]/(relations 1, 2, 3 below)

quotiented by the relations

=1. 

= = 1; ∀ ≠ 1: = 02. 

the obvious associativity relation3. 

for all , , .

The universal 1-dimensional commutative formal group law is the formal power series with
coefficients in the Lazard ring given by

ℓ( , ) ≔
,

∈ [[ , ]] .

Remark 1.158. The grading is chosen with regards to the formal group laws arising from complex oriented
cohomology theories (prop.) where the variable  naturally has degree -2. This way

deg( ) = deg( , ) + deg( ) + deg( ) = −2 .

The following is immediate from the definition:

Proposition 1.159. For every ring  and 1-dimensional commutative formal group law  over  (example
1.152), there exists a unique ring homomorphism

: ⟶

from the Lazard ring (def. 1.157) to , such that it takes the universal formal group law ℓ to 

*
ℓ = .

Proof. If the formal group law  has coefficients { , }, then in order that 
*
ℓ = , i.e. that

,

( , ) =
,

,

it must be that  is given by

( , ) = ,

where ,  are the generators of the Lazard ring. Hence it only remains to see that this indeed constitutes a
ring homomorphism. But this is guaranteed by the vary choice of relations imposed in the definition of the
Lazard ring.  ▮

What is however highly nontrivial is this statement:

Theorem 1.160. (Lazard's theorem)

The Lazard ring  (def. 1.157) is isomorphic to a polynomial ring

≃ ℤ[ , ,⋯]

in countably many generators  in degree 2 .

Remark 1.161. The Lazard theorem 1.160 first of all implies, via prop. 1.159, that there exists an
abundance of 1-dimensional formal group laws: given any ring  then every choice of elements { ∈ }
defines a formal group law. (On the other hand, it is nontrivial to say which formal group law that is.)

Deeper is the fact expressed by the Milnor-Quillen theorem on MU: the Lazard ring in its polynomial
incarnation of prop. 1.160 is canonically identieif with the graded commutative ring •( ) of stable
homotopy groups of the universal complex Thom spectrum MU. Moreover:

MU carries a universal complex orientation in that for  any homotopy commutative ring spectrum
then homotopy classes of homotopy ring homomorphisms →  are in bijection to complex
orientations on ;

1. 
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every complex orientation on  induced a 1-dimensional commutative formal group law (prop.)2. 

under forming stable homtopy groups every ring spectrum homomorphism →  induces a ring
homomorphism

≃ •( ) ⟶ •( )

and hence, by the universality of , a formal group law over •( ).

3. 

This is the formal group law given by the above complex orientation.

Hence the universal group law over the Lazard ring is a kind of decategorification of the universal complex
orientation on MU.

Complex cobordism

Idea. There is a weak homotopy equivalence : (1) ⟶≃ (1) between the classifying space for complex
line bundles and the Thom space of the universal complex line bundle. This gives an element

*( ) ∈ ( (1)) in the complex cobordism cohomology of (1) which makes the universal complex
Thom spectrum MU become a complex oriented cohomology theory.

This turns out to be a universal complex orientation on MU: for every other homotopy commutative ring
spectrum  (def.) there is an equivalence between complex orientations on  and homotopy classes of
homotopy ring spectrum homomorphisms

{ ⟶ }/ ≃ ≃ {complex orientations on } .

Hence complex oriented cohomology theory is higher algebra over MU.

Literature. (Schwede 12, example 1.18, Kochman 96, section 1.4, 1.5, 4.4, Lurie 10, lectures 5 and 6)

Conner-Floyd-Chern classes are Thom classes

We discuss that for  a complex oriented cohomology theory, then the th universal Conner-Floyd-Chern
class  is in fact a universal Thom class for rank complex vector bundles. On the one hand this says that
the choice of a complex orientation on  indeed universally orients all complex vector bundles. On the other
hand, we interpret this fact below as the unitality condition on a homomorphism of homotopy commutative
ring spectra →  which represent that universal orienation.

Lemma 1.162. For ∈ ℕ, the fiber sequence (prop. 1.96)

− ⟶ ( − 1)

↓

( )

exhibits ( − 1) as the sphere bundle of the universal complex vector bundle over ( ).

Proof. When exhibited by a fibration, here the vertical morphism is equivalently the quotient map

( ( ))/ ( − 1) ⟶ ( ( ))/ ( )

(by the proof of prop. 1.96).

Now the universal principal bundle ( ) is (def. \ref{EOn)}) equivalently the colimit

( ) ≃ lim®¾ ( )/ ( − ) .

Here each Stiefel manifold/coset spaces ( )/ ( − ) is equivalently the space of (complex) -dimensional
subspaces of ℂ  that are equipped with an orthonormal (hermitian) linear basis. The universal vector bundle

( ) ×
( )

ℂ ≃ lim®¾ ( )/ ( − ) ×
( )

ℂ

has as fiber precisely the linear span of any such choice of basis.

