Grothendieck-Verdier duality in enriched symmetric

monoidal ¢-categories

Roy Joshua

DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, COLUMBUS, OHIO, 43210,
USA.
E-mail address: joshua@math.ohio-state.edu



ABSTRACT. In this paper we extend the yoga of Grothendieck’s six (derived) functors to
as broad a setting as possible. The general frame-work we adopt for our work is that
of enriched symmetric monoidal categories which is broad enough to include most or all
of the applications. The theory has already found several applications: for example to
the theory of character cycles for constructible sheaves with values in K-theory which
is discussed in detail in Chapter V. In addition, other potential applications exist, for
example, to the theory of derived schemes and motivic derived categories, some of which
are surveyed in Chapter VI.
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Introduction

One of the most global duality results in mathematics is the Grothendieck-Verdier du-
ality. These are statements in the derived category of suitable sheaves on a topology and
incorporate many other duality results: for example Poincaré duality for manifolds has a
formulation in this setting using constructible sheaves. The yoga of the (six) derived func-
tors is incorporated into this theory of duality. The original setting for these is either that of
constructible sheaves on suitable Grothendieck topologies or coherent sheaves on schemes.
However, progress in various fields has necessitated that the basic theory be extended to in-
creasingly more general contexts: for example to the setting of D-modules, coherent sheaves
on super-commutative varieties, algebraic geometry over DGAs, simplicial presheaves on
general sites etc. The theory of sheaves of modules over differential graded algebras is find-
ing important applications in present-day algebraic geometry: see for example [Kon], [CK1],
[CK2] as well as [Voe-1], [K-M]. Moreover, the theory of simplicial presheaves, started in [B-
G] over 25 years ago, has been finding ever increasing applications: see the various papers of
Simpson, ([Simp-1] through [Simp-3]), Toen (see [Toe-1] and [Toe-2]), Morel and Voevodsky
(see [M1] and [M-V]). Recent progress in the theory of motives has led to several conjectures
on extending the machinery of Grothendieck-Verdier duality to the motivic setting as well.
However, the mere fact that Grothendieck-Verdier duality is formulated in the derived cate-
gory of abelian sheaves or coherent sheaves on schemes (or algebraic spaces), makes it rather
restrictive: it does not apply to generalized cohomology theories, for example to K-theory.

In this monograph we establish a general version of Grothendieck-Verdier duality in
a sufficiently broad setting so as to be readily applicable to the above situations as well
as others. We discuss one particular application in detail in Chapter V, namely a direct
construction of micro-local character cycles in response to a question of P. Schapira. Other
applications are discussed briefly at the end of Chapter IV and in Chapter VI. To make
our theory applicable to a wide variety of situations, (including that of presheaves of E>°-
differential graded modules over a sheaf of E°°-differential graded algebras), we have adopted
an axiomatic situation.

The frame-work adopted for our work is that of enriched symmetric monoidal ¢-categories.
Such categories are triangulated categories (to be precise, what we call strongly triangu-
lated categories) with the extra structure of a symmetric monoidal category and a strong
t-structure. It is shown that, with minor modifications, this framework is broad enough
to include all the above applications: it includes sites provided with sheaves of differen-
tial graded algebras, sheaves of differential graded algebras over an operad or presheaves
E°°-ring spectra (in the sense of algebraic topology).

Next we give an overview of our work by considering the problem of obtaining a good
notion of (Grothendieck-Verdier) duality on ringed sites. Let & denote a ringed site, i.e.
a site provided with a sheaf, R, of commutative rings with unit. Let Shg (&) denote the
category of sheaves of R-modules on &. This is a symmetric monoidal category under
the tensor product of sheaves of R-modules and has R as a strict unit. In this context it is

L
possible to obtain a left-derived functor: —Q— : Dy(Shgr(8))x Dp(Shgr(S)) = Dp(Shr(S))
R

by finding a resolution of any sheaf of R-modules M by a complex, each term of which is of
the form @ ju1ji;(R), where the sum is over U in the site . (Here Dy(Shz(S)) denotes
UeC

the category of bounded complexes in Shr(G&). We may further assume that the site & is
small, for the time being.)

If we further assume that the site C has enough points, then we will show it is possi-
ble to define RHom as the derived functor of the internal Hom in the category Shg(S).



Given any M, NeShgr(S), we choose a resolution P(M)®* — M by a complex as before
and let RHom(M,N) = TotHom(P(M)*,G*N) where G*N is the Godement resolution
of N and Tot is a total complex. That this defines RHom follows from the following ob-
servations. First, Hom(jujj;(R), G*N) = ju.G*(ji;(IV)), which shows that the bi-functor
RHom( , ) preserves distinguished triangles and quasi-isomorphisms in the second ar-
gument. To see that the bi-functor RHom( , ) preserves distinguished triangles and
quasi-isomorphisms in the first argument, one needs to use basic properties of the Gode-
ment resolution and the fact that P(M)®* — M is a projective resolution of M at each
stalk.

We observe that the above framework is also particularly suitable for obtaining a bi-
duality theorem. A particularly simple form of this bi-duality is the observation that the
obvious map M — RHom(RHom(M,R), R) is a quasi-isomorphism if M is locally free and
of finite rank.

One of the observations that started our project is the realization that, in the above
example, the category Shz (&) is symmetric monoidal with a strict unit R and that this
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fact plays a key role in being able to define —®— as well as RHom. In a sense what we do

R
in the paper is to replace the sheaf of rings R by a sheaf or presheaf of differential graded
objects: a presheaf of ring spectra (or I-rings) is a generalization of a presheaf of differential
graded algebras.

It has to be noted that there have been several attempts at obtaining a theory of
Grothendieck-Verdier-duality. For example, in [Neem], it is shown that one can establish
the existence of a functor Rf' (associated to a map of sites f) which is right adjoint to Rf,.
However, a bi-duality theorem and therefore the full theory of Grothendieck-Verdier duality
does not seem to exist in this context. Any bi-duality theorem can hold only for objects
that are finite in a suitable sense. The notions of being perfect, pseudo-coherent and of finite
tor-dimension on a ringed site are all various forms of finiteness conditions. (See [SGA]6,
Exposé 1.) However, one may observe that if (&, R) is a ringed site and jy : U — S is an
object in the site, the sheaf jyijf;(R) need not be pseudo-coherent but clearly is of finite
tor dimension. On a general ringed site as above, not every bounded complex is pseudo-
coherent, but one can find resolutions of any bounded complex by a complex whose terms
are sums of sheaves of the form jyjf(R). The notions of pseudo-coherence and perfection
seem useful only on ringed sites (&, R) where every finitely presented sheaf of R-modules has
a resolution by a pseudo-coherent complex. Therefore, the appropriate notion of finiteness
that one has on sheaves of modules on general ringed sites seems to be that of having finite
tor dimension along with finite cohomological dimension and cohomology sheaves of finite
presentation (or that are constructible). (It has to be pointed out that the notion of being
constructible is limited to the case where R is a locally constant sheaf on &.) In case every
finitely presented sheaf of R-modules has a resolution by a pseudo-coherent complex, the
notion of perfection seems to be the right notion of finiteness.

However, the property of having finite tor dimension is not necessarily preserved by tak-
ing sub-quotients and hence not preserved by spectral sequences. Therefore, we adopt the
following mechanism for defining such a property in our setting. To simplify our discussion
we consider a site & provided with a presheaf of differential graded algebras A. Moreover, we
assume that there exists a canonical filtration on A whose associated graded terms Gr(.A)
may be assumed to be a presheaf of graded rings. Therefore, we consider presheaves of mod-
ules M on the site (S, .4) provided with a filtration so that Gr(M) is a presheaf of modules
over the ringed site (&, Gr(A)). Now we say M is of finite tor dimension (constructible)
if Gr(M) is of finite tor dimension (is constructible over Gr(A), respectively). We show



that this defines a good notion of finiteness. Those used to working with filtered derived
categories, may find this approach quite familiar. Another issue that becomes important for
us is to be able to work with ease in unbounded derived categories. The notion of homotopy
colimits and limits provide adequate substitutes for the notion of total complexes in this
setting.

The monograph is divided into six chapters and two appendices. In Chapter I we
develop the basic axiomatic framework adopted throughout and in Chapter II we discuss
several concrete realizations of this axiomatic set-up. In Chapter III, we establish several
spectral sequences that form one of our key-techniques. Chapter IV is devoted to a thorough
discussion of Grothendieck-Verdier style duality based on these techniques and in as broad a
setting as possible. The results of Chapter IV, sections 1 and 2 hold in great generality: here
we define the derived functors Rf,, R f,#, Lf* and R f;# The stronger results on bi-duality
and the remaining formalism of Grothendieck-Verdier duality hold on ringed sites (&, R)
only under the stronger hypothesis that the sheaf of rings R is locally constant or for perfect
objects. (Perfect objects are defined in Chapter III, Definition (2.11).)

We discuss one application to micro-local character cycles for constructible sheaves in
detail in Chapter V and survey some of the remaining applications in Chapter VI and at
the end of Chapter IV. Each chapter has its own introduction and the reader may consult
these now for a survey of our results. Appendix A shows that the categories of I'-spaces and
symmetric spectra satisfy the axioms of stable closed simplicial model categories while Ap-
pendix B discusses some rather well-known relations between simplicial objects, cosimplicial
objects and chain complexes in an abelian category.

Acknowledgments. This has been a rather long project for us, especially so, since when
we started on this project there was no well defined framework to work with, except that
of [Rob]. (See [J-3] which is written in this set-up; in fact the application to micro-local
character cycles was first worked out in this setting.) In the meanwhile, the theory of
symmetric spectra and smash products for I'-spaces, and the theory of sheaves of DGAs and
modules over them were developed by several mathematicians, which necessitated a thorough
revision. Rather than restrict to any of these special cases, we have chosen to work in a very
general frame-work: the current and emerging applications seem to indicate that this decision
has payed off well. Discussions with many mathematicians have contributed in several ways
that may not be readily apparent. These include Spencer Bloch, Michel Brion, Patrick
Brosnan, Jean-Luc Brylinski, Zig Fiedorowicz, Eric Friedlander, Mike Hopkins, Amnon
Neeman, Pierre Schapira, J. P. Schneiders, Jeff Smith, the late Robert Thomason, Bertrand
Toen, Burt Totaro and Rainer Vogt. Finally as pointed out earlier, various problems and
conjectures from the theory of motives as well as the work on motivic cohomology by Morel
and Voevodsky and the work on simplicial presheaves by Simpson (and his collaborators)
have been a source of motivation for us. We also thank the Max Planck Institut and the
THES for generously supporting our work and for hospitality.



CHAPTER I

The basic framework

1. Introduction

The goal of this section is to formulate a framework for Grothendieck-Verdier duality as
broad as possible. We begin by considering what are called strongly triangulated categories,
which are stronger than triangulated categories. The typical example of this is the category
of chain complexes in an exact category - see Example 2.6 for more details. The homotopy
category and the derived category associated to such categories of chain complexes are
both triangulated categories; however they are not closed under finite colimits and limits
in general, and hence cannot be strongly triangulated. On the other hand the category of
chain complexes in an exact category, though not triangulated, is strongly triangulated. In
the rest of this chapter we consider unital monoidal structures and t-structures that are
compatible with the strongly triangulated structure. We also need to consider homotopy
colimits and limits of diagrams which may be thought of as derived functors of the colimits
and limits respectively. We list the relevant axioms for these as well. A category with these
structures is called an enriched monoidal t-category.

In summary an enriched monoidal t-category has three basic structures, namely (i) that
of a strongly triangulated category (see below for the definition) which induces the structure
of a triangulated category on the associated derived category, (ii) that of a monoidal category
and (iii) a strong t-structure: these are required to be compatible in a certain sense. In
addition, there are a few extra hypotheses needed to ensure the existence of the derived
functors of the colimit and limit functors for small diagrams in such a category.

2. Axioms for strongly triangulated categories

Let C denote a pointed category. The distinguished zero object will be denoted *. We
say C is strongly triangulated if it satisfies the axioms (STRO) through (STR7.3):

(STRO) C is closed under all small colimits and limits. The sums in the category C will
be denoted LI. We further require that C have a small family of generators.

(STR1) There exists an equivalence relation called homotopy on the Hom-sets in the
category C. If K, LeC, we will let Hompc (K, L) denote the set of these equivalence classes
of morphisms in C from K to L. We require that this defines a category called the homotopy
category and denoted HC. (Observe that we are not requiring this category to be additive.)
A map f: K — L is a homotopy equivalence, if there exists a map g : K — L so that go f
and f o g are homotopic to the identity. We will assume that any map that is a homotopy
equivalence is a quasi-isomorphism (defined in (STR3) below). We say, a diagram commutes
upto homotopy, if the appropriate compositions of the maps get identified under the above
equivalence relation.
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(STR2) C is provided with a collection of diagrams A’ HALA" & TA called strong
triangles (often called triangles) and a translation functor T' : C — C satisfying the properties
(STR3) through (STR5):

(STR3) There exists a (covariant) cohomology functor {#™|n} : C —(an abelian tensor
category A) that sends triangles to long exact sequences. We will say amap f: X - Y in
C (or HC) is a quasi-isomorphism if H"(f) is an isomorphism for all n. Then the class of
maps in HC that are quasi-isomorphisms admits a calculus of left fractions and a calculus
of right fractions. D(C) will denote the localization of HC by inverting maps that are quasi-
isomorphisms. We will also require that A is closed under all small limits and colimits, that
filtered colimits in A are exact, and that each H"™ commute with filtered colimits, with finite
sums and products.

(STR4) D(C) is a triangulated category. Let F' : C — D(C) denote the functor that
is the identity on objects and sends a map f to its class in D(C). Then the distinguished
triangles in D(C) are precisely the images of the triangles by F and the functor T in C is
sent to the translation functor in D(C). Moreover F' has the following universal property:

(STR5) if F' : C — D is any functor to a triangulated category sending the triangles
to the distinguished triangles, the functor 7' to the translation functor of D, and quasi-
isomorphisms to isomorphisms, there exists a unique functor F’ : D(C) — D of triangulated
categories so that F' = F"” o F.

We will also require the following :

(STR6) There is given a collection of mono-morphisms in C called admissible monomor-
phisms which are stable under co-base extension, compositions and retracts so that if
a : X — Y is an admissible monomorphism in C, Cone(a) (defined below) is quasi-
isomorphic to Coker(a). We further require that admissible monomorphisms are stable
under all (small) inverse limits, filtered colimits and homotopy colimits. (See 4.1.1 for their
definition.) There is given also a collection of epi-morphisms in C called admissible epi-
morphisms that are stable under base extension, compositions, all (small) colimits and all
homotopy inverse limits. If 8 : Y — Z is an admissible epimorphism, then T'(ker(B3)) is
quasi-isomorphic to Cone(3). Moreover the obvious map ker(8) — Y is an admissible
monomorphism. All isomorphisms are both admissible mono-morphisms and admissible
epi-morphisms. Objects X for which the obvious map * — X (X — ) is an admissi-
ble monomorphism (admissible epimorphism, respectively) will be called mono-objects (epi-
objects, respectively). We assume there exist functors M : C — C (E : C — C) so that
for each object X, there is given a natural quasi-isomorphism M (X) — X (X — E(X))
with M (X) a mono-object (E(X) an epi-object, respectively). In addition we require that
if f: X — Y is given withX mono (Y epi), the map f factors as X — M(Y) - Y
(X — E(X) — Y, respectively).

Remark. Observe as a consequence of the axioms (STR7.1) (see below) and (STR6),

that, if X —® Y is an admissible monomorphism with both X and Y mono-objects, X 3Y —
Coker(a) — TX is a strong triangle. Similarly the axiom (STR7.2)(see below) and (STR6),

imply that if Y2 7 is an admissible epimorphism with both of them epi-objects, ker(8) —

vz & T(ker(B)) is a strong triangle. If one considers the category of complexes of
presheaves in any abelian category, both the functors e and m may be taken to be the
identity. (See, for example, Chapter II, section 3.) These functors become non-trivial,
however, when C = a category of presheaves that has the structure of a closed model category
- see Chapter II, section 4. See also the remark 2.5, below.
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(STR7.1) Ezistence of canonical cylinder objects. Let AeC and let V: ALUA — A be
the obvious map. A cylinder object for A is an object A x IeC provided with an admissible
mono-morphism do ®d; : AUA — Ax T and amap s: AxI — A such that the composition
so (dg®dy) = V. We require s to be a quasi-isomorphism and that A — A x I is natural
in A, preserves admissible monomorphisms and commutes with all small limits as well as
filtered colimits. Furthermore we require the following conditions on a cylinder object.

(i) Let f : A — B denote a map in C. Then let Cyl(f) = A x I%B where the map

A — AxIisdyand A — B is the given map f. Let r : Cyl(f) — B denote the map defined
by s on A X I, by f on A and by the identity on B. Then r is a homotopy-equivalence with
inverse given by the obvious map i : B — Cyl(f). Given a commutative diagram

B2 R

in HC, there exists a cylinder object A x I in C so that if P = Cyl(f)%C (with the map

A — Cyl(f) induced by dy : A — A x I and the map A — C the given map g), there exists
a unique map P — R in HC making the diagram

A—g>C

commute in HC. We call P the homotopy pushout of the two maps f and g.

(ii) It follows from the axioms in (STR6) that the map dy : M(A) — Cyl(M(f)) is now
an admissible mono-morphism. We let Cone(M(f)) = Coker(dy : M(A) — Cyl(M(f))).
Now we also require that there exist a map Cone(M(f)) — TM(A), natural in f so that

M(A)gCyl(M(f)) — Cone(f) — TM(A) is a triangle. (Observe that this triangle cor-
responds to the distinguished triangle A — B — Cone(f) — TA in the derived category
D(C).)

(iii) We also require that if

A——B

l f l
’ !
A ras B

is a commutative square with A — A’ and B — B’ admissible monomorphisms, the induced
map Cyl(f) — Cyl(f') is also an admissible monomorphism.

REMARK 2.1. Since A — A x I is natural in A, one may observe that f — Cyl(f) is
natural in f.
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(STR7.2) Existence of co-cylinder objects. If AeC,let A : A — Ax A denote the diagonal
map. A co-cylinder object for A is an object A’eC with an admissible epi-morphisms
d® xd': Al - Ax A, and a map s : A — Al so that the composition (d° x d') o s = A.
The map s is required to be a quasi-isomorphism. We also require that A — A’ is natural,
commutes with filtered colimits and small limits while preserving admissible monomorphisms
and epimorphisms. Furthermore we require the following conditions on a co-cylinder object.

(i) Let f : A — B denote a map in C. Let Cocyl(f) = Bf x A where the map Af — A is
B
dp and A — B is the given map f. Let r : A — Cocyl(f) denote the map defined by s>f<idA.

Then 7 is a homotopy-equivalence with inverse given by the obvious map p : Cocyl(f) — A.
Finally given a commutative diagram

R—,>C

|

A—f)B

in HC, there exists a cocylinder object B in C so that if P = Cocyl(f)xC (with the map
B

Cocyl(f) — B induced by d; : B! — B and the map C — B the given map g) there exists
a unique map R — P making the diagram
R

NS

—C
f/
g

<"

ﬁB

f
commute in HC. We call P the homotopy pull-back of the two maps f and g.

(ii) It follows once again from the axioms in (STR6) that the map d' : Cocyl(E(f)) —
E(B) is now an admissible epi-morphism. We let fib,(E(f)) = ker(d* : Cocyl(E(f)) —
E(B)) and call it the homotopy fiber of f. Now we also require that there exist a map
E(B) — Tfibn(f), naturalin f so that fiby(E(f)) = Cocyl(E(f)) — E(B) — T fibn(E(f))
is a strong triangle.

(iii) Finally we require that if
jf f T
A T> B

is a commutative square with A — A’ and B — B’ admissible monomorphisms (epimor-
phisms), the induced map Cocy(f) — Cocyl(f') is also an admissible monomorphism (epi-
morphism, respectively).

REMARK 2.2. Observe that f — Cocyl(f) is also natural in f.

(STR7.3) Let f : A — B denote a map in C. Let i : fib(EM(f)) = d;'(») —
E(M(A)) denote the composition of the obvious map fiby(EM(f)) — Cocyl(EM(f)) and



2. AXIOMS FOR STRONGLY TRIANGULATED CATEGORIES 9

p: Cocyl(EM(f)) — EM(A). Then there exists a map Cone(i) - EM(B) natural in f
which is a quasi-isomorphism.

DEFINITION 2.3. Let XeC and let p : EM(X) — % (i : * — EM(X)) denote the
obvious maps to (from, respectively) the zero object x of C. Then we define ¥ X = Cone(p),
QX = fiby ().

PROPOSITION 2.4. Let XeC. Then there exists a natural quasi-isomorphism X =~
OEX ~XQX. If {X;liel} is a finite collection objects of C, the natural map U; X; — IL; X;
s a quasi-isomorphism.

ProOOF. Take f in (STR7.3) to be the map ¢’ : *+ — ¥X. Then (STR7.3) implies that
there exists a natural quasi-isomorphism Cone(QXX — *) =X X. It follows that one obtains
a long-exact sequence:

= HOQDX) — H(x) —= H(EX) —> -

Since X — * - XX — x is a strong triangle, one also gets a similar long exact sequence
involving the cohomology of X, x and ¥X. A comparison of these two long exact sequences
shows that X and QXX are naturally quasi-isomorphic. The quasi-isomorphism QX ~ X
is obtained similarly. The last assertion follows from the hypothesis in (STR3) that the
functor H* commute with finite sums and products. O

2.0.1. Convention. Apart from this section, we will routinely omit the functors m and
e in forming the cylinder or cocylinder objects; we hope this will keep our notations simpler
throughout.

Axioms on cofibrant and fibrant objects

Now we will further assume the existence of full sub-categories of C called the sub-
category of cofibrant objects (denoted C.y) and the sub-category of fibrant objects (denoted
Cy) with the following properties:

(STR8.1) there is given a functor @ : C — Cy, along with a natural transformation
id — @ so that the map X — Q(X) is a quasi-isomorphism for all XeC. Moreover, we
require that the sub-category C; be stable by the functor @) and that the functor () preserves
admissible monomorphisms and filtered colimits.

(STRS.2) For every object XeC, there exists a map C'(X)=X that is a quasi-isomorphism,
with C(X)eCey

(STR8.3) For each PeC.; and KeC, the natural map Hompuc (P, QK) — Hompc(P, K)
is an isomorphism.

(STR8.4) If X is cofibrant (fibrant) the obvious map * — X is an admissible monomor-
phism (X — x is an admissible epimorphism, respectively).

REMARK 2.5. Observe as a consequence, that the condition * — X being an admissible
monomorphism is assumed to be weaker than X being cofibrant. If C = Presh = a category
of presheaves on a site that forms a stable simplicial model category as in Chapter II,
Theorem 4.10, the condition * — X is an admissible monomorphism corresponds to requiring
the stalks of X be cofibrant whereas X being cofibrant corresponds to X being cofibrant in
the given model structure of presheaves. Similarly the condition that X — * is an admissible
epimorphism corresponds to requiring the stalks of X to be fibrant, whereas X being fibrant
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corresponds to X being fibrant in the given model structure of presheaves. The last could
be much stronger than the first.

EXAMPLES 2.6. (i) Let C denote the category of all complexes in an abelian category.
This satisfies the axioms (STRO) through (STR5) with 7" = [1]. The axiom (STR1) ((STR3))
is satisfied with the homotopy being chain-homotopy (the cohomology functor being the
usual one sending a complex to its cohomology objects, respectively). The triangles are the
diagrams A’ —+ A — A" — A’[1] which are isomorphic in the homotopy category to mapping
cone sequences which are defined as usual. One may take the admissible monomorphisms
(epimorphisms) in (STR6) to be the maps of complexes that are degree-wise split monomor-
phisms (epimorphisms, respectively). Moreover the axioms (STR7.1) through (STR7.3) are
satisfied where the cylinder objects and co-cylinder objects may be defined as in ([Iver] p. 24
or [T-T] (1.1.2). (For the sake of completeness we will presently recall these definitions. Let
g: A — G denote a map. Then Cyl(g) is the complex defined by Cyl(g)" = A"® A" TG
with the differential defined by d(a”,a" !, 2") = (d(a™) +a™, —d(a™ "), d(z") — g(a™T1)).
Cocyl(g) is the complex defined by Cocyl(g)™ = A" ® A" '@ G™ with the differential defined
by d(a™,a™1,y") = (d(a™),—d(a" ') + a™ — g(y™),d(y™)).) The remaining axioms need
not be satisfied in general.

(ii) Let C denote the category of (bounded below) chain-complexes in an ezact category €
that is also closed under finite limits and colimits. Assume further that, for each morphism
f: K — L in C, the sequence 0 — ker(f) — K — Coim(f) — 0 is exact. (Observe
that, the existence of finite colimits and limits show that both ker(f) and Coim(f) exist in
C.) A typical example of this is the category of all filtered objects in an abelian category
provided with an ascending filtration. Let 7' = [1]. Let the triangles denote the collection
of diagrams A — B — C — TA in C that are isomorphic to mapping-cone-sequences
in the homotopy category, which may be defined as in (i). (i.e. diagrams of the form :
A% B — Cone(u) — A[1]). Let amap u : K — L be called an admissible monomorphism if
each of the maps u™ : K™ — L™ is an admissible mono-morphism in the exact category &;
admissible epimorphisms may be defined similarly.

PROPOSITION 2.7. Assume the situation in 2.6(ii). Then C satisfies all the azioms
(STRO) through (STR7.8) except possibly for the existence of arbitrary small colimits and
limats.

PROOF. Clearly the homotopy category is additive and a triangulated category. Let
h: & — A denote a fully-faithful imbedding of the exact category into an abelian category.
(See [Qu] section 2.) Then one defines a complex K to be acyclic if h(K) is acyclic as a
complex in the abelian category A. It is shown in ([Lau] p. 158) that this is equivalent to
the map d"~!: K"~1 — ker(d") being an admissible epimorphism for all n. Now one may
define a map f : K — L to be a quasi-isomorphism if Cone(f) is acyclic. It is shown in
([Lau] p. 159) that the class of complexes that are acyclic form a null system in the sense
of ([K-S] p. 43) and hence that the class of maps that are quasi-isomorphisms admits a
calculus of left and right fractions. One may define the natural ¢-structure on C as in [Hul]
p. 11 or [Lau] p. 160. This defines a cohomology functor H on C taking values in the heart
of the derived category.

HY(K) = (... + 0 — Coim(d" 1) — ker(d™) = 0 — ...)

Then H"(K) = 0 if and only if the above map Coim(d" 1) — ker(d™) is an isomorphism.
The admissible epimorphism K™~ 1 — Coim(d" ') implies H"(K) = 0 if and only if K is
acyclic in degree n. In particular, it follows that K is acyclic if and only if H"(K) = 0
for all n. It follows that we obtain the axioms (STRO) through (STR5). The mapping
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cylinders and co-cylinders may be defined as in the case of complexes in an abelian category
considered in (2.5)(i). One may readily verify that these (as well as the mapping cones and
the homotopy fibers as in (STR7.1) and (STR7.2)) commute with the imbedding h. The map
h(Cone(i)) — h(B) exists and is a quasi-isomorphism in the setting of (STR7.3); therefore
one obtains the map Cone(i) — B which is also a quasi-isomorphism. To verify (STRG)
observe that if L% L is an admissible mono-morphism, then h(Cone(u)) is quasi-isomorphic
to h(L/L"). One may similarly verify the hypothesis on admissible epimorphisms. O

2.1. To obtain another example of a different flavor, let C denote the category of
all (simplicial) spectra as in [B-F]. (See Appendix A, section 2 for details.) Let T denote
the suspension functor. Given a map v : A — B, let Cone(u) denote the mapping cone
of u. One has a well-defined unstable (or strict) homotopy category defined in the usual
manner - see [Qu-1]. We will denote this HC. (Observe that this category is not additive,
since we are considering the unstable situation.) Then we let the triangles be the diagrams
AL B5C — TA that are isomorphic in HC to mapping cone-sequences. The fibrant (co-
fibrant) objects in this category are the strictly fibrant spectra (the strictly cofibrant spectra,
respectively) in the sense of [B-F]. Let Q% : C — C denote a functor that converts a spectrum
into a fibrant spectrum as in Appendix A. We define the stable homotopy groups of a
spectrum K, by 7, (K) = Hompgc(X"S,Q*'K), where S denotes the sphere spectrum, "8
is its n-fold suspension. A map f : K — L of spectra is a quasi-isomorphism if it induces an
isomorphism on all the stable homotopy groups. (Thus the cohomology functor H" is given
by the stable homotopy group m_,.) Then one defines the derived category associated to C
(denoted D(C)) to be the localization of HC by inverting maps that are quasi-isomorphisms.
This is an additive category and is commonly called the stable homotopy category. Moreover,
it is a triangulated category when one defines the distinguished triangles to be the ones that
are isomorphic in D(C) to mapping cone sequences. One thus obtains all the axioms through
(STR5). One defines the cylinder and co-cylinder objects the usual manner: this readily
shows (STR7.1) through (STR7.2) are satisfied. The axiom (STR7.3) is satisfied since we
are working in the stable homotopy category. In (STR6) one takes the admissible mono-
morphisms to be strict cofibrations and admissible epi-morphisms to be strict fibrations in
the sense [B-F]. Moreover the axioms (STR8.1) through (STR8.4) are also satisfied with @
in (STR8.1) identified with the functor Q.

2.2. One may consider in a similar manner the category of all I'-spaces, or the category
of symmetric spectra. (We skip the details here. One may consult Appendix A for more
details in this direction.)

3. Axioms on the monoidal structure

(MO0) Next we assume C also has a wunital monoidal structure, the operation being
denoted ®, which we will assume, commutes with all colimits in both arguments. An object
MeC is flat if M ® K is acyclic for all acyclic objects KeC. (An object K in C is acyclic if it
is quasi-isomorphic to the zero-object x.) Moreover, we require that every cofibrant object
is flat. In addition, we require that * @ M = x = M ® * for any MeC.

We will further assume there exists a small full sub-category § of flat objects such that
the following hold:

(M1) for every object MeC, there exists an object P(M)eF and a quasi-isomorphism
P(M)SM.
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REMARK 3.1. The hypothesis that every cofibrant object is flat shows (STR8.2) implies
(M1).

Observe as a consequence of the hypotheses in (ST0) on the existence of a small family
of generators and the Special Adjoint Functor theorem (see [Mac] p.125) the following: let
m, KeC be fixed. Now the functor M — M ® — has a right adjoint which will be denoted
Hom(—, K). If KSK' (M'=M ) is a quasi-isomorphism between fibrant objects (objects
that are mono, respectively), Hom(M, K) ~ Hom(M', K'). If M is an object that is mono,
Hom(M, ) preserves triangles between objects that are fibrant; if K is a fibrant object,
Hom( , K) preserves triangles between objects that are mono.

(M2) If FeF, the functors F ® — and —® F send triangles in C to triangles and preserve
admissible monomorphisms.

Let SeC denote the unit for the operation ®. We require the following additional
hypotheses on S.

(M3) S is a cofibrant object in C.

(M4.0)There exists a bi-functor — ® — : ( pointed simplicial sets) xC — C commuting
with colimits in the second argument and satisfying the following properties.

(M4.1) Let K denote a fixed pointed simplicial set. Now the functor ¥ - K ® Y,
C — C has a right adjoint which will be denoted Y¥. The functor K — K ® Y, (pointed
simplicial sets) — C has a right adjoint, which will be denoted Map(Y,.)k. (Observe that
Map(Y’ ')A[n]Jr = Map(x )n)

(M4.2) If K is a pointed simplicial set and X, YeC, there exist an isomorphism X ®
(KRY) 2 K®(X®Y) natural in K, X and Y. (The naturality implies that if o : K — L
is a map of pointed simplicial sets, then idx ® (e ® idy) = a ® (idx ® idy).)

(M4.3) If K’/ - K — K/K' — XK' is a cofibration sequence of pointed simpli-
cial sets (i.e. the map K’ — K is a mono-morphism) and XeC is such that *+ — X
(X — x) is an admissible monomorphism (epimorphism, respectively), the induced dia-
gram K' 9@ X - K® X - K/K'® X - BK' @ X (X*K' - XK/K'  xK  xK')
is a strong triangle in C. Moreover, the induced map K’ ® X — K ® X (XX — XX') is
an admissible monomorphism (epimorphism, respectively). If Y'SY (Z'5Z) is a quasi-
isomorphism between cofibrant objects (fibrant objects, respectively), the induced map
Map(Y,Z") - Map(Y',Z) is a weak-equivalence of pointed simplicial sets. If Y is a cofi-
brant object, Map(Y, ) sends triangles between fibrant objects to fibration sequences of
simplicial sets. If Z is a fibrant object, Map( , Z) sends triangles between cofibrant objects
to fibration sequences of simplicial sets.

(M4.4) If K is a pointed simplicial set and Xi>Y is a quasi-isomorphism in C, then the
induced maps idg @ f: K® X - K®Y and fi¢: XK — YX are also quasi-isomorphisms.

(M4.5) If X' - X — X" — TX is a strong triangle in C and K is a pointed simplicial
set, then the induced diagrams K@ X' - KX - K® X" - K®TX and X'* — XK —
X"® - TXX are also triangles in C.

(M4.6) We also require that the functors X — X x I and X — X! are compatible
with the given tensor structure in the following manner: there exists natural isomorphisms
XY xI) = (X®Y)xTand (X xI)®Y = (X ®Y) x I and similarly Hom(Y, XT) =
Hom(Y x I,X) = Hom(Y,X)".
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(M5) Compatibility of the functors, m, e and Q with the tensor structure. Given objects
K;eC, i = 1,...,n, there exists a map ®:=1Q(K;) — Q(®!='K;), natural in K;. The same
holds with the functor @ replaced by m (e, respectively).

REMARK 3.2. The hypotheses in (M4.0) through (M4.6) imply the axioms in (STR7.1)
and (STR7.2) provided for every object XeC, the map * — X (X — x) is an admissible
monomorphism (epimorphism, respectively). To see this, observe that now one may define
the canonical cylinder (cocylinder) object A x I to be A[1]; ® A (AT = A2+ respectively).

PROPOSITION 3.3. Assume that C is a category satisfying the azioms (STRO) through
(STR8.4) provided with a bi-functor ® : C x C — C satisfying the hypotheses (M1) and

L
(M2). Now the bi-functor ® induces a derived functor ® : D(C) x D(C) — D(C) that sends
distinguished triangles in either argument to distinguished triangles. D(C) is a monoidal

L
category with respect to ®. S is a unit for this monoidal structure on D(C).

PROOF. Let M, NeC and let P(M)ZM, P(N)3N, P(N)'“XN denote flat objects in C

chosen as in (M1). Now the induced map d! : Cocyl(€ey) — N is an admissible epimorphism.
Let Q = Cocyl(ey)x P(N); since fiby(€y) = ker(d') is acyclic, it follows that the induced
N

maps Q — Cocyl(ely) and Q — P(N) are quasi-isomorphisms. Now apply (M1) to find a

P(N)"=Q with P(N)"eF. It follows that we may assume without loss of generality that
there exists a map P(N)" =% P(N) in C making the square

P(N)) —=— N

I il
P(N) —— N

commute. Now we will show that the natural maps P(M) ® P(N)' - M ® P(N)' and
P(M)® P(N) — M ® P(N) are quasi-isomorphisms. To see this let 8 : P(M) — M denote
the given map and let Cone(8) be its cone. Since P(N)' and P(N) are flat, the diagrams:

P(M) @ P(N)"S'M @ P(N)' — Cone(8) ® P(N)' and

P(M) ® P(N)’EM © P(N) — Cone(B) ® P(N)
are triangles. Since Cone(f) is acyclic and P(N)’, P(N) are flat, the last terms are also
acyclic showing the first maps are quasi-isomorphisms.

Now we will show that the induced map P(M) ®P(N)’id§aP(M) ®P(N) is also a quasi-
isomorphism. To see this let Cone(a) denote the cone of . Since P(M) is flat, by (M2),
the diagram P(M)® P(N)"8*P(M)® P(N) — P(M) ® Cone(a) — P(M)® TP(N)' is a
strong triangle. Since Cone() is acyclic and P(M) is flat, it follows P(M) ® Cone(c) is also
acyclic. It follows that the map P(M)® P(N)" —i®> P(M)® P(N) is a quasi-isomorphism.

The arguments above show that we may choose a flat object P(N)=N as in (M2) and
consider the functor — ® P(N) : H(C) — H(C). The arguments above show that the above
functor preserves quasi-isomorphisms and induces a functor at the level of derived categories.
(Moreover the same arguments show that the corresponding functor is independent of the

choice of P(N)SN.) A similar argument works with N in the first argument. O

REMARK 3.4. A monoidal category will always mean one which satisfies all of the axioms
(MO) through (M5) above. For emphasizing the existence of a unit, we will, however refer
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to such categories as unital monoidal. For the applications in Chapter IV, we will also need
to assume the monoidal structure is symmetric.

4. Axioms on the strong t-structure

(ST1): For each integer n, there exists a functor 7<,, : C — C along with a natural
transformation 7<,Q(K) — Q(K) which is an admissible mono-morphism for each KeC.
The functors 7<, preserve homotopies and quasi-isomorphisms; the induced functors at the
level of the derived categories are idempotent.

(ST2): Moreover we require that #!(7<,QX) = H*(X) if i < n and = 0 otherwise.

The functors 7<,, define a filtration on each Q(K) by F,,Q(K) = 7<,Q(K). We call this
the canonical Cartan filtration . Clearly this is a non-decreasing filtration. Since we have as-
sumed C is closed under small colimits, it follows that Gre(Q(K)) = UF,(Q(K))/Fn-1(Q(K))

also belongs to C.

(ST3): Let D(C)<"Z denote the heart of D(C) shifted by ni.e. D(C)<"Z = {XeD(C)|H!(X)

0if i # n} Let A denote the abelian category in (STR3). We will assume that A is provided
with a unital symmetric monoidal structure which we denote by ®. Furthermore, we will
assume that the functor H™ : D(C)S"Z — A is an equivalence of categories. Moreover,
there exists a sub-category, Cfgn2 of Cs so that the obvious functor C — D(C) induces an

equivalence of CfS"Z with D(C)sn2.

(ST4) Let EM,, : A — CfgnZ denote an inverse to the composition C?"Z — D(C)S"Z —
A. Each EM,, sends short-exact sequences in A to triangles in C.

(ST5) We require that there exist a natural map Gre(Q(X)) — GEM(H*(X)) =
IIEM,(H"(X)) natural in XeC.

(ST6) Given m, 7' in A, there exists an induced pairing EM,(7) @ EM,(7') —
EMpim(m ® ') natural in m and 7' where the ® on the left-hand-side (right-hand-side)
denotes the given tensor structure ® in C (the tensor product in A, respectively). Moreover
we require that this pairing makes the functor GEM (defined in (ST5)) into a monoidal
functor sending the tensor product on A to the functor ® on C.

(ST7) We require that the tensor structure is compatible with the ¢-structure. i.e. If
X;eC, i =1,...,n are provided with a pairing ®!="X; — Z, there exists an induced pairing
®iZ1Gre(Q(Xi)) = Gre(Q(2))-

(ST8) Finally we require that the maps in (ST5) and (ST7) are compatible. i.e. if
Gre(Q(X)) = GEM (r), Gre(Q(Y)) — GEM (n') and Gre(Q(Z)) = GEM (n""), then the
pairings Gre(Q(X)) ® Gre(Q(Y)) — Gre(Q(Z)) and GEM (1) @ GEM (1) — GEM (n")
are compatible.

COROLLARY 4.1. Assume the above situation. Now Gre(Q(A)) and GEM (H*(A)) are
both algebras in C and the map in (ST5) is a quasi-isomorphism of algebras.

PROOF. The proof is clear. O

DEFINITION 4.2. We say C is a strong t-category if C is a category satisfying the hy-
potheses (STRO) through (STR8.4) along with a strong t¢-structure satisfying the axioms
(ST1) through (ST5)
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4.1. We may also generalize the above situation as follows - see (6.1) for an example.
A pairing of strong-t-sub-categories is the following data:

two strong t-sub-categories C’, C" of C along with a bi-functor ® : ¢’ ® " — C so that
the following conditions are satisfied:

(i)there exists a small sub-category §' (§F”) of C' (C", respectively) so that if F'eF’
(F"eF") then the functor F’' ® — : "' — C (the functor —® F"" : C' — C, respectively) sends
an acyclic object to an acyclic object,

(ii) for each object M'eC’ (M"eC") there exists a quasi-isomorphism P(M') — M’ with
P(M")eg (P(M") — M" with P(M")egF", respectively) and

(i) Compatibility of the t-structures with the pairing. There exist strong t-sub-categories,
C_(’JT, C;’,, of C so that the functor Gr¢ sending an object in C to its associated graded object

with respect to the Cartan filtration sends C’ (C"”) to C,. (Cy,, respectively) and there exists

a bi-functor ®gy, : Cp, x C. — Cyr so that if MeC’', NeC"” and M ® NeC one obtains a
natural map: Gre(M) ®gr Gre(N) — Gre(M ® N).

PROPOSITION 4.3. Assume the above situation. Now the bi-functor ® induces a derived
functor

L

®: D(C") x D(C") — D(C).

ProOOF. This is similar to that of (3.4) and is therefore skipped. O

In addition to these we will also need to define the analogue of the homotopy colimits
and limits. For these we require the axioms denoted (HCI) and (HI) below.

Let I denote a small category and let C'”* denote the category of contravariant functors
from I to C. Let n — S(n) denote an object in CI"" i.e. a functor I°? — C. Now we consider
the functor:

T({S(n)|n}) : I x I°? — C, defined by (n,m) = I/m ® S(n)
4.1.1. We define the homotopy colimit hoc?lim{S(n)\n} to be the co-end of this functor

in the sense of [Mac] p. 222. Now we require the axiom:

(HC1) A map f : S’ — S of objects in C!™ is called a quasi-isomorphism if the maps
f(n) : 8'(n) = S(n) (in C) are all quasi-isomorphisms. A diagram S’ — S — S” — T'S’ in
(C)I"™" is a strong triangle if the corresponding diagrams S’(n) — S(n) — S”(n) — TS'(n)
are strong-triangles in C for all n. Then the functor hoc?lim preserves triangles and quasi-

isomorphisms. Moreover, in case I = A, there exists a spectral sequence:

B}, =H*({H"(S,)In}) = H_S_t(hocAolimS)
The Eit-term is the —s-th co-homology group of the simplicial abelian group { H~*(S,,)|n}.

Let n — C(n) denote an object in C! i.e. a covariant functor I — C. Now we consider
the functor:

T({C(n)|n}) : I x I°? — C, defined by (n,m) — C(n)\™

4.1.2. We define the homotopy limit ho}im{C’(n)|n} to be the end of this functor in the

sense of [Mac| p. 218. Now we require the axiom:
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(Hl) A map f : C" — C of objects in C! is called a quasi-isomorphism if the maps
f(n) : C'(n) — C(n) (in C) are all quasi-isomorphisms. A diagram ¢! - C — C"” — TC' in
(C)! is a strong triangle if the corresponding diagrams C’(n) — C(n) — C"(n) — TC'(n)
are strong-triangles in C for all n. Then the functor hogim o(Q preserves triangles and quasi-

isomorphisms. Moreover, when I = A, there exists a spectral sequence:

Eyt = H({H'(C™)|n}) = H#*!(holim C)

if each C" is a fibrant objectin C. The ES’t—term is the s-th (co-)homology of the cosimplicial
abelian group {H'(C™)|n}.

In addition we will require the following axiom that enables one to compare two homo-
topy inverse limits or colimits.

Let I denote a small category and let f : I — J denote a covariant functor. We say
f is left-cofinal if for every object jeJ, the nerve of the obvious comma-category f/j is
contractible. Let F' : J — C be a functor.

Cofinality. We require that the induced map ho}imF — ho}imF o f is a quasi-
isomorphism if the functor f is left-cofinal. We also require a parallel axiom on the cofinality
of homotopy colimits.

PROPOSITION 4.4. Assume the above situation. Let ®A denote the category of Z-graded

Z
objects in A and let Cy(DA) denote the category of co-chain complexes in A that are trivial
z z
in negative degrees. Then one may define a functor Spy : Co(®A) — C that sends distin-
z
guished triangles (quasi-isomorphisms) of chain complexes to triangles (quasi-isomorphisms,
respectively) in the category C.
PROOF. Let M = HZM(n) be a graded object of A. Now recall GEM (M) = IIEM,, (M (n))
ne n

0 1 n—1 n
inC. Next let K = KOG k1% 45 gn—19 K" 5 denote a co-chain complex in GA that
Z
is trivial in negative degrees. DN (K) denotes a co-simplicial object in @A. We apply the
Z
functor GEM degree-wise to DN(K) to obtain a cosimplicial object of fibrant objects in
C. Finally we take the homotopy inverse limit of this cosimplicial object to define Spy(K).
Now the proposition follows readily from the hypothesis that the functor GEM preserves

sends distinguished triangles to triangles and from the standard properties of the homotopy
inverse limit functor. O

REMARKS 4.5. (i) If Me®A and M]0] is the associated complex concentrated in degree
Z
0, Spo(M|[0]) ~ GEM (M). This follows from the degeneration of the spectral sequence for
the homotopy limit considered in (HI).
(ii) We may extend the functor Spy to the whole category of bounded below co-chain
complexes in @A as follows. Let N denote an integer and let Cv(®A) denote the category
7 Z

of all co-chain complexes of Z-graded objects in A that are trivial in degrees less than N.
Let M denote such a co-chain complex and let M[—N] denote the same complex shifted to
the right N-times. Then M[—N] is trivial in negative degrees. We let

(4.1.3) Spn (M) = Y Spo(M[—-N])
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4.2. We proceed to show that there are natural maps Spy (M) — Spy1(M) that are
quasi-isomorphisms for any IV so that the complex M is trivial in degrees less than N. To
see this, recall first of all that the functor GEM sends short-exact sequences of complexes
to triangles and preserves quasi-isomorphisms; the definition of the functor Spy as above
shows, it inherits the same property. One may deduce from this property that there exists
a natural quasi-isomorphism Spo(M[—N — 1]) ~ QSpo(M[—N]). This proves the required
assertion.

DEFINITION 4.6. We let Sp(M) = A}im Spn (M).
—00

It follows that the functor Sp defines an extension of the functor Spy to the category of all
bounded below co-chain complexes in GA.
Z

_ (ST9) Standing hypothesis. We will make the following hypothesis from now on. Let
M =TIM (i) (N) denote a co-chain complex in @A (in A) trivial in negative degrees and
i Z

bounded above by m. Then there exists a quasi-isomorphism:

Sp(M) ~ thocglimDN(GEM(M[mh]))

(hoiim DN(EM,(N)) ~ thocglimDN(EMn (N[my))), respectively)

natural in M (in N, respectively), where M[mp] (N[my]) is the chain-complex defined by
(M[mp)); = M™* ((N[my])* = N™7%, respectively) and DN denotes the denormalization
functor as in Appendix B that produces a simplicial object from a chain complex.

Remark. The purpose of this condition is to be able to pass between homotopy limits
and colimits with ease. One knows that, in general, they are quite different; but for bounded
simplicial and cosimplicial objects in abelian categories, they are both equivalent to a (in
fact, the same) total complex construction. By making use of the given t¢-structure, one is
able to reduce the general homotopy limits and colimits we consider to ones taking place in
Abelian categories.

DEFINITIONS 4.7. (i) A category C is called a strongly triangulated category if it satisfies
the axioms (STRO0) through (STR8.4) and the axioms on the homotopy colimits and limits.

(ii) C is a strongly triangulated monoidal category if it is strongly triangulated and
satisfies the axioms (MO) through (M5).

(iii) C is an enriched monoidal t-category if it is a strongly triangulated monoidal category
satisfying the axioms (ST1) through (ST9) on the strong ¢-structure as well.

The next chapter is devoted to a thorough examination of various examples of such
categories.






CHAPTER II

The basic examples of the framework

1. Sites

In this chapter, we consider in detail, various concrete examples of the axiomatic frame-
work introduced in the first chapter. After discussing the general frame-work, we consider
in detail three distinct contexts for the rest of our work: these are discussed in sections
two, three and four respectively. Throughout this chapter G will denote a site satisfying the
following hypotheses.

1.0.1. In the language of [SGA]4 Exposé IV, there exists a conservative family of points
on &. Recall this means the following. Let (sets) denote the category of sets. Then there
exists a set & with a map p : (sets)® — & of sites so that the map F — p,oUoaop*(F) is
injective for all Abelian sheaves F' on &. (Equivalently, if i5 : (sets) — & denotes the map
of sites corresponding to a point 5 of G, an Abelian sheaf F' on & is trivial if and only if
i*F = 0 for all 366.) Here (sets)® denotes the product of the category (sets) indexed by
S. a is the functor sending a presheaf to the associated sheaf and U is the forgetful functor
sending a sheaf to the underlying presheaf. We will also assume that the corresponding
functor p~! : & — (sets)® commutes with finite fibered products.

1.0.2. If X is an object in the site &, we will let 6/X denote the category whose
objects are maps u : U — X in & and where a morphism a: u — v (withv:V — X in &)
is a commutative triangle

U——V
X

We will further assume that the site & has a terminal object which will be denoted X (i.e.
S/X = 6) and that the category & is closed under finite inverse limits.

1.0.3. Let Y be an object in the site G and i5 : § — & a point of the site &. We say
iz is a point of Y if the map i5 : § — & factors through &/Y. Given a point iz of Y, a
neighborhood of iz in the site G is an object U in the site with a map u : U — Y together
with a lifting of i5 to U.

1.0.4. We will assume that the system of neighborhoods of any point has a small cofinal
family.

1.0.5. We will also assume the sites we consider are coherent and locally coherent sites
as in [SGA]4 Exposé VI (2.3). Let & denote a site and let Ue&. Then U is quasi-compact
if every cover of U has a finite sub-cover. An object Ue® is quasi-separated if for any two
maps VU and W3U in G, the fibered product VEW is quasi-compact. An object UeG is
coherent if it is both quasi-compact and quasi-separated. A site G is coherent if the following
hold:

1.0.6. (i) Every object quasi-separated in & is quasi-separated over the terminal object,
X, of the site & (an object Ue® is quasi-separated over the terminal object X if the induced
map A: U = U )>§ U is quasi-compact) and

19
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(ii) The terminal object X of the site & is coherent.

A site G satisfying the condition (i) is called algebraic. A site & is called locally coherent
if there exists a covering {X;|i} of the terminal object X so that the sites /X, are all
coherent. Observe that if X is a scheme and the site & is either the Zariski or the small
étale site of X, then & is coherent if and only if X is quasi-compact and separated as a
scheme. (See [SGAJ4 Exposé VI.)

(The main need for coherence is given by the following result in [SGA]4 Exposé VI,
Théoreme (5.1):
Theorem. Let f : & — &’ denote a map of sites.

(i) Suppose G satisfies the first condition in ( 1.1) and & is locally coherent. Then the
functors R" f, commute with filtered direct limits of abelian sheaves for each n.

(ii) Suppose & is coherent (and X is the terminal object of &). Then, for each n, the
functor F — H™(, F) = R*T(X, F)

(abelian sheaves on &) —(abelian groups)
commutes with filtered direct limits. 0)

Observe that the same conclusions as in (i) hold if the sites are the obvious sites asso-
ciated to locally compact Hausdorff topological spaces and f is a continuous map of these
topological spaces. Therefore, we will make either of the following assumptions throughout
the rest of the paper:

1.0.7. The site is locally coherent or

1.0.8. The site is the obvious site associated to a locally compact Hausdorff topological
space.

We will explicitly consider only the first case, leaving the corresponding statements in the
second case to the reader.

