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Abstra
t. In this paper we extend the yoga of Grothendie
k's six (derived) fun
tors to

as broad a setting as possible. The general frame-work we adopt for our work is that

of enri
hed symmetri
 monoidal 
ategories whi
h is broad enough to in
lude most or all

of the appli
ations. The theory has already found several appli
ations: for example to

the theory of 
hara
ter 
y
les for 
onstru
tible sheaves with values in K-theory whi
h

is dis
ussed in detail in Chapter V. In addition, other potential appli
ations exist, for

example, to the theory of derived s
hemes and motivi
 derived 
ategories, some of whi
h

are surveyed in Chapter VI.
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Introdu
tion

One of the most global duality results in mathemati
s is the Grothendie
k-Verdier du-

ality. These are statements in the derived 
ategory of suitable sheaves on a topology and

in
orporate many other duality results: for example Poin
ar�e duality for manifolds has a

formulation in this setting using 
onstru
tible sheaves. The yoga of the (six) derived fun
-

tors is in
orporated into this theory of duality. The original setting for these is either that of


onstru
tible sheaves on suitable Grothendie
k topologies or 
oherent sheaves on s
hemes.

However, progress in various �elds has ne
essitated that the basi
 theory be extended to in-


reasingly more general 
ontexts: for example to the setting of D-modules, 
oherent sheaves

on super-
ommutative varieties, algebrai
 geometry over DGAs, simpli
ial presheaves on

general sites et
. The theory of sheaves of modules over di�erential graded algebras is �nd-

ing important appli
ations in present-day algebrai
 geometry: see for example [Kon℄, [CK1℄,

[CK2℄ as well as [Voe-1℄, [K-M℄. Moreover, the theory of simpli
ial presheaves, started in [B-

G℄ over 25 years ago, has been �nding ever in
reasing appli
ations: see the various papers of

Simpson, ([Simp-1℄ through [Simp-3℄), Toen (see [Toe-1℄ and [Toe-2℄), Morel and Voevodsky

(see [M1℄ and [M-V℄). Re
ent progress in the theory of motives has led to several 
onje
tures

on extending the ma
hinery of Grothendie
k-Verdier duality to the motivi
 setting as well.

However, the mere fa
t that Grothendie
k-Verdier duality is formulated in the derived 
ate-

gory of abelian sheaves or 
oherent sheaves on s
hemes (or algebrai
 spa
es), makes it rather

restri
tive: it does not apply to generalized 
ohomology theories, for example to K-theory.

In this monograph we establish a general version of Grothendie
k-Verdier duality in

a suÆ
iently broad setting so as to be readily appli
able to the above situations as well

as others. We dis
uss one parti
ular appli
ation in detail in Chapter V, namely a dire
t


onstru
tion of mi
ro-lo
al 
hara
ter 
y
les in response to a question of P. S
hapira. Other

appli
ations are dis
ussed brie
y at the end of Chapter IV and in Chapter VI. To make

our theory appli
able to a wide variety of situations, (in
luding that of presheaves of E

1

-

di�erential graded modules over a sheaf of E

1

-di�erential graded algebras), we have adopted

an axiomati
 situation.

The frame-work adopted for our work is that of enri
hed symmetri
 monoidal t-
ategories.

Su
h 
ategories are triangulated 
ategories (to be pre
ise, what we 
all strongly triangu-

lated 
ategories) with the extra stru
ture of a symmetri
 monoidal 
ategory and a strong

t-stru
ture. It is shown that, with minor modi�
ations, this framework is broad enough

to in
lude all the above appli
ations: it in
ludes sites provided with sheaves of di�eren-

tial graded algebras, sheaves of di�erential graded algebras over an operad or presheaves

E

1

-ring spe
tra (in the sense of algebrai
 topology).

