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Introduction to Topology -- 2

This page is a detailed introduction to basic topological homotopy theory. We
introduce the fundamental group of topological spaces and the concept of covering
spaces. Then we prove the fundamental theorem of covering spaces, saying that
they are equivalent to permutation representations of the fundamental group. This
is a simple topological version of the general principle of Galois theory and has
many applications. As one example application, we use it to prove that the
fundamental group of the circle is the integers.

Under construction.
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In order to handle topological spaces, to compute their properties and distinguish
them, it turns out to be useful to consider not just continuity within a topological
space, but also continuous deformations of continuous functions between
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topological spaces. This is the concept of homotopy, and its study is homotopy
theory. We introduce the basic concept and consider its most fundamental
application: the fundamental group and its relation to the classification of covering
spaces.

1. Homotopy

It is clear that for ݊ ≥ 1 the Euclidean space ℝ௡ or equivalently the open ball ଴ܤ
∘(1)

in ℝ௡ is not homeomorphic to the point space * = ℝ଴ (simply because there is not
even a bijection between the underlying sets). Nevertheless, intuitively the ݊-ball
is a “continuous deformation” of the point, obtained as the radius of the ݊-ball
tends to zero.

This intuition is made precise by observing that there is a continuous function out
of the product topological space (this example) of the open ball with the closed
interval

:ߟ [0, 1] × ଴ܤ
∘(1) ⟶ ଴ܤ

∘(1)

which is given by rescaling:

,ݐ) (ݔ ↦ ݐ ⋅ ݔ .

This continuously interpolates between the open ball and the point, in that for ݐ = 1
it restricts to the identity, while for ݐ = 0 it restricts to the map constant on the
origin.

We may summarize this situation by saying that there is a diagram of continuous
functions of the form

଴ܤ
∘(1) × {0} ⟶

∃ !
*

↓ ↓ୡ୭୬ୱ୲బ

[0, 1] × ଴ܤ
∘ (1) →⎯⎯⎯⎯⎯⎯⎯

(௧,௫) ↦ ௧⋅ ௫
଴ܤ

∘(1)

↑ ↗≃

଴ܤ
∘ (1) × {1}

Such “continuous deformations” are called homotopies:

In the following we use this terminlogy:

Definition 1.1. (topological interval)

The topological interval is

the closed interval [0, 1] ⊂ ℝଵ regarded as a topological space in the
standard way, as a subspace of the real line with its Euclidean metric
topology,

1. 

equipped with the continuous functions2. 
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const଴ : * → [0, 1]1. 

constଵ : * → [0, 1]2. 

which include the point space as the two endpoints, respectively

equipped with the (unique) continuous function

[0, 1] ⟶ *

to the point space (which is the terminal object in Top)

3. 

regarded, in summary, as a factorization

∇* : * ⊔ * →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
(ୡ୭୬ୱ୲బ,ୡ୭୬ୱ୲భ)

[0, 1] ⟶ *

of the codiagonal on the point space, namely the unique continuous function ∇*

out of the disjoint union space * ⊔ * ≃ Disc({0, 1}) (homeomorphic to the discrete
topological space on two elements).

Definition 1.2. (homotopy)

Let ܺ, ܻ ∈ Top be two topological spaces and let

݂, ݃ : ܺ ⟶ ܻ

be two continuous functions between them.

A (left) homotopy from ݂ to ݃, to be denoted

ߟ : ݂ ⇒ ݃ ,

is a continuous function

ߟ : ܺ × [0, 1] ⟶ ܻ

out of the product topological space (this example) of ܺ the topological interval
(def. 1.1) such that this makes the following diagram in Top commute:

0 × ܺ

(୧ୢ,ୡ୭୬ୱ୲బ) ↓ ↘௙

ܺ × [0, 1] ⟶
ఎ

ܻ

(୧ୢ,ୡ୭୬ୱ୲భ) ↑ ↗௚

{1} × ܺ

.

graphics grabbed from J.
Tauber here

hence such that

)ߟ −, 0) = ݂ and )ߟ −, 1) = ݃ .
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If there is a homotopy ݂ ⇒ ݃ (possibly unspecified) we say that ݂ is homotopic to
݃, denoted

݂ ∼௛ ݃ .

Proposition 1.3. (homotopy is an equivalence relation)

Let ܺ, ܻ ∈ Top be two topological spaces. Write Hom୘୭୮(ܺ, ܻ) for the set of
continuous functions from ܺ to ܻ.

Then the relating of being homotopic (def. 1.2) is an equivalence relation on this
set. The correspnding quotient set

[ܺ, ܻ] ≔ Hom୘୭୮(ܺ, ܻ)/ ∼௛

is called the set of homotopy classes of continuous functions.

Moreover, this equivalence relation is compatible with composition of continuous
functions:

For ܺ, ܻ, ܼ ∈ Top three topological spaces, there is a unique function

[ܺ, ܻ] × [ܻ, ܼ] ⟶ [ܺ, ܼ]

such that the following diagram commutes:

Hom୘୭୮(ܺ, ܻ) × Hom୘୭୮(ܻ, ܼ) →⎯⎯⎯⎯
∘೉,ೊ,ೋ

Hom୘୭୮(ܺ, ܼ)

↓ ↓

[ܺ, ܻ] × [ܻ, ܼ] ⟶ [ܺ, ܼ]

.

Proof. To see that the relation is reflexive: A homotopy ݂ ⇒ ݂ from a function ݂ to
itself is given by the function which is constant on the topological interval:

ܺ × [0, 1] ⟶
୮୰భ ܺ .

This is continuous becaue projections out of product topological spaces are
continuous, by the universal property of the Cartesian product.

To see that the relation is symmetric: If ߟ : ݂ ⇒ ݃ is a homotopy then

ܺ × [0, 1] →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
୧ୢ೉ × (ଵ− ( −))

ܺ × [0, 1] ⟶
ఎ

ܺ

,ݔ) (ݐ ↦ ,ݔ) 1 − (ݐ ↦ ,ݔ)ߟ 1 − (ݐ

is a homotopy ݃ ⇒ ݂. This is continuous because 1 − (−) is a polynomial function,
and polynomials are continuous, and because Cartesian product and composition
of continuous functions is again continuous.

Finally to see that the relation is transitive: If ߟଵ : ݂ ⇒ ݃ and ߟଶ : ݃ ⇒ ℎ are two

composable homotopies, then consider the “ܺ-parameterized path concatenation”
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ܺ × [0, 1] →⎯⎯⎯⎯
ఎమ ∘ఎభ ܺ

,ݔ) (ݐ ↦ ቐ
,ݔ)ଵߟ (ݐ2 | ݐ ≤ 1/2

,ݔ)ଶߟ ݐ2 − 1) | ݐ ≤ 1/2

.

To see that this is continuous, observe that {ܺ × [0, 1/2] ⊂ ܺ, ܺ × [1/2, 1] ⊂ ܺ} is a
cover of ܺ × [0, 1] by closed subsets (in the product topology) and because
,−)ଵߟ 2( −)) and ߟଶ( −, 2( −) − 1) are continuous (being composites of Cartesian

products of continuous functions) and agree on the intersection ܺ × {1/2}. Hence
the continuity follows by this example.

Finally to see that homotopy respects composition: Let

ܺ ⟶
௙భ ܻ⟶

௙ᇱమ

⟶
௙మ

ܼ ⟶
௙య ܹ

be continuous functions, and let

ߟ : ݂ଶ ⇒ ݂′ଶ

be a homotopy. It is sufficient to show that then there is a homotopy of the form

݂ଷ ∘ ݂ଶ ∘ ݂ଵ ⇒ ݂ଷ ∘ ݂′ଶ ∘ ݂ଵ .

This is exhibited by the following diagram

ܺ ⟶
௙భ ܻ

(୧ୢ೉,ୡ୭୬ୱ୲బ) ↓ (୧ୢೊ,ୡ୭୬ୱ୲బ) ↓ ↘௙మ

ܺ × [0, 1] →⎯⎯⎯⎯⎯⎯⎯⎯
௙భ ×୧ୢ[బ,భ]

ܻ × [0, 1] ⟶
ఎ

ܼ ⟶
௙య ܹ

(୧ୢ೉,ୡ୭୬ୱ୲భ) ↑ (୧ୢ,ୡ୭୬ୱ୲భ) ↑ ↗௙ᇱమ

ܺ ⟶
௙భ

ܻ

.

  ▮

Remark 1.4. (homotopy category)

Prop. 1.3 means that homotopy classes of continuous functions are the
morphisms in a category whose objects are still the topological spaces.

This category (at least when restricted to spaces that admit the structure of CW-
complexes) is called the classical homotopy category, often denoted

Ho(Top) .

Hence for ܺ, ܻ topological spaces, then

Homୌ୭(୘୭୮)(ܺ, ܻ) = [ܺ, ܻ]
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Moreover, sending a continuous function to its homotopy class is a functor

ߢ : Top ⟶ Ho(Top)

from the ordinary category Top of topological spaces with actual continuous
functions between them.

Definition 1.5. (homotopy equivalence)

Let ܺ, ܻ ∈ Top be two topological spaces.

A continuous function

݂ : ܺ ⟶ ܻ

is called a homotopy equivalence if there exists

a continuous function the other way around,

݃ : ܻ ⟶ ܺ

1. 

homotopies (def. 1.2) from the two composites to the respective identity
function:

2. 

݂ ∘ ݃ ⇒ id௒

and

݃ ∘ ݂ ⇒ id௑ .

We indicate that a continuous function is a homotopy equivalence by writing

ܺ ⟶
≃೓ ܻ .

If there exists some (possibly unspecified) homotopy equivalence between
topological spaces ܺ and ܻ we write

ܺ ≃௛ ܻ .

Remark 1.6. (homotopy equivalences are the isomorphisms in the
homotopy category)

In view of remark 1.4 a continuous function ݂ is a homotopy equivalence
precisely if its image ߢ(݂) in the homotopy category is an isomorphism.

Example 1.7. (homeomorphism is homotopy equivalence)

Every homeomorphism is a homotopy equivalence (def. 1.5).

Proposition 1.8. (homotopy equivalence is equivalence relation)

Being homotopy equivalent is an equivalence relation on the class of topological
spaces.

Proof. This is immediate from remark 1.6 by general properties of categories and
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functors.

But for the record we spell it out. This involves the construction already used in
the proof of prop. 1.3:

It is clear that the relation it reflexive and symmetric. To see that it is transitive
consider continuous functions

ܺ⟵
௚భ

⟶
௙భ

ܻ⟵
௚మ

⟶
௙మ

ܼ

and homotopies

݃ଵ ∘ ݂ଵ ⇒ id௑ ݂ଵ ∘ ݃ଵ ⇒ id௒

݃ଶ ∘ ݂ଶ ⇒ id௒ ݂ଶ ∘ ݃ଶ ⇒ id௓ .

We need to produce homotopies of the form

(݃ଵ ∘ ݃ଶ) ∘ (݂ଶ ∘ ݂ଵ) ⇒ id௑

and

(݂ଶ ∘ ݂ଵ) ∘ (݃ଵ ∘ ݃ଶ) ⇒ id௒ .

Now the diagram

ܺ ⟶
௙భ ܻ

(୧ୢ೉,ୡ୭୬ୱ୲బ) ↓ (୧ୢೊ,ୡ୭୬ୱ୲బ) ↓ ↘௚మ ∘ ௙మ

ܺ × [0, 1] →⎯⎯⎯⎯⎯⎯⎯⎯
௙భ × ୧ୢ[బ,భ]

ܻ × [0, 1] ⟶
ఎ

ܻ ⟶
௚భ ܺ

(୧ୢ೉,ୡ୭୬ୱ୲భ) ↑ (୧ୢ,ୡ୭୬ୱ୲భ) ↑ ↗୧ୢೊ

ܺ ⟶
௙భ

ܻ

,

with ߟ one of the given homotopies, exhibits a homotopy
(݃ଵ ∘ ݃ଶ) ∘ (݂ଶ ∘ ݂ଵ) ⇒ ݃ଵ ∘ ݂ଵ. Composing this with the given homotopy ݃ଵ ∘ ݂ଵ ⇒ id௑

gives the first of the two homotopies required above. The second one follows by
the same construction, just with the lables of the functions exchanged.  ▮

Definition 1.9. (contractible topological space)

A topological space ܺ is called contractible if the unique continuous function to
the point space

ܺ ⟶
≃೓

*

is a homotopy equivalence (def. 1.5).

