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This page is a detailed introduction to basic topological homotopy theory. We
introduce the fundamental group of topological spaces and the concept of
covering spaces. Then we prove the fundamental theorem of covering spaces,
saying that they are equivalent to permutation representations of the
fundamental group. This is a simple topological version of the general principle of
Galois theory and has many applications. As one example application, we use it
to prove that the fundamental group of the circle is the integers.

Under construction.
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In order to handle topological spaces, to compute their properties and to
distinguish them, it turns out to be useful to consider not just continuous
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variation within a topological space, i.e. continuous functions between topological
spaces, but also continuous deformations of continuous functions themselves.
This is the concept of homotopy (def. 1.2 below), and its study is called
homotopy theory. If one regards topological spaces with homotopy classes of
continuous functions between them then their nature changes, and one speaks of
homotopy types (remark 1.6 below).

Of particular interest are homotopies between paths in a topological space. If a
loop in a topological space is homotopic to the constant loop, this means that it
does not “wind around a hole” in the space. Hence the set of homotopy classes of
loops in a topological space, which is a group under concatenation of paths,
detects crucial information about the global structure of the space, and hence is
called the fundamental group of the space (def. 1.16).

This same information turns out to be encoded in “continuously varying sets”
over a topological space, hence in “bundles of sets”, called covering spaces (def.
2.1 below). As one moves around a loop, then the parameterized set comes back
to itself up to a bijection called the monodromy of the loop. This encodes an
action or permutation representation of the fundamental group. The fundamental
theorem of covering spaces (prop. 2.23 below) says that covering spaces are
equivalently characterized by their monodromy representation of the
fundamental group. This is an incarnation of the general principle of Galois theory
in topological homotopy theory. Sometimes this allows to compute fundamental
groups from behaviour of covering spaces, for instance it allows to prove that the
fundamental group of the circle is the integers (prop. 3.1 below).

In order to formulate and prove these statements, it turns out convenient to do
away with the arbitrary choice of basepoint that is involved in the definition of
fundamental groups, and instead collect all homotopy classes of paths into a
single structure, called the fundamental groupoid of a topological space (example
1.27 below) an example of a generalization of groups to groupoids (discussed
below). The fundamental groupoid may be regarded as an algebraic incarnation
of the homotopy type presented by a topological space, up to level 1 (the
homotopy 1-type).

The algebraic reflection of the full homotopy type of a topological space involves
higher dimensional analogs fo the fundamental group called the higher homotopy
groups. We close with an outlook on these below.

1. Homotopy

It is clear that for ≥ 1 the Euclidean space ℝ  or equivalently the open ball ∘ (1)

in ℝ  is not homeomorphic to the point space * = ℝ  (simply because there is not
even a bijection between the underlying sets). Nevertheless, intuitively the -ball
is a “continuous deformation” of the point, obtained as the radius of the -ball
tends to zero.

This intuition is made precise by observing that there is a continuous function out

Introduction to Topology -- 2 in nLab https://ncatlab.org/nlab/print/Introduction+to+Topology+--+2

2 of 58 7/18/17, 11:38 AM



of the product topological space (this example) of the open ball with the closed
interval

: [0, 1] × ∘ (1) ⟶ ∘ (1)

which is given by rescaling:

( , ) ↦ ⋅ .

This continuously interpolates between the open ball and the point, in that for
= 1 it restricts to the identity, while for = 0 it restricts to the map constant on

the origin.

We may summarize this situation by saying that there is a diagram of continuous
functions of the form

∘ (1) × {0} ⟶
∃ !

*

↓ ↓

[0, 1] × ∘ (1) →⎯⎯⎯⎯⎯⎯⎯
( , ) ↦ ⋅ ∘ (1)

↑ ↗≃

∘ (1) × {1}

Such “continuous deformations” are called homotopies:

In the following we use this terminlogy:

Definition 1.1. (topological interval)

The topological interval is

the closed interval [0, 1] ⊂ ℝ  regarded as a topological space in the
standard way, as a subspace of the real line with its Euclidean metric
topology,

1. 

equipped with the continuous functions

const : * → [0, 1]1. 

const : * → [0, 1]2. 

which include the point space as the two endpoints, respectively

2. 

equipped with the (unique) continuous function

[0, 1] ⟶ *

to the point space (which is the terminal object in Top)

3. 

regarded, in summary, as a factorization
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∇* : * ⊔ * →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( , )

[0, 1] ⟶ *

of the codiagonal on the point space, namely the unique continuous function ∇*

out of the disjoint union space * ⊔ * ≃ Disc({0, 1}) (homeomorphic to the
discrete topological space on two elements).

Definition 1.2. (homotopy)

Let , ∈ Top be two topological spaces and let

, : ⟶

be two continuous functions between them.

A (left) homotopy from  to , to be denoted

: ⇒ ,

is a continuous function

: × [0, 1] ⟶

out of the product topological space (this example) of  the topological interval
(def. 1.1) such that this makes the following diagram in Top commute:

0 ×
( , ) ↓ ↘

× [0, 1] ⟶

( , ) ↑ ↗

{1} ×

.

graphics grabbed from J.
Tauber here

hence such that

( −, 0) = and ( −, 1) = .

If there is a homotopy ⇒  (possibly unspecified) we say that  is homotopic
to , denoted

∼ .

Proposition 1.3. (homotopy is an equivalence relation)

Let , ∈ Top be two topological spaces. Write Hom ( , ) for the set of
continuous functions from  to .

Then the relating of being homotopic (def. 1.2) is an equivalence relation on
this set. The correspnding quotient set
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[ , ] ≔ Hom ( , )/ ∼

is called the set of homotopy classes of continuous functions.

Moreover, this equivalence relation is compatible with composition of
continuous functions:

For , , ∈ Top three topological spaces, there is a unique function

[ , ] × [ , ] ⟶ [ , ]

such that the following diagram commutes:

Hom ( , ) × Hom ( , ) →⎯⎯⎯⎯
∘ , ,

Hom ( , )

↓ ↓

[ , ] × [ , ] ⟶ [ , ]

.

Proof. To see that the relation is reflexive: A homotopy ⇒  from a function  to
itself is given by the function which is constant on the topological interval:

× [0, 1] ⟶ .

This is continuous becaue projections out of product topological spaces are
continuous, by the universal property of the Cartesian product.

To see that the relation is symmetric: If : ⇒  is a homotopy then

× [0, 1] →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
× ( − (−))

× [0, 1] ⟶

( , ) ↦ ( , 1 − ) ↦ ( , 1 − )

is a homotopy ⇒ . This is continuous because 1 − ( −) is a polynomial function,
and polynomials are continuous, and because Cartesian product and composition
of continuous functions is again continuous.

Finally to see that the relation is transitive: If : ⇒  and : ⇒ ℎ are two

composable homotopies, then consider the “ -parameterized path concatenation”

× [0, 1] →⎯⎯⎯⎯
∘

( , ) ↦
( , 2 ) | ≤ 1/2

( , 2 − 1) | ≤ 1/2

.

To see that this is continuous, observe that { × [0, 1/2] ⊂ , × [1/2, 1] ⊂ } is a
cover of × [0, 1] by closed subsets (in the product topology) and because

( −, 2( −)) and ( −, 2( −) − 1) are continuous (being composites of Cartesian

products of continuous functions) and agree on the intersection × {1/2}. Hence
the continuity follows by this example.
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Finally to see that homotopy respects composition: Let

⟶ ⟶
⟶ ⟶

be continuous functions, and let

: ⇒ ′

be a homotopy. It is sufficient to show that then there is a homotopy of the form

∘ ∘ ⇒ ∘ ′ ∘ .

This is exhibited by the following diagram

⟶

( , ) ↓ ( , ) ↓ ↘

× [0, 1] →⎯⎯⎯⎯⎯⎯⎯⎯
× [ , ]

× [0, 1] ⟶ ⟶

( , ) ↑ ( , ) ↑ ↗

⟶

.

  ▮

Remark 1.4. (homotopy category)

Prop. 1.3 means that homotopy classes of continuous functions are the
morphisms in a category whose objects are still the topological spaces.

This category (at least when restricted to spaces that admit the structure of
CW-complexes) is called the classical homotopy category, often denoted

Ho(Top) .

Hence for ,  topological spaces, then

Hom ( )( , ) = [ , ]

Moreover, sending a continuous function to its homotopy class is a functor

: Top ⟶ Ho(Top)

from the ordinary category Top of topological spaces with actual continuous
functions between them.

Definition 1.5. (homotopy equivalence)

Let , ∈ Top be two topological spaces.

A continuous function
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: ⟶

is called a homotopy equivalence if there exists

a continuous function the other way around,

: ⟶

1. 

homotopies (def. 1.2) from the two composites to the respective identity
function:

2. 

∘ ⇒ id

and

∘ ⇒ id .

We indicate that a continuous function is a homotopy equivalence by writing

⟶
≃

.

If there exists some (possibly unspecified) homotopy equivalence between
topological spaces  and  we write

≃ .

Remark 1.6. (homotopy equivalences are the isomorphisms in the
homotopy category)

In view of remark 1.4 a continuous function  is a homotopy equivalence
precisely if its image ( ) in the homotopy category is an isomorphism.

As an object of the homotopy category, a topoogical space is often referred to
as a (strong) homotopy type. Homotopy types have a different nature than the
topological spaces which present them, in that topological spaces that are far
from being homeomorphic may still be equivalent as homotopy types.

Example 1.7. (homeomorphism is homotopy equivalence)

Every homeomorphism is a homotopy equivalence (def. 1.5).

Proposition 1.8. (homotopy equivalence is equivalence relation)

Being homotopy equivalent is an equivalence relation on the class of
topological spaces.

Proof. This is immediate from remark 1.6 by general properties of categories
and functors.

But for the record we spell it out. This involves the construction already used in
the proof of prop. 1.3:

It is clear that the relation it reflexive and symmetric. To see that it is transitive
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consider continuous functions

⟵
⟶

⟵
⟶

and homotopies

∘ ⇒ id ∘ ⇒ id
∘ ⇒ id ∘ ⇒ id .

We need to produce homotopies of the form

( ∘ ) ∘ ( ∘ ) ⇒ id

and

( ∘ ) ∘ ( ∘ ) ⇒ id .

Now the diagram

⟶

( , ) ↓ ( , ) ↓ ↘ ∘

× [0, 1] →⎯⎯⎯⎯⎯⎯⎯⎯
× [ , ]

× [0, 1] ⟶ ⟶

( , ) ↑ ( , ) ↑ ↗

⟶

,

with  one of the given homotopies, exhibits a homotopy
( ∘ ) ∘ ( ∘ ) ⇒ ∘ . Composing this with the given homotopy ∘ ⇒ id

gives the first of the two homotopies required above. The second one follows by
the same construction, just with the lables of the functions exchanged.  ▮

Definition 1.9. (contractible topological space)

A topological space  is called contractible if the unique continuous function to
the point space

⟶
≃

*

is a homotopy equivalence (def. 1.5).

