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Introduction

The Brown representability theorem gives a list of conditions for a set-valued
contravariant functor defined on the classical pointed homotopy category to be
representable. It has had many uses through the years, and has long been part
of the canon of Algebraic Topology.

It is entirely reasonable to ask for a more general version of Brown repre-
sentability, which gives conditions on a closed model category N and a con-
travariant set-valued functor G defined on the homotopy category Ho(N ) so
that the functor G is representable. One could call this a Brown representabil-
ity theorem for N , although some might say that it is a “cohomological” Brown
representability result [3], [14].

Such a result is proved in this paper, and appears as Theorem 24. The con-
ditions for the Theorem are essentially classical: the model category N must
have a set of compact generators, suitably defined, while the functor G should
take coproducts to products and should satisfy a Mayer-Vietoris property. The-
orem 24 asserts that G is representable under these circumstances. The proof
displayed for this result is the standard argument (see also the proof of Theorem
3.1 in [13], or Heller’s purely categorical formulation in [5]), albeit translated
into the language of model categories. Theorem 24 and its proof are not new.

Multiple settings in which Theorem 24 applies are displayed in the third
section, following the proof. The basic message is that there are classical
Brown representability results for all model structures based on pointed sim-
plicial presheaves — these include presheaves of spectra, presheaves of chain
complexes, diagrams of spectra, motivic T -spectra and unstable motivic homo-
topy theories — so long as the underlying local model structure on pointed
simplicial presheaves is defined on a rather forgiving Grothendieck topology, for
which a set of compact generators can be defined in a traditional way.

Many of the standard geometric topologies, such as the étale topology, are
not so forgiving, and the classical argument for Brown representability does not
work in those cases. The problem is the compact generation requirement, which
fails because “small” inductive colimits of fibrant objects may not be fibrant in
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any reasonable sense. This is overcome by using the observation that inductive
colimits of fibrant simplicial presheaves are fibrant provided that the inductive
systems are large enough, but at a cost of introducing homotopy coherence
issues which cannot be addressed within the traditional framework for Brown
representability.

Homotopy coherence problems are often solved in the context of simplicial
functors between simplicial model categories, and that is what we do here.
The main result of this paper, which is Theorem 16, gives conditions on a
pointed simplicial model category M and a (contravariant) simplicial functor
F : Mop → sSet∗ taking values in pointed simplicial sets, such that F is
sectionwise weakly equivalent to a representable functor hom( , Y ) which is
defined by an object Y of M which is fibrant and cofibrant.

The conditions on the simplicial model category M, which are discussed in
some detail in the first section of the paper, are abstractions of the behaviour
of model categories of pointed simplicial presheaves. These conditions are met
by anything that can be built from simplicial presheaves, including presheaves
of spectra, presheaves of symmetric spectra and Bousfield localizations of these
categories.

The conditions on the functor F are satisfied by representable functors: this
functor should preserve weak equivalences between cofibrant objects, and should
take homotopy colimits to homotopy inverse limits. The latter condition implies
strong forms of both the wedge and Mayer-Veitoris properties that one finds in
the conditions for the classical Brown representability theorem, and it gives a
way of inductively producing vertices of homotopy inverse limits of big towers.
This last device solves the homotopy coherence problem in the formulation and
proof of the representability theorem, and the technique appears in the proof of
Proposition 9, which is the key step in the derivation of the main result.

Theorem 16 is a very strong representability result and is quite general (com-
pare [2]), but it is perhaps too strong.

Something like Brown representability for simplicial presheaves and pre-
sheaves of spectra has been expected since the late 1980s. The original dream
was that Brown representability could give a useful descent condition for pre-
sheaves of spectra on the étale site.

Theorem 16 does imply a descent criterion. If one can show, for example,
that if a presheaf of Ω-spectra E on a big site of schemes represents a functor
hom( , E) which takes étale local weak equivalences between cofibrant objects
to weak equivalences, then E satisfies descent for the étale topology.

But there is a problem, in that one doesn’t need a representability theorem to
derive this condition: it’s actually quite easy to prove — see Proposition 17. In
the end, this criterion just isolates the interesting part of the descent problem.
One needs a descent condition, and perhaps a representability theorem, with
weaker conditions. One has to be able to ask for something less than the full
class of local weak equivalences to be preserved by the functor F .
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1 Simplicial presheaf model categories

Suppose thatM is a closed simplicial model category. Write hom(A,B) for the
function complexes associated with simplicial structure ofM, and let A⊗∆n

+ →
B be the morphisms making up their simplices. As usual, ∆n

+ is the standard
n-simplex ∆n with a disjoint base point attached.

Suppose that the category M and its model structure have the following
properties:

M1 The category M has all small limits and colimits, and has an object ∗
which is both initial and terminal.

M2 The model structure on M is cofibrantly generated, meaning that there
is a set I of trivial cofibrations and a set J of cofibrations, with cofibrant
source objects in all cases, such that p : X → Y is a fibration (respectively
trivial fibration) if and only if it has the right lifting property with respect
to all members of I (respectively J).

Here’s a basic fact about pointed simplicial sets:

Lemma 1. Suppose that f : X → Y is a map of simplicial sets such that f
induces bijections

[K,X]
∼=−→ [K,Y ]

for all finite simplicial sets K. Then f is a weak equivalence.

Proof. It suffices to assume that X and Y are Kan complexes, and that f is a
fibration. Then f is a surjective fibration because every simplex ∆n → Y of Y
lifts to X up to homotopy, so it lifts.

