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Introduction to Topology -- 1

This page is a detailed introduction to basic topology. Starting from scratch
(required background is just a basic concept of sets), and amplifying motivation
from analysis, it first develops standard point-set topology (topological spaces).
In passing, some basics of category theory make an informal appearance, used to
transparently summarize some conceptually important aspects of the theory, such
as initial and final topologies and the reflection into Hausdorff and sober
topological spaces. The second part introduces some basics of homotopy theory,
mostly the fundamental group, and ends with their first application to the
classification of covering spaces.

main page: Introduction to Topology

this chapter: Introduction to Topology 1 – Point-set topology

next chapter: Introduction to Topology 2 -- Basic Homotopy Theory

For introduction to more general and abstract homotopy theory see instead at
Introduction to Homotopy Theory.
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The idea of topology is to study “spaces” with “continuous functions” between
them. Specifically one considers functions between sets (whence “point-set
topology”, see below) such that there is a concept for what it means that these
functions depend continuously on their arguments, in that that their values do not
“jump”. Such a concept of continuity is familiar from analysis on metric spaces,
(recalled below) but the definition in topology generalizes this analytic concept
and renders it more foundational, generalizing the concept of metric spaces to
that of topological spaces. (def. 2.3 below).

Hence topology is the study of the category whose objects are topological spaces,
and whose morphisms are continuous functions (see also remark 3.3 below). This
category is much more flexible than that of metric spaces, for example it admits
the construction of arbitrary quotients and intersections of spaces. Accordingly,
topology underlies or informs many and diverse areas of mathematics, such as
functional analysis, operator algebra, manifold/scheme theory, hence algebraic
geometry and differential geometry, and the study of topological groups,
topological vector spaces, local rings, etc.. Not the least, it gives rise to the field
of homotopy theory, where one considers also continuous deformations of
continuous functions themselves (“homotopies”). Topology itself has many
branches, such as low-dimensional topology or topological domain theory.

A popular imagery for the concept of a continuous function is provided by
deformations of elastic physical bodies, which may be deformed by stretching
them without tearing. The canonical illustration is a continous bijective function
from the torus to the surface of a coffee mug, which maps half of the torus to the
handle of the coffee mug, and continuously deforms parts of the other half in
order to form the actual cup. Since the inverse function to this function is itself
continuous, the torus and the coffee mug, both regarded as topological spaces,
are “the same” for the purposes of topology, one says they are homeomorphic.

On the other hand, there is no homeomorphism from the torus to, for instance,
the sphere, signifying that these represent two topologically distinct spaces. Part
of topology is concerned with studying homeomorphism-invariants of topological
spaces which allow to detect by means of algebraic manipulations whether two
topological spaces are homeomorphic (or more generally homotopy equivalent).
This is called algebraic topology. A basic algebraic invariant is the fundamental
group of a topological space (discussed below), which measures how many ways
there are to wind loops inside a topological space.
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Beware that the popular imagery of “rubber-sheet geometry” only captures part
of the full scope of topology, in that it invokes spaces that locally still look like
metric spaces. But the concept of topological spaces is a good bit more general.
Notably finite topological spaces are either discrete or very much unlike metric
spaces (example 4.3 below), they play a role in categorical logic. Also in
geometry exotic topological spaces frequently arise when forming non-free
quotients. In order to gauge just how many of such “exotic” examples of
topological spaces beyond locally metric spaces one wishes to admit in the theory,
extra “separation axioms” are imposed on topological spaces (see below), and the
flavour of topology as a field depends on this choice.

Among the separation axioms, the Hausdorff space axiom is most popular (see
below) the weaker axiom of soberity (see below) stands out, on the one hand
because this is the weakest axiom that is still naturally satisfied in applications to
algebraic geometry (schemes are sober) and computer science (Vickers 89) and
on the other hand because it fully realizes the strong roots that topology has in
formal logic: sober topological spaces are entirely characterized by the union-,
intersection- and inclusion-relations (logical conjunction, disjunction and
implication) among their open subsets (propositions). This leads to a natural and
fruitful generalization of topology to more general “purely logic-determined
spaces”, called locales and in yet more generality toposes and higher toposes.
While the latter are beyond the scope of this introduction, their rich theory and
relation to the foundations of mathematics and geometry provides an outlook on
the relevance of the basic ideas of topology.

In this first part we discuss the foundations of the concept of “sets equipped with
topology” (topological spaces) and of continuous functions between them.

1. Metric spaces

The concept of continuity was first made precise in analysis, in terms of epsilontic
analysis on metric spaces, recalled as def. 1.8 below. Then it was realized that
this has a more elegant formulation in terms of the more general concept of open
sets, this is prop. 1.13 below. Adopting the latter as the definition leads to a more
abstract concept of “continuous space”, this is the concept of topological spaces,
def. 2.3 below.

Here we briefly recall the relevant basic concepts from analysis, as a motivation
for various definitions in topology. The reader who either already recalls these
concepts in analysis or is content with ignoring the motivation coming from
analysis should skip right away to the section Topological spaces.

Definition 1.1. (metric space)

A metric space is

a set  (the “underlying set”);1. 
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a function : × → [0, ∞) (the “distance function”) from the Cartesian
product of the set with itself to the non-negative real numbers

2. 

such that for all , , ∈ :

(symmetry) ( , ) = ( , )1. 

(triangle inequality) ( , ) ≤ ( , ) + ( , ).2. 

(non-degeneracy) ( , ) = 0 ⇔ =3. 

Definition 1.2. Let ( , ), be a metric space. Then for every element ∈  and
every ∈ ℝ+ a positive real number, we write

∘ ( ) ≔ { ∈ | ( , ) < }

for the open ball of radius  around . Similarly we write

( ) ≔ { ∈ | ( , ) ≤ }

for the closed ball of radius  around . Finally we write

( ) ≔ { ∈ | ( , ) = }

for the sphere of radius  around .

For = 1 we also speak of the unit open/closed ball and the unit sphere.

Definition 1.3. For ( , ) a metric space (def. 1.1) then a subset ⊂  is called a
bounded subset if  is contained in some open ball (def. 1.2)

⊂ ∘ ( )

around some ∈  of some radius ∈ ℝ.

A key source of metric spaces are normed vector spaces:

Dedfinition 1.4. (normed vector space)

A normed vector space is

a real vector space ;1. 

a function (the norm)

‖ −‖ : ⟶ ℝ ≥

from the underlying set of  to the non-negative real numbers,

2. 

such that for all ∈ ℝ with absolute value | | and all , ∈  it holds true that

(linearity) ‖ ‖ = | |‖ ‖;1. 
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(triangle inequality) ‖ + ‖ ≤ ‖ ‖ + ‖ ‖;2. 

(non-degeneracy) if ‖ ‖ = 0 then = 0.3. 

Proposition 1.5. Every normed vector space ( , ‖ −‖) becomes a metric space
according to def. 1.1 by setting

( , ) ≔ ‖ − ‖ .

Examples of normed vector spaces (def. 1.4) and hence, via prop. 1.5, of metric
spaces include the following:

Example 1.6. For ∈ ℕ, the Cartesian space

ℝ = {⇀ = ( ) = | ∈ ℝ}

carries a norm (the Euclidean norm ) given by the square root of the sum of the
squares of the components:

‖⇀‖ ≔
=

( ) .

Via prop. 1.5 this gives ℝ  the structure of a metric space, and as such it is
called the Euclidean space of dimension .

Example 1.7. More generally, for ∈ ℕ, and ∈ ℝ,
≥ 1, then the Cartesian space ℝ  carries the p-norm

‖⇀‖ ≔ | |

One also sets

‖⇀‖ ≔ max
∈

| |

and calls this the supremum norm.

The graphics on the right (grabbed from Wikipedia) shows unit circles (def. 1.2)
in ℝ  with respect to various p-norms.

By the Minkowski inequality, the p-norm generalizes to non-finite dimensional
vector spaces such as sequence spaces and Lebesgue spaces.

Continuity

The following is now the fairly obvious definition of continuity for functions
between metric spaces.
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Definition 1.8. (epsilontic definition of continuity)

For ( , ) and ( , ) two metric spaces (def.
1.1), then a function

: ⟶

is said to be continuous at a point ∈  if for
every positive real number  there exists a
positive real number  such that for all ′ ∈
that are a distance smaller than  from  then
their image ( ′ ) is a distance smaller than 
from ( ):

( continuous at ) ≔ ∀
∈ ℝ

∃
∈ ℝ

(( ( , ′ ) < ) ⇒ ( ( ( ), ( ′) ) < )) .

The function  is said to be continuous if it is continuous at every point ∈ .

Example 1.9. (polynomials are continuous functions)

Consider the real line ℝ regarded as the 1-dimensional Euclidean space ℝ from
example 1.6.

For ∈ ℝ[ ] a polynomial, then the function

: ℝ ⟶ ℝ

↦ ( )

is a continuous function in the sense of def. 1.8.

On the other hand, a step function is continuous everywhere except at the finite
number of points at which it changes its value, see example 1.14 below.

We now reformulate the analytic concept of continuity from def. 1.8 in terms of
the simple but important concept of open sets:

Definition 1.10. (neighbourhood and open set)

Let ( , ) be a metric space (def. 1.1). Say that:

A neighbourhood of a point ∈  is a subset ⊂  which contains some
open ball ∘ ( ) ⊂  around  (def. 1.2).

1. 

An open subset of  is a subset ⊂  such that for every ∈  it also
contains an open ball ∘ ( ) around  (def. 1.2).

2. 

An open neighbourhood of a point ∈  is a neighbourhood  of  which is
also an open subset, hence equivalently this is any open subset of  that
contains .

3. 
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The following picture shows a point , some open balls  containing it, and two of
its neighbourhoods :

graphics grabbed from Munkres 75

Example 1.11. (the empty subset is open)

Notice that for ( , ) a metric space, then the empty subset ∅ ⊂  is always an
open subset of ( , ) according to def. 1.10. This is because the clause for open
subsets ⊂  says that “for every point ∈  there exists…”, but since there is
no  in = ∅, this clause is always satisfied in this case.

Conversely, the entire set  is always an open subset of ( , ).

Example 1.12. (open/closed intervals)

Regard the real numbers ℝ as the 1-dimensional Euclidean space (example
1.6).

For < ∈ ℝ consider the following subsets:

( , ) ≔ { ∈ ℝ | < < }  (open interval)1. 

( , ] ≔ { ∈ ℝ | < ≤ }  (half-open interval)2. 

[ , ) ≔ { ∈ ℝ | ≤ < }  (half-open interval)3. 

[ , ] ≔ { ∈ ℝ | ≤ ≤ }  (closed interval)4. 

The first of these is an open subset according to def. 1.10, the other three are
not. The first one is called an open interval, the last one a closed interval and
the middle two are called half-open intervals.

Similarly for , ∈ ℝ one considers

( −∞, ) ≔ { ∈ ℝ | < }  (unbounded open interval)1. 
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( , ∞) ≔ { ∈ ℝ | < }  (unbounded open interval)2. 

( −∞, ] ≔ { ∈ ℝ | ≤ }  (unbounded half-open interval)3. 

[ , ∞) ≔ { ∈ ℝ | ≤ }  (unbounded half-open interval)4. 

The first two of these are open subsets, the last two are not.

For completeness we may also consider

( −∞, ∞) = ℝ

( , ) = ∅

which are both open, according to def. 2.3.

We may now rephrase the analytic definition of continuity entirely in terms of
open subsets (def. 1.10):

Proposition 1.13. (rephrasing continuity in terms of open sets)

Let ( , ) and ( , ) be two metric space (def. 1.1). Then a function : →  is
continuous in the epsilontic sense of def. 1.8 precisely if it has the property that
its pre-images of open subsets of  (in the sense of def. 1.10) are open subsets
of :

( continuous) ⇔ ( ⊂ open) ⇒ − ( ) ⊂ open .

principle of continuity

Continuous pre-Images of open subsets are open.

Proof. Observe, by direct unwinding the definitions, that the epsilontic definition
of continuity (def. 1.8) says equivalently in terms of open balls (def. 1.2) that  is
continous at  precisely if for every open ball ( )

∘ ( ) around an image point, there

exists an open ball ∘ ( ) around the corresponding pre-image point which maps
into it:

( continuous at ) ⇔ ∀ ∃ ( ∘ ( ) ) ⊂ ( )
∘ ( )

⇔ ∀ ∃ ∘ ( ) ⊂ −
( )

∘ ( )
.

With this observation the proof immediate. For the record, we spell it out:

First assume that  is continuous in the epsilontic sense. Then for ⊂  any open
subset and ∈ − ( ) any point in the pre-image, we need to show that there
exists an open neighbourhood of  in − ( ).
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That  is open in  means by definition that there exists an open ball ( )
∘ ( ) in

 around ( ) for some radius . By the assumption that  is continuous and
using the above observation, this implies that there exists an open ball ∘ ( ) in 
such that ( ∘ ( )) ⊂ ( )

∘ ( ) ⊂ , hence such that ∘ ( ) ⊂ −
( )

∘ ( ) ⊂ − ( ).

Hence this is an open ball of the required kind.

Conversely, assume that the pre-image function −  takes open subsets to open
subsets. Then for every ∈  and ( )

∘ ( ) ⊂  an open ball around its image, we

need to produce an open ball ∘ ( ) ⊂  around  such that ( ∘ ( )) ⊂ ( )
∘ ( ).

But by definition of open subsets, ( )
∘ ( ) ⊂  is open, and therefore by

assumption on  its pre-image − ( ( )
∘ ( )) ⊂  is also an open subset of . Again

by definition of open subsets, this implies that it contains an open ball as
required.  ▮

Example 1.14. (step function)

Consider ℝ as the 1-dimensional
Euclidean space (example 1.6) and
consider the step function

ℝ ⟶ ℝ

↦
0 | ≤ 0

1 | > 0

.

graphics grabbed from Vickers 89

Consider then for < ∈ ℝ the open interval ( , ) ⊂ ℝ, an open subset according
to example 1.12. The preimage − ( , ) of this open subset is

− : ( , ) ↦

⎧

⎨

⎩

⎪
⎪

⎪
⎪

∅ | ≥ 1 or ≤ 0

ℝ | < 0 and > 1

∅ | ≥ 0 and ≤ 1

(0, ∞) | 0 ≤ < 1 and > 1

( −∞, 0] | < 0 and ≤ 1

.

By example 1.12, all except the last of these pre-images listed are open
subsets.

The failure of the last of the pre-images to be open witnesses that the step
function is not continuous at = 0.