Next we give an overview of our work by 
onsidering the problem of obtaining a good

notion of (Grothendie
k-Verdier) duality on ringed sites. Let S denote a ringed site, i.e.

a site provided with a sheaf, R, of 
ommutative rings with unit. Let Sh

R

(S) denote the


ategory of sheaves of R-modules on S. This is a symmetri
 monoidal 
ategory under

the tensor produ
t of sheaves of R-modules and has R as a stri
t unit. In this 
ontext it is

possible to obtain a left-derived fun
tor: �

L




R

� : D

b

(Sh

R

(S))�D

b

(Sh

R

(S))! D

b

(Sh

R

(S))

by �nding a resolution of any sheaf of R-modules M by a 
omplex, ea
h term of whi
h is of

the form �

U"C

j

U !

j

�

U

(R), where the sum is over U in the site S. (Here D

b

(Sh

R

(S)) denotes

the 
ategory of bounded 
omplexes in Sh

R

(S). We may further assume that the site S is

small, for the time being.)

If we further assume that the site C has enough points, then we will show it is possi-

ble to de�ne RHom as the derived fun
tor of the internal Hom in the 
ategory Sh

R

(S).
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Given any M , N"Sh

R

(S), we 
hoose a resolution P (M)

�

! M by a 
omplex as before

and let RHom(M;N) = TotHom(P (M)

�

; G

�

N) where G

�

N is the Godement resolution

of N and Tot is a total 
omplex. That this de�nes RHom follows from the following ob-

servations. First, Hom(j

U !

j

�

U

(R); G

�

N)

�

=

j

U�

G

�

(j

�

U

(N)), whi
h shows that the bi-fun
tor

RHom( ; ) preserves distinguished triangles and quasi-isomorphisms in the se
ond ar-

gument. To see that the bi-fun
tor RHom( ; ) preserves distinguished triangles and

quasi-isomorphisms in the �rst argument, one needs to use basi
 properties of the Gode-

ment resolution and the fa
t that P (M)

�

! M is a proje
tive resolution of M at ea
h

stalk.

We observe that the above framework is also parti
ularly suitable for obtaining a bi-

duality theorem. A parti
ularly simple form of this bi-duality is the observation that the

obvious mapM !RHom(RHom(M;R);R) is a quasi-isomorphism ifM is lo
ally free and

of �nite rank.

One of the observations that started our proje
t is the realization that, in the above

example, the 
ategory Sh

R

(S) is symmetri
 monoidal with a stri
t unit R and that this

fa
t plays a key role in being able to de�ne �

L




R

� as well as RHom. In a sense what we do

in the paper is to repla
e the sheaf of rings R by a sheaf or presheaf of di�erential graded

obje
ts: a presheaf of ring spe
tra (or �-rings) is a generalization of a presheaf of di�erential

graded algebras.

It has to be noted that there have been several attempts at obtaining a theory of

Grothendie
k-Verdier-duality. For example, in [Neem℄, it is shown that one 
an establish

the existen
e of a fun
tor Rf

!

(asso
iated to a map of sites f) whi
h is right adjoint to Rf

�

.

However, a bi-duality theorem and therefore the full theory of Grothendie
k-Verdier duality

does not seem to exist in this 
ontext. Any bi-duality theorem 
an hold only for obje
ts

that are �nite in a suitable sense. The notions of being perfe
t, pseudo-
oherent and of �nite

tor-dimension on a ringed site are all various forms of �niteness 
onditions. (See [SGA℄6,

Expos�e I.) However, one may observe that if (S;R) is a ringed site and j

U

: U ! S is an

obje
t in the site, the sheaf j

U !

j

�

U

(R) need not be pseudo-
oherent but 
learly is of �nite

tor dimension. On a general ringed site as above, not every bounded 
omplex is pseudo-


oherent, but one 
an �nd resolutions of any bounded 
omplex by a 
omplex whose terms

are sums of sheaves of the form j

U !

j

�

U

(R). The notions of pseudo-
oheren
e and perfe
tion

seem useful only on ringed sites (S;R) where every �nitely presented sheaf ofR-modules has

a resolution by a pseudo-
oherent 
omplex. Therefore, the appropriate notion of �niteness

that one has on sheaves of modules on general ringed sites seems to be that of having �nite

tor dimension along with �nite 
ohomologi
al dimension and 
ohomology sheaves of �nite

presentation (or that are 
onstru
tible). (It has to be pointed out that the notion of being


onstru
tible is limited to the 
ase where R is a lo
ally 
onstant sheaf on S.) In 
ase every

�nitely presented sheaf of R-modules has a resolution by a pseudo-
oherent 
omplex, the

notion of perfe
tion seems to be the right notion of �niteness.