Suppose given a lifting problem

∂∆n α //

��

X

f

��
∆n

β
//

<<

Y

(1)

The map β : ∆n → Y lifts to X up to homotopy, so there is a homotopy

H : ∆n ×∆1 → Y

from β to a composite pω̇ for some map ω : ∆n → X. The restricted homotopy

h = H|∂∆n×∆1 : ∂∆n ×∆1 → Y

lifts to a homotopy ζ : ∂∆n ×∆1 → X which ends at ω|∂∆n , and the map

(∂∆n ×∆1) ∪ (∆n × {1}) (ζ,ω)−−−→ X
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extends to a map H ′ : ∆n ×∆1 → X. The map

(∆n × Λ2
2) ∪ (∂∆n ×∆2)

((f(H′),H, ),s0h)−−−−−−−−−−−→ Y

extends to a map θ : ∆n ×∆2 → Y , and the composite map

∆n ×∆1 1×d2−−−→ ∆n ×∆2 θ−→ Y

is a pointed homotopy from β : ∆n → Y to f(β′) for some map β′ : ∆n → X, rel
boundary, where β′|∂∆n = ω|∂∆n . It follows that the diagram (1) is homotopic
to one for which the lifting problem can be solved, so that the desired lifting
exists.

Corollary 2. Suppose that f : X → Y is a map of pointed simplicial sets such
that f induces bijections

[L,X]
∼=−→ [L, Y ]

in the pointed homotopy category for all finite pointed simplicial sets L. Then
f is a weak equivalence.

Proof. If K is a finite simplicial set, then K+ = K t {∗} is a finite pointed
simplicial set, and there is a bijection

[K+, X] ∼= [K,X]

relating morphisms in the pointed and unpointed homotopy categories.

Corollary 3. Suppose that M is a pointed closed simplicial model category
which is cofibrantly generated. Suppose that S is the set of all objects A ⊗ L,
where A is either a target or source object of some morphism A→ B appearing
in the set of generating cofibrations for M and L is a finite pointed simplicial
set. Then a map f : X → Y is a weak equivalence of M if and only if the
functions

f∗ : [A⊗ L,X]→ [A⊗ L, Y ]

are bijections for all objects A⊗ L of S.

Proof. We show that f is a weak equivalence if all of the displayed functions
are bijections.

It suffices to assume that f is a fibration and that the objects X and Y are
fibrant. Suppose that i : A → B is a generating cofibration for M, and form
the diagram

hom(B,X)
f∗ //

i∗

��

hom(B, Y )

i∗

��
hom(A,X)

f∗

// hom(A, Y )
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Since there are canonical isomorphisms

hom(L,hom(A,X)) ∼= hom(A⊗ L,X),

the assumptions on the functions f∗ and Corollary 2 together guarantee that
the horizontal simplicial set maps f∗ in the diagram are trivial fibrations. But
then this forces the fibration

hom(B,X)→ hom(A,X)×hom(A,Y ) hom(B, Y )

to be a trivial fibration, which is therefore surjective. This means that all lifting
problems

A //

i

��

X

f

��
B //

>>

Y

can be solved, so that f is a trivial fibration.

We have therefore proven that any closed simplicial model category which
satisfies the conditions M1 and M2 also satisfies the following:

M3 There is a set S of cofibrant objects K such that a map f : X → Y is a
weak equivalence if and only if it induces bijections

[K,X]
∼=−→ [K,Y ]

of morphisms in the homotopy category Ho(M) for all objects K of S.

Here’s another condition for the model category M:

M4 There is an infinite cardinal β such that, if Y : γ → M is an inductive
system of fibrant objects Ys, s < γ, then the colimit lim−→s<γ

Ys is fibrant,
and the map

lim−→
s<γ

hom(K,Ys)→ hom(K, lim−→
s<γ

Ys)

is a weak equivalence for all K ∈ S.

I say that the closed simplicial model categoryM satisfies conditions M* if
it satisfies the conditions M1, M2 and M4, and hence M3. Suppose that M
satisfies the conditions M* henceforth.

The conditions M* are abstractions of the behaviour of the injective model
structure on the category sPre(C)∗ of pointed simplicial presheaves on a small
Grothendieck site C. Recall [6] that this model structure has all monomorphisms
for cofibrations, and it weak equivalences are the local (or stalkwise) weak equiv-
alences. The fibrations for this theory, the injective fibrations (sometimes called
global fibrations), are the maps which have the right lifting property with respect
to all trivial cofibrations. This model structure is proper. It has a simplicial
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structure, where the n-simplices of the function complex hom(A,X) are the
simplicial presheaf morphisms A∧∆n

+ → X. The model structure is cofibrantly
generated, where the generating cofibrations the α-bounded cofibrations, and
the generating trivial cofibrations are the α-bounded trivial cofibrations. Here,
α is an infinite cardinal which is an upper bound for the cardinality of the set
Mor(C) of morphisms of C.

We can, in this case, take S to be the set of all objects U+ ∧ L where U
denotes the representable functor associated to an object U of C and L is a
finite pointed simplicial set. Then a simplicial presheaf map f : X → Y is a
local weak equivalence if and only if all induced functions

[U+ ∧ L,X]→ [U+ ∧ L, Y ]

are bijections. To see this, observe that a map f : X → Y is a local weak
equivalence if and only if the induced map FX → FY of injective fibrant models
is a sectionwise equivalence, and this is so if and only if all induced functions

[U+ ∧ L,FX]→ [U+ ∧ L,FY ]

are bijections. In effect, there are natural bijections

[U+ ∧ L,Z] ∼= [L,Z(U)]

for all pointed simplicial sets K and injective fibrant simplicial presheaves Z.
We also need to know that a map L → L′ of pointed simplicial sets is a weak
equivalence if and only if the function

[K,L]→ [K,L′]

is a bijection for all finite pointed simplicial sets K — this is Corollary 2.
Large inductive diagrams of injective fibrant objects of sPre∗(C) have injec-

tive fibrant colimits. Taking β > 2α does the trick, where α is the upper bound
on the cardinality of the set of morphisms of C which was introduced above.
The canonical map

lim−→
s<γ

hom(U+ ∧K,Xs)→ hom(U+ ∧K, lim−→
s<γ

Xs),

is an isomorphism for all γ ≥ β since all objects U+ ∧K ∈ S are α-bounded.
Generally speaking, for any closed simplicial model structure on the category

of simplicial presheaves with standard function complexes, if that model struc-
ture is cofibrantly generated and all cofibrations are monomorphisms, then the
condition M4 holds by choosing suitable upper bound α on the cardinality of all
objects appearing in the generating sets of cofibrations and trivial cofibrations
as well as the members of the set S, and then one chooses β > 2γ .