1.0.9. Godement resolutions. Let Presh = Presh(S) denote a category of presheaves
on a site & so that it satisfies the axioms (STRO) through (STR8.4)) and the axioms (HI),
(HC!) on the existence of homotopy limits and colimits. We will further assume that the
abelian category A is a category of abelian sheaves on the site &. Recall our site has
a conservative family of points as in ( 1.0.1). We will assume further that Presh(S))
denotes a category of presheaves on the discrete site & satisfying the same axioms and
that p induces functors p* : Presh(&) — Presh(&), py : Presh(G) — Presh(G). Given
a presheaf PePresh, we let G*°P : P..GP...G?P...G™P... denote the obvious cosimplicial

object in Presh, where G = p,oU oaop*. We let GP = hoéim{G”P|n}. From the

properties of the homotopy limits as in (H!), the following are now obvious:
The induced map

(1.0.10) I'(U,6Q(P")) — I'(U,GQ(P))

is a quasi-isomorphism for each U in the site and for each quasi-isomorphism P’ — P of
presheaves.
The induced diagram

(1.0.11) Qr(U,GQ(P")) = T (U,GQ(P")) — (U, GQ(P)) — T(U, GQ(P"))

is a triangle for each U in the site and each diagram QP” — P’ — P — P’ which is a
triangle.

A map of presheaves that induces a quasi-isomorphism at each stalk, will be denoted ~.
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1.1. Definition of derived functors via the Godement resolution. Let Presh,
Presh’ denote two categories of presheaves on sites as above and let ¢ : Presh — Presh’
denote a functor so that the following two properties hold.

e Given a triangle P — P — P"” — P'[1] in Presh, the induced diagram ¢GP' —
¢GP — ¢GP" — ¢GP'[1] is a triangle in Presh’ and

e Given a quasi-isomorphism P’ — P in Presh, the induced map ¢GP’' — ¢GP is also
a quasi-isomorphism.

In this case we may define the right derived functor, R¢ of ¢ by ¢ o G. Then the spectral
sequence for the homotopy inverse limit in Chapter I provides a spectral sequence:

(1.1.1) Eyt = H*({¢G"H!(P)|n}) = H* T (RHP)

The E5*-term is the s-cohomology of the cosimplicial abelian sheaf {$G"H*(P)[n}. We will
consider various examples of this in this paper. For example, let &’ denote another site and
let ¢ : & — &' denote a map of sites. We may now define the right derived functor R¢ to
be ¢ o G. In particular, one may take &’ to be the punctual site pt. A map of sites & — pt
may be identified with the global section functor (i.e. sections over X= the terminal object
of the site G.) Then we let R['(X, P) = I'(X,GP). We will also denote this by H(X, P) and
call it the hypercohomology object associated to X and P.

1.2. Algebras and modules. Assume in addition that the category Presh is sym-
metric monoidal with respect to a bi-functor ® and that it satisfies the axioms (MO0) through
(M4.6) in Chapter I except possibly for the existence of a unit for the monoidal structure.
(Often we require, in addition, that there exist a unit S for ®) . Let A be an algebra
in Presh. i.e. A is an object in Presh provided with a coherently associative pairing
p: A A— A. (Moreover if S is a unit, we require that there is a unit map 7 : S — A so

that the composition 4 =2 S ® A A @ A5 A s the identity and that 4 is an admissible
monomorphism.) Let Mod;(S,.A) (Mod,(S,.A)) denote the category of left-modules (right-
modules, respectively) over A. A left-module M over A consists of an object MePresh
provided with a coherently associative pairing A ® M — M.) We will always require that
the presheaf U — H*(T'(U, A)) be a presheaf of Noetherian rings.

1.2.1. In what follows we need to consider two distinct situations: (i) where the functors
m and e (as in Chapter I, (STR6) are the identity. (See for example, section 3.) and (ii)
where these functors are not necessarily the identity. (See for example, sections 2 and 4).
We will first consider the situation in (i).

We will next define a pairing (i.e. a bi-functor)

(1.2.2) % : Mod,.(6; A) x Mod;(&; A) — Presh

If MeMod,(S; A) and NeMod;(S; A), M%N is defined as the co-equalizer:

f

Coed( o AN~ M@&N)
g9

where f : M@AQN - MQN (9: M AQN — M ® N) is the map f = Ay Q@ idn,
with Aps : M ® A — M the module structure on M (g = idpr ® Ay, with Ay : AQ N - N
the module structure on N, respectively). If MeMod;(S;.A) and NeMod;(S; A) we also
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define:
(1.2.3)

f
Hom (M, N) = Equalizer( Hom o4, (;4) (A, N) ——= Homprod,(s;4) (A® M, N) )
g

where f = Hompsoq,(s;4)(An, N) and g = Hompgoq,(s;4) (A ® M, AN).

Let Hom denote the internal Hom in the category Presh. This exists as a right adjoint
to ® since the category Presh has a small generating set. Observe that if M, N and
PePresh, then,

(1.2.4) Hompresn(M,Hom(P,N)) =2 Hompresh(M ® P,N)

One defines Homa,; : Mod;(S; A)°P x Mod;(S;A) — Presh as in ( 1.2.3) using the
functor Hom in the place of Hom. Similarly one may define Homa, : Mod,(S;.A)P x
Mod,.(6;A) — Presh. (When there is no cause for confusion, we will omit the the sub-
script I, v in Hom 4, and Hom 4 ,.) Finally one may also define the structure of a simplicial
category on Mod;(&; A) by

(1.2.5) Mapa(M,N), = HomA(A[n]+ @ M,N), M, NeMod;(5; A)

Recall that A[n]; ® M is defined as part of the axiom (M4.0) in Chapter I. One may now
observe, the isomorphisms:

Mapa(M,N)y 2 Homa(M,N), Homa(A® M,N) = Hom(M, For(N))
(1.2.6)
Maps(A® M,N) = Map(M, For(N)) and HompTesh(M%)P,N)%HomA(P,Hom(M,N))

where M, Ne Mod;(&;.A) in the first three terms above, M, NeMod,.(&; A), PeMod;(S; A)
in the last term above and For : Mod;(S; A) — Presh is the obvious forgetful functor.

Next we consider the situation in (ii) where the functors m and e in Chapter I, (STR6)
are non-trivial. Now will define a pairing (i.e. a bi-functor) for PeMod, (&, A), m, NeMod;(S, A).
We may assume without loss of generality that A is mono.

f
(1.2.7) P%M = hocolim( m(P) @ A®@ M m(P)® M)
9

where the two maps f and g are as in 1.2.2 and hocolim denotes the homotopy colimit.
Similarly,

(1.2.8)  Hom,(M,N) = holim( Hom(m(M),e(N)) :;7:* Hom(A®@m(M),e(N)))

where the maps m* and n, are again as in 1.2.3 and holim denotes the homotopy inverse
limit. We will define a bi-functor Map 4 : Mod;(S, A) x Mod; (&, A) — (simplicial ~sets)
by

Mapa(M,N) = holim( Map(m(M),e(N)) ::m Map(A®@m(M),e(N)) ).

ng

(Map : PreshxPresh — (simplicial sets) is the obvious functor. Observe that mo(Map4(M, N))
denotes homotopy classes of maps f : M — N which belong to the category Mod;(G, A).
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2. When Presh is a strongly triangulated unital monoidal category

Throughout the rest of this section, we will assume that S is a unit for ®. Let B, A
denote two algebras in Presh. We will let Mody;(S; A, B) denote the category of objects in
Presh that have the structure of a presheaf of left-B and weak right A bi-modules so that
the two commute. (This means if A\: AQ M — M and p: M ® B — M are the two module
structures, then Ao (id ® u) = po (A ®id).) Now one of the key technical results we need
in the body of the paper is the following.

PROPOSITION 2.1. (i) Assume the above situation. Now P(%A ~ P, A%N ~ N and
Hom (A, N) =~ N, P, NeMod;(S, A).

(11) Assume that MeMody;(S; A, A).

Now Hom (M, ) and %M induce functors Mod,(&; A) - Mod,(&;.A). Moreover

if N, PeMod,(&;.A), one obtains a natural weak-equivalence:

Map s(PEM, N) = Map o(P, Hom (M, N))

(i1i) Assume that NeMody;(S; B, A), PeMod, (&, B) and MeMod,(S; A). In this case
one also obtains

(2.0.9) HomB(M§>N, P) ~ Hom4(M,Homp(N,P)) and

(2.0.10) MapB(M??N, P) ~ Map4(M,Homp(N, P))

Moreover, one may also replace ~ everywhere by = in the situation (ii) considered in 1.2.1.

PROOF. The diagram

A AR N g A® N —= N is a split fork in the sense of [Mac| p. 145, the splitting
_—
g

provided by the maps N *SQN - AQNand AN 2XSR®AQN - AR AR® N. By
([Mac] Lemma p. 145) N is in fact the co-equalizer of the above diagram i.e.

(2.0.11) A®N = N
A

The weak-equivalence Hom 4(A, N) ~ N is established similarly. This completes the proof
of (i). Clearly one may replace ~ by 2 everywhere in the situation (i) of 1.2.1.

The right-module structure on Hom 4(M, N) (P%)M ) is induced by the left-module

structure (the right-module structure) of M over A. Let p: P A =P, m: AQ M — M,
m :M®A— Mandn: N®A— N denote the given module structures. Then

(20.12)  Map4(P&M,N) = holim Map(PQM, e(N)) — Map(POM @ A, e(N))

1%
m

Next recall P%M = hocolim( m(P) ® A® m(M) s m(P) ® m(M) )- This homotopy

.
my

colimit pulls out of the Map as a homotopy inverse limit; the two homotopy inverse limits
commute. Using the adjunction between ® and Hom, we see that the last term may be
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identified with

*

p

(2.0.13) holim( Map(m(P), Homa(M, N)) : Map(m(P) ® A, Hom (M, N)) )

m

~ Mapa(m(P),Hom4(M,N))

Therefore, this proves (ii) in the case the functors m and e are nontrivial. The other
case may be established more directly. The first identity in (iii) may be established in the
situation (i) of 1.2.1 as follows. NeMody;(A,B) and PeMod,(&;B). Now consider the
functor

(2.0.14) Mod,(&; A) = Mod,(&;B), M — MQE‘)N

The observation that the composition M @ S - M ® A — M is the identity for any
MeMod,(&; A), shows that if § is a small generating set for Presh, {F ® A|FeF} is a
generating set for Mod,(&;.A). Clearly the functor in ( 2.0.14) preserves all colimits and
the category on the left is co-complete. By the special adjoint functor theorem (see [Mac]
p. 125) the above functor has a right adjoint which we may identify with Homg (N, P). i.e.
we obtain the isomorphism

(2.0.15) HomB(M%)N, P) = Hom o(M,Homg(N, P))

We skip the proofs of the remaining assertions. [l

REMARK 2.2. Observe that, in the situation of (ii) of 1.2.1, one really needs to adopt
the definition of ® in 1.2.7 and 1.2.8 to obtain the results of the last proposition.
A

Homa( , ) to obtain the

DEFINITION 2.3. Let MeMod;(S;.A). M is flat if for every acyclic module NeMod, (&, .A),
M %N is also acyclic. M is locally projective if for every acyclic object NeMod;(S;.A),

Hom (M, N) is acyclic as well. If PePresh, P is flat if for every KePresh that is acyclic
P ® K is also acyclic. P is locally projective if Hom(P, R) is acyclic for every acyclic
RePresh. (Here Hom is the internal Hom in the category Presh.) We let P denote the full
sub-category of objects in Mod;(&,.A) that are both flat and locally projective.

2.0.16. Locally projective and flat resolutions. Let Presh denote a category of presheaves
on a site & so that it satisfies the axioms (STRO) through (STR?7.3) and the axiom (HCI)
on the existence of homotopy colimits. Now we may define a bi-functor Map : Presh X
Presh®? — (simplicial sets) by Map(M,N) = Hompresn(A[n] ® M, N) where the func-
tor ® is defined as in Chapter I, (M4.0). We will further assume that the following hypothesis
holds:

(2.1.1.*%) the abelian category A in Chapter I, (STR3), admits an imbedding into
the category of abelian presheaves on the site & where the latter is provided with the
obvious tensor structure. Let the latter category be denoted Preshay(S) and let the
given imbedding be denoted U. We assume that U is compatible with the tensor struc-
tures and that the the presheaf P — U o H™(P) may be identified with the presheaf
P — m_n(Map(j5;(S), i5Q(P))), ju : 6/U — & in the site.

REMARK 2.4. 1. We will often denote U o H™ by just H".

2. Observe that the restriction functor jj; : Presh(S) — Presh(6/U) has always a
left-adjoint (see [SGA4] Exposé IV) which we will denote by j#!.
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LEMMA 2.5. Let MeMod;(S,A). Then there exists a set of integers {ns|s}, a set of
objects {ju : U — G|U} in the site & and a map

¢ : Ui s (S) © A — M

(where X" is the ns-fold iterate of ¥ if ng > 0 and the —ns-fold iterate of Q if ny < 0)
inducing a surjection:

—k
HE(P), - glglﬂ_k(jﬁ!j;}E"S S)® A))pH —(>¢)p7{_k(M)p, for all k and all points p.
PROOF. Recall the functor Q) is compatible with the tensor structure. Therefore, we

may assume, without loss of generality that M has been replaced by Q(M). For each

integer n, each point p and each class [a] € H™"(M),, let a : j#!j{,(E”S) — Q(M) denote

a representative map. If i : S — A denotes the unit of the algebra A, we obtain the

commutative diagram

1®id

A T id®a
S ® jihjyEns A® jfjsens —= A® Q(M)

S®jljsEnS ~ jt jryns = Q(M)

where pu : AQQ(M) — Q(M) is part of the structure making Q(M) an A-module. It follows
that one may let S = {a : ¥"S — M|a,n}; that this is a set follows from the hypotheses
that one has a conservative family of points and that the system of neighborhoods of any
point has a small cofinal family. O

DEFINITION 2.6. (i)The modules of the form I_ISE"SA will be called free A—modules.

(ii). The modules M for which there exists a finite set S so that the map H*(¢) in
Lemma ( 2.5) is a surjective map of H*(A)-modules will be called constructible A—modules.
(Recall that we have assumed the presheaf of graded rings H*(A) to be Noetherian, which
justifies this terminology. Nevertheless, the notion of constructibility is useful only when
H*(A) is locally constant.)

(iii) The free functor. We define a free functor F : Presh — Mod;(S,.A) by F(N) =
A ® N. One defines a free functor F : Presh — Mod,. (&, A) by F(N) =N ® A.

PROPOSITION 2.7. Assume the hypotheses as in 2.0.16. Let MePresh. (i) Then there
exists an object M, which is flat and locally projective, and a map € : M — M which is
a quasi-isomorphism at each stalk. Moreover, there exists a simplicial object Py = {Py|k},
each PyeP with an augmentation Py — M so that the following hold: a) M = hocglimP.

and € is the obvious induced map. (We will call Py a simplicial resolution of M.) b)
{H*(P,)In} is a resolution of the sheaf of H*(A) -modules H*(M)".
(it) The same conclusions hold if MeMod; (S, A) (or MeMod, (S, A)) with A an algebra

in Presh

PROOF. Observe that by taking A = S, we see that (i) is a special case of (ii). Therefore
we will only prove (ii) in detail. Let For : Mod;(S,.A) — Presh denote the obvious forgetful
functor.

Let MeMod;(.A) and let p denote a point of the site &. Then For(M), = coli[}nF(U, For(M))
pe
and H~"(For(M),) = colign?-[_"(F(U, For(M))) = colgnH_”(Hom(j#!jl*]S, For(M))) where
pe pE
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S is the constant presheaf on & with stalks isomorphic to S. In view of Lemma ( 2.5), it

follows that one may find a set S, a covering U = {Us|seS} of X and a collection of

maps jiji (S S) S For(M) so that for each integer n, the induced map H~" I_Ises)) :
SE.

H " I_JSj# JG. (2" 8) = H " (For(M)) is a surjective map of Abelian sheaves.
D sms

Next we consider Pj = A® ( Llsj#,j;}(E"SS)) = F( I_ISj#!jB(Z”SS)). Then the natural
se se

map Pj — I_ISj#!jl*](Z”SA) is an isomorphism. Let d_; denote the composition:
se
idg® Ues: A® (U @j# 5 (278) - A M — M
seS seS '
Since the composition of the map

§® (U @it (5"8)) — A® (LLjfj5(T"S))

and the map d_; induces the map H~"( I_ISes))~in cohomology, it follows that H~"(d_1)
S€

is a surjection for each n.

2.0.17. Let Qy = M and uj = d_; : Pj = M the above map. We consider Py =
Cocyl(up) and ug : Py — M is the map denoted d' in Chapter I, (STR7.2). (As mentioned
in Chapter I, Remark (2.0.1), throughout the rest of the proof we will suppress mentioning
the functor E explicitly, though it needs to be applied first before taking the co-cylinders.
We hope this makes our discussion simpler.) Let n > 0 be a fixed integer. Assume we have
defined PeP, X;, u} : P} — X;, and P; for all 0 < i < n so that the following hold

P, = Cocyl(u}), X; = fibh(Pi’flui—?lXi_l), u; : P; — X; is the map induced by v} (as in
Chapter I, (STRT7.2))

H % (u;) "is surjective as a map of Abelian sheaves for all ¥ and
H*(P;)p is a free graded module over the graded ring 7%*(A), for all points p

We let X, 11 = fibp(ul, : P, — X,,). By replacing MePresh by X, 1 and applying the
arguments in 2.0.17 one may find an object P}, ePresh along with a map u},, : P}, —
Xn41 so that the following hold:

Py ., is locally projective and flat

H*(P),,1)p is a free graded module over H*(A), for all points p and
H*(ul,11)" is surjective as a map of Abelian sheaves for all k.

Now we let P, 1 = Cocyl(u, 1) and upniy : Poyy — X,41 the obvious map induced by
uy, - Now observe that there exists a natural homotopy-equivalence between P, and P},
for all n. It follows that if KePresh, K ® P, is homotopy equivalent to K ® P}, for all n and
hence acyclic if K is. Therefore P, is flat. One may similarly prove that P, is also locally
projective. Now observe that X,, = ker(u,_1: P,_1 — X,_1) for all n. > 0. We will let the
composite map P,3X,, — P,_1, n > 0, be denoted d,,. It follows that the diagram

d

~.P%p, "t Rp,

is a complex in Mod;(S;.A) i.e. the composition of the two maps d,,—1 o d,, = *. Moreover
the map ug : Py - X9 = M is an augmentation. Next we apply the denormalization
functor DN to the above complex to produce a simplicial object in Mod;(&;.A); this will
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be denoted DN (P, ). We let M = hocglimDN(P.). Let KeMod,(S;.A). Then KQE‘)DN(P.)

is a simplicial object in Presh. Clearly each DN(P,)reMod;(S;.A) is flat and locally
projective; now the spectral sequence in Chapter I, (HCI) for the homotopy colimit shows
that hocAolimDN (P,) is also flat. The corresponding spectral sequence for the homotopy

inverse limit ( and the observation that homotopy colimits in the first argument in Hom
comes out of the Hom as homotopy limits) shows that it is also locally projective. ([l

2.0.18. The homotopy categories and the derived categories. We define
(2.0.19) Hom g nrody(s,4) (K, L) = mo(Map(S, Hom (K, L)))
Now observe that we obtain the following isomorphisms:
Homprod,(s,4) (K, L) = mo(Map(S, Hom4(K, L))
= moMapa(S® K, L) = moMap (K, L)
The first isomorphism follows from ( 2.0.15) by taking B8 = A and A = S in ( 2.0.15).
Finally recall that ® may be identified with ®: this provides the last isomorphism. It follows

immediately that there exists a functor fronf the category Presh to the homotopy category
sending a map f : K — L to its class in moMapa (K, L) = Homgpod,(s,4) (K, L). Observe
that the derived category associated to Mod;(&,.A) is obtained from the above homotopy
category by inverting maps that are stalk-wise quasi-isomorphisms. (See Proposition 2.9
below.) This will be denoted D(Mod;(&, .A)).

We proceed to obtain a concrete realization of the derived category. Let P(K) — K
denote a quasi-isomorphism from a locally projective object as in Proposition 2.7 .

PROPOSITION 2.8. Assume the above situation. Then there exists isomorphisms:
Hompatoa (8,4 (K L) S0 Map.a(P(K), GQ(L))) 2 mo(Map(S, Hom 4(P(K), 6Q(L))))
= o (holim{ Map(S, Hom o(P(K),G"Q(L)))/n})

PRrROOF. The identification of the last term on the right-hand-side with

mo(Map(S, Hom 4(P(K),GQ(L)))) follows since hoiim commutes with Map(S, —) and Hom 4(P(K), —);
this in turn follows from the definition of hoiim in the category Mod;(&,.A) as an end (see

section 1). The second 2 is clear. Clearly there is a natural map from Hompgpresn(K, L)
to first term on the right-hand-side. One may readily see that if K’ — K, L — L' are
stalk-wise quasi-isomorphisms, then one obtains an isomorphism:

mo(Mapa(P(K),GQ(L)))) = mo(Mapa(P(K),GQ(L))) = mo(Mapa(P(K'), GQ(L)))-

This shows the above map ¢ factors through the derived category. If o : P(K) — GQ(L) is
a map (representing a class on the right-hand-side), the diagram

K&P(K) — GQ(L)

defines a class in the left hand side. Moreover if K< K’ — L is sent to the map P(K') —
GQ(L) which is null-homotopic, one can see readily that the map K&K’ — L — GQ(L)
in the derived category D(Mod;(A)) is itself identified with the trivial map. Therefore the
given map K&K’ — L also is identified with the trivial map in the derived category. This
provides the required isomorphism. O
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PROPOSITION 2.9. Assume the above situation. Then Mod;(S;.A) is a strongly trian-
gulated category satisfying the azioms (STR8.1) through (STRS.4) with the functor @ in
Chapter I, (STR8.1) given by the composition G o Qo where G = the Godement resolution,
the functor Qo = the given functor QQ in Presh and the cofibrant objects being identified
with the locally projective objects. In case the given monoidal structure is symmetric and
A is a commutative algebra, Mod;(&; A) = Mod,(S; A) is symmetric monoidal with re-
spect to % and A is a coftbrant object in Mod;(S;.A). Moreover there exists a functor

F : Presh — Mod;(6; A) left adjoint to the forgetful functor For : Mod;(&; A) — Presh.

PROOF. One begins with the observation that the category Mod;(S; A) is closed under
the formation of the cylinder and co-cylinder objects as well the canonical homotopy fiber
and mapping cones. This follows from the axioms (M4.6) and (M5). This also shows
that HMod; (S, A) admits a calculus of left and right fractions. The abelian category A in
Chapter I, (STR3) and the cohomology functor H™ are the same as the ones for the category
Presh. One may now readily verify that the category obtained by localizing with respect to
cohomology isomorphisms is triangulated. The admissible monomorphisms (epi-morphisms)
and the functors m, e are defined to be the corresponding ones in the category Presh.
Propositions 2.7 and Proposition 2.8 show that the axiom (STRS.2) is satisfied; i.e. one may
take cofibrant objects to be the locally projective ones. We define fibrant objects to be those
objects M so that the obvious map I'(U, M) — I'(U,GQM) is a quasi-isomorphism for every
U in the site 6. Now the axioms (STR8.1) and (STR8.4) are clear. The axiom (STRS8.3)
follows from Proposition 2.8 above. The assertions on the symmetric monoidal structure
of Mod;(&; A) are clear. Recall the free functor F is defined by F(N) = A® N. That
this is left adjoint to the forgetful functor follows from the observation that the composition
S®N — A® N — N is the identity for any NeMod,(S, A). O

REMARK 2.10. It follows from the above result that the category of complexes of sheaves
of modules over a ringed site (&, R), where R is a sheaf of commutative rings with unit,
is strongly triangulated. We will assume here that for every object X, the obvious map
* = X (X — x) is an admissible monomorphism (admissible epimorphism, respectively).
One defines the tensor product S ® K (between a pointed simplicial set S and an object
KeC(Mod(G,R))) by taking the hocAolim of the obvious simplicial object n — EBK; this

defines a bi-functor (pointed simplicial sets) x Mod;(C, A) — Mod,;(C,.A). Moreover the
remaining axioms on the monoidal and ¢-structure are satisfied so that C(Mod(S,R)) is an
enriched unital symmetric monoidal ¢-category. If A is a sheaf of differential graded algebras
over a site G, the category of sheaves of modules over A is a strongly triangulated category.
It is neither monoidal nor has a strong t-structure in general. We proceed to establish that,
similarly, if A is a sheaf of differential graded algebras over an E*°-operad on a site &, the
category of sheaves of modules over A is strongly triangulated. However, in general, the
category of modules over such an E*° sheaf of DGAs is neither monoidal nor has a strong
t-structure. These observations make it necessary to consider this case separately in the next
section. Observe that, since C(Mod(S,R)) is an enriched unital monoidal category, many
of the techniques from the last sections carry over with minor modifications.

3. Sheaves of algebras and modules over operads

Let & denote a site and let R denote a sheaf of commutative Noetherian rings on &.
For the purposes of this introduction to operads in C(Mod(S,R)) we will let ® denote ®.
R

(See [K-M] for more details.)

Recall that an (algebraic) operad O in Mod(S; R) is given by a sequence {O(k)|k > 0}
of differential graded objects in Mod(&; R) along with the following data:

for every integer k£ > 1 and every sequence (J,...,jx) of non-negative integers so that
Yjs = j there is given a map v : O(k) ® O(j1) ® ... ® O(Jr.) = O(j) so that the following
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associativity diagrams commute, where ¥j; = 7 and ¥¢; = 4; we set gs = j1 + ... + js and
hs =tg, 41+ ...+ 1y, for 1 <s<k:

O(k) & ( & O(.)) & ( & Oir) ————0() & (& OGir))

(3.0.20) shuf fle O(i)
OK) ® (5,06 ® (5,0l 124)) — = O() @ (5 O(h)

In addition one is provided with a unit map 7 : R — O(1) so that the diagrams

O(k) @ (RE) = O(k) and R ® O(j) ——= O(j)

R

O(k) ® O(1) o) &)
commudte.

An A*-operad is an associative operad {O(k)|k} so that each O(k) is acyclic. A sym-
metric operad is an associative operad as above provided with an action by the symmetric
group Y on each O(k) so that the above diagrams are equivariant with respect to the
actions by the appropriate symmetric groups. (See [K-M] p. 13.) An E*-operad is an
A>-operad {O(k)|k} which is also symmetric so that, in addition, the given action of X
on each O(k) is free.

REMARK 3.1. An operad of pointed simplicial sets, topological spaces, Gamma spaces
or symmetric spectra is defined similarly with the following important changes: we replace
C(Mod(6,R)) with the category of pointed simplicial sets, Gamma spaces or symmetric
spectra. Observe that these are all (unital) monoidal categories. The objects {O(k)|k}
will be a sequence of objects in this category satisfying similar hypotheses. Now all of
the discussion in this section applies with minor changes: for example the term differential
graded object will need to be replaced by an object in one of the above categories. In
particular such a discussion will define A*° and E> objects in the category of Gamma
spaces or symmetric spectra.

REMARK 3.2. Next observe that if O’ is an operad of topological spaces (as above), by
applying the singular functor followed by the free-abelian-group-functor one may convert it
to an operad which will be a chain complex of abelian groups. One may now tensor the
resulting complex with R to obtain an algebraic operad in the above sense.

An A°°-differential graded algebra A over an A*-operad O is an object in C'(Mod,.(S;
R)) provided with maps 0 : O(j) ® A9 — A for all j > 0 that are associative and unital in
the sense that the following diagrams commute:
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O(k)®O(j1)®...®(9(jk)®%id 0(j) ® A
|
shuffle A

Te
O(k) ® O(j1) ® A" @ ... ® O(jx) %,{k — O(k) ® AF
and RoA——A

7

O1) e A

If A is an A algebra over an operad O as above, one defines a left A-module M to
be an object in C'(Mod,(&; R)) provided with maps A : O(j) ® A7~! ® M — M satisfying
similar associativity and unital conditions. Right-modules are defined similarly.

An E*° algebra over an E*°-operad O is an A* algebra over the associative operad O
so that the following diagrams commute:

0(j) ® A¥ —————>0(j) ® A%

A

Given an E*-algebra A over a commutative operad O, an E° left-module M over A is an
A left-module M so that the following diagrams commute:

OGYeA~te M — oA teM

oc®o ™ " Rid
\ /

M

If A denotes either an A® or E*-algebra in C, the category of all left modules (right
modules) over A will be denoted Mod;(6;.A) (Mod,(S;.A), respectively).

One may now observe the following. For each integer, let R[X,] = &R denote the sum
b

of R indexed by the symmetric group ¥,,. Now one may define the strlricture of a monoid
on R[X,] as follows:

let R, denote the copy of R indexed by geX,. Now we map Ry ® Ry, to Ry., by the given
map u: RQR — R.

If O is a commutative operad in Mod(S;R), one may now observe that each O(k) is a

right-module over the monoid R[¥;]. (Observe that O(k) ® R[Ex] = @ O(k) ® Ry. We
gely

map O(k)®R,4 to O(k)®R by the map g®id. Now apply the given map O(k)@R — O(k).)

Finally observe that if O is an operad as above, the structure in ( 3.0.20) with & = 1
and j = 1 shows O(1) is a differential graded algebra. Moreover O(2)eMod,(S; O(1)) as

well by letting the second factor in O(1)®” act trivially on O(2).
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We may assume without loss of generality that the operad {O(i)|i} is obtained from the
linear isometries operad as in [K-M] p. 130. In this case, we make the following additional
observations.

3.1. (i) there exist maps o : O(2) = O(1) and 7 : O(1) = O(2) in Mod,.(S;O(1))

(ii) there exist homotopies H : A[1] @ O(2) — O(2) in Mod,(&;0(1)) and K : A[l] ®
O(1) = O(1) in Mod,(&;O(1)) so that Hody =To0, Hod; =idpa), Kody =00t and
K od; =idp)

(iii) there exist augmentations n: R — O(i) and v : O(i) — R so that the compositions
von and nov are chain homotopic to the identity. (In case i = 1, we assume these are maps
of sheaves of differential graded algebras.)

Now we may define a (non-unital) symmetric-monoidal structure X (called the operadic
tensor product on the category Mod(S; O(1)) by :

(3.1.1) MRN=0(2) ® M®N, M, NeMod(C;O(1))
0132 R

(Observe that M ® N belongs to Mod;(S;O(1)) using the left-module structure of O(2)
over O(1).) See [K-M] p. 101 for a proof that this defines a symmetric monoidal structure
on C(Mod(6,0(1))). We will let C denote the monoidal category Mod(&,O(1)) provided
with the operadic tensor product.

REMARK 3.3. One may now define all the functors in ( 2.0.14) and ( 1.2.3) in this
context if A is an algebra in the monoidal category C. However, since R is not in general, a
unit for the functor X, one will not obtain the isomorphisms M%]A ~ M, MeMod,(S; A),

N = A%N, NeMod(6;.A) and similarly Hom 4(A, N) & N. We correct this problem by

defining the following functors.

REMARK 3.4. Observe that O(1) is a DG A provided with augmentations R — O(1)
and O(1) — R whose composition is the identity. A sheaf of modules M over O(1) is a
unital O(1)-module if there is an augmentation R — M compatible with the augmentation
of O(1). It is shown in [K-M] pp. 112-113 that the category of unital O(1)-modules may be
provided with a bi-functor (which is a variant of the operadic tensor product) with respect
to which it is symmetric monoidal. A commutative monoid in this category now corresponds
to an E*-algebra over the operad {O(k)|k}.

Let A denote an algebra in the category C as above. Recall that R[0] is not, in general,
a unit for the bi-functor X provided on C. Let MeC. Now we may define A< M by the
pushout:

RRM —®4, AR M

| |0
M — A<M

One may define M>A similarly by interchanging the A and M. Moreover the above definition
applies to any algebra in C. Therefore it applies in particular to the algebra R[0]. It should
be clear from the above definition that R[0] <M = M = M > R[0]. We let Mod;(C,.A)
(Mod,(C, A)) denote the full sub-category of C = Mod(&,O(1)) of left-modules (right-
modules, respectively) over A. By identifying chain-homotopy classes of maps we obtain
the (additive) homotopy categories associated to Mod;(C, A) and Mod,(C,.A). We use the
same cohomology functors H" to define quasi-isomorphisms in Mod;(C,.A) and Mod,.(C, A).
(The Abelian category A in (STR3) is simply the category Mod(&,R).) Observe that
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both Mod;(C,.A) and Mod,(C,.A) are closed under the formation of the mapping cylinder,
mapping cone, the co-cylinders and the canonical homotopy fibers. Since quasi-isomorphisms
are defined as above, one may readily see that the axioms (STRO) through (STR7.3) for a
strongly triangulated category are satisfied. (One defines the tensor product S® K (between
a pointed simplicial set S and an object KeC(Mod(S,R))) as in Remark 2.10; this defines
a bi-functor (pointed simplicial sets) x Mod;(C, A) — Mod;(C, A). As in remark 3.2,
Chapter I, one may use this observation to construct functorial cylinder and co-cylinder
objects.) Therefore one may define the homotopy category associated to these categories in
the obvious manner. The derived categories D(Mod;(C,.A)) and D(Mod,(C,.A)) are defined
by inverting maps in the homotopy categories that are quasi-isomorphism. Next we may
define the free-functor

Fui:C— Mod(C,A) (Fa,:C— Mod,(C,A)) by Fa,(M)=AaM
(Fa,r(M) = M1 A, respectively)

DEFINITION 3.5. Let C be as before. We define an internal hom in C as an adjoint to X
exactly as in 2.0.15. This will be denoted Hom¢. We say an object F' (P) in C is flat (locally
projective) if for every acyclic object KeC, F X K (Hom¢ (P, K), respectively) is acyclic.

PROPOSITION 3.6. Let Fp(1y : C(Mod(&,R)) — Mod(&,0(1)) be the functor de-
fined by Fony(M) = O(1)@M. Then Fo) is right adjoint to the forgetful functor For :
R

Mod(6,0(1)) = C(Mod(S,R)). Moreover the following conditions are satisfied

(3.1.2)

(i) if KeC, the natural map Foq)(For(K)) — K is an epimorphism
(11)O(1) is flat with respect to the operadic tensor product K

(i) if KeC and MeC(Mod(&,R)), KX Fo1y(M) (Fon) (M)XK ) is naturally chain-
homotopy equivalent to K@M (MK ).
R R

(iv)Home(Fo(1)(L), K) is homotopy equivalent to Homg(L,K), for every KeC and
LeC(Mod(6;R)), with the homotopy equivalence being natural in L and K

PROOF. The epimorphism in the first statement is induced by the epimorphism O(1) —
R and is therefore obvious. If KeC, K KO(1) is chain homotopy equivalent to K. (See 3.1.)
Therefore, if K is acyclic, so is K ®¥ O(1). This proves (ii). Similar observations prove (iii).

Let K', KeC and let LeC'(Mod(S,R)). Now Home(K', Home(Foy(L), K)) = Home (K'X
O(l)%L, K) ~ Hom¢ (K'%L, K) where the last is a chain homotopy equivalence. Making

use of the fact that R is commutative and that any map of O(1)-modules is a map of
R-modules, one may show the last term is clearly isomorphic to Home(K', Homg (L, K)).
Since this holds for all K'eC, it follows from lemma ( 3.8) below that Homc(Fo (1) (L), K)
is chain homotopy equivalent to Homg (L, K). This proves (iv). |

PROPOSITION 3.7. (i) Fa; (Fa,) is left-adjoint to the forgetful functor For : Mod;(C, A) —
C
(For : Mod,(C,A) — C) and the following conditions are satisfied:

(i1) if MeMod;(C, A) (NeMod,(C, A)), the natural map Fa(For(M)) — M
(Far(For(N)) — N) is an epimorphism

(ii1) if MeMod,(C,A) and KeC, M%FAJ(K) is naturally isomorphic to K W M while
Homa(Fa,(K), M) is naturally isomorphic to Home (K, M).
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(1)F4;(0O(1) @ K) is naturally isomorphic in the derived category to AQK,
R

KeC(Mod(S,R)).
(v) F4(O(1)) and A are flat and locally projective in Mod;(C; A)
(vi) Homa(Fa,(Fou)(K)), L) is chain homotopy equivalent to Homg (K, For(L)),

LeMod;(C; A) and KeC(Mod(6;R)) with the chain homotopy-equivalence being natural in
L and K and preserving the obvious filtrations.

PROOF. The first two statements follow from the observation that the composition
RIM — A<M — M (N>R — N> A — N) is the identity if MeMod,(C, A) (NeMod,(C, A),
respectively).

One may obtain the first assertion in (iii) as follows. Take P = F4;(K), KeC in the
last adjunction in ( 1.2.6) to obtain the isomorphism

Homc(M?iFA,z(K), N) = Hompjoqy(s,4)(Fa1(K), Home (M, N)).

By (i) this is isomorphic to Hom¢ (K, Home(M,N)) = Home(M K K, N). Since this holds
for all NeC, one obtains a natural isomorphism M®F4,;(K) = M X K. One obtains the
A

second assertion in (iii) similarly.

Next we consider (iv) assuming (vi). By (vi) Homa(Fa1(Fo)(K)),N) is chain-
homotopy equivalent to Homg (K, N). On the other hand, if K = jyjj;(R) for an object U
in the site &, we see that Hom 4(AQK, N) ~ Homg (K, N) by chain homotopy equivalences

R

that are natural in K. In general, one may find a resolution of the given K by a complex
each term of which is a sum of terms of the form jyjj;(R), UeS. Therefore (iv) follows.

Take K = O(1) in (iii) to see that M%FAJ(O(l)) is chain homotopy equivalent to
M K O(1); therefore, if MeMod,(C,.A) is acyclic, so is M%FAJ((’)(I)). This shows that
F4,(0(1)) is flat. Now one observes that A is chain homotopy equivalent to A< O(1) =
Fa,(O(1)). Therefore A is also flat. Finally observe that Homa(Fa,(Fou)(K)),L) =

Home(Foy(K), L) ~ Homg(K, L) which proves (vi) and the assertion on the local pro-
jectivity in (v). O

LEMMA 3.8. Let A and B denote two categories of chain complexes of abelian sheaves
on a site 5. Let F,F' : A - B (G,G' : B — A) denote two functors so that F (F') is
left-adjoint to G (G', respectively). Let ¢ : F — F' and ¢ : F' — F denote two natural
transformations so that the composition 1 o ¢ (¢ o)) is homotopy-equivalent to the identity
natural transformation idp (idp:, respectively). Assume that F(A[l]® K) & A[l] ® F(K),
and similarly F'(A]l] ® K) 2 A[1] ® F'(K) for KeA.

Let ¢* : G' — G and ¥* : G — G’ denote the two induced natural transformations. Then
there exists an induced homotopy equivalence V* o ¢* ~ idg: (¢* o Y* ~ idg, respectively)

PRrROOF. This is straightforward (I

COROLLARY 3.9. Assume the situation as above. Then the categories Mod;(C,.A) and
Mod,(C,A) are strongly triangulated categories.

PrOOF. The proof is more or less clear from the above discussion. We begin with the
observation that the category C'(Mod(G,R)) is clearly a strongly triangulated category.
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Now we obtain a free functor:

(3.1.3) F:C(Mod(&,R)) — Mod;(C, A)

by F(M) = Fai(Fo)(M)) and similarly F : C(Mod(&,R)) — Mod,(C, A) by F(N) =
Fa(Fo)(N)). These are now left adjoint to the obvious forgetful functors. Using these and
the observation that C(Mod(&, R)) has a small family of generators, one concludes that so
do Mod,;(C,.A) and Mod,(C,.A). For this observe that the compositions R<M — AIM — M
and N>R — N> N — N are the identity if MeMod;(C, A) and NeMod,.(C, A): now the
same argument as in ( 2.0.15) applies. Clearly Mod,;(C,.A) and Mod,(C,.A) are closed under
all small limits. As observed earlier, these categories satisfy all the axioms (STRO) through
(STR7.3) for a strongly triangulated category.

In order to prove the remaining hypotheses (STR8.1) through (STR8.4) it suffices to
show that lemma 2.5 as well as Propositions 2.7 and 2.8 again hold in this setting once we
replace j#,j{]Z"(S) ® A with f(jﬁ!j,*](’R)). This is clear for Lemma ( 2.5) and Proposi-
tion 2.7 by the above propositions. Observe that the functor @ in this context is the identity.
Now the isomorphism
Homp(mod, (c,a)) (K, L)E)T('()(MapA(P(K), GL)) is clear by the same argument as in Propo-
sition 2.8. The functor Map 4 : Mod;(C, A)°? x Mod;(C, A) — (pointed simplicial sets)
is defined so that we obtain the isomorphism:

(314) Hompointed simpl  sets (Sv Map.A(Ma N)) = HomModl (C,A) (S ® M, N)
) O

DEFINITION 3.10. In the above situation we will denote the category Mod;(C,.A) (Mod,(C,.A))
by Mod;(&;.A) (Mod,(&;.A), respectively).

REMARK 3.11. Observe that the category C(Mod(&,R)) satisfies all the axioms (ST1)
through (ST8) on the strong ¢-structure with 7<,, denoting a familiar functor that kills
the cohomology in degrees above n. One lets the functor EM,, in this context be defined
by EM,(M) = M[-n]. Observe also that if A = ITA(i) is a sheaf of graded modules

in Mod(S,R), one may define GEM(A) = IIEM;(A(i)) = IIA(i)[i{] and GEM (M) =
HEM;(M(i)). Now GEM(A) is a sheaf of differential graded algebras in C(Mod(&,R))

which one may view as a sheaf of algebras over an operad in a trivial manner. Moreover if
MeMod;(A), GEM(M)eMod;(GEM(A)). One may now see readily that C(Mod(&,R)) is
an enriched monoidal t-category. However, the category Mod(S,O(1)) is not unital though
otherwise symmetric monoidal with the operadic tensor product and clearly the axioms
on the strong ¢-structure do not hold here. Therefore Mod(&,O(1)) is not an enriched
monoidal ¢-category. Similarly Mod;(S,.A) and Mod, (S, A) are also not enriched monoidal
t-categories, if AeC'(Mod(G,R)) is an E*-algebra over an E*-operad. Nevertheless the
observation that the category C(Mod(S,R)) is an enriched symmetric monoidal t-category
enables us to consider the categories Mod;(S,.A) and Mod, (S, A) without difficulty in the
next chapter.

4. Presheaves with values in a strongly triangulated symmetric monoidal
category

As one of the last examples, we will establish the following theorem.

THEOREM 4.1. Let C denote a strongly triangulated monoidal category and let S denote
a site as in sectionl. Let S denote the unit for the tensor structure on C. Assume further
that the hypothesis (2.1.1.%) is satisfied. Now the category Preshc(S) of presheaves on &
with values in C is also a strongly triangulated monoidal category. In case C is an enriched
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monoidal t-category, the category Preshe(S) is also an enriched monoidal t-category. In
case C is symmetric monoidal, so is Preshc(S).

REMARK 4.2. We will establish below that both the categories of symmetric spectra
and I'-spaces are enriched symmetric monoidal ¢-categories. It will follow as a consequence
that the corresponding categories of presheaves on a site (as in section 1) are also enriched
symmetric monoidal ¢-categories.

PROOF. Observe that if {P,|a} is a diagram of presheaves indexed by a small category

I, the colimit lim P, (the limit Ii}n P,) is the presheaf defined by I'(U, lim P,) = limT'(U, P,)
— — —
I I

I
(I(T, li}n P, = li}n (U, P,), respectively). It follows that the category Preshc(S) is closed

under all small colimits and limits. One defines a pairing ® : Presh¢(S) x Preshe(S) —
Presh¢(S) by I'U, P! @ P) = T'(U, P') @ I'(U, P). One may verify that this functor is
symmetric monoidal with the constant presheaf S associated to S as a unit. Next we
define a pairing (pointed simplicial sets) x Presh¢(6) — Preshe(6) by T'(U, K ® P) =
K ® (U, P).

We let f ~ g be the equivalence relation of homotopy defined on the morphisms of
Preshc(6) and generated by the following: if H : A[l]L ® P — P’ is a map, then H defines
a homotopy between H o (dy ® id) and H o (dy ® id) where d; : P 2 A[0]+ ® P — A[1]+ ® P
is the obvious face map. The resulting homotopy category is denoted H Presh¢(S).

Given amap f : P’ — P, we may define Cyl(f) (Cone(f)) by I'(U, Cyl(f)) = Cyl(T(U, f))
(T(U, Cone(f)) = Cone(T'(U, f)), respectively). One defines Cocyl(f) and fiby(f) similarly.
We define the functor T'(f) by I'(U, T(f)) = T'(U, 2(f)) where ¥ is defined as in Chapter I,
Definition (2.3). A diagram P’ — P — P” — TP’ is a triangle if it is isomorphic in the

homotopy category to a diagram of the form: rlp Cone(f) — X(f).

Let {#™|n} denote the cohomology functor on the category C. Now we define a co-
homology functor {#"|n} on Preshc(S) by letting 1™ denote the sheaf associated to the
presheaf P — H"(T'(U, P)), U in the site &. We define a map f : P’ — P to be a quasi-
isomorphism if the induced maps H"(f) are all isomorphisms. The following lemma shows
that HPresh¢(S) admits a calculus of left and right fractions.

LEMMA 4.3. The class of maps in HPreshc(S) that are quasi-isomorphisms admits a
calculus of left and right fractions

PROOF. Let Qis denote the class of maps in H Presh¢ (&) that are quasi-isomorphisms.
Recall that Qis admits a calculus of left fractions, if the following hold:

(i) Qis is closed under finite compositions and contains all the maps that are the iden-
tities

(ii) Given a diagram X2<1X1i>X3 in Preshc(6) with ¢ in Qis, there exists a diagram
Xo 5 X4 X5 in Preshc(6) with ¢’ in Qis so that the square:

XléXg

TRT

X, —2 5 X,

commutes.
q f
(iii) Given X; X5 X3 with ¢ in Qis with f o g = g o g, there exists a map

g9

X355 X, so that ¢’ o f = ¢’ 0 g and ¢'eQis.
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Now (i) is clear. In order to prove (ii), one may first replace the map ¢ : X; — X3 by
the induced map X; — Cycl(q) and f : X; — X3 by the corresponding map X1 — Cyl(f).
Now take X, = X2|)?| Xs. The natural map X2/X1 — X4/X5 is now an isomorphism. Since

1

X, = X2 = X3/X; — TX; is a triangle and the homology functor H* takes it long-

exact sequences with H*(Xl)H—gq)H*(Xg) an isomorphism, it follows that H*(X,/X3) =
H*(X2/X1) 2 0. Now X3 — X4 — X4/X35 — X3 is a strong triangle and therefore the
map ¢ is a quasi-isomorphism.

In order to prove (iii), one may assume once again that g is also replaced by the corre-
sponding map X; — Cyl(q). Let H : A[l]4 ® X1 — X3 denote a homotopy between the
two maps f oq and g o q. Now let Spool denote the direct limit of the diagram

Al0] ® Xo +® Xy

All] A[0]
A0]

| ® Xa

1d®q

and let Cyl denote A[1]4 ® X5. Now one may observe readily that the obvious map Spool —
Cyl is a quasi-isomorphism. (To see this: observe that Spool — Cyl — X(X2/X;) — XSpool
is a strong-triangle and that the map ¢ : X3 — X5 is a quasi-isomorphism. It follows that
H*(2(X2/X1)) =2 0 which proves the map Spool — Cyl is also a quasi-isomorphism.) Now
let X4 be defined by the pushout square:

Spool —— X3

l !

Cyl — Xy

The top row is defined by the two maps f, g and the homotopy H. Now the induced
map X3 — X, is also a monomorphism and the natural map Cyl/Spool — X4/X3 is an
isomorphism. It follows that the induced map X3 — X}, is also a quasi-isomorphism. These
arguments prove that QQis admits a calculus of left fractions. The proof that it also admits
a calculus of right fractions is similar using co-cylinders instead. (I

Observe that S is an algebra in Preshc¢(&). Taking A = S, in Proposition 2.7, one
may produce cofibrant resolutions for presheaves. A presheaf PePresh¢(S) will be called
cofibrant if it is locally projective and flat. We define the functor Q¢ on Preshc(S) by
I'(U,QcP) = Q(T'(U, P)) where the @ on the right is the functor as in (STR8.1) for C.

A presheaf P (as above) is fibrant if the obvious map I'(U, P) — I'(U,GQ¢ P) is a quasi-
isomorphism for each U in the site &. (We also let the functor Q = GoQ¢.) Now the axiom
Chapter I, (STR8.3) may be verified as in Proposition 2.7. One may also readily verify the
axiom Chapter I, (M5). One defines admissible monomorphisms (epimorphisms) to be maps
F' — F so that for each stalk, the induced map is an admissible monomorphism (epimor-
phism, respectively). In order to prove that the derived category is additive, observe in view
of (STRA8.3) that it suffices to show the homotopy category is additive. More specifically
observe that if f, g : ¥P(X) — QXY are two maps, their sum in Hompg preshe(s)(P(X),Y)
is given by the composition:

SP(X) = S'® P(X)%(S' U SY) ® P(X) = (SP(X)) U (SP(X))Faxy.

Observe QXY is a homotopy associative monoid with the operation induced by the map
S' — SIS, Now [Sp] p. 43 shows that the above sum is commutative. i.e. Homp)(X,Y)
is an Abelian group for all X and Y. It follows that the derived category D(C) is additive.
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We leave the verification that the triangles defined above in fact satisfy the axioms for
distinguished triangles.

One may take the sub-category § to be the same as cofibrant objects. The remaining
axioms in Chapter I, (MO0) through (M5) are easily verified. We have thereby shown that if
C is a strongly triangulated symmetric monoidal category, so is Presh¢(S).

Next assume that C satisfies the axioms on the strong t-structure as well. We define
functors 7<,, on Preshc(S) by T'(U,7<,P) = 7<,I'(U, P). Now the axioms in Chapter I,
(ST1) and (ST2) are clear. Observe that D(Preshc(S))S"2 = {XeD(Preshc(8))|HI(X) =
0 if ¢ # n}. Let Ac denote the Abelian category which is equivalent to the heart of
D(C). We let A = the category of sheaves on & with values in Ac. We define a functor
EM] : A — Preshe(6) by (U, EM)(F)) = EMS(T(U, F)) where EMS is the functor
in Chapter I, (ST3) associated to the category C as part of its strong t-structure. We let
EM,, = GoEM]. Now it is clear that the axioms in Chapter I on the strong t-structure are
satisfied. O

4.0.5. Presheaves with values in enriched stable model categories. With a view to further
possible applications, (see Chapter V and Appendix A) we show that the following set of
axioms on a category C imply the category is strongly triangulated.

DEFINITION 4.4. (Stable simplicial model categories) A category C is called a stable
simplicial model category if it satisfies the following axioms (PMO) through (PM4), (M4),
(SMO) through (SM3.4), (SM4) through (SM6), and the axioms (HCl), (HIl) along with
(cofinality) on the homotopy limits and colimits.

We will assume that C has a zero object * and that it is closed under all small colimits
and limits. Sums in the category C will be denoted LI. We will further assume that filtered
colimits in C commute with finite limits.

(PMO) A partial model structure on C is provided by three classes of maps called weak-
equivalences, cofibrations and fibrations satisfying the following conditions:

(PM1) The class of fibrations is stable under compositions and base change; any iso-
morphism is a fibration. The class of cofibrations is stable under compositions and co-base
change; any isomorphism is a cofibration. Moreover any retract of a fibration (a cofibration,
a weak-equivalence) is a fibration (a cofibration, a weak-equivalence respectively).

(PM2) Any isomorphism is a weak-equivalence. If f and g are maps in C so that g o f
is defined and two of the maps f, g or g o f are weak-equivalences, so is the third.

Any map that is both a fibration and a weak-equivalence (a cofibration and a weak-
equivalence) will be called a trivial fibration ( trivial cofibration, respectively).

(PM3) Any map f can be factored as f = poi with p a fibration, ¢ a trivial cofibration
and both depending functorially on f. Any map f can also be factored as f = p o ¢ with p
a trivial fibration, ¢ a cofibration and both depending functorially on f.

(PM4) Every cofibration in C is a monomorphism. (The converse is not assumed to be
true. In particular, not every object in C need be cofibrant.)

A model category structure on C is a partial model category structure satisfying the
axioms (PM1) through (PM3) and also satisfying the following lifting aziom:

(M4) For every commutative square
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A— X

i| E
B ——Y
in C, there is a map h: B — X making the two triangles commute provided either
(a) i is a trivial cofibration and p is a fibration or

(b) i is a cofibration and p is a trivial fibration.