However, the property of having �nite tor dimension is not ne
essarily preserved by tak-

ing sub-quotients and hen
e not preserved by spe
tral sequen
es. Therefore, we adopt the

following me
hanism for de�ning su
h a property in our setting. To simplify our dis
ussion

we 
onsider a site S provided with a presheaf of di�erential graded algebras A. Moreover, we

assume that there exists a 
anoni
al �ltration on A whose asso
iated graded terms Gr(A)

may be assumed to be a presheaf of graded rings. Therefore, we 
onsider presheaves of mod-

ulesM on the site (S;A) provided with a �ltration so that Gr(M) is a presheaf of modules

over the ringed site (S; Gr(A)). Now we say M is of �nite tor dimension (
onstru
tible)

if Gr(M) is of �nite tor dimension (is 
onstru
tible over Gr(A), respe
tively). We show
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that this de�nes a good notion of �niteness. Those used to working with �ltered derived


ategories, may �nd this approa
h quite familiar. Another issue that be
omes important for

us is to be able to work with ease in unbounded derived 
ategories. The notion of homotopy


olimits and limits provide adequate substitutes for the notion of total 
omplexes in this

setting.

The monograph is divided into six 
hapters and two appendi
es. In Chapter I we

develop the basi
 axiomati
 framework adopted throughout and in Chapter II we dis
uss

several 
on
rete realizations of this axiomati
 set-up. In Chapter III, we establish several

spe
tral sequen
es that form one of our key-te
hniques. Chapter IV is devoted to a thorough

dis
ussion of Grothendie
k-Verdier style duality based on these te
hniques and in as broad a

setting as possible. The results of Chapter IV, se
tions 1 and 2 hold in great generality: here

we de�ne the derived fun
tors Rf

�

, Rf

#

!

, Lf

�

and Rf

!

#

. The stronger results on bi-duality

and the remaining formalism of Grothendie
k-Verdier duality hold on ringed sites (S;R)

only under the stronger hypothesis that the sheaf of rings R is lo
ally 
onstant or for perfe
t

obje
ts. (Perfe
t obje
ts are de�ned in Chapter III, De�nition (2.11).)

We dis
uss one appli
ation to mi
ro-lo
al 
hara
ter 
y
les for 
onstru
tible sheaves in

detail in Chapter V and survey some of the remaining appli
ations in Chapter VI and at

the end of Chapter IV. Ea
h 
hapter has its own introdu
tion and the reader may 
onsult

these now for a survey of our results. Appendix A shows that the 
ategories of �-spa
es and

symmetri
 spe
tra satisfy the axioms of stable 
losed simpli
ial model 
ategories while Ap-

pendix B dis
usses some rather well-known relations between simpli
ial obje
ts, 
osimpli
ial

obje
ts and 
hain 
omplexes in an abelian 
ategory.

A
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ians have 
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er Blo
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have been a sour
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CHAPTER I

The basi
 framework

1. Introdu
tion

The goal of this se
tion is to formulate a framework for Grothendie
k-Verdier duality as

broad as possible. We begin by 
onsidering what are 
alled strongly triangulated 
ategories,

whi
h are stronger than triangulated 
ategories. The typi
al example of this is the 
ategory

of 
hain 
omplexes in an exa
t 
ategory - see Example 2.6 for more details. The homotopy


ategory and the derived 
ategory asso
iated to su
h 
ategories of 
hain 
omplexes are

both triangulated 
ategories; however they are not 
losed under �nite 
olimits and limits

in general, and hen
e 
annot be strongly triangulated. On the other hand the 
ategory of


hain 
omplexes in an exa
t 
ategory, though not triangulated, is strongly triangulated. In

the rest of this 
hapter we 
onsider unital monoidal stru
tures and t-stru
tures that are


ompatible with the strongly triangulated stru
ture. We also need to 
onsider homotopy


olimits and limits of diagrams whi
h may be thought of as derived fun
tors of the 
olimits

and limits respe
tively. We list the relevant axioms for these as well. A 
ategory with these

stru
tures is 
alled an enri
hed monoidal t-
ategory.