Remark 1.10. (contractible topological spaces are the terminal objects in
the homotopy category)
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In view of remark 1.4, a topological space ܺ is contractible (def. 1.9) precisely if
its image ߢ(ܺ) in the classical homotopy category is a terminal object.

Example 1.11. (closed ball and Euclidean space are contractible)

Let ܤ௡ ⊂ ℝ௡ be the unit open ball or closed ball in Euclidean space. This is
contractible (def. 1.9):

݌ : ௡ܤ ⟶
≃೓

* .

The homotopy inverse function is necessarily constant on a point, we may just
as well choose it to go pick the origin:

const଴ : * ⟶ ௡ܤ .

For one way of composing these functions we have the equality

݌ ∘ const଴ = id*

with the identity function. This is a homotopy by prop. 1.3.

The other composite is

const଴ ∘ ݌ = const଴ : ௡ܤ ⟶ ௡ܤ .

Hence we need to produce a homotopy

const଴ ⇒ id஻೙

This is given by the function

௡ܤ × [0, 1] ⟶
ఎ

௡ܤ

,ݔ) (ݐ ↦ ݔݐ
,

where on the right we use the multiplication with respect to the standard real
vector space structure in ℝ௡.

Since the open ball is homeomorphic to the whole Cartesian space ℝ௡ (this
example) it follows with example 1.7 and example 1.3 that also ℝ௡ is a
contractible topological space:

ℝ௡ ⟶
≃೓

* .

In direct generalization of the construction in example 1.11 one finds further
examples as follows:

Example 1.12. The following three graphs
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(i.e. the evident topological subspaces of the plane ℝଶ that these pictures
indicate) are not homeomorphic. But they are homotopy equivalent, in fact they
are each homotopy equivalent to the disk with two points removed, by the
homotopies indicated by the following pictures:

graphics grabbed from Hatcher

Fundamental group

Definition 1.13. (homotopy relative boundary)

Let ܺ be a topological space and let

,ଵߛ ଶߛ : [0, 1] ⟶ ܺ

be two paths in ܺ, i.e. two continuous functions from the closed interval to ܺ,
such that their endpoints agree:

ଵ(0)ߛ = ଶ(0)ߛ ଵ(1)ߛ = ଶ(1)ߛ .

Then a homotopy relative boundary from ߛଵ to ߛଶ is a homotopy (def. 1.2)

ߟ : ଵߛ ⇒ ଶߛ

such that it does not move the endpoints:

,0)ߟ −) = constఊభ(଴) = constఊమ(଴) ,1)ߟ −) = constఊభ(଴) = constఊమ(ଵ) .

Proposition 1.14. (homotopy relative boundary is equivalence relation on
sets of paths)

Let ܺ be a topological space and let ݔ, ݕ ∈ ܺ be two points. Write

ܲ௫,௬ܺ

for the set of paths (0)ߛ in ܺ with ߛ = (1)ߛ and ݔ = .ݕ

Then homotopy relative boundary (def. 1.13) is an equivalence relation on ܲ௫,௬ܺ.

The corresponding set of equivalence classes is denoted

Hom௽భ(௑)(ݔ, (ݕ ≔ (ܲ௫,௬ܺ)/ ∼ .

Recall the operations on paths: path concatenation ଶߛ ⋅ ଵ, path reversionߛ and̅ ߛ̅

constant paths
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Proposition 1.15. (concatenation of homotopy relative boundary-classes
of paths)

For ܺ a topological space, then the operation of path concatenation descends to
homotopy relative boundary equivalence classes, so that for all ݔ, ,ݕ ݖ ∈ ܺ there is
a function

Hom௽భ(௑)(ݔ, (ݕ × Hom௽భ(௑)(ݕ, (ݖ ⟶ Hom௽భ(௑)(ݔ, (ݖ

,[ଵߛ]) ([ଶߛ] ↦ [ଶߛ] ⋅ [ଵߛ] ≔ ଶߛ] ⋅ [ଵߛ
.

Moreover,

this composition operation is associative in that for all ݔ, ,ݕ ,ݖ ݓ ∈ ܺ and
[ଵߛ] ∈ Hom௽భ(௑)(ݔ, [ଶߛ] ,(ݕ ∈ Hom௽భ(௑)(ݕ, [ଷߛ] and (ݖ ∈ Hom௽భ(௑))(ݖ, then (ݓ

[ଷߛ] ⋅ [ଶߛ]) ⋅ ([ଵߛ] = [ଷߛ]) ⋅ ([ଶߛ] ⋅ [ଵߛ]

1. 

this composition operation is unital with neutral elements the constant
paths in that for all ݔ, ݕ ∈ ܺ and [ߛ] ∈ Hom௽భ(௑)(ݔ, we have (ݕ

[const௬] ⋅ [ߛ] = [ߛ] = [ߛ] ⋅ [const௫] .

2. 

this composition operation has inverse elements given by path reversal in
that for all ݔ, ݕ ∈ ܺ and [ߛ] ∈ Hom௽భ(௑)(ݔ, we have (ݕ

̅[ߛ̅] ⋅ [ߛ] = [const௫] [ߛ] ⋅ ̅[ߛ̅] = [const௬] .

3. 

Definition 1.16. (fundamental groupoid and fundamental groups)

Let ܺ be a topological space. Then set of points of ܺ together with the sets
Hom௽భ(௑)(ݔ, of homotopy relative boundary-classes of paths (def. 1.13) for all (ݕ

points of points and equipped with the concatenation operation from prop. 1.15
is called the fundamental groupoid of ܺ, denoted

(ܺ)ଵߎ .

Given a choice of point ݔ ∈ ܺ, then one writes

,ܺ)ଵߨ (ݔ ≔ Hom௽భ(௑)(ݔ, (ݔ .

Prop. 1.15 says that under concatenation of paths, this set is a group. As such it
is called the fundamental group of ܺ at ݔ.

The following picture indicates the four non-equivalent non-trivial generators of
the fundamental group of the oriented surface of genus 2:
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Example 1.17. (fundamental group of Euclidean space)

For ݊ ∈ ℕ and ݔ ∈ ℝ௡ any point in the ݊-dimensional Euclidean space (regarded
with its metric topology) we have that the fundamental group (def. 1.16) at that
point is trivial:

,ଵ(ℝ௡ߨ (ݔ = * .

Remark 1.18. (basepoints)

Definition 1.16 intentionally offers two variants of the defintion.

The first, the fundamental groupoid is canonically given, without choosing a
basepoint. As a result, it is a structure that is not quite a group but, slightly
more generally, a “groupoid” (a “group with many objects”). We discuss the
concept of groupoids below.

The second, the fundamental group, is a genuine group, but its definition
requires picking a base point ݔ ∈ ܺ.

In this context it is useful to say that

a pointed topological space (ܺ, is (ݔ

a topological space ܺ;1. 

a ݔ ∈ ܺ in the underlying set.2. 

1. 

a homomorphism of pointed topological spaces ݂ : (ܺ, (ݔ ⟶ (ܻ, -is a base (ݕ
point preserving continuous function, namely

a continuous function ݂ : ܺ ⟶ ܻ1. 

such that ݂(ݔ) =  .2.ݕ

2. 

Hence there is a category, to be denoted, Top * /, whose objects are the pointed
topological spaces, and whose morphisms are tbe base-point preserving
continuous functions.

Similarly, a homotopy between morphisms ݂, ݂′ : (ܺ, (ݔ → (ܻ, in Top (ݕ * / is a
homotopy ߟ : ݂ ⇒ ݂′  of underlying continuous functions, as in def. 1.2, such that
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the corresponding function

ߟ : ܺ × [0, 1] ⟶ ܻ

preserves the basepoints in that

∀
௧ ∈ [଴,ଵ]

,ݔ)ߟ (ݐ = ݕ .

These pointed homotopies still form an equivalence relation as in prop. 1.3 and
hence quotienting these out yields the pointed analogue of the homotopy
category from def. 1.4, now denoted

ߢ : Top * / ⟶ Ho(Top * /) .

In general it is hard to explicitly compute the fundamental group of a topological
space. But often it is already useful to know if two spaces have the same
fundamental group or not:

Definition 1.19. (pushforward of elements of fundamental groups)

Let (ܺ, ,ܻ) and (ݔ be pointed topological space (remark 1.18) and let (ݕ

݂ : ܺ ⟶ ܻ

be a continuous function which respects the chosen points, in that ݂(ݔ) = .ݕ

Then there is an induced homomorphism of fundamental groups (def. 1.16)

,ܺ)ଵߨ (ݔ ⟶
௙

* ,ܻ)ଵߨ (ݕ

[ߛ] ↦ [݂ ∘ [ߛ

given by sending a closed path ߛ : [0, 1] → ܺ to the composite

݂ ∘ ߛ : [0, 1] ⟶
ఊ

ܺ ⟶
௙

ܻ .

Remark 1.20. (fundamental group is functor on pointed topological
spaces)

The pushforward operation in def. 1.19 is functorial, now on the category Top * /

of pointed topological spaces (remark 1.18)

ଵߨ : Top * / ⟶ Grp .

Proposition 1.21. (fundamental group depends only on homotopy classes)

Let ܺ, ܻ ∈ Top * / be pointed topological space and let ݂ଵ, ݂ଶ : ܺ ⟶ ܻ be two base-

point preserving continuous functions. If there is a pointed homotopy (def. 1.2,
remark 1.18)

ߟ : ݂ଵ ⇒ ݂ଶ

then the induced homomorphisms on fundamental groups (def. 1.19) agree
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(݂ଵ)
*

= (݂ଶ)
*

: ,ܺ)ଵߨ (ݔ → ,ܻ)ଵߨ (ݕ .

In particular if ݂ : ; ܺ ⟶ ܻ is a homotopy equivalence (def. 1.5) then
݂

*
: ,ܺ)ଵߨ (ݔ → ,ܻ)ଵߨ .is an isomorphism (ݕ

Proof. This follows by the fact that homotopy respects composition (prop. 1.3):

If ߛ : [0, 1] ⟶ ܺ is a closed path representing a given element of ߨଵ(ܺ, then the ,(ݔ
homotopy ݂ଵ ⇒ ݂ଶ induces a homotopy

݂ଵ ∘ ߛ ⇒ ݂ଶ ∘ ߛ

and therefore these represent the same elements in ߨଵ(ܻ, .(ݕ

If follows that if ݂ is a homotopy equivalence with homotopy inverse ݃, then
݃

*
: ,ܻ)ଵߨ (ݕ → ,ܺ)ଵߨ ݂ is an inverse morphism to (ݔ

*
: ,ܺ)ଵߨ (ݔ → ,ܻ)ଵߨ ݂ and hence (ݕ

*
 is

an isomorphism.  ▮

Remark 1.22. Prop. 1.21 says that the fundamental group functor from def. 1.19
and remark 1.20 factors through the classical pointed homotopy category from
remark 1.18:

Top * / ⟶
గభ Grp

఑ ↓ ↗

Ho(Top * /)

.

Definition 1.23. (simply connected topological space)

A topological space ܺ for which

(ܺ)଴ߨ ≃ *  (path connected)1. 

,ܺ)ଵߨ (ݔ ≃ 1 (the fundamental group is trivial, def. 1.16),2. 

is called simply connected.

We will need also the following local version:

Definition 1.24. (semi-locally simply connected topological space)

A topological space ܺ is called semi-locally simply connected if every point ݔ ∈ ܺ
has a neighbourhood ܷ௫ ⊂ ܺ such that every loop in ܺ is contractible as a loop in
ܺ, hence such that the induced morphism of fundamental groups (def. 1.19)

,ܷ)ଵߨ (ݔ → ,ܺ)ଵߨ (ݔ

is trivial (i.e. sends everything to the neutral element).

If every ݔ has a neighbourhood ܷ௫ which is itself simyply connected, then ܺ is
called a locally simply connected topological space. This implies semi-local
simply-connectedness.
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Example 1.25. (Euclidean space is simply connected)

For ݊ ∈ ℕ, then the Euclidean space ℝ௡ is a simply connected topological space
(def. 1.23).