It follows that the projective local model structure on the simplicial presheaf
category sPre∗(C) and all structures intermediate between the projective and
injective structures [11] satisfy conditions M*, as do all Bousfield localizations
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of the injective structure [4]. This last case includes the motivic model struc-
ture for simplicial presheaves on the smooth Nisnevich site (Sm|S)Nis [12]. The
same holds for all categories of presheaves of spectra and symmetric spectra on
a small Grothendieck site [8], together with all of their Bousfield localizations
[7]. All categories of presheaves of chain complexes (aka, presheaves of simplicial
modules), presheaves of unbounded chain complexes, and spectrum and sym-
metric spectrum objects in presheaves of chain complexes [9] satisfy conditions
M*.

Similar observations apply for the standard (injective) model structure on
the category sShv(C)∗ of pointed simplicial sheaves on a small Grothendieck
site, and this model category satisfies conditions M*.

Suppose that I is a small category. Since M is cofibrantly generated, the
category MI of I-diagrams, or functors I →M and their natural transforma-
tions, has a model structure for which a map X → Y is a fibration (respectively
weak equivalence) if all component maps Xi → Yi are injective fibrations (re-
spectively weak equivalences) of M. The cofibrations for the theory, which are
called projective cofibrations, are those maps which have the left lifting property
with respect to all trivial fibrations. This is the projective model structure for
the category MI of I-diagrams.

The injective model structure on MI is defined dually: the cofibrations and
fibrations are defined componentwise, and the injective fibrations are those maps
which have the right lifting property with respect to all trivial cofibrations. Ev-
ery projective cofibration is a cofibration for the injective model structure since
the generating set for the class of projective cofibrations consists of componen-
twise cofibrations, but the converse is not true.

The homotopy colimit holim−−−→ I X for a diagram X : I →M is defined up to
weak equivalence by taking a projective cofibrant model X̃ → X of X (ie. a
weak equivalence with X̃ projective cofibrant), and then one sets

holim−−−→ I X = lim−→
I

X̃.

The homotopy inverse limit holim←−−− I X for the diagram X is defined dually: one
takes an injective fibrant model j : X → FX for X (a weak equivalence with
FX injective fibrant), and then one sets

holim←−−− I X = lim←−
I

FX.

Lemma 4. Suppose that the closed simplicial model category M satisfies con-
ditions M*, and let X : γ → M be an inductive system defined on a cardinal
γ with γ ≥ β. Suppose that K ∈ S is a generator of M. Then the canonical
function

lim−→
s<γ

[K,Xs]→ [K, lim−→
s<γ

Xs]

is a bijection.
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Proof. There is a trivial projective cofibration j : X → Y where the diagram Y
is projective fibrant, so that all Ys, s < γ are fibrant objects ofM. The induced
map

lim−→
s<γ

Xs → lim−→
s<γ

Ys

is a trivial cofibration of M, and the colimit lim−→s<γ
Ys is fibrant and the sim-

plicial set map
lim−→
s<γ

hom(K,Ys)→ hom(K, lim−→
s<γ

Ys)

is a weak equivalence by M4. All generators K ∈ S are cofibrant, so a compar-
ison of path components shows that the canonical function

lim−→
s<γ

[K,Ys]→ [K, lim−→
s<γ

Ys]

is a bijection. There is, finally, a commutative diagram

lim−→s<γ
[K,Xs] //

∼=
��

[K, lim−→s<γ
Xs]

∼=
��

lim−→s<γ
[K,Ys] ∼=

// [K, lim−→s<γ
Ys]

which shows that the desired function is a bijection.

If the closed simplicial model category M satisfies conditions M*, then
both the projective and injective model structures on the diagram categoryMI

satisfy conditions M*.

2 The representability theorem

For this section, suppose that M is a closed simplicial model category which
satisfies the properties M* of the first section.

We shall be considering functors

F :Mop → sSets∗

defined contravariantly on M, and having the following properties:

F1 The space F (∗) is contractible.

F2 The functor F takes weak equivalences f : A → B between cofibrant
objects to weak equivalences f∗ : F (B)→ F (A).

F3 Suppose that I is a small category, and that X : I → M is a projective
cofibrant diagram in M. Then the map

F (lim−→
i

Xi)→ holim←−−− iF (Xi)
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is a weak equivalence. In other words, F should take homotopy colimits
to homotopy inverse limits, up to weak equivalence.

We shall say that a functor F satisfies the properties F* if it satisfies all three
of these properties.

The point of this section is to establish conditions on F which guarantee that
F is sectionwise equivalent to a representable functor hom( , Y ) with Y fibrant.
A natural transformation f : F → G of functors Mop → sSet∗ is said to be a
sectionwise equivalence if the map f : F (A) → G(A) is a weak equivalence for
each cofibrant object A of M

The three conditions are invariant of sectionwise equivalence: if there is a
sectionwise equivalence f : F → G, then F satisfies the properties F* if and
only if they are satisfied by G. Thus, for example, it is harmless to suppose that
F takes values in Kan complexes, since the the natural map

j : F → Ex∞ F

arising from Kan’s Ex∞ construction is a sectionwise weak equivalence.
The three conditions are satisfies by all representable functors hom( , Y )

with Y fibrant. In particular, if X : I →M is a projective cofibrant diagram,
then the canonical map

hom(lim−→
i

Xi, Y )→ holim←−−− ihom(Xi, Y )

is a weak equivalence, because the Iop-diagram defined by i 7→ hom(Xi, Z) is
injective fibrant (see, for example, [10, p.114-5]), so that the functor hom( , Y )
satisfies F3. The conditions F1 and F2 are easy to verify in this case. It follows
that if a functor F is sectionwise equivalent to a representable functor hom( , Y )
with Y fibrant, then F satisfies conditions F*.

Example 5. Suppose that I = Ob(I) is a discrete category on its set of objects,
so that it has only identity arrows. A diagram X : I →M consists of a set of
objects Xi, i ∈ I, and X is projective cofibrant if and only if all of the objects Xi

are cofibrant. Then condition F3 for F in this case asserts that the composite
map

F (
∨
i

Xi)→
∏
i

F (Xi)

is a weak equivalence. The special case of condition F3 for discrete diagrams is
otherwise known as the wedge property for the functor F .