Such a model structure is closed if the fibrations (cofibrations) are characterized by the
lifting property in (a) ((b), respectively) and a map is a weak-equivalence if and only if it
can be factored as the composition of a trivial cofibration and a trivial fibration. (We will
always assume this is the case and omit the adjective closed henceforth.) It is a simplicial
model structure if one has a bi-functor Map : C°? x C — (pointed simplicial sets) so
that Mapyg = Hom¢. Moreover we require the following. For each fixed MeC, the functor
N — Map(M,N), C — (pointed simplicial sets) has a left adjoint which will be denoted
- QM.

A stable simplicial model category structure on C is provided by two structures:

(SMO) a simplicial model structure on C where the cofibrations (fibrations, weak-equivalences)
are called strict cofibrations (strict fibrations, strict weak-equivalences, respectively) as well
as another simplicial model structure (where the fibrations (cofibrations, weak-equivalences)
are called stable fibrations (stable cofibrations, stable weak-equivalences, respectively)) so
that the conditions (SM1) through (SM7) are satisfied:

(SM1) every strict weak-equivalence is a stable weak-equivalence

(SM2) every stable fibration (stable cofibration) is a strict fibration (strict cofibration,
respectively)

(SM3.1) There exist two functors Q : C — C and Q** : C — C along with natural
transformations id — Q, Q@ o @ — @ and id — Q*', Q%" o Q%' — Q* so that if XeC, Q(X)
is strictly fibrant while Q*(X) is stably fibrant.

(SM3.2) The maps X — Q(X), Q(Q(X)) = Q(X) (X — Q*(X), Q* 0 Q*(X) —
Q*'(X)) are required to be strict weak-equivalences (stable weak-equivalences respectively).

(SM3.3) The functor @ (Q*t) preserves strict fibrations (stable fibrations, respectively).

(SM3.4) We will also require that the two functors ® : (pointed simplicial sets) x
C — C defined as part of the simplicial model structure for the strict and stable model
structures coincide. (Observe, as a consequence, that the two functors Map associated
to the strict and stable simplicial model structures also coincide.) Moreover the following
are assumed to hold: if K is a pointed simplicial set, K ® — preserves strict and stable
cofibrations as well as strict and stable weak-equivalences. If MeC is a stably cofibrant
object of C, — ® M sends cofibrations of simplicial sets to stable cofibrations and weak-
equivalences to stable weak-equivalences. It is also required to commute with colimits in
either argument.

Observe that the axiom (PM3) implies the existence of functorial cylinder and cocylinder
objects for the partial model structure - see [Qu] chapter I. (Using the simplicial structure,
it is possible to define them explicitly in the usual manner as well.)
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4.0.6. Now we define cylinder and cocylinder objects using the strict and stable model

structures as follows - see [Qu] chapter I. Let X LI X doi)‘hCylsm-ct(X )>X denote a fac-
torization of the obvious map V : X LI X — X as the composition of a strict cofibration
followed by a strict weak-equivalence. We will call Cylssrict(X) an strict cylinder object for
X. A cylinder object defined using the stable model structure will be denoted Cylg(X).
Let A[1] denote the obvious simplicial set; A[1]+ will denote this with an extra base point
added. If XeC, we let Cylean(X) = A[l]l+ ® X with d; : X 2 AL[0]®@ X — A[l]4 ® X, the
obvious map for ¢ = 0,1 and s : A4[1]® X — A[0]; ® X = X the obvious maps. We call
CYlean(X) the canonical cylinder object for X. If the object X is strictly cofibrant, this is in
fact a strict cylinder object for X, and it is a stable cylinder object for any X that is stably
cofibrant. (These conclusions follow readily since the bi-functor ® is considered part of the
stable structure.)

4.0.7. Let f: X — Y denote a map in C; now we let Cylsrict(f) = C’ylstrict(X))l_(lY

and call it a strict mapping cylinder of f. Cylean(f) = C’ylcan(X))l_(lY will be called the
canonical mapping cylinder of f. Similarly we let Cyls(f) = Cylst(X))L(I_Y and call it the

stable mapping cylinder of f. Observe that the canonical mapping cylinder will be a stable
mapping cylinder if X and Y are stably cofibrant. We will often denote any one of the above
mapping cylinders generically by Cyl(f).

(1.1.3) Now the map induced by d1, X — Cyl(f) is a strict cofibration (stable cofibration
if X and Y are strictly cofibrant (stably cofibrant, respectively). (This map will be denoted
dy henceforth.) The pushout

X —“ 5 oyl(f)

! |

x ——— Cone(f)

defines the mapping cone Cone(f). This is strictly cofibrant (stably cofibrant) if X and
Y are strictly cofibrant (if X and Y are stably cofibrant, respectively). The mapping cone
defined using the canonical (strict, stable) mapping cylinder will be denoted Conecen(f)
(Conestrict(f), Conest(f), respectively). If both X and Y are strictly (stably) cofibrant,
this coincides with Conesirict(f) (Conesi(f), respectively).

4.0.8. Next we consider the dual notion of a co-cylinder object. Let X — Cocyl*"i¢*(X)
X x X denote the factorization of the diagonal as the composition of a strict weak-equivalence
and a strict fibration. We call Cocyl*t"i¢*(X) a strict co-cylinder of X. A co-cylinder object
defined similarly using the stable model structure will be called a stable co-cylinder object
of X and will be denoted Cocyl®*(X). We will let Cocyleqn(X) = X2+ with the map
d® x dt o XAMs — XALRUADL ~ ¥ x X and s : X = XA+ — XAD the obvious
maps. This will be a strict (stable) co-cylinder object for X if X is strictly fibrant (stably
fibrant, respectively). Once again these conclusions follow readily from the assumption that
the bi-functor Map is considered part of the stable structure.

4.0.9. Let f: X — Y denote a map in C. We let Cocyl**"¢t(f) = CocylS"iCt(Y);iX

and call it a strict mapping co-cylinder for f. The corresponding functor defined us-

ing Cocyl®® will be called a stable mapping co-cylinder for f. Finally Cocyl®®"(f) =

Cocyl®™(Y)x X will be called the canonical mapping co-cylinder for f: this will be a strict
Y

(stable) mapping co-cylinder for f if X and Y are strictly fibrant (stably fibrant, respec-
tively). We will denote any one of the above mapping co-cylinders generically by Cocyl(f).
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4.0.10. The map induced by dy, Cocyl(f) — Y is a strict (stable ) fibration if X and
Y are strictly (stably, respectively) fibrant. (This map will be denoted d* henceforth.) The
pull-back

fibn(f) —— Cocyl(f)

l “

* —_— Y

defines the homotopy-fiber of f. This is strictly fibrant (stably fibrant) if X and Y are strictly
fibrant (stably fibrant, respectively). The homotopy fiber defined using the canonical (strict,
stable) co-cylinder for f will be denoted fibfe"(f) (fibi"*!(f), fibi'(f), respectively).

Now we will require several axioms that will ensure that the derived category associated
to the stable model structure is in fact an additive category. Let Pt : C — C denote the
functor of stably cofibrant approximation as in (PM3); i.e. the obvious map * — X factors
as * — P*(X) — X with P*'(X) stably cofibrant and the map P*(X) — X a stable
weak-equivalence.

Let f: X — Y denote a map in C. Let ¢ : fib{**(Qf) — QX and p: Y — Conecen(f)
denote the obvious maps. Now

(SM4) Conecan(f) is stably equivalent to Coneg (P! (f)) always. If f: X — Y is
a monomorphism, there exists a stable weak-equivalence Conegan(f) =~ Coker(f) where
Coker(f) denotes the cokernel of f.

(SM5) Conecan(7) is naturally stably weakly equivalent to QY and hence Y as well
(SM5)’ fibs*™ (Qp) is naturally stably weakly equivalent to QX.

(SM6) fibst(Q*t(f)) is naturally stably weakly equivalent to Q%(fibs*™(Q(f))). (Ob-
serve that this axiom implies that the functor Q' preserves stable fibration sequences.)

(SM6)’ Conesi(P*(f)) and Cones:(f) are naturally weakly-equivalent to Conecan(f).

REMARK 4.5. (SM4) along with the axioms above imply that if f : X — Y is a mono-
morphism, Coker(f) is stably weakly equivalent to Cones:(f) and also to Cones:(P*(f))
where P*t(f) is defined as above. Moreover the above axioms imply that a strict fibration
(cofibration) sequence when viewed as a diagram in the stable model category on C may
be identified with a stable fibration (cofibration, respectively) sequence. This is true in the
setting of both I'-spaces as we show in detail in section 5. (To see this simply observe any
monomorphism of I'-spaces induces a monomorphism of the associated spectra. Therefore,
it is possible to replace any monomorphism of I'-spaces by a stable co-fibration up-to natural
stable weak-equivalence.) Moreover this facilitates work with stable fibration and cofibration
sequences and enables us to obtain the spectral sequences in sections 3 and 4.

DEFINITION 4.6. We define stable cofibration sequences in C to be diagrams 7" — T —
T" — XT' that are isomorphic in the homotopy category HC®® (see below) to diagrams

of the form: T' 5T — Coneg (i) — XT'. One may define stable fibration sequences in C

to be diagrams QT" — T’ — 747" that are isomorphic in HC to diagrams of the form:
. s

Q1" — fiby'(Q(f)) = Q(T)=Q(T").

REMARK 4.7. In view of the axioms above, one may identify stable cofibration sequences
with stable fibration sequences.
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Axioms on homotopy limits and colimits. We will conclude this list of hypotheses by
axiomatizing the existence of homotopy colimits and homotopy limits of small diagrams
in C with suitable properties. For this we invoke standard material from [B-K]. Let I
denote a small category; for each object iel, I/i (I\i) will denote the nerve of the comma
category denoted I/i (I\i, respectively) also. We let (C)I° ((C)!) denote the category of
all contravariant (covariant, respectively) functors from I taking values in C. We define the
functor hoc?lim : (€)1 — C exactly as a co-end in Chapter I. Now the above functor is

left-adjoint to the functor Hom(I/ — ®S,—) : C — (€)' that sends an object KeC to the
simplicial object {Hom(I/n ® S, K)|n}. (Hom is the internal Hom in the category C.) We
require the following hypotheses:

(HCl):there exists a simplicial model structure on (C)!° with weak-equivalences be-

ing stable weak-equivalences in C in each simplicial degree so that hoc?lim sends weak-
equivalences to stable weak-equivalences. Moreover hoc?lim sends diagrams {A’ — A —
A" — $A'} in (C)'° that are triangles in C in each simplicial degree to a triangle in C. In
addition, we require, in case I = A (so that (C)!” = the category of simplicial objects in C)
that there exist a spectral sequence:

By = Hy({me(Sn)In}) = ms1i(hocolim{S,|n})

(The homotopy groups are defined below.) We define the functor ho}im : (€)' — C as an end

in Chapter 1. Now the above functor is right-adjoint to the functor I/ — ® : C — (C)!" that
sends an object KeC to the diagram {I/n ® K|n}. We require the following hypotheses:

(Hl):there exists a simplicial model structure on (C)! with weak-equivalences being
stable weak-equivalences in C in each cosimplicial degree so that ho}im 0%t sends weak-

equivalences to stable weak-equivalences. Moreover ho}im 0@ sends diagrams {QA” —

A" — A — A" -} in (C)! that are triangles in C in each degree to a triangle in C. Moreover
we require that, in case I = A (so that (C)! = the category of cosimplicial objects in C) there
exist a spectral sequence with E3* = H*({m,(C™)|n}) = 7r_s+t(ho}im C"). The E'-term is

the s-th (co-)homology of the cosimplicial Abelian group {m;(C™)|n}.

In addition we will require the following axiom that enables one to compare two homo-
topy inverse limits or colimits.

Let I denote a small category and let f : I — J denote a covariant functor. We say
f is left-cofinal if for every object jeJ, the nerve of the obvious comma-category f/j is
contractible. Now let F' : J — C be a functor.

(cofinality). We require that the induced map ho}imF — ho}imF o f is a stable weak-

equivalence if the functor f is left-cofinal.

REMARK 4.8. The hypothesis that C' and C'** are simplicial model categories is satisfied
if the category C is a cofibrantly generated simplicial model category.

The strict homotopy category. Let X, YeC. By (functorially) factoring the map * — X
we may find a strict weak-equivalence P(X) — X with P(X) cofibrant. Let @) denote the
functor as in (SM3.1). Now we let Homgcstriet(X,Y) = mo(Map(P(X),Q(Y)). It follows
readily from the axioms of the (strict) simplicial model category structure that this depends
only on X and Y. One defines the strict homotopy category HC*!"%* to have the same
objects as C, but where the morphisms are defined as above.
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4.0.11. We define the stable homotopy category HC*! by
HOmHCst (X, Y) = HOmHCStrict (PSt(X), QStY)

and with the same objects as C. (Recall the right hand side = mo(Map(P**(X), Q*'Y). Re-
call also that the functor Map associated to the strict and stable simplicial model structures
coincide.)

Now the functor Q% sends stable fibrations to stable fibrations and hence preserves
stable fibration sequences. Given a stable cofibration sequence as above, one may also
obtain a triangle: P*'(X') — P®(X) — P*(X") — P*{(XX’). Therefore if we define
Ext™™(X,Y) = Hompc)(X"X,Y), then {Ext™"|n} is a cohomological functor from D(C)
to the category of Abelian groups sending distinguished triangles in each argument to long
exact sequences of Abelian groups. (The derived category is defined by localizing HC*® with
respect to stable weak-equivalences.)

Let KeC. We define
(4.0.12) Tn(K) = Hompestriee (5"S, Q% (K)) = Homp(c)(E"S, K)

where S is defined in (M3.1). If K'=SK is a stable weak-equivalence, the induced maps
mn(K) — m,(K') are all isomorphisms. Moreover if K’ -+ K — K" — XK' is a stable
cofibration sequence, one obtains a long-exact sequence:

e 2> T (K') = mp(K) = mn(K") = o1 (K') — ..

These are clear since S is stably cofibrant and Q**(L) for any L is stably fibrant. We will
show below that a map f is a stable weak-equivalence if and only if it induces an isomorphism
on m, for all n.

PROPOSITION 4.9. (i) Given any object ZeC, there exists a collection {ns|s} of integers
and a map € : UX"S — Q%' Z that induces an epimorphism on all 7,. (We use the notation:
Ns
X" = the ns-fold iterate of ¥ if ng > 0 and = the —ng fold iterate of Q if ns < 0.)
(i) Given an object ZeC, there exists a simplicial object S(Z)o in C along with an

augmentation € : S(Z)o — Q%*Z so that each term S(Z)y is of the form in (i) and (ii)
hocglim(e) is a stable-weak-equivalence. Moreover hocglimS(Z). is stably cofibrant.

(i) f : X = Y in C induces an isomorphism on all 7, if and only if f is a stable
weak-equivalence.

PROOF. (i) is clear from the definition of m,,. Now we let S(Z)¢ to be the term given in
(1). (ii) is a special case of Proposition 2.7 where the site S is the punctual site and A = S.

It is clear that if f is a stable weak-equivalence, it induces an isomorphism on all 7,.
Therefore, it suffices to prove the converse. Let S(Z)s — Z denote a simplicial object chosen
as in (ii). Let P(Z) = hocAolimS(Z).. Now consider Map(P(Z), Q*'(f)) : Map(P(Z),

Q**X) — Map(P(Z), Q°'Y). One may identify this with hoiimMap(S(Z)., Q' (f)) :
hoiirn Map(S(Z)e, Q°*X) — hoiirn Map(S(Z)e, Q*'Y'). Since f induces an isomorphism on

all ,, Map(S(Z),, Q%(f)) is a weak-equivalence for all n; it follows from the hypothesis
(H1) that so is hokim Map(S(Z)e, Q% (f))- O

THEOREM 4.10. A stable simplicial model category and the category of presheaves with
values in such category define a strongly triangulated category in the sense of Chapter I.
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PROOF. The assertion about the category of presheaves follows exactly as in Theorem
( 4.1). Therefore we will skip this and prove only the assertion that a stable simplicial
model category is a strongly triangulated category. Clearly the axiom (STRO) is implied
by the axiom (PMO0). The axioms (STR1) through (STR5) are shown to be satisfied by
Chapter I, 2.1, 2.2 and Proposition 2.7 with H™ = 7_,, and with A = the category of all
abelian groups. The admissible mono-morphisms (epi-morphisms) in (STR6) are the stable
cofibrations (stable fibrations, respectively). The hypotheses in the axiom (STR6) is implied
by the stable simplicial model structure. The cylinder and co-cylinder objects were already
defined in (1.1) Chapter I. Now the axioms (STR7.1) through (STR7.3) are clear. We let

the functor @ in (STR8.1) be the functor Q** as in (SM4). The cofibrant (fibrant) objects
in (STR8.1) and (STRS8.2) are the stably cofibrant (stably fibrant ones, respectively) in the
sense of the stable model structure. Now the axioms in (STR8.1) through (STR8.4) are
implied by the stable model structure and Proposition 2.5 above. |

DEFINITION 4.11. An enriched stable simplicial model category C is a stable simplicial
model category provided with a symmetric monoidal bi-functor ® satisfying the following:

i) the axioms in Chapter I, (M0) through (M4.6) with the strong triangles defined to
be stable cofibration (or equivalently stable fibration) sequences and with the bi-functor
® : (pointed simplicial sets) x C — C in Chapter I, (M4.0) defined by (SM3.4).

ii) the axiom Chapter I, (M5) with Q@ = Q*', e = Q** and m = P**.

DEFINITION 4.12. Let Presh denote a category of presheaves on a site so that it falls
into any one of the three situations considered in the previous three sections. Let F de-
note the free functor defined there. Let A denote an algebra in Presh. Now we define
RHom4(M,N) = hoiim A{Hom 4(P(M)e,GQ(N)) where P(M)s — M is a resolution de-

fined as in Proposition 2.4 using the free functor. One defines RMap 4 in a similar manner.






CHAPTER III

Homological algebra in enriched monoidal categories

1. Basic Spectral Sequences

In this section we provide several spectral sequences that are crucial for the development
of a satisfactory theory of Grothendieck-Verdier duality as in chapter IV.

1.1. Basic Hypotheses. Throughout the remaining chapters, we will assume that the
following hypotheses are satisfied:

S will denote a site as in Chapter I, section 1 and either (i) Presh is an enriched unital

monoidal category of presheaves on G or

(ii) Presh = C(Mod(6,R)) for a ringed site (6, R) with R a commutative sheaf of
Noetherian rings and that A is a sheaf of algebras over an operad in Presh in the sense of
Chapter II, section 3. (Recall that, in this context, the functor @ as in Chapter I, (STRS8.1)
is the identity.)

1.2. Terminology. In the situation in (i) we will let S denote the unit of the symmetric
monoidal structure on Presh. {H"|n} will denote a cohomological functor as in Chapter II,
2.1.1. In this case, if A is a given algebra in Presh, using the observation that the functor
Q@ (in Chapter I, (STR8.1)) is compatible with the monoidal structure, we will replace A by
Q(A) and we will henceforth consider only modules over Q(.A) of the form Q(M) for some
MeMod;(6,A) or MeMod, (S, A). However, we will denote Q(A) by A and Q(M) by M
for simplicity. Moreover, if necessary, by replacing an object MeMod;(S,Q(A)) by Q(M),
one may assume that every object in Mod;(&, A) will have a canonical Cartan filtration.
The same applies to Mod,(&,.A). F : Presh — Mod;(6,A) (Mod,(S,.A)) will denote the
free functor defined by F(M) = A® M, (F(N) = N® A, M, NePresh. We will let ®
denote % and Hom defined as the internal hom in Presh. (See Chapter II, (1.2.3).) In the

situation in (i), we let S = R and if A is a sheaf of algebras over an operad {O(k)|k}, we let
F(M) = Fa1(Fou)(M)) (=Fa-(Fo)(N))) as in Chapter II, section 3. Now ® will denote
® and Hom will denote Homy (which is the internal hom in C(Mod(S,R)). Moreover, the
R

functors % : Mod; (6, A) x Mod, (6, A) — Presh, Hom 4 : Modi(S, A)? x Modi(S,A) =

Presh and Hom 4 : Mod,.(S, A)°P x Mod, (S, A) — Presh will denote the ones defined as
in Chapter II, section 1. The external hom in the category Presh will be denoted Hom and
the functor T" : Presh — Presh (where T is as in Chapter I, (STR2)) will be denoted [n].

1.2.1. Throughout, a map f : P’ — P of objects in Presh will be called a quasi-
isomorphism, if it induces a quasi-isomorphism of the stalks. This will be denoted ~.

1.2.2.  One may observe readily that, for each object U in the site &, the object j#!j(*] (S)
is a compact object in Presh in the sense that giving any map from it to a filtered colimit
of objects in Presh is equivalent to giving a map to one of the objects forming the filtered
colimit.

45
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REMARK 1.1. Observe that the hypotheses in (i) are in fact satisfied in both the sit-
uations considered in Chapter II, sections 2 and 4. We begin with the following spectral
sequences and then proceed to obtain a vast generalization of them.

PROPOSITION 1.2. Assume the above situation. Let MeMod,.(S, A) and N, N'e Mod;(&, A).
Then there exist spectral sequences

* L
E2, = Torl, (3" (M), H*(N)) = H oo (MEN)
By' = Eat3], , (H*(N),H*(N")) = H*T'(RHom (N, N")) and
By = Eaty 4 (H*(N), H*(N')) = H*H (RHoma(N, N')).

The first always converges strongly, while the last two converge conditionally, in general, in
the sense of [Board]. The identification of the EZ ,-term (E3'-term) is as the t-th graded
piece of the s-th Tor (the t-th graded piece of the s-th Ext or Ext, respectively).

PRrROOF. (See [Qu] chapter II, section 6.8, Theorem 6 and also [K-M] Chapter V for a
similar result for simplicial rings.) Let @ — N denote a quasi-isomorphism with @ locally
projective and flat; let P, = P(M)o, — M denote a simplicial resolution as in Chapter II,
Proposition 2.4. Recall each term P(M),, is a sum of terms of the form f(j#s!jr’}s (S)). Now
we consider the first spectral sequence. We consider the simplicial object P.(%Q in Presh.

As n varies {Ht(Pn(iz‘)QNn} forms a simplicial Abelian sheaf. We take the homology

of this simplicial Abelian sheaf. The required spectral sequence is given by the spectral
sequence for the homotopy colimit as in Chapter I:

B3' = Hy(H'(P.2Q)) = H™**!(hocglim(P,@Q)).

L .
It suffices to identify the abutment with 7~ 5** (M%N) and the E%-term with Torz'ft 4 (H*(M),

H*(N)). Observe that each term P, is of the form F(P)) for some P’,, an object in Presh
which is a sum of terms jyjf;(S). Therefore, Pn%)Q ~P ®Q USjUs!j(*JS (Q) for each n.
S&€

Now M (Pa) = H(Py ® A) = @ ju,ji, H*(A) = H'(P,) @}’ (A). Therefore, #*(P,&0Q)

is isomorphic to:

H*(Pn)ﬂgA)H*(Q)-

Recall H*(Q) = H*(N) and that {#*(P,)|n} is a flat resolution of H*(M). Therefore, one
obtains the required identification of the E?-terms. To identify the abutment it suffices to
show that hocglim{P.%Q} ~ hocglimP.%Q ~ M %Q. The last quasi-isomorphism follows

since @) is flat and the first follows from the fact that the homotopy colimit commutes with
co-equalizers. This establishes the first spectral sequence.

Next we consider the last two spectral sequences. We begin with the identification:
Homa(F(ifs 15, (5)), G"N) = Homs (if; 1ji, (S), G"N)
~ Homs(jl*]s (S), j;}sg"N) ~ j;}sg"N)

The first identification follows in the situations of Chapter II, sections 2 or 4 by Chapter II,
Proposition 2.1 (i) while it follows in the situation of Chapter II, section 3 by Chapter II,
Proposition 3.8 (vi). Therefore
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W (Hom a(F (5 537, (S)), G"N)) ~ H*(j;.G"N)
~ Homy- () (57 35, H* (A), H*(G"N)) = Homag () (575 35, H* (A) , GVH*(N))

Next observe that {Hom4(P(M)x,G"N)|k,n} is a double cosimplicial object; we take
its diagonal. The required spectral sequence is simply the spectral sequence for the homotopy
limit of the corresponding cosimplicial object. Since

hoiim A{Hom A(P(M)y,G"N)|k,n} ~ hokim hoEm{HomA(P(M)k, G"N)|k,n}

where the outer (inner) hogm is in the direction of n (k, respectively), the latter identifies

with RHom (M, N) and thereby provides the identification of the abutment.

Taking the diagonal of the double cosimplicial Abelian sheaf
{Hompp(ay(H*(P(M))r, G™(H*(N)))|k,n} provides the term RHomy« 4y (H* (M), H*(N)).
Taking the cohomology of this cosimplicial Abelian sheaf one obtains the identification of
the E>-terms. O

2. Stronger spectral sequences

DEFINITION 2.1. Let LePresh. A non-decreasing filtration on L is given by a collection
{FL|k} of objects in Presh provided with the following structure:

(i) for each k and each U in the site G, there exist admissible monomorphisms i 1 :
GEat (FeL) — g8 (FraL) and iy = 5755 (FRL) — §i5% (L) so that iy = g1 0 ik gr1-
(Here jy : U — G is the obvious map associated to an object in the site &. jf; is the
restriction to /U and 7, is its left adjoint.)

(ii) on taking the direct limits over all neighborhoods of any point p in the site &, the
admissible monomorphisms in (i) induce admissible monomorphisms ix k- 1,p : ipsiy(FxL) —
ipsiy(Fr1L) and iy ¢ dpein(FrL) — dpaiy(L). (Here iy is the restriction functor from
presheaves on the site & to presheaves on the point p and i, is its right adjoint.)

(iii) A non-decreasing filtration {FyL|k} on L as above is ezhaustive ( complete) if the
natural map
(]:colim’H”(FkL) — H™(L) (the natural map H"(L) — ’H”(holinkL/FkL), respectively) is an
—o0 — 004
isomorphism of sheaves for all n. Such a filtration is strongly separated if for each integer g,
there exists an integer N, so that H(F,L) = 0 for all k < N,. It is separated if L = UL,

with each L,ePresh and strongly separated. (If LeMod;(S, A), we will in fact require that
each summand L,eMod;(S, A).)

(iv) Let LeMod; (S, A). A non-decreasing filtration { Fj,L|k} on L as above is compatible
with the Cartan filtration on A if:

Gr(L) = %FkL/Fk,lL belongs to Mod; (S, Gr¢(A)). (Equivalently, the pairing AQL —
L sends F; AQFy,L — F; ;L where {F;(A)|i} denotes the Cartan filtration on A and { Fy, L|k}
denotes the given filtration on L.)

PROPOSITION 2.2. Let M, NePresh be provided with exhaustive filtrations. Then the
induced product filtration on M @ N (defined by F,(M ® N) = I'mage( U kFiM ® F;N —
itj=
M ® N)) is also exzhaustive. It will be separated if either of the two holds:
e the given filtration on M 1is separated and N = LUX"™>S or

[0
e the given filtration on N 1is separated and M = LIX">S
[0
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Here SePresh is the unit as in 1.0.2.

PROOF. Since colimits commute with sums and ®, it is clear that the induced filtration
on M ® N is exhaustive. To see it is also separated, one may proceed as follows. Recall
M®X"S = X" M provided with the induced filtration which is clearly separated if the given
filtration on M is separated. One considers the other situation similarly. |

2.0.3. Convention. Throughout the remaining sections, the full sub-category of Mod; (S, .A)
consisting of objects provided with a an exhaustive and separated non-decreasing filtration
will be denoted Mod! (&, A).

THEOREM 2.3. Assume as in the above situation that A is an algebra in Presh. Then
the following hold:

Let MeMod; (S, A) be provided with a non-decreasing exhaustive filtration. Then there exists
a locally projective and flat object Py provided with a non-decreasing exhaustive and filtration
compatible with the Cartan filtration on A and a filtration preserving map P) — M which
induces a stalk-wise surjection H"™ (P} )i) — H"™(Fi,M) for all n and all k. Moreover, Py is
locally projective and flat in Mod;(S,.A) and the filtration on P} is separated if the given
filtration on M 1is separated.

ProOOF. We will first consider the case when Presh is a unital symmetric monoidal
category. Let jy : U — X denote an object in the site G, let n denote an integer and let
MePresh. Now we will let

(204) S(TL, U) (M) = HomPresh(Enj#!j()} (8)’ M)
and
(2.0.5) Py=u( U U 5555(S))

neZ Uin& S(n,U)(M)

ith the filtrati it defined by FxPy = U ( U U 37 55(S)). One defi
wi e filtration on it defined by Fj, P} nsZ(UinG L Jthitr(S)). One defines

a map u_, : P, — M by mapping the summand indexed by « : Z”j#!j;} (8) = M to M by
the map a. Now u' ; is a map of filtered objects. The definition of the filtration {FyPj|k}
shows that each

(2.0.6) H"(Fe(u_q)) : H'(Fr(P))) — H™(FpxM)
is a surjection for each k and n. Moreover, the filtration on P} is exhaustive since each
object j#!jl*] (S) was observed to be compact.

Next we let
(2.0.7) Py = F(Py)(= A® P));

u’_; induces a map u” : P} = M obtained as the composition A ® PéldAg%l.A@ M — M.

We filter Py’ using the product filtration with the Cartan filtration on A and the above

filtration on Pj. This is clearly exhaustive; in view of Proposition 2.2 and the observation

that the Cartan filtration (on A) is clearly strongly separated, it is also separated. Since the

map S ® Py - A® P} - A® P} — Pj is the identity and is filtration preserving, ( 2.0.6)

shows that the induced map H"(Fi(Py')) — H"(FrM) is also surjective for each k and n.
Next we consider the operadic case. In this case we will let

(2.0.8) S(n,U)(M) = Homoq(s;r) (jurjt (R)[n], M)
and
(2.0.9) PBR=ao@ @ jnjy(R))n]

neZ U S(n,U)(M)
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with the filtration on it defined by FpP) = & (& ® Y%juin(R)[n]). (Here U
neZ U  S(n,U)(FyM)

varies over a cofinal set of open neighborhoods of every point of X.) One defines a map
u_; : P — M by mapping the summand indexed by « : jyijj;(R)[n] — M to M by the
map a. Now v’ is a map of filtered objects. The definition of the filtration {F}, Pj|k} shows
that each

is a surjection. Next we let
(20.1) Py = Fau(Fa (B) (= A< (0() @ B));

I " " . .. , iqu(ido(U@id)
u’ ; induces a map u”; : P} — M obtained as the composition A<1(O(1)®F}) — A<
(O(1)®@ M) - A<M — M. (The last map is the A-module structure on M, while the one
before that is the O(1)-module structure on For(M)eMod(S;O(1)).) We filter P}’ using
the product filtration with the Cartan filtration on A and A(1) and the above filtration
on Pj. Since the given filtration on M is compatible with the given filtration on 4 and
O(1), it follows that the map u”, : Pj — M is a map of objects in Mod;(S;.A). This
filtration will be exhaustive and separated by similar reasons. Moreover, since the compo-
sition Py = R <Py — A< (0O(1) ® Pj) — Py is the identity and is also filtration preserving,
( 2.0.10) shows that the induced map H"™(Fy(Py')) — H™(FrM) is also surjective for each k
and n. (]

PROPOSITION 2.4. Assume the above situation. Let MeMod; (S, A) be provided with an
ezhaustive filtration. Then there exist locally projective and flat objects Pie Mod;(S,.A), 1> 0
provided with non-decreasing filtrations {Fy(P;)|i} and maps d; : P; — P;_1 in Mod;(S, .A),
1>1, and a map d_y : Py — M so that the following conditions hold:

(i) for each i, Gr(P;)eMod;(S, Gre(A)) is locally projective and flat
(i) the maps d; preserve the filtrations

(iii) d; 0 disy = *

(iv) for each fized n and k,

_'H"(Fk_(>d—1))

’H"(ngﬁ_ﬂ)ﬂn(Fk(PZ))H"(Fj)(dz))Hn(Fk(Pl_l)) . Hn(FkM)

is exact stalkwise.

(v) Moreover, the filtration {Fy(P,)|n} on each P, is exhaustive and separated.

PROOF. We define P/ and P; using ascending induction on i. We will let Pj be as

(2

defined in ( 2.0.5) or ( 2.0.9). We let P}/ as in ( 2.0.7) or ( 2.0.11). Next we let
(2.0.12) Py = Cocyl(u” )

with the induced map u_y : Py — M. We provide Py with the induced filtration. i.e.
FyPy = Cocyl(Fy(u",)) = (FkM)IFxMFk(P(;’). Recall fiby(u_1) = fib(u_1) = u_7(%);
k
this is filtered by Fjfib(u_1) = fib(Fr(u_1)). It follows that the induced filtration on
P, is exhaustive. It is also separated by Proposition 2.2. Let Grj denote the associated
graded term with respect to the above filtration. Observe that Fy_1 Py — Fy Py — GriPy
is a triangle in Presh and that there exists a natural quasi-isomorphism fib, (Grg(u—1)) ~
Gri(fib(u_1)). Furthermore, Py is a flat object in Mod;(&,.A) which is locally projective;
this follows from the fact that Py is naturally homotopy equivalent to P} = F(P}). Similarly
Gr(Pp) is a flat object in Mod; (S, Gre(A)) which is locally projective - this follows from the
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fact that Gr(Fp) is naturally homotopy equivalent to Gr(Py') = Far.(4)(Gr(Fp)). Finally,
it follows from the construction that, for each k and n, the induced map of Abelian sheaves
H"(Fr(u_1)) : H"(FpPo) — H"(FxM) is an epi-morphism.

Now repeat the same construction with M replaced by fib(u_1) provided with the above
filtration. (Strictly speaking one needs to first apply the functor e as in Chapter I, (STR6)
to Py before proceeding with the construction; however, for the sake of simplicity, we will
not mention the functor e explicitly.) This provides an object PieMod;(S,.A) provided
with a non-decreasing filtration {FyP;|k} and a filtered map ug : Py — fib(u—_1) so that the
following hold:

(i) Fy—1P1 — Fp Py — Gry Py is a triangle in Presh for all keZ

(ii) Py is a flat and locally projective object in Mod; (&, .A); similarly Gre(Py) is a flat
and locally projective object in Mod;(S, Gre(A)).

(iii) there exists a natural quasi-isomorphism fibp, (Grg(ug)) ~ Gri(fiby(up))

(iv) the diagrams Fy(fiby(ug)) = fibp(Fk(uo)) — Fk(Pl)Fkﬁ;o)kaibh(u,l) are trian-
gles for all k. The same conclusion holds for the diagram: fiby,(ug) — P12 fiby(u_1) as

well as for Gry,(fibn(uo)) = fibn(Gri(uo)) — Gri(PD) 8 Gry(Fiby (u_1))

(v) for each k and n, the induced map of Abelian sheaves H"(Fy(u_1)) : H"(FpP1) —
H™(F(fibp(u_1))) is an epi-morphism.

Continuing this way we obtain a collection of flat objects {P,|n > 0} in Mod;(&,.A)
that are flat and locally projective. Moreover, there exists a non-decreasing exhaustive and
separated filtration {F} P, |k} on each P, so that the above conditions hold with P, (P,_1)
replacing P; (P, respectively). In this situation, one may now observe the following:

The map u; : P, — fib(u;_1) is the one corresponding to w_; when fib(u;_1) (P;)
replaces N (P, respectively).

For i >0, d;;1 : Piy1 — P; be the composition P; 41 fib(u; 1) — Pyandd 1 =u_ 1 :
Py — M. Now one may readily verify the conditions of the proposition. (I

2.1. Let M and {P;|i} be as in the proposition above. First one observes that

(PP > 0}, (Fu(P) ™S Fy(Pali > 0} and {Gry(P) ™ Gr(Py_1)li > 0} are
complezes i.e. the composition of the successive differentials is *. (This follows from the
construction where the map d; factors through the fiber of u;_; and d;_; is the compo-
sition of u;_; and another map. Observe that this is true, though we have omitted the
functors e throught the discussion.) Therefore, one may apply the denormalization functor
DN to it to obtain a simplicial object DN(P,) provided with a non-decreasing filtration
{Fr(DN(P,))|k} by sub-simplicial objects. Now one may take the homotopy colimits to
obtain:

hOC(A)limDN(P.) ~ M, hocAoliran (DN(P,)) ~ Fr,(M) and

2.1.1
( ) hocglimGrk(DN(P.))szM/Fk,_lM for all k

The first two follow readily from the observation that the spectral sequence for the homotopy
colimit of the above simplicial objects degenerates in view of the conclusions (iv) and (v)
in the Proposition. We proceed to establish the third quasi-isomorphism. Since the maps

Fk,lDN(P.)nngDN(P.)n are admissible monomorphisms in Presh for all k£ and all n,
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we see that Cone(ig), ~ Gri(DN(P,)), for all k and all n. (This follows from the hy-
pothesis (STR6) of Chapter L. Strictly speaking one needs to consider Cone(m(i)),.) Here
Cone(ir)e is the simplicial object defined by {Cone(ix)n|n}. Since hocAolirn preserves quasi-

isomorphisms, it follows that hoccA)limGrkDN (P) ~ hocAolimCMLe(ik). = Cone(hocglim(ik)) ~
CO’I’LC(kalM — FkM) ~ Fk(M)/kal(M) = Grk(M).
DEFINITION 2.5. The simplicial object DN (P,) defined in the last proposition will be

denoted P(M), henceforth. This will be referred to as a filtered simplicial resolution of the
filtered object M.

2.1.2. Let M, NeMod,;(&,.A) be provided with non-decreasing filtrations compatible
with the Cartan filtration on .A. Now we define an induced filtration on Hom 4(M,N) and
on Hom (M, N) as follows. Let KePresh and let k denote a fixed integer. We let K @ M
be filtered by F;(K ® M) = Image(K ® F;(M) - K @ M). We let

FrHoma(K@ M,N)={f: K®M — NeHom (K @ M,N)|fxker,mu factors through
the obvious map F; ;N — N}.

Now fix k, M and N. Consider the functor K — FyHom (K ® M, N), Presh — (sets).
Since the functor ® preserves colimits in either argument, it is clear that the above functor
sends colimits in K to limits. Now, we let FyHom 4(M, N) be defined by:

Homy (K Q@ M,N) = Homppesh (K, FyHom (M, N)).

(It should be clear that {FyHom (M, N)|k} defines a filtration of Hom 4(M,N).) Let M
and N be provided with non-decreasing filtrations compatible with the Cartan filtration on
A. Let P(M)s — M denote a simplicial resolution chosen as above applied to M instead
of L. Each P(M)reMod;(S, A); it is provided with a non-decreasing filtration compatible
with the structure maps of the augmented simplicial object P(M)es — M and compatible
with the Cartan filtration on 4. The above filtration, along with the one on N, defines an
induced filtration on each Hom 4(P (M), G"N) ~ Hom 4(P(M )y, G"N) and hence on

RHom(M,N) = holim A{Hom o(P(M)k,G"N)|n, k}

We will denote this by { Fx,RHom 4(M, N)|k}. One defines a similar filtration on on RMap 4(M, N).

LEMMA 2.6. Let MePresh be provided with a non-decreasing filtration {FyM|k}. As-
sume the filtration is separated. Let jy : U — X be in the site © and let n denote an integer.
A map feS(n,U)(FrM) will be called a trivial map if H*(f) is the trivial map. Then, after
identifying the trivial map with the base point, one obtains the isomorphisms

colims (n, U)(F M) = US(n, U)(FM) /S(n, U)(Fe-1M)

(Observe that S(n,U)(Fr—1M) is a subset of S(n,U)(FM) for each k. Each S(n,U)(FM)
s pointed with the trivial map being the base point. The quotient on the right hand side is
the set theoretic quotient where all maps in S(n,U)(Fr_1M) are identified with the base
point.)

Let f : M' — M denote a filtration preserving map between objects in Presh provided
with filtrations as above. If the filtrations on M' and M are exhaustive (separated), so is the
induced filtrations on Cocyl(f) and fiby(f).

PRrooF. Fix an integer k. Suppose feS(n,U)(F,M) be a non-trivial map, i.e. H*(f) #
*x. The hypothesis that the filtration is separated shows that, there exists a smallest in-
teger m > k so that feS(n,U)(F,M). Now f does not belong to S(n,U)(Fy,—1M).
Therefore, f represents a non-trivial class in S(n,U)(F,,,M)/S(n,U)(Fn_1M). The map
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S(n,U)(FnM) = S(n,U)(F,M)/S(n,U)(Fy,—1M) is bijective on all maps feS(n,U)(F,M)—
S(n,U)(Fpn—1M). This provides the required isomorphisms.

The last assertion follows readily by considering the long-exact sequence on applying
the cohomology functor {H?|q} to the triangle fib,(f) — M’ ~ Cocyl(f) = M — T fiby(f)
and since H7? is assumed to commute with sums. O

PROPOSITION 2.7. Assume in addition to the hypotheses of Proposition 2.4 that the
filtration on M 1is separated.

(i) If FyHom A(P(M);,G"N) denotes the k-th term of the filtration, then
(2.1.3) Fy_1Homa(P(M);,G"N) — F;Hom A(P(M);,G"N) — GryHom 4(P(M);,G"N)
is a triangle in Presh.

(11) Moreover, there exists a quasi-isomorphism

(2.1.4) Gri(RHoma(M, N)) ~ RHomgr.a)(Gr(M),Gr(N)): and
a triangle:
(2.1.5) Fi_1RHomA(M,N) — FiRHomo(M,N) — GriRHom 4(M, N)

PRrROOF. Throughout the proof we will let S denote the unit of Presh (i.e. for the
symmetric monoidal structure) in the situations of Chapter II, sections 2 and 4; in the
situation of Chapter II, section 3, it will denote R. Observe that the triangle in ( 2.1.5) is
obtained from the triangle in ( 2.1.3) by taking the diagonal followed by homotopy limits.
Moreover, by ( 2.1.1), {Gr(P(M);)|i} is a resolution of Gr(M). Therefore, it suffices to
prove (i) and show the existence of a natural quasi-isomorphism for all ¢, i and n:

(2.1.6) Gri(Homa(P(M);,G"N) ~ RHomgy.(4)(Gr(P(M));,G"GrN);

Next recall that {P(M);|i > 0} is defined using ascending induction on i as in Propo-
sition 2.4. We let P; in Proposition 2.4 be given by P(M);. Now P(M), = DN(P(M),).
Observe that Hom(DN(P(M).), L) = DN({Hom(P(M).,L)}) for any Le Presh where the
DN on the right is the denormalization functor sending co-chain complexes to cosimpli-
cial objects. Therefore, to prove (i), it suffices to prove the corresponding statement when
P(M)e has been replaced by P(M),. Recall

2.1.7 P(M);= U U L 7 (EmS
(2.1.7) (M) meZUeS S(n,U)(fibh(ui,l))ij’JU( )

where the free functor F is defined as in ( 1.0.2) . Let

( )l meZ UeS S(nyU)(fibh(ui,l))]U!JU( )

Now P(M)} is filtered by the filtration:

K3

F.P(M),= U U U 7 (EmS
kP(M); meZ Ue& S(n,U)(Fk(fibh(ui,l)))jU’JU( )

and P(M); = F(P(M)}) is given the filtration induced from the Cartan filtration of A and

3

the above filtration on P(M):.

Now we will fix an 4 and jy : U — X in the site &. Let S, (U) = US(n,U)(Fi fibn(ui—1))
and S(U) = ]golim Sk(U). Since the induced filtration on fiby(u;—1) is also separated,
——00
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Lemma 2.6 shows S(U) = IEISk(U)/Sk,l(U) modulo the identification of the trivial map
with the base point. Next consider the situations in Chapter II, sections 2 or 4 where
Presh is provided with a unital symmetric monoidal structure. In this case, one ob-

tains the quasi-isomorphism (making use of the filtration preserving quasi-isomorphism:
Hom4(F(M),M'") =2 Homs(M,M'), MePresh, M'e Mod;(S, A)):

Fy(Homua(P(M);,G"N) ~ 11 1I II v« G"Fy 1N, for each t.
t(Homa(P(M);, G"N) ~ I jUSk(U)/Skil(U)JUg bk

Therefore, in this case, one obtains a quasi-isomorphism:

Gri(Hom4(P(M);,G"N) 211 1I II iv«G"Gri N

(Homa(PONLG"N) =TL T I .G G
Since the map Fyyr_1N — F;1 ;N is an admissible monomorphism, the diagram in (i) is
indeed a triangle. On the other hand, in the same situation,

RHomg, Gr(P(M));,G"GrN) 211 11 I iusG"Griyx N
Gre(4),(Gr(P(M)) )= 1] L L tk

as well. This proves the proposition in the situations of Chapter II, sections 2 or 4. In
the situation of Chapter II, section 3, where A is assumed to be a sheaf of differential
graded algebras over an operad, Chapter II, Proposition 3.7 shows that one instead obtains
a filtration preserving chain homotopy equivalence between the corresponding terms, that is

natural in the arguments M and N. Therefore one obtains the required quasi-isomorphism
in this case as well. This proves the isomorphism in ( 2.1.6). O

REMARK 2.8. Now fix an integer ¢o. The given filtrations on M and N induce a non-
decreasing filtration F; on Fy (RHom4(M,N)). The same proof as above now shows one
obtains

(2.1.8) Gri(Fi,RHoma(M, N)) =~ RHomgr(4)(Gr(M),Gr(N)):, t<ty and
(2.1.9) ~%x t>1

and therefore a triangle:
(2.1.10) Fi_1RHomA(M,N) — F;RHom4(M,N) — GriRHom4(M,N), t <t

LEMMA 2.9. Let ¢* : Modi(&, Gre(A)) — Mod) (&, GEM(H*(A))) denote the func-

tor sending an object M to GEM(H*(A)) ® M. If a : M — M’ denotes a quasi-
Grc(A)

isomorphism of objects in Mod; (&, Gre(A)), the induced map ¢*(«) is also a quasi-isomorphism.
Similar conclusions hold for the category of right-modules.

PRrROOF. Consider a commutative square:

p 2, p
EMJ' EM/\[
M —2— M
with P, P’ flat objects in Mod;(&, A) and where the vertical maps are quasi-isomorphisms.
Now Lé*(M) = GEM(H*(A)) ® P and Lé*(M') = GEM(H*(A)) © P'; the first
G‘I"c(.A) GT‘c(.A)

spectral sequence in Proposition 1.2 computes both terms. Consider the spectral sequence
for the first term:
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Eyt = Torl, "W (H* (GEM(H*(A)), H*(P)) = H*TH(GEM(H*(A)) @EA)P)'
Gre
This spectral sequence degenerates since H*(GEM (H*(A))) = H*(A). The same conclu-
sions hold for the corresponding spectral sequence for the second term. It follows that the
required conclusions hold with L¢* in the place of ¢*.

Next recall that P = hocglimP., with P, a simplicial object in Mod;(&, Gre(A)) with

each P, being flat. The augmentation €; is induced by a map of simplicial objects €; :

P, - K (M ,0), the right-hand-side being the obvious constant simplicial object. Recall

that spectral sequence above is the spectral sequence for the homotopy colimit as in section

1. Therefore the above simplicial map induces a map of the above spectral sequence to

the corresponding spectral sequence for the homotopy colimit of the constant simplicial

object GEM(H*(A))G @EA)K(Z\;I, 0). Clearly the spectral sequence for the above constant
rC

simplicial object also degenerates thereby showing the augmentation Lo*(M) — ¢*(M) is
a quasi-isomorphism. O

2.1.11. We let ¢ : Mod;(6,GEM(H*(A))) = Mod;(S,Gre(A)) denote the obvious
functor sending an object K in the first category to an object in the second category using
the map ¢.

PROPOSITION 2.10. (i) Let MeMod{ (&, A), NeMod!" (&, A). Let MeD(Mod;(S,H*(A)))
and
NeD(Mod;(&,H*(A))) so that Grp(M) ~ ¢.(Sp(M)) and Grp(N) ~ ¢.(Sp(N)). Then
there exist quasi-isomorphisms:

L _ L _
Grr(M) ® Grp(N)~Sp(M) ® Sp(N)
Gre(A) Sp(H*(A))

(ii) Let M, NeMod!{™ (&, A). Let MeD(Mod;(S,H*(A))) and NeD(Mod, (S, H*(A))) so
that Grp(M) ~ ¢.(Sp(M)) and Grp(N) =~ ¢.(Sp(N)). Then there exist quasi-isomorphisms:

RHomara)(Gr(M), Gr(N)) =~ RHomsy-(a)) (Sp(M), Sp(N))

PROOF. Observe that the maps

Gro(M) ~ Gre(M) ® Gre(A) — Gre(M) & GEM(H*(A)) = Lé* (Gre(M))
GTC(A) G’r‘c(A)
and

L L
Grp(N)~Grp(N) ® Gre(A)— Grp(N) ® GEM(H*(A)) = Lo*(Grp(N))
Gre(A) Gre(A)
are quasi-isomorphisms. (This follows readily from the degeneration of the first spectral

sequence in Proposition 1.2 .) The given quasi-isomorphisms Grp(M) ~ ¢.Sp(M) and
Grp(N) ~ ¢.Sp(N) show that

L¢*(Grp(M)) ~ Lé*(¢.(Sp(M))) and Le™(Grp(N)) ~ Lé* (4.(Sp(N)))-

Finally observe that there exist natural maps L¢*(¢«(Sp(M))) — Sp(M) and
L¢* (¢« (Sp(N))) — Sp(N). These maps are quasi-isomorphisms, once again by the degen-
eration of the spectral sequences in Proposition 1.2. It follows that

L L L L
Grp(M) ® Grp(N)~Grp(M) @ Sp(H*(A) & Grp(N) ® Sp(H*(A))
Gre(A) Gre(A) Sp(H*(A)) Gre(A)
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L
~ Sp(M) ® Sp(N).
Sp(H*(A))
The first assertion follows.

Next we consider the second assertion. Let P(M)s — M denote the complex constructed
as in Definition ( 2.5). Now

Homgye () (Gr(P(M)i, G"Gr(N))) 2= Homgr, (a)(Gr(P(M)i, G"¢.(Sp(N))))

since Gr(P(M)); is locally projective in Mod;(Grc(A)). The latter term is quasi-isomorphic
to

Homere(a)(Gr(P(M);, .G™(Sp(N))))
= Homgre (a) (Gr(P(M)i, ¢x(Homspaes(ay) (Sp(H*(A)), 6™(Sp(N))))))
= Homare(a) (Gr(P(M);, Homsya(a))(Sp(H*(A)),G™(Sp(N)))))

where Homgp3-(a))(Sp(H*(A)),G™(Sp(N))) has the structure of a sheaf of left-modules
over Gre(A) induced from the structure of a sheaf of right-modules over Gr¢(A) on Sp(H*(A)).
By Chapter II, (2.0.9) with B replaced by Sp(H*(A)) and A replaced by Gre(A), the last
term above is quasi-isomorphic to

Homsp(rx(a) (Fare(a) (GT(P(M)Q))GTSZEA)(SP(H*(A)))a G"Sp(N))

Here Fg,.(4) is the free functor associated to Gre(A). Recall

P(MY) = U L L A mg
0k meZ UsGS(mJJ)<fibh(ui_1))JU’]U( )

which is filtered as in Theorem ( 2.3). Therefore

Gr(P(M))) = U L L 7@ :
Farey@(POON= U U (57 Gre(A)
We define a complex —> 'P; ip 1 —3_ ' M of Abelian sheaves as follows. We let Py =
W (Ry), Py = H*(Py), @i = H*(wi) : Py = H*(Pig1) — H*(fibn(wi—1)) = ker(H* (ui-1))
and d; = H*(d;) : H*(P, ) — H*(P;—1). Now one may observe that

L Y
is a resolution of M by a complex of sheaves of H*(.A)-modules. Moreover, there exists
a natural map (see Chapter I, (ST8)) Fgyr.(a)Gr(P(M); = Gr(P(M)); — ¢.Sp(P;) of

objects in Mod;(S,Gre(A)); this map is a quasi-isomorphism. Therefore, there exists a
quasi-isomorphism:

Fare((Gr(POMY)0) & | (Sp(H"(4)

=¢:(Sp(P)); ® (Sp(H*(A))) = ¢"+(Sp(P);) =~ Sp(P);

Gre(A)

where one obtains the last quasi-isomorphism as in (i). By first applying the denormalization
functor and then taking the homotopy limit over A, one completes the proof of (ii). O

DEFINITION 2.11. Let MeMod}* (&, A). We will consider the following two conditions
on the given filtration F:
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(i) Gr(M) = {F,M/F, 1M|n}eMod,(&,Grc(A)) and
(ii) Gr(M) ~ Sp(M), MeD(Mod,(&,H*(A))).