Groupoids

In def. 1.16 we extracted the fundamental group at some point ݔ ∈ ܺ from a larger
algebraic structure, that incorporates all the basepoints, to be called the
fundamental groupoid. This larger algebraic structure of groupoids is usefully
made explicit for the formulation and proof of the fundamental theorem of
covering spaces (theorem 3.1 below) and the development of homotopy theory in
general.

Where a group may be thought of as a group of symmetry transformations that
isomorphically relates one object to itself (the symmetries of one object, such as
the isometries of a polyhedron) a groupoid is a collection of symmetry
transformations acting between possibly more than one object.

Hence a groupoid consists of a
set of objects ݔ, ,ݕ ,ݖ ⋯ and for
each pair of objects (ݔ, there (ݕ
is a set of transformations,
usually denoted by arrows

ݔ ⟶
௙

ݕ

which may be composed if they
are composable (i.e. if the first
ends where the second starts)

ݕ

௙ ↗ ↘௚

ݔ →⎯⎯
௚ ∘ ௙

ݖ

such that this composition is associative and such that for each object ݔ there is

identity transformation ݔ ⟶
୧ୢ೉ in that this is a neutral element for the composition ݔ

of transformations, whenever defined.

So far this structure is what is called a small category. What makes this a (small)
groupoid is that all these transformations are to be “symmetries” in that they are

invertible morphisms meaning that for each transformation ݔ ⟶
௙

there is a ݕ

transformation the other way around ݕ →⎯⎯⎯
௙ −భ

such that ݔ

݂ −ଵ ∘ ݂ = id௫ ݂ ∘ ݂ −ଵ = id௬ .

If there is only a single object ݔ, then this definition reduces to that of a group,
and in this sense groupoids are “groups with many objects”. Conversely, given any
groupoid ࣡ and a choice of one of its objects ݔ, then the subcollection of
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transformations from and to ݔ is a group, sometimes called the automorphism
group Aut࣡(ݔ) of ݔ in ࣡.

Just as for groups, the “transformations” above need not necessarily be given by
concrete transformations (say by bijections between objects which are sets). Just
as for groups, such a concrete realization is always possible, but is an extra choice
(called a representation of the groupoid). Generally one calls these

“transformations” morphisms: ݔ ⟶
௙

”and “domain ݔ ”is a morphism with “source ݕ
.ݕ

An archetypical example of a groupoid is the fundamental groupoid ଵ(ܺ) of aߎ
topological space (def. \ref{FundamentalGroupoid} below, for introduction see
here): For ܺ a topological space, this is the groupoid whose

objects are the points ݔ ∈ ܺ;

morphisms ݔ ⟶
[ఊ]

are the homotopy relative boundary-equivalence classes ݕ [ߛ]

of paths ߛ : [0, 1] → ܺ in ܺ, with (0)ߛ = (1)ߛ and ݔ = ;ݕ

and composition is given, on representatives, by concatenation of paths. Here the
class of the reverse path ߛ̄ : ݐ ↦ 1)ߛ − constitutes the inverse morphism, making (ݐ
this a groupoid.

If one chooses a point ݔ ∈ ܺ, then the corresponding group at that point is the
fundamental group ,ܺ)ଵߨ (ݔ ≔ Aut௽భ(௑)(ݔ) of ܺ at that point.

This highlights one of the reasons for being interested in groupoids over groups:
Sometimes this allows to avoid unnatural ad-hoc choices and it serves to
streamline and simplify the theory.

A homomorphism between groupoids is the obvious: a function between their
underlying objects together with a function between their morphisms which
respects source and target objects as well as composition and identity morphisms.
If one thinks of the groupoid as a special case of a category, then this is a functor.
Between groupoids with only a single object this is the same as a group
homomorphism.

For example if ݂ : ܺ → ܻ is a continuous function between topological spaces, then
postcomposition of paths with this function induces a groupoid homomorphism
݂

*
: (ܺ)ଵߎ ⟶ .ଵ(ܻ) between the fundamental groupoids from aboveߎ

Groupoids with groupoid homomorphisms (functors) between them form a
category Grp (def. 1.32 below) which includes the categeory Grp of groups as the
full subcategory of the groupoids with a single object. This makes precise how
groupoid theory is a genralization of group theory.

However, for groupoids more than for groups one is typically interested in
“conjugation actions” on homomorphisms. These are richer for groupoids than for
groups, because one may conjugate with a different morphism at each object. If
we think of groupoids as special cases of categories, then these “conjugation
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actions on homomorphisms” are natural transformations between functors.

For examples if ݂, ݃ : ܺ ⟶ ܻ are two continuous functions between topological
spaces, and if ߟ : ݂ ⇒ ݃ is a homotopy from ݂ to ݃, then the homotopy relative
boundary classes of the paths ,ݔ)ߟ −) : [0, 1] → ܻ constitute a natural transformation

between ݂
*
, ݃

*
: (ܺ)ଵߎ → ଵݔ ௬(ܻ) in that for all pathsߎ ⟶

[ఊ]
ଶ in ܺ we have theݔ

“conjugation relation”

,ଵݔ)ߟ] −)] ⋅ [݂ ∘ [ߛ = [݃ ∘ [ߛ ⋅ ,ଶݔ)ߟ] −)] i.e.

(ଵݔ)݂ →⎯⎯⎯⎯⎯⎯
[ఎ(௫భ, −)]

(ଵݔ)݃

[௙ ∘ ఊ] ↓ ↓[௙ ∘ఊ]

(ଵݔ)݂ →⎯⎯⎯⎯⎯⎯
[ఎ(௫మ, −)]

(ଶݔ)݃

.

Definition 1.26. (groupoid – dependently typed definition)

A small groupoid ࣡ is

a set ܺ, to be called the set of objects;1. 

for all pairs of objects (ݔ, (ݕ ∈ ܺ × ܺ a set Hom(ݔ, to be called the set of ,(ݕ
morphisms with domain or source and codomain or target ݔ ;ݕ

2. 

for all triples of objects (ݔ, ,ݕ (ݖ ∈ ܺ × ܺ × ܺ a function

∘௫,௬,௭ : Hom(ݕ, (ݖ × Hom(ݔ, (ݕ ⟶ Hom(ݔ, (ݖ

to be called composition

3. 

for all objects ݔ ∈ ܺ an element

id௫ ∈ Hom(ݔ, (ݔ

to be called the identity morphism on ݔ;

4. 

for all pairs ݔ, ݕ ∈ Hom(ݔ, of obects a function (ݕ

( −) −ଵ : Hom(ݔ, (ݕ ⟶ Hom(ݕ, (ݔ

to be called the inverse-assigning function

5. 

such that

(associativity) for all quadruples of objects ݔଵ, ,ଶݔ ,ଷݔ ସݔ ∈ ܺ and all triples of
morphisms ݂ ∈ Hom(ݔଵ, ݃ ,(ଶݔ ∈ Hom(ݔଶ, ଷ) and ℎݔ ∈ Hom(ݔଷ, ସ) an equalityݔ

ℎ ∘ (݃ ∘ ݂) = (ℎ ∘ ݃) ∘ ݂

1. 

(unitality) for all pairs of objects ݔ, ݕ ∈ ܺ and all moprhisms ݂ ∈ Hom(ݔ, (ݕ

equalities

id௬ ∘ ݂ = ݂ ݂ ∘ id௫ = ݂

2. 
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(invertibility) for all pairs of objects ݔ, ݕ ∈ ܺ and every morphism
݂ ∈ Hom(ݔ, (ݕ equalities

݂ −ଵ ∘ ݂ = id௫ ݂ ∘ ݂ −ଵ = id௬ .

3. 

If ࣡ଵ, ࣡ଶ are two groupoids, then a homomorphism or functor between them,

denoted

ܨ : ࣡ଵ ⟶ ࣡ଶ

is

a function ଴ܨ : ܺଵ ⟶ ܺଶ between the respective sets of objects;1. 

for each pair ݔ, ݕ ∈ ܺଵ of objects a function

௫,௬ܨ : Hom࣡భ
,ݔ) (ݕ ⟶ Hom࣡మ

,(ݔ)଴ܨ) ((ݕ)଴ܨ

between sets of morphisms

2. 

such that

(respect for composition) for all triples ݔ, ,ݕ ݖ ∈ ܺଵ and all ݂ ∈ Hom(ݔ, and (ݕ
݃ ∈ Hom(ݕ, an equality (ݖ

(݃)௬,௭ܨ ∘ଶ (݂)௫,௬ܨ = ݃)௫,௭ܨ ∘ଵ ݂)

1. 

(respect for identities) for all ݔ ∈ ܺ an equality

௫,௫(id௫)ܨ = idிబ(௫) .

2. 

For ࣡ଵ, ࣡ଶ two groupoids, and for ܨ, ܩ : ࣡ଵ → ࣡ଶ two groupoid

homomorphisms/functors, then a conjugation or homotopy or natural
transformation (necessarily a natural isomorphism)

ߟ : ܨ ⇒ ܩ

is

for each object ݔ ∈ ܺଵ of ࣡ଵ a morphism ߟ௫ ∈ Hom࣡మ
,(ݔ)ܨ) ((ݕ)ܩ

such that

for all ݔ, ݕ ∈ ܺଵ and ݂ ∈ Hom࣡భ
,ݔ) an equality (ݕ

௬ߟ ∘ଶ (݂)ܨ = (݂)ܩ ∘ ௫ߟ

(ݔ)ܨ ⟶
ఎೣ (ݔ)ܩ

ி(௙) ↓ ↓ீ(௙)

(ݕ)ܨ ⟶
ఎ೤

(ݕ)ܩ

For ࣡ଵ, ࣡ଶ two groupoids and ܨ, ,ܩ :ܪ ࣡ଵ ⟶ ࣡ଶ three functors between them and

Introduction to Topology -- 2 in nLab https://ncatlab.org/nlab/print/Introduction+to+Topology+--+2

17 of 45 7/11/17, 4:41 PM



ଵߟ : Rihtarrowܨ ଶߟ and ܩ : ܩ ⇒ conjugation actions/natural isomorphisms ܪ

between these, there is the composite

ଶߟ : ଵߟ : ܨ ⇒ ܪ

with components the composite of the components

ଶߟ) ∘ (ݔ)(ଵߟ ≔ (ݔ)ଶߟ ∘ (ݔ)ଵߟ .

This yields for any two groupoid a hom-groupoid

Homୋ୰୮ୢ(࣡ଵ, ࣡ଶ)

whose objects are the groupoid homomorphisms / functors, and whose
morphisms are the conjugation actions / natural transformations.

Remark 1.27. (groupoids are special cases of categories)

A small groupoid (def. \ref{GroupoidGlobalDefinition}) is equivalently a small
category in which all morphisms are isomorphisms.

While therefore groupoid theory may be regarded as a special case of category
theory, it is noteworthy that the two theories are quite different in character. For
example higher groupoid theory is homotopy theory which is rich but quite
tractable, for instance via tools such as simplicial homotopy theory or homotopy
type theory, while higher category theory is intricate and becomes tractable
mostly by making recourse to higher groupoid theory in the guise of (infinity,1)-
category theory and (infinity,n)-categories.

Example 1.28. (delooping of a group)

Let ܩ be a group. Then there is a groupoid, denoted ܩܤ, with a single object ݌,
with morphisms

Hom஻ீ(݌, (݌ ≔ ܩ

the elements of ܩ, with composition the multiplication in ܩ, with identity
morphism the neutral element in ܩ and with inverse morphisms the inverse
elements in ܩ.

This is also called the delooping of ܩ (because the loop space object of ܩܤ at the
unique point is the given group: ܩܤߗ ≃ .(ܩ

Example 1.29. (disjoint union/coproduct of groupoids)

Let {࣡௜}௜ ∈ ூ be a set of groupoids. Then their disjoint union (coproduct) is the

groupoid

⊔
௜ ∈ ூ

࣡௜

whose set of objects is the disjoint union of the sets of objects of the summand
groupoids, and whose sets of morphisms between two objects is that of ࣡௜ if
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both objects are form this groupoid, and is empty otherwise.