In summary an enri
hed monoidal t-
ategory has three basi
 stru
tures, namely (i) that

of a strongly triangulated 
ategory (see below for the de�nition) whi
h indu
es the stru
ture

of a triangulated 
ategory on the asso
iated derived 
ategory, (ii) that of a monoidal 
ategory

and (iii) a strong t-stru
ture: these are required to be 
ompatible in a 
ertain sense. In

addition, there are a few extra hypotheses needed to ensure the existen
e of the derived

fun
tors of the 
olimit and limit fun
tors for small diagrams in su
h a 
ategory.

2. Axioms for strongly triangulated 
ategories

Let C denote a pointed 
ategory. The distinguished zero obje
t will be denoted �. We

say C is strongly triangulated if it satis�es the axioms (STR0) through (STR7.3):

(STR0) C is 
losed under all small 
olimits and limits. The sums in the 
ategory C will

be denoted t. We further require that C have a small family of generators.

(STR1) There exists an equivalen
e relation 
alled homotopy on the Hom-sets in the


ategory C. If K, L"C, we will let Hom

HC

(K;L) denote the set of these equivalen
e 
lasses

of morphisms in C from K to L. We require that this de�nes a 
ategory 
alled the homotopy


ategory and denoted HC. (Observe that we are not requiring this 
ategory to be additive.)

A map f : K ! L is a homotopy equivalen
e, if there exists a map g : K ! L so that g Æ f

and f Æ g are homotopi
 to the identity. We will assume that any map that is a homotopy

equivalen
e is a quasi-isomorphism (de�ned in (STR3) below). We say, a diagram 
ommutes

upto homotopy, if the appropriate 
ompositions of the maps get identi�ed under the above

equivalen
e relation.

5



6 I. THE BASIC FRAMEWORK

(STR2) C is provided with a 
olle
tion of diagrams A

0

i

!A

j

!A

00

! TA

0


alled strong

triangles (often 
alled triangles) and a translation fun
tor T : C ! C satisfying the properties

(STR3) through (STR5):

(STR3) There exists a (
ovariant) 
ohomology fun
tor fH

n

jng : C !(an abelian tensor


ategory A) that sends triangles to long exa
t sequen
es. We will say a map f : X ! Y in

C (or HC) is a quasi-isomorphism if H

n

(f) is an isomorphism for all n. Then the 
lass of

maps in HC that are quasi-isomorphisms admits a 
al
ulus of left fra
tions and a 
al
ulus

of right fra
tions. D(C) will denote the lo
alization of HC by inverting maps that are quasi-

isomorphisms. We will also require that A is 
losed under all small limits and 
olimits, that

�ltered 
olimits in A are exa
t, and that ea
h H

n


ommute with �ltered 
olimits, with �nite

sums and produ
ts.

(STR4) D(C) is a triangulated 
ategory. Let F : C ! D(C) denote the fun
tor that

is the identity on obje
ts and sends a map f to its 
lass in D(C). Then the distinguished

triangles in D(C) are pre
isely the images of the triangles by F and the fun
tor T in C is

sent to the translation fun
tor in D(C). Moreover F has the following universal property:

(STR5) if F

0

: C ! D is any fun
tor to a triangulated 
ategory sending the triangles

to the distinguished triangles, the fun
tor T to the translation fun
tor of D, and quasi-

isomorphisms to isomorphisms, there exists a unique fun
tor F

00

: D(C)! D of triangulated


ategories so that F

0

= F

00

Æ F .