Compactness
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A key application of metric spaces in analysis is that they allow a formalization of
what it means for an infinite sequence of elements in the metric space (def. 1.15
below) to converge to a limit of a sequence (def. 1.16 below). Of particular
interest are therefore those metric spaces for which each sequence has a
converging subsequence: the sequentially compact metric spaces (def. 1.19).

We now briefly recall these concepts from analysis. Then, in the above spirit, we
reformulate their epsilontic definition in terms of open subsets. This gives a useful
definition that generalizes to topological spaces, the compact topological spaces
discussed further below.

Definition 1.15. (sequence)

Given a set , then a sequence of elements in  is a function

(−) : ℕ ⟶

from the natural numbers to .

A sub-sequence of such a sequence is a sequence of the form

(−) : ℕ ↪ ℕ →⎯⎯⎯
( −)

for some injection .

Definition 1.16. (convergence to limit of a sequence)

Let ( , ) be a metric space (def. 1.1). Then a sequence

(−) : ℕ ⟶

in the underlying set  (def. 1.15) is said to converge to a point ∈ , denoted

→⎯⎯⎯
→

if for every positive real number , there exists a natural number , such that all
elements in the sequence after the th one have distance less than  from .

→⎯⎯⎯
→

⇔ ∀
∈ ℝ

∃
∈ ℕ

∀
∈ ℕ

( , ) ≤ .

Here the point  is called the limit of the sequence. Often one writes lim
→

 for

this point.

Definition 1.17. (Cauchy sequence)

Given a metric space ( , ) (def. 1.1), then a sequence of points in  (def. 1.15)

(−) : ℕ ⟶
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is called a Cauchy sequence if for every positive real number  there exists a
natural number ∈ ℕ such that the distance between any two elements of the
sequence beyond the th one is less than 

( −) Cauchy ⇔ ∀
∈ ℝ

∃
∈ ℕ

∀
, ∈ ℕ

,

( , ) ≤ .

Definition 1.18. (complete metric space)

A metric space ( , ) (def. 1.1), for which every Cauchy sequence (def. 1.17)
converges (def. 1.16) is called a complete metric space.

A normed vector space, regarded as a metric space via prop. 1.5 that is
complete in this sense is called a Banach space.

Finally recall the concept of compactness of metric spaces via epsilontic analysis:

Definition 1.19. (sequentially compact metric space)

A metric space ( , ) (def. 1.1) is called sequentially compact if every sequence
in  has a subsequence (def. 1.15) which converges (def. 1.16).

The key fact to translate this epsilontic definition of compactness to a concept
that makes sense for general topological spaces (below) is the following:

Proposition 1.20. (sequentially compact metric spaces are equivalently
compact metric spaces)

For a metric space ( , ) (def. 1.1) the following are equivalent:

 is sequentially compact;1. 

for every set { ⊂ } ∈  of open subsets  of  (def. 1.10) which cover  in

that = ∪
∈

, then there exists a finite subset ⊂  of these open subsets

which still covers  in that also = ∪
∈ ⊂

.

2. 

The proof of prop. 1.20 is most conveniently formulated with some of the
terminology of topology in hand, which we introduce now. Therefore we postpone
the proof to below.

In summary prop. 1.13 and prop. 1.20 show that the purely combinatorial and in
particular non-epsilontic concept of open subsets captures a substantial part of
the nature of metric spaces in analysis. This motivates to reverse the logic and
consider more general “spaces” which are only characterized by what counts as
their open subsets. These are the topological spaces which we turn to now in def.
2.3 (or, more generally, these are the “locales”, which we briefly consider below in
remark 5.6).
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2. Topological spaces

Due to prop. 1.13 we should pay attention to open subsets in metric spaces. It
turns out that the following closure property, which follow directly from the
definitions, is at the heart of the concept:

Proposition 2.1. (closure properties of open sets in a metric space)

The collection of open subsets of a metric space ( , ) as in def. 1.10 has the
following properties:

The union of any set of open subsets is again an open subset.1. 

The intersection of any finite number of open subsets is again an open
subset.

2. 

Remark 2.2. (empty union and empty intersection)

Notice the degenerate case of unions ∪
∈

 and intersections ∩
∈

 of subsets

⊂  for the case that they are indexed by the empty set = ∅:

the empty union is the empty set itself;1. 

the empty intersection is all of .2. 

(The second of these may seem less obvious than the first. We discuss the
general logic behind these kinds of phenomena below.)

This way prop. 2.1 is indeed compatible with the degenerate cases of examples
of open subsets in example 1.11.

Proposition 2.1 motivates the following generalized definition, which abstracts
away from the concept of metric space just its system of open subsets:

Definition 2.3. (topological spaces)

Given a set , then a topology on  is a collection  of subsets of  called the
open subsets, hence a subset of the power set ( )

⊂ ( )

such that this is closed under forming

finite intersections;1. 

arbitrary unions.2. 

In particular (by remark 2.2):

the empty set ∅ ⊂  is in  (being the union of no subsets)

Introduction to Topology -- 1 in nLab https://ncatlab.org/nlab/print/Introduction+to+Topology+--+1

12 of 74 20.04.2017 09:38



and

the whole set ⊂  itself is in  (being the intersection of no subsets).

A set  equipped with such a topology is called a topological space.

Remark 2.4. In the field of topology it is common to eventually simply say
“space” as shorthand for “topological space”. This is especially so as further
qualifiers are added, such as “Hausdorff space” (def. 4.1 below). But beware
that there are other kinds of spaces in mathematics.

Remark 2.5. The simple definition of open subsets in def. 2.3 and the simple
implementation of the principle of continuity below in def. 3.1 gives the field of
topology its fundamental and universal flavor. The combinatorial nature of these
definitions makes topology be closely related to formal logic. This becomes
more manifest still for the “sober topological space” discussed below. For more
on this perspective see the remark on locales below, remark 5.6. An
introductory textbook amplifying this perspective is (Vickers 89).

Before we look at first examples below, here is some common further
terminology regarding topological spaces:

There is an evident partial ordering on the set of topologies that a given set may
carry:

Definition 2.6. (finer/coarser topologies)

Let  be a set, and let , ∈ ( ) be two topologies on , hence two choices of
open subsets for , making it a topological space. If

⊂

hence if every open subset of  with respect to  is also regarded as open by
, then one says that

the topology  is finer than the topology 

the topology  is coarser than the topology .

With any kind of structure on sets, it is of interest how to “generate” such
structures from a small amount of data:

Definition 2.7. (basis for the topology)

Let ( , ) be a topological space, def. 2.3, and let

⊂

be a subset of its set of open subsets. We say that

 is a basis for the topology  if every open subset ∈  is a union of1. 
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elements of ;

 is a sub-basis for the topology if every open subset ∈  is a union of
finite intersections of elements of .

2. 

Often it is convenient to define topologies by defining some (sub-)basis as in def.
2.7. Examples are the the metric topology below def. 2.9, the binary product
topology in def. 2.18 below, and the compact-open topology on mapping spaces
below in def. 6.14. To make use of this, we need to recognize sets of open
subsets that serve as the basis for some topology:

Lemma 2.8. (recognition of topological bases)

Let  be a set.

A collection ⊂ ( ) of subsets of  is a basis for some topology ⊂ ( )
(def. 2.7) precisely if

every point of  is contained in at least one element of ;1. 

for every two subsets , ∈  and for every point ∈ ∩  in their
intersection, then there exists a ∈  that contains  and is contained
in the intersection: ∈ ⊂ ∩ .

2. 

1. 

A subset ⊂  of opens is a sub-basis for a topology  on  precisely if  is
the coarsest topology (def. 2.6) which contains .

2. 

Examples

We discuss here some basic examples of topological spaces (def. 2.3), to get a
feeling for the scope of the concept. But topological spaces are ubiquituous in
mathematics, so that there are many more examples and many more classes of
examples than could be listed. As we further develop the theory below, we
encounter more examples, and more classes of examples. Below in Universal
constructions we discuss a very general construction principle of new topological
space from given ones.

First of all, our motivating example from above now reads as follows:

Example 2.9. (metric topology)

Let ( , ) be a metric space (def. 1.1). Then the collection of its open subsets in
def. 1.10 constitutes a topology on the set , making it a topological space in
the sense of def. 2.3. This is called the metric topology.

The open balls in a metric space constitute a basis of a topology (def. 2.7) for
the metric topology.

While the example of metric space topologies (example 2.9) is the motivating

Introduction to Topology -- 1 in nLab https://ncatlab.org/nlab/print/Introduction+to+Topology+--+1

14 of 74 20.04.2017 09:38



example for the concept of topological spaces, it is important to notice that the
concept of topological spaces is considerably more general, as some of the
following examples show.

The following simplistic example of a (metric) topological space is important for
the theory (for instance in prop. 2.34):

Example 2.10. (the point)

On a singleton set {1} there exists a unique topology  making it a topological
space according to def. 2.3, namely

≔ {∅, {1}} .

We write

* ≔ ({1}, ≔ {∅, {1}})

for this topological space and call it the point.

This is equivalently the metric topology (example 2.9) on ℝ , regarded as the
0-dimensional Euclidean space (example 1.6).

Example 2.11. On the 2-element set {0, 1} there are (up to permutation of
elements) three distinct topologies:

the codiscrete topology (def. 2.13) = {∅, {0, 1}};1. 

the discrete topology (def. 2.13), = {∅, {0}, {1}, {0, 1}};2. 

the Sierpinski space topology = {∅, {1}, {0, 1}}.3. 

Example 2.12. The following shows all the topologies on the 3-element set (up
to permutation of elements)

graphics grabbed from Munkres 75

Example 2.13. (discrete and co-discrete topology)
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Let  be any set. Then there are always the following two extreme possibilities
of equipping  with a topology ⊂ ( ) in the sense of def. 2.3, and hence
making it a topological space:

≔ ( ) the set of all open subsets;

this is called the discrete topology on , it is the finest topology (def. 2.6)
on ,

we write Disc( ) for the resulting topological space;

1. 

≔ {∅, } the set contaning only the empty subset of  and all of  itself;

this is called the codiscrete topology on , it is the coarsest topology (def.
2.6) on ,

we write CoDisc( ) for the resulting topological space.

2. 

The reason for this terminology is best seen when considering continuous
functions into or out of these (co-)discrete topological spaces, we come to this
in example 3.8 below.

Example 2.14. (cofinite topology)

Given a set , then the cofinite topology or finite complement topology on  is
the topology (def. 2.3) whose open subsets are precisely

all cofinite subsets ⊂  (i.e. those such that the complement \  is a
finite set);

1. 

the empty set.2. 

If  is itself a finite set (but not otherwise) then the cofinite topology on 
coincides with the discrete topology on  (example 2.13).

We now consider basic construction principles of new topological spaces from
given ones:

disjoint union spaces (example 2.15)1. 

subspaces (example 2.16),2. 

quotient spaces (example 2.17)3. 

product spaces (example 2.18).4. 

Below in Universal constructions we will recognize these as simple special cases of
a general construction principle.

Example 2.15. (disjoint union)
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For {( , )} ∈  a set of topological spaces, then their disjoint union

⊔
∈

( , )

is the topological space whose underlying set is the disjoint union of the
underlying sets of the summand spaces, and whose open subsets are precisely
the disjoint unions of the open subsets of the summand spaces.

In particular, for  any index set, then the disjoint union of  copies of the point
(example 2.10) is equivalently the discrete topological space (example 2.13) on
that index set:

⊔
∈ * = Disc( ) .

Example 2.16. (subspace topology)

Let ( , ) be a topological space, and let ⊂  be a
subset of the underlying set. Then the corresponding
topological subspace has  as its underlying set, and
its open subsets are those subsets of  which arise as
restrictions of open subsets of .

( ⊂ open) ⇔ ∃
∈

( = ∩ ) .

(This is also called the initial topology of the inclusion
map. We come back to this below in def. 7.1.)

The picture on the right shows two open subsets inside the square, regarded as
a topological subspace of the plane ℝ :

graphics grabbed from Munkres 75

Example 2.17. (quotient topological space)

Let ( , ) be a topological space (def. 2.3) and let

∼ ⊂ ×

be an equivalence relation on its underlying set. Then the quotient topological
space has

as underlying set the quotient set / ∼ , hence the set of equivalence
classes,

and

a subset ⊂ / ∼  is declared to be an open subset precisely if its
preimage − ( ) under the canonical projection map

: → / ∼
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is open in .

(This is also called the final topology of the projection . We come back to this
below in def. 7.1. )

Often one considers this with input datum not the equivalence relation, but any
surjection

: ⟶

of sets. Of course this identifies = / ∼  with ( ∼ ) ⇔ ( ( ) = ( )). Hence
the quotient topology on the codomain set of a function out of any topological
space has as open subsets those whose pre-images are open.

To see that this indeed does define a topology on / ∼  it is sufficient to observe
that taking pre-images commutes with taking unions and with taking
intersections.

Example 2.18. (binary product topological space)

For ( , ) and ( , ) two topological

spaces, then their binary product
topological space has as underlying set
the Cartesian product ×  of the
corresponding two underlying sets, and
its topology is generated from the basis
(def. 2.7) given by the Cartesian products

×  of the opens ∈ .

graphics grabbed from Munkres 75

Beware that for non-finite products, the descriptions of the product topology is
not as simple. This we turn to below in example 7.7, after inroducing the
general concept of limits in the category of topological spaces.

The following example illustrates how all these ingredients and construction
principles may be combined. We will examine this example in more detail below in
example 3.28, after we have introduced the concept of homeomorphisms below.

Example 2.19. Consider the real numbers ℝ as the 1-dimensional Euclidean
space (example 1.6) and hence as a topological space via the corresponding
metric topology (example 2.9). Moreover, consider the closed interval [0, 1] ⊂ ℝ

from example 1.12, regarded as a subspace (def. 2.16) of ℝ.

The product space (example 2.18) of this interval with itself

[0, 1] × [0, 1]

is a topological space modelling the closed square. The quotient space (example
2.17) of that by the relation which identifies a pair of opposite sides is a model
for the cylinder. The further quotient by the relation that identifies the

Introduction to Topology -- 1 in nLab https://ncatlab.org/nlab/print/Introduction+to+Topology+--+1

18 of 74 20.04.2017 09:38



remaining pair of sides yields a model for the torus.

graphics grabbed from Munkres 75

Closed subsets

The complements of open subsets in a topological space are called closed subsets
(def. 2.20 below). This simple definition indeed captures the concept of closure in
the analytic sense of convergence of sequences (prop. 2.27 below). Of particular
interest for the theory of topological spaces in the discussion of separation axioms
below are those closed subsets which are “irreducible” (def. 2.28 below). These
happen to be equivalently the “frame homomorphisms” (def. 2.31) to the frame of
opens of the point (prop. 2.34 below).