Example 1.30. (disjoint union of delooping groupoids)

Let {ܩ௜}௜ ∈ ூ be a set of groups. Then there is a groupoid ⊔
௜ ∈ ூ

௜ which is theܩܤ

disjoint union groupoid (example 1.29) of the delooping groupoids ܩܤ௜ (example
1.28).

Its set of objects is the index set ܫ, and

Hom(݅, ݆) = ൝
௜ܩ | ݅ = ݆

∅ | otherwise

Example 1.31. (groupoid core of a category)

For ࣝ any (small) category, then there is a maximal groupoid inside

Core(ࣝ) ↪ ࣝ

sometimes called the core of ࣝ. This is obtained from ࣝ simply by discarding all
those morphisms that are not isomorphisms.

For instance

For ࣝ = Set then Core(Set) is the goupoid of sets and bijections between
them.

For ࣝ FinSet then the skeleton of this groupoid (prop. 1.43) is the disjoint
union of deloopings (example 1.30) of all the symmetric groups:

Core(FinSet) ≃ ⊔
௡ ∈ ℕ

(݊)ߑ

For ࣝ = Vect then Core(Vect) is the groupoid of vector spaces and linear
bijections between them.

For ࣝ = FinVect then the skeleton of this groupoid is the disjoint union of
delooping of all the general linear groups

Core(FinVect) ≃ ⊔
௡ ∈ ℕ

GL(݊) .

Remark 1.32. (1-category of groupoids)

From def. 1.26 we see that there is a categorywhose

objects are the small groupoids;

morphisms are the groupoid homomorphisms (functors).

But since this 1-category does not reflect the existence of homotopies/natural
isomorphisms between homomorphsims/functors of groupoids (def. 1.26) this
1-category is not what one is interested in when considering homotopy
theory/higher category theory.
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In order to obtain the right notion of category of groupoids that does reflect
homotopies, we first consider now the horizontal composition of
homotopies/natural transformations.

Lemma 1.33. (horizontal composition of homotopies with morphisms)

Let ࣡ଵ, ࣡ଶ, ࣡ଷ, ࣡ସ be groupoid and let

࣡ଵ ⟶
ிభ ࣡ଶ ⇓ᇰ ߟ

⟶
ிమ

⟶
ிᇱమ

࣡ଷ ⟶
ிయ ࣡ଷ

be morphisms and a homotopy ߟ. Then there is a homotopy

࣡ଵ ⇓
ᇰᇰ ଶܨ ⋅ ଵܨ⋅ߟ

⟶
ிయ ∘ ிᇱమ ∘ிభ

⟶
ிయ ∘ ிᇱమ ∘ிభ

࣡ଶ

between the respective composites, with components given by

ଶܨ) ⋅ ߟ ⋅ (ݔ)(ଵܨ ≔ (((ݔ)ଵܨ)ߟ)ଶܨ .

This operation constitutes a groupoid homomorphism/functor

ଷܨ ⋅ ( −) ⋅ ଵܨ : Homୋ୰୮ୢ(࣡ଶ, ࣡ଷ) ⟶ Homୋ୰୮(࣡ଵ, ࣡ସ) .

Proof. The respect for identities is clear. To see the respect for composition, let

࣡ଶ

⟶
ி

⇓ ଵߟ

⟶
ீ

⇓ ଶߟ

⟶
ு

࣡ଷ

be two composable homotopies. We need to show that

ଷܨ ⋅ ଶߟ) ∘ ଵߟ ⋅ ଵܨ = ଷܨ) ⋅ ଶߟ ⋅ (ଵܨ ∘ ଷܨ) ⋅ ଵߟ ⋅ (ଵܨ .

Now for ݔ any object of ࣡ଵ we find

ଷܨ) ⋅ ଶߟ) ∘ ଵߟ ⋅ (ݔ)(ଵܨ ≔ ଶߟ))ଶܨ ∘ (((ܺ)ଵܨ)(ଵߟ

≔ ((ݔ)ଵܨ)ଶߟ)ଷܨ ∘ (((ݔ)ଵܨ)ଵߟ

= (((ݔ)ଵܨ)ଶߟ)ଶܨ ∘ (((ܺ)ଵܨ)ଵߟ)ଶܨ

= ଷܨ)) ⋅ ଶߟ ⋅ (ଵܨ ∘ ଷܨ) ⋅ ଵߟ ⋅ (ݔ)((ଵܨ

.

Here all steps are unwinding of the definition of horizontal and of ordinary
(vbertical) composition of homotopies, except the third equality, which is the
functoriality of ܨଶ.  ▮
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Lemma 1.34. (horizontal composition of homotopies)

Consider a diagram of groupoids, groupoid homomorphsims (functors) and
homotopies (natural transformations) as follows:

࣡ଵ ⇓ᇰᇰ ⎯⎯⎯⎯→ଵߟ
ிᇱభ

→⎯⎯⎯⎯
ிభ

࣡ଶ ⇓ᇰᇰ ⎯⎯⎯⎯→ଶߟ
ிᇱమ

→⎯⎯⎯⎯
ிమ

࣡ଷ

The horizontal composition of the homotopies to a single homotopy of the form

࣡ଵ ⇓ᇰᇰ ଶߟ ⋅ ⎯⎯⎯⎯⎯⎯⎯⎯→ଵߟ
ிᇱమ ∘ ிᇱభ

→⎯⎯⎯⎯⎯⎯⎯⎯
ிమ ∘ ிభ

࣡ଷ

may be defined in temrs of the horizontal composition of homotopies with
morphisms (lemma 1.33) and the (“vertical”) composition of homotopies with
themselves, in two different ways, namely by decomposing the above diagram
as

࣡ଵ ⇓ᇰᇰ ⎯⎯⎯⎯→ଵߟ
ிᇱభ

→⎯⎯⎯⎯
ிభ

࣡ଶ
⟶
ிమ

࣡ଷ

࣡ଵ ⟶
ிᇱభ

࣡ଶ ⇓ᇰᇰ ⎯⎯⎯⎯→ଶߟ
ிᇱమ

→⎯⎯⎯⎯
ிమ

࣡ଷ

or as

࣡ଵ
⟶
ிభ

࣡ଶ ⇓ᇰᇰ ⎯⎯⎯⎯→ଶߟ
ிᇱమ

→⎯⎯⎯⎯
ிమ

࣡ଷ

࣡ଵ ⇓ᇰᇰ ⎯⎯⎯⎯→ଵߟ
ிᇱభ

→⎯⎯⎯⎯
ிభ

࣡ଶ ⟶
ிᇱమ

࣡ଷ

In the first case we get

ଶߟ ⋅ ଵߟ ≔ ଶߟ) ⋅ ଵ′ܨ ) ∘ ଶܨ) ⋅ (ଵߟ

while in the second case we get

ଶߟ ⋅ ଵߟ ≔ ଶ′ܨ) ⋅ (ଵߟ ∘ ଶߟ) ⋅ (ଵܨ .

These two definitions coincide.

Proof. For ݔ an object of ࣡ଵ, then we need that the following square diagram

commutes in ࣡ଷ
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((ݔ)ଵܨ)ଶܨ →⎯⎯⎯⎯⎯⎯⎯⎯
(ிమ ⋅ ఎభ)(௫)

ଵ′ܨ)ଶܨ ((ݔ)

(ఎమ ⋅ ிభ)(௫) ↓ ↓(ఎమ ⋅ ிᇱభ )(௫)

ଶ′ܨ ((ݔ)ଵܨ) →⎯⎯⎯⎯⎯⎯⎯⎯
(ிᇱమ ⋅ఎభ)(௫)

ଶ′ܨ ଵ′ܨ) ((ݕ)

=

((ݔ)ଵܨ)ଶܨ →⎯⎯⎯⎯⎯⎯⎯
ிమ(ఎభ(௫))

ଵ′ܨ)ଶܨ ((ݔ)

ఎమ(ிభ(௫)) ↓ ↓ఎమ(ிᇱభ (௫))

ଶ′ܨ ((ݔ)ଵܨ) →⎯⎯⎯⎯⎯⎯⎯⎯
ிᇱమ (ఎభ(௫))

ଶ′ܨ ଵ′ܨ) ((ݕ)

.

But the ommutativity of the square on the right is the defining compatibility
condition on the components of ߟଶ applied to the morphism ߟଵ(ݔ) in ࣡ଶ.  ▮

Proposition 1.35. (horizontal composition with homotopy is natural
transformation)

Consider groupoids, homomorphisms and homotopies of the form

࣡ଵ ⇓ᇰᇰ ⎯⎯⎯⎯→ଵߟ
ிᇱభ

→⎯⎯⎯⎯
ிభ

࣡ଶ ࣡ଷ ⇓ᇰᇰ ଷߟ
→⎯⎯⎯⎯

ிᇱయ

→⎯⎯⎯⎯
ிయ

࣡ସ .

Then horizontal composition with the homotopies (lemma 1.34) constitutes a
natural transformation between the functors of horizontal composition with
morphisms (lemma 1.33)

ଷߟ) ⋅ (−) ⋅ (ଵߟ : ଷܨ) ⋅ ( −) ⋅ (ଵܨ ⇒ ଷ′ܨ) ( −) ⋅ ଵ′ܨ ) : Homୋ୰୮ୢ(࣡ଶ, ࣡ଶ) ⟶ Homୋ୰୮ୢ(࣡ଵ, ࣡ସ) .

Proof. By lemma 1.34.  ▮

It first of all follows that the following makes sense

Definition 1.36. (homotopy category of groupoids)

There is also the homotopy category Ho(Grpd) whose

objects are small groupoids;

morphisms are equivalence classes of groupoid homomorphisms modulo
homotopy (i.e. functors modulo natural transformations).

This is usually denoted Ho(Grpd).

Of course what the above really means is that, without quotienting out
homotopies, groupoids form a 2-category, in fact a (2,1)-category, in fact an
enriched category which is enriched over the naive 1-category of groupoids from
remark 1.32, hece a strict 2-category with hom-groupoids.

Definition 1.37. (equivalence of groupoids)

Given two groupoids ࣡ଵ and ࣡ଶ, then a homomorphism

ܨ : ࣡ଵ ⟶ ࣡ଶ

is an equivalence it it is an isomorphism in the homotopy category Ho(Grpd) (def.
1.36), hence if there exists a homomorphism the other way around
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ܩ : ࣡ଶ ⟶ ࣡ଵ

and a homotopy/natural transformations of the form

ܩ ∘ ܨ ≃ id࣡భ
ܨ ∘ ܩ ≃ id࣡మ

.

Definition 1.38. (connected components of a groupoid)

Given a groupoid ࣡ with set of objects ܺ, then the relation “there exists a
morphism from ݔ to ݕ”, i.e.

ݔ) ∼ (ݕ ≔ (Hom(ݔ, (ݕ ≠ ∅)

is clearly an equivalence relation on ܺ. The corresponding set of equivalence
classes is denoted

(࣡)଴ߨ

and called the set of connected components of ࣡.

Definition 1.39. (automorphism groups)

Given a groupoid ࣡ and an object ݔ, then under composition the set Hom࣡(ݔ, (ݔ

forms a group. This is called the automorphism group Aut࣡(ݔ) or vertex group or
isotropy group of ݔ in ࣡.

Definition 1.40. (weak homotopy equivalence of groupoids)

Let ࣡ଵ and ࣡ଶ be groupoids. Then a morphism (functor)

ܨ : ࣡ଵ ⟶ ࣡ଶ

is called a weak homotopy equivalence if

it induces a bijection on connected components (def. 1.38):

(ܨ)଴ߨ : ଴(࣡ଵ)ߨ ⟶≃ ଴(࣡ଶ)ߨ

1. 

for each object ݔ of ࣡ଵ the morphism

௫,௫ܨ : Aut࣡భ
(ݔ) ⟶≃ Aut࣡మ

((ܺ)଴ܨ)

is an isomorphism of automorphism groups (def. 1.39)

2. 

Lemma 1.41. (automorphism group depends on basepoint only up to
conjugation)

For ࣡ a groupoid, let ݔ and ݕ be two objects in the same connected component
(def. 1.38). Then there is a group isomorphism

Aut࣡(ݔ) ≃ Aut࣡(ݕ)

between their automorphism groups (def. 1.39).
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Proof. By assumption, there exists some morphism from ݔ to ݕ

ݔ ⟶
௙

ݕ .