We say M is of finite tor dimension or f.t.d if M is. We say M is globally of f.t.d
if in addition M- is globally of f.t.d. Similar definitions apply to NeMod;(&,.A). We
say M is pseudo-coherent (perfect) if the hypotheses (i) is satisfied and Gr(M) ~ Sp(M),
MeD((Mod,(&,H*(A))) with M pseudo-coherent (perfect, respectively).

PROPOSITION 2.12. Let MeDy(Mod,(&,H*(A))) and NeDy(Mod;(S,H*(A))). As-
sume that M is globally of finite tor dimension. Then there exists a quasi-isomorphism:

_ L _ _ _
Sp(M) @ Sp(N)~Sp(M © N)
Sp(H* (A)) H(A)

PROOF. First assume that both M and N are complexes concentrated in degree 0. Now
we show that there exists a natural map

(2.1.12) GEM(M) ® GEM(N )—>GEM( ® N)
GEM (H*(A)) H=(A)

The hypothesis in Chapter I, (ST6) shows there exists a commutative diagram:

GEM (M) ® GEM(H*(A)) ® GEM(N) — GEM(M) @ GEM(N)

! l

GEM(M @ H*(A)® N) - GEM(M ® N)

The horizontal map in the first row is given by Acgapr) @ idapa(n), With )‘GEM(M) :
GEM(M)® GEM(H*(A)) — GEM (M) the induced module structure on GEM (M) and
the horizontal map in the second row is given by GEM (\y; ®idy, with Ay : M @ H*(A) —

M being the module structure on M. A similar commutative square also exists where the
top horizontal map is given by idgpu (i) ® Agpm(n): With Agem(w) : GEM(H*(A)) ®

GEM(N) — GEM(N) the induced module structure on GEM (N) and where the bottom
row is given by GEM (id ®)\N) with A being the module structure on N. The definition

of GEM (M) ® GEM(N) as in Chapter II, (1.2.2) and (1.2.7), shows that the map
GEM(H* (A))

n ( 2.1.12) exists.

Next consider the case when M is a presheaf of graded flat modules over H*(.A). Now
the first spectral sequence in Proposition 1.2 computes

H(GEM(M) ©  GEM(N)))=H(GEM(M)) ® W (GEM(N)) =
) N GEM (H*(A)) H*(GEM(H*(A)))
M ® N

" (A)

for each i. One may directly compute H*(GEM(M ® N%) = M ® N for each fixed
H*(A) H* (A)

i. (See for example the proof of 2.17 below.) It follows that in this case the map in ( 2.1.12)

is a quasi-isomorphism.

Now one may observe from ( 2.1.12) and Appendix B that there exists a map:

N(GEM(M)) ® DN(GEM(N)) - DN(GEM(M)) ® GEM(N))
GEM (H*(A)) H*(A)
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(_Here DN is the functor considered in Appendix B, 0.1.) Next we will assume that M and
N are bounded above by an integer m. In this case we may find a resolution of the chain
complex M[my] by a chain-complex F, all whose terms as in Theorem 2.3. By Chapter I,
(ST9)

Sp(M) =~ thocAolimDN(GEM(M[mh])) o~ thocAolimDN(F_’.) and
Sp(N) =~ thocAolimDN(GEM(N[mh])).

Therefore

_ L _
Sp(M) ® Sp(N)
Sp(H* (A))

~ Q™hocolimDN (GEM(F.)) ® Q™hocolimDN (GEM (N[my4)))
A GEM (H*(A)) A

~ Q?™hocolimA[DN (F) ® DN(GEM (N[my]))]
A GEM (H*(A))

~ Q?mhocoimDN (GEM (TOT(F[mp] ® N[my])))
A H*(A)

— Q2™hocolimDN(GEM(TOT(F ® N)my]) ~Sp(TOT(F ® N)=Sp(M & N).
A H*(A) H*(A) H*(A)

(Here TOT denotes the total complex.) O

PROPOSITION 2.13. Let MeD(Mod;(S,H*(A))) and NeD(Mod;(S,H*(A))). Assume
that M is globally of finite tor dimension. Then there exists a quasi-isomorphism:

RﬂomSp(’H*(A))(Sp(M); SP(N)) = Sp(RH()mH*(A) (M7 N))

PRrROOF. We will first consider the case when the site & is punctual, M = P is a projec-
tive module over H*(A) and N is a single module over H*(A). Now the right-hand-side iden-
tifies with Sp(Homq(4)(P, N)) and the left-hand-side identifies with Homg, (3 (4)) (P, Sp(N))
where P — Sp(M) is a quasi-isomorphism with P a projective object in D(Mod; (&, Sp(H*(A)))).
Using the observation that P is a split summand of a free H*(A)-module, one may now
obtain a quasi-isomorphism: Homg,x=(a)) (P, Sp(N)) = Homgpz+(ay)(Sp(P), Sp(N)) =

Homgem - (a) (GEM(P), GEM(N)). Using the definition of the latter as an equalizer
(see Chapter II, (1.2.2) and (1.2.8)), one may now obtain a natural map

Sp(fHOme*(A) (p, N)) = GEM(/HOm'H*(A) (P, N)) — HO’I’I’LGEM(H*(A))(GEM(.P), GEM(N))

One may compute the cohomology sheaves of the left-hand-side as in Proposition 2.17 below
and one may compute the cohomology sheaves of the right-hand-side by the third spectral
sequence in Proposition 1.2. It follows the above map is a quasi-isomorphism.

Next we consider the case when M is a sheaf of graded modules over H*(A) that is
stalk-wise projective (as a module over the corresponding stalks of H*(A)) and N is a single
sheaf. Now the right-hand-side identifies with Sp(Homq-(4)(P,GN)). Using the first case,
one may identify the left-hand-side now with Homgp(z(4y)(Sp(P),GSp(N)). Since the
homotopy inverse limits commute with themselves and with products, one may identify the
former (the latter) with

hoiim GEM (Homs«(a)(P,G"N))

(hoiirn Homeaem - (a)(GEM(P),G"GEM (N)), respectively)
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Next we proceed to show these are quasi-isomorphic. Clearly it suffices to show

(2.1.13) GEM (Homs-(a)(P,GN))
and
(2.1.14) HomGEM(H*(A))(GEM(p),GGEM(N))

are quasi-isomorphic. Recall that G = p,oU oaop* as in Chapter II, (1.0.1). Now ( 2.1.13)
identifies with GEM (p,.U(Homgop2(4)(a © p*(P),a o *(N)))) which, by the first case
considered above identifies with

ﬁ*UﬂomGEM(aoﬁ*%*(A))(GEM(aoﬁ*(P),aof)*(N))). _ _
( 2.1.14) identifies with p,U(Homgop (GEM (3~ (A))) (a0 P*GEM(P),a 0 p*GEM(N))).

Moreover, as in the first case above, one may show there exists a natural map from the former
to the latter. Next observe that *GEM(P) is a projective module over p*GEM (H*(A))

while GEM (p*(P)) is a projective module over GEM (p*(P)). Now consider the third
spectral sequence in Proposition 1.2 applied to these. It follows readily that they degenerate
at the F>-terms and the above map induces an isomorphism there. It follows that the terms
in ( 2.1.13) and ( 2.1.14) are quasi-isomorphic, thereby proving the proposition in this case.

Next consider the case where everything remains as above, except that Nisa bounded
complex that is trivial in negative degrees. In this case Sp(N) = II hoiim DN(GEM(N(7))),
if N = IIN(i). The above hokim comes out of the HHom and commutes with the hoiim
associated to the Godement resolution. Therefore, this case follows readily from the previous

one.

Next we assume M is a bounded complex that is globally of finite tor-dimension. We
may now replace M by a bounded complex P each term of which is stalk-wise projective
over the corresponding stalk of H*(.A). By applying appropriate shifts (see the proof of the
previous proposition), one may now write Sp(P) = thocAolimDN(GE'M(P[ph])). Then

RHomsp(3+(A)) (Sp(M), Sp(N)) identifies with
hogm{EmHomgp(%*(A))(DN(GEM(P[ph])), G"DNGEM(N))|n}. Since each term of the

simplicial object

DN(GEM(Plpp])) is stalkwise projective over the stalks of H*(A), one may apply the
previous case along with the results on shifts and suspension in Appendix B to identify it
with hoEm{Sp(RHomH*(A) (P,G™(N)))|n}. The case when N is not necessarily trivial in

negative degrees is also handled by applying certain shifts. (See Appendix B.) O
LEMMA 2.14. Let MeMod;(S,H*(A)). Then the following are true:

(i) M has a resolution by sheaves of the form F, = @j#a!((ﬂ*(A))‘Ua),

where each Uye®.

(ii) If M is locally of finite type, for each point T of S, there exists a neighborhood U,
of x in S so that each F,, has only finitely many summands

(ii3) If M is of f.t.d, we may find a resolution Fy — M, so that the following conditions
are also satisfied:

for each point T of X there is a neighborhood U, and an integer mz >> 0 so that

(a) (Fi)z =0 ifi > Nz, F; fori < mz are as in (i) and
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(8) (Finy) = ker(©jua (Em,—1)w.) = 91U (Eim,—2)05))

which is a sheaf of flat graded H*(A)-modules. (If the site G is quasi-compact, one may find
a common m that works for all points Z.)

PROOF. Since the site G has enough points, the above three statements are clear. [

LeEMMA 2.15. Let {K"I|i,j} denote a double complex in Mod;(&,H*(A)) so that the
differentials in the indices i and j are of degree +1. Assume that K =0 ifi <0 or j < 0.
Now DN o DN(GEM(K)) is a double cosimplicial object in Mod(GEM(H*(A))). If Tot,
and Toty denote the functor Tot (which is the Tot functor as in [B-K]), applied in the first
and second degrees respectively, one obtains a natural quasi-isomorphism:

Tot; o Tot; DN o DN(GEM(K)) ~ TotA(DN o DN(GEM(K)))
~ Tot(DN(TOT({GEM (K*)|i,5})))
where TOT({GEM (K%9)|i,j}) is the total co-chain complex defined by

(TOTUGEM(K™)li, j))* = T GEM(K"")

REMARK 2.16. Observe that TOT({GEM (K")|i,j}) = GEM(TOT({K"J|i, j})).

ProoOF. This is clear since we are working in an Abelian category. O

PROPOSITION 2.17. (i) Let M = IIM (i)eD(Mod,. (&, H*(A))) be globally of finite tor
dimension,

N =T1IN(i)eMod; (&, H*(A)). Then

HH(GrlSP(T 5 N)) = H(N S NI(0) = H(F o NI0)

= TOT‘H*(A)(M, N)

—st
(ii) Let M = I}M(i)sD(MOdl(G,’H*(A))) be globally of finite tor dimension,
N = I;IN(i)eD(Modl(G,'H*(A))). Then
HH(Gr[ Sp(RHoma- () (M, N))]) 2= HE ([RHoma- 4)(M, N)|(8)) = H? ([Homa- ) (F,
gN)I(1))
= Smt;’tt*(A)(M, N)

PROOF. This follows from the following computation. Let K = I1K (i)e D(Mod, (&, H*(A))).

By applying some shifts as in Appendix B, one may assume without loss of generality that
this co-chain complex is trivial in negative degrees. Now recall that Sp(K) = II hoEm(EMi (K (7).

Moreover, H*(EM;(K (i)) = K (k) if i = k and = 0 otherwise. Moreover, observe that the
filtration on Sp(K) is given by Sp(K); = EItEM,(K(z)) Therefore the spectral sequence

for the homotopy inverse limit in Chapter I,_ (H1) shows that
M (Gr[Sp(K)]) = H (holim(EM, (K (1)) = H* (H'(EM,(K (1)) = H*(K(t))
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Let P — M denote a quasi-isomorphism from a bounded complex of sheaves of H*(A)-

modules that is stalkwise projective. Take K = P @ N (K = Homy-(4)(P,G(N))) to
H* (A)
obtain the first (second, respectively) result. O

THEOREM 2.18. (i) Let MeMod{* (&, A), NeMod{" (&, A) and let Me D(Mod,(S,H*(A))),
NeD(Mod;(&,H*(A))) so that Gr(M) ~ Sp(M) and Gr(N) ~ Sp(N).

In this situation, there exists a spectral sequence:
. o L
B2, = Torl, W (i1, N) = H= T (MEN)

Moreover, this spectral sequence converges strongly if at least one of M or N 1is of finite tor
dimension.

(i1) Let MsModlf”(G,A), NsModlf“(G,A) and let
MeD(Mod;(&,H*(A))), NeD(Mod,(&,H*(A))) so that Gr(M) ~ Sp(M) and Gr(N) =~
Sp(N). Assume further that both M and N are globally of finite tor dimension (and in
particular, bounded).

In this situation, there exists a spectral sequence:

Ey' = Eaty. 4 (M,N) = H* (RHoma(M, N))

In general, this spectral sequence converges only conditionally in the sense of [Board]. How-
ever, this spectral sequence converges strongly in the following cases:

(a) if M is perfect (with no further hypotheses) or

(b) if H*(A) is locally constant on the site S and M is constructible.

PROOF. Let P(M), — M denote a resolution as in Proposition 2.4. Consider (i). Now
L
we filter MQN = hocglimP(M )e®N by the filtration induced from the given filtrations on
A A
M, N and the Cartan filtration on A. Now we obtain the identification:

Gr(M®N) = Gr(hocolimP(M).®N)
A A A

o~ hocglimGr(P(M).%)N) ~ hocglim[GrP(M). ® Gr(N)]

~ (hocolimGrP(M)s) ® Gr(N)=~Gr(M) ® Gr(N)
A Gre(A) Gre(A)

The first ~ is clear since hocglim commutes with taking the associated graded terms, while

the second ~ follows from the observation that taking the associated graded terms commutes

with co-equalizers, the third follows from the commutativity of hocAolim with  ® and the
Gre(A)

fourth follows from ( 2.1.1).

L L L L

A A A Gre(A)
is a triangle. We take H* of the above triangle to obtain a long exact sequence and the
associated exact-couple. This provides the required spectral sequence. Now the identification
of the E%-terms follows from Proposition 2.10 (i), Proposition 2.12 and Proposition 2.17.
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The strong convergence of the spectral sequence is clear from the hypotheses that either M
or N is of finite tor dimension.

Now we consider (ii). GrRHoma(M,N) ~ RHomgr,a)(Gr(M),Gr(N)) by ( 2.1.4).
i.e. we obtain the triangle

Fy 1RHoma(M,N) = FyRHoma(M,N) = RHomgr,(a),:(Gr(M),Gr(N)).

On taking the cohomology sheaves, we get a long exact sequence which provides the exact
couple for the spectral sequence in (ii). It suffices to identify the Es-terms of this spectral
sequence. Now Proposition 2.10 (ii) and Proposition 2.13 show that

FyRHomgre (a)(Gr(M),Gr(N)) =~ Sp(F,RHoms-(4y(M,N))

Proposition 2.17(ii) computes the cohomology sheaves of the last term to obtain the iden-
tification of the Es-terms. Under either of the assumptions one may show that there exists
an integer N >> 0 so that Eg’t = 0 if s > N. Observe that the system of neighborhoods
of any point have uniform finite cohomological dimension. Therefore the spectral sequence
converges strongly under the given hypotheses. ([l

REMARK 2.19. Recall the results in Remark 2.8. These show that, under the same
hypotheses as in the theorem, for any fixed t(, one obtains a spectral sequence:
it .t A
Egzgm;%M@LNy t <t
=0, t>t
= H*T (F, RHom (M, N))

In particular taking ¢y = 0, one obtains a spectral sequence whose E;*t terms are trivial
if s < 0ort > 0ie. the spectral sequence is a fourth quadrant spectral sequence. The
convergence of this spectral sequence is conditional, in general, under the same hypotheses
as in (ii) of the above theorem. However, [Board] Theorem (7.2) shows that if M’, N’ are
two objects in Mod, (&, A) satisfying the hypotheses of (ii) in the above theorem provided
with maps M’ — M, N’ — N inducing an isomorphism of the corresponding Es-terms
of the above spectral sequence, then one obtains an isomorphism of the abutments. In a

similar manner, one obtains a spectral sequence
Eit =} 7'07“:7[;(“4) (M,N), t<tg
>0, t>t
= H *TY(F,, Tor* (M, N))

3. Triangulated category structure on the derived category of objects with
finite tor dimension or objects that are perfect

We end this chapter by defining a derived category associated to the category of objects
that are globally of f.t.d or perfect in the sense of Definition 2.11.

DEFINITION 3.1. Assume the situation in section 1. (i) If AePresh is an algebra,
we will let Modlf't'd(G,.A)) (Mod’loerf(G,.A)) denote the following category. An object of
Modlf't'd(G, A) (Mod‘;’erf(("), A)) is an object MeMod;(S,.A) which is globally of f.t.d (per-
fect, respectively) together with the a non-decreasing exhaustive and separated filtration F'
compatible with the Cartan filtration on A along-with the choice of an MeDy(Mod; (&, H*(A)))
globally of f.t.d (perfect) so that Sp(M) ~ Grp(M). In case H*(A) is locally constant on
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the site &, we will define an MeMod;(S,.A) to be constructible, if H*(M) is constructible
as a sheaf of modules over #*(A). The full sub-category of D(Modlf't'd(G, A)) consisting of
objects that are also constructible will be denoted D(Modlc’f't'd(("), A)).

(ii) Given two such objects M, N, we let Hom(M, N) denote the subset of all maps
feHom (M, N) so that f preserves the given filtrations on M and N i.e. Hom(M,N) =
FoyHom (M, N).

(iii) Given a map f : M — N as in (ii), f is a filtered quasi-isomorphism if it induces
a quasi-isomorphism F;M — F;N for all i. (Observe that this implies Grp(M) — Grp(N)
is also a quasi-isomorphism; conversely, if the filtrations are bounded below in the sense
F;M = F; 1M for all i << 0 and similarly for IV, the last condition is equivalent to f being
a filtered quasi-isomorphism.)

(iv) In the situation of Chapter II, sections 2 or 4, we observe that FoHom 4(M,N) =
Map(S, FoHom4(M,N)). In this case we define the homotopy category associated to

Mod]"**(&, A) (Mod?*" (&, A)) to be given by the same objects as Mod] “*(&, A)
(Mod‘;’”f(('-”),A), respectively) and with morphisms H°(Map(S, FoHom o(M,N))). In the
situation of Chapter II, section 3, we define the homotopy category associated to M odlf 't'd(G, A)
(Mod?*"¥ (&, A)) by the same objects as Mody(S, A) (Mod’*™¥ (&, A), respectively) and
where the morphisms are given by H°(FyMapa(M, N)).

PROPOSITION 3.2. Assume the above situation.
(i) The M in (i) in the above definition is uniquely determined by the given filtration
(i) The homotopy categories defined above are additive

(11i) The class of filtered quasi-isomorphisms admits a calculus of left and right fractions.

PROOF. Observe that H*(Grp(M)) = H*(Sp(M)) = M. Therefore M is uniquely
determined by the given filtration. This proves (i). In the situation of Chapter II, sections
2 or 4, observe that FoHom (M, N)ePresh and therefore H°(Map(S, FoHom 4(M, N))) is
an abelian group. In the case of Chapter II, section 3, it is clear that H°(Fy(Map (M, N)))
may be identified with certain chain homotopy classes of filtration preserving maps M to N
in Mod;(&,.A). Therefore this group is also abelian. Moreover, the category Mod;(S,.A)
is clearly closed under sums and one may readily verify now that the homotopy category is
additive. In order to prove (iii), we simply remark that the proof in Chapter II, lemma (4.3)
carries over to the filtered setting, since all the constructions there preserve filtrations. [

DEFINITION 3.3. D(Mod] (&, A)) (D(Mod"*"/ (&, A))) will denote the localization of

the homotopy category associated to Mod! **(&, A) (Mod’*"¥ (&, A)) by inverting filtered
quasi-isomorphisms.

PROPOSITION 3.4. Let D denote one of the above derived categories. Now

(i) Homp(M,N) = H°(Map(S, FoRHom 4(M,N))) in the situation of Chapter II,
sections 2 or 4 and = H°(FyRMapa(M, N)) in the situation of Chapter II, section 3. (ii)
The above derived category has the structure of a triangulated category.

PrOOF. We will only consider the first situation, since the proof of the second situ-
ation is similar. If M’ — M and N — N" are filtered quasi-isomorphisms, the spectral
sequence in Remark 2.19 shows that the induced maps H°(Map(S, FyRHom 4(M',N))) —
HO(Map(S, FoRHom 4 (M, N))) — H°(Map(S, FyRHom o(M, N"))) are isomorphisms. It
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follows that the natural map from H°(FoMap (M, N)) to H(Map(S, FoRHom 4(M, N)))
factors through the derived category defined above. Now an argument as in the proof of
Chapter II, Proposition 2.7 completes the proof of (i).

Since the homotopy category is additive, so is the derived category. Now it suffices to

define the triangles. We define these to be diagrams of the form: X %Y %Z% %X where
the maps all preserve the given filtrations and which are isomorphic in the filtered derived
category above to diagrams of the form: X %Y %Cone(u) 3> X (Here all the maps are again
supposed to preserve the obvious filtrations.) We skip the verification that these satisfy the
usual axioms on distinguished triangles. O

3.1. Next assume one of the following: under the hypotheses that Presh is a unital
symmetric monoidal category, A is a commutative algebra in Presh or under the hypotheses
that Presh = C(Mod(S,R)) for a commutative ringed site (5,R), A is an E°-sheaf of
algebras over an E*-operad. We may identify Mod;(S,.A) and Mod,(S,.A) and denote
them by Mod(S, A). The results of the last section show the following:

There exists bi-functors

(3.1.1) § . D(Mod? (6, A)) x D(Mod!*4(&, A)) — D(Mod’ (&, A))

(3.1.2)  RHomy : D(Mod'+4(&, A)? x D(Mod!*4(&, A)) — D(Mod? (&, A))

L
so that RHom 4o(M, RHom4(U,V)) ~ R'HomA(M%U, V). Similar conclusions hold for the

category

D(ModP¢"¥ (3, A)). i.e. The categories D(Mod?*%(&, .A)) and D(ModP¢"f (&, .A)) are ten-
sor categories with an internal hom defined by RHom4. In the next chapter, we will
establish the formalism of Grothendieck-Verdier duality in the setting of the above derived
categories.

3.1.3. We end this chapter with a summary of the basic results.

e There are essentially two distinct frameworks for the rest of the paper: a category
of presheaves on a site that is an enriched unital symmetric monoidal ¢-category
and presheaves (and sheaves) of modules over an E*°-operad on a site. Though the
latter is not an enriched unital symmetric monoidal category, it is a sub-category of
the category of complexes of sheaves of modules over a ringed site in the usual sense.
The latter is an enriched unital symmetric monoidal t-category: this observation
enables one to apply the techniques for enriched unital symmetric monoidal t-
categories to presheaves and sheaves of modules over an E*°-operad. For example,
one may obtain a sheaf of E°°-DGAs associated to the motivic complex on the
étale, Nisnevich or Zariski site of a scheme and one may consider the category of
sheaves of E*°-modules over it. (See [J-6].)

e In the first case one can consider either a category of presheaves on a site which is
an enriched (unital symmetric) monoidal category or one can consider a category
of presheaves on a site taking values in an enriched unital symmetric monoidal
category. Presheaves taking values in a stable simplicial model category (for ex-
ample the stable simplicial model category of I'-spaces, symmetric spectra) form
an example of the latter. The Al-local presheaves of spectra in the sense of [M-V]
form an example of the former. (Once the axioms on the strong ¢-structure are
verified in this case, the entire theory of Grothendieck-Verdier duality developed
here, will apply to this case.)



64

III. HOMOLOGICAL ALGEBRA IN ENRICHED MONOIDAL CATEGORIES

e In all the above situations, one has an associated homotopy category (which is

additive) and a derived category which is obtained by localizing the homotopy
category by inverting a class of morphisms that are quasi-isomorphisms. The
additivity of the homotopy category follows as in the discussion following the proof
of Lemma (4.3) in Chapter II for the case of enriched unital symmetric monoidal
categories: this is clear in the case of presheaves of algebras and modules over an
E*>-operad. One may also verify readily that finite sums are canonically quasi-
isomorphic to finite products in all of the above cases.

Assume any one of the above situations and that A is either an algebra with respect
to the unital symmetric monoidal structure in that case or that A is an algebra
over the given E*-operad in the operadic case. Let S denote the unit for the
symmetric monoidal structure and let it denote the sheaf of rings R as in chapter
I1, section 3 (i.e. in the operadic case.) Let Mod;(&,.A) denote the category of all
left-modules over A and let D(Mod;(S,.A)) denote the associated derived category.
Let D(Mod(6,S)) denote the derived category of modules over S. In this case
there exists a free-functor F : D(Mod(6,S)) — D(Mod;(S,.A)) adjoint to the
forgetful functor U : D(Mod;(S,.A)) = D(Mod(&,S)).



CHAPTER IV

Grothendieck-Verdier duality

1. Introduction

In this chapter we complete the theory of Grothendieck-Verdier duality in the setting of
enriched symmetric monoidal t-categories. We show that the familiar six derived functors
of Grothendieck may be defined in this setting with reasonable properties. The key to much
of these is the frame-work developed in the first three chapters; in particular the spectral
sequences in chapter 3 play a key role.

Throughout this section we will closely follow the framework and terminology adopted
in Chapter II, section 1. In addition to the hypotheses and conventions there, we will adopt
the following as well.

1.0.1. We will often impose various other hypotheses on the sites. Some of our results
are often easier to establish if all the objects in a given site have finite L-cohomological
dimension for some (possibly empty) set of primes L in the following sense: an object U
in the site & has finite L-cohomological dimension , if there exists an integer N >> 0
so that for every abelian [-torsion sheaf F, leL, H5 (U, F) = 0 for all i > N. (Here Hi
denotes the cohomology computed on the site &.) (If L is empty, the above hypothesis will
mean that for every abelian sheaf F on the site G, H5(U, F) = 0 for sufficiently large i.)
Nevertheless, since we will need to consider schemes defined over arbitrary base schemes (for
example, fields that have in general infinite cohomological dimension), we will never make
this hypothesis a requirement. (On the other hand, when considering the right derived
functor of the direct image functor and the direct image functor with proper supports, there
is no loss of generality in making a similar assumption: see ( 2.2) below.)

1.0.2. There are often properties that we can require of morphisms between sites. Some
of these are left as primitive, as the meaning may change from one situation to another.
For example, the notion of a morphism being proper, of finite type, an open immersion or
tmbedding are left as primitive. If the sites are associated to schemes or algebraic spaces,
these will have the familiar meaning,.

Ezamples of sites. Clearly most of the sites that one encounters often satisfy these hypothe-
ses: these include the big and small étale, Nisnevich and Zariski sites as well as the h-topology
or site in [MV] associated to algebraic spaces of finite type over a Noetherian base scheme.
In addition, one can also consider the familiar sites associated to locally compact Hausdorff
topological spaces as shown in 2.13.

1.0.3. We will assume that if & is a site (as above), Presh(&) denotes a category of
presheaves on the site & satisfying either one of the two hypotheses as in Chapter III, and
B is an algebra in Presh(&). Recall this means it is either an enriched unital symmetric
monoidal ¢-category and A is an algebra in the underlying symmetric monoidal category or
that Presh(6) = C(Mod(6,R)) for a sheaf of commutative Noetherian rings R and that
A is a sheaf of algebras over an E°°-operad. In the either case, we will let S denote the unit
of the category Presh(&), i.e. in the first case S will denote the unit of the given unital
symmetric monoidal structure and in the second case it will denote R. (The existence of such
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a unit will simplify the proofs often.) H* will denote the corresponding cohomology functor
taking values in an Abelian category A: we will require that this satisfy the hypothesis
as in Chapter II, (2.1.1.*). The homotopy category and the derived category associated to
Presh(6) will be again as in Chapter I1. If B is an algebra, the derived category associated to
Mod; (S, B) will often be denoted by D(Mod; (S, B)). In case X is the terminal object of the
site &, we will often denote the ringed site (&, B) by (X, B) and the above derived category
by D(Mod;(X,B)). We will also consider the derived categories D(Modlc’f't'd(X, B)) (in
case H*(B) is locally constant on the site) and also D(Mod?*"/ (X, B)) in the sense of last
chapter.

Let G and &’ denote two sites as above provided with presheaves of algebras B (on &) and B’
on &'. Let X and X' denote the corresponding terminal objects. If f : (X, B) — (X', B') is
a map of such ringed sites, we define several derived functors associated to f in this section.
The main result we obtain shows that these derived functors satisfy the usual formalism of
Grothendieck-Verdier duality. These may be stated as follows. (Throughout, we will require
the hypotheses as in 2.2 hold in the following statements.)

THEOREM 1.1. (See 2.9.) Let f: (X,B) — (X', B’) denote a map as in 2.4. (i) Under
the hypotheses of 2.5 through 2.7, there exists a functor

Rf . D(Mody(X,B)) — D(Mod;(X', B'))

which satisfies a projection formula as in 2.17. (ii) In case f is proper, Rf!# may be identified
with Rf. = the derived functor of the direct image functor. (iii) Moreover, the functor Rf!#
has a right-adjoint Rf;‘yé :D(Modi(X',B')) — D(Mod;(X, B)).

(iv) Let Sp denote the functor in Chapter I, Definition 4.6. Then there exist natural iso-
morphisms of functors RfoSp ~ SpoRf¥ : D(Mod;(X,H*(B))) — D(Mod;(X', Sp(H*(B'))))
and Rfl, o Sp~ Spo Rf}, : D(Modi(X',H*(B'))) = D(Mod,(X, Sp(H*(B)))).

1.0.4. Next we consider dualizing presheaves both in the relative and absolute situation.
We will assume throughout that all maps are compactifiable in the sense of 2.4. Further-
more we will assume that (S,.A) is a commutative base-ringed site and that all ringed sites
we consider are commutative and defined over it. We let D(Mod; (&,B)) denote either
D(Mod""! (&, B)) in general or D(Mod?'**(&, B)) when H*(B) is locally constant, on the
site &. (We will similarly let D(Mod} (&, H*(B))) denote either one of the derived categories
D(Mod*"? (&, H*(B))) and D(Mody?"*(&,H*(B))).) In this case we let Dg = Rp',(A)
and call it the dualizing presheaf. We let Dg : D(Mod;(X,B)) — D(Mod,(X,B)) denote
the functor F — RHomp(F, Dg). Now we obtain the bi-duality theorem.

THEOREM 1.2. Bi-duality Theorem (See Theorem 4.7.) Assume in addition to the
above situation that the following hypothesis holds.

Let Dy«(py denote the dualizing complex (defined in the usual sense) for the category
D(Mod; (&, H*(B))) of complezes of sheaves of H*(B)-modules. Let FeD(Mod] (&, H*(B)))
be so that the natural map F' — Dy«(y(Dy= ) (F) is a quasi-isomorphism.

Let FeD(Mod;} (&, B)) so that Gr(F) ~ Sp(F). Then the natural map F — Dg(Dg(F))
s a quasi-isomorphism.

The above theorem applies in (at least) the following three situations:
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(i) Consider schemes or algebraic spaces of finite type over a base scheme S. Assume
all the schemes and algebraic spaces are provided with the étale topology and L is a non-
empty set of primes different from the residue characteristics. Let A denote a presheaf
of commutative algebras on S so that for each n, H"(A) is locally constant on the étale
topology of S and has L-primary torsion. Now the hypotheses in the Bi-duality theorem
are satisfied by any FsD(Modlc’f't'd(G,H*(A))). (See [SGA]4;/5 p. 250.) Therefore, the
bi-duality theorem holds for any FeD(M odlc’f (&, A)). The bi-duality theorem also holds
for suitable L-completions of a presheaf of algebras A. See 6.1 for a detailed discussion of
this application.

(ii) Next assume FeD(Mod?*"! (&, H*(B))) and that Dj- () is locally quasi-isomorphic
to H*(B) modulo certain shift. In this case, the conclusion of the theorem holds for any
FeD(Mod?*"/ (&, B)) so that Gr(F) ~ Sp(F).

(iii) Consider locally compact Hausdorff topological spaces over a base space S of the
same type. Assume that L is a (possibly empty) set of primes for which all the spaces are of
finite L-cohomological dimension. (Recall that if L is empty, this means all the spaces are of
finite cohomological dimension.) Let .4 denote a presheaf of commutative algebras on S so
that each H™(.A) is locally constant and of L-primary torsion. Then the hypotheses in the
bi-duality theorem are satisfied by any F‘eD(Modf’f't'd(G,H*(A))). (See [K-S-2] chapter
ITI.) Therefore, the bi-duality theorem applies to the case when A is the constant presheaf
of spectra representing a generalized cohomology theory, for example topological (complex)
K-theory. The details are worked out at the end of this chapter. (See 6.4.)

In the following theorem, if (&, A) is a ringed site, D(Mod; (&, .A)) will denote either
D(Mod;""**(&, A)) or D(Mod"*" (&, A)).

THEOREM 1.3. (Grothendieck-Verdier duality)

Assume in addition to the situation of the above theorem that f : (X, H*(B)) — (X', H*(B'))
is either of finite tor dimension or perfect.

(i) If Rfi : D(Mod}(X,B)) — D(Mod}(X',B")) is defined by Dy o Rf, o Dg, there
erists a natural isomorphism Rfy ~ Rf!#. If Rf' = Dg o Lf* o Dy, there exists a natural
isomorphism Rf' ~ Rf:# of functors D(Mod; (X',B')) — D(Mod; (X, B)).

(i1) There exist the following natural isomorphisms of functors:

Rf. oD ~ Dg o RfY : D(Mod(X,B)) — D(X',B'), Rf}, oDg =~ Dgo Lf* :
D(Mody(X',B")) — D(Mod,(X, B)),

Dp o Rf. ~ RfioDg : D(Mod; (X,B)) — D(Mod.(X',B')) and Lf* oD ~DgoRf" :
D(Mod} (X',B")) — D(Mod.(X,B))

If X belongs to the site &, we define the generalized homology of X with respect to
A to be the hypercohomology of X with respect to Rp!#(A). (Here X denotes the ter-
minal object of the site &.) We say that X has Poincaré-Verdier duality if there exists a
class [X]eH ™" (H(X; Rp., (A))) so that cap-product with this class induces an isomorphism
HF(H(X;p* (A))) — H™HR(H(X; Rp!# (A))). We conclude by showing that if we are con-
sidering schemes over a base-scheme provided with the étale site, Poincaré-Verdier duality
in the above sense implies an isomorphism between the functors Rf' and f* o £" . We also
derive various other formal consequences of Grothendieck-Verdier duality.
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Next we will provide a quick summary of the various sections. In the second section
we consider the derived functors of the direct image and inverse image functors associated
to a map of ringed sites as in 2.1 or 2.4. We also define the hypercohomology spectrum
functor, the derived functor of the direct image functor with proper supports and obtain a
projection formula. In the third section we show, under the hypothesis that the sites are
locally coherent and coherent, that there exists a right adjoint to the derived functor of the
direct image with proper supports.

In the fourth section, we define various dualizing presheaves and end with the bi-duality
theorem. In the fifth section we derive the Grothendieck-Verdier formalism of duality be-
tween the various derived functors: we show that all the familiar results on Grothendieck-
Verdier duality carry over to our general setting. (In turn, these are applied in the next
chapter to provide micro-local character-cycles for constructible sheaves with values in com-
plex K-theory.) We end by considering some concrete examples in section six.

2. The derived functors of the direct and inverse image functors

2.1. Maps of ringed sites. Let Presh (Presh’) denote the category of presheaves
on a site &’ (&, respectively) as in Chapter III, 1.2. We will further assume one of the
following:

e Both are unital symmetric monoidal ¢-categories. X’ (X) is the terminal object
of the site &' (&) and B’ (B) is a presheaf of algebras in Presh(&’) (Presh(S),
respectively) or

e O' (0) is an E*-operad on the ringed site (&', R’) ((&,R), respectively). B’ (B)
is a presheaf of algebras over the operad O’ (O, respectively) and X’ (X) is the
terminal object of the site &' (&, respectively)

DEFINITION 2.1. In the first case, a map f : (X,B) — (X',B’) of ringed sites is a
map of sites f : & — & so that the induced functors: f. : Presh(S) — Presh(&’), f* :
Presh(6') — Presh(6) satisfy the following conditions. f. preserves admissible monomor-
phisms and commutes with the functors EM,,, neZ, while f* preserves the monoidal struc-
ture. We let S (S’) denote the unit of Presh(&) (Presh(&’), respectively). The inverse-
image functor Mod(&’,S') — Mod(&,S) induced by f will be denoted f~! and we require
that f~1(S’) = S. Moreover, in case B = f~1(B’), we require that f* also preserves the
strongly triangulated structure and strong t-structure.

In the second case, a map f: (X, B) — (X', B’) is given by a map of sites f : (6, R) —
(&',R') so that f1(R') =R, f1(O'(k)) = O(k) for all k > 0. In addition one is given a
map B’ — f.(B) of algebras over the operad O’.

In this context Mod;(X, B) and Mod; (X', B") will denote the category of sheaves of mod-
ules over (X, B) and (X', B) respectively. f. (f*) now induces a functor f, : Mod;(X,B) —
Mod(X',B') (f* : Mod,(X',B") — Mod,(X, B), respectively).

(Following 1.0.3, we let S (S’) denote the unit of Presh(S&) (Presh(&’), respectively).
Recall that in the second case this is R (R’, respectively).)

REMARK 2.2. Often we may assume that there is a base-ringed site (S,.A) and that the
given map f : (X,B) — (X', B') is a map of ringed sites over (S,.A).
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EXAMPLE 2.3. As an example of the first case of maps of ringed sites, we may consider
the following. Let C denote a fixed enriched unital symmetric monoidal ¢-category. Let
B (B') denote a presheaf of algebras with values in C on the site & (&'). Then any map
f: 6 — & for which there exists an induced map B’ — f.(B) of presheaves of algebras
defines a map of ringed sites f : (X,B) — (X', B) if X’ (X) denotes the terminal object of
the site &' (S, respectively).

2.2. Let f: (X,B) — (X',B') denote a map of ringed sites in the above sense. If
FeD(Mod;(X, B)), we define Rf.(F)eD(Mod;(X',B’)) as in Chapter II, (1.1). The defini-
tion of hoiim as an end shows one may identify Rf.(F'), upto a natural quasi-isomorphism,

with f, hoiim G*F. In this context we will always make the following assumption:

there exists an integer N >> 0 so that R*f,(M) = 0 for all s > N and all MeMod; (X, H*(B)).

One may define the hypercohomology of an object Ue& /X with respect to an FeD(Mod; (X, B))
by H(U, F) = hoiim{F(U, G"F)|n}. Observe that there exist spectral sequences:

(2.2.1) Ey' = REfHU(F) = HPY(R(F)) and
(2.2.2) ES' = H*(U,H'(F)) — H*T'(H(U, F))
In view of the hypothesis 2.2, the first spectral sequence converges strongly. Since we do not

assume a similar condition of finite cohomological dimension on the objects of the site, the
second spectral sequence does not converge strongly in general.

2.3. One may define Lf* : D(Mod;(X',B")) — D(Mod;(X, B)) by

LIf(K)=B & f-\(K), KeD(Mody(X',B))

f=1(8)
L
where the left derived functor ® is defined as hocolim(B ® f~'(P(K).)) where
7o) AT i

P(K)es — K is a flat resolution as in Chapter II, Proposition 2.4. Now there exist spectral
sequences:

(2.3.1) B2, = L*f*(H'(N)) = H T (Lf*(N)), NeD(Mody(X'; B))

PropoOSITION 2.4. (i) If QF" — F' — F — F" is a triangle in D(Mod;(X,B)),
Rf.(QF") = Rf«(F') = Rf.(F) = Rf.(F") is a triangle in D(Mod;(X',B')). Moreover,
if F' — F is a quasi-isomorphism in D(Mod;(X, B)), the induced map Rf.(F') — Rf.F is
a quasi-isomorphism in D(Mod, (X', B)).

(i) If F' - F — F" — XF' is a triangle in D(Mod;(X',B")), the induced diagram
Lf*(F') — Lf*(F) — Lf*(F") — Lf*(XF') is a triangle in D(Mod;(X, B)). Moreover, if
F' — F is a quasi-isomorphism in D(Mod;(X',B')), the induced map Lf*F' — Lf*F is a
quasi-isomorphism in D(Mod;(X, B)).

PROOF. These are immediate from our definitions, and the hypotheses on homotopy
limits and homotopy colimits. O

Next we recall the functors RHomp for an algebra BePresh(S). We define RHomp
(RHomp,) to be the functor RHompg applied to the category Mod;(X,B) (Mod.(X,B),
respectively). We proceed to consider variants of these presently.



70 IV. GROTHENDIECK-VERDIER DUALITY

LEMMA 2.5. Let B', B denote two algebras in Presh(S). We will let Modg .5 ,(S)
denote the category of objects in Presh(S) that have the structure of a presheaf of left-B
and right B'-bi-modules. Let NeModp ;5 ,+(S) and PeModp ,(6). Assume there exists a
map B' — B of algebras. Then

L

(1) RHomBI,T(M%)N, P) ~ RHomp (M, RHomp: (N, P)) and
L

(ii) RMapB:m(M%)N, P) ~ RMapg (M, RHompg: (N, P))

PRrROOF. Let P(M), — M denote a simplicial resolution as in Chapter II, Proposition 2.4
by objects in Mod,(S,B’) and let P(N), — N denote a corresponding simplicial resolution
in Mod, (S, B). Let {G"P|n} denote the Godement resolution. Now

R’HomB,,T(MéN, P) = holim A{Homs,, (P(M)s@P(N)a, P)}
~ hoéim A{Homp (P(M)e., AHomp: »(P(N)..,G"QP)}
o~ hoiim{%omB7T(P(M)., hoiim{%omglw (P(N)e,G"QP)})}

~ RHomp,,(M,RHomp (N, P))

The first ~ follows from Chapter II, (2.0.15) while the second ~ follows from chapter I,
cofinality of the homotopy limits. The last ~ is clear from the definition of the above
derived functors. This proves (i). The proof of (ii) is similar. O

PROPOSITION 2.6. Let f : (X,B) — (X',B') denote a map of ringed sites as before.
Then one obtains the quasi-isomorphism:

(i) Rf RHomp (Lf*M,N) ~ RHomp: (M, RfN), MeD(Mod,(&',B')) and
NeD(Mod,.(6,B)).

Under the same hypotheses, one also obtains:

(it) RMapp »(Lf*M,N) ~ RMapp (M, Rf.N). (i.e. The functor Rf, is right adjoint
to Lf*.)

PrROOF. We will let S (S') denote a unit for the category Presh(S) (Presh(&'), re-
spectively) as in 1.0.3. Clearly it suffices to show that one obtains a quasi-isomorphism after

applying the functor RMaps(K, —) to both sides, where KePreshc(&’). On applying this
functor to the left-hand-side, one obtains:

RMaps(K, Rf RHomp . (Lf*(M),N)) ~ RMaps:/(f 1(K),RHomg, (Lf*(M),N))

~ RMaps,(f(K)SLF" (M), N) = RMaps(f (K)o (1) & B,N)

L
~ RMapy1 (0,0 (1K) S (M), RHomss (B, N))
L L
o~ RMapffl(B,)J(f_l(K)g?lf_l(M), N) ~ RMapBIJ(K(}S?M, Rf.N)

~ RMaps (K, RHomg: (M, Rf,N))
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The first ~ follows from the adjunction between f~' and f, while the second and third
follow from Lemma ( 2.5). The next ~ follows from Chapter II, Proposition 2.1 (i), while
the one following it results from the adjunction between f~! and f.. Finally the last ~
follows by another application of Lemma 2.5. Chapter II, 2.4.2, shows how to obtain the
second assertion from the first. O

PRrROPOSITION 2.7. Let f : (X,B) = (X',B), g : (X',B") = (X",C) denote maps of
ringed sites. Then the natural map R(g o f)«F — Rg« o RfyF, FeD(Mod;(X,B)) is a
quasi-isomorphism.

PROOF. This results readily from the following observations:
() Bg o ). F = holim{(g© /).G" Fin} ~ g. o f. holim{G" Fn} and

(ii) the natural map g o fi hoiim{g"F|n} = g« hoiim{gmf*(hoiim{g”F|n})|m} is a

quasi-isomorphism.

The first is clear. Now observe that both sides of (ii) are functorial in F' and send triangles
in F to triangles. This shows that there exist spectral sequences:

Ey' = R(g0 )«H (F) "= H*T'(R(g © )«(F)) and
By = H*(Rg. o Rf.H!(F)) "= H*T'(Rg, o Rf.(F))~

These spectral sequences converge strongly in general in view of the hypothesis 2.2. There-
fore the above spectral sequences reduce the proof to that of abelian sheaves. In this
case the quasi-isomorphism R(g, o f.)(F) = R(g o f).(F)=Rg. o Rf.(F) is clear, since
Rf.(F) = f.{G"F|n} is a complex of sheaves, each term of which is flabby on the site
G O

THEOREM 2.8. Let f: (X,B) — (X', B') denote a map of ringed sites.

(i) Suppose G is algebraic and &' is locally coherent. Let {F,|a} denote a filtered direct
system of objects in D(Mod;(X,B)). Now the natural map colimRf.(Fy)=Rf.(colim F.,)

is a quasi-isomorphism in general (under the hypothesis 2.2). The functor Rf. commutes
upto quasi-isomorphism with finite sums and hence with all small sums.

(i) Suppose S is coherent. Then, for each n, the functor F — H*(H(X,F)) , F,
D(Mod;(X,B)) — (abelian groups) commutes with filtered direct limits under the hypothesis
of finite L-cohomological dimension as in 1.1 on the site G and the presheaves all have
l-torsion cohomology sheaves. For each n, the functor F — H™"(H(X, F)) commutes with
finite sums.

PRrROOF. Under the hypothesis of 2.2, the spectral sequence in ( 0.5.2) converges strongly
for all F'. Therefore the above spectral sequence reduces the first assertions to abelian sheaves
which are clear. The assertion about Rf, and F — H X, F ) commuting with finite products
is clear. Finite sums were observed to be finite products in our basic framework - see chapter
I, Proposition 2.4. Under the hypothesis on finite L-cohomological dimension, the spectral
sequence in ( 0.5) converges strongly reducing the statements in (ii) to the corresponding
ones for abelian sheaves which were observed to be true by the discussion in chapter II,
(1.0.6). O
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We end this section by considering the derived functor of the direct image functor with
proper supports. For this we will consider collections of ringed sites {(X, B)}, with B a sheaf
of algebras in Presh(X) so that the following hypotheses are satisfied:

2.4. Every map [ : (X,B) — (X',B’) is compactifiable, i.e. fits in a commutative
triangle

(X, B) (X, B)
\ /
(X',B")
with f proper and j an open imbedding and B 2 j*(B).

In this situation, we define Rf!#F = Rf. (j#,F), FePresh(6’). This will be called the
derived functor of the direct image functor with proper supports associated to f.

We will further assume that, so defined R f,# has the following properties:

2.5. if jy : U — X is an object in the site & and fy = f o ju, Rf\F ~ RfFjiF,
FeD(Mod, (U, B))

2.6. if f is proper, Rf{ (F) ~ Rf.(F), FeD(Mod,(X, B))

2.7. Moreover, R f!# is independent (upto natural quasi-isomorphism) of the factor-
ization of f into f and j.

We will next consider, under what hypotheses, the properties 2.4 through 2.7 hold.

For this we begin by considering proper base-change. Let f : (X, B) — (X', B') denote
a map of ringed sites as before. Let FeD(Mod;(X,B)). We say that the pair (F, f) is
cohomologically proper if for every map g : (Y',C') — (X', B') of ringed spaces, the induced
map

(2.7.1) Lg*(Rf.F) — Rf',Lg"F

is a quasi-isomorphism, where the maps g’, f' are defined by the cartesian square:

v,0) —— (X,B)
f'l lf
(V',¢) —2 (X', B)

whereC=f'7'(C") ® ¢ (B).
P g1 B)

2.8. We say that proper-base-change holds for all presheaves F we consider, if the
conclusions above are valid for every proper map f : (X,B) — (X’,B’) and for any map
g:(Y",C") — (X', B') of sites.

2.9. An alternate, somewhat weaker, hypothesis is the following: let
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(X, B)

Y

(U, By) —— (X, B)

denote a commutative triangle with j and j open imbeddings and f proper. Then the natural
map j#! — Rf. o j#, is an isomorphism of functors: D(Mod;(U, By) — D(Mod,(X, B)).

PROPOSITION 2.9. Assume that the hypothesis ( 2.4) holds and that either ( 2.8) or
( 2.9) holds for every sheaf F we consider. Then Rfi# is independent of the factorization
of f as above. This also implies the hypotheses in 2.5 and 2.6.

PROOF. This is a standard proof. Consider two compactifications (X, B)%(Xy,B;)

and (X,B)%(X,,B;). Take the product j; X jo composed with the diagonal (X,B) —
(X x X,p; 1 (B) ® p; ' (B)). Let the closure of X in X; x X; by the above map be denoted
X; we provide X with the presheaf of algebras which is the restriction of p; *(B) ® p, *(B).
As a result one may assume without loss of generality that there exists a proper map
p: (X1,B1) = (Xa,B2) so that po j; = jo. Now proper base-change shows that there is a
natural quasi-isomorphism: j;f (F) ~ Rp.( jﬁ (F)). Alternatively, the weaker hypothesis 2.9
also shows the same. Now compose with Rf, to complete the proof of the independence on
the factorization of f. Clearly this implies that if f is proper, R f!# (F) ~ Rf«(F) and thereby

proves 2.6. To prove the hypothesis 2.5, observe that one may factor the map U BxINF as

the composition of an open imbedding U-5U followed by a proper map p : U — X. Now
both 2.8 and 2.9 once again provide a quasi-isomorphism: Rp, o j!# (F) ~ jﬁ o jg’f . Finally
compose with Rf, to obtain 2.5. a

2.10. Moreover, 2.4 through 2.7 imply that if f : (X,B) —» (X',B') and g : (X', B') —
(X", B"") are maps of ringed sites as above, then Rg!#ORf!# (F) ~ R(gOf)!# (F), FeD(Mod,(X, B)).
This may be established exactly as Proposition 2.7. (See, for example, [SGA]4 Exposé XVIL.)
We skip the details.

Next we will specialize to various special sites to apply the above results. We will mention
at least three distinct situations where the hypotheses in 2.4 through 2.7 are satisfied.

2.11. The simplest situation is where, for every ringed site (&, B) we consider, & is

proper over a base S and where for every morphism between ringed sites (&, B)A(G' ,B),
the underlying map f : & — &’ of sites is proper. For example: we restrict to proper
schemes or proper algebraic spaces over a Noetherian separated base scheme. In this case
Rf identifies with Rf,.

2.12. Assume next that the sites we consider are all sites associated to schemes or
algebraic spaces of finite type over a Noetherian base scheme S provided with a presheaf of
algebras A. For example, the sites could be the small or big Zariski, étale or the Nisnevich
sites, the flat site, or the recent h-site as in [Voe-1] of schemes of finite type over a Noetherian
base scheme S. We will further assume that the morphism f : & — &' of sites is induced
by a map of schemes f : X — Y over S. (Here X (Y) is the terminal object of & (&,
respectively).) Furthermore, if px : X — S is the structure map of X, we let the site &
be provided with the pre-sheaf of algebras B = p3'(A). We say amap f : X — Y of
schemes (or algebraic spaces) is compactifiable, if it can be factored as the composition of
an open immersion j : X — X and a proper map f : X — Y. (If we restrict to schemes
that are quasi-projective over the base scheme S, this is always possible.) Now every map
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f:(86,B) = (&,B) of ringed sites is compactifiable in the sense of 2.4 if the map of
schemes (or algebraic spaces) f: X — Y is compactifiable.