Definition 2.20. (closed subsets)

Let ( , ) be a topological space (def. 2.3).
Then a subset  of  is called a closed
subset if its complement \  is an open
subset:

( ⊂ is closed) ⇔ ( \ ⊂ is open) .

graphics grabbed from Vickers 89

If a singleton subset { } ⊂  is closed, one says that  is a closed point of .

Given any subset ⊂ , then is topological closure Cl( ) is the smallest closed
subset containing :

Cl( ) ≔ ∩
⊂ closed

⊂

( ) .

Example 2.21. Regard the real numbers as the 1-dimensional Euclidean space
and equipped with the corresponding metric topology. Let < ∈ ℝ. Then the
topological closure (def. 2.20) of the open interval ( , ) ⊂ maathbb  (example
1.12) is the closed interval [ , ] ⊂ ℝ:

Cl( ( , ) ) = [ , ] .

Remark 2.22. (de Morgan's law)
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In reasoning about closed subsets in topology we are concerned with
complements of unions and intersections as well as with unions/intersections of
complements. Recall therefore that taking complements of subsets exchanges
unions with intersections (de Morgan's law):

Given a set  and a set of subsets

{ ⊂ } ∈

then

\ ∪
∈

= ∩
∈

( \ )

and

\ ∩
∈

= ∪
∈

( \ ) .

Also notice that taking complements reverses inclusion relations:

( ⊂ ) ⇔ ( \ ⊂ \ ) .

Often it is useful to reformulate def. 2.20 of closed subsets as follows:

Lemma 2.23. Let ( , ) be a topological space and let ⊂  be a subset of its
underlying set. Then a point ∈  is contained in the topological closure Cl( )

(def. 2.20) precisely if every open neighbourhood ⊂  of intersects :

( ∈ Cl( )) ⇔ ¬ ∃
⊂ Unknown character ,open

⊂ \

( ∈ ) .

Proof. In view of remark 2.22 we may rephrase the definition of the topological
closure as follows:

Cl( ) ≔ ∩
⊂

⊂ closed

( )

= ∩
⊂ \

⊂ open

( \ )

= \ ∪
⊂ \

⊂ open

.

  ▮

Definition 2.24. (topological interior)

Let ( , ) be a topological space (def. 2.3) and let ⊂  be a subset. Then the
topological interior of  is the largest open subset Int( ) ∈  still contained in ,
Int( ) ⊂ ⊂ :
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Int( ) ≔ ∪
⊂

⊂ open

( ) .

Example 2.25. Regard the real numbers as the 1-dimensional Euclidean space
and equipped with the corresponding metric topology. Let < ∈ ℝ. Then the
topological interior (def. 2.24) of the closed interval [ , ] ⊂ maathbb  (example
1.12) is the open interval ( , ) ⊂ ℝ:

Int( [ , ] ) = ( , ) .

Lemma 2.26. (duality between closure and interior)

Let ( , ) be a topological space and let ⊂  be a subset. Then the topological
interior of  (def. 2.24) is the same as the complement of the topological
closure Cl( \ ) of the complement of :

\Int( ) = Cl( \ )

and conversely

\Cl( ) = Int( \ ) .

Proof. Using remark 2.22, we compute as follows:

\Int( ) = \ ∪
⊂

⊂

= ∩
⊂

⊂ open

( \ )

= ∩
⊃ \

( )

= Cl( \ )

  ▮

The terminology “closed” subspace for complements of opens is justified by the
following statement, which is a further example of how the combinatorial concept
of open subsets captures key phenomena in analysis:

Proposition 2.27. (convergence in closed subspaces)

Let ( , ) be a metric space (def. 1.1), regarded as a topological space via
example 2.9, and let ⊂  be a subset. Then the following are equivalent:

⊂  is a closed subspace according to def. 2.20.1. 

For every sequence ∈ ⊂  (def. 1.15) with elements in , which
converges as a sequence in  (def. 1.16) to some ∈ , then ∈ ⊂ .

2. 

Proof. First assume that ⊂  is closed and that →⎯⎯⎯
→

 for some ∈ . We
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need to show that then ∈ . Suppose it were not, hence that ∈ \ . Since,
by assumption on , this complement \ ⊂  is an open subset, it would follow
that there exists a real number > 0 such that the open ball around  of radius 
were still contained in the complement: ∘ ( ) ⊂ \ . But since the sequence is
assumed to converge in , this would mean that there exists  such that all 

are in ∘ ( ), hence in \ . This contradicts the assumption that all  are in , and
hence we have proved by contradiction that ∈ .

Conversely, assume that for all sequences in  that converge to some ∈  then
∈ ⊂ . We need to show that then  is closed, hence that \ ⊂  is an open

subset, hence that for every ∈ \  we may find a real number > 0 such that
the open ball ∘ ( ) around  of radius  is still contained in \ . Suppose on the
contrary that such  did not exist. This would mean that for each ∈ ℕ with ≥ 1
then the intersection ∘ (1/ ) ∩  were non-empty. Hence then we could choose
points ∈ ∘ (1/ ) ∩  in these intersections. These would form a sequence which
clearly converges to the original , and so by assumption we would conclude that

∈ , which violates the assumption that ∈ \ . Hence we proved by
contradiction \  is in fact open.  ▮

A special role in the theory is played by the “irreducible” closed subspaces:

Definition 2.28. (irreducible closed subspace)

A closed subset ⊂  (def. 2.20) of a topological space  is called irreducible if
it is non-empty and not the union of two closed proper (i.e. smaller) subsets. In
other words, a non-empty closed subset ⊂  is irreducible if whenever

, ⊂  are two closed subspace such that

= ∪

then =  or = .

Example 2.29. (closures of points are irreducible)

For ∈  a point inside a topological space, then the closure Cl({ }) of the
singleton subset { } ⊂  is irreducible (def. 2.28).

Sometimes it is useful to re-express the condition of irreducibility of closed
subspaces in terms of complementary open subsets:

Proposition 2.30. (irreducible closed subsets in terms of prime open
subsets)

Let ( , ) be a topological space, and let ∈  be a proper open subset, so that
the complement ≔ \  is an non-empty closed subspace. Then  is irreducible
in the sense of def. 2.28 precisely if whenever , ∈  are open subsets with

∩ ⊂  then ⊂  or ⊂ :
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( \ irreducible) ⇔ ∀
, ∈

(( ∩ ⊂ ) ⇒ ( ⊂ or ⊂ ))

Proof. Every closed subset ⊂  may be exhibited as the complement

= \

for some open subset ∈ . Observe that under this identification the condition
that ∩ ⊂  is equivalent to the condition that ∪ = , because it is
equivalent to the equation labeled ( ⋆ ) in the following sequence of equations:

∪ = ( \ ) ∪ ( \ )

= ( \( ∪ )) ∪ ( \ ∪ )

= \(( ∪ ) ∩ ( ∪ ))

= \( ∪ ( ∩ ))

=
(⋆ )

\

= .

.

Similarly, the condition that ⊂  is equivalent to the condition that = ,
because it is quivalent to the equality ( ⋆ ) in the following sequence of equalities:

= \

= \( ∪ )

=
(⋆ )

\

=

.

Under these identifications, the two conditions are manifestly the same.  ▮

We will consider yet another equivalent characterization of irreducible closed
subsets. Stating this requires the following concept of “frame” homomorphism,
the natural kind of homomorphisms between topological spaces if we were to
forget the underlying set of points of a topological space, and only remember the
set  with its operations inuced by taking finite intersections and arbitrary
unions:

Definition 2.31. (frame homomorphisms)

Let ( , ) and ( , ) be topological spaces (def. 2.3). Then a function

⟵ :

between their sets of open subsets is called a frame homomorphism if it
preserves

arbitrary unions;1. 

finite intersections.2. 
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In other words,  is a frame homomorphism precisely if

for every set  and every -indexed set { ∈ } ∈  of elements of , then

∪
∈

= ∪
∈

( ) ∈ ,

1. 

for every finite set  and every -indexed set { ∈ } ∈  of elements in ,

then

∩
∈

= ∩
∈

( ) ∈ .

2. 

Remark 2.32. (frame homomorphisms preserve inclusions)

A frame homomorphism  as in def. 2.31 necessarily also preserves inclusions
in that

for every inclusion ⊂  with , ∈ ⊂ ( ) then

( ) ⊂ ( ) ∈ .

This is because inclusions are witnessed by unions

( ⊂ ) ⇔ ( ∪ = )

or alternatively because inclusions are witnessed by finite intersections:

( ⊂ ) ⇔ ( ∩ = ) .

Example 2.33. (pre-images of continuous functions are frame
homomorphisms)

For

: ( , ) ⟶ ( , )

a continuous function, then its function of pre-images

⟵ : −

is a frame homomorphism according to def. 2.31.

For the following recall from example 2.10 the point topological space

* = ({1}, * = {∅, {1}}).

Proposition 2.34. (irreducible closed subsets are equivalently frame
homomorphisms to frame of opens of the point)

For ( , ) a topological space, then there is a bijection between the irreducible
closed subspaces of ( , ) (def. 2.28) and the frame homomorphisms from  to

*, and this bijection is given by
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Hom ( , *) ⟶≃ IrrClSub( )

↦ \ ∅( )

where ∅( ) is the union of all elements ∈  such that ( ) = ∅:

∅( ) ≔ ∪
∈

( ) = ∅

( ) .

See also (Johnstone 82, II 1.3).

Proof. First we need to show that the function is well defined in that given a
frame homomorphism : → * then \ ∅( ) is indeed an irreducible closed
subspace.

To that end observe that:

( * ) If there are two elements , ∈  with ∩ ⊂ ∅( ) then ⊂ ∅( ) or
⊂ ∅( ).

This is because

( ∩ ) = ( ) ∩ ( )

⊂ ( ∅)

= ∅

,

where the first equality holds because  preserves finite intersections by def.
2.31, the inclusion holds because  respects inclusions by remark 2.32, and the
second equality holds because  preserves arbitrary unions by def. 2.31. But in

* = {∅, {1}} the intersection of two open subsets is empty precisely if at least one
of them is empty, hence ( ) = ∅ or ( ) = ∅. But this means that ⊂ ∅( ) or

⊂ ∅( ), as claimed.

Now according to prop. 2.30 the condition ( * ) identifies the complement \ ∅( )
as an irreducible closed subspace of ( , ).

Conversely, given an irreducible closed subset \ , define  by

: ↦
∅ | if ⊂

{1} | otherwise
.

This does preserve

arbitrary unions

because ( ∪ ) = {0} precisely if ∪ ⊂  which is the case precisely if all

⊂ , which means that all ( ) = ∅ and ∪ ∅ = ∅;

while ( ∪ ) = {1} as soon as one of the  is not contained in , which

1. 
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means that one of the ( ) = {1} which means that ∪ ( ) = {1};

finite intersections,

because if ∩ ∈ , then by ( * ) ∈  or ∈ , whence ( ) = ∅ or
( ) = ∅, whence with ( ∩ ) = ∅ also ( ) ∩ ( ) = ∅;

while if ∩  is not contained in  then neither  nor  is contained in
 and hence with ( ∩ ) = {1} also ( ) ∩ ( ) = {1} ∩ {1} = {1}.

2. 

Hence this is indeed a frame homomorphism → *.

Clearly these two operations are inverse to each other.  ▮

3. Continuous functions

With the concept of topological spaces (def. 2.3) it is now immediate to formally
implement in abstract generality the statement of prop. 1.13:

principle of continuity

Continuous pre-Images of open subsets are open.

Definition 3.1. (continuous function)

A continuous function between topological spaces (def. 2.3)

: ( , ) → ( , )

is a function between the underlying sets,

: ⟶

such that pre-images under  of open subsets of  are open subsets of .

We may equivalently state this in terms of closed subsets:

Proposition 3.2. Let ( , ) and ( , ) be two topological spaces (def. 2.3). Then
a function

: ⟶

between the underlying sets is continuous in the sense of def. 3.1 precisely if
pre-images under  of closed subsets of  (def. 2.20) are closed subsets of .

Proof. This follows since taking pre-images commutes with taking
complements.  ▮
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Remark 3.3. (the category of topological spaces)

For , ,  three topological spaces and for

⟶ and ⟶

two continuous functions (def. 3.1) then their composition

∘ : ⟶ ⟶

is clearly itself again a continuous function from  to . Moreover, this
composition operation is clearly associative, in that for

⟶ and ⟶ and ⟶

three continuous functions, then

∘ ( ∘ ) = ( ∘ ) ∘ : ⟶ .

Finally, the composition operation is also clearly unital, in that for each
topological space  there exists the identity function id : →  and for : →
any continuous function then

id ∘ = = ∘ id .

One summarizes this situation by saying that:

topological spaces constitute the objects1. 

continuous functions constitute the morphisms (homomorphisms)2. 

of a category, called the
category of topological
spaces (“Top” for short).

It is useful to depict
collections of objects with
morphisms between them by
diagrams, like this one:

graphics grabbed from Lawvere-Schanuel 09.

Example 3.4. (product topological space construction is functorial)

Let ( , ), ( , ), ( , ) and ( , ) be topological spaces. Then for all

pairs of continuous functions
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: ( , ) ⟶ ( , )

and

: ( , ) ⟶ ( , )

the canonically induced function on Cartesian products of sets

× →⎯⎯⎯⎯⎯
×

×

( , ) ↦ ( ( ), ( ))

is a continuous function with respect to the binary product space topologies
(def. 2.18)

× : ( × , × ) ⟶ ( , × , × ) .

Moreover, this construction respects identity functions and composition of
functions in both arguments.

In the language of category theory (remark 3.3), this is summarized by saying
that the product topological space construction ( −) × (−) extends to a functor
from the product category of the category Top with itself to itself:

(−) × ( −) : Top × Top ⟶ Top .

Examples

We discuss some basic examples of continuous functions (def. 3.1) between
topological spaces (def. 2.3).

Example 3.5. (point space is terminal)

For ( , ) any topological space, then there is a unique continuous function
(which we denote by the same symbol)

⟶ *

from  to the point (def. 2.10).

In the language of category theory (remark 3.3), example 3.5 says that the
point * is the terminal object in the category Top of topological spaces.

Example 3.6. (points as continuous functions)

For ( , ) a topological space then for ∈  any element of the underlying set,
there is a unique continuous function

: * ⟶
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from the point (def. 2.10), whose image in  is that element. Hence there is a
natural bijection

* → | continuous ≃

between the continuous functions from the point to any topological space, and
the underlying set of that topological space.