The operation of conjugation with this morphism

Aut࣡(ݔ) →⎯⎯
୅ୢ೑

Aut࣡(ݕ)

݃ ↦ ݂ −ଵ ∘ ݃ ∘ ݂

is clearly a group isomorphism as required.  ▮

Lemma 1.42. (equivalences between disjoint unions of delooping
groupoids)

Let {ܩ௜}௜ ∈ ூ and {ܪ௝}௝ ∈ ௃ be sets of groups and consider a homomorphism (functor)

ܨ : sqcup
௜ ∈ ூ

௜ܩ ⟶ ⊔
௝ ∈ ௃

௝ܪ

between the corresponding disjoint unions of delooping groupoids (example
1.28).

Then the following are equivalent:

 .is an equivalence of groupoids (def. 1.37);1 ܨ

 .is a weak homotopy equivalence (def. 1.40).2 ܨ

Proof. The implication 2) ⇒ 1) is immediate.

In the other direction, assume that ܨ is an equivalence of groupoids, and let ܩ be
an inverse up to natural isomorphism. It is clear that both induces bijections on
connected components. To see that both are isomorphisms of automorphisms
groups, observe that the conditions for the natural isomorphisms

ߙ : ܩ ∘ ܨ ⇒ id ߚ : ܨ ∘ ܩ ⇒ id

are in each separate delooping groupoid ܪܤ௝ of the form

* ⟶
ఈ

*
ீಷబ(೔),ಷబ(೔)(ி೔,೔(௙))

↓ ↓୧ୢ

* ⟶
ఈ *

* ⟶
ఉ

*
ிಸబ(ೕ),ಸబ(ೕ)(ீೕ,ೕ(௙))

↓ ↓୧ୢ

* ⟶
ఉ *

since there is only a single object. But this means ܨ௜,௜ and ܨ௝,௝ are group
isomorphisms.  ▮

Proposition 1.43. (every groupoid is equivalent to a disjoint union of
group deloopings)

Assuming the axiom of choice, then:
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For ࣡ any groupoid, then there exists a set ௜{௜ܩ} ∈ ூ of groups and an equivalence

of groupoids (def. 1.37)

࣡ ≃ ⊔
௜ ∈ ூ

௜ܩܤ

between ࣡ and a disjoint union of delooping groupoids (example 1.30). This is
called a skeleton of ࣡.

Concretely, this exists for ܫ = .଴(࣡) the set of connected components of ࣡ (defߨ
1.38) and for ܩ௜ ≔ Aut࣡(ݔ) the automorphism group (def. 1.39) of any object ݔ in
the given connected component.

Proof. Using the axiom of choice we may find a set {ݔ௜}௜ ∈ గబ(࣡) of objects of ࣡, with

௜ being in the connected componentݔ ݅ ∈ .(࣡)଴ߨ

This choice induces a functor

inc : ⊔
௜ ∈ గబ(࣡)

Aut࣡(ݔ௜) ⟶ ࣡

which takes each object and morphism “to itself”.

Now using the axiom of choice once more, we choose in each connected
component ݅ ∈ in that connected component a ݕ ଴(࣡) and for each objectߨ
morphism

௜ݔ →⎯⎯⎯⎯
௙ೣ೔,೤

ݕ .

Using this we obtain a functor the other way around

݌ : ࣡ ⟶ ⊔
௜ ∈ గబ(࣡)

Aut࣡(ݔ௜)

which sends each object to its connected component, and which for pairs of
objects ݖ ,ݕ of ࣡ is given by conjugation with the morphisms choosen above:

Hom࣡(ݕ, (ݖ →⎯⎯⎯
௣೤,೥

Aut࣡(ݔ௜)

ݕ ݕ ←⎯⎯⎯⎯
௙ೣ೔,೤

௜ݔ

௙ ↓ ↦ ௙ ↓

ݖ ݖ →⎯⎯⎯
௙ೣ೔,೥

−భ ௜ݔ

.

It is now sufficient to show that there are conjugations/natural isomorphisms

݌ ∘ inc ≃ id inc ∘ ݌ ≃ id .

For the first this is immediate, since we even have equality

݌ ∘ inc = id .

For the second we observe that choosing

Introduction to Topology -- 2 in nLab https://ncatlab.org/nlab/print/Introduction+to+Topology+--+2

25 of 45 7/11/17, 4:41 PM



(ݕ)ߟ ≔ ݂௫೔,௬

yields a naturality square by the above construction:

௜ݔ →⎯⎯⎯⎯
௙ೣ೔,೤

ݕ

௙ೣ೔,೥ ∘ ௙ ∘ ௙ೣ೔,೤
−భ

↓ ↓௙

௜ݔ →⎯⎯⎯
௙ೣ೔,೥

ݖ

.

  ▮

Proposition 1.44. (weak homotopy equivalence is equivalence of
groupoids)

Let ܨ : ࣡ଵ ⟶ ࣡ଶ be a homomorphism of groupoids.

Assuming the axiom of choice then the following are equivalent:

 .is an equivalence of groupoids (def. 1.37);1 ܨ

is a weak homotopy equivalence in that ܨ

it induces an bijection of sets of connected components (def. 1.38);

(ܨ)଴ߨ : ଴(࣡ଵ)ߨ ⟶≃ ଴(࣡଴)ߨ ,

1. 

2. 

for each object ݔ ∈ ࣡ଵ it induces an isomorphis of automorphism groups

(def. 1.39):

௫,௫ܨ : Aut࣡భ
(ݔ) ⟶≃ Aut࣡మ

((ݔ)଴ܨ) .

3. 

Proof. In one direction, if ܨ has an inverse up to natural isomorphism, then this
induces by definition a bijection on connected components, and it induces
isomorphism on homotopy groups by lemma 1.41.

In the other direction, choose equivalences to skeleta as in prop. 1.43:

࣡ଵ ←⎯⎯
≃

୧୬ୡభ ⊔
௜ ∈ గబ(࣡భ)

Aut࣡భ
(௜ݔ)

ி ↓ ↓ி̃ ≔ ௣మ ∘ ி ∘୧୬ୡభ

࣡ଶ ⟶
௣మ

≃ ⊔
௝ ∈ గబ(࣡మ)

Aut࣡మ
(௝ݔ)

.

Here incଵ and ݌ଶ are equivalences of groupoids by prop. 1.43 and hence are weak

homotopy equivalences by the statement above. Since moreover ܨ is a weak
homotopy equivalence by assumption, it follows clearly that also ̃ܨ is a weak
homotopy equivalence.

Since ̃ܨ is a morphism between disjoint unions of delooping groupoids, the
statement follows now with lemma 1.42.  ▮
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2. Covering spaces

Definition 2.1. (covering space)

Let ܺ be a topological space. A covering space of ܺ is a continuous function

݌ : ܧ ⟶ ܺ

such that there exists an open cover ⊔
௜

ܷ௜ → ܺ, such that restricted to each ܷ௜

then ܧ → ܺ is homeomorphic over ܷ௜ to the product topological space (this
example) of ܷ௜ with the discrete topological space (this example) on a set ,௜ܨ

In summary this says that ݌ : ܧ → ܺ is a covering space if there exists a pullback
diagram in Top of the form

⊔
௜

ܷ௜ × Disc(ܨ௜) ⟶ ܧ

↓ (pb) ↓௣

⊔
௜ ∈ ூ

ܷ௜ ⟶ ܺ

.

For ݔ ∈ ܷ௜ ⊂ ܺ a point, then the elements in ܨ௫ = ௜ are called the leaves of theܨ
covering at ݔ.

Given two covering spaces ݌௜ : ௜ܧ → ܺ , then a homomorphism between them is a

continuous function ݂ : ଵܧ → ଶ between the total covering spaces, which respectsܧ
the fibers in that the following diagram commutes

ଵܧ ⟶
௙

ଶܧ

↘ ↙

ܺ

.

This defines a category Cov(ܺ) whose

objects are the covering spaces over ܺ;

morphisms are the homomorphisms between these.

Example 2.2. (covering of circle by circle)

Regard the circle ܵଵ = ݖ} ∈ ℂ | |ݖ| = 1} as the topological subspace of elements of
unit absolute value in the complex plane. For ݇ ∈ ℕ, consider the continuous
function

݌ ≔ ( −)௞ : ܵଵ ⟶ ܵଵ

given by taking a complex number to its ݇th power. This may be thought of as
the result of “winding the circle ݇ times around itself”. Precisely, for ݇ ≥ 1 this is a
covering space (def. 2.1) with ݇ leaves at each point.

graphics grabbed from Hatcher
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Example 2.3. (covering of circle by real line)

Consider the continuous function

exp(2݅ߨ( −)) : ℝଵ ⟶ ܵଵ

from the real line to the circle, which,

with the circle regarded as the unit
circle in the complex plane ℂ, is given
by

ݐ ↦ exp(2ݐ݅ߨ)

1. 

with the circle regarded as the unit circle in ℝଶ, is given
by

ݐ ↦ (cos(2ݐߨ), sin(2ݐߨ)) .

2. 

We may think of this as the result of “winding the line around the circle ad
infinitum”. Precisely, this is a covering space (def. 2.1) with the leaves at each
point forming the set ℤ of natural numbers.

Definition 2.4. (action of fundamental group on fibers of covering)

Let ܧ ⟶
గ

ܺ be a covering space (def. 2.1)

Then for ݔ ∈ ܺ any point, and any choice of element ݁ ∈ ௫ of the leaf space overܨ
there is, up to homotopy, a unique way to lift a representative path in ܺ of an ,ݔ
element ߛ of the the fundamental group ,ܺ)ଵߨ to a continuous path (def. 1.16) (ݔ
in ܧ that starts at ݁. This path necessarily ends at some (other) point ߩఊ(݁) ∈ ௫ܨ

in the same fiber. This construction provides a function

ߩ : ௫ܨ × ,ܺ)ଵߨ (ݔ ⟶ ௫ܨ

(݁, (ߛ ↦ (݁)ఊߩ

from the Cartesian product of the leaf space with the fundamental group. This
function is compatible with the group-structure on ߨଵ(ܺ, in that the following ,(ݔ
diagrams commute:

௫ܨ × {const௫} ⟶ ௫ܨ × ,ܺ)ଵߨ (ݔ

୧ୢ ↘ ↙ఘ

௫ܨ

൮

the neutral element,

i.e. the constant loop,

acts trivially

൲

and

௫ܨ × ,ܺ)ଵߨ (ݔ × ,ܺ)ଵߨ (ݔ →⎯⎯⎯
ఘ × ୧ୢ

௫ܨ × ,ܺ)ଵߨ (ݔ

୧ୢ × ((−)⋅( −)) ↓ ↓ఘ

௫ܨ × ,ܺ)ଵߨ (ݔ ⟶
ఘ

௫ܨ

⎛

⎝

⎜
⎜

acting with two group elements

is the same as

ϐirst multiplying them

and then acting with their product element

⎞

⎠

⎟
⎟

.
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One says that ߩ is an action or permutation representation of ߨଵ(ܺ, .௫ܨ on (ݔ

For ܩ any group, then there is a category ܩ Set whose objects are sets equipped
with an action of ܩ, and whose morphisms are functions which respect these
actions. The above construction is a functor of the form

Fib௫ : Cov(ܺ) ⟶ ,ܺ)ଵߨ Set(ݔ .

Example 2.5. (three-sheeted covers of the circle)

There are, up to isomorphism, three different 3-sheeted
covering spaces of the circle ܵଵ.

The one from example 2.2 for ݇ = 3. Another one. And the
trivial one. Their corresponding permutation actions may be
seen from the pictures on the right.

graphics grabbed from Hatcher

Proposition 2.6. (covering projections are open maps)

If ݌ : ܧ → ܺ is a covering space projection, then ݌ is an open
map.

Proof. By definition of covering space there exists an open
cover {ܷ௜ ⊂ ܺ}௜ ∈ ூ and homeomorphisms ݌ −ଵ(ܷ௜) ≃ ܷ௜ × Disc(ܨ௜)

for all ݅ ∈ Since the projections out of a product topological .ܫ
space are open maps (this prop.), it follows that ݌ is an open
map when restricted to any of the ݌ −ଵ(ܷ௜). But a general open
subset ܹ ⊂ :is the union of its restrictions to these subspaces ܧ

ܹ = ∪
௜ ∈ ூ

(ܹ ∩ ݌ −ଵ(ܷ௜)) .