While the quotient ( )/( ( − ) × ( )) (the Grassmannian) divides out the entire choice of basis, the
quotient ( )/( ( − ) × ( − 1)) leaves the choice of precisly one unit vector. This is parameterized by the
sphere −  which is thereby identified as the unit sphere in the respective fiber of ( ) ×

( )
ℂ .  ▮
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In particular:

Lemma 1.163. The canonical map from the classifying space (1) ≃ ℂ  (the inifnity complex projective
space) to the Thom space of the universal complex line bundle is a weak homotopy equivalence

(1) ®¾¾
∈

(1) ≔ Th( (1) ×
( )

ℂ) .

Proof. Observe that the circle group (1) is naturally identified with the unit sphere in ℂ: (1) ≃ ( ).
Therefore the sphere bundle of the universal complex line bundle is equivalently the (1)-universal principal
bundle

(1) ×
( )

(ℂ)≃ (1) ×
( )

(1)

≃ (1)
.

But the universal principal bundle is contractible

(1) ®¾¾
∈

* .

(Alternatively this is the special case of lemma 1.162 for = 0.)

Therefore the Thom space

Th( (1) ×
( )

)≔ ( (1) ×
( )

)/ ( (1) ×
( )

)

®¾¾
∈

( (1) ×
( )

)

®¾¾
∈

(1)

.

  ▮

Lemma 1.164. For  a generalized (Eilenberg-Steenrod) cohomology theory, then the -reduced
cohomology of the Thom space of the complex universal vector bundle is equivalently the relative
cohomology of ( ) relative ( − 1)

˜ •(Th( ( ) ×
( )

ℂ )) ≃ •( ( ), ( − 1)) .

If  is equipped with the structure of a complex oriented cohomology theory then

˜ •(Th( ( ) ×
( )

ℂ )) ≃ ⋅ ( •( ))[[ ,⋯, ]] ,

where the  are the universal -Conner-Floyd-Chern classes.

Proof. Regarding the first statement:

In view of lemma 1.162 and using that the disk bundle is homotopy equivalent to the base space we have

˜ •(Th( ( ) ×
( )

ℂ ))= •( ( ( ) ×
( )

ℂ ), ( ( ) ×
( )

ℂ ))

≃ •( ( ), ( − 1))
.

Regarding the second statement: the Conner-Floyd classes freely generate the -cohomology of ( ) for all
:

•( ( )) ≃ •( )[[ ,⋯, ]] .

and the restriction morphism

•( ( )) ⟶ •( ( − 1))

projects out . Since this is in particular a surjective map, the relative cohomology •( ( ), ( − 1)) is
just the kernel of this map.  ▮

Proposition 1.165. Let  be a complex oriented cohomology theory. Then the th -Conner-Floyd-Chern
class

∈ ˜ (Th( ( ) ×
( )

ℂ ))

(using the identification of lemma 1.164) is a Thom class in that its restriction to the Thom space of any
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fiber is a suspension of a unit in ( ).

(Lurie 10, lecture 5, prop. 6)

Proof. Since ( ) is connected, it is sufficient to check the statement over the base point. Since that fixed
fiber is canonically isomorphic to the direct sum of  complex lines, we may equivalently check that the
restriction of  to the pullback of the universal rank  bundle along

: (1) ⟶ ( )

satisfies the required condition. By the splitting principle, that restriction is the product of the -copies of the
first -Conner-Floyd-Chern class

* ≃ (( ) ⋯( ) ) .

Hence it is now sufficient to see that each factor restricts to a unit on the fiber, but that it precisely the
condition that  is a complex orientaton of . In fact by def. 1.166 the restriction is even to 1 ∈ ( ).  ▮

Complex orientation as ring spectrum maps

For the present purpose:

Definition 1.166. For  a generalized (Eilenberg-Steenrod) cohomology theory, then a complex orientation
on  is a choice of element

∈ ( (1))

in the cohomology of the classifying space (1) (given by the infinite complex projective space) such that
its image under the restriction map

: ˜ ( (1)) ⟶ ˜ ( ) ≃ ( )

is the unit

( ) = 1 .

(Lurie 10, lecture 4, def. 2)

Remark 1.167. Often one just requires that ( ) is a unit, i.e. an invertible element. However we are after
identifying  with the degree-2 component (1) →  of homtopy ring spectrum morphisms → , and
by unitality these necessarily send → (1) to the unit : →  (up to homotopy).

Lemma 1.168. Let  be a homotopy commutative ring spectrum (def.) equipped with a complex orientation
(def. 1.166) represented by a map

: (1) ⟶ .

Write { } ∈ℕ for the induced Conner-Floyd-Chern classes. Then there exists a morphism of -sequential

spectra (def.)