Definition 3.7. (locally constant function)

A continuous function : →  (def. 3.1) is called locally constant if every point
∈  has a neighbourhood on which the function is constant.

Example 3.8. Let  be a set and let ( , ) be a topological space. Recall from
example 2.13

the discrete topological space Disc( );1. 

the co-discrete topological space CoDisc( )2. 

on the underlying set . Then continuous functions (def. 3.1) into/out of these
satisfy:

every function (of sets) Disc( ) ⟶  out of a discrete space is continuous;1. 

every function (of sets) ⟶ CoDisc( ) into a codiscrete space is continuous.2. 

Also:

every continuous function ( , ) ⟶ Disc( ) into a discrete space is locally
constant (def. 3.7).

Example 3.9. (diagonal)

For  a set, its diagonal  is the function

⟶ ×

↦ ( , )
.

For ( , ) a topological space, then the diagonal is a continuous function to the
product topological space (def. 2.18) of  with itself.

: ( , ) ⟶ ( × , × ) .

To see this, it is sufficient to see that the preimages of basic opens ×  in

×  are in . But these pre-images are the intersections ∩ ⊂ , which are
open by the axioms on the topology .

Example 3.10. (image factorization)
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Let : ( , ) ⟶ ( , ) be a continuous function.

Write ( ) ⊂  for the image of  on underlying sets, and consider the resulting
factorization of  through ( ) on underlying sets:

: →⎯⎯⎯⎯⎯⎯
surjective

( ) →⎯⎯⎯⎯⎯
injective

.

There are the following two ways to topologize the image ( ) such as to make
this a sequence of two continuous functions:

By example 2.16 ( ) inherits a subspace topology from ( , ) which
makes the inclusion ( ) ⟶  a continuous function.

Observe that this also makes → ( ) a continuous function: An open
subset of ( ) in this case is of the form ∩ ( ) for ∈ , and

− ( ∩ ( )) = − ( ), which is open in  since  is continuous.

1. 

By example 2.17 ( ) inherits a quotient topology from ( , ) which makes
the surjection ⟶ ( ) a continuous function.

Observe that this also makes ( ) ⟶  a continuous function: The
preimage under this map of an open subset ∈  is the restriction

∩ ( ), and the pre-image of that under → ( ) is − ( ), as before,
which is open since  is continuous, and therefore ∩ ( ) is open in the
quotient topology.

2. 

Beware that in general a continuous function itself (as opposed to its pre-image
function) neither preserves open subsets, nor closed subsets, as the following
examples show:

Example 3.11. Regard the real numbers ℝ as the 1-dimensional Euclidean space
(def. 1.6) equipped with the metric topology (def. 2.9). For ∈ ℝ the constant
function

ℝ →⎯⎯⎯⎯ ℝ

↦

maps every open subset ⊂ ℝ to the singleton set { } ⊂ ℝ, which is not open.

Example 3.12. Write Disc(ℝ) for the set of real numbers equipped with its
discrete topology (def. 2.13) and ℝ for the set of real numbers equipped with its
Euclidean metric topology (def. 1.6, def. 2.9). Then the identity function on the
underlying sets

idℝ : Disc(ℝ) ⟶ ℝ

is a continuous function (see also example 3.8). A singleton subset { } ∈ Disc(ℝ)
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is open, but regarded as a subset { } ∈ ℝ it is not open.

Example 3.13. Consider the set of real numbers ℝ equipped with its Euclidean
metric topology (def. 1.6, def. 2.9). The exponential function

exp(−) : ℝ ⟶ ℝ

maps all of ℝ (which is a closed subset, since ℝ = ℝ\∅) to the open interval
(0, ∞) ⊂ ℝ, which is not closed.

Those continuous functions that do happen to preserve open or closed subsets get
a special name:

Definition 3.14. (open maps and closed maps)

A continuous function : ( , ) → ( , ) (def. 3.1) is called

an open map if the image under  of an open subset of  is an open subset
of ;

a closed map if the image under  of a closed subset of  (def. 2.20) is a
closed subset of .

Example 3.15. (projections are open)

For ( , ) and ( , ) two topological spaces, then the projection maps

: ( × , × ) ⟶ ( , )

out of their product topological space (def. 2.18) are open maps (def. 3.14).

Below in prop. 6.20 we find a large supply of closed maps.

Sometimes it is useful to recognize quotient topological space projections via
saturated subsets (essentially another term for pre-images of underlying sets):

Definition 3.16. (saturated subset)

Let : ⟶  be a function of sets. Then a subset ⊂  is called an -saturated
subset (or just saturated subset, if  is understood) if  is the pre-image of its
image:

( ⊂ -saturated) ⇔ = − ( ( )) .

Here − ( ( )) is also called the -saturation of .

Example 3.17. (pre-images are saturated subsets)

For : →  any function of sets, and ⊂  any subset of , then the
pre-image − ( ) ⊂  is an -saturated subset of  (def. 3.16).
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Observe that:

Lemma 3.18. Let : ⟶  be a function. Then a subset ⊂  is -saturated (def.
3.16) precisely if its complement \  is saturated.

Proposition 3.19. (recognition of quotient topologies)

A continuous function (def. 3.1)

: ( , ) ⟶ ( , )

whose underlying function : ⟶  is surjective exhibits  as the corresponding
quotient topology (def. 2.17) precisely if  sends open and -saturated subsets
in  (def. 3.16) to open subsets of . By lemma 3.18 this is the case precisely if
it sends closed and -saturated subsets to closed subsets.

We record the following technical lemma about saturated subspaces, which we
will need below to prove prop. 6.24.

Lemma 3.20. (saturated open neighbourhoods of saturated closed
subsets under closed maps)

Let

: ( , ) ⟶ ( , ) be a closed map (def. 3.14);1. 

⊂  be a closed subset of  (def. 2.20) which is -saturated (def. 3.16);2. 

⊃  an open subset containing ;3. 

then there exists a smaller open subset  still containing 

⊃ ⊃

and such that  is -saturated.

Proof. We claim that the complement of  by the -saturation (def. 3.16) of the
complement of  by 

≔ \ − ( ( \ ))

has the desired properties. To see this, observe first that

the complement \  is closed, since  is assumed to be open;1. 

hence the image ( \ ) is closed, since  is assumed to be a closed map;2. 

hence the pre-image − ( ( \ )) is closed, since  is continuous (using prop.
3.2), therefore its complement  is indeed open;

3. 

this pre-image − ( ( \ )) is saturated (example 3.17) and hence also its
complement  is saturated, by lemma 3.18.

4. 
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Therefore it now only remains to see that ⊃ ⊃ .

The inclusion ⊃  means equivalently that − ( ( \ )) ⊃ \ , which is clearly the
case.

The inclusion ⊃  meas that − ( ( \ )) ∩ = ∅. Since  is saturated by
assumption, this means that − ( ( \ )) ∩ − ( ( )) = ∅. This in turn holds
precisely if ( \ ) ∩ ( ) = ∅. Since  is saturated, this holds precisely if

\ ∩ = ∅, and this is true by the assumption that ⊃ .  ▮

Homeomorphisms

With the objects (topological spaces) and the morphisms (continuous functions)
of the category Top thus defined (remark 3.3), we obtain the concept of
“sameness” in topology. To make this precise, one says that a morphism

→

in a category is an isomorphism if there exists a morphism going the other way
around

⟵

which is an inverse in the sense that

∘ = id and ∘ = id .

Since such  is unique if it exsist, one often writes “ − ” for this inverse
morphism. However, in the context of topology then −  usually refers to the
pre-image function of a given function , and in these notes we will stick to this
usage.

Definition 3.21. (homeomorphisms)

An isomorphism in the category Top of topological spaces with continuous
functions between them is called a homeomorphism.

Hence a homeomorphism is a continuous function

: ( , ) ⟶ ( , )

such that there exists a continuous function the other way around

( , ) ⟵ ( , ) :

such that their composites are the identity functions on  and , respectively:

∘ = id and ∘ = id .
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Remark 3.22. If : ( , ) → ( , ) is a homeomorphism (def. 3.21) with inverse
coninuous function , then of course also  is a homeomophism, with inverse
continuous function .

The underlying function of sets : →  of a homeomorphism  is necessarily a
bijection.

But beware that not every continuous function which is bijective on underlying
sets is a homeomorphism. While an inverse  will exists on the level of functions
of sets, this inverse may fail to be continuous:

Counter Example 3.23. Consider the continuous function

[0, 2 ) ⟶ ⊂ ℝ

↦ (cos( ), sin( ))

from the half-open interval (def. 1.12) to the unit circle ≔ (1) ⊂ ℝ  (def.
1.2), regarded as a topological subspace (example 2.16) of the Euclidean plane
(def. 1.6).

The underlying function of sets of  is a bijection. The inverse function of sets
however fails to be continuous at (1, 0) ∈ ⊂ ℝ . Hence this  is not a
homeomorphism.

Indeed, below we see that the two topological spaces [0, 2 ) and  are
distinguished by topological invariants and hence not homeomorphic. For
example  is a compact topological space (def. 6.4) while [0, 2 ) is not, and 
has a non-trivial fundamental group, while that of [0, 2 ) is trivial (def.
\ref{FundamentalGroup}).

Below in example 6.25 we discuss a criterion under which continuous bijections
are homeomorphisms after all.

Now we consider some actual examples of homeomorphisms:

Example 3.24. Let ( , ) be a non-empty topological space, and let ∈  be any
point. Regard the corresponding singleton subset { } ⊂  as equipped with its
subspace topology { } (example 2.16). Then this is homeomorphic to the

abstract point space from example 2.10:
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({ }, { }) ≃ * .

Example 3.25. (open interval homeomorphic to the real line)

Regard the real line as the 1-dimensional Euclidean space (example 1.6).

The open interval (−1, 1) (def. 1.12) is homeomorphic to all of the real line

(0, 1) ≃ ℝ .

An inverse pair of continuous functions is for instance given by

: ℝ ⟶ ( −1, +1)

↦
+

and

− : ( −1, +1) ⟶ ℝ

↦
−

.

Generally, every open ball in ℝ  (def. 1.2) is homeomorphic to all of ℝ .

Similarly, for all < ∈ ℝ

the open intervals ( , ) ⊂ ℝ (example 1.12) equipped with their subspace
topology are all homeomorphic to each other,

1. 

the closed intervals [ , ] are all homeomorphic to each other,2. 

the half-open intervals of the form [ , ) are all homeomophic to each
other;

3. 

the half-open intervals of the form ( , ] are all homeomophic to each other.4. 

Example 3.26. Let ( , ), ( , ) and ( , ) be topological spaces.

Then:

There is a homeomorphism between the two ways of bracketing the three
factors when forming their product topological space (def. 2.18), called the
associator:

, , : (( , ) × ( , )) × ( , ) ⟶≃ ( , ) × (( , ) × ( , )) .

1. 

There are homeomorphism between ( , ) and its product topological space
(def. 2.18) with the point * (example 2.10), called the left and right
unitors:

: * × ( , ) ⟶≃ ( , )

2. 
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and

: ( , ) × * ⟶≃ ( , ) .

There is a homeomorphism between the results of the two orders in which
to form their product topological spaces (def. 2.18), called the braiding:

, : ( , ) × ( , ) ⟶≃ ( , ) × ( , ) .

3. 

Moreover, all these homeomorphisms are compatible with each other, in that
they make the following diagrams commute:

(triangle identity)

( × * ) × →⎯⎯⎯⎯
, *,

× ( * × )

× ↘ ↙ ×

×

1. 

(pentagon identity)

( × ) × ( × )

× , , ↗ ↘ , , ×

(( × ) × ) × ( × ( × ( × )))

, , × ↓ ↑ × , ,

( × ( × )) × →⎯⎯⎯⎯⎯⎯⎯⎯
, × ,

× (( × ) × )

2. 

(hexagon identities)

( × ) × →⎯⎯⎯⎯⎯
, ,

× ( × ) →⎯⎯⎯⎯⎯⎯
, ×

( × ) ×

↓ , × ↓ , ,

( × ) × →⎯⎯⎯⎯⎯
, ,

× ( × ) →⎯⎯⎯⎯⎯⎯⎯
× ,

× ( × )

and

× ( × ) →⎯⎯⎯⎯⎯
, ,

( × ) × →⎯⎯⎯⎯⎯⎯
× ,

× ( × )

↓ × , ↓ , ,

× ( × ) →⎯⎯⎯⎯⎯
, ,

( × ) × →⎯⎯⎯⎯⎯⎯
, ×

( × ) ×

,

3. 

(symmetry)

, ∘ , = id : ( × × ) → ( × × ) .

4. 

In the language of category theory (remark 3.3), this is summarized by saying
that the the functorial construction ( −) × ( −) of product topological spaces
(example 3.4) gives the category Top of topological spaces the structure of a
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monoidal category which is symmetrically braided.

From this, a basic result of category theory, the MacLane coherence theorem,
guarantees that there is no essential ambiguityin re-backeting arbitrary
iterations of the binary product topological space construction. Accordingly, we
may write

( , ) × ( , ) × ⋯ × ( , )

without putting parenthesis.

Example 3.27. (product of closed intervals homeomorphic to hypercubes)

Let ∈ ℕ, and let [ , ] ⊂ ℝ for ∈ {1, ⋯, } be closed intervals in the real line
(example 1.12), regarded as topological subspaces of the 1-dimensional
Euclidean space. Then the product topological space (def. 2.18, example 3.26)
of all these intervals is homeomorphic (def. 3.21) to the corresponding
topological subspace of the -dimensional Euclidean space (def. 1.6):

[ , ] × [ , ] × ⋯ × [ , ] ≃ ⇀ ∈ ℝ | ∀ ≤ ≤ ⊂ ℝ .

Proof. There is a canonical bijection between the underlying sets. It remains to
see that this as well and its inverse are continuous functions. For this it is
sufficient to see that under this bijection the defining basis for the product
topology is also a basis for the subspace topology. But this is immediate from
lemma 2.8.  ▮

Example 3.28. (interval glued at endpoints is homeomorphic to the circle)

As topological spaces, the closed interval [0, 1] (def. 1.12) with its two endpoints
identified is homeomorphic (def. 3.21) to the standard circle:

[0, 1]/( ∼ ) ≃ .

More in detail: let

↪ ℝ

be the unit circle in the plane

= {( , ) ∈ ℝ , + = 1}

equipped with the subspace topology (example 2.16) of the plane ℝ , which
itself equipped with its standard metric topology (example 2.9).