Since images preserve unions (this prop.) it follows that

(ܹ)݌ = ∪
௜ ∈ ூ

ܹ)݌ ∩ ݌ −ଵ(ܷ௜))

is a union of open sets, and hence itself open.  ▮

We discuss left lifting properties satisfied by covering spaces.

path-lifting property,1. 

homotopy-lifting propery,2. 

the lifting theorem.3. 

Lemma 2.7. (path lifting property)

Let ݌: ܧ → ܺ be any covering space. Given

:ߛ [0, 1] → ܺ a path in ܺ,1. 
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଴ݔ̂ ∈ (଴ݔ̂)݌ be a lift of its starting point, hence such that ܧ =  .2(0)ߛ

then there exists a unique path ̂ߛ : [0, 1] → such that ܧ

it is a lift of the original path: ݌ ∘ ߛ̂ =  .1;ߛ

it starts at the given lifted point: ̂(0)ߛ =  .଴.2ݔ̂

In other words, every commuting diagram in Top of the form

{0} ⟶
௫̂బ ܧ

↓ ↓௣

[0, 1] ⟶
ఊ

ܺ

has a unique lift:

{0} ⟶
௫̂బ ܧ

↓ ఊ̂ ↗ ↓௣

[0, 1] ⟶
ఊ

ܺ

.

####### Proof

First consider the case that the covering space is trival, hence of the Cartesian
product form

prଵ : ܺ × Disc(ܵ) ⟶ ܺ .

By the universal property of the product topological spaces in this case a lift
ߛ̂ : [0, 1] → ܺ × Disc(ܵ) is equivalently a pair of continuous functions

prଵ(̂ߛ) : [0, 1] → ܺ prଶ(̂ߛ) : [0, 1] → Disc(ܵ) ,

Now the lifting condition explicitly fixes prଵ(̂ߛ) = nMoreover, a continuous .ߛ

function into a discrete topological space Disc(ܵ) is locally constant, and since [0, 1]

is a connected topological space this means that prଶ(̂ߛ) is in fact a constant

function (this example), hence uniquely fixed to be prଶ(̂ߛ) = .଴ݔ̂

This shows the statement for the case of trivial covering spaces.

Now consider any covering space ݌ ܧ: → ܺ. By definition of covering spaces, there
exists for every point ݔ ∈ ܺ a open neighbourhood ܷ௫ ⊂ ܺ such that the restriction
of ܧ to ܷ௫ becomes a trivial covering space:

݌ −ଵ(ܷ௫) ≃ ܷ௫ × Disc(݌ −ଵ(ݔ)) .

Consider such a choice

{ܷ௫ ⊂ ܺ}௫ ∈ ௑ .
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This is an open cover of ܺ. Accordingly, the pre-images

ߛ} −ଵ(ܷ௫) ⊂ [0, 1]}௫ ∈ ௑

constitute an open cover of the topological interval [0, 1].

Now [0, 1] is a compact metric space and therefore the Lebesgue number lemma
implies that there is a positive number ߳ ∈ (0, ∞) and cover of [0, 1] by open
intervals of the form ( −߳ + ,ݔ ݔ + ߳) ∩ [0, 1] ⊂ [0, 1] which refines this cover. Again
since [0, 1] is a compact topological space there is a finite set of such intervals
which covers [0, 1]. This means that we find a finite number of points

଴ݐ < ଵݐ < ⋯ <௡ + ଵ ∈ [0, 1]

with ݐ଴ = 0 and ݐ௡+ ଵ = 1 such that for all 0 < ݆leg ݊ there is ݔ௝ ∈ ܺ such that the
corresponding path segment

,௝ݐ])ߛ ௝ݐ + ଵ]) ⊂ ܺ

is contained in ܷ௫ೕ
 from above.

Now assume that ̂ߛ|[଴,௧ೕ] has been found. Then by the triviality of the covering

space over ܷ௫ೕ
 and the first argument above, there is a unique lift of ߛ|[௧ೕ,௧ೕ +భ] to a

continuous function ̂ߛ|[௧ೕ,௧ೕ+ భ] with starting point ̂ߛ(ݐ௝). Since [0, +௝ݐ ଵ] is the pushout

[0, [௝ݐ ⊔
{௧ೕ}

,௝ݐ] ௧ೕ,௧ೕ]|ߛ̂ and [଴,௧ೕ]|ߛ̂ ௝+ଵ] (this example), it follows thatݐ +భ] uniquely glue to

a continuous function ̂ߛ|[଴,௧ೕ +భ] which lifts ߛ|[଴,௧ೕ+ భ].

By induction over ݆, this yields the required lift ̂ߛ.

Conversely, given any lift, ̂ߛ, then its restrictions ̂ߛ|[௧ೕ,௧ೕ +భ] are uniquely fixed by the

above inductive argument. Therefore also the total lift is unique.  ▮

Proposition 2.8. (homotopy lifting property of covering spaces)

Let ݌: ܧ → ܺ be a covering space. Then given a homotopy relative the starting
point between two paths in ܺ, there is for every lift of these two paths to paths
in ܧ with the same starting point a unique homotopy between the lifted paths
that lifts the given homotopy:

For commuting squares of the form

{0} × {0, 1} ⟶ *

↓ ↓

[0, 1] × {0, 1} ⟶ ܧ

↓ ఎ̂ ↗ ↓௣

[0, 1] × [0, 1] ⟶
ఎ

ܺ
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there is a unique diagonal lift in the lower diagram, as shown.

Moreover if the homotopy ߟ also fixes the endpoint, then so does the lifted
homotopy ̂ߟ.

Proof. The proof is analogous to that of lemma 2.7: The Lebesgue number lemma
gives a partition of [0, 1] × [0, 1] into a finite number of squares such that the image
of each under ߛ lands in an open subset over which the covering space trivializes.
Then there is inductively a unique appropriate lift over each of these squares.

Finally, if the homotopy in ܺ is constant also at the endpoint, hence on {1} × [0, 1],

then the function constant on ̂1)ߟ, 1) is clearly a lift of the path eta|{ଵ} × [଴,ଵ] and by

uniqueness of the path lifting (lemma 2.7) this means that also ̂ߟ is constant on
{1} × [0, 1].  ▮

Example 2.9. Let (ܧ, ݁) ⟶
௣

(ܺ, be a pointed (ݔ covering space and let
݂ : (ܻ, (ݕ ⟶ (ܺ, be a point-preserving continuous function such that the image of (ݔ
the fundamental group of (ܻ, is contained within the image of the fundamental (ݕ
group of (ܧ, ݁) in that of (ܺ, :(ݔ

݂
*
,ܻ)ଵߨ) ((ݕ ⊂ ݌

*
,ܧ)ଵߨ) ݁)) ⊂ ,ܺ)ଵߨ (ݔ .

Then for ℓ௒ a path in (ܻ, that happens to be a loop, every lift of its image path (ݕ

݂ ∘ ℓ in (ܺ, ݂ to a path (ݔ ∘ ℓ௒ in (ܧ, ݁) is also a loop there.

Proof. By assumption, there is a loop ℓா in (ܧ, ݁) and a homotopy fixing the
endpoints of the form

௑ߟ : ݌ ∘ ℓா ⇒ ݂ ∘ ℓ௒ .

Then by the homotopy lifting property (lemma 2.8), there is a homotopy in (ܧ, ݁)

fixing the starting point, of the form

ாߟ : ℓா ⇒ ݂ ∘ ℓ௒

and lifting the homotopy ߟ௑. Since ߟ௑ in addition fixes the endpoint, the

uniqueness of the path lifting (lemma 2.7) implies that also ߟா fixes the endpoint.

Therefore ߟா is in fact a homotopy between loops, and so weidehat ݂ ∘ ℓ௒ is indeed a

loop.  ▮

Proposition 2.10. (lifting theorem)

Let

݌ : ܧ → ܺ be a covering space;1. 

݁ ∈ ݔ a point, with ܧ ≔  .denoting its image,2 (݁)݌

ܻ be a connected and locally path-connected topological space;3. 
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ݕ ∈ ܻ a point4. 

݂ : (ܻ, (ݕ ⟶ (ܺ, (ݕ)݂ a continuous function such that (ݔ =  .5.ݔ

Then the following are equivalent:

There exists a lift ݂̂ in the diagram

,ܧ) ݁)

௙̂ ↗ ↓௣

(ܻ, (ݕ ⟶
௙

(ܺ, (ݔ

of pointed topological spaces.

1. 

The image of the fundamental group of ܻ under ݂ in that of ܺ is contained in
the image of the fundamental group of ܧ under ݌:

݂
*
,ܻ)ଵߨ) ((ݕ ⊂ ݌

*
,ܧ)ଵߨ) ݁))

2. 

Moreover, if ܻ is path-connected, then the lift in the first item is unique.

Proof. The implication 1) ⇒ 2) is immediate. We need to show that the second
statement already implies the first.

Since ܻ is connected and locally path-connected, it is also a path-connected
topological space (this prop.). Hence for every point ݕ′ ∈ ܻ there exists a path ߛ
connecting ݕ with ݕ′  and hence a path ݂ ∘ ′ݕ)݂ with ݔ connecting ߛ ). By the path-
lifting property (lemma 2.7) this has a unique lift

{0} ⟶
௘

ܧ

↓ ௙∘ ఊ ↗ ↓௣

[0, 1] →⎯⎯
௙ ∘ ఊ

ܺ

.

Therefore

(′ݕ)݂̂ ≔ ݂ ∘ ߛ

if a lift of ݂(ݕ′ ).

We claim now that this pointwise construction is independent of the choice ߛ, and
that as a function of ݕ′  it is indeed continuous. This will prove the claim.

Now by the path lifting lemma 2.7 the lift f ∘ ݂ is unique given ߛ ∘ (′ݕ)݂̂ and hence ,ߛ

depends at most on the choice of ߛ.

Hence let ߛ′ : [0, 1] → ܻ be another path in ܻ that connects ݕ with ݕ′ . We need to

show that then ݂ ∘ ′ߛ = ݂ ∘ .ߛ
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First observe that if ߛ′  is related to ߛ by a homotopy, so that then also ݂ ∘ ′ߛ  is
related to ݂ ∘ by a homotopy, then this is the statement of the homotopy lifting ߛ
property of lemma 2.8.

Next write ̄ߛ′ ⋅ with the reverse path of ߛ for the path concatenation of the path ߛ
the path ߛ′ , hence a loop in ܻ, so that ݂ ∘ ′ߛ̄) ⋅ is a loop in ܺ. The assumption that (ߛ

݂
*
,ܻ)ଵߨ) ((ݕ ⊂ ݌

*
,ܧ)ଵߨ) ݁)) implies (example 2.9) that the path ݂ ∘ ′ߛ̄) ⋅ which lifts (ߛ

this loop to ܧ is itself a loop in ܧ.

By uniqueness of path lifting, this means that the lift of ݂ ∘ ′ߛ) ⋅ ′ߛ̄) ⋅ coincides ((ߛ
with that of ݂ ∘ ′ߛ . But ̄ߛ′ ⋅ ′ߛ) ⋅ .ߛ is homotopic (via reparameterization) to just (ߛ
Hence it follows now with the first statement that the lift of ݂ ∘ ′ߛ  indeed coincides
with that of ݂ ∘ .ߛ

This shows that the above prescription for ݂̂ is well defined.

It only remains to show that the function ݂̂ obtained this way is continuous.

Let ݕ′ ∈ ܻ be a point and ܹ
௙̂(௬ᇱ)

⊂ It is .ܧ an open neighbourhood of its image in ܧ

sufficient to see that there is an open neighbourhood ܸ௬ᇱ ⊂ ܻ such that

݂̂(ܸ௬) ⊂ ܹ
௙̂(௬ᇱ)

.