PROPOSITION 2.10. Assume we are in the situation of 2.12 and that proper-base-change
holds for all sheaves of H*(A)-modules. Then proper base-change in the sense of 2.7.1 holds.

PROOF. Observe that, under the hypotheses of 2.12, the functor Lg* (Lg’") may be
identified with g~ (¢’ - respectively). There exist spectral sequences:

By' = g"R*f.(H!(F)) "= W (¢"Rf.F) and B5"' = R* flg"" H! (F) "= H*(Rflg"" F)"

for any FeD(Mod;(X,B)). These spectral sequences converge strongly in view of the hy-
pothesis 2.2. In this case, it suffices to show that one obtains an isomorphism at the Es-terms.
This is clear from the proper base-change for all sheaves of H*(.A)-modules. ([

COROLLARY 2.11. (i) Assume we are in the situation of 2.12 and that proper base change
holds for all sheaves of H*(A)-modules. Assume all maps of schemes or algebraic spaces
we consider are compactifiable and the sites we consider are all coherent in the sense of
Chapter II. Then the functor Rf!# : D(Modi(X,B)) = D(Mod;(X',,B") is well defined and
has the properties in 2.4 through 2.7 for all maps f : (X, B) — (X', B') of sites. Moreover,
it commutes upto quasi-isomorphism with filtered colimits and sums upto quasi-isomorphism
in general.

(i1) In particular, the conclusions above hold if the sites considered are the small étale
sites associated to schemes or algebraic spaces, all maps are compactifiable and if H™(T'(U, B))
is torsion for all n, all U in the corresponding site of the base scheme S.

PRrROOF. (i) The first statement is clear from Proposition 2.9. The last statement in (i)
is clear from 2.8. (ii) follows from (i) since, proper base-change holds for all torsion abelian
sheaves on the étale site. O

2.13. We will next consider sites which are the usual sites associated to locally compact
Hausdorff topological spaces over a base topological space S which is also assumed to be
locally compact and Hausdorff. We will assume that all spaces are of finite cohomological
dimension. If X is a topological space, the associated site will be denoted simply by X. Let
A denote a presheaf of algebras on S. If p: X — S is the structure map of X, we will let
B =p~(A). The morphism f : (X,B) — (X', B') of sites will be the one associated in the
obvious manner to a continuous map f : X — Y of topological spaces. In this case we may
define a functor fi : D(Mod;(X,B)) — D(Mod;(X',B')) (intrinsically) by
(2.13.1)

T(V, i#(M)) = {sel(V, f M)|f : support(s) =Y is proper}, MeD(Mod;(X,B))

(Recall that a continuous map f : X — Y of topological spaces is proper if and only if the
image of closed sets is closed.) So defined, one may readily verify that if f =j: X —» Y is
an open imbedding, then f,# is merely extension by zero. Moreover, if f is proper, f!# = fy-
Therefore, it follows that if the map f admits a factorization f = foj with f proper and j an
open imbedding, the functor f!# =f,o0 j!# and therefore the right-hand-side is independent

of the factorization of f = f o j.

Assume as above that f : (X,B) — (X',B’) is a map of ringed spaces with X, X'
locally compact Hausdorff topological spaces. Assume that f factors as the composition

(X, B)i}()?, B)L(X', B') with j an open imbedding and f proper. Now we define

RfY : D(Mody(X,B)) — D(Mod;(X',B')) by Rf} (M) = Rf.(cj})(M)), MeD(Mod;(X, B)).
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One may readily see, in view of the hypothesis on finite cohomological dimension, that
the last functor is independent of the factorization.

PROPOSITION 2.12. Recall the functors
Sp: D, (Mod/(&,H*(B))) = Dy (Mod;(&,Sp(H*(B))))
(‘and Sp: Dy (Mod)(&', H*(B'))) — D4 (Modi (&', Sp(H*(B'))))

from Chapter I, Definition 4.6. Let f : (6,8) — (&', B’) denote a map of ringed sites. Then
one obtains natural quasi-isomorphisms:

(i) Sp(Rf.M) ~ Rf.(Sp(M)) , MeD,(Mod)(&,H*(B))) and
Sp(Lf*(N)) ~ Lf*(Sp(N)), NeD, (Mod;(&',H*(B")?))

(i1) The same conclusions hold with the functor Rf. replaced by Rf!# if f is a compact-
ifiable map of schemes or algebraic spaces in the situation of 2.12, or in the situation as
i 2.13

PRrROOF. Recall that if K = IIK(i)eD,(6,H*(A)), Sp(K) = Hhoiim DN(EM;(K(i))).
Now the hypotheses in 2.1 , shows that the functor f, commutes with EFM;. f. also clearly

commutes with products and homotopy inverse limits. This proves the first assertion for the
derived functor of the direct image functor.

Recall that the functor EM,, is exact and therefore commutes with filtered colimits.
Now the hypotheses in 2.1 shows the functor f~! commutes with EM,,. This readily shows

that Sp(f~1(N)) ~ f~1(Sp(N)). Now chapter III, Proposition (2.12) with M = H*(B)
L

and B replaced by f~1(B’) shows that Lf*(Sp(N)) = Sp(H*(B)) ® f1Sp(N) ~
f=1Sp(H*(B'))

L _ _

Sp(H*(B) ®  f~'N)= Sp(Lf*(N)). This proves the second quasi-isomorphism in (i).
FAH 5

Now we consider the assertion in (ii). Let j : X — X denote the given open imbed-

ding and let 7 : Z = X — X — X denote the closed imbedding of its complement. Let
NeD(Mod;(X,B)). Now one obtains the triangles:

§¥i*N = N = i,i N and 5 j*Sp(N) — Sp(N) — i.i 1Sp(N).

Since the functor Sp sends triangles to triangles (see Chapter I, Proposition 4.4), one also
obtains the triangle: Sp(j!#j*N) — Sp(N) — Sp(i«i "' N). The natural quasi-isomorphism
of the last and middle terms with the corresponding terms of the previous triangle show
that there exists a natural quasi-isomorphism j!# j*Sp(N )E>Sp(j!# j*N). This proves the
assertion in (ii) in view of (i). O

DEFINITION 2.13. Let f : (X,B) — (X',B’) denote a map of ringed sites. We say
Rf. is perfect (of finite tor dimension, respectively) if it sends D(ModP"f (X, H*(B)))
to D(Modrem (X', H*(B"))) (D(Mod?*%(X,H*(B))) to D(Mod*(X', H*(B))), respec-
tively). We will similarly define R f!# to be perfect (of finite tor dimension, respectively).
We will say f is perfect (of finite tor dimension) if both R f!# and Rf, are perfect (of finite
tor dimension, respectively).

PROPOSITION 2.14. Let f : (X,B) — (X', B') denote a map of ringed sites.
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(i) If Rf. is perfect (of finite tor dimension) the functor Rf, sends D(Mod"" ' (X,B))
to D(Mod?*" (X', B')) (D(Mod]"**(X,B)) to D(Mod{**(X',B")), respectively). The cor-
responding assertion also holds with Rf,# in the place of Rf..

(i) Lf* is always perfect (of finite tor dimension). i.e. Lf* sends D(Mod"" (X', B'))
to D(Mod'™ (X, B))
D(Mod!t4 X',B")) to D Mod!? X, B)), respectively).
i !

PROOF. Let {FyN|k} denote the exhaustive and separated filtration of N with re-
spect to which N is globally of finite tor dimension. Recall this means there exists an
object NeD(&,H*(B)) globally of finite tor dimension so that Sp(N) ~ Grg(N). Now
RfY(Fy_1N) = Rf¥ (F.N) = Rf¥ (GrpiN) — Rf} (SF,_1N) is a triangle and the first
map is an admissible mono-morphism (since products and homotopy limits preserve admis-
sible mono-morphisms). Therefore {R f!#FkN |k} is a filtration of R f!#N and GrR f!#N o~
Rf¥(GrrN) ~ RfF(Sp(N)) ~ Sp(Rf(N)). Clearly, the same arguments show that
{Rf.FyN|k} is a filtration of Rf,N and that GrRf.N ~ Rf.(GrpN) ~ Rf.(Sp(N)) =~
Sp(Rf«(N)). To complete the proof of the first assertion, now it suffices show that R f!#
sends an exhaustive (separated) filtration to an exhaustive (a separated) filtration. Since
R f!# commutes with filtered colimits (as shown in Theorem 2.8), it follows immediately that
R f!# sends an exhaustive filtration to an exhaustive filtration. In view of the hypotheses
in 2.2 and Theorem 2.8, one may show readily that the separatedness of the filtration on N
implies the filtration {R f!#FkN |k} is also separated.

Now we consider the second assertion. We may first replace MeD(Mod} rf(X',B')) by
an object that is also flat over B’ by Chapter II, 2.1.1. Therefore we may assume M itself
is flat; now we will show f*(M) =B ® f~'(M) belongs to D(Mod?" (X, B)). For this

f=1(B")
observe that the filtration on M is compatible with the Cartan filtrations on B and f~1(B’).
Therefore, Grrp(f*(M)) = Grp(B ® f~YM)) = Grc(B) ® Y Grp(M)) =
F1(B) f=1(Gre(B)
f*(Grp(M)). Now the morphism Fy, (B ® f~'(M))— Fx(B ® f~'(M)) is an ad-
f-1(BY) 1B
missible mono-morphism, since it is the kernel of the admissible epimorphism

F.(B ® fYM))—Gri(B ® fY(M)).
F1(BY) F1(BY)

(To see the last map is in fact an admissible epimorphism, recall

f
Fi(B @ f7(M) = Cocqualizer( Fe(B@ f(B) @ f (M) —Z Fe(Be f1()))
_ ’ g
while

f
Grk(Bf Q?B : f~Y(M)) = Coequalizer( Gre(B® f1(B)® f1(M)) ___ Gre(B® f~1(M)))
—1(R g

and co-equalizers preserve admissible epimorphisms. See axiom (STR6) in Chapter I. (Al-
ternatively, one replaces the co-equalizers above with homotopy co-equalizers as in Chapter
IT, 1.2.1.) One may see readily that Lf* sends an exhaustive filtration to an exhaustive
filtration; one may use the second strongly convergent spectral sequence of Chapter III,
Remark 2.19 to conclude that the induced filtration on f*(M) is also separated. Therefore,
it follows readily that Lf* sends D(Mod?" (X', B')) — D(Mod’*"*(X,B)). The proof in
the case of finite tor dimension is similar. O
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COROLLARY 2.15. Suppose (X', B') is the ringed site associated to the étale site of a

scheme or algebraic space X' so that in addition H*(B) = @H™(B) is locally constant. Let
n

f:X — X' be a map of algebraic spaces and B = f~1(B'). Then Rf,# induces a functor
D(Mod!"**(X,B)) = D(Mod!"**(X', B')).

PROOF. In view of the hypothesis in 2.1.1, it is a standard result (which one may readily

prove using the projection formula) that R f!# (N) is of finite tor dimension as an object in
D(Mod;(X',H*(B'))) if NeD(Mod;(X,H*(B))) is of finite tor dimension. O

PROPOSITION 2.16. (Base-change) Assume the situation of 2.8. Then the map Lg*Rf!#F —
Rf’;#Lg'*F s a quasi-isomorphism provided proper base-change as in 2.8 holds.

PROOF. This is clear since every morphism is assumed to be compactifiable. O

PROPOSITION 2.17. (Projection formula). Assume in addition to the above situation
that Rf!# has finite tor dimension. Then

# (NG # (NG
Rf, (N%f*M) ~ Rf, (N)?,M
for NeD(Mod,(X,B)), MeD(Mod;(X',B') and either N or M is of finite tor dimension.

L L
PROOF. One first observes that there exists a map Rf (N f*M) — Rf7 (N)®M that
' B ‘ B!

preserves the filtration on either side. (Recall these filtrations are induced in the obvious
manner from the canonical Cartan filtrations on N, B, M and B’.) Now consider the spectral
sequences obtained from these filtrations:

B3 = W GrlRFF (NS M) ™= M (RFF (NS M) and

E;’t _ Hs+t(GTt[Rf!#(N)§M]) ~= H3+t(Rf!#(N)§M)~

The natural map above induces a map of these spectral sequences; the two spectral sequences
converge strongly by the hypotheses 2.2 and on finite tor dimension. (See also 2.15 as well
as the identification of the Es-terms below.) Therefore it suffices to show one obtains
an isomorphism at the Fs-terms. Now Chapter III, Proposition (2.10)(i), Chapter III,
Proposition (2.12) and the proof of Proposition (2.12) above show that

L L
Gr[RfF(NGI*M)] ~ RfF[Gr(NG* M)

~ RfF(Gr(N) & Grf~(M))~Rf¥(Sp(N) &  Sp(f*(in)))
Gr(B) Sp(H*(B))

# V & (1 # v & -1
~ Rf7"(Sp(N ® f*(M)))~Rfi"(Sp(N ®  f~1(M)))
H*(B) F=H(H*(B))

~ Sp(RfF (N & fHM))).

FH(H(BY)
- L
By the usual projection formula, one may now identify the last term with Sp(R f!# (N) (}(9 )M )
H* (B

An argument (just as above) using Chapter III, Propositions (2.10)(i) and (2.12) as well as
L

the proof of Proposition (2.12) above identifies this with Gr[Rf/* (N)®M]. O
! b
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3. The right adjoint to the derived direct image functor with proper supports

We will assume throughout this section that f : (X,B) — (X', B’) is a map of ringed
sites and that one may define a functor Rf;’ : D(Mod;(X,B)) — D(Mod;(X', B')) satisfying
the hypotheses of 2.4 through 2.7. The goal of this section is to define a right adjoint to
this functor. We will first define a functor R f;# explicitly and show this is in fact a right
adjoint for objects of finite tor dimension or objects that are perfect. We also provide a
second construction of this functor using a recent theorem of Neeman that applies since the
functor R f,# is shown to commute with all (small) sums upto quasi-isomorphism. We will
then consider various properties of this functor.

We begin by defining the functor Rfj, : D(Mod;(X',B')) — D(Modi(X,B)). Let
KeD(Mod;(X',B')). Let ji : U — X be in the site & and let By = ji 5 (B). We let

(3.0.2) T(U,Rf4K) = RU(X', RHomp (Rf (Bv), K))

Alternatively we may define a sequence of functors Rf;#m : D(Modi(X',B")) = D(Mod;(X, B)),
n > 1, by I'(U, Rf;#’nK) = RF(X',HomB(Rf!#(BU),G"QK)). Now {I'(U, Rf%tm(K))m}
forms a cosimplicial object and we let

(3.0.3) I'(U,Rf'K) = holim{I'(U, R Fipn(K))|n}

_ Letj: X — X denote an open imbedding and f:X = X' a proper map so that f =
foj. Let B denote a presheaf of algebras on X so that j*(B) = Band f: (X,B) = (X', B')
is a map of ringed sites. Observe the pairing
g0 juadd*(B) ® 37 © 353" (B) @ ju 0 juraitsi* (B) — 3 o jfnits* (B)

that factors in the obvious two ways showing that j!#Oj#!jl*]j* (B)eMody; (X, js o ju«jti*(B)),
ie. j!# oj#!jﬁj*(g) has the structure of a presheaf of bi-modules over j, o ji.jj*(B). This
shows that Rf!# (By) = Rf. (],# o j_'#,j}}j*(l?)) has the structure of a presheaf of bi-modules
over the presheaf of algebras R(f. o j« o jus)jy;j*(B)). The latter is a presheaf of alge-
bras over B’. Therefore, by taking sections over X’ and using ( 3.0.2), it follows that both

RHomp (Rf (By), K) and RHomp (RS} (Br),G"QK) have the structure of a presheaf of
left modules over the presheaf of algebras over B. i.e.

So defined, Rf;&(K) and Rf#’n(K)sD(Modl(X, B)).
PROPOSITION 3.1. Assume the above situation. Then
(i) RU(U, RHomp(By, Rf},K)) ~ RU(U, RHomg (Rf{" (By), K))

(i) If K' - K — K" — YK’ is a triangle in D(Mod;(X',B')) and jy : U — X is in
the site G, the diagram

I'(U,Rf,K') = T(U,Rfy,K) = T(U,Rf,K") - T(U,Rf, XK)
is a triangle in D(Mod;(X, B)).

(111) If K' — K is a quasi-isomorphism in D(Mod; (X', B')), the induced map T'(U, Rf;%K’) —
(U, Rf%ﬁK) is a quasi-isomorphism for each U in the site G.

() If f =7 : U — X belongs to the site S, Rf;‘7é = j*.
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The properties in (i) through (iii) also hold for the functors Rf:#’n, n > 0.

PROOF. (i) is clear from the definition and Chapter II, (1.2.6). (ii) is clear from the
definition of the functor RHomp: as in Chapter II, Definition (4.12), and the definition of
RT'(X,—) as in Chapter II, (1.1.1). (iii) is also clear for the same reasons. In the case of
(iv), the functor j!# has a right adjoint j*; therefore Rj%é may be identified with j*. |

REMARK 3.2. The above proposition shows that the functor Rf?!‘7£ induces a functor
Rfy : D(Mod)(X',B')) — D(Mod;(X, B)).

Next we proceed to prove a result that holds for the functor R f!# as well as the functor
R f;# To handle both cases simultaneously we will consider the following abstract situation.

3.1. Let (X,B), (X',B’) denote two ringed sites as above. Let ¢ : D(Mod,(X, B)) —
D(Mod,;(X',B")) denote a functor with the following properties.

(i) ¢ preserves triangles and quasi-isomorphisms and each ¢(F) has a filtration induced
by the Cartan filtration on F'.

(ii) there exist a sequence of functors {¢" : Mod;(X,B)) — Mod;(X',B")|n} so that
if KeD(Mod;(X,B)), {¢"(K)|n} forms a cosimplicial object in Mod;(X',B') and ¢(K) =
holim{¢" (K)|n}

(iii) for each n > 0, there exists a functor ¢" : Mod; (X, H*(B)) — Mod; (X', 1*(B)') so
that Sp o ¢™ is naturally quasi-isomorphic to ¢™ o Sp

(iv) There exists a spectral sequence Ey"" = H“({¢"(H"(F))|n})” = H“T(¢(F))]
FeD(Mod;(X,B)) with E5"" = 0 for u < 0. Moreover, there exists an integer N >> 0 so
that E3"” = 0 if w > N independent of v and FeD(Mod;(X, B)).

3.2. Let f: (X,B) —» (X',B') denote a map of ringed sites as above. Now Rf!# :
D(Mod;(X,B)) = D(Mod;(X',B')) as defined above clearly satisfies the above hypotheses.
To see this just observe that the hypothesis in 2.2 implies the vanishing condition (iv) above,
whereas the other conditions (i) through (iii) are clear. Moreover, one may readily see, in
view of the definition of the functor R f# above, that the same hypotheses as above, imply
the conditions in (iv) for the functor Rf;# at least if #*(B') is locally constant, B = f~1(B')
and the sites are Noetherian. (See ?? for a proof.) See Proposition 5.12 for an application
of this result.

LEMMA 3.3. Let LeD(Mod;(S,B)) be of finite tor dimension in the sense of chapter
III, Definition (3.1). If P(L)e — L is a simplicial resolution of L in the sense of Chapter
II, Proposition (2.4) we obtain the quasi-isomorphisms:

hocglim{qﬁ(P(L)n)\n} ~ qS(hocglz’m{P(L)nm} ~ ¢(L)

PROOF. The condition (iv) in 3.1 shows that if MeD(Mod;(G,.A)), and n is a fixed
integer, there are only finitely many F,""-terms whose sub-quotients appear as the associated
graded terms of H " (¢(M))"~

For such an M, we will define a non-increasing filtration by letting F,,,(M) = 7<_,, M
where 7<_,, is defined as in chapter I. We let Fy,,(¢(L)) = ¢(F L): by the hypotheses this
defines a filtration of ¢(L). Let n denote a fixed integer throughout the rest of the proof.
By the definition of the filtration F,, on F' and by the hypothesis (iv) above, for each fixed
integer q,
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(3.2.1) HI(Fn(6(L))) "= HI(o(L))

if m is sufficiently small.
The key-step in the proof will be to show that for each fixed integer ¢, the natural map

hocglim{Fm(gb(P(L)k)ﬂk} — F,.(¢(L)) induces an isomorphism:

(3.2.2) H (hocolim{ Fr ((P(L)1))|k}) "= H (Fm(6(L)))

if m is sufficiently small.
We will first complete the proof assuming ( 3.2.2). Observe that

colim hocolim{F,,(¢(P(L),))|n} ~ hocAolim{T%()_{iirlooFm (p(P(L)n))In}

m——o0 A

& hocAolim{¢(P(L)n)|n}
(where the last ~ is by ( 3.2.1)) applied to each P(L),, instead of L; by ( 3.2.1) again

colim F,,(¢(L)) ~ ¢(L).

m—r—0o0

Therefore, it will follow hOC(A)lim{¢(P(L)n)|n} ~ ¢(L).

Now we proceed to prove ( 3.2.2). First observe that H"(F,,,(L)) "= 0 if v > —m and
for all F'. Now consider the spectral sequence for the homotopy colimit in chapter I, section
1, (HCI):

(323) By, = Hu(H" (Fn({¢(P(L)n)In}))) "= H™""" (hocolim{Fyn(¢(P(L)n))|n})”

For a fixed integer ¢, the only Efw-terms whose sub-quotients appear as the associated
graded terms of ’Hq(hocglim{Fm(gb(P(L)n))|n}) “are those with ¢ <v<¢g+wuand v < -—m

and hence in particular m < —q. The same spectral sequence in ( 3.2.3) for F,,, L also shows
that E5"” # 0 only for m < —q. Therefore, for m > —q, ’Hq(hocglim{Fm(gb(P(L)n))|n}) =0

and HY(Fn(4(L))) "= 0. Therefore, in order to prove ( 3.2.2), it suffices to show that the
natural map

(3.2.4) hocolim{ (Fn¢(P(L)k)/Em¢(P(L)k))|k} — Fn(b(L))/Em (L))

induces an isomorphism on #H? for all m and n with n < m and all ¢ (in fact it suffices to
consider m < —q). Since both sides preserve triangles, one may use ascending induction on
m — n and reduce to the case where m = n+ 1. Now the left-hand-side (right-hand-side) of
( 3.2.4) may be identified with

hocglim{Grn(qﬁ(P(L)k)ﬂk} o~ hocglim{¢(Grn(P(L)k,))\k} o~ hocglim{(ﬁ(Sp(P(I_/)k)nM}

~ hocolim{Sp(¢(P(L)x))n|k}
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(¢(Grp (L)) ~ ¢(Sp(L),) ~ Sp(¢(L))n, respectively).
Therefore, it suffices to show :

(3.2.5) hocolim{Sp(¢(P(L)x))Ik} ~ Sp(¢(L))

Now one may identify the left-hand-side of ( 3.2.5) with

hocglim hoEm{DN o GEM(¢"(P(L)s))|r}

where the outer homotopy colimit is over all s and the inner homotopy limit is over all r.
For a fixed s, {¢"(P(L),)|r} is a cosimplicial abelian presheaf. Therefore its normalization
N({¢"(P(L)s)|r}) is a co-chain complex. Now the hypothesis ( 3.1(iv)) shows we may
replace this co-chain complex, by the bounded co-chain complex 7<y N ({¢"(P(L)s)|r})-

By axiom (ST9) of chapter I, we see that, for each fixed s:
(3.2.6)
hoiim DN(GEM (t<nyN({¢"(P(L)s)|r}))) =~ QNhocAolimDNGEM(TSNN({gZ”(P(E)S)|r}))[Nh]
Since two homotopy colimits commute, the left-hand-side of ( 3.2.5) may be identified with:
QNhocglimhocglim{GEM(DN(GEM(TSNN({gZ”(P(E)S) IENINANE

where the inner (outer) hocglim is over the s (7, respectively). A direct computation using

the spectral sequence for the homotopy colimit shows the latter may be identified with
QNhocAolim{DN(GEM(TSN(¢T(L))[Nh]))|r}. By the same argument as above, one may

identify this with
holim{ DNGEM (r<n(¢"(L)))|r} ~ holim{Sp(r<n (4" (L)))|r}
~ holim {Sp(@ (L))|r} = holim {6 Sp(L)|r} =~ 6Sp(L).

We have thereby shown that the map in ( 3.2.5) is a quasi-isomorphism. O

REMARK 3.4. Observe that we have used the strong-t-structure in an essential manner.
As pointed out in Chapter I this is needed mainly to be able make homotopy colimits and
limits commute.

THEOREM 3.5. Assume the above situation. Let Ke D(Mod)(X',B')) and LeD(Mod;(X, B)).
Let juy : U — X' be in the site G and let V. =U x X. Then one obtains:
XI

(i) RT(V, RHomB(L,Rf%E(K))) ~ RT'(U, 'R’HomBr(Rf!#(L),K)) (or equivalently
Rf. (RHomB(L,Rf;&(K))) ~ RHomp (Rf!#(L),K)) and therefore

(ii) RMaps(L, Rf(K)) = RMapg (Rf{" (L), K)

PrOOF. Choose a simplicial resolution P(L)s — L as in chapter II, Proposition 2.7.
Recall each term P(L),, is of the form usj;ji j& (2" B). Now
se

RHomp(L, Rf,(K)) = holim{RHoms(P(L)n, R [ K)|n}

Next fix an integer n. Now
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RHoms(P(L)n, RfyK) = RHomss( Ljfhji; (5" B), RfK)
~ I RHomp (i (5" B), RfK) = I RHoms (RS (j7i5 (5" B)), K)

where the last ~ follows from Proposition 3.0.2 (i) and Chapter II, Proposition 2.1. The pre-
vious =~ follow from the definition of Homp as an equalizer in chapter II, (1.2.3) and(1.2.7).
(See also chapter II, Propositions (3.5), (3.7) for the operadic case.) Now one may identify
the last term with:

RHoms( LR (ifhi (27 B)), K) = RHoms(Rf ( Ljiy (5" B)), K)

= RHomp (Rf} (P(L),), K)
The ~ follows from Theorem 2.8. Now

RHomp(L, Rf;% (K)) = RHoms (hocglimP(L)., Rf#(K))
~ hoiim{’R’HomB (P(L)n, Rf%t (K))|n} ~ hogm{RHomB« (Rf,# (P(L),),K)n}
~ RHomss (hocolim{ R FH(P(L)n)|n}, K) ~ RHomg (R (L), K)

The last ~ follows from the observation that hocglim{R f,# (P(N))pln} ~ R f!#L. This in

turn follows from the previous lemma. This proves (i). The assertion (ii) follows from (i) by
Chapter II, Proposition (2.8). O

REMARK 3.6. Observe that the proof uses in an essential way the hypothesis in 2.2 as
well as the axiom (ST9) from chapter I.

COROLLARY 3.7. Let f : (X,B) — (X',B') and g : (X',B') — (X",B") denote two
maps of ringed sites as before. Now there is a natural isomorphism Rf%t ORg%E ~ R(gOf)%6 :
D(Mod;(X,B)) = D(Mod;(X",B")).

PROOF. Observe from 2.10 that there is a natural isomorphism of the derived functors
Rg!# o Rf!# ~ R(go f),# Now theorem 3.5 provides the required isomorphism. O

PROPOSITION 3.8. Assume the above situation. Let KeD(Mody(X',H*(B')) and K =
Sp(K). Now Rf},(Sp(K)) = Sp(Rfy(K))

PRrROOF. Take B = Sp(H*(B)), B’ = Sp(H*(B')) and L = jﬁ!j{}Sp(H*(B)) in the above
theorem. Let L = j},j5 (H*(B)). Now

RHomsp(-(5)) (L, Rfy(Sp(K))) ~ Rf.RHomsymu(s)) (Rf (L), Sp(K))

~ Rf,RHomsp-(8)) (RS (Sp(L)), Sp(K)) = Rf.RHomspm- 5y (Sp(Rf (L)), Sp(K))
~ Rf.Sp(RHomy-(s)(Rf{ (L), K)) ~ Sp(Rf.RHomy:- ) (Rf{ (L), K))

~ Sp('RHom%*(B)(E, Rfj#(f())) ~ RHomgp(%*(B))(Sp(E), Sp(Rf;é(I_()))

The third and fifth ~ are by Proposition 2.12 while the fourth and last ~ are by Chapter
I1I, Proposition (2.13). Now take RI'(U,—) of both sides. The left-hand-side now becomes
RIU(U,Rf}(Sp(K))) while the right-hand-side becomes RI'(U, Sp(Rf}(K))). O
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PROPOSITION 3.9. (i) Let i : Y — X denote a closed imbedding with j : U = X —
Y — X the corresponding open imbedding. Define a functor i,Ri' : D(Mod;(X,B)) —
D(Mod;(X,B)) by

iRi'F = the canonical homotopy fiber of the map F — Rj,j*F, FeD(X,B).
Then there exists a natural quasi-isomorphism i,Ri'F ~ i*Ri!#F, natural in F'.

(it) Consider a cartesian square:

(v,0) —— (X,B)

f'l lf
(Y',¢) —4— (X,B)

where Y = Y'xX and C = f/'(C) ® f1(B). Assume further that the base-
X’ (F =g~ (B))

change map Lf*Rg!# — Rg’?#Lf’* 1s a natural isomorphism of functors D(Mod;(Y',C")) —
D(Mod;(X,B)). Then one obtains the canonical isomorphism of functors Rg:!# oRf, ~

Rf] o Rg’!# as functors D(Mod;(X,B)) — D(Mod;(Y',C")) and Lf'* o Rg;‘iﬁ ~ Rg’!# oLf*
as functors D(Mod;(X',B")) — D(Mod,(Y,C)).

(117) Let f : (X,B) — (X', B’) denote a map of ringed sites. Then there exists a natural

transformation:

RIL(D)GLE"(-) > Rfy(-6-)

BI

PRrROOF. (i) Let KeD(Mod;(X,B)). We begin with the triangle j!#j*(K) - K —
i,i ' K. Taking RHompg, we obtain the triangle:

RHomp(i,i 'K, F) = RHomp(K, F) — RHomp (5 j*K, F)

Now the first term may be identified with i*R’HomA(K,i*Ri:#F) while the last may be
identified with

RHomp(K,Rj.j*F). Now take K = B to obtain the triangle: i*Ri;&F — F — Rj.j*F.
The definition of i, Ri' shows one may identify i, Ri'F and i*Rz'!#F . This proves (i).

(ii) Let KeD(Mod;(X,B)) and LeD(Mod;(X',B')). Now
RMape: (L, Rg;éeRf*K) ~ RMapp (Rg!#L, Rf.K) ~ RMapg(Lf* (Rg!#L), K)
~ RMapg(Rg'{ Lf'"L,K) ~ RMapc(Lf'" L, Rg", K) ~ RMape: (L, Rf',Rg", K).

The first and fourth ~ are by Theorem 3.5, the second and last are by Proposition 2.6 and
the third by our assumption. This proves the first assertion in (ii). The second is established
similarly.

(iii) Let S denote the unit of category Presh(&) asin 1.0.3. Let FeD(&',S), FieD(Mod; (X', B")),
FyeD(Mod,.(X',B")) respectively. We obtain:

RMaps(R f?’#FléL *(F>), RfYF) ~ RMaps(RfF (R f?’#FléL (), F)
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L
~ RMaps(RfR f;k(Fl)%g;Fz, F)

L
The last ~ follows by the projection formula in section 1. Now take F' = F;®F5. The natural
BI

L
map Rf* Rfy(F1) — Fy provided by Theorem 3.5 provides a map Rf/ R f;#(Fl)%)Fg — F.

This provides the required map by the above quasi-isomorphisms. (Il

We will conclude this section with a some-what different construction of the functor
R f;t making use of some recent results of Neeman. We begin by recalling the notion of
compact objects from [Neem| p. 210. An object KeD(Mod;(X; B)) is compact if for any
collection {F,|a} of objects in D(Mod;(X; B))

(3.2.7) Homp(mod, (x:8)) (K, ?Fa) = Ga?HomD(Modl(X;B))(Ka Fy)

PRrRoOPOSITION 3.10. (i) Every object of the form jﬁ!jf}(E"B) for Ue& and n an integer
is compact. (ii) The category D(Mod;(X; B)) is compactly generated by the above objects
as U wvaries among a cofinal set of neighborhoods of all the points i.e. the above collection
of objects is a small set T of compact objects in D(Mod;(X; B)), closed under suspension,
so that Hompnod,(x;8))(T,x) =0 for all T' implies x = 0.

PRrROOF. Once again we will let S denote the unit of Presh(S) as in 1.0.3.

(i) Observe that

Homp(mod(x:8) (Gt (G5 2" B)), F) 2 Homp(sod, (x5 (35 (5" B), i3 F)
& Homp(mod(x;5)(E"Sjv, jiy(F)) = H "(RT(U, F))

- see chapter II, Proposition 2.1 and chapter II, Proposition 3.7. Therefore, by Theorem 2.8,
one now observes that

Hom p(vroa,(x:8)) (3 (i (E7B)), ©Fs) = H "(RT(U, ®F,))

« «

= oH "(RI'(U, Fu))

This proves (i). Suppose H "(RT'(U, F)) = 0 for all U that form a cofinal system of
neighborhoods of all points in the site & and all n. It follows immediately that F' is acyclic
and therefore is isomorphic to 0 in the derived category D;(&; B). This proves (ii). O

DEFINITION 3.11. (Compactly generated triangulated categories) Let S denote a trian-
gulated category. Suppose all small co-products exist in S. Suppose also that there exists a
small set of objects S of S so that

(i) for every seS, Homg(s, —) commutes with co-products in the second argument and
(ii) if yeS is an object so that Homg(s,y) = 0 for all seS, then y = 0.

Such a triangulated category is said to be compactly generated. An object s in a triangulated
category S is called compact if it satisfies the hypothesis (i) above.

THEOREM 3.12. (Neeman: see [N] Theorems 4.1 and 5.1) Let S denote a compactly
generated triangulated category and let F : S — T denote a functor of triangulated categories.
Suppose F' has the following property:
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if {sx|\} is a small set of objects in S, the co-product |X|F(S)\) exists in T and the natural

map HF(S)\) — F(HSA) is an isomorphism.

Then F has a right adjoint G. Moreover, the functor G preserves co-products (i.e. if
{tala} is a small set of objects in T whose sum exists in T, G(Uty) = UG(ty)) if for every
[e3 (o7

s in a generating set S for S, F(s) is a compact object in T.

We will apply the above theorem in the following manner.

THEOREM 3.13. Let T denote a functor T : D(Mod;(X,B)) - D(Modi(X',B")). If T
sends sums in D(Mod;(X, B)) to sums in D(Mod;(X',B')), T has a right adjoint which we
will denote by T;‘#. Moreover, if T(jﬁ! (45 (2"B))) is a compact object in D(Mod;(X',B"))
for all objects jy : U — X in the site & and all integers n, then the functor T;% preserves
sums.

PROOF. Recall the derived categories D(Mod;(X,B)) and D(Mod;(X’,B')) are tri-
angulated categories and that (see Proposition 3.10 above), that {j#!(j(*](E"B))UU —
S in &, neZ}isasmallset of compact objects that generate the category D(Mod; (X, B)).
Therefore, if T" preserves sums, Theorem 3.12 shows it has an adjoint T;#. The functor T;#
preserves sums, if T(j#! (75(£7B))) is a compact object in D(Mod;(X',B')) for all objects
ju : U — X in the site G and all integers n. O

THEOREM 3.14. (Ezistence of a right adjoint to Rf!#) Let f: (X,B) = (X', B') denote
a map of ringed sites. Suppose the site & is algebraic and &' is locally coherent. Suppose
the functor Rf!# 1s well-defined. Then the functor

RfY : D(Mod,(X,B)) — D(Mod;(X', B'))

has a right adjoint (which we denote by Rf%é) Moreover, if Rf!# sends a compact generating
set for D(Mod;(X,B)) to compact objects in D(Mod;(X',B')), the functor Rf;# preserves

sums.

PROOF. First observe from Theorem 2.8 that the functor R f,# commutes with filtered
direct limits of presheaves. Therefore, it follows that if {M,|a} is a collection of objects in
D(Mod;(X, B)), the natural map:

ERf!#(Ma)in!#(gMa)

is a quasi-isomorphism. It follows that the functor R f!# preserves sums. Since the derived
category D(Mod;(S, B)) is compactly generated as shown in Proposition 3.10, it follows
that R f,# has a right adjoint. The last assertion is now clear from the last assertion of
Theorem 3.12. O

REMARK 3.15. Despite the elegance of the above construction, one looses the bi-module
structure (see the remarks in 4.2 below) on Rf;‘#(l?) by the above construction. This bi-
module structure is essential in obtaining a bi-duality theorem and hence the full strength
of Grothendieck-Verdier duality as in the next section.

4. The dualizing presheaves and the bi-duality theorem

We begin by defining dualizing presheaves both in the relative and absolute situation.
We will assume throughout that all maps are compactifiable in the sense of 2.4. Furthermore
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we will assume that (S,.A) is a base-ringed site and that all ringed sites we consider are
defined over it. Let Z denote the terminal object in the site S. Moreover, we will assume
that the following hypothesis holds:

AePresh(S) and BePresh(S) are commutative algebras.

DEFINITION 4.1. (i) Let f : (X,B) — (X', B’) denote a map of ringed sites. Now we
define the relative dualizing presheaf Dy to be Rf;# (B).

(ii) If p: (X,B) — (Z, A) is the structure map of the ringed space, we let Dg = Rpi‘7£ (A)
and call it the dualizing presheaf for the categories D(Mod;(X, B)) and D(Mod.(X, B)).

(iii) Assume the situation in (ii). We define a functor D : D(Mod; (X, B)) — D(Mod,.(X, B))
(and similarly Dg : D(Mod, (X, B)) — D(Mod;(X,B)) by D(F) = RHomp(F, Dp).

REMARK 4.2. Recall that
(4.0.8) T'(U, Dg) = RU(S, RHom 4(Rp’ (Bu), A))

for each U in the site ©. In taking the RHom 4, we use the structure of a presheaf of left A-
modules on Rf!# (By). We already saw in ( 3.0.2) that D belongs to D(Mod;(X, B)). In fact
one may show readily that Dy has the structure of a presheaf of bi-modules over B: ( 4.0.8)
in fact shows that the left -module- structure (right-module-structure) is induced from the
structure of a presheaf of right B-modules (right-B-modules, respectively) on Rp#(BU).)
Observe that, in this case, the commutativity of the algebras implies the left .4-module
structure on Rp# (By) commutes with the left B-module structure. Therefore Dp has the
structure of a presheaf of bi-modules and therefore defines functors Dg as stated.

4.1. Let Dp be filtered by the filtration induced from the Cartan filtration on .4 and
B. Now Gr(Dp) ~ Dgy) ~ Dspu=(8))- The first ~ follows from the definition of Dy
along with Chapter III, Proposition 2.7. The second ~ now follows from Chapter III,
Proposition 2.10 (ii) and Chapter III, Proposition 2.13.

PROPOSITION 4.3. Assume the situation of 4.1. Then Rf.Dg(F') ~ Dg: (Rf!#(F))

PrOOF. This follows readily from Theorem 3.5(i) and corollary 3.7. O

In order to prove the dualizing pre-sheaf is reflexive (see Theorem 4.7 below) one will
have to further restrict to one of the following two situations:

4.2. (i) (S,A) is a ringed site so that 7*(.A) is locally constant on the site S, B =
p~1(A) and we restrict to the full sub-category D(Mod®#*4(&,B)) of D(Mod?*4(&, B)
of objects that are constructible in the sense of the following definition or

(ii) with no further restriction on the ringed site (S, .A4), we restrict to D(ModP*"f (&, B)).

DEFINITION 4.4. Assume the first situation above. (i) Let FeD(Mod; (S, B)). We say
F is locally constant on & if H*(F)~ 1is locally constant as a sheaf of graded left modules
over the sheaf H*(B)".

(ii) F is constructible if H*(F)~ 1is constructible as a sheaf of graded left-modules over
the sheaf #*(B)~ Recall this means: there exists a finite filtration

G0 i1 in
XoCX1C...CX,
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by locally closed subspaces of X, so that H*(F )~‘ x,_x,_, is locally constant (and finitely

generated) as a sheaf of H*(B)y,_y, ,-modules for each i. (Recall that #*(B) is assumed
to be a sheaf of Noetherian rings so that there is no distinction between finitely generated
and finitely presented objects.)

PROPOSITION 4.5. Let f : (X, B) — (X', B') denote a map of ringed sites as before. Sup-
pose that Rf!# (Rf.) sends constructible sheaves of H*(B) ~modules to constructible sheaves
of H*(B') =modules on X'. Then Rf!# (Rf+, respectively) sends constructible presheaves of
modules over B to constructible presheaves of modules over B’.

PROOF. Recall the spectral sequence:
Ey' = RS fEHU(F)"— H (R F) 5 FeD(Mody(6, A))

Now the hypothesis of 2.2 shows that it suffices to prove ®R* f,#’Ht(F) "is constructible as a
S

sheaf of modules over H*(B’)". This is clear from the hypothesis. The assertion about Rf.
is established similarly. O

DEFINITION 4.6. We say f is constructible if Rf, and R f!# send constructible sheaves
of H*(B)-modules to constructible sheaves of H*(B’)-modules.

4.3. Terminology and conventions for the rest of the chapter. For the rest
of this chapter, we will adopt the following terminology. With no further restrictions on
the site, D(Mod’(X,B)) = D(Mod?*"/ (X,B)). In case the ringed site (X, B) satisfies the
hypotheses in 4.2 (i), D(Mod’ (X, B)) will denote D(Mod;/**(X,B)) as in definition 4.4.
In the former case D?(X,H*(B))) will denote the derived category D(Modferf(X, H*(B)))
of perfect complexes of sheaves of H*(B8)-modules. Moreover, any map f : (X, B) = (X', B')
of ringed sites in the above sense will be automatically assumed to be perfect in the first case
and of finite tor dimension and constructible in the second case in the sense of definition 2.13
and the definition 7?7 above. In either case Dy(5) will denote the dualizing complex in the
derived category D’ (X, H*(B)).

THEOREM 4.7. (Bi-duality) Assume in addition to the above situation that the natural
map

F — Dy 8)(Dy+(5)(F))

is a quasi-isomorphism for every FeD*(X,H*(B)"). Let FeD(Mod*(X,B)). Then the natu-
ral map F — Dg(Dp(F)) is a quasi-isomorphism. The same conclusions hold if Dge D* (Mody; (X, B))
so that the hypotheses in 4.1 are satisfied.

PrOOF. The second spectral sequence in Chapter III, Theorem 2.18 plays a key-role in
the proof. Observe next that the given filtration on F' and the canonical Cartan filtration on
B induce a filtration on D (F') as well as on Dg (Dg(F')). The natural map F — Dg (D (F'))
is compatible with the above filtrations. Now the filtrations provide us with spectral se-
quences; since the above map is compatible with the filtrations, we also obtain a map of
these spectral sequences.

Next recall that for F, Gr(F) = Sp(F), where FeD’(X,H*(B)) is a bounded complex
of finite tor dimension (or is a perfect complex). Recall F = IIF'(z). The spectral sequence
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for F' now is given by:
Byt = H(Gr(F)) "= H Y (Gry(Sp(F))) ™= ’H”t(Grt(hOEm EM;(F(i))))~

(4.3.1) = H7H (holim EM, (F(t))) "= H*(F)~

One may compute ’Hs”(hoEm EM;(F(t))) by means of the spectral sequence:
Ey" = HY(HY(EMy(F(t)))) = H“‘“’(hoiim EM(F(t)))~
This spectral sequence degenerates since Ey"” = 0 unless v = t and Ey" = HY(F(t)) if
v=t. ie.
Hs+t(ho£m EM,(F(t))) = H*(F(t)). Since F is a bounded complex, there exists an integer

N >> 0, independent of ¢ so that H*(F(t)) = 0 if s > N or if s << 0. It follows that
H5TH(Gry(F)) "= 0 if s > N or if s << 0. Thus the spectral sequence in ( 4.3.1) converges
strongly.

Now we consider the spectral sequence for Dg (D4 (F')) = RHoma(RHom4(F,D4),D4).
The E5*-terms are given by

(4.3.2) ES' = 1T (Gri(RHom A(RHom4(F, D4), DA)))"
By Chapter 111, Proposition 2.7 applied twice we see that Gr(RHomg(RHomp(F, Dg), Dg))
~ RHomg,s)(Gr(RHoms(F, Dg)), Gr(Dg))

~ R'Homgr(lg)(RHOW’LGT(QB)(GT(F), GT‘(DB)), GT(DB)).

By Chapter III, Proposition 2.10(ii) and Proposition 2.13 this may be identified with

RHomsp3e-(8)) (RHOomsp3¢((8))) (SP(E), Dsp(ae(8))), Dsp(ae(8)))
~ 'R,Homsp(%*(3))(Sp('RHomH*(B) (F, D’H*(B)))a Sp(D’H*(B)))
~ Sp(RHOTan*(B) (R?'lomq{*(lg) (F, D'H*(B))v D’H*(B)))

Now one may apply the computation in Chapter III, Proposition 2.17(ii) to identify the Eg’t
-terms in ( 4.3.2) with

Sa:tj_’f*w) (RHoma- () (F, Dyg=(5)), Da-(8))-

Under the hypothesis of the theorem, we see that natural map
F— RHOTI’LH*(B) (RHOW’L%*(B) (F, DH*(B)): D’H*(B))

is a quasi-isomorphism. Therefore we obtain an isomorphism of the Eg’t—terms in ( 4.3.1)
and ( 4.3.2). (In particular the second spectral sequence also converges strongly.) Since
both the spectral sequences converge strongly (recall the hypothesis of finite tor dimension
or perfection on F), it follows that the map F — D (D (F)) is a quasi-isomorphism. |

Situations where the theorem applies.

4.4. Consider schemes or algebraic spaces of finite type over a base scheme S. Assume
all the schemes and algebraic spaces are provided with the étale topology and L is a non-
empty set of primes different from the residue characteristics. Let A denote a presheaf
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of commutative algebras on S so that, H*(A) = @H"(A) is locally constant on the étale

topology of S and has L-primary torsion. Now the hypotheses in the Bi-duality theorem
are satisfied by any F'eD(Modlc’f't'd(@i,H*(A))). (See [SGA]4; /5 p. 250.) The bi-duality
theorem also holds for suitable L-completions of a presheaf of algebras A. See 6.1 for a
detailed discussion of this application.

4.5. Next assume B is a commutative algebra on X, FeDPe"f(Mod(X,H*(B))) and
that (modulo a globally determined shift) Dy (g, is locally quasi-isomorphic to #*(B). In
this case the conclusion of the theorem holds for any FeD(ModP*™f (X, B)) so that Gr(F) =~
Sp(F).

4.6. Consider locally compact Hausdorff topological spaces over a base space S of the
same type. Assume that L is a (possibly empty) set of primes for which all the spaces are of
finite L-cohomological dimension. (Recall that if L is empty, this means all the spaces are
of finite cohomological dimension.) Now let A denote a presheaf of commutative algebras
on S so that H*(A) = @H™(A) is locally constant and of L-primary torsion. Let X denote

n

a topological space as above and let p : X — S denote the obvious structure map. Now
the hypotheses in the bi-duality theorem are satisfied by any FeD%f*4(X,H*(A)). (See
[K-S-2] chapter III.)

We conclude this section by defining the homology with compact supports. Assume one
of the above situations. Let FeD(Mod;(X, B)). We let

DEFINITION 4.8. Ho(X,F) = H(X;Dp(F)) and H.(X,F) = H *(H.(X, F)). We call
this the homology of X with compact supports with respect to F'.

5. The extra-ordinary derived functors and the formalism of
Grothendieck-Verdier duality

In this section we complete formalism of Grothendieck-Verdier duality. Throughout we
will assume all the hypotheses in 4.3.

ProPOSITION 5.1. Let f : (X,B) — (X', B") denote a map of ringed sites.

(i) Now there exists a natural isomorphism of derived functors: Rf,oDp = Dy o Rf!# :
D(Mod;(X,B)) = D(Mod.(X',B"))

(i) There exists also a natural isomorphism of derived functors: Rf;# oDp =2 Do
Lf* : D(Mod;(X',B")) — D(Mod,(X,B)). More generally, if L, KeD(Mod;(X',B')),
there exists a quasi-isomorphism
Rf,(RHomp (L, K)) ~ RHomp(Lf*(L), Rf4K)

PrOOF. We will let S denote the unit of Presh(&) as in 1.0.3. The first assertion follows
readily from Theorem 3.5 and Corollary 3.7 by taking K = Dg. Let PeD(Mod;(X',S).
Then one obtains the following quasi-isomorphisms:

RMaps (P, Rf}(RHomp (L, K))) ~ RMaps(Rf (P), RHoms (L, K))

~ RMaps (R f,#(P)éL, K) ~ RMapg (R f,#(P(%L F4(L)), K)

~ RMaps(POL* (L), Ry (K)) = RMaps(P, R#toms(Lf* (L), Rf}(K)))
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The first and fourth quasi-isomorphisms are by Theorem 3.5, the second and last quasi-

isomorphisms are by Chapter II, 2.0.15 and the third by the projection formula. This proves

the second assertion in (ii). The first assertion in (ii) follows by taking K = Dp/. Observe

in view of corollary 3.7 that Rf;#(DB:) ~ Dg.) O
5.1. Next we define functors

(5.1.1) Rfi: D(Mod’(X,B)) — D(Mod’(X,B')) by RA(F)=Dg (Rf.(Ds(F))) and

(5.1.2)  Rf':D(Mod'(X',B")) = D(Mod"(X,B)) by Rf(K)=Dg(Lf*(Ds (K)))

PROPOSITION 5.2. (i) Let f : (X,B) — (X', B’) denote a map of ringed sites as above.
Then Rf;#(DB/) ~ Dp.

(i1) There exists a natural isomorphism of functors Rf; = Rf!# : D(Mod*(X,B)) —
D(Mod* (X', B"))

(iii) There exists a natural isomorphism of functors Rf' = Rf;% : D(Mod*(X',B')) —
D(Mod* (X, B)).

Proor. (i) Let p: (X,B) — (S, A) (p' : (X',B') — (S, .A)) denote the structure map
of the ringed site (X, B) ((X’,B'), respectively). Let KeD(Mod’(X,B)). Now one obtains
the quasi-isomorphisms:

RHomp (Rff (K), Dg') ~ RHomp (Rf/f (K), Rp'ss(A)) ~ RHom 4(Rp'{ RfY (K), A)
~ RHom 4(R(p' o f)¥ (K), A) ~ RHomg(K, R(p' o f)y(A)) ~ RHomp(K, Dp).

By Theorem 3.5, the first term above may also be identified with RHomg(K, Rf;&]]])g).

Since this holds for all KeD(Mod®(X,B)), we see that there exists a quasi-isomorphism
Rﬁiﬁ (Dp') ~ Dp. This completes the proof of (i).

Let KeD(Mod’(X,B)). By the definition of Rf), Rfi o Dg(K) = D Rf.D5 (D5 (K)) ~
Dp: Rf«(K). Moreover, by our hypotheses f is perfect (or of finite tor dimension and con-
structible as the case may be), so that Rf.(K)eD(Mod’(X',B')). Therefore, Rf.(K) =~
Dp (Dp' (Rf«(K))) ~ Dg (Rfi(Dg(K))). Finally replace K, by Dg (K) to obtain: Rf.(Dg(K)) ~
D (Rfi(K)). Next recall from Proposition 5.1 above that Rf, oDg = Dp: o Rf/. Tt follows

that there is a natural quasi-isomorphism Dg: (Rf!#(K)) ~ Dg (Rfi(K)). Take the dual
with respect to Dg: once more to obtain (ii).

In view of (ii), it suffices to show that the functor Rf' is right adjoint to Rf;. This may
be established as follows. Let PeD(Mod’(X,B)) and KeD(Mod’ (X', B')). Then

RHomB (P, Rf'K) = RHomB (P, DB (Lf*]D)B/ (K))) = RHomB (P, 'R,HomB(Lf*]D)B/ (K), DB))
~ RHoms(Lf* Dy (K)%)P, Dg) = RHomys(Lf* Dy (K)%P, Rf,(Dg))
~ RHomgp (Rf (Lf*Dg (K)%P), D) ~ RHomp: (Da: (K)%R f#(P), Dg:)

~ RHomp (Rf} (P),Dp: (Dg (K))) ~ RHomp: (Rf (P), K)

This completes the proof of (iii). O
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DEFINITION 5.3. Henceforth Rf, will denote either Rf!# : D(Mod" (X,B)) — D(Mod’ (X', B))
or the functor D(Mod’(X,B)) — D(Mod’(X',B')) defined above. Similarly Rf' will de-
note either the functor Rf;# : D(Mod’(X',B')) — D(Mod’(X,B)) or the functor Rf' :

D(Mod*(X',B')) — D(Mod’(X,B)) defined above. The trace map will be the natural
transformation Rf; o Rf' — id adjoint to the identity Rf' — Rf".