We will also require the following :

(STR6) There is given a 
olle
tion of mono-morphisms in C 
alled admissible monomor-

phisms whi
h are stable under 
o-base extension, 
ompositions and retra
ts so that if

� : X ! Y is an admissible monomorphism in C, Cone(�) (de�ned below) is quasi-

isomorphi
 to Coker(�). We further require that admissible monomorphisms are stable

under all (small) inverse limits, �ltered 
olimits and homotopy 
olimits. (See 4.1.1 for their

de�nition.) There is given also a 
olle
tion of epi-morphisms in C 
alled admissible epi-

morphisms that are stable under base extension, 
ompositions, all (small) 
olimits and all

homotopy inverse limits. If � : Y ! Z is an admissible epimorphism, then T (ker(�)) is

quasi-isomorphi
 to Cone(�). Moreover the obvious map ker(�) ! Y is an admissible

monomorphism. All isomorphisms are both admissible mono-morphisms and admissible

epi-morphisms. Obje
ts X for whi
h the obvious map � ! X (X ! �) is an admissi-

ble monomorphism (admissible epimorphism, respe
tively) will be 
alled mono-obje
ts (epi-

obje
ts, respe
tively). We assume there exist fun
tors M : C ! C (E : C ! C) so that

for ea
h obje
t X, there is given a natural quasi-isomorphism M(X) ! X (X ! E(X))

with M(X) a mono-obje
t (E(X) an epi-obje
t, respe
tively). In addition we require that

if f : X ! Y is given withX mono (Y epi), the map f fa
tors as X ! M(Y ) ! Y

(X ! E(X)! Y , respe
tively).

Remark. Observe as a 
onsequen
e of the axioms (STR7.1) (see below) and (STR6),

that, ifX !

�

Y is an admissible monomorphism with bothX and Y mono-obje
ts, X

�

!Y !

Coker(�)! TX is a strong triangle. Similarly the axiom (STR7.2)(see below) and (STR6),

imply that if Y

�

!Z is an admissible epimorphism with both of them epi-obje
ts, ker(�)!

Y

�

!Z ! T (ker(�)) is a strong triangle. If one 
onsiders the 
ategory of 
omplexes of

presheaves in any abelian 
ategory, both the fun
tors e and m may be taken to be the

identity. (See, for example, Chapter II, se
tion 3.) These fun
tors be
ome non-trivial,

however, when C = a 
ategory of presheaves that has the stru
ture of a 
losed model 
ategory

- see Chapter II, se
tion 4. See also the remark 2.5, below.
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(STR7.1) Existen
e of 
anoni
al 
ylinder obje
ts. Let A"C and let O : A t A ! A be

the obvious map. A 
ylinder obje
t for A is an obje
t A� I"C provided with an admissible

mono-morphism d

0

�d

1

: AtA! A�I and a map s : A�I ! A su
h that the 
omposition

s Æ (d

0

� d

1

) = O. We require s to be a quasi-isomorphism and that A 7! A � I is natural

in A, preserves admissible monomorphisms and 
ommutes with all small limits as well as

�ltered 
olimits. Furthermore we require the following 
onditions on a 
ylinder obje
t.

(i) Let f : A ! B denote a map in C. Then let Cyl(f) = A � It

A

B where the map

A! A�I is d

0

and A! B is the given map f . Let r : Cyl(f)! B denote the map de�ned

by s on A� I, by f on A and by the identity on B. Then r is a homotopy-equivalen
e with

inverse given by the obvious map i : B ! Cyl(f). Given a 
ommutative diagram

A

g

����! C

f

?

?

y

?

?

y

f

0

B

g

0

����! R

in HC, there exists a 
ylinder obje
t A � I in C so that if P = Cyl(f)t

A

C (with the map

A! Cyl(f) indu
ed by d

1

: A! A� I and the map A! C the given map g), there exists

a unique map P ! R in HC making the diagram

A

g

//

f

��

C

��
f

0

��/
/
/
/
/
/
/
/
/
/
/
/
/
/

B

//

''OOOOOOOOOOOOOO P

��@
@@

@@
@@

R


ommute in HC. We 
all P the homotopy pushout of the two maps f and g.

(ii) It follows from the axioms in (STR6) that the map d

1

:M(A)! Cyl(M(f)) is now

an admissible mono-morphism. We let Cone(M(f)) = Coker(d

1

: M(A) ! Cyl(M(f))).