Remark 1.10. (contractible topological spaces are the terminal objects in
the homotopy category)

In view of remark 1.4, a topological space  is contractible (def. 1.9) precisely
if its image ( ) in the classical homotopy category is a terminal object.

Example 1.11. (closed ball and Euclidean space are contractible)
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Let ⊂ ℝ  be the unit open ball or closed ball in Euclidean space. This is
contractible (def. 1.9):

: ⟶
≃

* .

The homotopy inverse function is necessarily constant on a point, we may just
as well choose it to go pick the origin:

const : * ⟶ .

For one way of composing these functions we have the equality

∘ const = id*

with the identity function. This is a homotopy by prop. 1.3.

The other composite is

const ∘ = const : ⟶ .

Hence we need to produce a homotopy

const ⇒ id

This is given by the function

× [0, 1] ⟶

( , ) ↦
,

where on the right we use the multiplication with respect to the standard real
vector space structure in ℝ .

Since the open ball is homeomorphic to the whole Cartesian space ℝ  (this
example) it follows with example 1.7 and example 1.3 that also ℝ  is a
contractible topological space:

ℝ ⟶
≃

* .

In direct generalization of the construction in example 1.11 one finds further
examples as follows:

Example 1.12. The following three graphs

(i.e. the evident topological subspaces of the plane ℝ  that these pictures
indicate) are not homeomorphic. But they are homotopy equivalent, in fact
they are each homotopy equivalent to the disk with two points removed, by the
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homotopies indicated by the following pictures:

graphics grabbed from Hatcher

Fundamental group

Definition 1.13. (homotopy relative boundary)

Let  be a topological space and let

, : [0, 1] ⟶

be two paths in , i.e. two continuous functions from the closed interval to ,
such that their endpoints agree:

(0) = (0) (1) = (1) .

Then a homotopy relative boundary from  to  is a homotopy (def. 1.2)

: ⇒

such that it does not move the endpoints:

(0, −) = const ( ) = const ( ) (1, −) = const ( ) = const ( ) .

Proposition 1.14. (homotopy relative boundary is equivalence relation on
sets of paths)

Let  be a topological space and let , ∈  be two points. Write

,

for the set of paths  in  with (0) =  and (1) = .

Then homotopy relative boundary (def. 1.13) is an equivalence relation on
, .

The corresponding set of equivalence classes is denoted

Hom ( )( , ) ≔ ( , )/ ∼ .

Recall the operations on paths: path concatenation ⋅ , path reversion ̅  ̅and

constant paths
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Proposition 1.15. (concatenation of homotopy relative boundary-classes
of paths)

For  a topological space, then the operation of path concatenation descends to
homotopy relative boundary equivalence classes, so that for all , , ∈  there
is a function

Hom ( )( , ) × Hom ( )( , ) ⟶ Hom ( )( , )

([ ], [ ]) ↦ [ ] ⋅ [ ] ≔ [ ⋅ ]
.

Moreover,

this composition operation is associative in that for all , , , ∈  and
[ ] ∈ Hom ( )( , ), [ ] ∈ Hom ( )( , ) and [ ] ∈ Hom ( ))( , ) then

[ ] ⋅ ([ ] ⋅ [ ]) = ([ ] ⋅ [ ]) ⋅ [ ]

1. 

this composition operation is unital with neutral elements the constant
paths in that for all , ∈  and [ ] ∈ Hom ( )( , ) we have

[const ] ⋅ [ ] = [ ] = [ ] ⋅ [const ] .

2. 

this composition operation has inverse elements given by path reversal in
that for all , ∈  and [ ] ∈ Hom ( )( , ) we have

[ ̅ ]̅ ⋅ [ ] = [const ] [ ] ⋅ [ ̅ ]̅ = [const ] .

3. 

Definition 1.16. (fundamental groupoid and fundamental groups)

Let  be a topological space. Then set of points of  together with the sets
Hom ( )( , ) of homotopy relative boundary-classes of paths (def. 1.13) for all

points of points and equipped with the concatenation operation from prop. 1.15
is called the fundamental groupoid of , denoted

( ) .

Given a choice of point ∈ , then one writes

( , ) ≔ Hom ( )( , ) .

Prop. 1.15 says that under concatenation of paths, this set is a group. As such
it is called the fundamental group of  at .

The following picture indicates the four non-equivalent non-trivial generators of
the fundamental group of the oriented surface of genus 2:
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Example 1.17. (fundamental group of Euclidean space)

For ∈ ℕ and ∈ ℝ  any point in the -dimensional Euclidean space (regarded
with its metric topology) we have that the fundamental group (def. 1.16) at
that point is trivial:

(ℝ , ) = * .

Remark 1.18. (basepoints)

Definition 1.16 intentionally offers two variants of the defintion.

The first, the fundamental groupoid is canonically given, without choosing a
basepoint. As a result, it is a structure that is not quite a group but, slightly
more generally, a “groupoid” (a “group with many objects”). We discuss the
concept of groupoids below.

The second, the fundamental group, is a genuine group, but its definition
requires picking a base point ∈ .

In this context it is useful to say that

a pointed topological space ( , ) is

a topological space ;1. 

a ∈  in the underlying set.2. 

1. 

a homomorphism of pointed topological spaces : ( , ) ⟶ ( , ) is a base-
point preserving continuous function, namely

a continuous function : ⟶1. 

such that ( ) = .2. 

2. 

Hence there is a category, to be denoted, Top * /, whose objects are the pointed
topological spaces, and whose morphisms are tbe base-point preserving
continuous functions.

Similarly, a homotopy between morphisms , ′ : ( , ) → ( , ) in Top * / is a
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homotopy : ⇒ ′  of underlying continuous functions, as in def. 1.2, such that
the corresponding function

: × [0, 1] ⟶

preserves the basepoints in that

∀
∈ [ , ]

( , ) = .

These pointed homotopies still form an equivalence relation as in prop. 1.3 and
hence quotienting these out yields the pointed analogue of the homotopy
category from def. 1.4, now denoted

: Top * / ⟶ Ho(Top * /) .

In general it is hard to explicitly compute the fundamental group of a topological
space. But often it is already useful to know if two spaces have the same
fundamental group or not:

Definition 1.19. (pushforward of elements of fundamental groups)

Let ( , ) and ( , ) be pointed topological space (remark 1.18) and let

: ⟶

be a continuous function which respects the chosen points, in that ( ) = .

Then there is an induced homomorphism of fundamental groups (def. 1.16)

( , ) ⟶* ( , )

[ ] ↦ [ ∘ ]

given by sending a closed path : [0, 1] →  to the composite

∘ : [0, 1] ⟶ ⟶ .

Remark 1.20. (fundamental group is functor on pointed topological
spaces)

The pushforward operation in def. 1.19 is functorial, now on the category Top * /

of pointed topological spaces (remark 1.18)

: Top * / ⟶ Grp .

Proposition 1.21. (fundamental group depends only on homotopy
classes)

Let , ∈ Top * / be pointed topological space and let , : ⟶  be two base-

point preserving continuous functions. If there is a pointed homotopy (def. 1.2,
remark 1.18)
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: ⇒

then the induced homomorphisms on fundamental groups (def. 1.19) agree

( )
*

= ( )
*

: ( , ) → ( , ) .

In particular if : ; ⟶  is a homotopy equivalence (def. 1.5) then

*
: ( , ) → ( , ) is an isomorphism.

Proof. This follows by the fact that homotopy respects composition (prop. 1.3):

If : [0, 1] ⟶  is a closed path representing a given element of ( , ), then the
homotopy ⇒  induces a homotopy

∘ ⇒ ∘

and therefore these represent the same elements in ( , ).

If follows that if  is a homotopy equivalence with homotopy inverse , then

*
: ( , ) → ( , ) is an inverse morphism to 

*
: ( , ) → ( , ) and hence 

*
 is

an isomorphism.  ▮

Remark 1.22. Prop. 1.21 says that the fundamental group functor from def.
1.19 and remark 1.20 factors through the classical pointed homotopy category
from remark 1.18:

Top * / ⟶ Grp

↓ ↗

Ho(Top * /)

.

Definition 1.23. (simply connected topological space)

A topological space  for which

( ) ≃ *  (path connected)1. 

( , ) ≃ 1 (the fundamental group is trivial, def. 1.16),2. 

is called simply connected.

We will need also the following local version:

Definition 1.24. (semi-locally simply connected topological space)

A topological space  is called semi-locally simply connected if every point ∈
has a neighbourhood ⊂  such that every loop in  is contractible as a loop
in , hence such that the induced morphism of fundamental groups (def. 1.19)

( , ) → ( , )
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is trivial (i.e. sends everything to the neutral element).

If every  has a neighbourhood  which is itself simyply connected, then  is
called a locally simply connected topological space. This implies semi-local
simply-connectedness.

Example 1.25. (Euclidean space is simply connected)

For ∈ ℕ, then the Euclidean space ℝ  is a simply connected topological space
(def. 1.23).

Groupoids

In def. 1.16 we extracted the fundamental group at some point ∈  from a
larger algebraic structure, that incorporates all the basepoints, to be called the
fundamental groupoid. This larger algebraic structure of groupoids is usefully
made explicit for the formulation and proof of the fundamental theorem of
covering spaces (theorem 2.23 below) and the development of homotopy theory
in general.

Where a group may be thought of as a group of symmetry transformations that
isomorphically relates one object to itself (the symmetries of one object, such as
the isometries of a polyhedron) a groupoid is a collection of symmetry
transformations acting between possibly more than one object.

Hence a groupoid consists of a
set of objects , , , ⋯ and for
each pair of objects ( , ) there
is a set of transformations,
usually denoted by arrows

⟶

which may be composed if
they are composable (i.e. if
the first ends where the
second starts)

↗ ↘

→⎯⎯
∘

such that this composition is associative and such that for each object  there is

identity transformation ⟶  in that this is a neutral element for the composition
of transformations, whenever defined.

So far this structure is what is called a small category. What makes this a (small)
groupoid is that all these transformations are to be “symmetries” in that they are

invertible morphisms meaning that for each transformation ⟶  there is a
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transformation the other way around →⎯⎯⎯
−

 such that

− ∘ = id ∘ − = id .

If there is only a single object , then this definition reduces to that of a group,
and in this sense groupoids are “groups with many objects”. Conversely, given
any groupoid  and a choice of one of its objects , then the subcollection of
transformations from and to  is a group, sometimes called the automorphism
group Aut ( ) of  in .