COROLLARY 5.4. Let f: (X,B) — (X',B'). Then there exists a natural isomorphism
of derived functors: Dg o Rf, = Rfi oDg : D(Mod’ (X,B)) — D(Mod’ (X', B)).

(ii) There exists also a natural isomorphism of derived functors: Dg oRf'= Lf*oDp :
D(Mod*(X',B')) — D(Mod’ (X, B))

PRrROOF. (i) It suffices to apply Dps to both sides of the isomorphism Rf, o Dg = Dg: o
Rf!# followed by the observation that Dy oDp 22 id on D(Mod’ (X, B)) and Dg: oDps = id on
D(Mod’(X',B')). This proves (i). Apply Ds to both sides of the isomorphism Rf' o D/ =

DpoLf* followed by the observation that Dz oDp 22 id on D(Mod’ (X, B)) and Dp: oDp: = id
on D(Mod’(X',B")). This proves (ii). O

5.2. Cohomological correspondence. Consider the following cartesian squares:

X1><X2 )/IX)/2

N N
R N

We will let A denote a sheaf of algebras on the base site S so that H*(A) is locally
constant. The corresponding inverse image of this presheaf of algebras on all the spaces con-
sidered above will also be denoted A. Let My, NyeD(Mod;;(X1;.A)), Noe D(Mod; (X2;.A))

L L
and MQSD(MOd;(XQ,A)) Let M = M{%Mg = pI(Ml)QEpE(MQ)7 N = Nl X N2 =

L
i (N1)®p3(N2). There exists a natural map
A

L
(5.2.1) RHom 4(M;, Nﬂ%R’HomA(M% N2) = RHom4(M,N)

as in [SGA]5 Exposé III, (2.2.4).
PROPOSITION 5.5. The above map s a quasi-tsomorphism.

PrRoOOF. We will provide all the presheaves with the Cartan filtration; now Chapter
III, 2.1 and Chapter III, Proposition 2.7 show that the associated graded terms for the
induced filtrations on the terms above are given by:

L
Gr(RHoma(M;, N1)§RH0mA(M2, N2))

L
= RHomg (4 (Gr(M1), Gr(N1)) B, RHomg (4 (Gr(Mz), Gr{Ny))

while Gr(RHoma(M, N)) =~ RHomg,a)(Gr(M), Gr(N)). Now Gr(M;) ~ Sp(H*(M;)),

and clearly
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OnH" (M;)eMody- 4y, (Xi), i = 1,2. Therefore Chapter III, Proposition 2.10(ii) provides
the identification:

'R’HOTI’LGT(A)(GT(MZ'), GT(Nz)) = RﬂomGr(A)(SP(H*(Mi))v Sp('H*(N)))
~ Sp(RHomsy-a)(H* (M;), H* (Ni)))

Chapter III, 2.1 and Proposition 2.10 again show

L
(522) GT‘(RHOTTLA(Ml,N1)|§RHO’ITLA(M2,N2))

L
~ Sp(RHoma(a)(H* (M), H*(Nl))H§>A)RH0m%*(A) (H*(Mz), H*(N2)))

Clearly the last term is quasi-isomorphic to

L L
(5.2.3) Sp(RHomaye (uy(H*(My) & H*(Ms), H*(N1)) @ H*(Na))
H*(A) H*(A)

(See [SGA] Exposé III, Proposition (2.3).) Moreover,

L L
RHomap-(ay(H* (M) & H*(Ma), H*(N1)) ® H*(Nz))
H*(A) H=(A)

L
= RHomy: ) (" (M), RHom o (H(Ma), H2(N0)) & (M)

Therefore two applications of Chapter III, Propositions 2.10(2.11), 2.12 and 2.13 show
the term in ( 5.2.2) is quasi-isomorphic to:

RHom e ) (Sp(H*(My)), RHome, () (Sp(H* (M>)), Sp<H*(N1)>H§A)H*(N2>)>

o~ RHOWLGT(A)(SP(H*(Ml)GéA)SP(H*(Mz))7 SP(H*(Nl))GééA)Sp(H*(Nz)))

~ RHomgra)(Gr(M), Gr(N))
These also show that the spectral sequence (obtained from the induced filtrations) for
both sides of ( 5.2.1) are strongly convergent and that therefore it suffices to obtain a quasi-

isomorphism at the associated graded terms. We have therefore completed the proof that
the map of ( 5.2.1) is a quasi-isomorphism. O

PROPOSITION 5.6. (Kunneth formulae). Consider the situation in 5.2. Assume further
that base-change as in ( 2.7.1) holds.

Let LieD(Mod!((X1,A), LoeD(Mod; ((X2,.A)), NieD(Mod: (Y1, A)), NoeD(Mod; (X2,.A));
let fi : X; — Y; denote maps over S and let f = fixXfy: X — Y denote the induced map.
S

Now there exists a natural quasi-isomorphism:
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L L L L
(524) Rfl*L:[%RfQ*LQ ~ Rf* (Lﬂ%Lz) and Rflng‘%RfQ!Lg ~ Rfl(Lﬂ%Lg)
L L
! L ! ! L
(5.2.6) Rf{NKR 3Ny = Rf'(NiEINy).

PROOF. We consider the proof of the second quasi-isomorphism in ( 5.2.4). First observe
that left-hand-side and the right-hand-side are related by maps natural in the arguments.
Now it suffices to prove these maps are quasi-isomorphisms at each point of Y; xY5. By

s

base-change we reduce to the case where g1, g2, g’ and h’ are all isomorphisms and that S
is a point (i.e the corresponding site is trivial). Observe that f = fixXfo = fiop1 = faops
s

where the maps p; : X1>5§X2 — X;, ©=1,2, are the two projections. Now
L ~ L ~ L ~ L
RfuLl%RJCZ!Lz—>Rf1!Ll%RJCZ!I/2—>Rfl!(ngLfik (Rf2!(L2)))—>Rf1!(ngRpuLpz (L2))

SR fuBpu (L} (1) S L0y (L) = R ()G L3 (L))

where the last = is obvious from the definition, the second and the fourth are by the
projection formula 2.17 while the first ~ is by the hypotheses which reduce to the case
where ¢’ and b’ are the identity maps. This proves the second quasi-isomorphism in ( 5.2.4).
The first is established similarly.

One may readily establish ( 5.2.5) using the observations that g; o f = f;op;, 1 =1,2.

Now we consider the proof of ( 5.2.6). First observe that Rf}(N;) = DaLf¥Da(N;),
L L
Rf!(N1§N2) = ID)ALf*(ID)A(Nl)%]D)A(Ng)). Therefore, by ( 5.2.5) and Proposition 5.5 it
suffices to consider the case where N7 and N are both A on the respective sites. i.e. it
suffices to show that

L
(5.27) DABDA= Da

where the D 4 on the right is the dualizing presheaf for X7 x X5. One may easily show that

s
there exists a natural from the left-hand-side to the right-hand-side which is compatible with
the induced filtrations on each. Therefore we reduce, as in the proof of Proposition 5.5, to
the case where A is replaced by H*(A). This is clear, for example, by [SGA] 5, Exposé III,
(1.7.3). O

5.3. Consider the situation of 5.2.1. Assume that S is a point. Let My, = L1, Ny = Lo,
Mo, = the constant pre-sheaf S on X, and N; = Rg'(S) ~ Ds in D(Modlc’f't'd(Xl; S)).
Moreover, Ds (L1) = RHoms(L1, Rg'(S)) and Ly ~ RHoms(S, Ly). Therefore one obtains
a natural quasi-isomorphism:

I
Ds(L1) X Ly = RHoms (L, Rg!(S))gRHomS(S, L)

~ L | L ~ 1 L |
;RHomS(L1§Sa Rg'(S)ng)—)RHOmS(PT(Ll)a pIR!J'(S)%Pz(Lz))
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Next let Y1 = S, Yy = X5, ¢’ : Y1 — S = the identity and f3 : X3 — Y5 = the identity. Now
( 5.2.6) provides the quasi-isomorphism:

L ~ ] L ]
Rg' (8)§L2:>Rp'2 (5§L2) ~ Rpy(Lo)

Combining this with the above quasi-isomorphisms, in the above case, one obtains a natural
quasi-isomorphism:

(5.3.1) Ds(L1) ® Ly>RHoms (p}(L1), Rpy(L2))

5.4. Poincaré-Verdier duality. Let A denote a commutative presheaf of algebras on S
so that #*(A) is locally constant. Let X denote an object over S with the structure map
p:X — 8. Let FeD(Mod,;(S; A)). Now one obtains a pairing:

(5.4.1) Rp'(A) @ p*(F) — Rp'(F)

This is adjoint to a map Rpi(Rp'(A) ® p*(F)) ~ Rp(Rp'(A)) ® F"4$“ A @ F — F where
the last map is given by the structure of a presheaf of left-.4A-modules on F'. It follows that
taking hypercohomology, we obtain a pairing:

(5.4.2) H(X; Rp'(A)) @ H(X; p*(F)) — H(X; Rp'(F))

In particular it follows that if aeH, (X;.A) is a class, we obtain a pairing:

(5.4.3) an—:HH(X;p*"(F)) — H, x(X;F)

For the following discussion, we will assume that S is a scheme and that we are consid-
ering schemes or algebraic spaces of finite type over S.

DEFINITION 5.7. (Poincaré duality property) Suppose the L-cohomological dimension
of X over S is n. We say that X has the Poincaré-Verdier duality property for X, if there
exists a class [X]|eH,(X;.A) so that [X] N — is an isomorphism with F' = p*(.A) and for all
k. We call [X] a fundamental class of X in the homology with compact supports of X with
respect to A. We say that the algebra A has the Poincaré-Verdier duality property over
S provided all smooth schemes (or algebraic spaces) X over S have the Poincaré-Verdier
duality property.

PROPOSITION 5.8. Assume that p: X — S is smooth and that A is a presheaf of algebras
on S having the Poincaré-Verdier duality property. If DX = Rp'(A), DX ~ X" Lp*(A) where
n denotes the [-cohomological dimension of X over S.

PRrOOF. Fix a (geometric) point p of X. Now the fundamental class of X restricts
to fundamental classes [U]eH,, (U;.A) for each open neighborhood U of p. Each such [U]
defines an isomorphism [U] N — : HF¥(H(U; A)) = HF"(H(U;="A)) — H, (U;A) =
H*—"(H(U; Rp'A)). Taking the colimit over all open neighborhoods of the point p, we
obtain a quasi-isomorphism: %"p*(A), ~ Rp'(A),. Since this holds for all points p, we
obtain ¥"p*(A) ~ Rp'(A) = DX. O
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The following proposition is considered solely for the applications in Chapter V. We let
pt denote a point in the usual sense provided with the trivial topology. Let A = KU = the
obvious constant sheaf on pt, where KU is the spectrum representing complex K-theory.
(Recall from Appendix A that this has the structure of a ring object in the category of
symmetric spectra.)

PROPOSITION 5.9. Let p: R! — pt denote the obvious projection of R to a point. Now
Rp'KU ~ Yp 'KU.

PROOF. It suffices to show that if K.(R!) denotes the spectrum of complex K-homology
with compact supports for R!, there exists a fundamental class [R!]em; (K (R!)). One may
compute the above group using an Atiyah-Hirzebruch spectral sequence and the observation
that the integral Borel-Moore homology of R! is trivial in all degrees except 1 where it is
Z. O

5.5. For the rest of the discussion we will restrict to the category of algebraic spaces (or
schemes) of finite type over a base scheme S provided with the big étale topology. In either
case we will assume that there exists a set L of primes so that all the spaces we consider are
of finite L-cohomological dimension. Let Presh(S) denote a category of presheaves on the
big étale site of S. Let A denote a presheaf of algebras on S and let A denote their inverse
images on X, X', Y and Y’. Let f: (X, A) — (Y,.A) denote a map of ringed sites as before.
We will say smooth base-change holds if the following condition is satisfied: let

(5.5.1) (X', A) T T (X,A)

(Y, A) (Y, A)

denote a cartesian square with f smooth. Now the natural map f*(Rg.(F)) — Rg',f"*(F)
is a quasi-isomorphism for all FeD*/*4(Mod;(X, A)).

LEMMA 5.10. Smooth-base change holds in the following situations. We are considering
algebraic spaces provided with the étale topology and for each ringed space (X, A) as above
each H™™(A) is torsion. Moreover, the base-scheme S has finite L-cohomological dimension
for some non-empty set L of primes different from the residue characteristics and each
H~"(A) is L-torsion.

PrOOF. The proof is entirely similar to that of Proposition 2.10. O

PROPOSITION 5.11. Assume the above situation. Then the functor
Rf;% : DFtd(Mod, (Y, A)) — DFtd(Mod;(X, A))
satisfies the hypotheses of 3.1(iv).

PROOF. Recall I'(U, Rf(K)) = RI(Y, RHom 4(Rf (Av), K)). Moreover one has the
spectral sequence

Ey" = H"(RU(Y, )oGr,(RHomy-(a)(RfT (H*(Av)), H*(K)))) = H"**(D(U, Rf;(K))

In view of the hypotheses on uniform finite cohomological dimension and the hypothesis that
f+« 1s constructible, one may now readily verify that there exists an N >> 0 independent of
K and v so that Ey"" =0 for u > N. O
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PROPOSITION 5.12. Assume the situation of 5.5. Let f: X — 'Y denote a smooth map
as above and let the L-cohomological dimension of the fiber be n. Then there exists a natural
isomorphism of functors:

Rf'= f*¥": D(Mod] (Y, A)) = D(Mod; (X, A)).

ProOOF. Step 1. We first consider a presheaf of the form j#!jl*] (A), where jy : U =Y
belongs to the big étale site of Y. Then Gr(j#!j{} (A)) ~ j#!j;} (Gre(A) ~ j#!jl’} (Sp(H*(A)))
and therefore, by the hypotheses, j#,j{}(A) has finite tor dimension . Let V = XxU =

: Y

fY1(U). We will show there exists a quasi-isomorphism
(5.5.2) R ({5 (A) = it 175" (A)

natural in U. First observe that if fiy : V' — U is the induced map, there exists a natural
map

(5.5.3) FERFLIG(A) = R (G555 (A)

By Proposition 5.8, Rf};(ji(A)) =~ f;X"(A). Therefore the left-hand-side identifies with
IS (5 (A)

~ [5Gt (A)) = Gt f557(A). Thus it suffices to show the map in ( 2.1.4) is a quasi-
isomorphism. Recall ]#,Rf[']j[*] (A) ~ DARjuDADA (DAl (A)) ~ DaRju«f1555(Da)

and Rf'(jf15 (A))
~ Dy f*DaDsRjuDajl(A) = Daf*Rju.jl;(Da) . The last two are quasi-isomorphic by
the smooth-base change in ( 5.5.1). This completes step 1.

Step 2. Next consider an LeD(Mod;(Y,A)) and let P(L)s — L denote a simplicial
resolution as in Chapter II, Proposition (2.4). Recall each term P(L), = llj_lkjﬁ!j{}E"(A).

Therefore, by step 1, there exists a quasi-isomorphism

Rf'(P(L)k)Sf*E™(P(L)y)
natural in k. Now take the homotopy colimit hoccA)lim{Rf!(P(L)k)|k}. By Lemma 3.3
with ¢ = Rf' = Rf;‘?é this is quasi-isomorphic to Rf!hocglim{P(L)k|k} ~ Rf'L. (See the

proposition above which shows that Rf' in fact satisfies the hypotheses there.) On the other
hand taking homotopy colimits preserve quasi-isomorphisms and commute with the functor
f*. It follows that hocglim{f*Z"(P(L)k)\k} &~ f*E"(hocglim{(P(L)kﬂk}) ~ f*¥*(L). O

COROLLARY 5.13. Let f : X — Y denote a smooth between complex quasi-projective
varieties of relative dimension n. Now the functor

Rf': D(Mod>? (Y, KU) — D(ModS! "% (X, KU))

identifies naturally with the functor f*%2*. In particular, there exists a fundamental class
in H.(X, KU) which is the homology of X with compact supports with respect to KU as
defined earlier.

PROOF. This is similar to the proof of the last proposition. O

6. Examples

With a view towards further applications (see for example, the next chapter), we will
presently discuss in detail the two examples considered in (i) and (iii) after the statement
of the bi-duality theorem in section 1.
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6.1. The Etale topoi. Here S will denote a base Noetherian scheme. (schemes/S)
will denote the category of schemes locally of finite type over S. ((smt.schemes/S) will
denote the full-subcategory of smooth schemes over S.) We will provide this category with
the big étale topology: this site will be denoted (schemes/S)g:. (One may similarly consider
the big étale site of all algebraic spaces locally of finite type over S, though for simplicity
we will restrict to schemes.) Presh((schemes/S)g:) will denote a category of presheaves
on this site as before. Let [ denote a prime different from the residue characteristics of S.
Presently we will discuss an [-adic variant of the basic theory developed so far, under some
mild additional assumptions.

Let I denote a fixed prime. We let Presh((schemes/S)gt;1) denote the full sub-category
of Presh((schemes/S)gt) consisting of objects P so that each H"(P) is l-primary torsion
as a presheaf.

6.2. Existence of completions. We will assume that the obvious inclusion of
Presh((schemes/S)gt;l) into Presh((schemes/S)g:) has a left-adjoint which we call the
l-completion functor.

Given an object PePresh((schemes/S)gt), its l-completion will be denoted P,. We will
assume that this functor preserves the structure of strongly triangulated categories and that
any pairing M; @ M>®...® M,, — N will induce a pairing (M ),® (M2);®...8 (M,); — (N),.
It follows readily that if A is an algebra in Presh((schemes/S)g:), then its l-completion A,
will also be an algebra in Presh((schemes/S)gt).

EXAMPLES 6.1. (i) As examples of this one may consider the following. Let
Presh((schemes/S)g:) denote a category of presheaves of spectra; in this case the Bousfield-
Kan completion functor for simplicial sets extends to such a completion functor.

(ii) In case Presh((schemes/S)g) = C(Mod((schemes/S)gt, R)) where R is the con-
stant sheaf associated to a commutative ring with unit, the completion at [ will have the
usual meaning,.

Let A denote a commutative algebra in Presh((schemes/S)g:). We will put the fol-
lowing assumption on A:

6.3. (i) for each v > 0, there is natural map ¥ : le\l — ./Zl\l which on H* induces
multiplication by [”.

ii) the natural map A, = holim(A4, /1) is a quasi-isomorphism and
1 1
v

(ii) the natural map H”(holim(.,zl\l/l”)) — lim’l-l”((./zl\l))/l” is an isomorphism for each n.

EXAMPLES 6.2. (i) Let Presh((schemes/S)g:) denote the category of all presheaves of
symmetric spectra on (schemes/S)g;. We let KU denote the spectrum representing complex
(topological) K-theory. Let @ ; denote the l-adic completion of the constant presheaf of
spectra representing complex K-theory. In this case @ ;/1” has the usual meaning. If KU
denotes the spectrum representing complex K-theory, recall that m,(KU) = Z if n is even
and trivial otherwise. Therefore, the above hypotheses are met by @ ;- (The next chapter
will consider a detailed application of these ideas to the construction of Euler-classes.)

(ii) Let S = Spec k denote the spectrum of an algebraically closed field of charac-
teristic p. We will consider the big étale site of all quasi-projective smooth schemes over
k: this will be denoted ((gp.sm.schemes/k))gt. Let Presh((gp.sm.schemes/Spec k)m) =
C(Mod((schemes/Spec k)gt,Z[1/p])). We let A denote the sheaf of E> differential graded
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algebras associated to the motivic complex as in [J-6]: we will denote this by ®Z,0t(n).

In this case, the rigidity property of mod-I¥ motivic complexes shows that Z..:/l¥(n) is
simply the pull-back of the complex (Z,ot /I¥)|spec - The latter is computed in [FSV] to
be given by H'((Zmot /I")|spec  k(n)) = Z/1, i = 2n > 0 and trivial otherwise. Therefore
the hypotheses in 6.3 are satisfied by A;.

DEFINITION 6.3. Let S denote one of the sites considered above. We will define
MsModlf”t(G, A;) to be constructible if the following hold:

(i) there exists an MeD,(Mod;(&,H*(A,))) so that Gr(M) ~ Sp(M) and
(ii) M ~ UmM /1¥, M /1"eDET Y (Mod; (&, H* (A,)/17)), for each v > 0.

M will be of finite tor dimension if M is of finite tor dimension.

THEOREM 6.4. With the above definition, the formalism of Grothendieck-Verdier duality
as in the earlier sections carries over to D(Mod?'"4(&, A))).

PROOF. It suffices to observe that the derived functors of the direct and inverse image
functors preserve the derived category of objects with constructible cohomology sheaves. [

REMARK 6.5. Assume that, in addition, 7-[*(.,21\,) is a sheaf of regular rings. In this,
case every sheaf of modules over it is of finite tor dimension. Therefore the formalism
of Grothendieck-Verdier duality will hold for all objects that are constructible; i.e. every
object is automatically of finite tor dimension. In particular, this applies to the two examples
considered in 6.2.

6.4. Locally compact Hausdorff spaces of finite cohomological dimension.
One may consider a big site where the objects are locally compact Hausdorff spaces of
finite cohomological dimension. The coverings will given by coverings in the usual sense
for the given topology on each space. Let & denote this big site and Presh(&) denote
the corresponding category of presheaves as before. Let A denote a commutative algebra in
Presh(6) so that each H™(.A) is constant. (For example A itself is constant.) It is clear that
in this case the entire formalism of Grothendieck-Verdier duality as in the earlier sections
applies. Suppose, in addition, that #*(A) is a sheaf of graded regular rings. In this case,
every sheaf of modules over 7*(A) is of finite tor dimension, so that the entire formalism of
Grothendieck-Verdier duality applies to all objects that are constructible.

As an example of this one may let Presh(&) denote the category of presheaves of
(symmetric) spectra on &. If KUePresh(&) denotes the constant presheaf associated to
the spectrum representing complex K-theory, the above hypotheses are satisfied. The next
chapter will consider a detailed application of these ideas.



CHAPTER V

Character cycles in K-theory for constructible sheaves

1. Introduction

In this chapter we provide a concrete application of the theory developed so far to
define an additive map from the Grothendieck group of constructible sheaves on a space to
its K-homology. There are various avatars of the basic technique: if X is a suitably nice
topological space and F is a constructible sheaf of Z-modules on X, we associate to F' a
class in the complex K-homology of X. The same technique applies in the étale setting
to constructible [-adic sheaves on the étale topology of a variety in positive characteristic
p # 1 and provides classes in its étale K-homology (completed at [). These are Euler classes
and generalize the cycle classes in K-homology associated to closed smooth subvarieties of
smooth varieties. Finally we also obtain a micro-local version of these classes; we also show
that these are K-theoretic versions of the character cycles with values in homology with
locally compact supports as defined by Kashiwara and Schapira.

In the second section we will provide definitions of Fourier transformation, specialization
and microlocaliztion for presheaves of spectra. (All the spectra we consider in this section
may be assumed to be symmetric spectra (as in [H-S-S]) and may in fact be replaced by
presheaves of I'-spaces if one is willing to consider connected spectra.) These will be related
by strongly convergent spectral sequences whose E — 2-terms will be the corresponding
operations applied to the homotopy sheaves of the above presheaves of spectra. In the
next section we define and study the properties of a trace-map (and an associated Fuler-
class) for constructible presheaves of KU-module spectra on complex varieties as well as
for constructible presheaves of KU ¢-module spectra on the étale site of varieties in positive
characteristic. (Here [ is assumed to be different from the characteristic of k£ and KU, is
the completion at [ in the sense of [B-K] and [T-1] of the symmetric ring spectrum KU. See
Appendix A and the end of the last chapter for some details on this.)

In t/h\e fourth section we show how to associate functorially a constructible presheaf of
KU- (KUy-) module spectra to any constructible sheaf of Z-modules (any constructible
l-adic sheaf, respectively). In the fifth section we explore the relationship between our
classes in K-homology and the corresponding classes in homology with locally compact
supports as defined by Kashiwara and Schapira. (See [K-S-2]). Topological K-homology will
mean the homology with compact supports with respect to the constant sheaf of spectra
KU (or with respect to KU, in positive characteristic p # [) in the sense of Chapter
IV, Definition 4.8. For a space X, Hy(X,KU) (Hy(X, @l)) will be denoted K°P(X)

o —

(KPP (X) ;» respectively). In the final section we combine the results of the earlier sections
to define an Euler-class with values in topological K-homology as an additive homomorphism
from the Grothendieck group of constructible sheaves to topological K-homology commuting
with direct images under suitable restrictions. We also obtain such a micro-local Euler class
for Z-constructible sheaves on complex varieties. One may state the main theorem as follows.
If X is a complex variety, we will let Const(X;Z) denote the category of all constructible

99
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sheaves of Z-modules on X. If X is a variety defined over a field k of positive characteristic p
(satisfying the conditions in (1.1.1)), [ is a prime different from p and v is a positive integer,
Const!t4(X;1 — adic) will denote the full sub-category of constructible [-adic sheaves that
are of finite tor dimension. We will let K (Const(X;Z)) (K(Const/*4(X;l— adic))) denote
the Grothendieck group of the corresponding category.

THEOREM 1.1. (See Theorem (6.1)) (i) If X is a complex algebraic variety, there exists
an additive homomorphism:

Eu: K(Const(X;7)) — K\P(X).

(i) If X is, in addition, a smooth quasi-projective variety, there exists another additive
homomorphism:

Eu, : K(Const(X;Z)) — K (T*X)

which factors through the obvious map KiP(Ap) — K¢P(T*X) where Ap is the micro-
support of F. The Todd homomorphism sends these classes to the corresponding Euler-
classes in Borel-Moore homology.

(i13). If X is a variety defined over a field k as in (0.1) of characteristic p and l is a
prime different from p, there exists an additive homomorphism

Eu: K(Const!*4(X;1 — adic)) — K (X),

The map from K-homology to étale homology (as in ( 5.0.7)) sends these classes to the
corresponding Euler-classes, at least, in the case of projective varieties.

(iv). The maps in (i) and (15) commute with direct-images for proper maps. The map
in (1) commautes with direct images for proper and smooth maps of complex varieties.

Our interest in these problems was awakened by a question of Pierre Schapira about
the possibility of defining such classes directly (i.e. without the intermediary machinery of
D-modules) whom we thank warmly. One may also observe that the theory of D-modules
can provide such classes for C- constructible sheaves, while our constructions apply also to
constructible sheaves of Z-modules and also to varieties in positive characteristic.

1.1. Throughout the chapter, we will follow most of the conventions and terminology
of the earlier chapters; any exception to this will be stated explicitly below. Topological
K-homology will mean topological K-homology with locally compact supports for locally
compact Hausdorff spaces and étale K-homology with locally compact supports as defined
in chapter IV for varieties in positive characteristics. These are defined by ring spectra in
the sense of appendix A, section 2: the ring spectrum representing complex K-theory will be
denoted KU. In positive characteristic p, we will restrict to schemes of finite type defined
over a field k£ with finite cohomological dimension and so that for each prime [ different from
the characteristic of k, each H™(Gal(k/k); Z/1") is finite for all n, v > 1. Here k is the
separable closure of k. (For example k could be a finite field or the separable closure of one.)
If X is a locally compact Hausdorff space with finite cohomological dimension (a scheme
of finite type over a field k as above) Cx will denote the usual site (the small étale site,
respectively) associated to X. We will use the generic term space to denote a topological
space or a scheme as above.

1.2. We will adopt the basic terminology as in [K-S-1] or [K-S-2] for various aspects
of the micro-local theory. The functor ~ will denote the sheafifying functor; we will apply
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this only to abelian presheaves. If R is a noetherian ring D (Cx; R) will denote the derived
category of bounded-below complexes of R-modules on the site Cx. (R will denote Z if X
is a topological space as above while it will denote Z, v >> 0 and [ different from char (k)
if X is a scheme in positive characteristic.) DS (Cx; R) (Di’f't'd(CX; R)) will denote its full
subcategory of complexes with constructible cohomology sheaves (that are also of finite tor
dimension, respectively).

1.3. Let E denote a ring spectrum in the sense of appendix A. Now Mod;(Cx, E)
will denote the category of presheaves of left-module-spectra over E on the site Cx. The
derived category D°(X, E) will denote the derived category of presheaves of FE-modules
that are constructible as in earlier chapters, i.e. D(Mod§(Cx, E)) while D®/-t4(X | E) will
denote the associated full sub-category of all objects of finite tor dimension. (Recall this
was denoted D(Modlc’f't'd(X, E)) in earlier chapters.)

REMARK 1.2. In positive characteristics, we will assume that the given spectrum FE is
the I-completion of another spectrum E’ so that the homotopy groups of E are in fact the
I-completion of the homotopy groups of E’. (See Appendix A, (2.2).)

2. Fourier transformation, specialization and micro-localization for presheaves
of spectra

In this section we will restrict to complex varieties or often to locally compact topolog-
ical spaces. (All our results should carry over to carry over to positive characteristics (at
least in principle) using the étale site using the appropriate variations of the Fourier trans-
form, specialization and micro-localization. With such an extension, it would be possible to
obtain micro-local classes in étale K-theory for constructible sheaves on varieties in positive
characteristics. However the details seem to be a bit involved - for example, the appropriate
notion of micro-localization would be that of Gabber and Laumon and the appropriate no-
tion of Fourier transformation would be that of Deligne and Laumon (see [Lau]). We hope
to discuss this more fully elsewhere.)

2.1. The Fourier-transformation. Let ¢; : £ — Z denote a locally trivial real vector
bundle on a locally compact space Z with finite cohomological dimension. If R denotes a
graded ring, we will let D (€; R) denote the derived category of bounded-below complexes
of sheaves of graded R-modules on €. Let D4 conic(€; R) denote the full-subcategory of
D, (&; R) of complexes whose cohomology sheaves are locally constant on half-lines of £.

2.1.1. Let DS (&; E) will denote the full sub-category of the category Dftd(&;

+,conic

E) consisting of presheaves F' so that m,(F) = ®m;(F)~ belongs to DS (&; m(E)).

+,conic

Let iy : Z — & (iz : Z — £*) denote the closed imbedding provided by the zero-section.
Let F'e DS (&; E). Now the map g7 *Rqy.(F') — F' defines a map

+,conic

(2.1.2) Rq1.(F") 54, gy ' Ray (F') — i (F)

natural in F”.

Similarly the map i1 Ri} (F') — F' defines a map
(2.1.3) Ri} (F")5Rqyy oiyy o Rit (F') — Rqy(F'),

again natural in F'. The Cartan-filtration on F’ is compatible with the above maps (by
naturality); this filtration provides spectral sequences that converge to the sheaves of homo-
topy groups of the above and whose F; '_terms are given by the corresponding s-th derived
functor applied to the sheaf H~t(F’) ™ = m(F’) " - see (7.1.2). Since the above spectral
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sequences converge strongly and we obtain an isomorphism at the Fs-terms (see [K-S-2] p.
170), we observe that the above maps are quasi-isomorphisms in general.

Let g3 : £ — Z denote the dual bundle to £. Let

P ={(z,y)e€xE"| <2,y >2 0}, P' = {(z,y)e€ xE"| < z,y >< 0},

Let i : P — EXE* and ¢ : P — E£XE* denote the obvious closed imbeddings. Let RT'p =
z z
i Ri'. Let py : EXE* — & (p2: ExE* — £*) denote the obvious projection. Let z; : ExZ —
z z z

EXE* and 20 : ZxE* — EXE* denote the obvious zero-sections.
z z Z

Now one defines the Fourier-Sato transform (see [K-S-2] chapter III and [Bryl-2]) of
FeDS (&; E) to be

+,conic

(2.1.4) F = Rps. RTp(p; '(F)) = R(pss o Tp)(p; ' (F))

Observe from (7.1.2), that, so defined, there exists a spectral sequence

— o~

(2.15) Byt =H (7 i(F) ) = R*(p2 o Tp) (07 (pi—e(F))) = moses(F )

which is strongly convergent since all the spaces are assumed to have finite cohomological
dimension. Observe that the Es-terms are the cohomology sheaves of the Fourier transforms
of the abelian sheaf m_;(F). Using this spectral sequence, and various basic results from
Chapter IV, one can easily recover all the usual properties (see [K-S-2] chapter III or [Bryl-2]
) of the Fourier transform. For example, one may show readily that

~

(2.F.1) F eD% ,,,..(E%; E), if FeD% ,...(€; E).

+,conic +,conic

There exists a natural quasi-isomorphism:

(2.F.2) F ~ Rpyi.i'* (p; 'F), FeD¢ (& E)

+,conic

To see this, first observe the existence of the following natural maps:
Rps.RUp(py ' F) = Rpa. RUpili'™ (py ' F) < RpaRUpil i’ (py ' F) — Rpyiili"™ (py ' F)

These maps are compatible with the Cartan-filtration on F' and hence they induce maps of
spectral sequences that converge to the respective sheaves of homotopy groups. The Eg’t—
terms are the corresponding s-th derived functor applied to m¢(F). Therefore we obtain an
isomorphism of the corresponding Es-terms as shown in in [K-S-2]p.171. This suffices to
prove the maps in (2.F.2) are quasi-isomorphisms in general - see (7.1.2).

Similarly one also obtains a quasi-isomorphism:
(2.F.3) Rqa.(F) ~ Rqu(F).

One may deduce this from 2.1.2 and 2.1.3 as follows. First observe the existence of
natural maps:

Rg.(F) = Rqa.(Rp2. RT p(p7 ' (F))) = Rgaw(Rpa. RT p(ili"*p7 ' (F)))

¢— Rga1(Rpa RT p(iLi" py *(F)))
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By [K-S-2] p. 171, and by (7.1) the above maps may be seen to be quasi-isomorphisms. Now
we apply 2.1.3 to p2 and g2; this provides the quasi-isomorphism of the last term above with
Ri\ Rz} RUp(i\i"" py* (F)).

It is shown in [K-S-2] p.171 that the support of i',i’~"RL p(p; *(m+(F)Y is contained in
Z xE*. Therefore we may replace the Rz} with z;'. Now there exists a natural map
z

Ri\ 27 Y i "R p(py tF) — Ril 27t i (py 1F) = R} (F) ~ Rqu(F)

where the last quasi-isomorphism follows from 2.1.3 applied to ¢;. Now (7.1) shows the
composition:

~

Rq2.(F) — Rqu(F)
is a quasi-isomorphism.

Assume FE has the Poincaré-duality property. Let Le D®¥*4(Z; E). Now we also obtain
the natural quasi-isomorphism:

(2.F.4) Rqy(L) ~ g, (L)

To see this, observe Rq! (L) ~ Rpyi',i' " (p7*(Rqk(L))) ~ Rzyi' i’ (Rphgy  (F)) since
Rg} ~ ¢;'[2d] and Rp} ~ p;'[2d'] for suitable d and d’ by the Poincaré duality property
of E. Now the last term has a natural map from RzhRph(gy *(L)) = g5 *(L). By (7.1) we
reduce to showing the above maps are quasi-isomorphisms when Lng’f +4(Z; 7.(E)). This
is clear by [K-S-2] p. 175.

Finally one may also observe that

(2.F.5) Sp(F) ~ (8p(F)), FeDs. . . (&; m(E)).

+,conic

where Sp : DS nic(E5 Tu(E)) = DS onic(E; Gr(E)) is the functor defined in Chapter I,
Definition (4.6). This follows readily from Chapter IV, Proof of Proposition 2.12 and the
discussion following it, where it is shown that all the functors involved in the definition of

the Fourier transformation commute with the functor Sp.

2.2. Specialization. Let X denote a real manifold of class C*, o > 2 and let f : M C
X denote the imbedding of a submanifold in X. We let X); denote the blow-up of X x R
along M x 0. We let p : XM — X and ¢ : XM — R denote the obvious maps. The fibers
t~1(c) are isomorphic to X for ¢ # 0, while for ¢ = 0, t71(0) ~ Tps X = the normal bundle
to the imbedding of M in X. Let Q = ¢t 1({zeR|z > 0}), j : @ — X the obvious open
imbedding and s : Ths X — Xy the obvious closed imbedding. If FeD.(X; E), one lets

vim(F) = (Rj.j 'p 'F)lryx = s 'Rj.j '(p 'F)

and call it the specialization of F' along M. In this context one obtains a strongly convergent
spectral sequence (as in (7.1.2)):

Ey' =1 (vm(mo(F) ) = mst(var(F))

using which one recovers the usual properties (see [K-S-1] chapter 2) of specialization. For
example, one obtains a natural quasi-isomorphism:

(2.8.1) var(F) ~ Rs'jij'Rp'(F)
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To see this, one begins with the fibration sequence:
s«Rs'(jijH(p'F)) = i (p7'F) = Rjj~'p~ {(F)

On applying s~ ! to it, one observes that s~! o j; ~ % and hence
s Rj.jTIpTH(F) ~ £(Rs'ij 'pTF) ~ Rs'j S (5 F)

where p = poj: Q — X. Now Q ~ X x {reR|r > 0} and p = the projection to the
first factor. One may therefore conclude readily that X(5~'F) ~ Rp'(F) - see Chapter
IV, Proposition 5.12. This gives (2.S.1). As a corollary to (2.S.1) one obtains the natural
quasi-isomorphism

(2.8.2) vy (DE(F)) ~ DE (v (F)).

One also obtains the following property. Let f : M — X denote the closed imbedding
of Min X, 7:TyX — M and 7 : Tj; X — M the obvious projections. Let z : M — Ty X
denote the zero-section. Now one verifies readily that there is a natural map:

(2.8.3) f~1(F) — Rr.(vu(F))

(To see this, observe f~'(L) = z7's7p™(F) — 27 's7'Rj,.j 'p~ (F) = 27 (vy (F)).
The last term may be identified with R7,(va(F)) by 2.1.2.) Using the spectral sequence
above (which converges strongly) along with the identification of its Fs-terms, one may
show readily that this map is a quasi-isomorphisms stalkwise. Now apply the above map
to Dx (F) instead of F. Using the theory of generalized Verdier duality as in chapter IV,
(2.S.2) and (2.S.3) one now obtains a natural quasi-isomorphism:

(2.8.4) fY(F) = Dy (f Dx (F)) + Dar(RrDoryy x (var(F)) = R(var (F))

Next assume LeD%/t4(M; E). Applying (2.5.4) to F' = fi(L) = f.(L), one obtains a
natural map

L ~ Rf'fi(L)&Rn(va (fi(L)))
Applying R7' to this map, one obtains a natural map
(2.8.5) RT'(L)&R7'Rn(var (i) < var(AiLl)
Finally one may also show that one has a natural quasi-isomorphism:

(2.8.6) Sp(vam(F)) =~ v (Sp(F)), FeD§(M; m.(E)). This follows readily from Chapter
IV, Proof of Proposition 2.12 and the discussion following it, where it is shown that all the
functors involved in the definition of the functors involved in vy commute with the functor
Sp.

2.3. Micro-localization. Assume the situation of 1.1 through 1.3. If FeD®/*4(X;
E), we define the micro-localization of F along M to be

pn (F) = (vm (F)).
In this context one obtains a strongly convergent spectral sequence:
Ey' = H(un(n—o(F) ) = m—s—e(nas (F))

using which one may recover all the usual properties (see [K-S-1] chapter 2) of micro-
localization. (Observe once again that the Fa-terms are now the micro-localizations of the
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abelian sheaf 7 _;(F).) For example let f : Y — X denote a closed imbedding of manifolds
as above. Now one obtains a natural quasi-isomorphism

(2.3.1) F(F)3Rn(vy (F)) ~ Rr, (uy (F))

where the first quasi-isomorphism is from (2.S.4) while the second one is from (2.F.3) with
1:€—=Z(q2:E — Z)being 7: TyX - M (7 : T5; X — M, respectively). Using this
one may readily obtain the following result as well. Let f : Y — X denote a map between
manifolds. Let g;, j = 1,2 denote the j — th projection on X x Y and let A denote the
graph of fin X X Y. Let 7 : TA(X XY) — A 2 Y denote the obvious projection. (Here
TX(X xY) is the conormal bundle associated to the imbedding § : A — X x Y.) Let

FeD®/*4(X; E) and let GeD>/*4(Y; E). Then one obtains natural quasi-isomorphisms:
(232) Rm.paRHomg(a; ' (G), 41 (F)) = & (RHomg (g5 (G), a1 (F)))
o ~ RHomg(0~ 0y G, 68" o ¢i(F)) ~ RHomg (G, Rf'F)

where the first quasi-isomorphism follows from 2.3.1 with F (f) there replaced by RHomg (g, *(G),
¢} (F)) (6, respectively) and the second quasi-isomorphism follows from Chapter IV, Propo-
sition 5.1(ii). Moreover, Chapter IV (5.6.6), provides the quasi-isomorphism:

(2.3.3) RHompg(q, *(G), ¢, (F)) ~ Dx(G)X F.

Assume the situation of (1.1); let FeD%*(X; E) and let § : X — X x X denote the
obvious diagonal imbedding. Now one obtains a natural map (observe that § is a closed
imbedding) making use of (2.F.4) and (2.S.5):

—

(2.3.4) pa(8iF) = (va(Bi(F))) = (RFY(F)) = 7 (F)

Let FeD®/*4(X; FE) so that there are only finitely many distinct m;(F). (i.e. either
they are nontrivial in all but finitely many degrees or they are periodic. For example if F
is a constructible presheaf of KU-module spectra, the sheaf of homotopy groups of F' are
Bott-periodic of period 2.) If 4y,... i, are these distinct values, one may define the micro-
support of F' to be the smallest closed conic subspace of T* X containing the micro-supports

of SS(mi,(F)),j=1,...,n.

3. The Trace map and the Euler-class

We will assume the basic situation in 1.1 through 1.3. In this section we will define a
trace-map

(3.0.5) TrY : RT(X, RHomg(F, F)) — H(X; D¥)), FeD*/*4(X; E)
where it is assumed that there are only finitely many distinct nontrivial m;(F).

If X is a smooth variety over the complex numbers or the reals and FeD**(X; E) has
only finitely many distinct m;(F) ( so that its micro-support may be defined), we will also
define a micro-local trace-map

(3.0.6) Tr) : RT(X,RHomg(F,F)) — H(Ap; DY)

where Ag is the micro-support of F'.
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Let FeD%/*4(X; E) be globally of finite tor dimension. Now one observes the natural
quasi-isomorphism:

RHomp(F, F) ~ DE(F)X F. (Take X; = X2 = S in chapter IV (5.6.5) and S = E.)

Therefore one obtains a natural map € : Dy (F) X F — Dx. This is simply the evaluation
map. Taking hypercohomology we obtain the trace-map

(3.0.7) Tr" : RT(X,RHomg(F, F)) — H(X; Dy)

(Observe that Tr" (above) may also be viewed as the composition of the following maps:

RT(X, RHomp(FQE,FQE))SRT(X, RHomg(E, RHomg(F, FRF)))
E E E

(3.0.8) N .
ERT(X, RHomp(E, FRDg(F)))SRT(X, RHomg(E, Dy))
E

One may compare this with the definition of the trace-map adopted in [Il].)

Next assume that FeD%/*4(X; E) has only finitely many distinct 7;(F) so that the
micro-support Ag of F is defined as a conic subset of T7*X. Now we observe the quasi-
isomorphisms:

RHomp((F, F)=Rr,RU A uanRHomg(q; *F, ¢, F) =R RT A, ua (D3 (F) X F)

Clearly there is a natural map Da (F)XF — §,6* (D% (F)XF) — 6.(Da (F)®F) — 6.(D%)
where the last map is e. Now ( 2.3.4) provides a natural map :

R RTppa(64(D%)) = R RU A (7 1(D%)).
On taking the hypercohomology spectrum on X, therefore one obtains a map:
RU(X,RHomg(F,F)) — H(X; Rm«RLA, (77 'DX))) ~ H(Ar; Dg)

3.1. The composition of the above maps will be called the micro-local trace and will
be denoted T}, (One may compare this with [K-S-2] p. 377.) We proceed to establish the
main properties of these trace maps.

(3.Tr.1) On taking the homotopy groups, the trace-map induces an additive homomor-
phism 77 : 7,(RHomg(F, F)) — m,(H(X; D%)) for each n. Similarly the micro-local
trace induces an additive homomorphism T'r, : m,(RL'(X, RHomg(F,F))) — m(H(Ap;
Dg)) = m,(H(T* X; Dg)).

(3.1r.2) Gr(Tr"F) ~ TrE"(F) and similarly Gr(Tr]) ~ TTST(F), where Gr denotes the
associated graded terms with respect to the Cartan filtration. If M eD**(X; 7. (E)), one
also obtains natural quasi-isomorphisms: TrS?(M) ~ Sp(TrM") and Tr,‘fp(M') ~ Sp(Trff[').
For the trace-map, this follows readily from Chapter III, Propositions 2.7, 2.10(ii), 2.13
and Chapter IV, (4.2.1). For the micro-local trace this follows from the same and (2.F.5)
along-with (2.S.6).

3.2. Inorder to establish the additivity of the trace-map, it is convenient to consider the
filtered category Presh?:ft4(Cx; E). (See [Ill] chapitre V .) The objects of this category are
presheaves FePreshf*4(Cx; E) provided with a finite increasing filtration by sub-objects
in the same category and indexed by the integers so that there exist integers m and M such
that F; = x if ¢ <m and F; = F); for all ¢ > M. i.e. One obtains
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We also require that each map I'(U, F;) — I'(U, F;41) is a stable cofibration for each UeCx
and so is (Fy)z — (Fit1)z for each point z in the site Cx. The corresponding derived
category will be denoted Dfb:/t4(Cy; E).

3.3. One may also define the graded category Presh%’f't'd(cx). The objects of this
category are presheaves F' sPreshf;Jt'd(C x ) provided with a grading by the integers so that
all but finitely many terms are trivial. (i.e. There exist F,,..., Fas €ePreshg(Cx) along
with an isomorphism F' & \/ F;. The corresponding derived category will be denoted

m<i<M
Dgr,f.t.d(CX; E)

3.4. GivenF, F'ePreshgl’f't'd(CX) one puts the obvious filtration on RHompg(F, F').
i.e. RHomg(F, F'), = {feRHomg(F, F'|f(F;) C F';;,}. Given FePreshi"/"(Cx) and

F'ePreshi™T44(Cx), we let FQF' be filtered by (FQF"),, = the image of \/ F;@F'; —
E E i+j=n F
FQF'
E

3.5. Let F={xCFyCF..CF,=F} bean object in Preshgl’f't'd(cx). Since the
filtration is finite, it is automatically exhaustive and complete. Moreover, by re-indexing
the filtration, one may also assume it is decreasing.) Therefore, Chapter III, Proposition 2.7
(where E is provided with the trivial filtration) provides a natural quasi-isomorphism:

gr(RT(X,RHomg(F,F))) ~ RT(X,RHomg(gr(F), gr(F)))
Here gr denotes taking the associated graded terms with respect to the given filtration.

3.6. Let Gr(E) denote the associated graded spectrum obtained from E' using the
Cartan filtration. Observe that an object FsPreshgl’f't'd(CX) consists of a filtered object
so that the filtration as above is compatible with another decreasing filtration {F"|n} so
that

(i) Gr(F) = {F"/F"*Hn}ePreshé’Z(E) (Cx) and

(i) there exists an object Py — ... — ]51', eDj:il(E)’T(CX) which is globally of finite tor

dimension so that one obtains a homotopy commutative diagram:

Gr(Fy) — Gr(Fy) — - —— Gr(F,) ~Gr(F)

I a

Sp(Py) — SP(P;) —— -+ — Sp(P;) ~ Sp(P")

3.7. An object FePresh%T;f't'd(CX) is a graded object F' = \/FePresh% .(Cx) so

that the gradation above is compatible with a decreasing filtration {F"|n} so that
(i) Gr(F) = {F"/F"*"'|n}ePreshy, 5 (Cx) and

(ii) there exists an object P~ = @ P; eD4" , (Cx) which is globally of finite tor
0<i<p 5

dimension so that one has a homotopy commutative diagram
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VSp(P) —=— Sp(P)

|

~

VGr(F;)) —— Gr(F)

Notation. Let FePresh(Cx; E). Gr(F) will denote the associated graded object ob-
tained from a decreasing filtration on F' compatible with the Cartan filtration on FE. If
FePresh?(Cx), gr(F) will denote the associated graded object with respect to the given
filtration on F. This belongs to Presh% (Cx).

Observe that the same definition of the trace Tr applies to the filtered and graded
cases. Observe (from 3.4) that the dualizing presheaf D4 has only the trivial filtration
(with D% in degree 0) and that

(Dx (F) W F)o = Dx (U(F)) ®U(F)

where F is a filtered object as in 3.5, U(F')e Preshg,(Cx) is the object obtained by forgetting
the filtration and Dx (F))X F is provided with the obvious induced filtration. It follows that

(3.7.1) 7 (TrF () = o (TrVENU(f))), feRT (X, RHomg (F, F))

3.8. Next assume F' 2 \/FiePresh%:’Tf't'd(CX). Observe that now an feRT'(X, RHomg(F, F))

of grade 0 is given by a collection {f;e RHompg(F;, F;)|i}. Now one may readily show that

R (Tr7(£) = . (Tr7(£)

Let FsPreshgl;f't'd(CX) denote a filtered object as in 3.5. In view of the quasi-
isomorphism there, the functor gr induces a map

T+«(RT(X,RHomg(F, F))) — m.(gr(RT(X, RHomg(F, F)))) = 7. (RT(X, RHomg(gr (F),
gr(F))))-

Now one obtains the commutative square

RU(X,RHomu(F,F))y  —Z" RI(X,RHomz(E,DX))
ng, lgr:id
97 (F)
RT(X, RHomg(gr(F), gr(F)))o — RT(X, RHomg(E, DX))

by taking the associated graded terms of degree 0. (Recall that RHomg(E, Dy ) is provided
with the trivial filtration.) Therefore, one obtains the commutative square:

7 ( T‘F)
(3.8.1) 7o (RT(X, RHomg (F, F))) T 7 (RD(X, RHomg(E, DX)))

lg"’ lg"’
T (TrgT(F))

m.(RHomp(gr(F),gr(F))) ~  m.(RT(X,RHomg(E; D¥X)))
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Since 7, (Tr¥(f)) = m(TrV"F)(f)) (see ( 3.7.1), 3.8) the above square shows that, if
feRT(X,RHompg(F,F)) is of degree O:

(3.8.2) m(Tr7 O U(f))) = Sa(Trém ) (gri(£)))

ProrPoOSITION 3.1. Let

(3.8.3) F' ~F -

bk

/ —_— —_—

F F F”

denote a commutative diagram in Preshgt'd(cx) so that the two rows are cofibration se-
quences. Then

TrE(f) =TrF (f') + TrF" (") as classes in m,(H(X; Dg))

If X is a smooth variety over the real or complex numbers and F, F' and F" all have
only finitely many distinct sheaves of homotopy groups one also obtains:

Tl (f) = Trff'(f’) + Trfu(f”) as classes in m.(H(A; Dg))

where A is the smallest conic subspace of T*X containing the micro-supports of all the

sheaves m;(F'), mi(F) and m;(F") for all i.