Moreover, let

[0, 1]/( ∼ )

be the quotient topological space (example 2.17) obtained from the interval
[0, 1] ⊂ ℝ  with its subspace topology by applying the equivalence relation which
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identifies the two endpoints (and nothing else).

Consider then the function

: [0, 1] ⟶

given by

↦ (cos( ), sin( )) .

This has the property that (0) = (1), so that it descends to the quotient
topological space

[0, 1] ⟶ [0, 1]/( ∼ )

↘ ↓
˜ .

We claim that ˜  is a homeomorphism (definition 3.21).

First of all it is immediate that ˜  is a continuous function. This follows
immediately from the fact that  is a continuous function and by definition of
the quotient topology (example 2.17).

So we need to check that ˜  has a continuous inverse function. Clearly the
restriction of  itself to the open interval (0, 1) has a continuous inverse. It fails
to have a continuous inverse on [0, 1) and on (0, 1] and fails to have an inverse
at all on [0,1], due to the fact that (0) = (1). But the relation quotiented out in
[0, 1]/( ∼ ) is exactly such as to fix this failure.

Similarly:

The square [0, 1]  with two of its sides identified is the cylinder, and with also the
other two sides identified is the torus:

If the sides are identified with opposite orientation, the result is the Möbius strip:
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Important examples of pairs of spaces that are not homeomorphic include the
following:

Theorem 3.29. (topological invariance of dimension)

For , ∈ ℕ but ≠ , then the Cartesian spaces ℝ  and ℝ  are not
homeomorphic.

More generally, an open set in ℝ  is never homeomorphic to an open set in ℝ
if ≠ .

The proof of theorem 3.29 is surprisingly hard, given how obvious the statement
seems intuitively. It requires tools from a field called algebraic topology (notably
Brouwer's fixed point theorem).

We showcase some basic tools of algebraic topology now and demonstrate the
nature of their usage by proving two very simple special cases of the topological
invariance of dimension (prop.
\ref{TopologicalInvarianceOfDimensionFirstSimpleCase} and prop.
\ref{topologicalInvarianceOfDimensionSecondSimpleCase} below).

Example 3.30. (homeomorphism classes of surfaces)

The 2-sphere = {( , , ) ∈ ℝ | + + = 1} is not homeomorphic to the
torus = × .

Generally the homeomorphism class of a closed orientable surface is
determined by the number of “holes” it has, its genus.

4. Separation axioms

The plain definition of topological space happens to allow examples where distinct
points or distinct subsets of the underlying set of a topological space appear as as
more-or-less unseparable as seen by the topology on that set. In many
applications one wants to exclude at least some of such degenerate examples
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from the discussion. The relevant conditions to be imposed on top of the plain
axioms of a topological space are hence known as separation axioms.

These axioms are all of the form of saying that two subsets (of certain forms) in
the topological space are ‘separated’ from each other in one sense if they are
‘separated’ in a (generally) weaker sense. For example the weakest axiom (called

) demands that if two points are distinct as elements of the underlying set of
points, then there exists at least one open subset that contains one but not the
other.

In this fashion one may impose a hierarchy of stronger axioms. For example
demanding that given two distinct points, then each of them is contained in some
open subset not containing the other ( ) or that such a pair of open subsets
around two distinct points may in addition be chosen to be disjoint ( ). This last
condition, , also called the Hausdorff condition is the most common among all
separation axioms. Often in topology, this axiom is considered by default.

However, there are respectable areas of mathematics that involve topological
spaces where the Hausdorff axiom fails, but a weaker axiom is still satisfied,
called soberity. This is the case notably in algebraic geometry (schemes are
sober) and in computer science (Vickers 89). These sober topological spaces are
singled out by the fact that they are entirely characterized by their partially
ordered sets of open subsets and may hence be understood independently from
their underlying sets of points.

separation axioms

= Hausdorff

⇙ ⇘

sober

⇘ ⇙

= Kolmogorov

All separation axioms are satisfied by metric spaces (def. 1.1), from whom the
concept of topological space was originally abstracted above. Hence imposing
some of them may also be understood as gauging just how far one allows
topological spaces to generalize away from metric spaces

 spaces

Definition 4.1. (the first three separation axioms)

Let ( , ) be a topological space (def. 2.3).

For ≠ ∈  any two points in the underlying set of  which are not equal as
elements of this set, consider the following propositions:

(T0) There exists a neighbourhood of one of the two points which does not
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contain the other point.

(T1) There exist neighbourhoods of both points which
do not contain the other point.

(T2) There exists neighbourhoods of both points which
do not intersect each other._

graphics grabbed from Vickers 89

The topological space  is called a -topological space
or just -space, for short, if it satisfies condition  above for all pairs of
distinct points.

A -topological space is also called a Kolmogorov space.

A -topological space is also called a Hausdorff topological space.

Notice that these propositions evidently imply each other as

2 ⇒ 1 ⇒ 0 .

For definiteness, we re-state these conditions formally. Write , ∈  for points
in , write , ∈  for open neighbourhoods of these points. Then:

(T0) ∀ ∃ { } ∩ = ∅ ∨ ∃ ( ∩ { } = ∅)

((T1) ∀ ∃
,

{ } ∩ = ∅ ∧ ( ∩ { } = ∅)

(T2) ∀ ∃
,

∩ = ∅

Example 4.2. (metric spaces are Hausdorff)

Every metric space (def 1.1), regarded as a topological space via its metric
topology (def. 2.9) is a Hausdorff topological space (def. 4.1).

Example 4.3. (finite -spaces are discrete)

For a finite topological space ( , ), hence one for which the underlying set  is a
finite set, the following are equivalent:

( , ) is  (def. 4.1);1. 

( , ) is a discrete topological space (def. 2.13)2. 

Proposition 4.4. Let ( , ) be a topological space satisfying the separation
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axiom according to def. 4.1. Then also every topological subspace ⊂
(example 2.16) satisfies .

Proof. Let , ∈ ⊂  be two distinct points. We need to construct various open
neighbourhoods of these in  not containing the other point and possibly (for )
not intersecting each other. Now by assumptions that the ambient space ( , )

satisfies the given axiom, there exist open neighbourhoods with the analogous
properties in . By the nature of the subspace topology, their restriction to  are
still open, and clearly still satisfy these properties.  ▮

Separation in terms of topological closures

The conditions ,  and  have the following equivalent form in terms of
topological closures (def. 2.20):

Proposition 4.5. (  in terms of topological closures)

A topological space ( , ) is  (def. 4.1) precisely if the function Cl({ −}) from the
underlying set of  to the set of irreducible closed subsets of  (def. 2.28, which
is well defined according to example 2.29), is injective:

Cl({ −}) : ↪ IrrClSub( )

Proof. Assume first that  is . Then we need to show that if , ∈  are such
that Cl({ }) = Cl({ }) then = . Hence assume that Cl({ }) = Cl({ }). Since the
closure of a point is the complements of the union of the open subsets not
containing the point, this means that the union of open subsets that do not
contain  is the same as the union of open subsets that do not contain . Hence
every open subset that does not contain  also does not contain , and vice versa.
By  this is not the case when ≠ , hence it follows that = .

Conversely, assume that if , ∈  are such that Cl{ } = Cl{ } then = . We need
to show that if ≠  then there exists an open neighbourhood around one of the
two points not containing the other. Hence assume that ≠ . By assumption it
follows that Cl({ } ≠ Cl({ }). Since the closure of a point is the complements of the
union of the open subsets not containing the point, this means that there must be
at least one open subset which contains  but not , or vice versa. By definition
this means that ( , ) is .  ▮

Proposition 4.6. (  in terms of topological closures)

A topological space ( , ) is  (def. 4.1) precisely if all its points are closed
points (def. 2.20).

Proof. Assume first that ( , ) is . We need to show that for every point ∈  we
have Cl({ }) = { }. Since the closure of a point is the complement of the union of
all open subsets not containing this point, this is the case precisely if the union of
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all open subsets not containing  is \{ }, hence if every point ≠  is member of
at least one open subset not containing . This is true by .

Conversely, assume that for all ∈  then Cl({ }) = { }. Then for ≠ ∈  two
distinct points we need to produce an open subset of  that does not contain .
But as before, since Cl({ }) is the complement of the union of all open subsets that
do not contain , and the assumption Cl{ } = { } means that  is member of one of
these open subsets that do not contain .  ▮

Proposition 4.7. (  in terms of topological closures)

A topological space ( , ) is =Hausdorff (def. 4.1) precisely if the diagonal
function : ( , ) ⟶ ( × , × ) (example 3.9) is a closed map (def. 3.14).

Proof. If ( , ) is Hausdorff, then by definition for every pair of distinct points
≠ ∈  there exists open neighbourhoods , ∈  such that ∩ = ∅. In

terms of the product topology (example 2.18) this means that every point
( , ) ∈ ×  which is not on the diagonal has an open neighbourhood ×
which still does not contain the diagonal. By definition, this means that in fact
every subset of the diagonal is a closed subset of × , hence in particular those
that are in the image under  of closed subsets of . Hence  is a closed map.

Conversely, if  is a closed map, then the full diagonal (i.e. the image of  under
) is closed in × , and hence this means that every points ( , ) ∈ ×  not on

the diagonal has an open neighbourhood ×  not containing the diagonal, i.e.
such that ∩ = ∅. Hence  is Hausdorff.  ▮

Further separation axioms

Clearly one may and does consider further variants of the separation axioms ,
 and  from def. 4.1.

Definition 4.8. Let ( , ) be topological space (def. 4.1).

Consider the following conditions

(T3) ( , ) is  (def. 4.1) and for ∈  a point and ⊂  a closed subset
(def. 2.20) not containing , then there exist disjoint open neighbourhoods

⊃ { } and ⊃ .

(T4) ( , ) is  (def. 4.1) and for , ⊂  disjoint closed subsets (def.
2.20) then there exist disjoint open neighbourhoods ⊃ .

If ( , ) satisfies  it is said to be a -space also called a regular Hausdorff
topological space.

If ( , ) satisfies  it is to be a -space also called a normal Hausdorff
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topological space.

Observe that:

Proposition 4.9. The separation axioms imply each other as

⇒ ⇒ ⇒ ⇒ .

Proof. The implications

⇒ ⇒

and

⇒

are immediate from the definitions. The remaining implication ⇒  follows with
prop. 4.6.  ▮

Hence instead of saying “  is  and …” one could just as well phrase the
conditions  and  as “  is  and …”, which would render the proof of prop. 4.9
even more trivial.

In summary:

the main Separation Axioms

numbername statement reformulation

Kolmogorov

given two distinct points, at least
one of them has an open
neighbourhood not containing the
other point

every irreducible
closed subset is the
closure of at most one
point

given two distinct points, both have
an open neighbourhood not
containing the other point

all points are closed

Hausdorff
given two distinct points, they have
disjoint open neighbourhoods

the diagonal is a
closed map

regular
Hausdorff

all points are closed; and given two
disjoint closed subsets, at least one
of them has an open
neighbourhood disjoint from the
other closed subset

normal
Hausdorff

all points are closed; and given two
disjoint closed subsets, both of
them have open neighbourhoods
not intersecting the other closed
subset

Notice that there is a whole zoo of further variants of separation axioms that are
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considered in the literature. But the above are maybe the main ones. Specifically
 = Hausdorff is the most popular one, often considered by default in the

literature, when topological spaces are considered.

 reflection

Not every universal construction of topological spaces applied to -spaces results
again in a  topological space, notably quotient space constructions need not
(example 4.10 below).

But at least for ,  and  there is a universal way, called reflection (prop. 4.12
below), to approximate any topological space “from the left” by a  topological
spaces.

Hence if one wishes to work withing the full subcategory of the  among all
topological space, then the correct way to construct quotients and other colimits
(see below) is to first construct them as usual for topological spaces, and then
apply the -reflection to the result.

Example 4.10. (line with two origins)

Consider the disjoint union ℝ ⊔ ℝ of two copies of the real line ℝ regarded as the
1-dimensional Euclidean space (def. 1.6) with its metric topology (def. 2.9).
Moreover, consider the equivalence relation on the underlying set which
identifies every point  in the th copy of ℝ ( ∈ {0, 1}) with the corresponding
point in the other, the (1 − )th copy, except when = 0:

∼ ⇔ (( = ) and (( ≠ 0) or ( = ))) .

The quotient topological space by this equivalence relation (def. 2.17)

(ℝ ⊔ ℝ)/ ∼

is called the line with two origins.

This is a basic example of a topological space which is a non-Hausdorff
topological space:

Because by definition of the quotient space topology, the open neighbourhoods
of 0 ∈ (ℝ ⊔ ℝ)/ ∼  are precisely those that contain subsets of the form

(− , ) ≔ ( − , 0) ∪ {0 } ∪ (0, ) .

But this means that the “two origins” 0  and 0  may not be separated by
neighbourhoods, since the intersection of (− , )  with ( − , )  is always

non-empty:
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( − , ) ∩ ( − , ) = ( − , 0) ∪ (0, ) .

Example 4.11. Consider the real line ℝ regarded as the 1-dimensional Euclidean
space (def. 1.6) with its metric topology (def. 2.9) and consider the equivalence
relation ∼ on ℝ which identifies two real numbers if they differ by a rational
number:

( ∼ ) ⇔ ∃
/ ∈ ℚ ⊂ ℝ

= + / .

Then the quotient topological space (def. 2.17)

ℝ/ℚ ≔ ℝ/ ∼

is a codiscrete topological space (def. 2.13), hence in particular a non-Hausdorff
topological space (def. 4.1).

Proposition 4.12. ( -reflection)

Let ∈ {0, 1, 2}. Then for every topological space  there exists a -topological
space  for and a continuous function

( ) : ⟶

which is the “closest approximation from the left” to  by a -topological
space, in that for  any -space, then continuous functions of the form

: ⟶

are in bijection with continuous function of the form

˜ : ⟶

and such that the bijection is constituted by

= ˜ ∘ ( ) : ⟶ ⟶
˜

.

Here →⎯⎯⎯⎯
( )

( ) may be called the -reflection of . For = 0 this is known as
the Kolmogorov quotient construction (see prop. 4.15 below). For = 2 it is
known as Hausdorff reflection or Hausdorffication or similar.

Moreover, the operation ( −) extends to continuous functions : →

( → ) ↦ ( ⎯ )

such as to preserve composition of functions as well as identity functions:

∘ = ( ∘ ) , id = id

Finally, the comparison map is compatible with this in that the follows squares
commute:

Introduction to Topology -- 1 in nLab https://ncatlab.org/nlab/print/Introduction+to+Topology+--+1

46 of 74 20.04.2017 09:38



⟶

↓ ↓

→⎯⎯

.