Just as for groups, the “transformations” above need not necessarily be given by
concrete transformations (say by bijections between objects which are sets). Just
as for groups, such a concrete realization is always possible, but is an extra
choice (called a representation of the groupoid). Generally one calls these

“transformations” morphisms: ⟶  is a morphism with “source”  and “domain”
.

An archetypical example of a groupoid is the fundamental groupoid ( ) of a
topological space (def. 1.27 below, for introduction see here): For  a topological
space, this is the groupoid whose

objects are the points ∈ ;

morphisms ⟶
[ ]

 are the homotopy relative boundary-equivalence classes
[ ] of paths : [0, 1] →  in , with (0) =  and (1) = ;

and composition is given, on representatives, by concatenation of paths. Here the
class of the reverse path ¯ : ↦ (1 − ) constitutes the inverse morphism, making
this a groupoid.

If one chooses a point ∈ , then the corresponding group at that point is the
fundamental group ( , ) ≔ Aut ( )( ) of  at that point.

This highlights one of the reasons for being interested in groupoids over groups:
Sometimes this allows to avoid unnatural ad-hoc choices and it serves to
streamline and simplify the theory.

A homomorphism between groupoids is the obvious: a function between their
underlying objects together with a function between their morphisms which
respects source and target objects as well as composition and identity
morphisms. If one thinks of the groupoid as a special case of a category, then
this is a functor. Between groupoids with only a single object this is the same as
a group homomorphism.

For example if : →  is a continuous function between topological spaces, then
postcomposition of paths with this function induces a groupoid homomorphism

*
: ( ) ⟶ ( ) between the fundamental groupoids from above.

Groupoids with groupoid homomorphisms (functors) between them form a
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category Grp (def. 1.33 below) which includes the categeory Grp of groups as the
full subcategory of the groupoids with a single object. This makes precise how
groupoid theory is a genralization of group theory.

However, for groupoids more than for groups one is typically interested in
“conjugation actions” on homomorphisms. These are richer for groupoids than for
groups, because one may conjugate with a different morphism at each object. If
we think of groupoids as special cases of categories, then these “conjugation
actions on homomorphisms” are natural transformations between functors.

For examples if , : ⟶  are two continuous functions between topological
spaces, and if : ⇒  is a homotopy from  to , then the homotopy relative
boundary classes of the paths ( , −) : [0, 1] →  constitute a natural

transformation between 
*
,

*
: ( ) → ( ) in that for all paths ⟶

[ ]
 in  we

have the “conjugation relation”

[ ( , −)] ⋅ [ ∘ ] = [ ∘ ] ⋅ [ ( , −)] i.e.

( ) →⎯⎯⎯⎯⎯⎯
[ ( , −)]

( )

[ ∘ ] ↓ ↓[ ∘ ]

( ) →⎯⎯⎯⎯⎯⎯
[ ( , −)]

( )

.

Definition 1.26. (groupoid)

A small groupoid  is

a set , to be called the set of objects;1. 

for all pairs of objects ( , ) ∈ ×  a set Hom( , ), to be called the set of
morphisms with domain or source  and codomain or target ;

2. 

for all triples of objects ( , , ) ∈ × ×  a function

∘ , , : Hom( , ) × Hom( , ) ⟶ Hom( , )

to be called composition

3. 

for all objects ∈  an element

id ∈ Hom( , )

to be called the identity morphism on ;

4. 

for all pairs , ∈ Hom( , ) of obects a function

( −) − : Hom( , ) ⟶ Hom( , )

to be called the inverse-assigning function

5. 

such that

(associativity) for all quadruples of objects , , , ∈  and all triples of1. 
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morphisms ∈ Hom( , ), ∈ Hom( , ) and ℎ ∈ Hom( , ) an equality

ℎ ∘ ( ∘ ) = (ℎ ∘ ) ∘

(unitality) for all pairs of objects , ∈  and all moprhisms ∈ Hom( , )

equalities

id ∘ = ∘ id =

2. 

(invertibility) for all pairs of objects , ∈  and every morphism
∈ Hom( , ) equalities

− ∘ = id ∘ − = id .

3. 

If ,  are two groupoids, then a homomorphism or functor between them,

denoted

: ⟶

is

a function : ⟶  between the respective sets of objects;1. 

for each pair , ∈  of objects a function

, : Hom ( , ) ⟶ Hom ( ( ), ( ))

between sets of morphisms

2. 

such that

(respect for composition) for all triples , , ∈  and all ∈ Hom( , ) and
∈ Hom( , ) an equality

, ( ) ∘ , ( ) = , ( ∘ )

1. 

(respect for identities) for all ∈  an equality

, (id ) = id ( ) .

2. 

For ,  two groupoids, and for , : →  two groupoid

homomorphisms/functors, then a conjugation or homotopy or natural
transformation (necessarily a natural isomorphism)

: ⇒

is

for each object ∈  of  a morphism ∈ Hom ( ( ), ( ))

such that
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for all , ∈  and ∈ Hom ( , ) an equality

∘ ( ) = ( ) ∘

( ) ⟶ ( )

( ) ↓ ↓ ( )

( ) ⟶ ( )

For ,  two groupoids and , , : ⟶  three functors between them and

: Rihtarrow  and : ⇒  conjugation actions/natural isomorphisms

between these, there is the composite

: : ⇒

with components the composite of the components

( ∘ )( ) ≔ ( ) ∘ ( ) .

This yields for any two groupoid a hom-groupoid

Hom ( , )

whose objects are the groupoid homomorphisms / functors, and whose
morphisms are the conjugation actions / natural transformations.

The archetypical example of a groupoid we already encountered above:

Example 1.27. (fundamental groupoid)

For  a topological space, then its fundamental groupoid (as in def. 1.16) has
as set of objects the underlying set of , and for , ∈  two points, the set of
homomorphisms is the set of paths from  to $y4 modulo homotopy relative
boundary:

Hom ( )( , )( , )/ ∼

and composition is given by concatenation of paths.

Remark 1.28. (groupoids are special cases of categories)

A small groupoid (def. 1.26) is equivalently a small category in which all
morphisms are isomorphisms.

While therefore groupoid theory may be regarded as a special case of category
theory, it is noteworthy that the two theories are quite different in character.
For example higher groupoid theory is homotopy theory which is rich but quite
tractable, for instance via tools such as simplicial homotopy theory or
homotopy type theory, while higher category theory is intricate and becomes
tractable mostly by making recourse to higher groupoid theory in the guise of
(infinity,1)-category theory and (infinity,n)-categories.

Example 1.29. (groupoid core of a category)
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For  any (small) category, then there is a maximal groupoid inside

Core( ) ↪

sometimes called the core of . This is obtained from  simply by discarding all
those morphisms that are not isomorphisms.

For instance

For = Set then Core(Set) is the goupoid of sets and bijections between
them.

For FinSet then the skeleton of this groupoid (prop. 1.47) is the disjoint
union of deloopings (example 1.41) of all the symmetric groups:

Core(FinSet) ≃ ⊔
∈ ℕ

( )

For = Vect then Core(Vect) is the groupoid of vector spaces and linear
bijections between them.

For = FinVect then the skeleton of this groupoid is the disjoint union of
delooping of all the general linear groups

Core(FinVect) ≃ ⊔
∈ ℕ

GL( ) .

Example 1.30. (discrete groupoid)

For  any set, there is the discrete groupoid Disc( ), whose set of objects is 
and whose only morphisms are identity morphisms.

This is also the fundamental groupoid (example 1.27) of the discrete
topological space on the set .

Example 1.31. (disjoint union/coproduct of groupoids)

Let { } ∈  be a set of groupoids. Then their disjoint union (coproduct) is the

groupoid

⊔
∈

whose set of objects is the disjoint union of the sets of objects of the summand
groupoids, and whose sets of morphisms between two objects is that of  if

both objects are form this groupoid, and is empty otherwise.

Definitio 1.32. (product of groupoids)

Let { } ∈  be a set of groupoids. Their product groupoid is the [groupoid]]

∈
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whose set of objects is the Cartesian product of the sets of objects of the factor
groupoids

∈

≔
∈

( )

and whose set of morphisms between tuples ( ) ∈  and ( ) ∈  is the

corresponding Cartesian product of morphisms, with elements denoted

( ) ∈ →⎯⎯⎯⎯⎯
( ) ∈ ( ) ∈ .

For instance if each of the groupoids is the delooping =  of a group

(example 1.40) then the product groupoid is the delooping groupoid of the
direct product group:

∈

≃
∈

.

As another example, if ⊔
∈

 is the coproduct groupoid from example 1.31, and

if  is any groupoid, then a groupoid homomorphism of the form

⊔
∈

⟶

is equivalently a tuple ( ) ∈  of groupoid homomorphisms

⟶ .

The analogous statement holds for homotopies between groupoid
homomorphisms, and so one find that the hom-groupoid out of a coproduct of
groupoids is the product groupoid of the separate hom-groupoids:

Hom ⊔
∈

, ≃
∈

Hom ( , ) .

Remark 1.33. (1-category of groupoids)

From def. 1.26 we see that there is a category whose

objects are the small groupoids;

morphisms are the groupoid homomorphisms (functors).

But since this 1-category does not reflect the existence of homotopies/natural
isomorphisms between homomorphsims/functors of groupoids (def. 1.26) this
1-category is not what one is interested in when considering homotopy
theory/higher category theory.

In order to obtain the right notion of category of groupoids that does reflect
homotopies, we first consider now the horizontal composition of
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homotopies/natural transformations.

Lemma 1.34. (horizontal composition of homotopies with morphisms)

Let , , ,  be groupoid and let

⟶ ⇓
⟶

⟶
⟶

be morphisms and a homotopy . Then there is a homotopy

⇓ ⋅ ⋅
⟶

∘ ∘

⟶
∘ ∘

between the respective composites, with components given by

( ⋅ ⋅ )( ) ≔ ( ( ( ))) .

This operation constitutes a groupoid homomorphism/functor

⋅ (−) ⋅ : Hom ( , ) ⟶ Hom ( , ) .

Proof. The respect for identities is clear. To see the respect for composition, let

⟶

⇓

⟶

⇓

⟶

be two composable homotopies. We need to show that

⋅ ( ∘ ⋅ = ( ⋅ ⋅ ) ∘ ( ⋅ ⋅ ) .

Now for  any object of  we find

( ⋅ ( ∘ ⋅ )( ) ≔ (( ∘ )( ( )))

≔ ( ( ( )) ∘ ( ( )))

= ( ( ( ))) ∘ ( ( ( )))

= (( ⋅ ⋅ ) ∘ ( ⋅ ⋅ ))( )

.