Example 6. Among all diagrams having the shape

X1
i1←− X0

i2−→ X2

the projective cofibrant ones are the diagrams for which all objects Xi are
cofibrant and the two morphisms i1, i2 are cofibrations. Then condition F3 for
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diagrams of this shape means precisely that the diagram

F (X1 ∪X0 X2) //

��

F (X2)

��
F (X1) // F (X0)

is homotopy cartesian. In the presence of condition F3, and because all of the
objects Xi are cofibrant, this diagram will be homotopy cartesian if just one
of the maps i1, i2 is a cofibration. This is a strong form of the Mayer-Veitoris
property for F — see the description of the Mayer-Veitoris property in Section
3.

Example 7. Suppose that γ is an infinite cardinal number, and that A : γ →M
is a directed system indexed by γ. Suppose that the system is projective cofi-
brant — this means that A0 is cofibrant, all maps As → As+1 are cofibrations,
and that the maps lim−→s<t

→ At are cofibrations for all limit ordinals t < γ.
Observe that the restriction of the diagram A to any limit ordinal β < γ is a
projective cofibrant β-diagram.

Applying the functor F to all As, s < γ gives a “tower” F (A) : γop → sSet∗.
Suppose that j : F (A)→ Z is an injective fibrant model in the category of γop-
diagrams. Then Z0 is fibrant, the maps Zs+1 → Zs are fibrations for all s < γ,
and the maps Zt → lim←−s<t Zs are fibrations for all limit ordinals t < γ.

The assumption that the functor F satisfies condition F3 means that the
map

F (lim−→
s<t

As)→ lim←−
s<t

Zs

is a weak equivalence for all limit ordinals t ≤ γ.
In the special case that the map lim−→s<t

As → At is an isomorphism for all
limit ordinals t < γ, we could, in the construction of Z, set

Zt = lim−→
s<t

Zs

for all limit ordinals t.

Suppose that X is cofibrant and that u ∈ F (Y )0 with Y cofibrant. If Y is
also fibrant then an evaluation map

u∗ : [X,Y ]→ π0F (X)

can be defined by the assignment [α] 7→ [α∗(u)]. If Y is not fibrant, let j :
Y → LY be a fibrant model (with j a trivial cofibration). Then there is a
unique element [v] ∈ π0F (LY ) such that [v] 7→ [u] under the isomorphisms
π0F (LY ) → π0F (Y ), and then the evaluation map u∗ is defined to be the
composite

[X,Y ]
∼=−→ [X,LY ] v∗−→ π0F (X).
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The definition of u∗ is independent of the choice of fibrant model LY .
Suppose that Y is a cofibrant object of M. An element u of F (Y )0 is said

to be universal if the evaluation map

u∗ : [K,Y ]→ π0F (K)

is an isomorphism for all generators K.
The near-term goal of the following is to show that every functor F satisfying

conditions F* has a universal element. Suppose that F satisfies conditions F*
for the rest of this section.

Lemma 8. Suppose that A is a cofibrant object ofM and that u ∈ F (A)0. Then
there is a cofibration i : A→ B and an element v ∈ F (B)0 with i∗([v]) = [u] in
π0F (A)0, and such that in the diagram

[K,A]
i∗ //

u∗ $$JJJJJJJJJ
[K,B]

v∗

��
π0F (K)

the following hold:

1) the map v∗ is surjective,

2) if u∗(α) = u∗(β) then i∗(α) = i∗(β).

Proof. We can suppose that A is fibrant.
Form the coproduct

A ∨ (
∨
λ

K)

over all
λ ∈ π0F (K), K ∈ S.

Take the list of all pairs of elements [α], [β] ∈ [K,A] such that u∗[α] = u∗[β] in
π0F (K), and choose representatives α, β : K → A for all such pairs of elements.
Form the pushout diagram∨

(α,β) (K ∨K)

��

// A // A ∨ (
∨
λK)

��∨
(α,β) (K ∧∆1

+) // B

and observe that all objects in the diagram are cofibrant.
Write j for the composite cofibration

A→ A ∨ (
∨
λ

K)→ B.
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There is an element [w] ∈ π0F (A ∨ (
∨
λK)) which restricts to [u] ∈ π0F (A)

and all λ ∈ π0F (K), by the wedge property. There is an element [v] ∈ π0F (B)
which restricts simultaneously to [w] and the sequence (u∗[α] = u∗[β]), since
the diagram

F (B) //

��

F (
∨

(α,β)(K ∧∆1
+))

��
F (A ∨ (

∨
λK)) // F (

∨
(α,β)(K ∨K))

is homotopy cartesian (Mayer-Veitoris property).
The map v∗ : [K,B] → π0F (K) is surjective for all K by construction. All

pairs of elements [α], [β] ∈ [K,A] such that u∗[α] = u∗[β] in π0F (K) also have
the same image in [K,B].

Proposition 9. Suppose that A is cofibrant and that u is a vertex of F (A).
Then there is a cofibration i : A→ Y with a universal element v ∈ F (Y )0 such
that i∗([v]) = [u] ∈ π0F (A).

Proof. We construct a projective cofibrant inductive diagram A : β → M to-
gether with an inductive fibrant model j : F (A)→ Z, by induction on s < β.

Set A0 = A and u0 = u. Suppose that t < β and that As and the maps
j : F (As) → Zs have been defined for s < t. Suppose further that vertices
vs ∈ Zs have been chosen which are compatible in the sense that if s′ ≤ s < t
then vs 7→ vs′ under the fibration p : Zs → Zs′ .

It t = s + 1 then the map F (As) → Zs is a weak equivalence, so there
is a vertex us ∈ F (As) such that j∗[us] = [zs] ∈ π0Zs. Choose a cofibration
i : As → As+1 with us+1 ∈ F (As+1) according to the construction of Lemma 8.
Form a diagram

F (As+1)
j //

��

Zs+1

p

��
F (As)

j
// Zs

such that j is a trivial cofibration and p is a fibration. Then [p(j(us+1))] =
[zs] ∈ π0Zs and p is a fibration so there is a vertex zs+1 ∈ Zs+1 such that
p(zs+1) = zs and [zs+1] = [j(us+1)] ∈ π0Zs+1.