PrOOF. We will only prove this for the trace-map since the proof for the micro-local
trace will be similar. It suffices to interpret the diagram in ( 3.8.3) as a map f of filtered
objects: we let F' be filtered by Fy = F' and F; = F. We proceed to verify that there is an
object P'eDiil(’fE)m (Cx) filtered by P; C P; = P so that we obtain a homotopy commutative
diagram:

(3.8.4) Gr(Fy) — ~ Gr(F)) = Gr(F)

L)

Sp(Ps) —  Sp(P;) = Sp(P)

Let F”, F- and F"" eD;(Cx;m.(E)) be globally of finite tor dimension so that Sp(F"") ~
Gr(F"), Sp(F') ~ Gr(F) and Sp(F"") ~ Gr(F"). On taking the homotopy groups, the
commutative diagram ( 3.8.3) provides the commutative diagram:

Fr——>F —

NN

F_V' T> Fv - 5 F//'

in the category of complexes of sheaves of graded modules over ,(E). Let P = Cyl(d)
denote the mapping cylinder of the map « of complexes. There is a monomorphism,
F"" — Cyl(a) which is split degree-wise. Therefore we may define a filtration on Cyl(a) by
Cyl(a)o = F", Cyl(a); = % if i < 0 and Cyl(a); = Cyl(a). It follows that, with the above
filtration, P-eDf-¢(Cx;m,(E)) is globally of finite tor dimension and provides a diagram
as in 3.8.4. The hypotheses guarantee that we now obtain a map f in Presh?:/-t4(Cx; F).
This completes the proof of the above proposition. O



110 V. CHARACTER CYCLES IN K-THEORY FOR CONSTRUCTIBLE SHEAVES

3.9. Assume the above situation. We define the Fuler class of F (denoted eu(F)) to
be Trf (idr)emy(H(X; Dg))

3.10. Next assume the situation of 3.1. Now we will define the micro-local Euler class
of F (denoted eu,, (F)) to be the image of T'r[ (idp)em(H(Ar; Dg)) in mo(H(T™ X; Dg)).

PROPOSITION 3.2. Assume the hypotheses of (3.1r.8). Then eu(F) = eu(F") + eu(F")
and eu,, (F) = eu,(F') + eu, (F").

PRrROOF. This is clear from ( 3.8.3) and ( 3.0.7), 3.1. |

Let i : Y — X denote the closed immersion of a smooth sub-variety into a smooth
variety, both being defined over an algebraically closed field k& of characteristic p > 0. Let
E=KU if p=0 and I/(T]l, l#p,v>>0if p>0. Let F =4,i*(E), E being the constant
sheaf on Cx. Consider the following quasi-isomorphisms:

HX, RHomp(i.i*(E), ivi* () SH(X, Dp(i.i*(E)gi.i*(E))

~

SH(X, i, Ri'(DY)®i.i* (E)) SH(X, i.Ri' DX)SH(Y, DY) — H(X; DX)
E

(The last term is the presheaf-hypercohomology of X with respect to E.) The trace-map
sends idp to the image of the fundamental class of Y in Hy(X; E). By Poincaré-Lefschetz-
duality this class identifies with the cycle class cl(Y)eH°(H(X; E)). Now observe that the
cycle class cl(Y) = the Euler-class of the normal-bundle to the imbedding of Y in X. This
justifies calling the classes in 3.9 Euler-classes.

4. Passage from constructible sheaves of Z-modules to constructible presheaves
of KU-module spectra

In this section we will show how to functorially associate to any constructible sheaf of
Z-modules (Z;-modules) on a suitable space a constructible presheaf of KU-module spectra
(KU;-module spectra, respectivelyif v >> 0).

4.1. Let X denote a space as before and let Cx denote its associated site. If X is a
real or complex variety with Cx its usual site, we consider the ring spectrum KU (the ring
Z, respectively). If X is a scheme of finite type over a field k with characteristic p > 0 and
l is a prime number # p, v >> 0, we will instead consider the ring spectrum KU 1 (the
ring Z, respectively). KU (Z, @ b Z,) will denote the obvious constant sheaves. One key

=7

observation is that m;(KU) 2 Z (m;(KU;) & Z) if ¢ is even and trivial otherwise.

We will first consider the case where X is a real or complex variety. Let F denote a
constructible sheaf of Z-modules on Cx. Let R(F) — F denote a resolution by a chain
complex of flat sheaves of Z-modules. Let % denote the sphere spectrum and let ¥ denote

_ L_
the associated constant sheaf: now form m(Z)%R(F) = T (E)%)F. Apply the functor

GEM from Chapter I, section 1 (ST4) (see also Chapter I, section 4, Proposition 4.4 to
this object in each degree to obtain a chain-complex of presheaves of generalized Eilenberg-
Maclane spectra. Next we de-normalize this to obtain the corresponding simplicial object
of presheaves of Eilenberg-Maclane spectra. Now we consider:

(4.1.1) KJ(F) = @%DN (GEM (m(E)%(F)))
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This is a simplicial object of presheaves of KU-module spectra. Next one takes its homotopy
colimit to obtain a presheaf of spectra which will be denoted

(4.1.2) K(F)

By taking a fixed flat resolution of 7,(X), one may observe that the functor F — K(F) is
an ezact functor in the following sense:

4.2. if0 - F' - F — F” — 0 is a short exact sequence of sheaves of Z-modules on
the site Cx, the corresponding diagram K (F') — K(F) — K(F") is a distinguished triangle
in Presh(Cx; KU).

PROPOSITION 4.1. Assume the above situation. Now m;(K(F)) = F if i is an even
integer and trivial otherwise.

PROOF. We compute the homotopy groups of each term, K, (F'), of the simplicial object
using the spectral sequence in Chapter III, Proposition 1.2. Here

B3 = Torl;™ (r. (KU), m. (DN (GEM (. ()& (F)ln)

= Mo 44(Kn(F))

™~

One may identify ., (DN(GEM(W*(E))é(F))) with DN (7.(X)®(F)). The latter is a flat
z

module over 7, (X) in each simplicial degree. Therefore

N

E327t:0ifs>Oand

E2, = (m«(KU)®@Rn(F))): 2 R, (F) if t is even and trivial otherwise.
: z

(Recall that 7;(KU) = Z if t is even and trivial otherwise.) It follows that (K, (F)) =
R.(F) if t is even and = 0 otherwise. Therefore, when we compute the homotopy groups
of m(K(F')) using the spectral sequence for the homotopy colimit of a simplicial object as
in Chapter I, section 1, (HCl), we obtain the isomorphism as stated in the proposition. O

4.3. In positive characteristic p, we will need to modify the definition of K,(F) as
follows. We replace Z (KU) everywhere by its l-adic completion 7 (the l-completion KU ls
respectively). One also needs to replace ¥ by its l[-completion f]l; R.(F) — F will be a
resolution by a complex of sheaves of flat Z—modules. Then the same computations show
that m;(K(F)) = F if i is even and = 0 if ¢ is odd.

In case F = {F,|v} is an inverse system of sheaves of {-adic sheaves one applies the
functor K to each term of the inverse system to obtain the inverse system {K(F,)|v}. Now
one takes the homotopy inverse limit of the { K (F,)|v} to obtain K(F).

PROPOSITION 4.2. In characteristic 0, the assignment F — K(F) sends short exact
sequences of sheaves of Z-modules to fibration sequences of presheaves of spectra. In positive
characteristics, the corresponding statement also holds for l-adic sheaves.

PROOF. This should be clear from the definition of the functor F — K (F). O

o —

DEFINITION 4.3. If F' is a constructible sheaf as above, we define Eu(F)eKo(X) (Ko(X),)
as eu(K(F)). If X is a smooth complex variety, and F is a Z-constructible sheaf, we let

Eu, (F) = cu,(K(F)).
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5. Relations with the Euler class in homology with locally compact supports

In this section we will relate the above Euler classes to the ones taking values in homology
with locally compact supports. Throughout this section we will restrict to complex projective
varieties. We also let KU denote the ring spectrum representing complex K-theory and let
Gr(KU) denote the associated graded object defined with respect to the Cartan filtration;
now Gr(KU) = \VGri(KU) and Gro(KU) is also a ring spectrum and the obvious map

Gro(KU) — Gr(KU) is a map of ring spectra.

PROPOSITION 5.1. Dgy(ku) ~ DG”’(KU)G (?KU)GT(@)
ro(fL U

PrOOF. We begin with the following observations:
5.0.1. If f: X — Y isamap of spaces, then Rfi(Gr(KU)) ~ Rfi(Gro(KU)) ® Gr(KU).

This follows from the projection formula in Chapter IV, Proposition 2.17.

5.0.2. If KePreshgy(X) so that Gr(K) = Gro(K) ® Gr(KU), then
GTo(KU)

RHOTTLGT(KU) (G’I‘(ﬂ), GT(K)) ~ RHOTTLGTO (KU) (G’r‘o(ﬂ), GT‘O (K))G ((X)KU)GT(M)
o

This follows from Chapter II, (2.0.11).
Now
RHome(kv) (RAI(Gr(KU)), Gr(K))

~ RHomGT(KU)(ng(GTO(@))GT %E)K )Gr(ﬂ), Gr(K))

~ RHomer kv (RAI(Gro(KU)), Gr(K))

The first ~ follows from the observation 5.0.1 above, while the second ~ follows from Chapter
I1, (2.0.11). In view of the hypothesis on K, one may identify the last term with

RHOmGro(rct) (RI(Gro(KU)),Gro(K) ®  Gr(KD)).
Gro(KU)

By replacing Rfi(Gro(KU)) with a resolution as in Chapter II, Proposition 2.4 and making
use of (5.1.2), we may now identify the latter with

'R’Homgro (KU) (Rf!(G’I"O (ﬂ)), G’I"O (K)) ® GT‘(@)
Gro(KU)

Finally this identifies with

RHomey,kv)(Gro(KU), Rf'(Gro(K )))GT %{U)Gr(ﬂ) ~ Rf'(Gro(K ))GT %(U)Gr(ﬂ)-
o o O

It follows by applying the projection formula (see Chapter IV (2.17)) to the structure
map p : X — pt, (when p is proper) that
L
H(X; D&, kvy) ~ H(X; DG, (k0y)  ©  Gr(KU) and

(5.0.3) Gro(KU)
mi(H(X; D&, (k) = ©Honi(X;m(KU)), i=0 or i=1

which is the sum of all the integral homology groups (with locally compact supports) of X.
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Let F' denote a constructible sheaf of Z-modules on X and let F = K(F) denote the
presheaf of KU-module-spectra defined as in 4.2. Recall from Proposition 4.1 that m;(Fy= F
for all ¢ even and trivial otherwise. Let Gr(F) = \/Gr(F);ePresh®(Cx;Gr(KU)). Then

Gr(F) ~ Gro(F) <(X) )GT‘(KU). Now one obtains the natural quasi-isomorphisms:
G‘l"o KU

(5.0.4)

L
RI(X, RHomer (kv (Gr(F), Gr(F))) ~ H(X; RHom gr (kv (Gro(F), GTO(F))G ((X)KU)GT(M))

~ H(X (D, e (Gro(F) R Gro(F) | & Gr(KD))

~ HOX (D et (Gro(F) BGro(F) & Gr(KU))

L
>~ RF(X, RHO’ITLGTO(KU)(GTO(F),G’I‘()(F))) ® GT(KU)
Gro(KU)

The last-but-one quasi-isomorphism follows from the projection formula in Chapter IV,
(2.17) applied to the obvious map p: X — pt.

Moreover the spectral sequences in Chapter III, Proposition 1.2 applied to the above tensor-
products degenerate identifying

i (RL(X, RHomg, ku) (Gr(F),Gr(F)))]

= 1 (RI(X, RHomeay (kv), (Gro(F),Gro(F)))  © Gr(KU)J
(5.0.5) Gro(KU)

=~ Bmon—i(RT(X, RHOTTLGT(KU)O (Gro(F),Gro(F)))) and
(5.0.6) mi(H(X; DGy xcrry)) = @man—i (B Dy, (sc0r))T

Moreover RHomey,(xv)(Gro(F), Gro(F)) ~ Sp(RHomy(F, F)) according to Chapter III,
Proposition 2.13 The spectral sequence in Chapter III, Theorem 2.18(ii) degenerates and
provides the identifications:

m.(RU (X, RHomg,,(ku)(Gro(F), Gro(F)))) = RT (X, RHomz(F, F)) and
7 (H(X Dé;(TO(KU))Tg H*(X; Dz) = Hi(X; Z)
Next we define a homomorphism
(507) Gr: Ktap(X) jad H(X, DKU) d H(X, DG’I’(KU))
as follows. Observe the left-hand side may be identified with
RMap(2°, Dxy)=>RHomgy (KU y; Dky).

Now the functor Gr defines a map from the above term to RHomg, (kv (GrEKU x; Dar(kuy) =~
RMap(xX°, D¢y (kvy) ~ H(X; Dgrkxuy).- Thus the map in ( 5.0.7) induces a map Gr :
K'P(X) — H,(X; Z). Observe that the same definition applies in positive characteristics
and defines a map Gr : K@)l ~ H(X, Dgy,) = H(X, DGT(I?(\JZ)).

PROPOSITION 5.2. Assume the above situation. Then & m;(Gr(Tr¥(f))) = Trf(f)
i=0,1
and @ m;(Gr(Eu(F))) = the Euler class of F with values in H.(X; Z). Similarly if X is
i=0,1
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a smooth complex quasi-projective variety, @ m;(Eu,(F)) = the micro-local Euler class of
i=0,1

F with values in H,(T*X; 7).

ProOF. ( 5.0.4), ( 5.0.5) and the above discussion provide us with the commutative
diagram

o
RF(X, RHOW’LGT(KU)(GT‘(F),GT(F))) H(X’Dgr(KU))
lg TrgTO(F) ® Gr(KU) l:
70 (KU) g0 (K U)
RD(X, RHomgry i (Gro(F), Gro(F))_ ®  Gr(RU) "~ B(X; D, p) . & Gr(KD)

Gro(KU) Gro(KU)

where we have used TrX to denote the trace-map defined for the presheaf K of module-
spectra over A as in section 2. Sending F to its associated graded object Gr(F') defines a
quasi-isomorphism: Gr(RHomgy (F, F))iRHomGT(KU) (Gr(F), Gr(F)). One may there-
fore extend the above diagram to:

TTIF;U
RT(X, RHomgy(F, F)) H(X; DX,)
lGr L Gr(E) lGr
"ar(KU)
RI(X, RHomer (kv (Gr(F), Gr(F))) H(X; DZ, (k1))
l: TpGro(F) ® Gr(KU) l:
Gro(KU) o, (kU)
RE(X, RHome e (Gro(F), Gro(F)) @ Gr(KU) = H(X; DY, i) ©  Gr(KU)

Gro(KU) Gro(KU)

We have thereby shown:

Gro(F
Gr(TrEy) = TrGTgEK)U)GTO?KU)Gr(KU)

One may similarly show that

Gr((TrE)kv) = T argxey . ®  Gr(KU)
Gro(KU)

Now consider the map

T (RHomgr, (kv)(Gro(F),Gro(F)) ® Gr(KU))
G‘I"o(KU)

Gro(F) ® Gr(KU))

Tx (TTGTO(KU)GTO(KU)

. DX
. (H(X Dér, (KU) )Gr)(?KU)GT(KU))

On taking 7., the spectral sequences in Chapter III, Proposition 1.2 degenerates. Observe

that on taking the sum @ 7, the term in ( 5.0.5) identifies with H*(RHomz(F, F)) while
i=0,1
the term in ( 5.0.6) identifies with H, (X, Z). Therefore we obtain the first assertion. Con-

sidering @ m;(Trk, (idr)) and @ m;((Tr,)%,), one obtains the remaining two assertions
i=0,1 i=0,1

as well. 0
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If X denotes a complex variety K:°?(X) will denote the (complex) topological K-theory
of X. (Recall this is represented by the spectrum KU.) By arguments as in [J-3], one may
identify this with @ m;(H(X, KU)). One may now identify the Chern-character map with

i=0,1

the map:
b @ m(HX;KU)E o m(H(X; Gr(KU)))
(5.0.8) i=0,1 i=0,1
= & m(HX;Gr(KU)o))) = H*(X,Q)

(In fact, the above map is induced by the universal chern-character ch : KU — KUg ~
IIK(Q,2i).) Next consider the map

7 @ m(H(X; Dru))E @ mi(H(X; Darkoy))

(509) 1=0,1 1=0,1
— i—e(a) ﬂ-i(H(X; DGT‘(KU)@)) = H*(Xa Q)

One may observe readily that the map 7’ is a module map over the multiplicative map ch’
and that it is a natural transformation of functors that are covariant with respect to proper
maps between quasi-projective complex varieties. Moreover, one may see readily that, if pt
denotes a point and [pt]x ([pt]) denotes the fundamental class in K-homology (in homology)
7' ([pt]x) = [pt]- (See Chapter IV, Corollary (5.12) that provides fundamental classes in
complex K-homology.) These two properties show, as in [BFM] p. 129 and [F-2] p. 166,
that the transformation 7/ must be the Todd homomorphism. Therefore, we obtain the
following theorem.

THEOREM 5.3. Let X denote a complex projective variety. Let F denote a constructible
sheaf of Z-modules on X.

(i) Then 7' (Eu(F)) = Eu(F)eH.(X; Q) if X is projective.

(it) If X is a smooth projective complex variety, 7' (Eu,(F")) = Eu,(F)eH,(T*X; Q)

where the Euler-class in rational homology (the micro-local Euler class in rational homology)
is the one defined as in [K-S-2] p.377.

ProoF. This is clear from the above discussion. O

6. The main Theorem

We will adopt the terminology of section 3 for the rest of the paper. If X is a complex
variety, we will let Const(X;Z) denote the category of all constructible sheaves of Z-modules
on X. If X is a variety defined over a field k of positive characteristic p (satisfying the con-
ditions in 1.1), [ is a prime different from p and v is a positive integer, Constf*%(X;1— adic)
will denote the full sub-category of constructible [-adic sheaves that are also of finite tor di-
mension. We will let K (Const(X;Z)) (K(Const!*4(X;l—adic))) denote the Grothendieck
group of the corresponding category.

THEOREM 6.1. (i) If X is a complex variety, there exist an additive homomorphism:

Eu: K(Constz(X)) — K¢ (X).
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(1) If X is, in addition, a smooth quasi-projective variety, there exists another additive
homomorphism:

Eu,, : K(Constz(X)) — K (T*X)

which factors through the obvious map KiP(Ap) — K P(T*X) where Ap is the micro-
support of F. The Todd homomorphism sends these classes to the corresponding Euler-
classes in rational homology at least for projective varieties.

(iii). If X is a variety defined over a field k as in 1.1 of characteristic p, there exists
an additive homomorphism

—

Eu: K(Const!4(X;7;)) — Ko™(X),

The map from K-homology to étale homology (as in 5.0.7) sends these classes to the corre-
sponding Fuler-classes at least for projective varieties.

(iv). The maps in (i) and (iii) commute with direct-images for proper maps. The map
in (1) commutes with direct images for proper and smooth maps of complex varieties.

PROOF. Clearly it suffices to prove the last assertion. Let FeD(Mod;(Cx, E)) where E

denotes KU and Cx is the usual site in characteristic 0 (f{ﬁ ; and Cx denotes the étale site
in positive characteristic p, respectively, with [ # p). The proof that the maps in (i) and (iii)
commute with the direct image functor for proper maps will follow from the commutativity
of the following diagram:

RY.(DE(F)@RL.(F) — RE.(DE(F)SF) — Ry, (DY)

D} (Rf.(F)3RS.(F) D}

The left-most vertical map exists because Rf.Dx (F) ~ RfiDx (F). One observes that the
above diagram is the same as:

Rf.RHomg(F, Rf’Dg)%Rf*(F) — ~ Rf.Rf'DY,

| i

RHOWE(Rf*(F)aRf*Rf!Dg)ng*(F) — > Rf.Rf'DY,

|

RHomp(Rf.F, DY)@Rf.(F) — > pY

where the map Rf.Rf'DY ~ RfIRf'DY — DY is the trace defined in chapter IV. The
commutativity of the above diagram is clear and this proves (iv) for the maps in (i) and

(ii).
Next we consider the proof of (iv) for the map in (ii). First one observes the commuta-
tivity of the diagram:
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Rf.(Dg (F)) ¥ Rf.(F) — Rf.(Dg; (F) R F) — Rf.(dy.D5;)

l |

DY (Rf.(F)) R Rf.(F) 5.0

This is established by the same argument as above. (Here §y : Y — Y x Y is the diagonal
immersion.) It suffices to observe a natural quasi-isomorphism:

Rf*Rﬂ'X*RFAMpAX (F) ~ RWY*RFARf*F,UAny*(F)

where 7x : T*X — X (my : T*Y — Y) is the obvious projections, Ap (Agy, ) is the micro-
support of F, pa, (pa,) is the micro-localization along Ax : X - X x X (Ay : Y —
Y x Y, respectively). The hypothesis that f be proper and smooth implies f is transverse
to X — X x X and also proper on the support of F'. The above quasi-isomorphism follows
from [K-S-2] Proposition 4.2.4 along with the spectral sequence in (7.1.2). O

7. A general technique

We will use the following general technique for extending results from abelian sheaves
to presheaves of spectra.

THEOREM 7.1. Let & and &' denote two sites as before. (In particular they have fi-
nite cohomological dimension (finite l-cohomological dimension in positive characteristic,
respectively). Let T,T' : Preshixy (&) — Preshixy(©') denote two covariant (or two con-
travariant) functors that preserve fibration sequences and quasi-isomorphisms for any ring
spectrum in the sense of Chapter I. Let ¢ : T — T' denote a natural transformation. Assume
there exists functors Tup, TV ap : Dp(S, m(KU)) = Dp(&'; m (KU)) provided with natural

quasi-isomorphisms T(Sp(F")) ~ Sp(Tup(F-)) and similarly for T'. Assume further that Ty
and T, have finite cohomological dimension.

(7.1.1) Suppose in addition that there exists a natural map ¢p. : Top(F) — T/ gp(F")
so that ¢, p.y = Sp(¢p.). Then ¢F is a quasi-isomorphism for all FePreshgy (&) if and
only if dp. is a quasi-isomorphism for each F'eDy(C; m.(KU)).

(7.1.2) Moreover there exist strongly convergent spectral sequences:

Eyt = H¥(To(m_¢(F))) = m_s(T(F)) and
Ey' = H* (T a(n—o(F))) = 75—t (T (F)).

PROOF. It is enough to consider the canonical Cartan filtration on any FePresh(C).
Since both T and T” preserve fibration sequences, they send the above filtration to fibration-
sequences. These provide long-exact sequences on taking the homotopy groups. The spectral
sequences arise this way. The hypotheses on T' and T ensure the spectral sequences are
strongly convergent.

Moreover the hypotheses ensure that there exists a natural map from the former to the
latter. Therefore an isomorphism of the Es-terms provides an isomorphism of the abutments.
This proves the sufficiency of the hypothesis in (7.1.1). For presheaves of spectra of the form
Sp(F-), F-eDy(C; m.(KU)) a quasi-isomorphism T(Sp(F-)) ~ T'(Sp(F")) is equivalent to

a quasi-isomorphism T,p(F") ~ T'4(F"). This proves the necessity of the hypothesis in
(7.1.1). O






CHAPTER VI

Survey of other applications

In this chapter we will provide a survey of various applications and potential applications
of the theory developed so far.

1. Filtered Derived categories

In this section, we will show how to provide an extension of the basic theory to include
algebras A that are provided with a non-decreasing filtration (i.e. in addition to the canoni-
cal Cartan filtration). We will assume that Presh(&) is as in Chapter III, (1.1) and (1.2) and
that AePresh(&) is an algebra provided with a non-decreasing exhaustive and separated fil-
tration F' (indexed by the integers). Recall the Cartan filtration on any object PePresh(S)
is defined by {7<,P|n} where 7<, is the cohomology truncation functor as in Chapter I.
This filtration will be denoted C. Now {7<,F,,Ajn,m} is a common refinement of both
the filtrations: we will let the filtration C o F' be defined by (C o F),A = . + T<nFm(A).

=n+m
Clearly this filtration is also exhaustive and separated.

1.1. We will now make an assumption that the associated graded term of the filtra-
tion C o F in bi-degree (n,m) is Gr¢ n(Grrm(A)) for all m and n. (We observe that the
associated graded term in bi-degree (n, m) of the filtration C o F is given by Greog n,m(K) =
T<nFmK/(T<n-1FmK + 7<n,Fr1K). Observe also that since 7<,, need not commute with
taking quotients, the above assumption need not be satisfied in general.)

Observe that Grp(A)ePresh(S) is also an algebra and Gre¢ (Grr(A)) is its associated
graded term of degree n with respect to the Cartan filtration. i.e. H'(Grc ,(Grr(A))) =0
unless ¢ = n. (For ezample consider the case Presh(&) is the category of complexes of
abelian presheaves on a site &. Now a filtered algebra A in Presh(&) corresponds to a
differential graded algebra provided with a filtration compatible with the structure of a
differential graded algebra. In this case one may require the differentials of the (differential
graded) algebra A are strict, i.e. their images and co-images are isomorphic. This condition
implies that the spectral sequence (in H*) associated to the given filtration degenerates,
which in turn implies the hypothesis 1.1 at least under the hypothesis that H(A) = 0 for
i << 0 and that the filtration F' is bounded below.)

In this situation, we will let M odlf it (6, .A) denote the category of all left-modules M over
A provided with an exhaustive and separated filtration F; compatible with the filtration
Co F on A. One defines Mod/"t(&, A) similarly. Moreover one may carry over the entire
theory developed in Chapter III to this context; in particular one defines M odlc’f (3, A)
and Modferf(G, A) as in chapter III. One may define Modgfrf((%, A) as the corresponding
category of bi-modules over A.

In this context the Bi-duality theorem of Chapter IV, section 4 applies to provide a
dualizing complex for this derived category. This theorem may be restated in this context
as follows.

119
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THEOREM 1.1. Assume the above situation. A perfect complex DsModifrf(@i,A) will

be a dualizing complex for the category Mody erf (6,.A) provided it comes equipped with a
non-decreasing filtration F' compatible with the given filtration on A, so that Grp(D) is a
dualizing complex for the category Mod ! (&, H* (Grr(A))).

Grothendieck-Verdier style duality for derived categories associated to sites provided
with filtered sheaves of rings is clearly a special case of the above framework where the
Cartan filtration is trivial. The following are examples of this.

ExaAmMPLES 1.2. 1. Let X denote a complex non-singular algebraic variety and let
A = Dx = the sheaf of rings of differential operators on X. above theorem shows what
could be candidates for a dualizing complex for the category of perfect complexes of Dx-
modules. In fact, since, every coherent Dx-module may be given a filtration so that it
is a perfect complex, this theorem shows why the usually defined dualizing complex for
Dx-modules is in fact a dualizing complex.

2. Similar considerations apply to super-varieties and shows what are possible candidates
for a dualizing complex. (Recall that the structure sheaves of super-varieties are filtered so
that the associated graded objects are commutative.)

2. Derived schemes
Recall that a derived scheme is given by a ringed site (X, A = @ A;) where A = @ A, is
el i€

a sheaf of graded differential graded algebras so that (X, .4¢) is a scheme (in the usual sense)
and each A; is a coherent Ay -module. (See [Kon], [CK1], [CK2] for basic details on derived
schemes.) The derived versions of the quot-schemes and Hilbert schemes are constructed in
[CK1] and [CK2]. A quasi-coherent (coherent) sheaf on such a derived scheme is a sheaf of
graded differential graded modules F' = @F; so that each Fj is a quasi-coherent (coherent,

respectively) sheaf on the scheme (X,.4p). The basic theory of Chapter IV applies now
to define perfect complexes over the ringed site (X,.4). Moreover, the general theory of
Grothendieck-Verdier duality as formulated in Chapter IV applies to extend the formalism
of Grothendieck-Verdier duality to derived schemes.

In addition, the discussion in the last section provides a bi-duality theorem for the
derived category of coherent D-modules (defined suitably) on smooth derived schemes.

3. Derived categories of mixed (Tate) motives over a general scheme

Over a field, there has been an elegant construction of the category of mixed Tate
motives by Bloch, Kriz and May. (See [Bl-3], [BI-K] and [K-M].) This depends crucially
on the construction of a differential graded algebra associated to the cycle complex for the
field. There have been nontrivial difficulties in extending this construction to all smooth
quasi-projective varieties over a field; these have been overcome in [J-6], by making use of
the motivic complexes. (Recall the motivic complex is known to be quasi-isomorphic to the
cycle complex for all smooth quasi-projective schemes. See [Voe-2].) The main idea again
is to associate a DGA to the motivic complex (tensored with Q), provide the category of
finitely generated modules over this DGA with a ¢-structure and then take the heart of
this t-category. At least for smooth linear varieties, it is shown in [J-6] that this provides
a reasonable theory of relative Tate motives. Similar techniques are expected to extend to
general smooth schemes: however, it seems quite likely that an appropriate sheafification
of the motivic complex is required. In this context, the conjectures of Beilinson on motivic
derived categories seem quite relevant.

For example, we quote (part of) what is referred to as the version 4 of Beilinson’s
conjecture on motivic derived categories - see [Jan] p. 280.
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Let k denote a field. For every k-scheme X, there exists a triangulated Q-linear tensor
category DM (X) with a t¢-structure so that the following hold:

(i) If f: X — Y is a map between such schemes, there exist the derived functors f,
fi, f* and f' between these derived categories so that the usual formalism of Grothendieck-
Verdier duality (i.e. the usual relations among these functors) carries over.

(ii) There exist ezact realization functors:
7 : DM(X) — Db (X.t;Q), | # char(k) and
rg: DM(X) — D*(MH(X)), k= C

Here D? (X.:; Q) is the derived category of bounded complexes of (;-sheaves on the étale
topology of X with mixed constructible cohomology sheaves. M H(X) is the category of
mixed Hodge modules on X.

(iii) There exists a t-structure on DM (X) so that its heart is the Q-linear abelian
category, M (X), of mixed motivic sheaves. The realization functor r; sends M(X) to the
category of mixed perverse ;-sheaves on X.;. rp sends M(X) to MH(X). Moreover the
above realization functors are exact and faithful on M (X).

The general theory of Grothendieck-Verdier style duality developed in this paper should
apply in this context to provide at least part of the conjectured formalism of Grothendieck-
Verdier style duality in the setting of motivic derived categories, perhaps for a derived
category of relative Tate motives.

One key issue in this setting would be the definition of a ¢-structure for the category of
sheaves of modules over a DGA. In the setting of Tate motives over a field (or relative Tate
motives for linear varieties over a field) where no sheafification is required, such a ¢-structure
is provided easily using the theory of minimal models. This is non-trivial when sheafification
is needed. Moreover the issue of defining a t-structure for sheaves of modules over DG As is
related to the following.

4. Generalized intersection cohomology theories

In fact this is a problem that had been the starting point of our interest in generalizing
the Grothendieck-Verdier formalism of duality. This is stated as an open problem in [Bo],
last section. Briefly stated the question is the following. Intersection cohomology seems to
be the correct variant of singular cohomology (i.e. cohomology with respect to the constant
sheaf Z,) adapted to the study of singular spaces. What are the the corresponding variants of
the familiar generalized cohomology theories (for example, topological K -theory) adapted to
the study of singular spaces?

A key step in the definition of such a theory would be the definition of ¢-structures for
presheaves of module-spectra over the spectrum representing the given generalized coho-
mology theory. There have been partial success in this direction in [Kom] and also [J-7].
(Komezano uses cobordism theory with singularities and provides a definition of generalized
intersection cohomology theories; however a detailed analysis shows that despite superficial
differences, the two approaches are similar at least in principle.) In fact, using the techniques
established in this work work, we hope to complete the work begun in [J-7].



122 VI. SURVEY OF OTHER APPLICATIONS

5. Motivic Homotopy Theory

In this section we will show that the basic formalism adopted in Chapters I and II
applies to motivic homotopy theory or more precisely the stable homotopy theory associated
to the unstable Al-homotopy theory of [M-V]. (Here the stabilization is with respect to
T=S"AGp.)

Let S denote a Noetherian base scheme; we will let (smt.schemes/S)nis denote the
category of all schemes of finite type over S provided with the Nisnevich topology. Recall
now the basic result of unstable motivic homotopy theory is the following:

THEOREM 5.1. (See [M-V].) Let SPresh((smt.schemes/S)n;s) denote the category of
all simplicial presheaves on (smt.schemes/S)nis. This has the following structure of a
proper simplicial model category:

the cofibrations are monomorphisms
the weak-equivalences are the Al -weak-equivalence and

the fibrations are defined by right lifting property with respect to cofibrations which are
also weak-equivalences.

Using smashing with T' (instead of with S') one may define the notion of spectra in this
category; these form T-spectra. Moreover one may define symmetric spectra in the category
SPresh((smt.schemes/S)nis). We will let SSpPresh((smt.schemes/S)n;s) denote the
category of all symmetric spectra obtained this way.

THEOREM 5.2. SSpPresh((smt.schemes/S)nis) is an enriched stable closed simplicial
model category in the sense of Chapter II, Definition 4.11.

PRrROOF. The stable simplicial model structure and the axioms on the monoidal structure
as in Chapter I follow by more or less standard arguments. [l

Therefore, in order, to be able to apply the results of Chapter III to this setting, it suffices
to show that SSpPresh((smt.schemes/S)nis) has a strong ¢-structure as in Chapter I. We
will refer to objects in

SSpPresh((smt.schemes/S) n;s) as motivic spectra.

Recall that the presheaves of motivic stable homotopy groups are bi-graded by a degree t
and weight s and defined as:

(5.0.1) m,s(L(U, P)) = Hompg (X1 (S AG3,) v, Pu)
where Hom g denotes Hom in an appropriate homotopy category. One lets m(P) = & (P)

where the latter denotes the above presheaf: by abuse of notation, we will call these the mo-
tivic stable homotopy groups. It is known that a cofiber-sequence in SSpPresh((smt.schemes/S)nis)
provides a long-exact sequence in m,, where % denotes the degree.

The definition of the Eilenberg-Maclane functor as in Chapter I is, however not clear,
since the motivic stable homotopy seems difficult to compute. To be able to define Eilenberg-
Maclane spectra as in Chapter I (and therefore a strong t-structure) one needs to be able
to kill off the homotopy indexed by the weight as well the degree, for example by a suitable
analogue of attaching cells.

On the other hand, the slices introduced in [Voe-3] may be related to providing a different
sort of ¢-structure.



APPENDIX A

Verification of the axioms for I'-spaces and symmetric
spectra

1. I'-spaces

THEOREM 1.1. The category of I'-spaces endowed with the smash-product defined in
[Lyd] is an enriched stable simplicial model t-category.

The rest of this section will be devoted to a proof of this theorem. Throughout we will
adopt the following convention. A simplicial set (a pointed simplicial set) will be denoted
space (pointed space, respectively).

Let T'°P denote the category with objects nt = {0,...,n}. (We view n™ as pointed by
0.) The morphisms f : m™ — n™ are all maps so that f(0) = 0. A I'-space is a functor

A : T°P — (pointed spaces)

so that A(0) = . The sphere I'-space S is the I'-space defined by: S(n*) = n*, for each
n. A map between two I'-spaces is a natural transformation of functors. The category of
all I'-spaces will be denoted GS. The Hom-sets in this category will be denoted Homgs (or
merely Hom, if there is no cause for confusion).

We first recall the following strict simplicial model structures for I'-spaces from [B-F|
section 3. This will define the strict model structure on the category of I'-spaces.

1.1. For each fixed integer k£ > 0, let I'}” denote the full sub-category of I' consisting
of objects n, n < k. A TI'j-space is a functor I';” —(pointed spaces). Now one defines the
k-truncation

Try : (P-spaces) — (I'g-spaces)

as the functor restricting a I-space A to the sub-category I';’. This has a left-adjoint
denoted sk and a right adjoint denoted coski. Often we will denote the composition
ski o Try, (cosky o T'ry) by sk (cosks, respectively) as well. (See [B-F] pp.89-90 for more
details.) Now a map f : A — B of I'-spaces is a cofibration if for each n, the induced

map (skn,lB)(n+)( . |_,|4)( +)A(n+) — B(n™) is injective and the symmetric group %,
SKn—1 n

acts freely on the simplices not in the image of the above map. A map f: A — Bis a

fibration if the induced map A(n™) — (coskn_1.4)(n") X B(n™) is a fibration of
(coskn_1B)(nt)

pointed spaces for each n. A T-space A is cofibrant (fibrant) if the obvious map * — A
is a cofibration (A — x is a strict fibration, respectively). A map f : A — B of T-
spaces is a weak-equivalence if the map f(n') : A(n™) — B(n™) is a weak-equivalence
of pointed spaces. It is shown in [B-F] Theorem (3.5) that this defines a simplicial model
structure on the category of I'-spaces. The same proof applies to show that one may define a
simplicial model category structure on the sub-categories I'<-spaces = the functor category
{A:T7? —(pointed spaces)|.A(0) = *} in an entirely similar manner. (i.e. Amap f: A — B
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in T'<j-spaces is a weak-equivalence (cofibration, fibration) if the corresponding conditions
above are satisfied for all n < k.)

1.2. The functor ® : (pointed simplicial sets) x (I' — spaces) — (I' — spaces) is
given by sending a pointed simplicial set K and a I'-space A to the I'-space (K A A)(nt) =
K A A(nt). Observe that not every monomorphism is a cofibration. However (PM4) of
Chapter II, section 4 is shown to be satisfied by Lemma (3.7) of [B-F]. The above strict
simplicial model structure defines the required partial model category structure as in Chapter
11, section 4.

1.3. Next we consider the stable simplicial model structure from [B-F]. For this we
recall the connection between I'-spaces and connective spectra. (Here spectra mean as in
[B-F] and not the more sophisticated symmetric spectra considered below.)

1.4. A spectrum K is given by a collection {K"|n > 0} of pointed simplicial sets
provided with maps S' A K™ — K™+ for each n. (Here S' = A[1]/6(A[1]) is the simplicial
one-sphere.) A map of spectra K = {K"|n} — L = {L"|n} is given by a compatible
collection of maps f™ : K™ — L™ of pointed spaces commuting with the suspension. The
homotopy groups of a spectrum K are defined by 7 (K) = %(Lhorglﬂn+k(5ing(|Kn|). A map
f : K — L is a stable-equivalence of spectra if it induces an isomorphism on the above

homotopy groups. A spectrum K is connective (or —1-connective) if mi(K) = 0 for all
k <O0.

1.5. Now let A denote a I'-space. One may progressively extend A to a functor (finite
pointed sets) —(pointed spaces), (pointed sets) — (pointed spaces), (pointed spaces) —
(pointed spaces) in the obvious manner. (See [B-F] section 4.) Now let K denote a spectrum.
One may show that there exist natural maps S A A(K™) — A(S' A K™) — A(K™"!) for
each n; these show that one may finally extend A to a functor (spectra) —(spectra).

Let X = {S°% S8, 52%,...,5", ...} denote the sphere spectrum. Now given the I'-space A,
A(X) is a spectrum which is clearly connective. This defines the functor:

—(X) : (P-spaces) — (connective spectra)
Given the connective spectrum K, one defines the associated I'-space ®(K) by
®(K)(nt) = Map(X", K).

Here X" denotes the n-fold product of the sphere spectrum and Map(X™, K) is the pointed
space given in degree k as the set of pointed maps ™ A Alk]; — K of spectra. There is an
adjunction:

(1.5.1) Homr_spaces(A, ®(K)) = Homgpectra(A(X), K)

Therefore one obtains natural maps A — ®(A(X)) and ®(K)(X) — K for a I'-space A and
a connective spectrum K.

A map f: A — B of I'-spaces is a stable equivalence if the induced map f(X) : A(X) —
B(X) of connective spectra is a stable equivalence of spectra. A map f : .4 — B of I'-spaces
is a stable cofibration if it is a strict cofibration in the sense of 1.1 and a map f: A — B of
I'-spaces is a stable fibration if it has the right lifting property with respect to all maps that
are stable cofibrations and stable-equivalences. It is shown in [B-F| Theorem (4.2) that the
above structure is in fact a simplicial model category structure on the category of I'-spaces.

Now we will adopt the above stable model structure to define the stable simplicial model
structure as in Chapter II, section 4. Clearly the axiom (SMO) is satisfied. Clearly every
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strict weak-equivalence is a quasi-isomorphism: this shows axiom (SM1) is also satisfied. (See
[B-F] Lemma (4.7) to see that a strict weak-equivalence is a stable-equivalence.) Moreover
the above definition of stable cofibrations shows that the statement in (SM2) on cofibrations
is satisfied. To complete the proof of (SM2) it suffices to check that every stable fibration
is a strict fibration. This may be done by checking that every stable fibration satisfies the
corresponding right lifting property for fibrations in the sense of 1.1. This is clear since every
stable cofibration is a strict cofibration in the sense of (4.2) and every strict weak-equivalence
is a stable weak-equivalence.

Next we consider (SM3.1) through (SM3.3). First observe that the functor K —
Sing(|K|) from pointed spaces to pointed spaces has the following properties: there is a
natural map K — Sing(]K|) which is a weak-equivalence of pointed spaces and moreover
Sing(|K|) is a fibrant simplicial set. This functor readily extends to a functor I'-spaces — I'-
spaces and defines the functor Q. If X = {X,,|n} is a spectrum so that each X,, is a fibrant
pointed space, one may convert X to a fibrant Q-spectrum by the (usual) functor we denote
by T": T'(X ) = golimQ"Xn+k. If each X, is not necessarily a fibrant pointed space, one

may first apply Singo| | to X degreewise to convert it to a spectrum which consists of
fibrant pointed spaces in each degree. The composition 7”70 Singo| | will be denoted T. We
now define the functor Q' as follows: let A denote a I'-space. Now Q*(A) = ®(T(A(X))).
So defined, we will now verify that the functors @ and Q' satisfy the axiom (SM3). The
assertions in (SM3) are easy to verify for the functor ). We may verify the correspond-
ing assertions for the functor Q*! as follows. Let A denote a I'-space: to obtain a map
A = Q% (A) = ®T(A(X)), it suffices to show the existence of a map A(X) — T(A(X)) and
the latter clearly exists. Next observe that there exists a natural map T oT — T'. In view of
the adjunction between the functor ® and A — A(X), this suffices to define a natural map

Qst ° Qst — QSt-

The pairing (pointed simplicial sets) x (I' — spaces) — (I' — spaces) is the one
considered in 1.2 . This has all the properties required in (SM3.4). The hypotheses in
(SM4) through (SM6)’ may be verified readily at the level of spectra (where the model
structures provided by [B-F] may be used). Now applying the functor —(X) to pass from
a I'-space to a connective spectrum and applying the functor ® to pass back to a stably
weakly equivalent I'-space proves these axioms are in fact satisfied.

Next consider the axioms (HCI) and (HI). The model category-structure on the category
of diagrams C*”" and C® when C is the category of pointed simplicial sets is established in
[B-K]. The stable versions (i.e. when C is replaced by the category of spectra and I'-spaces)
may be defined as in [B-F]: we skip the details.

Now we provide the category of I'-spaces with the smash-product defined in [Lyd]. This
will be denoted A. We proceed to verify the axioms on the monoidal structure in Chapter I.

THEOREM 1.2. (Lydakis) The category of T'-spaces is symmetric monoidal with respect
to the above smash product. Moreover the sphere I'-space is a strict unit.

The above theorem establishes the axiom (MO0) for the category of I'-spaces. The last
assertion in the theorem clearly shows the sphere spectrum is a strict unit. We take §
to be the full subcategory of stably cofibrant objects. The axioms on the stable model
structure now show that (M1) is satisfied. Moreover the sphere spectrum is known to be
stably cofibrant, so that the axiom (M3) is also satisfied. The pairing required in (M3)
is defined in (1.3) above. Moreover now one may readily verify the axiom (M4.0) through
(M4.5). [Lyd] (3.20) shows smashing with a I'-space preserves injective maps and it is shown
in [Lyd](4.1) that if A and Be(I-spaces) are both stably cofibrant, the functors A A — and
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— A B preserve stable cofibrations and that A A B is stably cofibrant. Moreover it is shown
[Lyd](4.18) that both the above functors also preserve stable weak-equivalences. These prove
(M2). The assertion about 7om is now an immediate consequence of this and the adjunction
with A ® —.

Next we consider the axiom (M5) for both the functos @ and Q** as defined in. First
consider the functor Sing o| | applied to pointed spaces. Let X, Y denote two pointed
spaces. Now there exists a natural map Sing|X| A Sing]Y| — Sing|X AY|. (To see
this observe that such a map is adjoint to a map |(Sing|X|) A (SinglY])] — | X AY].
The latter exists since |(Sing(|X|)) A (Sing|Y])| = (|(Sing(|X|))| A |(Sing(|Y]))|) keltey and
| XAY| 2 (|X|A|Y|) kettey; here we have used the notation that if Z is a Hausdorff topological
space Zxeiley i the underlying set of Z retopologized by the finer Kelley topology. (See
[G-Z] p.10, p.53.) Finally observe again that the geometric realization is left adjoint to the
singular functor.) Now recall that the functor @ is a degree-wise extension of the functor
Singo| | to I'-spaces; therefore it has the property mentioned in (M5).

Next we show the axiom (M5) is satisfied for the functor Q*¢. For this it is good to
recall the relation between pairings of I'-spaces and that of the associated spectra again
from [Lyd]. A spectrum with no odd terms consists of a sequence {Fs,|n > 0} of pointed
simplicial sets and pointed maps S A Ez, — Ea,12, for all n > 0. One may extend all
the standard notions like maps, homotopy groups, weak-equivalence etc. from spectra to
spectra with no odd terms. Let E and E’ denote two spectra in the usual sense; now the
naive-smash product E A E' is the spectrum with no odd terms defined by

(1.5.2) (EAE')9y = E, ANE!,

and where the map S?2 A (E A E')a, — (E A E')a,42 is defined as the composition: S A
SYA(E, NEL) = (S*ANE,) AN(S*AE]) = Eyp1 NEl 1 = (EANE')242. Convention: the
smash product of two spectra will denote this naive smash product in this section

Any spectrum F in the usual sense defines a spectrum with no odd terms E* by (E*)s, =
Es,. Conversely any spectrum with no odd terms E* = {F% |n} defines a spectrum E in
the usual sense by (E), = F},. One may now readily observe that the category of spectra
is equivalent to the category of spectra with no odd terms. It follows that if E, E’ are two
spectra in the usual sense and E?, E’ " are the associated spectra with no odd terms, then
there is an isomorphism

Map(E, E') = Map(E", E'")
of pointed spaces.
ProrosITION 1.3. Let A, B denote two T'-spaces. Now the following hold:

(i) There exists a natural map TA(Z)ANTB(X) — T(AAB)(X)t. (Here T is the functor
considered in earlier.)

(ii) There ezists natural maps ®(TAX))ANP(TB(X)) = ®(TAX)ATB(X)) — S(T(AA
B)(X))

(i1i) If X , Y are spectra, then there exists a natural map ®(X) AN ®(Y) —» ®(X AY)
of T'-spaces where the I'-space on the left is the one defined using the smash product in 1.2.
The smash product X AY on the right is defined as in 1.5.2 .

PRrROOF. First, it is shown in [Lyd] section 4 that, under the above hypotheses, there
exists a natural map A(X) A B(X) — (A A B)(X)? of spectra with no odd terms. We apply
the geometric realization followed by the singular functor degree-wise to obtain the pairing:
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Sing(|A(Z)]) A Sing(|B(2)]) — Sing(|(A A B)(Z)']).

Now we apply the functor 7" to both sides. Clearly there exists a natural map 7"(Sing(|A(Z)|))A
T'(Sing(|B(X)])) = T'(Sing(JA(Z)|) A Sing(|B(X)|)). Now the definition of the functor T
as above completes the proof of (i).

We will next consider (iii). We first show that, in order to establish (iii), it suffices to
show that if n, m are two non-negative integers, there exists a natural map:

(1.5.3) (X)(nT) AR(Y)(m") = (X AY)(nt\/m")

To see this recall that

(®(X)A®(Y))(pT)= colim @(X)(nT)A®Y)(m™).
ntAmt—pt
Therefore, in order to prove (iii), it suffices to show that for each map n™ Am™ — p in ['°P,
there exists an induced map

(1.5.4) B(X)(nT) AB(Y)(m") = (X AY)(p")

Observe there exist natural maps nt\/m* — nt Am* and n* Am™ — p*. There-
fore the map in 1.5.4 may be obtained by pre-composing the map ®(X AY)(n™\/ m™') =
Map(z™" Vm =+ XAY) = Map(E™ "™ =+ XAY) = ®(XAY)(nTAm™) — Map(SP+, XA
Y)=®(X AY)(p") with the map in 1.5.3. This shows that it suffices to prove 1.5.3. Now
given two maps f : Akl AX" — X and g : Akl A X™ — Y, we may define a map
FAg: Akl AX™™ — X AY as the composition:

ANid fAY

Alk]y AS™ A SN LA AR ASPAS™ Y X AY

This proves (iii).

Now consider (ii). By (iii) applied to X = TA(X) and Y = TB(X), we see that there
exists a natural map ®(T(A(X))) A B(T(B(X))) — ®(T(A(X)) AT(B(X))). This provides
the first map in (ii). Combining this with the pairing T'(A(X)) AT(B(X)) — T(AA B)(Z)?,
we obtain the second map in (ii). O

Now we may complete the proof that (M5) is satisfied by the functor @Q%'. Recall
Q%' (A) = (T A(X)). Therefore Q**(A)AQ**(B) = (T A(X))A®(T'B(X)) maps naturally to
O(TA(Z)ATB(X)). By (ii) of 1.3, the latter maps naturally to ®(T(AAB)(X)!) = Q' (AAB).

Next we verify the axioms on the strong t-structure as in Chapter I. (ST1) through
(ST5). We will first consider (ST3) and (ST4). The category Cfgn2 is given by the sub-
category {A|A fibrant and m(A) =0,k # n} of I'-spaces. The Abelian category A is
in fact the category of all Abelian groups. Let m denote an Abelian group. Now we consider
the chain complex 7[n] which is concentrated in degree n. We may denormalize this to obtain
a simplicial Abelian group DN (w[n]) which has only one homotopy group that is non-trivial,
namely in degree n, and where it is 7. We may deloop this simplicial Abelian group to obtain
a connected spectrum: Sp(w) = {Sp(7);,m = B™(DN(n[n]))|m > 0}. This spectrum will be
denoted K (m,n). Now we apply the functor ® to this spectrum to obtain a I'-space which we
denote by EM,, (7). Clearly m,(EM, (7)) = = and 7, (EM, (7)) = 0 if k # n. Moreover the
above definition of the functors EM,,, neZ shows that if =, n’ are object in A, there exists
a natural map K(m,n) AK(n',m) = K(r®r',n+m)" of spectra where the smash-product
on the left is defined as in 1.5.2. Now 1.3 (ii) applies to show that there exists a pairing:
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EM,(r)NEMp,(7") = ®(K(7,n)) AN®(K(7',m)) = ®(K(r@7',n+m)) = EMpim(r@7).
This proves (ST6).

Next recall that the category of all connected abelian group spectra is equivalent to
the category of all chain complexes of abelian groups that are trivial in negative degrees.
Moreover the category of all such abelian group spectra is equivalent to a corresponding sub-
category of the category of all I'-spaces which we call abelian I'-spaces. These observations
prove (ST3) and (ST4).

One may show axiom (ST9) holds by an argument as in Appendix II, (0.7.3). Now
we consider the axioms (ST1), (ST2), (ST5), (ST7) and (ST8). We begin by recalling the
functorial Postnikov truncation defined for fibrant simplicial sets. Let X denote a fibrant
pointed simplicial set and let n > 0 denote an integer. We let P, X be the simplicial set
defined by

(PnX)k = X, if k <n and :Xk/ Tif k> n.

Here =~ denotes the equivalence relation where two k-simplices of X are identified if their
n — 1-dimensional faces are all identical. Clearly there is a natural map X — P, X of
pointed simplicial sets and X — P, X defines a functor on fibrant pointed simplicial sets
and pointed maps. We let P,X = the fiber of the map X — P,X. Now one observes that
Tk (P, X) = m(X) if k > n and = 0 otherwise. Observe also that (P,X) = *, k < n and
= {zxeXy| all the (n — 1)-dimensional faces of xj, are trivial}. As a consequence we may
characterize |P, X| as the mazimal pointed sub-space of | X| having no cells except the base
point in degrees 0 through n — 1. In general (i.e. in case X is not a fibrant simplicial set),
one may define P, X = P, (Sing|X|).