Here all steps are unwinding of the definition of horizontal and of ordinary
(vbertical) composition of homotopies, except the third equality, which is the
functoriality of .  ▮

Lemma 1.35. (horizontal composition of homotopies)
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Consider a diagram of groupoids, groupoid homomorphsims (functors) and
homotopies (natural transformations) as follows:

⇓
→⎯⎯⎯⎯

→⎯⎯⎯⎯
⇓

→⎯⎯⎯⎯

→⎯⎯⎯⎯

The horizontal composition of the homotopies to a single homotopy of the form

⇓ ⋅
→⎯⎯⎯⎯⎯⎯⎯⎯

∘

→⎯⎯⎯⎯⎯⎯⎯⎯
∘

may be defined in temrs of the horizontal composition of homotopies with
morphisms (lemma 1.34) and the (“vertical”) composition of homotopies with
themselves, in two different ways, namely by decomposing the above diagram
as

⇓
→⎯⎯⎯⎯

→⎯⎯⎯⎯ ⟶

⟶ ⇓
→⎯⎯⎯⎯

→⎯⎯⎯⎯

or as

⟶
⇓

→⎯⎯⎯⎯

→⎯⎯⎯⎯

⇓
→⎯⎯⎯⎯

→⎯⎯⎯⎯
⟶

In the first case we get

⋅ ≔ ( ⋅ ′ ) ∘ ( ⋅ )

while in the second case we get

⋅ ≔ ( ′ ⋅ ) ∘ ( ⋅ ) .

These two definitions coincide.

Proof. For  an object of , then we need that the following square diagram

commutes in 

Introduction to Topology -- 2 in nLab https://ncatlab.org/nlab/print/Introduction+to+Topology+--+2

23 of 58 7/18/17, 11:38 AM



( ( )) →⎯⎯⎯⎯⎯⎯⎯⎯
( ⋅ )( )

( ′ ( ))

( ⋅ )( ) ↓ ↓( ⋅ )( )

′ ( ( )) →⎯⎯⎯⎯⎯⎯⎯⎯
( ⋅ )( )

′ ( ′ ( ))

=

( ( )) →⎯⎯⎯⎯⎯⎯⎯
( ( ))

( ′ ( ))

( ( )) ↓ ↓ ( ( ))

′ ( ( )) →⎯⎯⎯⎯⎯⎯⎯⎯
( ( ))

′ ( ′ ( ))

.

But the ommutativity of the square on the right is the defining compatibility
condition on the components of  applied to the morphism ( ) in .  ▮

Proposition 1.36. (horizontal composition with homotopy is natural
transformation)

Consider groupoids, homomorphisms and homotopies of the form

⇓
→⎯⎯⎯⎯

→⎯⎯⎯⎯
⇓

→⎯⎯⎯⎯

→⎯⎯⎯⎯
.

Then horizontal composition with the homotopies (lemma 1.35) constitutes a
natural transformation between the functors of horizontal composition with
morphisms (lemma 1.34)

( ⋅ (−) ⋅ ) : ( ⋅ ( −) ⋅ ) ⇒ ( ′ ( −) ⋅ ′ ) : Hom ( , ) ⟶ Hom ( , ) .

Proof. By lemma 1.35.  ▮

It first of all follows that the following makes sense

Definition 1.37. (homotopy category of groupoids)

There is also the homotopy category Ho(Grpd) whose

objects are small groupoids;

morphisms are equivalence classes of groupoid homomorphisms modulo
homotopy (i.e. functors modulo natural transformations).

This is usually denoted Ho(Grpd).

Of course what the above really means is that, without quotienting out
homotopies, groupoids form a 2-category, in fact a (2,1)-category, in fact an
enriched category which is enriched over the naive 1-category of groupoids from
remark 1.33, hece a strict 2-category with hom-groupoids.

Definition 1.38. (equivalence of groupoids)

Given two groupoids  and , then a homomorphism

: ⟶

is an equivalence it it is an isomorphism in the homotopy category Ho(Grpd)

(def. 1.37), hence if there exists a homomorphism the other way around

Introduction to Topology -- 2 in nLab https://ncatlab.org/nlab/print/Introduction+to+Topology+--+2

24 of 58 7/18/17, 11:38 AM



: ⟶

and a homotopy/natural transformations of the form

∘ ≃ id ∘ ≃ id .

Example 1.39. ((2,1)-functoriality of fundamental groupoid)

If  and  are topological spaces and : ⟶  is a continuous function
between them, then this induces a groupoid homomorphism (functor) between
the respective fundamental groupoids (def. 1.27)

: ( ) ⟶ ( )

given on objects by the underlying function of 

( ) ≔

and given on the class of a path by the evident postcomposition with 

( ) , : ( ⟶
[ ]

) ↦ ( ( ) →⎯⎯⎯
[ ∘ ]

( )) .

This construction clearly respects identity morphisms and composition and
hence is itself a functor of the form

: Top ⟶ Grpd

from the category Top of topological space to the 1-category Grpd of groupoids.

But more is true: If , : ⟶  are two continuous function and

: ⇒

is a left homotopy between them, hence a continuous function

: × [0, 1] ⟶

such that ( −, 0) =  and ( −, 1) = , then this induces a homotopy between the
above groupoid homomorphisms (a natural transformation of functors).

This shows that the fundamental groupoid functor in fact descends to
homotopy categories

: Ho(Top) ⟶ Ho(Grpd) .

(In fact this means it even extends to a (2,1)-functor from the (2,1)-category
of topological spaces, continuous functions, and higher homotopy-classes of left
homotopues, to that of groupoids.)

As a direct consequence it follows that if there is a homotopy equivalence

≃
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between topological spaces, then there is an induced equivalence of groupoids
betwee their fundamental groupoids

( ) ≃ ( ) .

Hence the fundamental groupoid is a homotopy invariant of topological spaces.
Of course by prop. 1.46 the fundamental groupoid is equivalent, as a groupoid,
to the disjoint union of the deloopings of all the fundamental groups of the
given topological spaces, one for each connected component, and hence this is
equivalently the statement that the set of connected components and the
fundamental groups of a topological space are homotopy invariants.

Example 1.40. (delooping of a group)

Let  be a group. Then there is a groupoid, denoted , with a single object ,
with morphisms

Hom ( , ) ≔

the elements of , with composition the multiplication in , with identity
morphism the neutral element in  and with inverse morphisms the inverse
elements in .

This is also called the delooping of  (because the loop space object of  at
the unique point is the given group: ≃ ).

For ,  two groups, then there is a natural bijection between group
homomorphisms : →  and groupoid homomorphisms → : the latter
are all of the form , with ( )  uniquely fixed and ( ) , = .

This means that the construction ( −) is a fully faithful functor

( −) : Grp ↪ Grpd

into from the category Grp of groups to the 1-category of groupoids.

But beware that this functor is not fully faithful when homotopies of groupoids
are taken into acount, because there are in general non-trivial homotopies
between morphims of the form

, : ⟶

By definition, such a homotopy (natural transformation) : ⇒  is a

choice of a single elemet ∈  such that for all ∈  we have

( ) = ℎ ⋅ ( ) ⋅ ℎ −

⟶
( ) ↓ ↓ ( )

⟶
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hence such that

= Ad ∘ .

Therefore notably the induced functor

( −) : Grp ⟶ Ho(Grp)

to the homotopy category of groupoids is not fully faithful.

But since  is canonically a pointed object in groupoids, we may also regard
delooping as a functor

(−) : Grp ⟶ Grpd * /

to the category of pointed objects of Grpd. Since groupoid homomorphisms
→  necessarily preserve the basepoint, this makes no difference at this

point. But as we now pass to the homotopy category

( −) : Grp ↪ Ho(Grpd * /)

then also the homotopies are required to preserve the absepoint, and for
homotopies between homomorphisms between delooped groups this means,
since there only is a single point, that these homotopies are all trivial. Hence
regarded this way the functor is a fully faithful functor again, hence an
equivalence of categories onto its essential image. By prop. 1.47 below this
essential image consists precisely of the (pointed) connected groupoids:

Groups are equivalently pointed connected groupoids.

Example 1.41. (disjoint union of delooping groupoids)

Let { } ∈  be a set of groups. Then there is a groupoid ⊔
∈

 which is the

disjoint union groupoid (example 1.31) of the delooping groupoids 
(example 1.40).

Its set of objects is the index set , and

Hom( , ) =
| =

∅ | otherwise

Definition 1.42. (connected components of a groupoid)

Given a groupoid  with set of objects , then the relation “there exists a
morphism from  to ”, i.e.

( ∼ ) ≔ (Hom( , ) ≠ ∅)

is clearly an equivalence relation on . The corresponding set of equivalence
classes is denoted
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( )

and called the set of connected components of .

Definition 1.43. (automorphism groups)

Given a groupoid  and an object , then under composition the set Hom ( , )

forms a group. This is called the automorphism group Aut ( ) or vertex group
or isotropy group of  in .

For each object  in a groupoid , there is a canonical groupoid homomorphism

Aut ( ) ↪

from the delooping groupoid (def. 1.40) of the automorphism group. This takes
the unique object of Aut ( ) to  and takes every automorphism of  “to
itself”, regarded now again as a morphism in .

Definition 1.44. (weak homotopy equivalence of groupoids)

Let  and  be groupoids. Then a morphism (functor)

: ⟶

is called a weak homotopy equivalence if

it induces a bijection on connected components (def. 1.42):

( ) : ( ) ⟶≃ ( )

1. 

for each object  of  the morphism

, : Aut ( ) ⟶≃ Aut ( ( ))

is an isomorphism of automorphism groups (def. 1.43)

2. 

Lemma 1.45. (automorphism group depends on basepoint only up to
conjugation)

For  a groupoid, let  and  be two objects in the same connected component
(def. 1.42). Then there is a group isomorphism

Aut ( ) ≃ Aut ( )

between their automorphism groups (def. 1.43).

Proof. By assumption, there exists some morphism from  to 

⟶ .

The operation of conjugation with this morphism
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Aut ( ) →⎯⎯ Aut ( )

↦ − ∘ ∘

is clearly a group isomorphism as required.  ▮

Lemma 1.46. (equivalences between disjoint unions of delooping
groupoids)

Let { } ∈  and { } ∈  be sets of groups and consider a homomorphism

(functor)

: sqcup
∈

⟶ ⊔
∈

between the corresponding disjoint unions of delooping groupoids (example
1.40).

Then the following are equivalent:

 is an equivalence of groupoids (def. 1.38);1. 

 is a weak homotopy equivalence (def. 1.44).2. 

Proof. The implication 2) ⇒ 1) is immediate.