It t is a limit ordinal, set At = lim−→s<t
As, set Zt = lim←−s<t F (As), and

let j : F (At) → Zt be the canonical map. Then j : F (At) → Zt is a weak
equivalence since F takes homotopy colimits to homotopy inverse limits. Let
the vertex zt be the map ∗ → lim−→s<t

Zs which is determined by all zs, s < t.
Suppose that Y = lim−→s<β

As, and set Zβ = lim←−s<β Zs. Let zβ be the vertex
of Zβ which is defined by all the zs, s < β. The natural transformation j :
F (A)→ Z induces a weak equivalence

F (Y )
j∗−→ Zβ
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again by condition F3. It follows that there is a vertex v ∈ F (Y ) such that

[j∗(v)] = [zβ ] ∈ π0Zβ .

Then there are commutative diagrams

[K,As] //

u∗s **UUUUUUUUUUUUUUUUUUUU [K,As+1] //

u∗s+1

&&LLLLLLLLLL
[K,Y ]

v∗

��
π0F (K)

and the map v∗ is an isomorphism for all K ∈ S. In effect, the function

lim−→
s<γ

[K,As]→ [K,Y ]

is a bijection for all K ∈ S, since β is sufficiently large. If i : A → Y is the
canonical map, then i∗([v]) = [u] ∈ π0F (A).

Lemma 10. Suppose that f : Y → Y ′ is a morphism of cofibrant objects of
M. Suppose that u ∈ F (Y )0 and u′ ∈ F (Y ′)0 are universal, and that f∗([u′]) =
[u] ∈ π0F (Y ). Then f is a weak equivalence.

Proof. This is a consequence of the commutativity of the diagrams

[K,Y ]
f∗ //

u∗

∼=

$$JJJJJJJJJ
[K,Y ′]

(u′)∗∼=
��

π0F (K)

which are associated to all generators K.

Lemma 11. Suppose given maps

A
f //

i

��

Y

B

of M such that i is a cofibration and A and Y are cofibrant. Suppose that
u ∈ F (Y )0 is universal and that x ∈ F (B) satisfies i∗([x]) = f∗([u]) ∈ π0F (A).
Then f extends to a map g : B → Y in the homotopy category such that
g∗([u]) = [x] ∈ π0F (B).

Proof. Form the pushout

A
f //

i

��

Y

i∗

��
B // B ∪A Y

(2)

13



Then there is an element [w] ∈ π0F (B ∪A Y ) which restricts to [x] ∈ π0F (B)
and [u] ∈ π0F (Y ) by the Mayer-Vietoris property. There is a cofibration j :
B ∪A Y → Y ′ such that Y ′ has a universal element v ∈ F (Y ′)0 such that
j∗([v]) = [w] ∈ π0F (B ∪A Y ), by Lemma 8. The composite map

Y
i∗−→ B ∪A Y → Y ′

is a weak equivalence by Lemma 10, and is therefore an isomorphism in the
homotopy category.

Proposition 12. Suppose that F : Mop → sSet∗ is a functor which satisfies
conditions F*. Then there is a cofibrant object Y of M and a vertex u ∈ F (Y )0

such that the evaluation map

u∗ : [X,Y ]
∼=−→ π0F (X)

is a bijection for all cofibrant objects X of M.

Proof. By Proposition 9 applied to some v ∈ F (∗)0 (note that F (∗) is con-
tractible hence non-empty) there is a cofibrant object Y of M with a universal
element u ∈ F (Y ). We show that the induced map

u∗ : [X,Y ]→ π0F (X)

is a bijection for all cofibrant X.
Suppose that v ∈ F (X)0. Then applying Lemma 11 to the diagram

∗ //

��

Y

X

gives a map g : X → Y in the homotopy category Ho(M) such that g∗([u]) = [v],
so that u∗[g] = [v]. It follows that the function u∗ is surjective.

To prove the injectivity of u∗, we can suppose that Y is fibrant. Suppose
that u∗[g0] = u∗[g1] = [v] ∈ π0F (X) for maps g0, g1 : X → Y . Consider the
maps

X ∨X
(g0,g1) //

(d0,d1)

��

Y

X ⊗∆1

and choose an element [w] ∈ π0F (X ⊗ ∆1) which restricts to [v] along the
functions induced by the maps F (d0) = F (d1) : F (X ⊗ ∆1) → F (X). Then
Lemma 11 says that (g0, g1) extends to a map h : X⊗∆1 → Y in the homotopy
category Ho(M) such that h∗([u]) = [w]. But then g0 and g1 represent the same
map in Ho(M).

14



Suppose now that
F :Mop → sSet∗

is a simplicial functor, and that it satisfies conditions F*.
The simplicial functor F associates a simplicial set map α∗ : F (B) ∧∆n

+ →
F (A) to every morphism α : A ⊗ ∆n

+ → B. In particular there is a map
fn : F (A⊗∆n

+)∧∆n
+ → F (A) to the identity map A⊗∆n

+ → A⊗∆n
+. Taking

adjoints of the fn gives maps

fn∗ : F (A⊗∆n
+)→ hom(∆n

+, F (A)),

Every map θ : ∆m → ∆n induces a commutative diagram

F (A⊗∆n
+)

fn∗ //

(1∧θ)∗

��

hom(∆n
+, F (A))

θ∗

��
F (A⊗∆m

+ )
fm∗

// hom(∆m
+ , F (A))

It follows that there is a map

f : F (A⊗ L)→ hom(L,F (A))

which is natural in pointed simplicial presheaves A and pointed simplicial sets
L. The map

f : hom(A⊗ L,Z)→ hom(L,hom(A,Z))

is a canonical isomorphism.
In simplicial degree 0, maps f : A → B in M are identified with maps

f̃ : A⊗∆0
+ → B via the diagrams

A⊗∆0
+

f̃

##GG
GG

GG
GG

G
∼=

��
A

f
// B

and there are commutative diagrams

F (B) ∧∆0
+

f̃∗ //

∼=
��

F (A)

F (B)
f∗

99ssssssssss

It follows that the map f0 : F (A ⊗ ∆0
+) ∧ ∆0

+ → F (A) is the composite of
canonical isomorphisms

F (A⊗∆0
+) ∧∆0

+

∼=−→ F (A⊗∆0
+)
∼=−→ F (A).
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It also follows that the adjoint map

f0∗ : F (A⊗∆0
+)→ hom(∆0

+, F (A))

is an isomorphism.