Remark 4.13. (reflective subcategories)

In the language of category theory (remark 3.3) the -reflection of prop. 4.12
says that

( −) is a functor : Top ⟶ Top  from the category Top of topological

spaces to the full subcategory Top ↪ Top of Hausdorff topological spaces;

1. 

( ) : →  is a natural transformation from the identity functor on Top
to the functor ∘

2. 

-topological spaces form a reflective subcategory of all topological spaces
in that  is left adjoint to the inclusion functor ; this situation is denoted
as follows:

Top ⊥
⎯

⟵
Top .

3. 

There are various ways to see the existence and to construct the -reflections.
The following is the quickest way to see the existence, even though it leaves the
actual construction rather implicit.

Proposition 4.14. Let ∈ {0, 1, 2}. Let ( , ) be a topological space and consider
the equivalence relation ∼ on the underlying set  for which ∼  precisely if for
every surjective continuous function : →  into any -topological space  we
have ( ) = ( ).

Then the set of equivalence classes

≔ / ∼

equipped with the quotient topology is a -topological space, and the quotient
map ( ) : → / ∼  exhibits the -reflection of , according to prop. 4.12.

Proof. First we observe that every continuous function : ⟶  into a
-topological space  factors uniquely via ( ) through a continuous function ˜

= ˜ ∘ ℎ

where

˜ : [ ] ↦ ( ) .

To see this, first factor  through its image ( )
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: ⟶ ( ) ↪

equipped with its subspace topology as a subspace of  (example 3.10). By prop.
4.4 also ( ) is a -topological space if  is.

It follows by definition of ( ) that the factorization exists at the level of sets as
stated, since if , ∈  have the same equivalence class [ ] = [ ] in , then
by definition they have the same image under all continuous surjective functions
to a -space, hence in particular under → ( ). This means that ˜  as above is
well defined.

What remains to be seen is that  as constructed is indeed a -topological
space. Hence assume that [ ] ≠ [ ] ∈  are two distinct points. We need to open
neighbourhoods around one or both of these point not containing the other point
and possibly disjoint to each other.

Now by definition of  this means that there exists a -topological space  and
a surjective continuous function : ⟶  such that ( ) ≠ ( ) ∈ . Accordingly,
since  is , there exist the respective kinds of neighbourhoods around these
image points in . Moreover, by the previous statement there exists a continuous
function ˜ : →  with ˜ ([ ]) = ( ) and ˜ ([ ]) = ( ). By the nature of continuous
functions, the pre-images of these open neighbourhoods in  are still open in 
and still satisfy the required disjunction properties. Therefore  is a

-space.  ▮

Here are alternative constructions of the reflections:

Proposition 4.15. (Kolmogorov quotient)

Let ( , ) be a topological space. Consider the relation on the underlying set by
which ∼  precisely if neighther  has an open neighbourhood not containing
the other. This is an equivalence relation. The quotient topological space

→ / ∼  by this equivalence relation (def. 2.17) exhibits the -reflection of 
according to prop. 4.12.

Example 4.16. The Hausdorff reflection ( -reflection, prop. 4.12)

: Top ⟶ Top

of the line with two origins from example 4.10 is the real line itself:

((ℝ ⊔ ℝ)/ ∼ ) ≃ ℝ .

5. Sober spaces

The alternative characterization of the -condition in prop. 4.5 immediately
suggests the following strengthening, different from the -condition:

Definition 5.1. (sober topological space)

Introduction to Topology -- 1 in nLab https://ncatlab.org/nlab/print/Introduction+to+Topology+--+1

48 of 74 20.04.2017 09:38



A topological space ( , ) is called a sober topological space precisely if every
irreducible closed subspace (def. 2.29) is the topological closure (def. 2.20) of a
unique point, hence precisely if the function

Cl({ −}) : ⟶ IrrClSub( )

from the underlying set of  to the set of irreducible closed subsets of  (def.
2.28, well defined according to example 2.29) is bijective.

Proposition 5.2. (sober implies )

Every sober topological space (def. 5.1) is  (def. 4.1).

Proof. By prop. 4.5.  ▮

Proposition 5.3. (Hausdorff implies sober)

Every Hausdorff topological space (def. 4.1) is a sober topological space (def.
5.1).

More specifically, in a Hausdorff topological space the irreducible closed
subspaces (def. 2.28) are precisely the singleton subspaces (def. 7.2).

Proof. The second statement clearly implies the first. To see the second
statement, suppose that  is an irreducible closed subspace which contained two
distinct points ≠ . Then by the Hausdorff property there are disjoint
neighbourhoods , , and hence it would follow that the rlative complements

\  and \  were distinct proper closed subsets of  with

= ( \ ) ∪ ( \ )

in contradiction to the assumption that  is irreducible.

This proves by contradiction that every irreducible closed subset is a singleton.
Conversely, generally the topological closure of every singleton is irreducible
closed, by example 2.29.  ▮

By prop. 5.2 and prop. 5.3 we have the implications on the right of the following
diagram:

separation axioms

= Hausdorff

⇙ ⇘

sober

⇘ ⇙

= Kolmogorov

But there there is no implication betwee  and sobriety:
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Proposition 5.4. The intersection of the classes of sober topological spaces (def.
5.1) and -topological spaces (def. 4.1) is not empty, but neither class is
contained within the other.

That the intersection is not empty follows from prop. 5.3. That neither class is
contained in the other is shown by the following counter-examples:

Example.

The Sierpinski space (def. 2.11) is sober, but not .

The cofinite topology (example 2.14) on a non-finite set is  but not sober.

Frames of opens

What makes the concept of sober topological spaces special is that for them the
concept of continuous functions may be expressed entirely in terms of the
relations between their open subsets, disregarding the underlying set of points of
which these open are in fact subsets.

Recall from example 2.33 that for very continuous function : ( , ) → ( , ) the
pre-image function − : →  is a frame homomorphism (def. 2.31).

For sober topological spaces the converse holds:

Proposition 5.5. If ( , ) and ( , ) are sober topological spaces (def. 5.1), then
for every frame homomorphism (def. 2.31)

⟵ :

there is a unique continuous function : →  such that  is the function of
forming pre-images under :

= − .

Proof. We first consider the special case of frame homomorphisms of the form

* ⟵ :

and show that these are in bijection to the underlying set , identified with the
continuous functions * → ( , ) via example 3.6.

By prop. 2.34, the frame homomorphisms : → * are identified with the
irreducible closed subspaces \ ∅( ) of ( , ). Therefore by assumption of
sobriety of ( , ) there is a unique point ∈  with \ ∅ = Cl({ }). In particular this
means that for  an open neighbourhood of , then  is not a subset of ∅( ),
and so it follows that ( ) = {1}. In conclusion we have found a unique ∈  such
that
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: ↦
{1} | if ∈

∅ | otherwise
.

This is precisely the inverse image function of the continuous function * →  which
sends 1 ↦ .

Hence this establishes the bijection between frame homomorphisms of the form

* ⟵  and continuous functions of the form * → ( , ).

With this it follows that a general frame homomorphism of the form ⟵

defines a function of sets ⟶  by composition:

⟶

( * ← ) ↦ ( * ← ⟵ )
.

By the previous analysis, an element ∈  is sent to {1} under this composite

precisely if the corresponding point * → ⟶  is in , and similarly for an
element ∈ . It follows that ( ) ∈  is precisely that subset of points in 
which are sent by  to elements of , hence that = −  is the pre-image
function of . Since  by definition sends open subsets of  to open subsets of ,
it follows that  is indeed a continuous function. This proves the claim in
generality.  ▮

Remark 5.6. (locales)

Proposition 5.5 is often stated as saying that sober topological spaces are
equivalently the “locales with enough points” (Johnstone 82, II 1.). Here
“locale” refers to a concept akin to topological spaces where one considers just
a “frame of open subsets” , without requiring that its elements be actual
subsets of some ambient set. The natural notion of homomorphism between
such generalized topological spaces are clearly the frame homomorphisms

←  as above. From this persepctive, prop. 5.5 says that sober topological
spaces ( , ) are entirely characterized by their frames of opens  and just so
happen to “have enough points” such that these are actual open subsets of
some ambient set, namely of .

Sober reflection

We saw above in prop. 4.12 that every toopological space has a “best
approximation from the left” by a Hausdorff topological space. We now discuss
the analogous statement for sober topological spaces.

Recall again the point topological space * ≔ ({1}, * = {∅, {1}}) (example 2.10).

Definition 5.7. Let ( , ) be a topological space.

Define  to be the set
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≔ Hom ( , *)

of frame homomorphisms from the frame of opens of  to that of the point.
Define a topology ⊂ ( ) on this set by declaring it to have one element ˜

for each element ∈  and given by

˜ ≔ { ∈ | ( ) = {1}} .

Consider the function

⟶

↦ (const ) −

which sends an element ∈  to the function which assigns inverse images of
the constant function const : {1} →  on that element.

Lemma 5.8. The construction ( , ) in def. 5.7 is a topological space, and the
function : →  is a continuous function

: ( , ) ⟶ ( , )

Proof. To see that ⊂ ( ) is closed under arbitrary unions and finite
intersections, observe that the function

⟶
(−)

↦ ˜

in fact preserves arbitrary unions and finite intersections. Whith this the
statement follows by the fact that  is closed under these operations.

To see that ( −) indeed preserves unions, observe that (e.g. Johnstone 82, II 1.3
Lemma)

∈ ∪
∈

⇔ ∃
∈

( ) = {1}

⇔ ∪
∈

( ) = {1}

⇔ ∪
∈

= {1}

⇔ ∈ ∪
∈

,

where we used that the frame homomorphism : → * preserves unions.
Similarly for intersections, now with  a finite set:
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∈ ∩
∈

⇔ ∀
∈

( ) = {1}

⇔ ∩
∈

( ) = {1}

⇔ ∩
∈

= {1}

⇔ ∈ ∩
∈

,

where now we used that the frame homomorphism  preserves finite
intersections.

To see that  is continuous, observe that − ( ˜ ) = , by construction.  ▮

Lemma 5.9. For ( , ) a topological space, the function : →  from def. 5.7 is

an injection precisely if  is T0;1. 

a bijection precisely if  is sober.

In this case  is in fact a homeomorphism.

2. 

Proof. By lemma 2.34 there is an identification ≃ IrrClSub( ) and via this  is
identified with the map ↦ Cl({ }).

Hence the second statement follows by definition, and the first statement by this
prop..

That in the second case  is in fact a homeomorphism follows from the definition
of the opens ˜ : they are identified with the opens  in this case (…expand…).  ▮

Lemma 5.10. For ( , ) a topological space, then the topological space ( , )
from def. 5.7, lemma 5.8 is sober.

(e.g. Johnstone 82, lemma II 1.7)

Proof. Let \ ˜  be an irreducible closed subspace of ( , ). We need to show
that it is the topological closure of a unique element ∈ .

Observe first that also \  is irreducible.

To see this use this prop., saying that irreducibility of \  is equivalent to
∩ ⊂ ⇒ ( ⊂ )or( ⊂ ). But if ∩ ⊂  then also ˜ ∩ ˜ ⊂ ˜  (as in the

proof of lemma 5.8) and hence by assumption on ˜  it follows that ˜ ⊂ ˜  or
˜ ⊂ ˜ . By lemma 2.34 this in turn implies ⊂  or ⊂ . In conclusion, this
shows that also \  is irreducible .

By lemma 2.34 this irreducible closed subspace corresponds to a point ∈ . By
that same lemma, this frame homomorphism : → * takes the value ∅ on all
those opens which are inside . This means that the topological closure of this
point is just \ ˜ .
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This shows that there exists at least one point of which \ ˜  is the topological
closure. It remains to see that there is no other such point.

So let ≠ ∈  be two distinct points. This means that there exists ∈  with

( ) ≠ ( ). Equivalently this says that ˜  contains one of the two points, but not

the other. This means that ( , ) is T0. By this prop. this is equivalent to there
being no two points with the same topological closure.  ▮

Proposition 5.11. For ( , ) any topological space, for ( , ) a sober
topological space, and for : ( , ) ⟶ ( , ) a continuous function, then it factors
uniquely through the soberification : ( , ) ⟶ ( , ) from def. 5.7, lemma
5.8

( , ) ⟶ ( , )

↓ ↗∃ !

( , )

.

Proof. By the construction in def. 5.7, we the outer part of the following square
commutes:

( , ) ⟶ ( , )

↓ ↗ ↓

( , ) ⟶ ( , )

.

By lemma 5.10 and lemma 5.9, the right vertical morphism  is an isomorphism
(a homeomorphism), hence has an inverse morphism. This defines the diagonal
morphism, which is the desired factorization.

To see that this factorization is unique, consider two factorizations
˜ , ̅ ̅ : : ( , ) → ( , ) and apply the soberification construction once more to the
triangles

( , ) ⟶ ( , )

↓ ↗ ˜ , ̅ ̅ ̅ ̅

( , )

↦

( , ) ⟶ ( , )

≃ ↓ ↗ ˜ , ̅ ̅ ̅ ̅

( , )

.

Here on the right we used again lemma 5.9 to find that the vertical morphism is
an isomorphism, and that ˜  and ̅  ̅do not change under soberification, as they
already map between sober spaces. But now that the left vertical morphism is an
isomorphism, the commutativity of this triangle for both ˜  and ̅  ̅implies that
˜ = ̅ ̅.  ▮

6. Compact spaces

From the discussion of compact metric spaces in def. 1.19 and prop. 1.20 it is
now immediate how to generalize these concepts to topological spaces.
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The most naive version of the definition directly generalizes the concept via
converging sequences from def. 1.19:

Definition 6.1. (converging sequence in a topological space)

Let ( , ) be a topological space (def. 2.3) and let ( ) ∈ ℕ be a sequence of

points ( ) in  (def. 1.15). We say that this sequence converges in ( , ) to a
point ∈ , denoted

→⎯⎯⎯⎯
→

if for each open neighbourhood  of  there exists a ∈ ℕ such that for all

≥  then ∈ :

→⎯⎯⎯⎯
→

⇔ ∀
∈

∈

∃
∈ ℕ

∀
≥

∈ .

Definition 6.2. (sequentially compact topological space)

Let ( , ) be a topological space (def. 2.3). It is called sequentially compact if for
every sequence of points ( ) in  (def. 1.15) there exists a sub-sequence
( ) ∈ ℕ which converges acording to def. 6.1.