In the other direction, assume that  is an equivalence of groupoids, and let  be
an inverse up to natural isomorphism. It is clear that both induces bijections on
connected components. To see that both are isomorphisms of automorphisms
groups, observe that the conditions for the natural isomorphisms

: ∘ ⇒ id : ∘ ⇒ id

are in each separate delooping groupoid  of the form

* ⟶ *
( ), ( )( , ( ))

↓ ↓

* ⟶ *

* ⟶ *
( ), ( )( , ( ))

↓ ↓

* ⟶ *

since there is only a single object. But this means ,  and ,  are group
isomorphisms.  ▮

Proposition 1.47. (every groupoid is equivalent to a disjoint union of
group deloopings)

Assuming the axiom of choice, then:

For  any groupoid, then there exists a set { } ∈  of groups and an equivalence

of groupoids (def. 1.38)

≃ ⊔
∈
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between  and a disjoint union of delooping groupoids (example 1.41). This is
called a skeleton of .

Concretely, this exists for = ( ) the set of connected components of  (def.
1.42) and for ≔ Aut ( ) the automorphism group (def. 1.43) of any object 
in the given connected component.

Proof. Using the axiom of choice we may find a set { } ∈ ( ) of objects of , with

 being in the connected component ∈ ( ).

This choice induces a functor

inc : ⊔
∈ ( )

Aut ( ) ⟶

which takes each object and morphism “to itself”.

Now using the axiom of choice once more, we choose in each connected
component ∈ ( ) and for each object  in that connected component a
morphism

→⎯⎯⎯⎯
,

.

Using this we obtain a functor the other way around

: ⟶ ⊔
∈ ( )

Aut ( )

which sends each object to its connected component, and which for pairs of
objects ,  of  is given by conjugation with the morphisms choosen above:

Hom ( , ) →⎯⎯⎯
,

Aut ( )

←⎯⎯⎯⎯
,

↓ ↦ ↓

→⎯⎯⎯
,

−

.

It is now sufficient to show that there are conjugations/natural isomorphisms

∘ inc ≃ id inc ∘ ≃ id .

For the first this is immediate, since we even have equality

∘ inc = id .

For the second we observe that choosing

( ) ≔ ,

yields a naturality square by the above construction:
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→⎯⎯⎯⎯
,

, ∘ ∘ ,
−

↓ ↓

→⎯⎯⎯
,

.

  ▮

Proposition 1.48. (weak homotopy equivalence is equivalence of
groupoids)

Let : ⟶  be a homomorphism of groupoids.

Assuming the axiom of choice then the following are equivalent:

 is an equivalence of groupoids (def. 1.38);1. 

 is a weak homotopy equivalence in that

it induces an bijection of sets of connected components (def. 1.42);

( ) : ( ) ⟶≃ ( ) ,

1. 

2. 

for each object ∈  it induces an isomorphis of automorphism groups

(def. 1.43):

, : Aut ( ) ⟶≃ Aut ( ( )) .

3. 

Proof. In one direction, if  has an inverse up to natural isomorphism, then this
induces by definition a bijection on connected components, and it induces
isomorphism on homotopy groups by lemma 1.45.

In the other direction, choose equivalences to skeleta as in prop. 1.47 to get a
commuting diagram in the 1-category of groupoids as follows:

←⎯⎯
≃

⊔
∈ ( )

Aut ( )

↓ ↓
˜

←⎯⎯≃ ⊔
∈ ( )

Aut ( ( ))

.

Here inc  and inc  are equivalences of groupoids by prop. 1.47. Moreover, by
assumption that  is a weak homotopy equivalence ˜  is the union of of
deloopings of isomorphisms of groups, and hence has a strict inverse, in
particular a homotopy inverse, hence is in particular an euivalence of groupoids.

In conclusion, when regarded as a diagram in the homotopy category Ho(Grpd)

(def. 1.37), the top, bottom and right moprhism of the above diagram are
isomorphisms. It follows that also  is an isomorphism in Ho(Grpd). But this
means exactly that it is a homotopy equivalence of groupoids, by def. 1.38.  ▮
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2. Covering spaces

A covering space (def. 2.1 below) is a “continuous fiber bundle of sets” over a
topological space, in just the same way as a topological vector bundle is a
“continuous fiber bundle of vector spaces”.

Definition 2.1. (covering space)

Let  be a topological space. A covering space of  is a continuous function

: ⟶

such that there exists an open cover ⊔ → , such that restricted to each 

then →  is homeomorphic over  to the product topological space (this
example) of  with the discrete topological space (this example) on a set ,

In summary this says that : →  is a covering space if there exists a pullback
diagram in Top of the form

⊔ × Disc( ) ⟶

↓ (pb) ↓

⊔
∈

⟶

.

For ∈ ⊂  a point, then the elements in =  are called the leaves of the
covering at .

Given two covering spaces : →  , then a homomorphism between them is a

continuous function : →  between the total covering spaces, which
respects the fibers in that the following diagram commutes

⟶

↘ ↙ .

This defines a category Cov( ), the category of covering spaces over , whose

objects are the covering spaces over ;

morphisms are the homomorphisms between these.

Example 2.2. (trivial covering space)

For  a topological space and  a set with Disc( ) the discrete topological space
on that set, then the projection out of the poduct topological space?

pr : × Disc( ) ⟶
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is a covering space, called the trivial covering space over  with fiber Disc( ).

If ⟶  is any covering space, then an isomorphism of covering spaces of the
form

⟶≃ × Disc( )

↘ ↙

is called a trivialization of → .

It is in this sense that evry coverin space  is, by definition, locally trvializable.

Example 2.3. (covering of circle by circle)

Regard the circle = { ∈ ℂ | | | = 1} as the topological
subspace of elements of unit absolute value in the
complex plane. For ∈ ℕ, consider the continuous
function

≔ ( −) : ⟶

given by taking a complex number to its th power. This
may be thought of as the result of “winding the circle 
times around itself”. Precisely, for ≥ 1 this is a
covering space (def. 2.1) with  leaves at each point.

graphics grabbed from Hatcher

Example 2.4. (covering of circle by real line)

Consider the continuous function

exp(2 ( −)) : ℝ ⟶

from the real line to the circle, which,

with the circle regarded as the unit circle in the
complex plane ℂ, is given by

↦ exp(2 )

1. 

with the circle regarded as the unit circle in ℝ , is
given by

↦ (cos(2 ), sin(2 )) .

2. 
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We may think of this as the result of “winding the line around the circle ad
infinitum”. Precisely, this is a covering space (def. 2.1) with the leaves at each
point forming the set ℤ of natural numbers.

Here are some basic properties of covering spaces:

Proposition 2.5. (covering projections are open maps)

If : →  is a covering space projection, then  is an open map.

Proof. By definition of covering space there exists an open cover { ⊂ } ∈  and

homeomorphisms − ( ) ≃ × Disc( ) for all ∈ . Since the projections out of a
product topological space are open maps (this prop.), it follows that  is an open
map when restricted to any of the − ( ). But a general open subset ⊂  is the
union of its restrictions to these subspaces:

= ∪
∈

( ∩ − ( )) .

Since images preserve unions (this prop.) it follows that

( ) = ∪
∈

( ∩ − ( ))

is a union of open sets, and hence itself open.  ▮

Lemma 2.6. (fiber-wise diagonal of covering space is open and closed)

Let →  be a covering space. Consider the fiber product

× ≔ {( , ) ∈ × | ( ) = ( )}

hence (by the discussion at Top - Univeral constructions) the topological
subspace of the product space × , as shown on the right. By the universal
property of the fiber product, there is the diagonal continuous function

⟶ ×

↦ ( , )
.

Then the image of  under this function is an open subset and a closed subset:

( ) ⊂ × is open and closed .

Proof. First to see that it is an open subset. It is sufficient to show that for any
∈  there exists an open neighbourhood of ( , ) ∈ × .

Now by definition of covering spaces, there exists an open neighbourhood
( ) ⊂  of ( ) ∈  such that
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( ) × Disc( − ( ( ))) ⟶≃ |
( )

↘ ↙

( )

.

It follows that ( ) × { } ⊂  is an open neighbourhood. Hence by the nature of

the product topology, ( ) × ( ) ⊂ ×  is an open neighbourhood of ( , ) in

×  and hence by the nature of the subspace topology the restriction

( × ) ∩ ( ( ) × ( )) ⊂ ×

is an open neighbourhood of ( , ) in × .

Now to see that the diagonal is closed, hence that the complement ( × ) ∖ ( )
is an open subset, it is sufficient to show that every point ( , ) with ≠  but

( ) = ( ) has an open neighbourhood in this complement.

As before, there is an open neighbourhood ⊂  of ( ) = ( ) over which the
cover trivializes, and hence × { }, × { } ⊂  are open neighbourhoods of 
and , respectively. These are disjoint by the assumption that ≠ . As above,
this means that the intersection

( × ) ∩ (( × { }) × ( × { })) ⊂ ( × ) ∖ ( )

is an open subset of the complement of the diagonal in the fiber product.  ▮

Lifting properties

If ⟶  is any continuous function (possibly a covering space or a topological
vector bundle) then a section is a continuous function : →  which sends each
point in the base to a point in the fiber above it, hence which makes this diagram
commute:

↗ ↓

=

.

We may think of this as “lifting” each point in the base to point in the fibers
“through” the projection map . More generally if ↪  is a subspace, we may
consider such lifts only over 

↗ ↓

↪
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sometimes called a “local section”. But this suggests that for ⟶  any
continuous function, we consider “lifting its image through ”

↗ ↓

⟶

.

For example if = [0, 1] is the topological interval, then : [0, 1] →  is a path in the
base space , and a lift through  of this is a path in the total space which “runs
above” the given path. Such lifts of paths through covering projections is the
topic of monodromy below.

Here it is of interest to consider the lifting problem subject to some constraint.
For instance we will want to consider lifts of paths : [0, 1] →  through a covering
projection, subject to the condition that the starting point (0) is lifted to a
prescribed point ∈ .

Since such a point is equivalently a continuous function const : * →  out of the
point space, this is the same as asking for a continuous function  that makes
both triangles in the following diagram commute:

* →⎯⎯⎯⎯

↓ ↗ ↓

[0, 1] ⟶

.

This is an example of a general situation which plays a central role in homotopy
theory: We say that a square commuting diagram

⟶

↓ ↓

⟶

is a lifting problem and that a diagonal morphism

⟶

↓ ↗ ↓

⟶

such that both resulting triangles commute is a lift. If such a lift exists for for the
given  and for each  taken from some class of morphisms, then one says that 
has the right lifting property against this class.

We now discuss some right lifting properties satisfied by covering spaces:

homotopy-lifting propery,1. 

the lifting theorem.2. 
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These lifting properties will be used in below for the computation of fundamental
groups of some topological spaces.

Lemma 2.7. (lifts out of connected space into covering spaces are unique
relative to any point)

Let

→  be a covering space,1. 

 a connected topological space2. 