Lemma 13. Suppose that the simplicial functor F satisfies conditions F*, and
that F takes values in Kan complexes. Then the natural map

f : F (A⊗ L)→ hom(L,F (A))

is a weak equivalence for all pointed simplicial sets L and all cofibrant objects A
of M.

Proof. The map
f : F (A⊗∆0

+)→ hom(∆0
+, F (A))

is an isomorphism, and both functors involved in the natural map f preserve
weak equivalences, so that all maps

f : F (A⊗∆n
+)→ hom(∆n

+, F (A))

are weak equivalences.
Now proceed by induction on n for the skeleta skn L of L. The pushout

squares ∨
σ∈NLn

∂∆n
+

//

��

skn−1(L)

��∨
σ∈NLn

∆n
+

// skn(L)

are mapped to homotopy cartesian diagrams by both functors (recall that F
takes homotopy colimits to homotopy inverse limits), and so the maps

f : F (A⊗ skn(L))→ hom(skn L,F (A))

are weak equivalences for all pointed simplicial sets L, and for all n ≥ 0.
Finally, the space F (A⊗L) is naturally equivalent to the homotopy inverse

limit of the spaces F (A ⊗ skn L), and the space hom(L,F (A)) is naturally
equivalent to the homotopy inverse limit of the spaces hom(skn L,F (A)). The
result follows.

A morphism
u : hom( , Y )→ F

of simplicial functors is completely determined by the element u = u(1Y ) ∈
F (Y )0 such that u 7→ ∗ under the map F (Y ) → F (∗) which is induced by the
morphism ∗ → Y . There is a homotopy

ω : hom( , Y ) ∧∆1
+ → F

16



between such functors u, u′ if and only if there is a path ω : u→ u′ in the fibre
F̃ (Y ) over the base point of the map F (Y ) → F (∗). It also follows there is a
natural isomorphism

Nat(hom( , Y ), F ) ∼= F̃ (Y )

where Nat(G,F ) denotes the function space of natural transformations between
simplicial functors G and F .

As noted before, we are entitled to vary the simplicial functor F up to
sectionwise equivalence. In particular Kan’s Ex∞-construction j : X → Ex∞X
determines a simplicial functor Ex∞(F ) with Ex∞(F )(A) = Ex∞(F (A)), and
the weak equivalences j : F (A)→ Ex∞(F (A)) define a natural morphism

j : F → Ex∞ F

of simplicial functors. This map j is a sectionwise weak equivalence.

Remark 14. Suppose that G is a simplicial functor Mop → sSet∗. Suppose
in addition that the pointed simplicial set G(∗) is contractible. The canonical
maps t : A → ∗ in M induce cofibrations t∗ : G(∗) → G(A), which together
determine a map t∗ : G(∗)→ G of simplicial functors, where G(∗) is the constant
simplicial diagram onM associated to the pointed simplicial set G(∗). Form the
quotient G/G(∗)) and consider the canonical transformation p : G → G/G(∗).
The map p is a sectionwise equivalence since G(∗) is contractible, and there is
an isomorphism

(G/G(∗))(∗) = G(∗)/G(∗) ∼= ∗.
Kan’s Ex∞ functor preserves points, so the composite

G
p−→ G/G(∗) j−→ Ex∞(G/G(∗)) =: G̃

gives a sectionwise equivalence G → G̃ such that G̃ takes values in Kan com-
plexes and G̃(∗) = ∗.

Lemma 15. Suppose that u ∈ F (Y )0 is a universal element which determines
a map

u : hom( , Y )→ F

of simplicial functors, where Y is cofibrant and fibrant and F takes values in
Kan complexes and satisfies condition F*. Then the map u is a sectionwise
weak equivalence.

Proof. We show that the induced map

[L,hom(A, Y )] u∗−→ [L,F (A)]

is a bijection for each pointed simplicial set L and cofibrant object A.
In the diagram

hom(A⊗ L, Y )
u∗ //

f

��

F (A⊗ L)

f

��
hom(L,hom(A, Y ))

u∗
// hom(L,F (A))

17



the vertical maps f are weak equivalences by Lemma 13, and the map

u : hom(A⊗ L, Y )→ F (A⊗ L)

is an isomorphism in path components by Proposition 12. But then the map

u∗ : hom(L,hom(A, Y ))→ hom(L,F (A))

induces an isomorphism in path components.

The following is the main result of this section. It is the representability
theorem of the section title.

Theorem 16. Suppose that M is a closed simplicial model category which
satisfies conditions M*. Suppose that F :Mop → sSets∗ is a simplicial functor
which satisfies conditions F*. Then there are sectionwise equivalences

F
'−→ F̃

'←− hom( , Y ),

where Y is some fibrant object of M.

Proof. The construction of Remark 14 gives a sectionwise weak equivalence
F → F̃ such that F̃ takes values in Kan complexes and F̃ (∗) = ∗. The simplicial
functor satisfies the conditions F*, and therefore has a universal element u ∈
F̃ (Y ) for some cofibrant (and fibrant) object Y of M by Proposition 9. This
element u defines a morphism of simplicial functors

u : hom( , Y )→ F̃

by the construction of the simplicial functor F̃ , and the morphism u is a sec-
tionwise weak equivalence by Lemma 15.

Suppose that Z is a pointed simplicial presheaf on a site C, and suppose that
Z is fibrant for the injective model structure on Cop-diagrams. The cofibrations
of the injective model structure for the pointed simplicial presheaf category
sPre∗(C) are the monomorphisms, and hence coincide for all possible topologies
on C. It follows that the projective cofibrant diagrams in the diagram category
sPre∗(C)I in the I-diagram category also coincide for all topologies on C and
for all small categories I. It also follows that the functor hom( , Z) satisfies
condition F3 (as well as F1) for the injective model structure on sPre∗(C), for
all topologies on C.