But prop. 1.20 suggests to consider also another definition of compactness for
topological spaces:

Definition 6.3. (open cover)

An open cover of a topological space  (def. 2.3) is a set { ⊂ } ∈  of open

subsets  of , indexed by some set , such that their union is all of :

∪
∈

= .

Definition 6.4. (compact topological space)

A topological space  (def. 2.3) is called a compact topological space if every
open cover { → } ∈  (def. 6.3) has a finite subcover in that there is a finite

subset ⊂  such that { → } ∈  is still a cover of  in that ∪
∈

= .

Remark 6.5. (terminology issue regarding “compact”)

Beware that the following terminology issue persists in the literature:

Some authors use “compact” to mean “Hausdorff and compact”. To
disambiguate this, some authors (mostly in algebraic geometry) say “quasi-
compact” for what we call “compact” in prop. 6.4.

Example 6.6. (finite discrete spaces are compact)

A discrete topological space (def. 2.13) is compact (def. 6.4) precisely if its
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underlying set is finite.

Example 6.7. (closed interval is compact)

For any < ∈ ℝ the closed interval (example 1.12)

[ , ] ⊂ ℝ

regarded with its subspace topology is a compact topological space (def. 6.4).

Proof. Since all the closed intervals are homeomorphic (by example 3.25) it is
sufficient to show the statement for [0, 1]. Hence let { ⊂ [0, 1]} ∈  be an open

cover. We need to show that it has an open subcover.

Say that an element ∈ [0, 1] is admissible if the closed sub-interval [0, ] is
covered by finitely many of the . In this terminlogy, what we need to show is
that 1 is admissible.

Observe from the definition that

0 is admissible,1. 

if < ∈ [0, 1] and  is admissible, then also  is admissible.2. 

This means that the set of admissible  forms either an open interval [0, ) or a
closed interval [0, ], for some ∈ [0, 1]. We need to show that the latter is true,
and for = 1. We do so by observing that the alternatives lead to contradictions:

Assume that the set of admissible values were an open interval [0, ). By
assumption there would be a finite subset ⊂  such that { ⊂ [0, 1]} ∈ ⊂

were a finite open cover of [0, ). Accordingly, since there is some ∈  such
that ∈ , the union { } ∈ ⊔ { } were a finite cover of the closed interval

[0, ], contradicting the assumption that  itself is not admissible (since it is
not contained in [0, )).

1. 

Assume that the set of admissible values were a closed interval [0, ] for
< 1. By assumption there would then be a finite set ⊂  such that

{ ⊂ [0, 1]} ∈ ⊂  were a finite cover of [0, ]. Hence there would be an index

∈  such that ∈ . But then by the nature of open subsets in the

Euclidean space ℝ, this  would also contain an open ball
∘ ( ) = ( − , + ). This would mean that the set of admissible values

includes the open interval [0, + ), contradicting the assumption.

2. 

This gives a proof by contradiction.  ▮

Proposition 6.8. (binary Tychonoff theorem)

Let ( , ) and ( , ) be two compact topological spaces (def. 6.4). Then also
their product topological space (def. 2.18) ( × , × ) is compact.
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Proof. Let { ⊂ × } ∈  be an open cover of the product space. We need to show

that this has a finite subcover.

By definition of the product space topology, each  is the union, indexed by some
set , of Cartesian products of open subsets of  and :

= ∪
∈

× ∈ and ∈ .

Consider then the disjoint union of all these index sets

≔ ⊔
∈

.

This is such that

( ⋆ ) × ⊂ ×
∈

is again an open cover of × .

But by construction, each element ×  of this new cover is contained in at

least one ( ) of the original cover. Therefore it is now sufficient to show that

there is a finite subcover of ( ⋆ ), consisting of elements indexed by ∈ ⊂  for
some finite set . Because then the corresponding ( ) for ∈  form a finite

subcover of the original cover.

In order to see that ( ⋆ ) has a finite subcover, first fix a point ∈  and write
{ } ⊂  for the corresponding singleton topological subspace. By example 3.24 this
is homeomorphic to the abstract point space *. By example 3.26 there is thus a
homeomorphism of the form

{ } × ≃ .

Therefore, since ( , ) is assumed to be compact, the open cover

( × ) ∩ ({ } × ) ⊂ { } ×
∈

has a finite subcover, indexed by a finite subset ⊂ .

Here we may assume without restriction of generality that ∈  for all

∈ ⊂ , because if not then we may simply remove that index and still have a

(finite) subcover.

By finiteness of  it now follows that the intersection

≔ ∩
∈

is still an open subset, and by the previous remark we may assume without
restriction that
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∈ .

Now observe that by the nature of the above cover of { } ×  we have

{ } × ⊂ ∪
∈ ⊂

×

and hence

{ } × ⊂ { } × ∪
∈ ⊂

.

Since by construction ⊂  for all ∈ ⊂ , it follows that we have found a

finite cover not just of { } ×  but of ×

× ⊂ ∪
∈ ⊂

× .

To conclude, observe that { ⊂ } ∈  is clearly an open cover of , so that by the

assumption that also  is compact there is a finite set of points ⊂  so that
{ ⊂ } ∈ ⊂  is still a cover. In summary then

× ⊂ × ∈ ⊂

∈ ⊂

is a finite subcover as required.  ▮

In terms of the topological incarnation of the definitions of compactness, the
familiar statement about metric spaces from prop. 1.20 now equivalently says the
following:

Proposition 6.9. (sequentially compact metric spaces are equivalently
compact metric spaces)

If ( , ) is a metric space, regarded as a topological space via its metric topology
(def. 2.9), then the following are equivalent:

( , ) is a compact topological space (def. 6.4).1. 

( , ) is a sequentially compact topological space (def. 6.2).2. 

Proof. of prop. 1.20 and prop. 6.9

Assume first that ( , ) is a compact topological space. Let ( ) ∈ ℕ be a sequence

in . We need to show that it has a sub-sequence which converges.

Consider the topological closures of the sub-sequences that omit the first 
elements of the sequence

≔ Cl({ | ≥ })

and write
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≔ \

for their open complements.

Assume now that the intersection of all the  were empty

( ⋆ ) ∩
∈ ℕ

= ∅

or equivalently that the union of all the  were all of 

∪
∈ ℕ

= ,

hence that { → } ∈ ℕ were an open cover. By the assumption that  is compact,

this would imply that there is a finite subset { < < ⋯ < } ⊂ ℕ with

= ∪ ∪ ⋯ ∪

=
.

This in turn would mean that = ∅, which contradicts the construction of .

Hence we have a proof by contradiction that assumption ( * ) is wrong, and hence
that there must exist an element

∈ ∩
∈ ℕ

.

By definition of topological closure this means that for all  the open ball
∘ (1/( + 1)) around  of radius 1/( + 1) must intersect the th of the above

subsequence:

∘ (1/( + 1)) ∩ { | ≥ } ≠ ∅ .

Picking one point ( ′ ) in the th such intersection for all  hence defines a
sub-sequence, which converges to .

This proves that compact implies sequentially compact for metric spaces.

For the converse, assume now that ( , ) is sequentially compact. Let { → } ∈

be an open cover of . We need to show that there exists a finite sub-cover.

Now by the Lebesgue number lemma, there exists a positive real number > 0
such that for each ∈  there is ∈  such that ∘ ( ) ⊂ . Moreover, since

sequentially compact metric spaces are totally bounded, there exists then a finite
set ⊂  such that

= ∪
∈

∘( ) .

Therefore { → } ∈  is a finite sub-cover as required.  ▮

Remark 6.10. (neither compactness nor sequential compactness implies
the other)
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Beware that, in contrast to prop. 6.9, for general topological spaces being
sequentially compact neither implies nor is implied by being compact. The
corresponding counter-examples are maybe beyond the scope of this note, but
see here:

an example of a compact topological space which is not sequentially
compact is given in (Steen-Seebach 70, item 105), see at compact space –
Compact spaces which are not sequentially compact;

an example of a sequentially compact space which is not compact is
discussed in (Patty 08, chapter 4, example 13).

In analysis, the extreme value theorem asserts that a real-valued continuous
function on the bounded closed interval (def. 1.12) attains its maximum and
minimum. The following is the generalization of this statement to general
topological spaces:

Lemma 6.11. (continuous surjections out of compact spaces have
compact codomain)

Let : ( , ) ⟶ ( , ) be a continuous function between topological spaces such
that

( , ) is a compact topological space;1. 

: →  is a surjective function.2. 

Then also ( , ) is compact.

Proof. Let { ⊂ } ∈  be an open cover of . We need show that this has a finite

sub-cover.

By the continuity of  the pre-images − ( ) are open subsets of , and by the
surjectivity of  they form an open cover { − ( ) ⊂ } ∈  of . Hence by

compactness of , there exists a finite subset ⊂  such that { − ( ) ⊂ } ∈ ⊂  is

still an open cover of . Finall, using again that  is assumed to be surjective, it
follows that

= ( )

= ∪
∈

− ( )

= ∪
∈

which means that also { ⊂ } ∈ ⊂  is still an open cover of , and in particular a

finite subcover of the original cover.  ▮

Corollary 6.12. (continuous images of compact spaces are compact)

Introduction to Topology -- 1 in nLab https://ncatlab.org/nlab/print/Introduction+to+Topology+--+1

60 of 74 20.04.2017 09:38



If : ⟶  is a continuous function out of a compact topological space  which
is not necessarily surjective, then we may consider its image factorization

: ⟶ ( ) ↪

as in example 3.10. Now by construction → ( ) is surjective, and so lemma
6.11 implies that ( ) is compact.

The converse to cor. 6.12 does not hold in general: the pre-image of a compact
subset under a continuous function need not be compact again. If this is the case,
then we speak of proper maps:

Definition 6.13. (proper maps)

A continuous function : ( , ) → ( , ) is called proper if for ∈  a compact
topological subspace of , then also its pre-image − ( ) is compact in .

Definition 6.14. (mapping space)

For  a topological space and  a locally compact topological space (in that for
every point, every neighbourhood contains a compact neighbourhood), the
mapping space

∈ Top

is the topological space

whose underlying set is the set Hom ( , ) of continuous functions → ,

whose open subsets are unions of finitary intersections of the following
subbase elements of standard open subsets:

the standard open subset ⊂ Hom ( , ) for

↪  a compact topological space subset

↪  an open subset

is the subset of all those continuous functions  that fit into a commuting
diagram of the form

↪

↓ ↓

↪

.

Accordingly this is called the compact-open topology on the set of functions.

The construction extends to a functor

(−)(−) : Top × Top ⟶ Top .

Introduction to Topology -- 1 in nLab https://ncatlab.org/nlab/print/Introduction+to+Topology+--+1

61 of 74 20.04.2017 09:38



Relation to Hausdorff spaces

We discuss some important relations between the concepts of compact spaces
and of Hausdorff topological spaces.

In analysis the key recognition principle for compact spaces is the following:

Proposition 6.15. (Heine-Borel theorem)

For ∈ ℕ, regard ℝ  as the -dimensional Euclidean space via example 1.6,
regarded as a topological space via its metric topology (def. 2.9).

Then for a topological subspace ⊂ ℝ  the following are equivalent:

 is compact (def. 6.4);1. 

 is closed (def. 2.20) and bounded (def. 1.3).2. 

We prove this below as a consequence of the following more general statement
for topological space:

Proposition 6.16. (closed subspaces of compact Hausdorff spaces are
equivalently compact subspaces)

Let ( , ) be a compact Hausdorff topological space (def. 4.1, def. 6.4) and let
⊂  be a topological subspace. Then the following are equivalent:

⊂  is a closed subspace (def. 2.20);1. 

 is a compact topological space.2. 

Proof. By lemma 6.17 and lemma 6.19 below.  ▮

Lemma 6.17. (closed subspaces of compact spaces are compact)

Let ( , ) be a compact topological space (def. 6.4), and let ⊂  be a closed
topological subspace. Then also  is compact.

Proof. Let { ⊂ } ∈  be an open cover of . We need to show that this has a finite

sub-cover.

By definition of the subspace topology, there exist open subsets  of  with

= ∩ .

By the assumption that  is closed, the complement backsalsh  is an open subset
of , and therefore

{ \ ⊂ } ∪ { ⊂ } ∈

is an open cover of . Now by the assumption that  is compact, this latter cover
has a finite subcover, hence there exists a finite subset ⊂  such that
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{ \ ⊂ } ∪ { ⊂ } ∈ ⊂

is still an oopen cover of , hence in particular intersects to a finite open cover of
. But since ∩ ( backsalsh ) = ∅, it follows that indeed

{ ⊂ } ∈ ⊂

is a cover of , and in indeed a finite subcover of the original one.  ▮

Lemma 6.18. (separation by neighbourhoods of points from compact
subspaces in Hausdorff spaces)

Let

( , ) be a Hausdorff topological space;1. 

⊂  a compact subspace.2. 

Then for every ∈ \  there exists

an open neighbourhood ⊃ { };1. 

an open neighbourhood ⊃2. 

such that

they are still disjoint: ∩ = ∅.

Proof. By the assumption that ( , ) is Hausdorff, we find for every point ∈

disjoint open neighbourhoods , ⊃ { } and ⊃ { }. By the nature of the
subspace topology of , the restriction of all the  to  is an open cover of :

( ∩ ) ⊂
∈

.

Now by the assumption that  is compact, there exists a finite subcover, hence a
finite set ⊂  such that

( ∩ ) ⊂
∈ ⊂

is still a cover.

But the finite intersection

≔ ∩
∈ ⊂ ,

of the corresponding open neighbourhoods of  is still open, and by construction it
is disjoint from all the , hence in particular from their union

≔ ∪
∈ ⊂

.

Therefore  and  are two open subsets as required.  ▮
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Lemma 6.18 immediately implies the following:

Lemma 6.19. (compact subspaces of Hausdorff spaces are closed)

Let ( , ) be a Hausdorff topological space (def. 4.1) and let ⊂  be a compact
(def. 6.4) topological subspace (example 2.16). Then ⊂  is also a closed
subspace (def. 2.20).

Proof. Let ∈ \  be any point of  not contained in . We need to show that
there exists an open neighbourhood of  in  which does not intersect . This is
implied by lemma 6.18.  ▮

Now we may give the proof of the Heine-Borel theorem:

Proof. of the Heine-Borel theorem (prop. 6.15)

First consider a subset ⊂ ℝ  which is closed and bounded. We need to show that
regarded as a topological subspace it is compact.