⟶

whose component map ⟶  represents  (under the identification of lemma 1.164), for all ∈ ℕ.

Proof. Consider the standard model of MU as a sequential -spectrum with component spaces the Thom
spaces of the complex universal vector bundle

≔ Th( ( ) × ℂ ) .

Notice that this is a CW-spectrum (def., lemma).

In order to get a homomorphism of -sequential spectra, we need to find representatives : ⟶

of  (under the identification of lemma 1.164) such that all the squares

∧ ®¾¾¾
∧

∧

↓ ↓

( + ) ®¾¾¾
( + )

+

commute strictly (not just up to homotopy).
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To begin with, pick a map

: ≃ ⟶

that represents = 1.

Assume then by induction that maps  have been found for ≤ . Observe that we have a homotopy-

commuting diagram of the form

∧ ®¾¾¾
∧

∧

↓ ⇙ ↓

∧ ®¾¾¾
∧

∧

↓ ⇙ ↓ ,

( + ) ®¾¾
+

( + )

,

where the maps denoted  are any representatives of the Chern classes of the same name, under the
identification of lemma 1.164. Here the homotopy in the top square exhibits the fact that  is a complex
orientation, while the homotopy in the bottom square exhibits the Whitney sum formula for Chern classes
(prop. 1.146)).

Now since  is a CW-spectrum, the total left vertical morphism here is a (Serre-)cofibration, hence a
Hurewicz cofibration, hence satisfies the homotopy extension property. This means precisely that we may
find a map + : ( + ) ⟶ ( + ) homotopic to the given representative +  such that the required

square commutes strictly.  ▮

Lemma 1.169. For  a complex oriented homotopy commutative ring spectrum, the morphism of spectra

: ⟶

that represents the complex orientation by lemma 1.168 is a homomorphism of homotopy commutative
ring spectra.

(Lurie 10, lecture 6, prop. 6)

Proof. The unitality condition demands that the diagram

⟶

↘ ↓

commutes in the stable homotopy category Ho(Spectra). In components this means that

⟶

↘ ↓

commutes up to homotopy, hence that the restriction of  to a fiber is the 2 -fold suspension of the unit of
. But this is the statement of prop. 1.165: the Chern classes are universal Thom classes.

Hence componentwise all these triangles commute up to some homotopy. Now we invoke the Milnor
sequence for generalized cohomology of spectra (prop. 1.63). Observe that the tower of abelian groups
↦ ( ) is actually constant (suspension isomorphism) hence trivially satisfies the Mittag-Leffler condition

and so a homotopy of morphisms of spectra →  exists as soon as there are componentwise homotopies
(cor. 1.64).

Next, the respect for the product demands that the square

∧ ®¾
∧

∧

↓ ↓

⟶

commutes in the stable homotopy category Ho(Spectra). In order to rephrase this as a condition on the
components of the ring spectra, regard this as happening in the homotopy category Ho(OrthSpec(Top ))

of the model structure on orthogonal spectra, which is equivalent to the stable homotopy category (thm.).
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Here the derived symmetric monoidal smash product of spectra is given by Day convolution (def.) and maps
out of such a product are equivalently as in the above diagram is equivalent (cor.) to a suitably equivariant
collection diagrams of the form

∧ ®¾¾¾
∧

∧

↓ ↓

( + ) ®¾¾¾
( + )

( + )

,

where on the left we have the standard pairing operations for  (def.) and on the right we have the given
pairing on .

That this indeed commutes up to homotopy is the Whitney sum formula for Chern classes (prop.).

Hence again we have componentwise homotopies. And again the relevant Mittag-Leffler condition on
↦ − ((MU ∧ MU) )-holds, by the nature of the universal Conner-Floyd classes?, prop. 1.147. Therefore

these componentwise homotopies imply the required homotopy of morphisms of spectra (cor. 1.64).  ▮

Theorem 1.170. Let  be a homotopy commutative ring spectrum (def.). Then the map

( ⟶ ) ↦ ( (1) ≃ ⟶ )

which sends a homomorphism  of homotopy commutative ring spectra to its component map in degree 2,
interpreted as a class on (1) via lemma 1.163, constitutes a bijection from homotopy classes of
homomorphisms of homotopy commutative ring spectra to complex orientations (def. 1.166) on .

(Lurie 10, lecture 6, theorem 8)

Proof. By lemma 1.168 and lemma 1.169 the map is surjective, hence it only remains to show that it is
injective.

So let , ′ : →  be two morphisms of homotopy commutative ring spectra that have the same restriction,
up to homotopy, to ≃ ′ : ≃ (1). Since both are homotopy ring spectrum homomophisms, the

restriction of their components , ′ : →  to (1)∧  is a product of ≃ ′ , hence  becomes
homotopic to ′ after this restriction. But by the splitting principle this restriction is injective on cohomology
classes, hence  itself ist already homotopic to ′ .