One may also observe that if n < 0, P,(Sing|X|) = Sing|X| and that NP, (Sing|X|) =

Now we will extend the functor P, to spectra. ( For this purpose, the definition we
adopt needs to use the geometric realization and the singular functor; the only way to avoid
this seems to be by adopting a different notion of smash product of pointed simplicial sets
as in [Kan]. However this would then mean a reworking of all the foundational material
on spectra and I'-spaces that use the more familiar notion of smash products of pointed
spaces. Even if one is willing to do so, the feasibility of this approach is doubtful.) Let
X = {X™|m > 0} denote a degree-wise fibrant spectrum i.e. each X™ is a fibrant pointed
simplicial set. Now we define

BoX = {Sing(|PyymX™|)m > 0}.

The structure map S* A Sing(|PoymX™|) = Sing(|Puymi1 X™1|) is defined as follows.
First such a map is adjoint to a map |S* A Sing(|PpymX™|) =[St A [Sing(|PrymX™|) —
1Py 1 X™ 1. (See [G-Z] p.47 to see the isomorphism above.) Now |S1|A[Sing(| Py ym X™)
maps naturally to |S*|A|P, , X™|. Clearly the latter maps into |[S*|A|X™| = |STAX™| —
| X™*+1| where the last map is the given map S* A X™ — X™*1. We will show that the last
map factors through the natural map | P, ,n—1 X™ 1| — |X™+1|. To see this observe that
|SY A|Ppym X ™| is isomorphic to a space with no cells in degrees less than 7 4m except the
base point and that | P, 41 X™""| is the maximal subspace of | X™*!| with no cells except
the base-point in degrees less than n + m. The required factorization follows and provides
the structure maps of the spectrum P,X. In case X is not a degree-wise fibrant spectrum,
we will first apply the functor T to convert it to a degree-wise fibrant (2-spectrum.

If A is a I'-space and n is an integer, we will define
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TenA = ®(P_,T(A(X)))

One may readily see that both (ST1) and (ST2) are now satisfied. (The exhaus-
tiveness and separatedness of the filtration will follow readily from 1.5 .) We proceed
to verify the axiom (ST7). For this we begin with a pairing K A L — M of fibrant
pointed simplicial sets and let n, m > 0 be two integers. Now consider |an | A |PmL|.
In general this may not have the structure of a C.W-complex; however, by [G-Z] p.53,
|P,K| A |PpL| 2 (|PoK| A |PyL|)Kketiey Which is the same underlying set re-topologized
using the Kelley topology. On applying the singular functor, we therefore obtain a map
Sing((|PaK| A |PrmL|)Ketiey) — Sing(|[PaK A PpL|). Now there exists a natural map
(Sing|P,K|) A (Sing|PpL) — Sing((|PoK| A |PmL|)keitey)- (Such a map is adjoint to
amap : |(Sing| oK) A (Sing|PrnL)| = (|(Sing|Pn KI)| A |(Sing| PmL|)|) kettey — (|PnK| A
\ﬁmL\) Kelley- This map clearly exists since the geometric realization functor is left adjoint
to the singular functor.) As a result we have obtained a map:

(Sing|]3nK|) A (Sing|]5mL|) — Sing(|]3nK A ]5mL|) & Smg((|13nK| A |13mL\)Ke”ey)

Clearly |15nK A Z5mL| maps naturally to |K A L| which maps to |M| using the given pairing.
We proceed to show this factors through | P, 11 M|. For this we will consider sub-spaces of
the space | P, K A P, L| of the form |Fy| A|Fy|, where F} is a countable pointed sub-simplicial
set of P,K and F, is a countable pointed sub-simplicial set of P, L. Now |F1| A |F»| has
the structure of a C.W-complex; since F} is trivial in degrees less than n and Fj is trivial
in degrees less than m, it follows that |Fy| A |Fz| has no cells except the base-point in
degrees less than n + m. Now consider |P, ,,M|. This is the maximal sub-space of |M|
having no cells except the base-point in degrees less than n +m. Therefore the natural map
|Fy| A |Fy| — |M]| factors through | P, ., M]|.

Now consider the natural map |P, K| A |I3mL|£>|M |. The above argument shows that
for every countable pointed sub-simplicial set Fy of P,K and Fs of P, L, ¢(|Fi| A |Fz))
has no cells except the base-point in degrees less than n + m and hence is contained in

|PpymM]|. Therefore the same conclusion holds for |J @(|Fi| A [Fa|). It follows that the
F1,F>

map |PnK| A \me\ — | M| factors through the natural map \pn+mM| — |M]|.

Now consider a pairing K A L — M of degree-wise fibrant spectra. (i.e. we may view
K A L as a spectrum with no odd terms and we have a map from this to the spectrum with
no odd-terms associated to M.) The above arguments show that if n, m are two integers,
one obtains a pairing:

PoK A PpL — Py,

These readily show that if A A B — C is map of '-spaces, and n, m are two integers, one
obtains an induced pairing of I'-spaces:

T<n A @ T<B = T<pitmC and F,(Q%(A)) ® Fir(Q¥(B)) = Fram(QH(C)).

On taking the associated graded terms of the Cartan filtrations, one obtains (ST7).
It remains to verify the axioms (ST5) and (ST8): these are established in the following
proposition.

PropPOSITION 1.4. (i) Let X denote a spectrum. Let n denote an integer so that
m(X) =2 0 for all i # n. Now there exists natural maps of presheaves X — ZX[—oo,
n] = K(m,(X),n) of abelian spectra which are weak-equivalences. (Here [—oo, n] is the
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functorial Postnikov-truncation that kills the homotopy above degree n defined as the homo-
topy cofiber P,_1(X) — Sing|X|.)

(it) If A is a gamma-space so that m;(A) = 0 if i # n, there exists a natural map
A — EM,(m,(A),n) which is a stable weak-equivalence.

(iii) If ANB — C is a pairing of I'-spaces, the induced pairings Gre(Q*(A)) AGre(B) —
Grc(C) and 7. (A) ® m(B) — m.(C) are compatible under the map in (ii).

PROOF. The existence of the first map in (i) is clear; that it is a weak-equivalence
follows from an application of the Hurewicz theorem. Since the last two are presheaves of
abelian group spectra, these are both of the form A = {A"|n}, where each A” is a simplicial
abelian group and one is given maps A™ — Map(S*, A"™!) of simplicial abelian groups, for
all n. The above map is adjoint to a map A" ® S' — A™*! of simplicial abelian groups,

where (A" ® S1)y = @ (A"),. Observe that on taking the normalizations, one obtains
(SH)k

the map N(Z(S')) ® N(A™) — N(A™*!) of chain-complexes. Observe that N(Z(S1)) is

the chain-complex with Z in degree 1 and O elsewhere. One may view tensoring with this

complex as a suspension functor for chain complexes.

Using the normalization functor, one may now view both ZX[—oo, n] and
K(mp(X),n) as systems of complexes {A"|n} of abelian groups commuting with the above
suspension. Let D denote such a chain complex. Now the Cartan filtration on D may
be identified with (D.[m,c0]); = Ker(d : D; — D;j 1) if j = m, = D; if j > m and
= 0 otherwise. Moreover m;(D.) = ker(d : D; — D;_1)/Im(d : D;y; — D;) which is a
quotient of (D.[i, 0o]/D.[i + 1, oo]) = D.[i, ¢]. It follows that the existence of the last map
in the lemma is clear when the simplicial abelian groups are replaced by their associated
chain complexes. We may therefore apply the denormalization functor (see Appendix II,
(0.1)) finally to obtain the required map. That it is a weak-equivalence is clear. This
proves (i). To obtain (ii) we take X in (i) to be T(A(X)). Finally apply the functor @ to
the map T(A(X)) — K(m,(X),n) to obtain a weak-equivalence: A(X) — ®(T(A(X))) —
EM, (m,(X)).

Now we consider (iii). Using the functor T as before, we may first assume that X,
Y and Z are fibrant Q-spectra and that there is a pairing X AY — Z! as in 1.5.2. This
induces a pairing Gre(X)AGre(Y) — Gre(ZY) as in 1.5.2 and also a pairings Z(Gr¢ (X) ®z
Z(Gre(Y)) — Z(Gre(Z)). As in the proof of (i), the latter pairing may be interpreted as
a pairing of chain-complexes commuting with the suspension ®Z(S'). Therefore one may
readily verify that the above pairing is compatible with the natural map to GEM (7.(X)) ®
GEM(m.(Y)) = GEM(7.(Z)). O

These complete the verification of the axioms for the case of T'-spaces.

2. The axioms for symmetric spectra
We will prove the following theorem .

THEOREM 2.1. The category of symmetric spectra with the smash product of symmetric
spectra defines an enriched stable simplicial model t-category.

PROOF. Since many of the arguments are similar to that of I'-spaces we will verify
the axioms rather briefly. We define the strict (partial) model structure as follows. A
map f : X = {X"|n} - Y = {Y"|n} of symmetric spectra is a strict cofibration (strict
weak-equivalence) if for each n, the map f™ : X™ — Y™ is a co-fibration (weak-equivalence,
respectively). The fibrations defined by the right lifting property with respect to cofibrations
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that are also weak-equivalences. This defines a strict simplicial model structure. Now axioms
(PM1), (PM2) and (PM3) follow, while (PM4) is clear. In fact every monomorphism is a
strict cofibration.

The stable cofibration, stable fibrations and stable weak-equivalences are defined as in
[H-S-S] section (3.4). This defines the structure of a simplicial model category on symmetric
spectra. It is shown in [H-S-S] (See Propositions (3.3.8) and (3.4.3)) that every strict weak-
equivalence is a stable weak-equivalence and every stable cofibration is a strict cofibration.
To show every stable fibration is a strict fibration, we will simply observe that the free-
functor F'r,, left-adjoint to the evaluation functor Fv,, send cofibrations (weak-equivalences)
of pointed spaces to stable cofibrations (stable weak-equivalences, respectively) of symmetric
spectra. We have essentially verified the axioms (SM1) through (SM3.3). Observe from [H-
S-S] Corollary (3.4.1.3) that a degree-wise fibrant symmetric spectrum is stably fibrant if
and only if it is an Q-spectrum. Now we may let Q@ = Sing o | | extended to symmetric
spectra; (Q*1X)™ = colimQ™ ™ (QX)™.

m

The usual smash product functor between pointed spaces extends to define the operation
® in (SM3.4). Asin the case of I'-spaces, all of the axiom (SM3.4) are direct consequences of
the simplicial model structures provided by the strict and stable simplicial model structures.
Since this does not appear in [H-S-S] we will sketch an argument to show that the stable
structure on symmetric spectra is in fact a simplicial model category structure. Recall we
have defined stable cofibrations to be the ones with left lifting property for all degree-wise
fibrations that are also strict weak-equivalences. As in [B-F] p. 84 one may now see readily
that a map 7 : K — L of symmetric spectra is a stable cofibration if and only if the maps
Knt! 1/|T| S LA L™ — L™t is a level cofibration. Now one may readily verify the axiom

s
denoted (SM7)(b) in [Qu]. Let L — K denote a cofibration of finite pointed simplicial sets
and let A — B denote a stable cofibration of symmetric spectra. Now we need to show that
the induced map

KNAULANB—-KAB
LAA

is a stable cofibration which is also a stable weak-equivalence if the map A — B is a stable
weak-equivalence. One may check the first assertion readily using the characterization of sta-
ble cofibrations mentioned above. To show that the above map is a stable weak-equivalence,
one may consider the commutative diagram:

K/\A—>K/\AL%|A/\B—>(B/A)/\L

L

KANA KAB (BJ/AK

The two rows are distinguished triangles in the sense of section 1. If A — B is a stable
cofibration which is also a stable weak-equivalence, B/A is stably weakly-equivalent to
and hence so are B/AA L and B/A A K. It follows therefore that the middle map is also a
stable weak-equivalence. Now the axiom (SM6) and (SM7) follow readily as in the case of
I-spaces. (See [H-S-S] (3.3.11).)

The tensor product ® :(symmetric spectra) X (symmetric spectra) —(symmetric spec-
tra) is defined by the symmetric smash product over the symmetric sphere spectrum defined
in [H-S-S](2.2.3). Now (M1) and (M3) are clear. Observe that the unit in (M3) is now the
symmetric sphere spectrum. The functors Q and Q°! are straightforward adaptations of
the corresponding functors for spectra. i.e. Q = Singo| | extended to symmetric spectra
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and Q% = T" o Q where T" is the functor considered in (4.8). To see (M2) we proceed
as follows. Let F'r: (pointed spaces) —(symmetric spectra) be the functor considered in
[H-S-S](3.4.1). Now Fr(X) is a stably cofibrant symmetric spectrum for any pointed space
X. Now axiom (M2) holds if A or B is of the form Fr(X): Fr(X)A — ~ X @ — where
® on the right is the tensor product defined in [H-S-S](2.1.3). Clearly the latter preserves
stable weak-equivalences and stable cofibrations. To complete the proof of (M2) it suffices
to show that the class of symmetric spectra that satisfy (M2) is closed retractions and under
transfinite compositions of maps (as in [Sch] appendix A) that are stable cofibrations. This
follows readily if one observes that filtered colimits are in fact homotopy colimits. (See [B-K]
p. 332.)

Next we consider the axioms on the t-structure. The functors 7<,, are defined as follows.
T<nX = IB,HT(X)7 X = a symmetric spectrum

To see this applies to symmetric spectra, observe that K — P,K is a functor from pointed
fibrant simplicial sets to pointed fibrant simplicial sets, for each n > 0. Therefore, if a
(symmetric) group X acts on K P,K has an induced action by ¥;. Now it is clear that
(ST1) and (ST2) are satisfied. (The exhaustiveness and separatedness of the filtration follows
asin 1.5 .) To see that (ST7) is also satisfied, it suffices to make the following observations.
Let X = {X"|n >0}, Y = {Y"|n > 0} and Z = {ZP|p} denote symmetric spectra which
are degree-wise fibrant and let k, [ denote two fixed integers. Assume there exists a pairing
X ®Y — Z where ® now denotes the tensor-product of symmetric spectra as in [H-S-S]
(2.1.3). Recall (X®Y), = H/r\L E*E A (X AY;,) As observed above, Py, Xn APy ymXom

has an induced action by the group ¥, x ¥,, and so does Pk+l+n+m(Zn+m) so that the
induced map (as in 1.5 ) PrinXp A Py X — Pk+l+n+m(Zn+m) is ¥,, X X,,-equivariant.
This shows that axiom (ST7) is satisfied if we use the tensor product of symmetric spectra
as in [H-S-S] (2.1.3). Recall the smash product of the symmetric spectra X and Y is defined
1dQu
—
as the co-equalizer of the two maps X ® S®Y a X ®Y. Since taking the associated graded

terms of a filtration commute with respect to taking co-equalizers, we obtain (STT7).

In (ST4) we take A to be the whole category of all abelian groups. Now we define, in
outline, the functors EM,,. First we consider a different suspension for simplicial abelian
groups. Let K(Z,1) denote the simplicial abelian group obtained by denormalizing the chain
complex Z[1] concentrated in degree 1. Now observe that there exists a natural map from the
simplicial sphere to K(Z, 1), since m;(S') = Z. Moreover if A denotes a simplicial abelian
group, there exists natural maps S* A A — K(Z,1) AN A — K(Z,1) ® A where K(Z,1) ® A
denotes the degree-wise tensor product of the two simplicial abelian groups K(Z,1) and A.
One may readily verify that K(Z,1) ® A ~ BA: we view this as the suspension functor for
simplicial abelian groups. Starting with a simplicial abelian group A one now obtains the
suspension spectrum {K(Z,1)®" ® Ajn}. We may view this as a symmetric spectrum by
letting the symmetric group %, act on K(Z,1)®" @ A by letting it act on K(Z,1)®" by
permuting the n-factors in the tensor product. So defined we obtain a functor

Sp:(simplicial abelian groups ) —(symmetric spectra)

One may readily see that this functor is faithful. The functor EM,, is the restriction of the
above functor to the sub-category of simplicial abelian groups of the form DN (w[n]), where 7w
is an abelian group, w[n| the corresponding complex concentrated in degree n, and DN is the
denormalization functor sending a chain-complex to a simplicial abelian group. This proves
(ST4). The functor Sp o DN now defines a faithful functor from the category of all chain
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complexes that are trivial in negative degrees to that of symmetric spectra. One may readily
extend this functor to a faithful functor from the category of all unbounded chain-complexes
of abelian groups to the category of symmetric spectra - however the details are skipped.
This proves (ST3). The remaining properties, (ST5), (ST6) and (ST8) are established by
arguments very similar to those in the case of I'-spaces and are therefore skipped. Appendix
I, (0.7.3) readily adapts to the case of symmetric spectra to prove axiom b(ST9). O

2.1. The spectra of K-theory. We conclude this section by making some observa-
tions that the spectra of algebraic and topological K-theory are in fact symmetric spectra.

THEOREM 2.2. (Geisser-Hasselholt: see [G-H]) Let S denote a category with cofibrations
and weak-equivalences in the sense of Waldhausen (i.e. [Wald]). Then the associated K-
theory spectrum K (S) is a symmetric spectrum. If, in addition, S is also a symmetric
monoidal category with a tensor product that preserves cofibrations and weak-equivalences
in both arguments, the associated K -theory spectrum K(S) is an algebra in the category of
symmetric spectra (i.e. a ring object so that the unit map from the sphere spectrum is a map
of ring objects).

COROLLARY 2.3. It follows that if X is an algebraic variety or a scheme, the spectrum
of the K -theory of vector bundles on X is an algebra in the category of symmetric spectra.
If X is a suitable topological space, the spectrum of topological complex K-theory on X is
also an algebra in the category of symmetric spectra.

2.2. Completions of symmetric spectra. Often, especially in considering presheaves
of spectra on the étale site of schemes, it will become necessary to assume that their
presheaves of homotopy groups are all [-primary torsion, for a prime [ different from the
residue characteristics. However the common operation of smashing with a Moore-spectrum
often does not preserve the category of ring spectra. Therefore, it will be necessary to per-
form completions in the sense of [B-K] or localizations. The following result shows this is
possible.

THEOREM 2.4. (i) Completions (and localizations) at a set of primes in the sense of
[B-K] extend to symmetric spectra and preserve the sub-category of ring spectra.

(i) Moreover, if R is a symmetric ring spectrum and R; denotes its completion at the
prime [, the functor of completion at | sends the category of module spectra over R to the
category of module-spectra over R;.

(153) If R is an E* ring object in the category of symmetric spectra, its l-completion is
also an E°°-object in the category of symmetric spectra.

PRrROOF. (i) The first assertion follows from [Hirsch| section 3. The main observation is
that one may construct a new model category structure on the same underlying category
of symmetric spectra, where weak-equivalences are replaced by weak-equivalences on the -
completions. The cofibrations will be the same as in the original category and the fibrations
will be defined by lifting property with respect to cofibrations that are also weak-equivalences
on [-completions. Since the underlying category is the same as the original one, namely
the category of symmetric spectra, it follows that the completion functor sends symmetric
spectra to symmetric spectra.

Now we consider the second assertion in (i). For this we need to recall some results in
[SS]. Accordingly a ring object in the category of symmetric spectra is an algebra over the
monad (or triple) defined by:
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T(K)=SUK UK. UK\

where A denotes the smash product of symmetric spectra and S is the sphere spectrum.
Now the observation that I-completion has the property (A A B); = A; A B; shows that
T(K), = SUK; U KM2... K™ .. (The above property of the completion may be checked
using the definition of the smash product of symmetric spectra and will ultimately reduce to
showing the l-completion commutes with the smash product of two pointed simplicial sets.)
Therefore, if R is a ring object, in the category of symmetric spectra, so is its [-completion.
This proves the second statement in (i). (ii) may be checked easily in a similar manner.

No we consider (iii). For this we proceed as above replacing the monad by the monad
T(K)=1UKUEZS;x K" U...u x K"...
Yo Yn

taking into consideration the action of the symmetric group X,, as well. An E°°-ring object
may be identified with an algebra over this monad. (I

3. Presheaves with values in I'-spaces, symmetric spectra

Observe that all our constructions in the last two sections were functorial. Therefore,
they extend to presheaves on any site satisfying the basic hypotheses as in Chapter II. i.e.
we obtain the following theorem.

THEOREM 3.1. Let & denote a site as in Chapter I. Let Presh(S) denote the category
of presheaves of T'-spaces or symmetric spectra on the site &. Then the category Presh(G)
satisfies all the azioms of Chapter I

REMARK 3.2. The category of spectra in the A!-local category of simplicial presheaves
on the big Zariski or Nisnevich site of schemes of finite type over a Noetherian base scheme
(using a suitable suspension functor) satisfies many of the axioms of Chapter I. See Chapter
VI for a brief discussion of this.



APPENDIX B

Chain complexes and simplicial objects

Since the functor Sp appearing in Definition 4.6 of Chapter I is defined in terms of a
homotopy inverse limit, one has to first replace this (upto weak-equivalence) by a suitable
homotopy direct limit so that it will pull out of the Hom gy, (r))-functor above, so that the
axiom (ST9) will be satisfied. In an abelian category, this is clearly feasible provided the
above homotopy inverse limit is a homotopy inverse limit of a finite diagram; nevertheless,
for our purposes it is necessary to obtain the precise relationship between these homotopy
inverse limits and direct limits and relate them to the total-complez-construction. Much of
the work in the first few sections are expended in this direction. While the results we obtain
are probably well-known and part of the folklore, many of the details do not exist in the
literature. (See [T-1] (4.2.32) for a brief discussion.) One may skip the details and only
read the main results, which are Proposition 0.3, Lemma 0.4, 0.7 and 0.6.3. (See 0.8 for a
technique that is used often in this section.)

0.1. Let A denote an abelian category closed under all small limits and colimits and
where filtered colimits are exact; a chain complex K, (co-chain complex K*) in A will
denote a sequence K;eA (K‘cA) provided with maps d : K; — K;_; (d : K — K'T1)
so that d> = 0. Let C;(A) (C*(A)) denote the category of chain complexes (co-chain
complexes, respectively) in A that are trivial in negative degrees. Omne defines denor-
malizing functors: DN, : C;(A) — (Simplicial objects in A) and DN* : CT(A) —
(Cosimplicial objects in A) as in [Ill] pp. 8-9. DN, will be inverse to the normalizing
functor:

N : (Simplicial objects in A) — C4(A) defined by (NK,), = 'oner(di : K, = Kp)

with § : (NK), — (NK)p—1 being induced by the map dy. DN*® will be inverse to the
functor N : (Cosimplicial objects in A) — C*+(A) defined by (NK*)" = + coker(d’ :
i#0

K™ — K" with § : (NK)™ — (NK)™*! induced by d°. A map f : K, — K, of simplicial
objects in A will be called a weak-equivalence if it induces an isomorphism on the associated
homology objects. To simplify our discussion, we may assume that A is in fact the category
of all abelian groups.

0.2. The definition of the normalization and denormalizing functors work also in more
general settings. If C is a category with a zero-object with finite limits and colimits one
may define a chain complex in C to be a sequence of objects {K;|i} in C provided with

maps KiiKi,l, i > 1 so that d> = 0. Co-chain complexes may be defined similarly. For
chain complexes (co-chain complexes) that are trivial in negative degrees one may define
denormalizing functors that produce simplicial (cosimplicial, respectively) objects by the
same formulae. There are also normalizing functors defined similarly. For us, the important
case will be when C is the category of spectra. In this case the results in [Rect] show that
the normalizing and denormalizing functors are weak-inverses.

0.3. In addition we will often view a simplicial object K, (cosimplicial object K*)
in A as a chain complex (co-chain complex, respectively) with the differential given by

135
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§=%i=0d; : K, = K, 1 (0 = XiZ0d' : Kn~! — K", respectively). (Now N(K,) (N(K*))
is a sub-complex of the complex K, (K*°, respectively) with the above differential.)

Let Koe denote a double chain-complex in A that is trivial in negative degrees. Let
TOT(K,.) denote the total complex defined by

(0.3.1) TOT (Kee)n = i+§9:nKi,j7 6(ki ;) = (61(kig) + (—1)"02(ki 7))

where §; denotes the differential in the [-th index, [ = 1, 2.

Let DN, o DN,(K,,) denote the double simplicial object in A obtained by applying
the denormalizing functors in both directions to Kee. Let A(DN, 0 DN(K,4,)) denote
its diagonal; we view this as a chain complex as above. Now the theorem of Eilenberg-
Zilber-Cartier (see [Ill] p.7) shows there exists a natural map (the Alexander-Whitney map)
A(DN, 0o DN,(Kee)) = TOT(K,,) that is a weak-equivalence.

0.4. Relationship between homotopy colimits for double simplicial objects in
an abelian category and the total complex construction. Next assume the situation
of Chapter II section 1. We will apply the above result to a double complex K,, of abelian
sheaves on a site G as in Chapter II, section 1 that is trivial in negative degrees. (An abelian
sheaf will denote a sheaf with values in any abelian category satisfying the hypotheses as
above; we will assume once again, for simplicity, that the abelian category is in fact the
category of all abelian groups.) The above arguments show that if DN, (TOT(K,,)) is the
resulting simplicial object, one obtains a natural weak-equivalence (of simplicial objects):

hocolim(DN, o DN, (Ke0))=>A(DN, 0o DN,(K,e))=DN,(TOT(K,,))

(To see that the last map is a map of simplicial objects, observe that there is a natural
map N(A(DN, o DN,(K,,.))) — A(DN, o DN,(K,,)) of complexes (where the latter is
provided with the differential as above) The map in the above paragraph maps the complex
A(DN, o DN,(K,s)) to the complex TOT(K,,). On applying the denormalizing functor

to this, one obtains the map A(DN, o DN,(K..)) = DN o N(A(DN, o DN,(K..))) —
DN(TOT(K.,.)) of simplicial objects.)

0.5. Relationship between the Tot constructions of [B-K] and [Br]| for cosim-
plicial simplicial objects in an abelian category with the total complex. (See
Proposition 0.3 and Lemma 0.4 for the final result.) Next let K2 denote a double complex
in A that is trivial in negative degrees and where the differentials in the first (second) index
are of degree 1 (—1, respectively). We will say K*. is bounded if I_(;: = 0 for all but finitely
many indices i and j. We will let TOT(K?) be the total complex with differentials of degree
—1 and defined by

(0.5.1) (TOT(K?))n = UK},
P
and with differentials defined by d(kj,,,) = (d1(kp,) + (fl)i”dg(kgiylbﬂ)). This is a chain

complex and is trivial in negative degrees if I_(;: =0foralli > j. Let DN®*oDN,(K?) denote
the cosimplicial simplicial object in A obtained by applying the denormalizing functors to
K. We may view this as a double complex with differentials:

81 : (DN* o DN4(K}))E — (DN* o DN,(K3))2+! given by 6, = X5 ! (-1)id’

(02 : (DN* o DN,(K2))s — (DN* o DN,(K?))b_, given by 6, = ¥i=4(-1)id;, respec-
tively)
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Let TOT;(DN*® o DN,(K?)) denote the chain complex defined by

TOT,(DN® o DNy(K?))n = E[(DN' o DN.(K','))§+n

with the differential defined by d(ky,,) = 1(kp,,) + (—l)p(52(k£i}l+1). The definition of
the denormalizing functors provides a natural map

®: TOT(K?) — TOT1(DN*® o DN,(K})) of chain complexes
One may verify that there are spectral sequences

(0.5.2) EYY(1) = HY(K®) = H*"Y(TOT(K?)) and
(0.5.3) EPY(2) = HY((DN® o DN,(K?))®) = H**Y(TOT,(DN® o DN.(K?)))

which converge strongly if K¢ is bounded as assumed. The map ®, being natural, induces
a map of these spectral sequences which is clearly an isomorphism at the Fs-terms since
ES'(1) = ESY(2) = H*( the co-chain complex n. — H;(K™.)). Tt follows that ® induces a
weak-equivalence if K¢ is bounded in the first or second index.

Let Tot;(DN® o DN,(K?)) denote the chain complex defined by

Tot;(DN*® o DNy (K2)), = {(K”

pt+n
di(k;;;rlkl) = dp—i(kg-q-n)a Si(kﬁﬂm) = Sp—i(k£+n), 0<i<p}

and where § : Tot; (DN®0DN(K?))n, — Tot1(DN®*0o DNy (K?))n—1 is given by 6((k} ) =
YEN 1) id (k). Onereadily verifies that the map sending a tuple (k) ,,)eTot;(DN*®o
DN,(K})) to the same tuple (kp,,)eTOTi(DN* o DN,(K])) defines a map of chain com-
plexes. We will denote this map by ¥. We may view Tot;(DN® o DN,(K*.)) also as a
presheaf of pointed simplicial objects where the face maps d; : T'ot;(DN® o DN4(K?)), —
Tot;(DN® o DNy(K?))n—1 is given by d;i((kb,,)) = (dispt1(kb,,)) for all i < n —1 and
d, = * (for non-degenerate simplices). The degeneracies are defined similarly. One may

p+n

Jell(DN* o DN.(K?));

pt+n

also view Tot1(DN® o DN,(K?)) as a presheaf of simplicial spectra um-object in the sense
of Kan by letting the higher d; and s; be the trivial maps. (Recall that a spectrum S.
in the sense of Kan (see [Kan]) is given by a sequence {S(,|q} of pointed sets along-with
structure maps d; : Sq) = S(q—1), Si : S(g—1) = S(q) defined for all i and satisfying the usual
relations. It is also assumed that for each seS(,) all but finitely many d;(s) are different
from . Clearly one may view any pointed simplicial set as a spectrum in the sense of Kan;
this will correspond to the suspension spectrum of the original simplicial set. Observe that
Kan’s definitions apply to any pointed category; such an object in a pointed category will
be referred to as a spectrum object in the sense of [Kan].)

One may define a filtration of T'ot; by Tot]* which is defined in a manner similar to Toty,
except that one considers only those (k},,,) with p < m. Since DN*oDN,(K?*.) is a cosimpli-
cial object of presheaves of simplicial abelian groups, the stalks are fibrant cosimplicial objects
by [B-K] p. 276 and hence the map Tot7*(DN® o DN,(K?)) — Tot?" ' (DN®*o DN,(K?)) is
a fibration at each stalk (see [Br] p. 457). The presheaf of homotopy groups of the fiber of
the map may now be identified with degree-k terms of the normalization of the cosimplicial

abelian presheaf p — 7, (DN®o DN, (KP?.)). It follows that, one obtains a spectral sequence:
E3*' = H*(the co-chain complex n — H(K".))

= 7_opt(Toty (DN® o DN,(K?)) = H*~t(DN® o DN,(K?))



138 B. CHAIN COMPLEXES AND SIMPLICIAL OBJECTS

The map ¥ induces a map of the above spectral sequence to the second spectral sequence
in 4.0.5 and this is an isomorphism at the EZ-terms. If K°. is bounded, both spectral
sequences converge strongly and therefore the map ¥ induces a weak-equivalence Tot1 (DN *®o
DN, (K?)) — TOT,(DN*® o DN,(K?))

Next recall that if A and B are two pointed simplicial sets, one may define their join

A x B (see [K-W] p. 242) to be the simplicial set given by: (A* B),y1 = \ A4; A Bj,
i+j=n

di(a ANb) = dp—i(a) Nbif aeA,, 0 < i <p, di(aANb) =aAdi—p_1(y), if acA,, ¢ > p and
si(aANb) = s;_p(a) ANbif aeAp, 0 < i <p, s;(aNb) =aAsi_p_1(y), if acAp, i > p. One
obtains a homeomorphism of |A x B| with X(]AA BJ), where AAB = (Ax B)/(xx BUA X x)
and suspension is simply smash product with S*. One may now define Q(A * B). denote the
simplicial set given by (2(A * B)),, = {ze(A * B)p+1|dn(xz) = x} and where the face maps
di ¢ (QA * B)),(QA % B)),—1 and the degeneracies s; : (A * B))p—1 — (QA * B))p,
0 < i < n —1, are the restrictions of the corresponding maps of A x B. It follows that if one
views A x B and A A B as the associated simplicial spectra in the sense of Kan, one obtains
a natural weak-equivalence

: AA B with Q(A = B).

(To see this more clearly one needs to use a different suspension S for a simplicial set T
which performs an upward shift. Now |ST| = 3(|T|) - we skip the remaining details.)

Let L? denote a cosimplicial simplicial object of abelian sheaves on &. We will view
this as a cosimplicial object of presheaves of abelian spectra in the sense of Kan on the site
S. For each integer m, let A[m] denote the constant presheaf with stalks isomorphic to the
simplicial set A[m]; we will view this also as a presheaf of spectra in the sense of Kan in the
obvious manner. Now we let

Toty(L2), = Hom(Q(Ale]4 x Aln]), GL?)

where L? is viewed as a cosimplicial object of presheaves of spectra in the sense of Kan and
the Hom is in the category of cosimplicial objects. Let Tot5*(L3), = Hom(Q(sky(Ale])y *
Aln]y), GL?). Since L®. is a cosimplicial object of simplicial abelian groups, the stalks are
fibrant as cosimplicial spaces (see [B-K] p. 276) and therefore the obvious maps Tot5*(LS) —
Toty ' (L?) are fibrations. Tots(L?) is the inverse limit of this tower of fibrations. To see
the relationship of this with the stable Tot of Bousefield-Kan, one may proceed as follows.
Recall Tot(L?), = Hom(A[.]+AA[n], GL?) and Tot™ (L), = Hom(skm,(Ae]+) A (Aln]L),
GL?). Now Tot(L?) is the homotopy inverse limit of the tower Tot™(L3) — Tot™1(L2).
One uses the natural weak-equivalences Q(sk., (A[p])+ * A[n]4) =~ skn (Ap])+ A Aln]4, for
all m, to obtain a map of the corresponding homotopy inverse limit spectral sequences. As in
[B-K] pp. 281-283, one may identify the E;-terms of both the above spectral sequences with
the normalization of the cosimplicial abelian presheaf p — m,(L%). If Ly = DN®*o DN,(K?)
where K¢ denotes a bounded double complex of abelian sheaves on &, both spectral sequences
converge strongly; since we clearly obtain an isomorphism at the F;-terms, it follows that
one now obtains a weak-equivalence

Toty(DN® o DN, (K?)) ~ Tot(DN® o DN, (K?)
Let K? denote a bounded double complex of abelian sheaves on &. Now one obtains a
natural map

Toty(DN*® o DNo(K7)) — Tot1(DN*® o DN4(K?))
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of presheaves of spectra by sending a map: Q(A[p]; * A[n]y) — DN® o DN,(K?)P to the
p + n simplex which is the image of the p + n simplex i, A i,e(A[p]+)p A (A[n]4),, where
ip (i) generates A[p] (Aln], respectively). We have defined Tot; in such a manner so that
the image of the p + n-simplex i), A i, satisfies the conditions in 0.5 defining T'ot;. Recall
from 4.0.5 the Bousefield-Kan type spectral sequence for T'ot; whose E — 2-terms are given
by E5* = H*( the co-chain complex n — H;(K™.)). If the double complex K¢ is bounded as
i 0.5, it 1s clear that the above spectral sequence will converge strongly. The construction
of the usual Bousefield-Kan spectral sequence readily applies to provide a spectral sequence
that converges to the homotopy groups of Tots; the Es-terms of this spectral sequence will
be also given by the same description as above. The map in 0.5 induces a map of these
spectral sequences thereby showing that it is a weak-equivalence provided K¢ is bounded.

Now we summarize our results in the following proposition.

PROPOSITION 0.3. Let K? denote a double complex of abelian sheaves on & that is
trivial in negative degrees and where the differentials in the first (second) index are of degree
1 (-1, respectively). Assume further that K';: = 0 if i > j and that K? is bounded i.e.
R’; = 0 for all but finitely many indices i and j.

Now one obtains the following weak-equivalences of presheaves of simplicial abelian
groups (natural in K ):

DN,(TOT(K?)) ~ DNo(TOT,(DN*® o DN4(K?))) ~ Tot,(DN*® o DN,(K?))
~ Toty(DN® 0o DN, (K?)) ~ Tot(DN*® o DN,(K*.))

where the last Tot is the stable Bousefield-Kan Tot-functor and the others are the ones
defined above.

PROOF. The arguments above clearly prove the assertion. O

0.5.4. Let K, denote a double complex of abelian sheaves on & so that the following
conditions are satisfied. There exists a large positive integer m so that I_Q, j=0if j <m—1
ori<O0orj<0. Let {K'J’\z,j} denote the double complex so that K'J’ = Kp_ij;. The
differentials in the first index are now of degree +1 while those in the second index are
of degree —1. Let TOT(K,,) (TOT(K?))) denote the chain complex defined as in 0.3.1
( 0.5.1, respectively). (The assumptions on K,e ensure that TOT(K,e), = 0 if n < m and

TOT(K?), = 0if n < 0. Now DN*® o DN,(K,..) is a cosimplicial simplicial object and

DN, o DN,(K.,.)) is a double simplicial object of abelian sheaves on the given site.

LEMMA 0.4. Assume the above situation. Now one obtains a natural weak-equivalence:

S™Tot(DN* o DN (K?)) = hocglimDNy o DNu(Kua)

PROOF. Let DN,(TOT(K,,)) and DN,(TOT(K?)) denote the obvious simplicial ob-
jects. Now the left-hand side is weakly-equivalent to ™ DN, (TOT(K?)) (see 4.0.5) while
the right-hand side is weakly equivalent to DN,TOT(K,.). (See 0.5.1.) Tt is clear that
the complex TOT(K,,) is the complex TOT(K?) shifted up m-times. Now 0.7 shows
Y DN, (TOT(K?)) ~ DN,(TOT(K.,,)). O

0.6. The functor Sp for presheaves of spectra. In the rest of this section, we
will show that one may define a functor Sp on bounded below complexes of sheaves of
abelian groups taking values in the category of presheaves of spectra and satisfying the
hypotheses as in Chapter I. Accordingly Presh will denote the category of presheaves of
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spectra (i.e. simplicial spectra as in [B-F]) on a site & satisfying the hypotheses of Chapter
I, section 1. We may identify the cohomological functor #* as in Chapter I with the
functor P — 7m_.(P), where the latter is the presheaf of stable homotopy groups. Let
M?* denote a co-chain complex of abelian sheaves on & and let m >> 0 be an integer so
that M? = 0 if i < 0 or if i > m. Let [ denote an integer > m. For each integer n > 0,
let K (M™,1) denote the presheaf of Eilenberg-Maclane spaces so that m; (K (M™,1)) = M
if i =1 and = 0 otherwise. Now K?: = {N,(K(M™", 1))|n} is a double complex with
differentials in the first (second) index of degree +1 (—1, respectively). Let Koo denote the
double chain-complex defined by K’i,j = f{Jm_’ Now K, 2 and K,, are complexes that satisfy
the hypotheses of 0.3 (since N(K(M™,1)); = 0if i < [ and for all n). Moreover observe that
DN,(K?) = DN, o N(K(M?*,1)) = K(M?*,1). Therefore one obtains the weak-equivalence:

ZmTot(DN'K(M', 1)) ~ hocAolimDN. o DN, (K..)

Next observe the following. Let M denote an abelian sheaf on the site & and let 4
denote an integer./l_;et [ denote any fixed integer. One may define the presheaf of Eilenberg-
Maclane spectra Sp(K (M, 1)) be given by the sequence of presheaves of Eilenberg-Maclane
spaces defined by

— _

(0.6.1) (Sp(K(M,1))); == *, j<l—i
(0.6.2) = K(M,j+i), j>1—i

One may observe readily that gEJ(K(M, i)) = EM;(M), where EM; is the functor
defined in Appendix B for presheaves of symmetric spectra. Therefore, the present discussion
applies equally well to presheaves of symmetric spectra.

Let E denote a ring object in the category of symmetric spectra; we will also denote by
E the obvious constant presheaf associated to E. Let M® = IIM*(i)eD*(Mod,.(&; m.(E))).

Assume that M™ = 0 if n > m or if n < 0 and that | > m. We let S/'E)(M')) =
ISp(K (M*(i),i)). Now observe that for each fixed n, each presheaf of spaces forming
the presheaf of spectra %(K(M”(z),z))] is given by K (M™(i),j +1), if j > 1 —i and = *
otherwise. Therefore the hypotheses of 0.6 are satisfied with [ replaced by j + ¢ and one
obtains:

Y™TotDN®(K(M*(i),j +i)) ~ hocAolirnDN. o DN, (Kee(3))

where K, (j) is the double chain complex defined by (Kee(j))s,: = No(K(M®(3), j+i))7*° =
No(K(M™=%(i),j + i));- Observe that inner denormalizing functor DN, is inverse to
the functor N, that produces N,(K(M™%(i),j + i)) from the simplicial abelian sheaf
K(M™5(i),j +14). (We will use the second subscript of K, (j) to denote this direction.)
Therefore, if K(M*®(i),j + i)[ms] is the chain-complex of presheaves of Eilenberg-Maclane
spaces defined by

(K(M*(i),§ + i) [mn])s = K(M™ (i), j + 1)

and with the obvious differential induced by that of M*®(i) and DN, denotes denormalizing
along the second direction, one obtains:

DN, (Kee(j)) = K(M*(3),j + i) [mn]
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Thus, for all j, we obtain the weak-equivalences:

YMmTotDN®(K(M*(i),j +1i)) ~ hocAolimDN. (K (M*(3),j +i)[mn])

Recall that Sp(K (1* (i), 1)) = {C(¥*(3).4 + )l > | — i} and Sp(K (F1°(i) i) ms)
= {K(M*(i),j + i)[ms]|j > | —i}. Since the second equality of 0.6 holds for all j > [ — i,
we obtain:

SMTotDN*(SpK (M* (i), 1)) ~ hocolimDN, (SpK (M* (i), ) [ma])

for all i. (The chain-complex K (M (i),i)[my] is defined as above.) Now

Y™ TotDN*Sp(M*) ~ IIS™TotDN* (Sp(K (M*(3),1)))
~ ri[hocglimDN.é};(K(M%i), i) [ma])

Now one observes that for each fixed integer k£ there are only finitely many terms in the
above product with nontrivial homotopy groups in degree k. (To see this, first observe that
by the hypotheses, M*® has bounded cohomology; therefore if one considers the spectral
sequence:

B2, = H,(m,(DN.Sp(K (31° (i), i) [ms])) )

= 7rs+t(hocAolimDN.§;)(K(M' (i),3)[ma)))

there exists a uniform bound m (independent of i) so that E?, = 0if s > m, s < 0
or if t # i. It follows that 71',19(hocAolimDN.3’;)(1{(1\71"(z'),z')[mh]))~ = 0 unless i < k <

i +m.) Therefore the product in the last term above may be replaced by a \/;; now such
a |/, commutes with homotopy colimits and with the denormalizing functor for simplicial
objects (which also involve only sums). Therefore the last term above may be replaced by

hocglimDN.Hg;)(K(M' (2),4)[mp]) = hocglimDN.S/j;(M'[mh]). (Here M*®[my,] is the chain

complex in Mod, (&, m.(E)) given by (M*[m4])s = M™~* and Sp is applied degree-wise to
this complex to produce a chain complex in Mod(S, Sp(7.(E))).) Recalling the definition
of the functor Sp from Chapter I, we now obtain a weak-equivalence:

(0.6.3) S Sp(M*) = S™TotDN* (SpK (M*)) ~ hocganN.@(M[mh])

for any M*eD®(Mod, (&;m.(E))) so that M™ =0 if n < 0 or if n > m.

Shifts of complexes and suspension. We conclude the paper with a discussion on
shifts of complexes and how they relate to suspensions (loopings) of the associated simplicial
and cosimplicial objects. For this, we will assume the context of Chapter 111, 1.2.

If S and T are both pointed simplicial sets (or simplicial presheaves), one defines S ® T’
to be the pointed simplicial object defined by (S®T), = \ T, with the base points of all

Sp—%*

T,, identified with the common base point and with the obvious structure maps induced from
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those of S and T. If S is a pointed simplicial set and T is a simplicial object in an abelian
category A, S ® T will denote the simplicial object in A defined by (S®T), = & T,
Sp—x*

with the base points of all T,, identified with the common base point and with the 0€vious
structure maps induced from those of S and 7. If S and T are both simplicial objects in A,
S ® T will denote the simplicial object in A that is the diagonal of the bisimplicial object
{Sn ® TIn,m > 0} of A, where ® has the usual meaning. Given a pointed simplicial set
S and a pointed simplicial presheaf P, S A P denotes the simplicial presheaf defined by
I(U,SANP)=SAT(U,P), U in the given site.

0.7. Shifts for chain complexes. If S! denotes the simplicial sphere as above, one
first observes the isomorphism Z(S') 22 DN,(Z[1].), where Z(S') is the free abelian group
functor applied to the pointed simplicial set S, Z[1], denotes the chain-complex that is
trivial in all degrees except 1 and where it is Z and DN, is the denormalizing functor
applied to this chain complex. Next let K, denote a chain complex of abelian sheaves on
the site & that is trivial in negative degrees. Now one obtains the isomorphisms:

DN,(K,[1]) 2 DN,(Z[1]) ® DN.(K,) = Z(S') @ DN,(K,) = S' ® DN,(K,)

Moreover there is a natural map S* A DN, (K,) — S*® DN,(K,) of simplicial objects. This
is a weak-equivalence.

Let A denote an algebra in Presh and let Let M. = IIM.(i)eMod, (S, H*(A)); now
3‘;7(]\_4) = ISp(M.(i), i) is a chain-complex in Mod(&, Sp(H*(E))). In this case the map

above induces a map S' A DN,(Sp(M.)) — S' ® DN,(Sp(M.)) of simplicial objects in
Mod(6, Sp(H*(A))). One may readily show this induces a weak-equivalence on taking the
homotopy colimits of the corresponding simplicial objects in M od(&, Sp(H*(A))) Combining
this with the earlier isomorphisms, we obtain a weak-equivalence :

hocglimDN.(S’p(M.[l])) ~ St A hocglimDN.(Sp(M.))

Shifts for co-chain complezes. Let A[n]y denote the obvious constant presheaf on the
site & as before. If S is a pointed simplicial set, recall that S®A[n]; is the pointed simplicial
set given by:

(S @ Aln]t), = S\/_*(A[N]+)p

and with the obvious structure maps. Let P denote a presheaf of pointed simplicial sets on
the site S. Now we will let Map(S, P) denote the presheaf of pointed simplicial sets denoted
P?% in Chapter I, (M4.1). If S is a pointed set viewed as a constant pointed simplicial set,
one may observe the natural isomorphisms:

Map(8, P) = TI(P).

Next let S denote a pointed simplicial set. Let P*® denote a cosimplicial object of
presheaves of pointed simplicial sets. Let (P*) denote the cosimplicial presheaf given in
cosimplicial degree n by (P")S» where the last term has the meaning as above when S,
is viewed as a constant simplicial set. The structure maps are the obvious induced maps.
This is the diagonal of a double cosimplicial object given in degrees m and n by Map(Sy,,
P"™) when each S, is viewed as a constant simplicial object. Thus hokim A(Map(S, P*)) =

hoEm(P’S ) where Map(S, P*) denotes the double cosimplicial object considered above. Let

the first (second) cosimplicial indices for this double cosimplicial object be in the direction
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of S (the cosimplicial direction of P*®, respectively). If ¢ ho}\im denotes the ho}\im in the first

(second) direction if 7 = 1 (i = 2, respectively). Now one obtains the following chain of
natural maps that are weak-equivalences:

Map(S, hoiim(P'))i2 holim Map(A(S), P*)5? holim ol holim Map(S, P*)

Moreover the latter maps naturally to hoiim((P')S ) by a weak-equivalence.

ExAMPLES 0.5. (i) Let S = A[l];+. Now we obtain the natural weak-equivalence:
Tot((P*)$) & Map(A[1],, Tot(P*))

(ii) Let S = (A[1]/A[1]) = the 1-dimensional simplicial sphere S*. Now we obtain the
natural weak-equivalence: Tot((P*)S")&Map(S*, Tot(P*)).

Let A denote an algebra in Presh and let K, denote a chain complex eitherin Mod,. (&, H*(A))
or in ®Mod,. (S, A)%"Z (the latter as in Chapter I, (ST4)) that is trivial in negative degrees

as above. Let DN, (K,) denote the associated simplicial object. We will view this as a cosim-
plicial simplicial object constant in the cosimplicial direction. Let K§[—1,] denote the double
complex (K[-1,])} = K; and (K[1,])5 = 0 for all j and all i # 1. One may now readily ob-
serve the isomorphism of cosimplicial objects : DN® o DNy (K[—1,]) = (DN®* o DN,(K.,))S"
where the term DN® o DN(K,)) is the simplicial object DN, (K,) viewed as a constant
cosimplicial simplicial object in the obvious manner.

Now we consider the more general case where K¢ is a double chain complex in Mod,.(&, 1*(A))
that is trivial in negative degrees and where the differentials in the first (second) index are of
degree +1 (—1, respectively). We may view the complex K s as sitting in the first quadrant
with the cosimplicial (simplicial) direction along the z (y-axis, respectively). For each fixed
n, let K"[—1,] denote the chain complex K™ shifted up one-step in the direction of the pos-
itive z-axis. (As n varies, we now obtain a triple complex, trivial everywhere except in the
plane z = 1.) Now observe the isomorphism (from the previous paragraph), for each fixed
n: DN® o DN,(K™)S" = DN® o DN,(K"[~1,]). (Here the cosimplicial-denormalization
is along the z-axis.) Now we denormalize in the z-direction to get a double cosimplicial
simplicial object: DN® o DN*® o DN, (K*®)S".

Let K[—1,] denote the double complex given by (K[—lv])é- = f(]’:*l if 4 > 1 and
(K’[—lv])? = 0 for all j. Let DN® o DN,(K[-1,]) denote the corresponding cosimpli-
cial simplicial object. Now one may show readily that there is natural map ADN® o DN® o
DN, (IE'.’)S1 — DN* o DN,(K[-1,]) of cosimplicial simplicial objects that induces a weak-
equivalence on applying hokims. (To see this simply observe that the total complex in the

x, z-directions of the triple complex { K™[—1,]4|n} maps into the double complex K, ;;.,[—1.]
and that this is a weak-equivalence on taking the total complexes.) Therefore one obtains
the following natural maps that are weak-equivalences:

holim(DIV* 0 DN, (R-1,]) holim(ADN* o DN* DN (%))
& Map(S?, hoiim(DN' o DN.(K3))).

the last ~ follows from the second example above.
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Next observe from Chapter I, Remark 3.2 that Map(S?, hoiim(DN' o DN, (f(.‘))) ~
Qhoiim(DN’ o DN,(K?)) where Q is used in the sense of Chapter I, Definition 2.3.

Convention. In view of the above, shifting a chain-complex K, to the right £ times
will be denoted K,[k]; for a co-chain complex K*, the corresponding shift will be denoted
K°*[—k].

Finally we return to the setting of presheaves of spectra as in 0.6.3. Let M*® = IIM*(i)
1

denote a bounded co-chain complex in Mod, (&, m.(E)) that is trivial in negative degrees.
Let I > 0 be such that M* = 0 if k > I. Now, as in the discussion preceding 0.6,
Sp(K (M™(i),1)) is the presheaf of spectra given by Sp(K (M"(i), i)); = K(M™(i), j +1), if
j >1—iand = % otherwise. For each j, K2(j, M*) = N K (M?*(i),j + i) is now a double
complex satisfying the hypotheses on K’: as above. Moreover if M*[—1] is the co-chain
complex given by (M*[—1])! = M'~! one may observe the isomorphism (using the notation
from above):

K2(j, M*[-1]) = K3(j, M*)[~1,], for each j.
Therefore, 0.7 provides the weak-equivalence:

Tot( DN*Sp(K (1*[-1](i),1));) ~ Map(S*, Tot( DN* (K (Sp(i* (i), 1));))), for all j.
It follows that

Sp(M*[-1])) = ITot(DN* K (Sp(Ar*[-1](i),4)))
~ gQTot(DNW@(M'(i), i))) = QSp(I1*).

0.8. Co-chain complexes to chain complexes and vice-versa by shifts. A device
that we have frequently used is the following technique for converting a bounded co-chain
complex that is trivial in negative degrees to a chain complex that is also trivial in negative
degrees and bounded. Let K* denote a bounded co-chain complex in an category C with
a zero object and with finite limits and colimits. Assume that m > 0 is an integer so that
Ki=0foralli <0 and all i > m. Now we let K[m] denote the chain-complez defined
by (K[m]); = K™% and with the differentials induced from those of K. One may apply
the same technique (in reverse) to produce a co-chain complex from a chain-complex that
is trivial in negative degrees and that is bounded.
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