The assumption that  is bounded by (hence contained in) some open ball ∘ ( ) in
ℝ  implies that it is contained in {( ) = ∈ ℝ | − ≤ ≤ }. By example 3.27, this

topological subspace is homeomorphic to the -cube [− , ] . Since the closed
interval [− , ] is compact by example 6.7, the binary Tychonoff theorem (prop.
6.8) implies that this -cube is compact. Since closed subspaces of compact
spaces are compact (lemma 6.17) this implies that  is compact.

Conversely, assume that ⊂ ℝ  is a compact subspace. We need to show that it is
closed and bounded.

The first statement follows since the Euclidean space ℝ  is Hausdorff (example
4.2) and since compact subspaces of Hausdorff spaces are closed (prop. 6.19).

Hence what remains is to show that  is bounded.

To that end, choose any positive real number ∈ ℝ  and consider the open cover
of all of ℝ  by the open n-cubes

( − , + 1 + ) × ( − , + 1 + ) × ⋯ × ( − , + 1 + )

for n-tuples of integers ( , , ⋯, ) ∈ ℤ . The restrictions of these to  hence form
an open cover of the subspace . By the assumption that  is compact, there is
then a finite subset of -tuples of integers such that the corresponding -cubes
still cover . But the union of any finite number of bounded closed -cubes in ℝ  is
clearly a bounded subset, and hence so is .  ▮

Proposition 6.20. (maps from compact spaces to Hausdorff spaces are
closed and proper)

Let : ( , ) ⟶ ( , ) be a continuous function between topological spaces such
that
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( , ) is a compact topological space;1. 

( , ) is a Hausdorff topological space.2. 

Then  is

a closed map (def. 3.14);1. 

a proper map (def. 6.13).)2. 

Proof. For the first statement, we need to show that if ⊂  is a closed subset of
, then also ( ) ⊂  is a closed subset of .

Now

since closed subsets of compact spaces are compact (lemma 6.17) it follows
that ⊂  is also compact;

1. 

since continuous images of compact spaces are compact (cor. 6.12) it then
follows that ( ) ⊂  is compact;

2. 

since compact subspaces of Hausdorff spaces are closed (prop. 6.19) it
finally follow that ( ) is also closed in .

3. 

For the second statement we need to show that if ⊂  is a compact subset, then
also its pre-image − ( ) is compact.

Now

since compact subspaces of Hausdorff spaces are closed (prop. 6.19) it
follows that subse  is closed;

1. 

since pre-images under continuous of closed subsets are closed (prop. 3.2),
also − ( ) ⊂  is closed;

2. 

since closed subsets of compact spaces are compact (lemma 6.17), it follows
that − ( ) is compact.

3. 

  ▮

Proposition 6.21. (continuous bijections from compact spaces to
Hausdorff spaces are homeomorphisms)

Let : ( , ) ⟶ ( , ) be a continuous function between topological spaces such
that

( , ) is a compact topological space;1. 

( , ) is a Hausdorff topological space.2. 

: ⟶  is a bijection of sets.3. 
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Then  is a homeomorphism, i. e. its inverse function →  is also a continuous
function.

In particular then both ( , ) and ( , ) are compact Hausdorff spaces.

Proof. Write : →  for the inverse function of .

We need to show that  is continuous, hence that for ⊂  an open subset, then
also its pre-image − ( ) ⊂  is open in . By prop. 3.2 this is equivalent to the
statement that for ⊂  a closed subset then the pre-image − ( ) ⊂  is also
closed in .

But since  is the inverse function to , its pre-images are the images of . Hence
the last statement above equivalently says that  sends closed subsets to closed
subsets. This is true by prop. 6.20.  ▮

Proposition 6.22. (compact Hausdorff spaces are normal)

Every compact Hausdorff topological space is a normal topological space (def.
4.8).

Proof. First we claim that ( , ) is regular. To show this, we need to find for each
point ∈  and each disjoint closed subset ∈  dijoint open neighbourhoods

⊃ { } and ⊃ . But since closed subspaces of compact spaces are compact
(lemma 6.17), the subset  is in fact compact, and hence this is in fact the
statement of lemma 6.18.

Next to show that ( , ) is indeed normal, we apply the idea of the proof of lemma
6.18 once more:

Let , ⊂  be two disjoint closed subspaces. By the previous statement then for
every point ∈  we find disjoint open neighbourhoods ⊂ { } and , ⊃ .

The union of the  is a cover of , and by compactness of  there is a finite

subset ⊂  such that

≔ ∪
∈ ⊂

is an open neighbourhood of  and

≔ ∩
∈ ⊂ ,

is an open neighbourhood of , and both are disjoint.  ▮

Relation to quotient spaces

Proposition 6.23. (continuous surjections from compact spaces to
Hausdorff spaces are quotient projections)

Let
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: ( , ) ⟶ ( , )

be a continuous function between topological spaces such that

( , ) is a compact topological space (def. 6.4);1. 

( , ) is a Hausdorff topological space (def. 4.1);2. 

: ⟶  is a surjective function.3. 

Then  is the quotient topology inherited from  via the surjection  (def.
2.17).

Proof. We need to show that an subset ⊂  is an open subset ( , ) precisely if
its pre-image − ( ) ⊂  is an open subset in ( , ). Equivalenty, as in prop. 3.2,
we need to show that  is a closed subset precisely if − ( ) is a closed subset.
The implication

( closed) ⇒ − ( ) closed

follows via prop. 3.2 from the continuity of . The implication

− ( ) closed ⇒ ( closed)

follows since  is a closed map by prop. 6.20.  ▮

The following proposition allows to recognize when a quotient space of a compact
Hausdorff space is itself still Hausdorff.

Proposition 6.24. (quotient projections out of compact Hausdorff spaces
are closed precisely if the codomain is Hausdorff)

Let

: ( , ) ⟶ ( , )

be a continuous function between topological spaces such that

( , ) is a compact Hausdorff topological space (def. 6.4, def. 4.1);1. 

 is a surjection and  is the corresponding quotient topology (def. 2.17).2. 

Then the following are equivalent

( , ) is itself a Hausdorff topological space (def. 4.1);1. 

 is a closed map (def. 3.14).2. 

Proof. The implicaton (( , ) Hausdorff) ⇒ ( closed) is given by prop. 6.20. We
need to show the converse.

Hence assume that  is a closed map. We need to show that for every pair of
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distinct point ≠ ∈ ) there exist open neighbourhoods , ∈  which are

disjoint, ∩ = emptyst .

Therefore consider the pre-images

≔ − ({ }) ≔ − ({ }) .

Observe that these are closed subsets, because in the Hausdorff space ( , ) the
singleton subsets { } are closed by prop. 4.6, and since pre-images under

continuous functions preserves closed subsets by prop. 3.2.

Now since compact Hausdorff spaces are normal it follows (by def. 4.8) that we
may find disjoint open subset , ∈  such that

⊂ ⊂ .

Moreover, by lemma 3.20 we may find these  such that they are both saturated
subsets (def. 3.16). Therefore finally lemma 3.20 says that the images ( ) are
open in ( , ). These are now clearly disjoint open neighbourhoods of  and

.  ▮

Example 6.25. Consider the function

[0, 2 ]/ ∼ ⟶ ⊂ ℝ

↦ (cos( ), sin( ))

from the quotient topological space
(def. 2.17) of the closed interval
(def. 1.12) by the equivalence
relation which identifies the two
endpoints

( ∼ ) ⇔ (( = ) or (( ∈ {0, 2 } and ( ∈ {0, 2pi}))))

to the unit circle = (1) ⊂ ℝ  (def. 1.2) regarded as a topological
subspace of the 2-dimensional Euclidean space (def. 1.6) equipped with its
metric topology (def. 2.9).

This is clearly a continuous function and a bijection on the underlying sets.
Moreover, since continuous images of compact spaces are compact (cor. 6.12)
and since the closed interval [0, 1] is compact (example 6.7) we also obtain
another proof that the circle is compact.

Hence by prop. 6.21 the above map is in fact a homeomorphism

[0, 2 ]/ ∼ ≃ .

Compare this to the counter-example 3.23, which observed that the analogous
function
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[0, 2 ) ⟶ ⊂ ℝ

↦ (cos( ), sin( ))

is not a homeomorphism, even though this, too, is a bijection on the the
underlying sets. But the half-open interval [0, 2 ) is not compact, and hence
prop. 6.21 does not apply.

7. Universal constructions

One point of the general definition of topological space above is that it admits
constructions which intuitively should exist on “continuous spaces”, but which do
not in general exist on metric spaces.

Examples include the construction of quotient topological spaces of metric spaces,
which are not Hausdorff anymore (e.g. example 4.10), and hence in particular are
not metric spaces anymore (by example 4.2).

Now from a more abstract point of view, a quotient topological space is a special
case of a “colimit” of topological spaces. This we explain now.

Generally, for every diagram in the category Top of topological space (remark
\ref{TopCat}), hence for every collection of topological spaces with a system of
continuous functions betwen them, then there exists a further topological space,
called the colimiting space of the diagram, which may be thought of as the result
of “gluing” all the spaces in the diagram together, while using the maps between
them in order to identify those parts “along which” the spaces are to be glued.

One may formalize this intuition by saying that the colimiting space has the
property that it receives compatible continuous functions from all the spaces in
the diagram, and that it is characterized by the fact that it is universal with this
property: every compatible system of maps to another space uniquely factors
through the colimiting one.

Therefore forming colimits of topological spaces is a convenient means to
construct new spaces which have prescribed properties for continuous functions
out of them. We implicitly used a simple special case of this phenomenon in the
proof of the Hausdorff reflection in prop. 4.12, when we concluded the existence
of certain unique factorizing maps out of the Hausdorff qotient of a topological
space.

Dual to the concept of colimits of topological space is that of “limits” of diagrams
of topological spaces (not to be confused with limits of sequences in a topological
space). Here one considers topological spaces with the universal property of
having compatible continuous functions into a given diagram of spaces.

Most constructions of new topological spaces that one builds from given spaces
are obtained by forming limits and/or colimits of diagrams of the original spaces.

Definition 7.1. Let { = ( , ) ∈ Top} ∈  be a class of topological spaces, and let

∈ Set be a bare set. Then
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For { → } ∈  a set of functions out of , the initial topology ({ } ∈ ) is

the topology on  with the minimum collection of open subsets such that
all : ( , ({ } ∈ )) →  are continuous.

For { → } ∈  a set of functions into , the final topology ({ } ∈ ) is the

topology on  with the maximum collection of open subsets such that all
: → ( , ({ } ∈ )) are continuous.

Example 7.2. For  a single topological space, and : ↪ ( ) a subset of its
underlying set, then the initial topology ( ), def. 7.1, is the subspace
topology, making

: ( , ( )) ↪

a topological subspace inclusion.

Example 7.3. Conversely, for : ( ) ⟶  an epimorphism, then the final

topology ( ) on  is the quotient topology.

Proposition 7.4. Let  be a small category and let • : ⟶ Top be an -diagram in
Top (a functor from  to Top), with components denoted = ( , ), where

∈ Set and  a topology on . Then:

The limit of • exists and is given by the topological space whose
underlying set is the limit in Set of the underlying sets in the diagram, and
whose topology is the initial topology, def. 7.1, for the functions  which

are the limiting cone components:

lim←⎯⎯ ∈

↙ ↘

⟶

.

Hence

lim←⎯⎯ ∈
≃ lim←⎯⎯ ∈

, ({ } ∈ )

1. 

The colimit of • exists and is the topological space whose underlying set is
the colimit in Set of the underlying diagram of sets, and whose topology is
the final topology, def. 7.1 for the component maps  of the colimiting
cocone

⟶

↘ ↙

lim→⎯⎯ ∈

.

Hence

2. 
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lim→⎯⎯ ∈
≃ lim→⎯⎯ ∈

, ({ } ∈ )

(e.g. Bourbaki 71, section I.4)

Proof. The required universal property of lim←⎯⎯ ∈
, ({ } ∈ )  is immediate:

for

( , )

↙ ↘

⟶

any cone over the diagram, then by construction there is a unique function of
underlying sets ⟶ lim←⎯⎯ ∈

 making the required diagrams commute, and so all

that is required is that this unique function is always continuous. But this is
precisely what the initial topology ensures.

The case of the colimit is formally dual.  ▮

Examples of (co-)limits of topological spaces

Example 7.5. The limit over the empty diagram in Top is the point * with its
unique topology.

Example 7.6. For { } ∈  a set of topological spaces, their coproduct ⊔
∈

∈ Top is

their disjoint union (example 2.15).

Example 7.7. For { } ∈  a set of topological spaces, their product ∏ ∈ ∈ Top is

the Cartesian product of the underlying sets equipped with the product
topology, also called the Tychonoff product.

In the case that  is a finite set, such as for binary product spaces × , then a
sub-basis for the product topology is given by the Cartesian products of the
open subsets of (a basis for) each factor space.

Example 7.8. The equalizer of two continuous functions , : ⟶⟶  in Top is the
equalizer of the underlying functions of sets

eq( , ) ↪ ⟶⟶

(hence the largets subset of  on which both functions coincide) and equipped
with the subspace topology, example 7.2.

Example 7.9. The coequalizer of two continuous functions , : ⟶⟶  in Top is the
coequalizer of the underlying functions of sets
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⟶⟶ ⟶ coeq( , )

(hence the quotient set by the equivalence relation generated by ( ) ∼ ( ) for
all ∈ ) and equipped with the quotient topology, example 7.3.

Example 7.10. For

⟶

↓

two continuous functions out of the same domain, then the colimit under this
diagram is also called the pushout, denoted

⟶

↓ ↓ *

⟶ ⊔ .

.

(Here 
*

 is also called the pushout of , or the cobase change of  along .) If

 is an inclusion, one also write ∪  and calls this the attaching space.

By example 7.9 the
pushout/attaching
space is the quotient
topological space

⊔ ≃ ( ⊔ )/ ∼

of the disjoint union of
 and  subject to the

equivalence relation which identifies a point in  with a point in  if they have
the same pre-image in .

(graphics from Aguilar-Gitler-Prieto 02)

Example 7.11. As an important special case of example 7.10, let

: − ⟶

be the canonical inclusion of the standard (n-1)-sphere as the boundary of the
standard n-disk (both regarded as topological spaces with their subspace
topology as subspaces of the Cartesian space ℝ ).

Then the colimit in Top under the diagram, i.e. the pushout of  along itself,

⟵ − ⟶ ,

is the n-sphere :
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− ⟶

↓ (po) ↓

⟶

.

(graphics from Ueno-Shiga-
Morita 95)

(…)

This concludes Section 1 Point-set topology.

For the next section see_Secton 2 -- Basic homotopy theory_.
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