Now fix a topology T on the category C. If the functor hom( , Z) satisfies
condition F2, then since hom(∗, Z) = ∗ the methods of this section (specifically,
Proposition 12 and Lemma 15) imply that there is a pointed simplicial presheaf
Y on C which is injective fibrant for the topology T , and a sectionwise weak
equivalence

u : hom( , Y )→ hom( , Z)

of simplicial functors. This map is induced by a pointed simplicial presheaf map
u : Y → Z, and evaluating the simplicial functor u at all (cofibrant) pointed

18



simplicial presheaves V+ corresponding to objects V of C shows that all of the
maps maps

u : Y (V )→ Z(V )

are weak equivalences of pointed simplicial sets. It follows that Z satisfies
descent with respect to the chosen topology on C. In effect, if j : Z → FZ is an
injective fibrant model for that topology, then the composite

Y
u−→ Z

j−→ FZ

is a local weak equivalence of injective fibrant objects, and is therefore a weak
equivalence in all sections. It follows that all maps j : Z(V )→ FZ(V ) are weak
equivalences, so that Z satisfies descent.

Recall that a simplicial presheaf X satisfies descent for the topology T if
there is a local weak equivalence f : X → X ′ with X ′ injective fibrant such that
the maps

f : X(V )→ X ′(V )

are weak equivalences for all objects V of C. The choice of weak quivalence does
not matter: in the presence of the map f , if g : X → X ′′ is another local weak
equivalence with X ′′ injective fibrant, then all maps X(V ) → X ′′(V ) are weak
equivalences of pointed simplicial sets.

We have effectively proved the following:

Proposition 17. Suppose that a pointed simplicial presheaf X has an injec-
tive fibrant model X → Z in Cop-diagrams such that the representable functor
hom( , Z) satisfies condition F2 for the topology T , then X satisfies descent
for T .

Proposition 17 is a descent criterion for pointed simplicial presheaves, and
there are obvious analogues of this result in related categories, such as presheaves
of spectra. The hope for representability techniques such as those displayed in
this section has been that they would give such a descent criterion. This is
certainly true, but there is a far more direct proof:

Proof. Suppose that Z is an injective fibrant Cop diagram which satisfies F2
as above, and let j : Z → FZ be an injective fibrant model for the topology
on C. All pointed simplicial presheaves are cofibrant, so that the local weak
equivalence j : Z → FZ induces a weak equivalence

j∗ : hom(FZ,Z) '−→ hom(Z,Z).

In particular, there is a map g : FZ → Z such that the composite g ·j is pointed
homotopic to the identity 1Z on Z. Then j · g · j = j up to simplicial homotopy.
But precomposition with j defines a weak equivalence

j∗ : hom(FZ,FZ)→ hom(Z,FZ)
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so that j ·g coincides with the identity 1FZ up to simplicial homotopy. It follows
that the map j : Z → FZ is a simplicial homotopy equivalence, and therefore
consists of weak equivalences Z(V )→ FZ(V ) for all objects V of C.

Finally, the composite X → Z → FZ is an injective fibrant model for X,
and this composite consists of weak equivalences

X(V )→ Z(V )→ FZ(V )

for all objects V of C, so that X satisfies descent.

3 Classical Brown representability

Here are the properties that we shall require for the closed model category N
in this section:

N1 The category N has all small colimits. The initial object ∗ of N is also
terminal, so that N is a pointed model category.

N2 There is a set S of compact cofibrant objects {K} such that a map f :
X → Y is a weak equivalence if and only if it induces a bijection

[K,X]
∼=−→ [K,Y ]

of morphisms in the homotopy category Ho(N ), for all objects K in S.

An object K of N is said to be compact if the function

lim−→
i

[K,Yi]→ [K, lim−→ Yi]

is a bijection for all inductive systems

Y0 → Y1 → Y2 → . . .

I shall say that a model category N satisfies the conditions N* if it satisfies
properties N1 and N2. It is typical to say, under such circumstances, that the
model category N is compactly generated, and that the elements K of S are
compact generators for N .

Remark 18. If N satisfies the conditions N*, then inductive colimits preserve
weak equivalences.

More specifically, suppose that the map f : X → Y is a comparison of
inductive systems X,Y : α → N (where α is any cardinal) such that all maps
fs : Xs → Ys, s < α, are weak equivalences. Then the induced map

lim−→ Xs → lim−→ Ys

is a weak equivalence. In effect, there are bijections

[K, lim−→ Xs] ∼= lim−→ [K,Xs] ∼= lim−→ [K,Ys] ∼= [K, lim−→ Ys].

for all objects K of S.
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We shall now consider functors

G : N op → Sets∗

which take values in pointed sets, and have the following properties:

G1 G takes weak equivalences to bijections.

G2 The set G(∗) is the one-point set.

G3 (wedge property) For any coproduct
∨
iXi of a set of cofibrant objects

{Xi} of N , the canonical induced map

G(
∨
i

Xi)→
∏
i

G(Xi)

is a bijection.

G4 (Mayer-Vietoris property) Suppose that the diagram

A //

i

��

X

��
B // B ∪A X

is a pushout, where i is a cofibration and all objects are cofibrant. Then
the induced function

G(B ∪A X)→ G(B)×G(A) G(X)

is surjective.

I say that a functor G : N op → Sets∗ satisfies the conditions G* if it has
the properties G1 – G4.

Example 19. Suppose that Z is an object of N . Then the functor

G(X) = [X,Z]

defined by morphisms in the homotopy category is pointed by the composite
X → ∗ → Z, and satisfies the conditions G*.