: ⟶  a continuous function.3. 

^ , ^ : ⟶  two lifts of , in that the following diagram commutes:

^
↗ ↓

⟶

for ∈ {1, 2}.

4. 

If there exists ∈  such that ^ ( ) = ^ ( ) then the two lifts already agree

everywhere: ^ = ^ .

Proof. By the universal property of the fiber product

× ≔ {( , ) ∈ × | ( ) = ( )} ⊂ ×

the two lifts determine a single continuous function of the form

(^ , ^ ) : ⟶ × .

Write

( ) ≔ {( , ) ∈ × | ∈ }

for the diagonal on  in the fiber product. By lemma 2.6 this is an open subset

and a closed subset of the fiber product space. Hence by continuity of (^ , ^ ) also

its pre-image

(^ , ^ ) − ( ( )) ⊂

is both closed and open, hence also its complement is open in .

Moreover, the assumption that the functions ^  and ^  agree in at least one point
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means that the above pre-image is non-empty. Therefore the assumption that 
is connected implies that this pre-image coincides with all of . This is the
statement to be proven.  ▮

Lemma 2.8. (path lifting property)

Let : →  be any covering space. Given

: [0, 1] →  a path in ,1. 

^ ∈  be a lift of its starting point, hence such that (^ ) = (0)2. 

then there exists a unique path ^:[0, 1] →  such that

it is a lift of the original path: ∘ ^ = ;1. 

it starts at the given lifted point: ^(0) = ^ .2. 

In other words, every commuting diagram in Top of the form

{0} ⟶
^

↓ ↓

[0, 1] ⟶

has a unique lift:

{0} ⟶
^

↓ ^ ↗ ↓

[0, 1] ⟶

.

Proof. First consider the case that the covering space is trival, hence of the
Cartesian product form

pr : × Disc( ) ⟶ .

By the universal property of the product topological spaces in this case a lift
^: [0, 1] → × Disc( ) is equivalently a pair of continuous functions

pr (^): [0, 1] → pr (^): [0, 1] → Disc( ) ,

Now the lifting condition explicitly fixes pr (^) = . Moreover, a continuous

function into a discrete topological space Disc( ) is locally constant, and since

[0, 1] is a connected topological space this means that pr (^) is in fact a constant

function (this example), hence uniquely fixed to be pr (^) = ^ .

This shows the statement for the case of trivial covering spaces.
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Now consider any covering space : → . By definition of covering spaces, there
exists for every point ∈  a open neighbourhood ⊂  such that the restriction
of  to  becomes a trivial covering space:

− ( ) ≃ × Disc( − ( )) .

Consider such a choice

{ ⊂ } ∈ .

This is an open cover of . Accordingly, the pre-images

{ − ( ) ⊂ [0, 1]} ∈

constitute an open cover of the topological interval [0, 1].

Now the closed interval is a compact topological space, so that this cover has a
finite open subcover. By the Euclidean metric topology, each element in this finite
subcover is a disjoint union of open intervals. The collection of all these open
intervals is an open refinement of the original cover, and by compactness it once
more has a finite subcover, now such that each element of the subcover is
guaranteed to be a single open interval.

This means that we find a finite number of points

< < ⋯ < + ∈ [0, 1]

with = 0 and + = 1 such that for all 0 < ≤  there is ∈  such that the
corresponding path segment

([ , + ]) ⊂

is contained in  from above.

Now assume that ^|[ , ] has been found. Then by the triviality of the covering

space over  and the first argument above, there is a unique lift of |[ , + ] to a

continuous function ^|[ , + ] with starting point ^( ). Since [0, + ] is the pushout

[0, ] ⊔
{ }

[ , + ] (this example), it follows that ^|[ , ] and ^|[ , + ] uniquely glue to

a continuous function ^|[ , + ] which lifts |[ , + ].

By induction over , this yields the required lift ^.

Conversely, given any lift, ^, then its restrictions ^|[ , + ] are uniquely fixed by

the above inductive argument. Therefore also the total lift is unique. Altrnatively,
uniqueness of the lifts is a special case of lemma 2.7.  ▮

Proposition 2.9. (homotopy lifting property of covering spaces)

Let
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→  be a covering space;1. 

 a locally connected topological space.2. 

Then every lifting problem of the form

⟶
^

( , ) ↓ ↓

× [0, 1] ⟶

has a unique lift

⟶
^

( , ) ↓ ^ ↗ ↓

× [0, 1] ⟶

.

Proof. For every point ∈  the situation restricts to that of path lifting

* →⎯⎯⎯⎯ ⟶

↓ ( , ) ↓ ^ ↗ ↓

[0, 1] →⎯⎯⎯⎯⎯⎯⎯⎯
( , )

× [0, 1] ⟶

.

This has a unique lift ^  by lemma 2.8. Hence if a continuous lift of  does exist,

it must be given by

^( , ) = ^ ( )

and so it only remains to see that this function is continuous.

To that end, let { ⊂ } ∈  be an open cover over which the covering space

trivializes. Then { − ( ) ⊂ × [0, 1]} is an open cover. Since  is assumed to be
locally connected, so is the product space × [0, 1], and hence this cover is
refined by a cover of connected open subsets { ⊂ × [0, 1]} ∈ .

By lemma 2.7 over these ^ is constant on one leaf, and hence so is ^. This
constant lift is continuous.

This shows that ^ restricts to a continuous function over an open cover of × [0, 1]

and thus is itself continuous (this prop.).  ▮

Remark 2.10. (covering spaces are Serre fibrations but not in general
Hurewicz fibrations)

Since the Euclidean -disks ⊂ ℝ  are evidently locally connected, prop. 2.9
says in particular that covering spaces have the right lifting property against
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the set of inclusions

⎯⎯⎯⎯⎯⎯⎯
( , )

× [0, 1] .

A continuous function with the right lifting property against this set of functions
is called a Serre fibration.

On the other hand, a continuous function with the right lifting property against

the inclusions ⎯⎯⎯⎯⎯⎯⎯⎯⎯
( , )

× [0, 1] for all topological spaces  is called a
Hurewicz fibration.

Not every covering space is a Hurewicz fibration, for counterexamples see this
example.

However, if we restrict all topological spaces involved to compactly generated
weakly Hausdorff topological spaces (one of the convenient categories of
topological spaces that one often restricts attention to) then every covering
space both whose base space as well as whose total space admits is the
structure of a CW-complex is a Hurewicz fibration (this prop.).

Example 2.11. (homotopy lifting property for given lifts of paths relative
starting point)

Let : →  be a covering space. Then given a homotopy relative the starting
point between two paths in ,

: ⇒

there is for every lift ^ , ^  of these two paths to paths in  with the same

starting point a unique homotopy

^ : ^ ⇒ ^

between the lifted paths that lifts the given homotopy:

For commuting squares of the form

([0, 1] × {0}) ∪ ({0, 1} × [0, 1]) →⎯⎯⎯⎯⎯
( , )

↓ ^ ↗ ↓

[0, 1] × [0, 1] ⟶

there is a unique diagonal lift in the lower diagram, as shown.

Moreover if the homotopy  also fixes the endpoint, then so does the lifted
homotopy ^.

Proof. There are horizontal homeomorphisms such that the following diagram
commutes
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[0, 1] ⟶≃ ([0, 1] × {0}) ∩ ({0, 1} × [0, 1])

↓ ↓

[0, 1] × [0, 1] ⟶
≃

[0, 1] × [0, 1]

.

With this the statement follows from 2.9.  ▮

Example 2.12. Let ( , ) ⟶ ( , ) be a pointed covering space and let
: ( , ) ⟶ ( , ) be a point-preserving continuous function such that the image

of the fundamental group of ( , ) is contained within the image of the
fundamental group of ( , ) in that of ( , ):

*
( ( , )) ⊂

*
( ( , )) ⊂ ( , ) .

Then for ℓ  a path in ( , ) that happens to be a loop, every lift of its image

path ∘ ℓ in ( , ) to a path ∘ ℓ  in ( , ) is also a loop there.

Proof. By assumption, there is a loop ℓ  in ( , ) and a homotopy fixing the
endpoints of the form

: ∘ ℓ ⇒ ∘ ℓ .

Then by the homotopy lifting property as in example 2.11, there is a homotopy in
( , ) relative to the basepoint

: ℓ ⇒ ∘ ℓ

and lifting the homotopy . Therefore  is in fact a homotopy between loops,

and so ∘ ℓ  is indeed a loop.  ▮

Proposition 2.13. (lifting theorem)

Let

: →  be a covering space;1. 

∈  a point, with ≔ ( ) denoting its image,2. 

 be a connected and locally path-connected topological space;3. 

∈  a point4. 

: ( , ) ⟶ ( , ) a continuous function such that ( ) = .5. 

Then the following are equivalent:

There exists a unique lift ^ in the diagram1. 
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( , )

^
↗ ↓

( , ) ⟶ ( , )

of pointed topological spaces.

The image of the fundamental group of  under  in that of  is contained
in the image of the fundamental group of  under :

*
( ( , )) ⊂

*
( ( , ))

2. 

Moreover, if  is path-connected, then the lift in the first item is unique.

Proof. The implication 1) ⇒ 2) is immediate. We need to show that the second
statement already implies the first.

Since  is connected and locally path-connected, it is also a path-connected
topological space (this prop.). Hence for every point ′ ∈  there exists a path
connecting  with ′ and hence a path ∘  connecting  with ( ′ ). By the path-
lifting property (lemma 2.8) this has a unique lift

{0} ⟶

↓ ∘ ↗ ↓

[0, 1] →⎯⎯
∘

.

Therefore

^( ′ ) ≔ ∘ (1)

is a lift of ( ′ ).

We claim now that this pointwise construction is independent of the choice , and
that as a function of ′  it is indeed continuous. This will prove the claim.

Now by the path lifting lemma 2.8 the lift f ∘  is unique given ∘ , and hence
^( ′ ) depends at most on the choice of .

Hence let ′ : [0, 1] →  be another path in  that connects  with ′ . We need to

show that then ∘ ′ = ∘ .

First observe that if ′  is related to  by a homotopy, so that then also ∘ ′  is
related to ∘  by a homotopy, then this is the statement of the homotopy lifting
property as in example 2.11.

Next write ¯ ′ ⋅  for the path concatenation of the path  with the reverse path of
the path ′ , hence a loop in , so that ∘ ( ¯ ′ ⋅ ) is a loop in . The assumption
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that 
*
( ( , )) ⊂

*
( ( , )) implies (example 2.12) that the path ∘ ( ¯ ′ ⋅ ) which

lifts this loop to  is itself a loop in .