Let ܷ௙(௬ᇱ) ⊂ ܺ be an open neighbourhood over which ݌ trivializes. Then the

restriction

݌ −ଵ(ܷ௙(௬ᇱ)) ∩ ܹ
௙̂(௬ᇱ)

⊂ ܷ௙(௬ᇱ) × Disc(݌ −ଵ(݂(ݕ′)))

is an open subset of the product space. Consider its further restriction

ቀܷ௙(௬ᇱ) × ′ݕ)݂̂} )}ቁ ∩ ቀ݌ −ଵ(ܷ௙(௬ᇱ)) ∩ ܹ
௙̂(௬ᇱ)

ቁ

to the leaf

ܷ௙(௬ᇱ) × ′ݕ)݂̂} )} ⊂ ܷ௙(௬ᇱ) × ݌ −ଵ(݂(ݕ′ ))

which is itself an open subset. Since ݌ is an open map (this prop.), the subset

ቀቀܷ௙(௬ᇱ)݌ × ′ݕ)݂̂} )}ቁ ∩ ቀ݌ −ଵ(ܷ௙(௬ᇱ)) ∩ ܹ
௙̂(௬ᇱ)

ቁቁ ⊂ ܺ

is open, hence so is its pre-image

݂ −ଵቀ݌ቀቀܷ௙(௬ᇱ) × ቁ{(′ݕ)݂̂} ∩ ቀ݌ −ଵ(ܷ௙(௬ᇱ)) ∩ ܹ
௙̂(௬ᇱ)

ቁቁቁ ⊂ ܻ .

Since ܻ is assumed to be locally path-connected, there exists a path-connected
open neighbourhood

ܸ௬ᇱ ⊂ ݂ −ଵቀ݌ቀቀܷ௙(௬ᇱ) × ቁ{(′ݕ)݂̂} ∩ ቀ݌ −ଵ(ܷ௙(௬ᇱ)) ∩ ܹ
௙̂(௬ᇱ)

ቁቁቁ .
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By the uniqueness of pah lifting, the image of that under ݂̂ is

݂̂(ܸ௬ᇲ
) = ݂(ܸ௬ᇱ ) × ′ݕ)݂̂} )}

⊂ ቀቀܷ௙(௬ᇱ)݌ × ′ݕ)݂̂} )}ቁ ∩ ቀ݌ −ଵ(ܷ௙(௬ᇱ)) ∩ ܹ
௙̂(௬ᇱ)

ቁቁ × {(′ݕ)݂̂}

≃ ቀܷ௙(௬ᇱ) × ′ݕ)݂̂} )}ቁ ∩ ቀ݌ −ଵ(ܷ௙(௬ᇱ)) ∩ ܹ
௙̂(௬ᇱ)

ቁ

⊂ ܹ
௙̂(௬ᇱ)

.

It remains to show that this lift is unique if ܻ is path-connected. (…)  ▮

Monodromy

we now extract from a covering space is monodromy, which is a groupoid
representation of the fundamental groupoid of the base space.

Definition 2.11. (groupoid representation)

Let ࣡ be a groupoid. Then:

A linear representation of ࣡ is a groupoid homomorphism (functor)

ߩ : ࣡ ⟶ Core(Vect)

to the groupoid core of the category Vect of vector spaces (example 1.31).
Hence this is

For each object ݔ of ࣡ a vector space ܸ௫;1. 

for each morphism ݔ ⟶
௙

of ࣡ a linear map ݕ (݂)ߩ : ܸ௫ → ܸ௬2. 

such that

(respect for composition) for all composable morphisms ݔ →
௙

ݕ →
௚

in the ݖ
groupoid we have an equality

(݃)ߩ ∘ (݂)ߩ = ݃)ߩ ∘ ݂)

1. 

(respect for identities) for each object ݔ of the groupoid we have an equality

(id௫)ߩ = id௏ೣ .

2. 

Similarly a permutation representation of ࣡ is a groupoid homomorphism
(functor)

ߩ : ࣡ ⟶ Core(Set)

to the groupoid core of Set. Hence this is

For each object ݔ of ࣡ a set ܵ௫;1. 
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for each morphism ݔ ⟶
௙

of ࣡ a function ݕ (݂)ߩ : ܵ௫ → ܵ௬2. 

such that composition and identities are respected, as above.

For ߩଵ and ߩଶ two such representations, then a homomorphism of

representations

߶ : ଵߩ ⟶ ଶߩ

is a natural transformation between these functors, hence is

for each object ݔ of the groupoid a (linear) function

(ܸଵ)௫ →⎯⎯⎯
థ(௫)

(ܸଶ)௫

such that for all morphisms ݔ ⟶
௙

we have ݕ

(ݕ)߶ ∘ (݂)ଵߩ = (ݔ)ଶߩ ∘ (ݔ)߶

(ܸଵ)௫ →⎯⎯⎯
థ(௫)

(ܸଶ)௫

ఘభ(௙) ↓ ↓థమ(௙)

(ܸଵ)௬ →⎯⎯⎯
థ(௬)

(ܸଶ)௬

Representations of ࣡ and homomorphisms between them constitute a category,
called the representation category Repୋ୰୮ୢ(࣡).

Definition 2.12. (monodromy of a covering space)

Let ܺ be a topological space and ܧ →
௣

ܺ a covering space. Write ߎଵ(ܺ) for the
fundamental groupoid of ܺ.

Define a functor

Fibா : (ܺ)ଵߎ ⟶ Set

to the category Set of sets, hence a permutation groupoid representation, as
follows:

to a point ݔ ∈ ܺ assign the fiber ݌ −ଵ({ݔ}) ∈ Set;1. 

to the homotopy class of a path ݔ connecting ߛ ≔ ݕ with (0)ߛ ≔ ܺ in (1)ߛ

assign the function ݌ −ଵ({ݔ}) ⟶ ݌ −ଵ({ݕ}) which takes ̂ݔ ∈ ݌ −ଵ({ݔ}) to the

endpoint of a path ̂ߛ in ܧ which lifts ߛ through ݌ with starting point ̂(0)ߛ = ݔ̂

݌ −ଵ(ݔ) ⟶ ݌ −ଵ(ݕ)

ݔ̂) = ((0)ߛ̂ ↦ (1)ߛ̂
.

2. 

This construction is well defined for a given representative ߛ due to the unique
path-lifting property of covering spaces (this lemma) and it is independent of the
choice of ߛ in the given homotopy class of paths due to the homotopy-lifting
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property (this lemma). Similarly, these two lifting properties give that this
construction respects composition in ߎଵ(ܺ) and hence is indeed a functor.

We may also express this in terms of group representations of fundamental
groups:

Proposition 2.13. (groupoid representations are products of group
representations)

Assuming the axiom of choice then the following holds:

Let ࣡ be a groupoid. Then its category of groupoid representations is equivalent
to the product category indexed by the set of connected components .଴(࣡) (defߨ
1.38) of group representations of the automorphism group ௜ܩ ≔ Aut࣡(ݔ௜) (def.
1.39) for ݔ௜ any object in the ݅th connected component:

Rep(࣡) ≃ ෑ
௜ ∈ గబ(࣡)

Rep(ܩ௜) .

Proof. Let mmathcal be the category that the representation is on. Then by ܥ
definition

Rep(࣡) = Hom(࣡, ࣝ) .

Consider the injection functor of the skeleton (from lemma 1.42)

inc : ⊔
௜ ∈ గబ(࣡)

௜ܩܤ ⟶ ࣡ .

By lemma 1.33 the pre-composition with this constitutes a functor

inc* : Hom(࣡, ࣝ) ⟶ Hom( ⊔
௜ ∈ గబ(࣡)

,௜ܩܤ ࣝ)

and by combining lemma 1.42 with lemma 1.35 this is an equivalence of
categories. Finally, by example \ref{GroupoidRepresentationOfDeloopingGroupoid}
the category on the right is the product of group representation categories as
claimed.  ▮

Proposition 2.14. Given a homomorphism between two covering spaces ௜ܧ →
௣೔ ܺ,

hence a continuous function ݂ : ଵܧ → ଶ which respects fibers in that the diagramܧ

ଵܧ ⟶
௙

ଶܧ

௣భ
↘ ↙௣మ

ܺ

commutes, then the component functions

݂ |{௫} : ଵ݌
−ଵ({ݔ}) ⟶ ଶ݌

−ଵ({ݔ})

are compatible with the monodromy Fibா (def. 2.12) along any path between ߛ
points ݔ and ݕ from def. 2.12 in that the following diagrams of sets commute
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ଵ݌
−ଵ(ݔ) →⎯⎯⎯

௙|{ೣ}
ଶ݌

−ଵ(ݔ)

୊୧ୠಶభ ([ఊ])
↓ ↓

୊୧ୠಶమ ([ఊ])

ଵ݌
−ଵ(ݕ) →⎯⎯⎯

௙|{೤}
ଶ݌

−ଵ({ݕ})

.

This means that ݂ induces a natural transformation between the monodromy
functors of ܧଵ and ܧଶ, respectively, and hence that constructing monodromy is
itself a functor from the category of covering spaces of ܺ to that of permutation
representations of the fundamental groupoid of ܺ:

Fib : Cov(ܺ) ⟶ Set௽భ(௑) .

Example 2.15. (fundamental groupoid of covering space)

Let ܧ ⟶
௣

ܺ be a covering space.

Then the fundamental groupoid is equivalently the ܧ of the total space (ܧ)ଵߎ
Grothendieck construction of the monodromy functor Fibா : (ܺ)ଵߎ → Set

(ܧ)ଵߎ ≃ ඲

௽భ(௑)

Fibா

whose

objects are pairs (ݔ, ݔ consisting of a point (ݔ̂ ∈ ܺ and en element ̂ݔ ∈ Fibா(ݔ);

morphisms [ߛ̂] : ,ݔ) (ݔ̂ → ′ݔ) , ′ݔ̂ ) are morphisms [ߛ] ݔ: → ′ݔ  in ߎଵ(ܺ) such that

Fibா([ߛ])(̂ݔ) = ′ݔ̂ .

Proof. By the uniqueness of the path-lifting, lemma 2.7 and the very definition of
the monodromy functor.  ▮

Proposition 2.16. Let ܺ be a path-connected topological space and let ܧ →
௣

ܺ be a
covering space. Then the total space ܧ is

path-connected precisely if the monodromy Fibா is a transitive action;1. 

simply connected precisely if the monodromy Fibா is free action.2. 

Proof. By example 2.15.  ▮

Reconstruction

The following is a description of the reconstruction in terms of elementary point-
set topology.

Definition 2.17. (reconstruction of covering spaces from monodromy)

Let
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(ܺ, ߬) be a locally path-connected semi-locally simply connected topological
space,

1. 

ߩ ∈ Set௽భ(௑) a permutation representation of its fundamental groupoid.2. 

Consider the disjoint union set of all the sets appearing in this representation

(ߩ)ܧ ≔ ⊔
௫ ∈ ௑

(ݔ)ߩ

For an open subset ܷ ⊂ ܺ which is path-connected and for which every element
of the fundamental group ,ܷ)ଵߨ ,ܷ)ଵߨ becomes trivial under (ݔ (ݔ → ,ܺ)ଵߨ and for ,(ݔ

ݔ̂ ∈ ݔ with (ݔ)ߩ ∈ ܷ consider the subset

ܸ௎,௫̂ ≔ ൛(ݔ̂)(ߛ)ߩ | ′ݔ ∈ ܷ , ߛ path from ݔ to ൟ′ݔ ⊂ (ߩ)ܧ .

The collection of these defines a base for a topology (prop. 2.18 below). Write ߬ఘ

for the corresponding topology. Then

,(ߩ)ܧ) ߬ఘ)

is a topological space. It canonically comes with the function

(ߩ)ܧ ⟶
௣

ܺ

ݔ̂ ∈ (ݔ)ߩ ↦ ݔ
.

Finally, for

݂ : ଵߩ ⟶ ଶߩ

a homomorphism of permutation representations, there is the evident induced
function

(ଵߩ)ܧ →⎯⎯⎯⎯
ୖୣୡ(௙)

(ଶߩ)ܧ

ݔ̂) ∈ ((ݔ)ଵߩ ↦ (݂௫(̂ݔ) ∈ ((ݔ)ଶߩ
.

Proposition 2.18. The construction ߩ ↦ in def. 2.17 is well defined and yields (ߩ)ܧ
a covering space of ܺ.