Lemma 20. Suppose that
Y0

α−→ Y1
α−→ · · · (3)

is a countable sequence of maps of N where all objects Yi are cofibrant, and that
the functor f satisfies the conditions G*. Then the canonical function

G(lim−→
i

Yi)→ lim←−
i

G(Yi)

is surjective.
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Proof. Take a sequence of cylinder objects

Yi ∨ Yi
∇

""FF
FF

FF
FF

F

(d0,d1)

��
Yi ⊗ I s

' // Y

in N , and form the pushout diagram

∨
i(Yi ∨ Yi)

(1,α) //

(d0,d1)

��

∨
i Yi

��∨
i(Yi ⊗ I) // L

Then the object L is the telescope construction for the diagram (3), and it is
canonically weakly equivalent to the colimit lim−→i

Yi.
There is a pullback diagram

lim←−iG(Yi) //

��

∏
iG(Yi)

(1,α∗)

��∏
iG(Yi)

∆
// ∏

i(G(Yi)×G(Yi))

and there are isomorphisms G(Yi) ∼= G(Yi ⊗ I), so that the map G(L) →
lim←−G(Yi) is surjective by the Mayer-Vietoris property.

Suppose that Y is an object of N . An element u of G(Y ) is said to be
universal if the evaluation map

u∗ : [K,Y ]→ G(K)

defined by α 7→ α∗(u) is an isomorphism for all compact generators K.

Lemma 21. Suppose that X is a cofibrant object of N and that v ∈ G(X). Sup-
pose that the functor f satisfies the conditions G*. Then there is a cofibration
i : X → Y such that there is a universal element u ∈ G(Y ) with i∗(u) = v.

Proof. Suppose that Z is a cofibrant object of N and that z ∈ G(Z). By using
the methods of proof of Lemma 8 one can show that there is a cofibration
j : Z → Y with w ∈ G(Y ) such that j∗(w) = z, and such that in the diagram

[K,Z]
j∗ //

z∗ $$HH
HH

HH
HH

H
[K,Y ]

w∗

��
G(K)
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w∗ is surjective, and if z∗[α] = z∗[β] then j∗[α] = j∗[β] ∈ [K,Y ] for all compact
generators K.

Set Y0 = X and u0 = v. Then there is a countable sequence of cofibrations
j : Yn → Yn+1 with elements un ∈ G(Yn) such that j∗(un+1) = un ∈ G(Yn),
and in all diagrams

[K,Yn]
j∗ //

u∗n %%KKKKKKKKKK
[K,Yn+1]

u∗n+1

��
G(K)

(4)

the map u∗n+1 is surjective, and if u∗n[α] = u∗n[β] then j∗[α] = j∗[β] ∈ [K,Yn+1].
The function

G(Y ) = G(lim−→Yn)→ lim←−G(Yn)

is surjective by Lemma 20, so that one can pick u ∈ G(Y ) such that u restricts
to all un. Then there are commutative triangles

[K,Yn] //

u∗n $$IIIIIIIII
[K,Y ]

u∗

��
G(K)

and [K,Y ] ∼= lim−→[K,Yn] since all K are compact. The map u∗ is a bijection by
the construction of the cofibrations j∗ in the diagram (4).

We now have the following analogues of Lemma 10, Lemma 11 and Propo-
sition 12, respectively, with the same proofs.

Lemma 22. Suppose that G satisfies the conditions G*. Suppose that α :
Y → Y ′ is a morphism of cofibrant objects of N . Suppose that u ∈ G(Y ) and
u′ ∈ G(Y ′) are universal, and that α∗(u′) = u. Then α is a weak equivalence.

Lemma 23. Suppose that the functor G satisfies the conditions G*. Suppose
given maps

A
β //

i

��

Y

B

of N such that i is a cofibration and all objects are cofibrant. Suppose that
u ∈ G(Y ) is universal and that x ∈ G(B) satisfies i∗(x) = β∗(u) ∈ G(A). Then
β extends to a map γ : B → Y in the homotopy category Ho(N ) such that
γ∗(u) = x.

Theorem 24. Suppose that N is a closed model category which satisfies the
conditions N*. Suppose that the functor G : N op → Set∗ satisfies the conditions
G*. Then there is an object Y of N and a natural bijection

[X,Y ]
∼=−→ G(X)
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for all objects X of N .

Theorem 24 is the analogue of the classical Brown representability theorem
for compactly generated pointed closed model categoriesN , such as the category
sSet∗ of pointed simplicial sets. The finite pointed simplicial sets form a set of
compact generators for sSet∗, by Lemma 1. Theorem 24 applies to the ordinary
categories of spectra and symmetric spectra — the shifted suspension objects
Σ∞K[n] associated to finite pointed simplicial sets K gives the required set of
compact generators in each case.

Theorem 24 applies to a small list of well-behaved pointed simplicial presheaf
categories and their associated categories of spectra and symmetric spectra.
These include the categories of simplicial presheaves on the scheme category
Sch|S where the local weak equivalences are determined by either the Zariski
or Nisnevich topologies. In both cases, the collections of objects K ∧U+ arising
from finite pointed simplicial sets K and S-schemes U give a set of compact
generators, by the Brown-Gersten and Nisnevich descent theorems, respectively
(see [1], [12]). In effect, in both contexts, if s 7→ Ys, s < α, is an inductive system
of injective fibrant objects, then the respective descent theorems imply that the
colimit lim−→s<α

Ys satisfies descent, and so the objects K ∧ U+ are compact.
Testing the applicability of Theorem 24 for simplicial presheaves and related

categories amounts, in all cases, to displaying a compact set of generators. The-
orem 24 specializes to a Brown representability result for the motivic model
structure on pointed simplicial presheaves for the smooth Nisnevich site Sm|S
on a scheme S: the objects K∧V+ with K a finite pointed simplicial set and V a
smooth S-scheme form a compact set of generators because colimits of inductive
systems of motivic fibrant simplicial presheaves satisfy motivic descent. This
set of objects can be parlayed into a family of compact objects Σ∞T (K ∧ V+)[n]
for both the categories of motivic T -spectra and motivic symmetric T -spectra,
by applying the suspension spectrum construction and all shifts [7], for all of
the standard suspension objects T .

In many other cases of interest, however, such as pointed simplicial presheaves
or presheaves of spectra on an étale site, we only have Theorem 16, which has
stronger conditions and a stronger conclusion.
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