It remains to see that these homotopies may be chosen compatibly such as to form a single homotopy of
maps of spectra

: ∧ + ⟶ ,

This follows due to the existence of the Milnor short exact sequence from prop. 1.63:

0 → lim¬¾
− ( − ) ⟶ ( ) ⟶ lim¬¾ ( − ) → 0 .

Here the Mittag-Leffler condition (def. 1.55) is clearly satisfied (by prop. 1.147 and lemma 1.164 all relevant
maps are epimorphisms, hence the condition is satisfied by example 1.56). Hence the lim^1-term vanishes
(prop. 1.57), and so by exactness the canonical morphism

( ) ⟶≃ lim¬¾ ( − )

is an isomorphism. This says that two homotopy classes of morphisms →  are equal precisely already if
all their component morphisms are homotopic (represent the same cohomology class).  ▮

Homology of 

Idea. Since, by the above, every complex oriented cohomology theory  is indeed oriented over complex
vector bundles, there is a Thom isomorphism which reduces the computation of the -homology of MU,

•( ) to that of the classifying space . The homology of , in turn, may be determined by the duality
with its cohomology (universal coefficient theorem) via Kronecker pairing and the induced duality of the
corresponding Atiyah-Hirzebruch spectral sequences (prop. 1.74) from the Conner-Floyd classes above.
Finally, via the Hurewicz homomorphism/Boardman homomorphism the homology of  gives a first
approximation to the homotopy groups of MU.

Literature. (Kochman 96, section 2.4, 4.3, Lurie 10, lecture 7)
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Milnor-Quillen theorem on 

Idea. From the computation of the homology of MU above and applying the Boardman homomorphism, one
deduces that the stable homotopy groups •(MU) of MU are finitely generated. This implies that it is suffient
to compute them over the p-adic integers for all primes . Using the change of rings theorem, this finally is
obtained from inspection of the filtration in the -Adams spectral sequence for MU. This is Milnor’s
theorem wich together with Lazard's theorem shows that there is an isomorphism of rings ≃ •( ) with
the Lazard ring. Finally Quillen's theorem on MU says that this isomorphism is exhibited by the universal
ring homomorphism ⟶ •( ) which classifies the universal complex orientation on .

Literature. (Kochman 96, section 4.4, Lurie 10, lecture 10)

Landweber exact functor theorem

Idea. By the above, every complex oriented cohomology theory induces a formal group law from its first
Conner-Floyd Chern class. Moreover, Quillen's theorem on MU together with Lazard's theorem say that the
cohomology ring •( ) of complex cobordism cohomology MU is the classifying ring for formal group laws.

The Landweber exact functor theorem says that, conversely, forming the tensor product of complex
cobordism cohomology theory (MU) with a Landweber exact ring via some formal group law yields a
cohomology theory, hence a complex oriented cohomology theory.

Literature. (Lurie 10, lectures 15,16)

Outlook: Geometry of Spec(MU)

The grand conclusion of Quillen's theorem on MU (above): complex oriented cohomology theory is
essentially the spectral geometry over Spec( ), and the latter is a kind of derived version of the moduli
stack of formal groups (1-dimensional commutative).

Landweber-Novikov theorem

Adams-Quillen theorem

Adams-Novikov spectral sequence

(…)

Literature. (Kochman 96, sections 4.5-4.7 and section 5, Lurie 10, lectures 12-14)

2. References

We follow in outline the textbook

Stanley Kochman, chapters I - IV of Bordism, Stable Homotopy and Adams Spectral Sequences, AMS
1996

For some basics in algebraic topology see also

Robert Switzer, Algebraic Topology - Homotopy and Homology, Die Grundlehren der Mathematischen
Wissenschaften in Einzeldarstellungen, Vol. 212, Springer-Verlag, New York, N. Y., 1975.

Specifically for S.1) Generalized cohomology a neat account is in:

Marcelo Aguilar, Samuel Gitler, Carlos Prieto, section 12 of Algebraic topology from a homotopical
viewpoint, Springer (2002) (toc pdf)

For S.2) Cobordism theory an efficient collection of the highlights is in

Cary Malkiewich, Unoriented cobordism and , 2011 (pdf)

except that it omits proof of the Leray-Hirsch theorem/Serre spectral sequence and that of the Thom
isomorphism, but see the references there and see (Kochman 96, Aguilar-Gitler-Prieto 02, section 11.7) for
details.
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For S.3) Complex oriented cohomology besides (Kochman 96, chapter 4) have a look at

Frank Adams, Stable homotopy and generalized homology, Chicago Lectures in mathematics, 1974

and

Jacob Lurie, lectures 1-10 of Chromatic Homotopy Theory, 2010

See also

Stefan Schwede, Symmetric spectra, 2012 (pdf)
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