By uniqueness of path lifting, this means that the lift of ∘ ( ′ ⋅ ( ¯ ′ ⋅ )) coincides
with that of ∘ ′ . But ¯ ′ ⋅ ( ′ ⋅ ) is homotopic (via reparameterization) to just .
Hence it follows now with the first statement that the lift of ∘ ′  indeed coincides
with that of ∘ .

This shows that the above prescription for ^ is well defined.

It only remains to show that the function ^ obtained this way is continuous.

Let ′ ∈  be a point and ^( )
⊂  an open neighbourhood of its image in . It is

sufficient to see that there is an open neighbourhood ⊂  such that
^( ) ⊂ ^( )

.

Let ( ) ⊂  be an open neighbourhood over which  trivializes. Then the

restriction

− ( ( )) ∩ ^( )
⊂ ( ) × Disc( − ( ( ′ )))

is an open subset of the product space. Consider its further restriction

( ) × {^( ′ )} ∩ − ( ( )) ∩ ^( )

to the leaf

( ) × {^( ′ )} ⊂ ( ) × − ( ( ′ ))

which is itself an open subset. Since  is an open map (this prop.), the subset

( ) × {^( ′ )} ∩ − ( ( )) ∩ ^( )
⊂

is open, hence so is its pre-image

−
( ) × {^( ′ )} ∩ − ( ( )) ∩ ^( )

⊂ .

Since  is assumed to be locally path-connected, there exists a path-connected
open neighbourhood

⊂ −
( ) × {^( ′ )} ∩ − ( ( )) ∩ ^( )

.

By the uniqueness of pah lifting, the image of that under ^ is
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^( ) = ( ) × {^( ′ )}

⊂ ( ) × {^( ′ )} ∩ − ( ( )) ∩ ^( )
× {^( ′ )}

≃ ( ) × {^( ′ )} ∩ − ( ( )) ∩ ^( )

⊂ ^( )

.

This shows that the lifted function is continuous. Finally that this continuous lift is
unique is the statement of lemma 2.7.  ▮

Monodromy

Since the lift of a path through a covering space projection is unique once the lift
of the starting point is chosen (lemma 2.8) every path in the base space
determines a function between the fiber sets over its endpoints. By the homotopy
lifting property of covering spaces as in example 2.11 this function only depends
on the equivalence class of the path under homotopy relative boundary.
Therefore this fiber-assignment is in fact an action of the fundamental groupoid
of the base space on sets, called a groupoid representation (def. 2.14 below). In
particular, associated with any homotopy-class of a loop, hence of an element in
the fundamental group, there is associated a bijection of the fiber over the loop’s
basepoint with itself, hence a permutation representation of the fundamental
group. This is called the monodromy of the covering space. It is a measure for
how the coverign space fails to be globally trivial.

In fact the fundamental theorem of covering spaces (prop. 2.23) below says that
the monodromy representation characterizes the covering spaces completely and
faithfully. This means that covering spaces may be dealt with completely with
tools from group theory and representation theory, a fact that we make use of in
the computation of examples below.

Definition 2.14. (groupoid representation)

Let  be a groupoid. Then:

A linear representation of  is a groupoid homomorphism (functor)

: ⟶ Core(Vect)

to the groupoid core of the category Vect of vector spaces (example 1.29).
Hence this is

For each object  of  a vector space ;1. 

for each morphism ⟶  of  a linear map ( ) : →2. 

such that
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(respect for composition) for all composable morphisms → →  in the
groupoid we have an equality

( ) ∘ ( ) = ( ∘ )

1. 

(respect for identities) for each object  of the groupoid we have an
equality

(id ) = id .

2. 

Similarly a permutation representation of  is a groupoid homomorphism
(functor)

: ⟶ Core(Set)

to the groupoid core of Set. Hence this is

For each object  of  a set ;1. 

for each morphism ⟶  of  a function ( ) : →2. 

such that composition and identities are respected, as above.

For  and  two such representations, then a homomorphism of

representations

: ⟶

is a natural transformation between these functors, hence is

for each object  of the groupoid a (linear) function

( ) →⎯⎯⎯
( )

( )

such that for all morphisms ⟶  we have

( ) ∘ ( ) = ( ) ∘ ( )

( ) →⎯⎯⎯
( )

( )

( ) ↓ ↓ ( )

( ) →⎯⎯⎯
( )

( )

By def. 1.26 the representations of  in Core( ) and homomorphisms between
them constitute a groupoid called the representation groupoid

Rep( ) ≔ Hom ( , Core( )) .

Example/Definition 2.15. (group representations are groupoid
representations of delooping groupoids)

If here \mathcal(G) = B G is the delooping groupoid of a group  (example 1.40),

Introduction to Topology -- 2 in nLab https://ncatlab.org/nlab/print/Introduction+to+Topology+--+2

46 of 58 7/18/17, 11:38 AM



then a groupoid representation of  is a group representation of  (def. 2.14),
and one writes

Rep( ) ≔ Rep( )

for the representation groupoid.

For each object ∈  the canonical inclusion of the delooping groupoid of the
automorphism group (from def. 1.43)

inc : Aut ↪

induces by precomposition a homomorphism of representation groupoids:

Hom(inc , Core( )) : Rep( , ) ⟶ Rep(Aut ( ), ) .

We say that a groupoid representation is faithful or free if for all objects  its
restriction to a group representation of Azt ( ) this way is transitive or free,
respectively.

Here the representation  of a group  on some set 

transitive if for all pairs of elements , ∈  there is a ∈  such that
( )( ) = ;

1. 

free if whenever ( ) =  holds for all ∈  then  is the neutral elements.2. 

Proposition 2.16. (groupoid representations are products of group
representations)

Assuming the axiom of choice then the following holds:

Let  be a groupoid. Then its groupoid of groupoid representations Rep( ) (def.
2.14) is equivalent (def. 1.38) to the product groupoid (example 1.32) indexed
by the set of connected components ( ) (def. 1.42) of group representations
(example 2.15) of the automorphism group ≔ Aut ( ) (def. 1.43) for  any
object in the th connected component:

Rep( ) ≃
∈ ( )

Rep( ) .

Proof. Let  be the category that the representation is on (e.g. = Set for
permutation representations). Then by definition

Rep( ) = Hom ( , Core( )) .

Consider the injection functor of the skeleton from lemma 1.46

inc : ⊔
∈ ( )

⟶ .

By lemma 1.34 the pre-composition with this constitutes a functor
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inc* : Hom( , ) ⟶ Hom( ⊔
∈ ( )

, )

and by combining lemma 1.46 with lemma 1.36 this is an equivalence of
groupoids. Finally, by example 1.32 the groupoid on the right is the product
groupoid as claimed.  ▮

Definition 2.17. (monodromy of a covering space)

Let  be a topological space and →  a covering space (def. 2.1). Write ( )

for the fundamental groupoid of  (example 1.27).

Define a groupoid homomorphism

Fib : ( ) ⟶ Core(Set)

to the groupoid core of the category Set of sets (example 2.14), hence a
permutation groupoid representation (example 2.14), as follows:

to a point ∈  assign the fiber − ({ }) ∈ Set;1. 

to the homotopy class of a path  connecting ≔ (0) with ≔ (1) in 

assign the function − ({ }) ⟶ − ({ }) which takes ^ ∈ − ({ }) to the

endpoint of a path ^ in  which lifts  through  with starting point ^(0) = ^

− ( ) ⟶ − ( )

(^ = ^(0)) ↦ ^(1)
.

2. 

This construction is well defined for a given representative  due to the unique
path-lifting property of covering spaces (lemma 2.8) and it is independent of
the choice of  in the given homotopy class of paths due to the homotopy lifting
property (example 2.11). Similarly, these two lifting properties give that this
construction respects composition in ( ) and hence is indeed a
homomorphism of groupoids (a functor).

Proposition 2.18. (extracting monodromy is functorial)

Given a homomorphism between two covering spaces → , hence a
continuous function : →  which respects fibers in that the diagram

⟶

↘ ↙

commutes, then the component functions

|{ } : − ({ }) ⟶ − ({ })

are compatible with the monodromy Fib  (def. 2.17) along any path  between
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points  and  from def. 2.17 in that the following diagrams of sets commute

− ( ) →⎯⎯⎯
|{ } − ( )

([ ])
↓ ↓

([ ])

− ( ) →⎯⎯⎯
|{ }

− ({ })

.

This means that  induces a homotopy (natural transformation) between the
monodromy homomorphisms (functors)

( )

→⎯⎯⎯⎯

⇓

→⎯⎯⎯⎯

Core(Set)

of  and , respectively, and hence that constructing monodromy is itself a
functor from the category of covering spaces of  to that of permutation
representations of the fundamental groupoid of :

Fib : Cov( ) ⟶ Rep( ( ), Set) .

Example 2.19. (three-sheeted covers of the circle)

There are, up to isomorphism, three different 3-sheeted
covering spaces of the circle .

The one from example 2.3 for = 3. Another one. And the
trivial one. Their corresponding permutation actions
according to def. 2.17 may be seen from the pictures on
the right.

graphics grabbed from Hatcher

Example 2.20. (fundamental groupoid of covering
space)

Let ⟶  be a covering space.

Then the fundamental groupoid ( ) of the total space  is
the groupoid

whose

objects are pairs ( , ^) consisting of a point ∈  and

en element ^ ∈ Fib ( );

morphisms [^] :( , ^) → ( ′ , ^′ ) are morphisms [ ] : → ′  in ( ) such that

Fib ([ ])(^) = ^′ .
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This is also called the Grothendieck construction of the monodromy functor
Fib : ( ) → Core(Set), and denoted

( ) ≃

( )

Fib .

Proof. By the uniqueness of the path-lifting, lemma 2.8 and the very definition
of the monodromy functor.  ▮

Definition 2.21. (reconstruction of covering spaces from monodromy)

Let

( , ) be a locally path-connected semi-locally simply connected topological
space,

1. 

∈ Rep( ( ), Set) a permutation representation of its fundamental
groupoid.

2. 

Consider the disjoint union set of all the sets appearing in this representation

( ) ≔ ⊔
∈

( )

For

⊂  an open subset

which is path-connected1. 

for which every element of the fundamental group ( , ) becomes
trivial under ( , ) → ( , ),

2. 

1. 

for ^ ∈ ( ) with ∈2. 

consider the subset

,^ ≔ ( )(^) | ′ ∈ , path from to ′ ⊂ ( ) .

The collection of these defines a base for a topology (prop. 2.22 below). Write
 for the corresponding topology. Then

( ( ), )

is a topological space. It canonically comes with the function

( ) ⟶

^ ∈ ( ) ↦
.
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Finally, for

: ⟶

a homomorphism of permutation representations, there is the evident induced
function

( ) →⎯⎯⎯⎯
( )

( )

(^ ∈ ( )) ↦ ( (^) ∈ ( ))
.