Moreover, the construction ݂ ↦ Rec(݂) yields a homomorphism of covering
spaces.

Proof. First to see that we indeed have a topology, we need to check (by this
prop.) that every point is contained in some base element, and that every point in
the intersection of two base elements has a base neighbourhood that is still
contained in that intersection.

So let ݔ ∈ ܺ be a point. By the assumption that ܺ is semi-locally simply connected
there exists an open neighbourhood ܷ௫ ⊂ ܺ such that every loop in ܷ௫ on ݔ is
contractible in ܺ. Moreover by the assumption that ܺ is locally path-connected
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topological space, this contains a possibly smaller open neighbourhood ܷ′௫ ⊂ ܷ௫

which is path connected. Moreover, as every subset of ܷ௫, it still has the property
that every loop in ܷ′௫  based on ݔ is contractible as a loop in ܺ. Now let ̂ݔ ∈ be any ܧ
point over ݔ, then it is contained in the base open ܸ௎ᇱೣ ,௫.

The argument for the base open neighbourhoods contained in intersections is
similar.

Then we need to see that ݌ (ߩ)ܧ: → ܺ is a continuous function. Since taking pre-
images preserves unions (this prop.), and since by semi-local simply
connectedness every neighbourhood contains an open ܷ ⊂ ܺ that labels a base
open, it is sufficient to see that ݌ −ଵ(ܷ) is a base open. But by the very assumption
on ܷ, there is a unique morphism in ߎଵ(ܺ) from any point ݔ ∈ ܷ to any other point
in ܷ, so that ߩ applied to these paths establishes a bijection of sets

݌ −ଵ(ܷ) ≃ ⊔
௫̂ ∈ ఘ(௫)

ܸ௎,௫̂ ≃ ܷ × (ݔ)ߩ ,

thus exhibiting ݌ −ଵ(ܷ) as a union of base opens.

Finally we need to see that this continuous function ݌ is a covering projection,
hence that every point ݔ ∈ ܺ has a neighbourhood ܷ such that ݌ −ଵ(ܷ) ≃ ܷ × .(ݔ)ߩ
But this is again the case for those ܷ all whose loops are contractible in ܺ, by the
above identification via ߩ, and these exist around every point by semi-local simply-
connetedness of ܺ.

This shows that ݌ : (ߩ)ܧ → ܺ is a covering space. It remains to see that
Ref(݂) : (ଵߩ)ܧ → is a homomorphism of covering spaces. Now by construction it (ଶߩ)ܧ

is immediate that this is a function over ܺ, in that this diagram commutes:

(ଵߩ)ܧ →⎯⎯⎯⎯
ୖୣୡ(௙)

(ଶߩ)ܧ

↘ ↙

ܺ

.

So it only remains to see that Ref(݂) is a continuous function. So consider
ܸ௎,௬మ ∈ ఘమ(௫) a base open of ܧ(ߩଶ). By naturality of ݂ its pre-image under Rec(݂) is

Rec(݂) −ଵ(ܸ௎,௬మ ∈ ఘమ(௫)) = ⊔
௬భ ∈ ௙ −భ(௬మ)

ܸ௎,௬భ

and hence a union of base opens.  ▮

3. Topological Galois theory

Fundamental theorem of covering spaces

Theorem 3.1. (fundamental theorem of covering spaces)

Let ܺ be a locally path-connected and semi-locally simply-connected topological
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space. Then the operations on

extracting the monodromy Fibா of a covering space  .over ܺ1 ܧ

reconstructing a covering space from monodromy Rec(ߩ)2. 

constitute an equivalence of categories

Cov(ܺ)⟶
୊୧ୠ

⟵
ୖୣୡ

Set௽భ(௑) .

Proof. Given ߩ ∈ Set௽భ(௑) a permutation representation, we need to exhibit a
natural isomorphism of permutation representations.

ఘߟ : ߩ ⟶ Fib(Rec(ߩ))

First consider what the right hand side is like: By this def. of Rec and this def. of Fib
we have for every ݔ ∈ ܺ an actual equality

Fib(Rec(ߩ))(ݔ) = (ݔ)ߩ .

To similarly understand the value of Fib(Rec(ߩ)) on morphisms [ߛ] ∈ ଵ(ܺ), letߎ
ߛ : [0, 1] → ܺ be a representing path in ܺ. We find, by the Lebesgue number lemma
as in the proof of this lemmapace#CoveringSpacePathLifting), a finite number of
paths {ߛ௜}௜ ∈ {ଵ,௡} such that

regarded as morphisms [ߛ௜] in ߎଵ(ܺ) they compose to [ߛ]:

[ߛ] = [௡ߛ] ∘ ⋯ ∘ [ଶߛ] ∘ [ଵߛ]

1. 

each ߛ௜ factors through an open subset ܷ௜ ⊂ ܺ over which Rec(ߩ) trivializes.2. 

Hence by functoriality of Fib(Rec(ߩ)) it is sufficient to understand its value on these
paths ߛ௜. But on these we have again by direct unwinding of the definitions that

Fib(Rec(ߩ))([ߛ௜]) = ([௜ߛ])ߩ .

This means that if we take

(ݔ)ఘߟ : (ݔ)ߩ ⟶= Fib(Rec(ߩ))

to be the above identification, then this is a natural transformation and hence in a
particular a natural isomorphism, as required.

Conversely, given ܧ ∈ Cov(ܺ) a covering space, we need to exhibit a natural
isomorphism of covering spaces of the form

߳ா : Rec(Fib(ܧ)) ⟶ ܧ .

Again by this def. of Rec and this def. of Fib the underlying set of Rec(Fib(ܧ)) is
actually equal to that of ܧ, hence it is sufficient to check that this identity function
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on underlying sets is a homeomorphism of topological spaces.

By the assumption that ܺ is locally path-connected and semi-locally simply
connected, it is sufficient to check for ܷ ⊂ ܺ an open path-connected subset and
ݔ ∈ ܺ a point with the property that ߨଵ(ܷ, (ݔ → ,ܺ)ଵߨ lands is constant on the trivial (ݔ

element, that the open subsets of ܧ of the form ܷ × {ݔ̂} ⊂ ݌ −ଵ(ܷ) form a basis for
the topology of Rec(Fib(ܧ)). But this is the case by definition of Rec.

This proves the equivalence.

(Notice that the assumption of local path-connectedness and semi-local simply-
connectedness of ܺ is used only to guarantee that the functor Rec exists in the first
place.)  ▮

Applications

Proposition 3.2. (fundamental group of the circle is the integers)

The fundamental group ଵ of the circleߨ ܵଵ is the additive group of integers:

ଵ(ܵଵ)ߨ ⟶≃ ℤ

and the isomorphism is given by assigning winding number.

Here in the context of topological homotopy theory the circle ܵଵ is the topological
subspace ܵଵ = ݔ} ∈ ℝଶ | ଵݔ

ଶ + ଶݔ
ଶ = 1} ⊂ ℝଶ of the Euclidean plane with its metric

topology, or any topological space of the same homotopy type. More generally, the
circle in question is, as a homotopy type, the homotopy pushout

ܵଵ ≃ * ሡ
* ⊔ *

* ,

hence the homotopy type with the universal property that it makes a homotopy
commuting diagram of the form

* ⊔ * ⟶ *

↓ ⇙ ↓

* ⟶ ܵଵ

.

Proof. The universal covering space ܵଵ̂ of ܵଵ is the real line (by this example):

݌ ≔ (cos(2ߨ( −)), sin(2ߨ( −))) : ℝଵ ⟶ ܵଵ .

Since the circle is locally path-connected (this example) and semi-locally simply
connected (this example) the fundamental theorem of covering spaces applies and
gives that the automorphism group of ℝଵ over ܵଵ equals the automorphism group
of its monodromy permutation representation:

Autେ୭୴(ௌభ)(ℝଵ) ≃ Autగభ(ௌభ)ୗୣ୲(Fibௌభ) .
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Moreover, as a corollary of the fundamental theorem of
covering spaces we have that the monodromy representation
of a universal covering space is given by the action of the
fundamental group .ଵ(ܵ) on itself (this prop.)ߨ

But the automorphism group of any group regarded as an
action on itself by left multiplication is canonically isomorphic
to that group itself (by this example), hence we have

Autగభ(ௌభ)ୗୣ୲(Fibௌభ) ≃ Autగభ(ௌభ)ୗୣ୲(ߨଵ(ܵଵ)) ≃ ଵ(ܵଵ)ߨ .

Therefore to conclude the proof it is now sufficient to show
that

Autେ୭୴(ௌభ)(ℝଵ) ≃ ℤ .

To that end, consider a homeomorphism of the form

ℝଵ ⟶
≃

௙
ℝଵ

௣ ↘ ↙௣

ܵଵ

.

Let ݏ ∈ ܵଵ be any point, and consider the restriction of ݂ to the fibers over the
complement:

݌ −ଵ(ܵଵ ∖ ({ݏ} ⟶
≃

௙
݌ −ଵ(ܵଵ ∖ ({ݏ}

௣ ↘ ↙௣

ܵଵ ∖ {ݏ}

.

By the covering space property we have (via this example) a homeomorphism

݌ −ଵ(ܵଵ ∖ ({ݏ} ≃ (0, 1) × Disc(ℤ) .

Therefore, up to homeomorphism, the restricted function is of the form

(0, 1) × Disc(ℤ) ⟶
≃

௙
(0, 1) × Disc(ℤ)

୮୰భ
↘ ↙୮୰భ

(0, 1)

.

By the universal property of the product topological space this means that ݂ is
equivalently given by its two components

(0, 1) × Disc(ℤ) →⎯⎯⎯⎯
୮୰భ ∘ ௙

(0, 1) (0, 1) × Disc(ℤ) →⎯⎯⎯⎯
୮୰మ ∘ ௙

Disc(ℤ) .

By the commutativity of the above diagram, the first component is fixed to be prଵ.

Moreover, by the fact that Disc(ℤ) is a discrete space it follows that the second
component is a locally constant function (by this example). Therefore, since the
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product space with a discrete space is a disjoint union space (via this example)

(0, 1) × Disc(ℤ) ≃ ⊔
௡ ∈ ℤ

(0, 1)

and since the disjoint summands (0, 1) are connected topological spaces (this
example), it follows that the second component is a constant function on each of
these summands (by this example).

Finally, since every function out of a discrete topological space is continuous, it
follows in conclusion that the restriction of ݂ to the fibers over ܵଵ ∖ is entirely {ݏ}
encoded in an endofunction of the set of integers

߶ : ℤ → ℤ

by

ܵଵ ∖ {ݏ} × Disc(ℤ) ⟶
௙

ܵଵ ∖ {ݏ} × Disc(ℤ)

,ݐ) ݇) ↦ ,ݐ) ߶(݇))
.

Now let ݏ′ ∈ ܵଵ be another point, distinct from ݏ. The same analysis as above
applies now to the restriction of ݂ to ܵଵ ∖ and yields a function {′ݏ}

߶′ : ℤ ⟶ ℤ .

Since

൛݌ −ଵ(ܵଵ ∖ ({ݏ} ⊂ ℝଵ , ݌ −ଵ(ܵଵ ∖ ′ݏ} }) ⊂ ℝଵൟ

is an open cover of ℝଵ, it follows that ݂ is unqiuely fixed by its restrictions to these
two subsets.

Now unwinding the definition of ݌ shows that the condition that the two
restrictions coincide on the intersection ܵଵ ∖ ,ݏ} ′ݏ } implies that there is ݊ ∈ ℤ such
that ߶(݇) = ݇ + ݊ and ߶′(݇) = ݇ + ݊.

This shows that Autେ୭୴(ௌభ)(ℝଵ) ≃ ℤ.  ▮

This concludes the introduction to basic homotopy theory.

For introduction to more general and abstract homotopy theory see at Introduction
to Homotopy Theory.

An incarnation of homotopy theory in linear algebra is homological algebra. For
introduction to that see at Introduction to Homological Algebra.
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4. References

A textbook account is in

Tammo tom Dieck, sections 2 an 3 of Algebraic Topology, EMS 2006 (pdf)

Lecture notes include

Jesper Møller, The fundamental group and covering spaces (2011) (pdf)
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