Proposition 2.22. The construction ↦ ( ) in def. 2.21 is well defined and
yields a covering space of .

Moreover, the construction ↦ Rec( ) yields a homomorphism of covering
spaces.

Proof. First to see that we indeed have a topology, we need to check (by this
prop.) that every point is contained in some base element, and that every point
in the intersection of two base elements has a base neighbourhood that is still
contained in that intersection.

So let ∈  be a point. By the assumption that  is semi-locally simply connected
there exists an open neighbourhood ⊂  such that every loop in  on  is
contractible in . By the assumption that  is a locally path-connected topological
space, this contains an open neighbourhood ′ ⊂  which is path connected
and, as every subset of , it still has the property that every loop in ′  based
on  is contractible as a loop in . Now let ^ ∈  be any point over , then it is
contained in the base open , .

The argument for the base open neighbourhoods contained in intersections is
similar.

Then we need to see that : ( ) →  is a continuous function. Since taking pre-
images preserves unions (this prop.), and since by semi-local simply
connectedness and local path connectedness every neighbourhood contains an
open neighbourhood ⊂  that labels a base open, it is sufficient to see that

− ( ) is a base open. But by the very assumption on , there is a unique
morphism in ( ) from any point ∈  to any other point in , so that  applied
to these paths establishes a bijection of sets

− ( ) ≃ ⊔
^ ∈ ( )

,^ ≃ × ( ) ,

thus exhibiting − ( ) as a union of base opens.

Finally we need to see that this continuous function  is a covering projection,
hence that every point ∈  has a neighbourhood  such that − ( ) ≃ × ( ).
But this is again the case for those  all whose loops are contractible in , by the
above identification via , and these exist around every point by semi-local
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simply-connetedness of .

This shows that : ( ) →  is a covering space. It remains to see that
Rec( ) : ( ) → ( ) is a homomorphism of covering spaces. Now by construction

it is immediate that this is a function over , in that this diagram commutes:

( ) →⎯⎯⎯⎯
( )

( )

↘ ↙ .

So it only remains to see that Rec( ) is a continuous function. So consider

, ∈ ( ) a base open of ( ). By naturality of 

( ′ ) ⟶ ( ′ )

( ) ↑ ≃ ≃ ↑ ( )

( ) ⟶ ( )

its pre-image under Rec( ) is

Rec( ) − ( , ∈ ( )) = ⊔
∈ − ( )

, ∈ ( )

and hence a union of base opens.  ▮

Proposition 2.23. (fundamental theorem of covering spaces)

Let  be a locally path-connected and semi-locally simply-connected topological
space (def. 1.24). Then the operations on

extracting the monodromy Fib  of a covering space  over  (def. 2.17,
prop. 2.18)

1. 

reconstructing a covering space from monodromy Rec( ) (def. 2.21, prop.
2.22)

2. 

constitute an equivalence of groupoids (def. 1.38

Core(Cov( )) ≃⟶
⟵ Rep( ( ), Set)

between the groupoid Core(Cov( )) (example 1.29, def. 2.1) whose objects are
covering spaces over , and whose morphisms are isomorphisms between
these (def. 2.1) and the groupoid Rep( ( ), Set) of permutation groupoid
representations (def. 2.14) of the fundamental groupoid ( ) of  (example
1.27).

Proof. First we demonstrate a homotopy (natural isomorphism) of the form
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id ( ( ), ) ⟶≃ Fib ∘ Rec .

To this end, given ∈ Rep( ( ), Set) a permutation groupoid representation, we
need to exhibit in turn a homotopy (natural isomorphism) of permutation
representations.

: ⟶ Fib(Rec( ))

First consider what the right hand side is like: By def. 2.21 of Rec and def. 2.17 of
Fib we have for every ∈  an actual equality

Fib(Rec( ))( ) = ( ) .

To similarly understand the value of Fib(Rec( )) on morphisms [ ] ∈ ( ), let
: [0, 1] →  be a representing path in . As in the proof of the path lifting lemma

2.8 we find a finite number of paths { } ∈ { , } such that

regarded as morphisms [ ] in ( ) they compose to [ ]:

[ ] = [ ] ∘ ⋯ ∘ [ ] ∘ [ ]

1. 

each  factors through an open subset ⊂  over which Rec( ) trivializes.2. 

Hence by functoriality of Fib(Rec( )) it is sufficient to understand its value on
these paths . But on these we have again by direct unwinding of the definitions

that

Fib(Rec( ))([ ]) = ([ ]) .

This means that if we take

( ) : ( ) ⟶= Fib(Rec( ))

to be the above identification, then this is a homotopy/natural isomorphism as
required.

It remains to see that these morphism  are themselves natural in , hence that

for each morphism : → ′  the diagram

⟶ ′

↓ ↓

Fib(Rec( )) →⎯⎯⎯⎯⎯⎯⎯⎯
( ( ))

Fib(Rec( ′ ))

commutes as a diagram in Rep( ( ), Set). Since these morphisms are themselves
groupoid homotopies (natural isomorphisms) this is the case precisely if for all

∈  the corresponding component diagram commutes. But by the above this is
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( ) →⎯⎯⎯
( )

′ ( )

= ↓ ↓=

Fib(Rec( ))( ) →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
( ( ))( )

Fib(Rec( ′ ))( )

and hence this means that the top and bottom horizontal morphism are in fact
equal. Directz unwiinding of the definitions shows that this is indeed the case.

Now we demonstrate a homotopy (natural isomorphism) of the form

Rec ∘ Fib ⟶≃ id ( ( )) .

For ∈ Cov( ) a covering space, we need to exhibit a natural isomorphism of
covering spaces of the form

: Rec(Fib( )) ⟶ .

Again by def. 2.21 of Rec and def. 2.17 of Fib the underlying set of Rec(Fib( )) is
actually equal to that of , hence it is sufficient to check that this identity
function on underlying sets is a homeomorphism of topological spaces.

By the assumption that  is locally path-connected and semi-locally simply
connected, it is sufficient to check for ⊂  an open path-connected subset and

∈  a point with the property that ( , ) → ( , ) lands is constant on the

trivial element, that the open subsets of  of the form × {^} ⊂ − ( ) form a
basis for the topology of Rec(Fib( )). But this is the case by definition of Rec.

This proves the equivalence.  ▮

3. Examples

We now use the theorems established above to compute the fundamental groups
of topological spaces in some basic examples. In particular we prove the
archetypical example saying that the fundamental group of the circle is the
integers (prop. 3.1 below).

Fundamental groups

Proposition 3.1. (fundamental group of the circle is the integers)

The fundamental group  of the circle  is the additive group of integers:

( ) ⟶≃ ℤ

and the isomorphism is given by assigning winding number.
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Here in the context of topological homotopy theory the circle  is the topological
subspace = { ∈ ℝ | + = 1} ⊂ ℝ  of the Euclidean plane with its metric
topology, or any topological space of the same homotopy type. More generally,
the circle in question is, as a homotopy type, the homotopy pushout

≃ *
* ⊔ *

* ,

hence the homotopy type with the universal property that it makes a homotopy
commuting diagram of the form

* ⊔ * ⟶ *

↓ ⇙ ↓

* ⟶

.

Proof. The universal covering space
^

 of  is the real line
(by this example):

≔ (cos(2 ( −)), sin(2 ( −))) : ℝ ⟶ .

Since the circle is locally path-connected (this example) and
semi-locally simply connected (this example) the
fundamental theorem of covering spaces applies and gives
that the automorphism group of ℝ  over  equals the
automorphism group of its monodromy permutation
representation:

Aut ( )(ℝ ) ≃ Aut ( ) (Fib ) .

Moreover, as a corollary of the fundamental theorem of
covering spaces we have that the monodromy representation of a universal
covering space is given by the action of the fundamental group ( ) on itself
(this prop.).

But the automorphism group of any group regarded as an action on itself by left
multiplication is canonically isomorphic to that group itself (by this example),
hence we have

Aut ( ) (Fib ) ≃ Aut ( ) ( ( )) ≃ ( ) .

Therefore to conclude the proof it is now sufficient to show that

Aut ( )(ℝ ) ≃ ℤ .

To that end, consider a homeomorphism of the form
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ℝ ⟶
≃

ℝ

↘ ↙ .

Let ∈  be any point, and consider the restriction of  to the fibers over the
complement:

− ( ∖ { }) ⟶
≃

− ( ∖ { })

↘ ↙

∖ { }

.

By the covering space property we have (via this example) a homeomorphism

− ( ∖ { }) ≃ (0, 1) × Disc(ℤ) .

Therefore, up to homeomorphism, the restricted function is of the form

(0, 1) × Disc(ℤ) ⟶
≃

(0, 1) × Disc(ℤ)

↘ ↙

(0, 1)

.

By the universal property of the product topological space this means that  is
equivalently given by its two components

(0, 1) × Disc(ℤ) →⎯⎯⎯⎯
∘

(0, 1) (0, 1) × Disc(ℤ) →⎯⎯⎯⎯
∘

Disc(ℤ) .

By the commutativity of the above diagram, the first component is fixed to be
pr . Moreover, by the fact that Disc(ℤ) is a discrete space it follows that the

second component is a locally constant function (by this example). Therefore,
since the product space with a discrete space is a disjoint union space (via this
example)

(0, 1) × Disc(ℤ) ≃ ⊔
∈ ℤ

(0, 1)

and since the disjoint summands (0, 1) are connected topological spaces (this
example), it follows that the second component is a constant function on each of
these summands (by this example).

Finally, since every function out of a discrete topological space is continuous, it
follows in conclusion that the restriction of  to the fibers over ∖ { } is entirely
encoded in an endofunction of the set of integers

: ℤ → ℤ

by
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∖ { } × Disc(ℤ) ⟶ ∖ { } × Disc(ℤ)

( , ) ↦ ( , ( ))
.

Now let ′ ∈  be another point, distinct from . The same analysis as above
applies now to the restriction of  to ∖ { ′ } and yields a function

′ : ℤ ⟶ ℤ .

Since

− ( ∖ { }) ⊂ ℝ , − ( ∖ { ′ }) ⊂ ℝ

is an open cover of ℝ , it follows that  is unqiuely fixed by its restrictions to
these two subsets.

Now unwinding the definition of  shows that the condition that the two
restrictions coincide on the intersection ∖ { , ′ } implies that there is ∈ ℤ such
that ( ) = +  and ′ ( ) = + .

This shows that Aut ( )(ℝ ) ≃ ℤ.  ▮

Higher homotopy groups

(…)

This concludes the introduction to basic homotopy theory.

For introduction to more general and abstract homotopy theory see at
Introduction to Homotopy Theory.

An incarnation of homotopy theory in linear algebra is homological algebra. For
introduction to that see at Introduction to Homological Algebra.
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