Now we also require that there exist a map Cone(M(f)) ! TM(A), natural in f so that

M(A)

d

1

!Cyl(M(f)) ! Cone(f) ! TM(A) is a triangle. (Observe that this triangle 
or-

responds to the distinguished triangle A ! B ! Cone(f) ! TA in the derived 
ategory

D(C).)

(iii) We also require that if

A

f

//

��

B

��
A

0

f

0

//
B

0

is a 
ommutative square with A! A

0

and B ! B

0

admissible monomorphisms, the indu
ed

map Cyl(f)! Cyl(f

0

) is also an admissible monomorphism.

Remark 2.1. Sin
e A 7! A � I is natural in A, one may observe that f 7! Cyl(f) is

natural in f .
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(STR7.2) Existen
e of 
o-
ylinder obje
ts. If A"C, let � : A! A�A denote the diagonal

map. A 
o-
ylinder obje
t for A is an obje
t A

I

"C with an admissible epi-morphisms

d

0

� d

1

: A

I

! A � A, and a map s : A ! A

I

so that the 
omposition (d

0

� d

1

) Æ s = �.

The map s is required to be a quasi-isomorphism. We also require that A! A

I

is natural,


ommutes with �ltered 
olimits and small limits while preserving admissible monomorphisms

and epimorphisms. Furthermore we require the following 
onditions on a 
o-
ylinder obje
t.

(i) Let f : A! B denote a map in C. Let Co
yl(f) = B

I

�

B

A where the map A

I

! A is

d

0

and A! B is the given map f . Let r : A! Co
yl(f) denote the map de�ned by s�

f

id

A

.

Then r is a homotopy-equivalen
e with inverse given by the obvious map p : Co
yl(f)! A.

Finally given a 
ommutative diagram

R

g

0

��

f

0

//
C

g

��
A

f

//
B

in HC, there exists a 
o
ylinder obje
t B

I

in C so that if P = Co
yl(f)�

B

C (with the map

Co
yl(f)! B indu
ed by d

1

: B

I

! B and the map C ! B the given map g) there exists

a unique map R! P making the diagram

R

��/
/
/
/
/
/
/
/
/
/
/
/
/
/

g

0

��@
@@

@@
@@

''OOOOOOOOOOOOOO

P

f

0

//

��

C

g

��
A

f

//
B


ommute in HC. We 
all P the homotopy pull-ba
k of the two maps f and g.

(ii) It follows on
e again from the axioms in (STR6) that the map d

1

: Co
yl(E(f))!

E(B) is now an admissible epi-morphism. We let fib

h

(E(f)) = ker(d

1

: Co
yl(E(f)) !

E(B)) and 
all it the homotopy �ber of f . Now we also require that there exist a map

E(B)! Tfib

h

(f), natural in f so that fib

h

(E(f))! Co
yl(E(f))! E(B)! Tfib

h

(E(f))

is a strong triangle.

(iii) Finally we require that if

A

f

//

��

B

��
A

0

f

0

//
B

0

is a 
ommutative square with A ! A

0

and B ! B

0

admissible monomorphisms (epimor-

phisms), the indu
ed map Co
y(f)! Co
yl(f

0

) is also an admissible monomorphism (epi-

morphism, respe
tively).

Remark 2.2. Observe that f 7! Co
yl(f) is also natural in f .

(STR7.3) Let f : A ! B denote a map in C. Let i : fib

h

(EM(f)) = d

�1

1

(�) !

E(M(A)) denote the 
omposition of the obvious map fib

h

(EM(f))! Co
yl(EM(f)) and
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p : Co
yl(EM(f)) ! EM(A). Then there exists a map Cone(i) ! EM(B) natural in f

whi
h is a quasi-isomorphism.

Definition 2.3. Let X"C and let p : EM(X) ! � (i : � ! EM(X)) denote the

obvious maps to (from, respe
tively) the zero obje
t � of C. Then we de�ne �X = Cone(p),


X = fib

h

(i).

Proposition 2.4. Let X"C. Then there exists a natural quasi-isomorphism X '


�X ' �
X. If fX

i

ji"Ig is a �nite 
olle
tion obje
ts of C, the natural map t

i

X

i

! �

i

X

i

is a quasi-isomorphism.

Proof. Take f in (STR7.3) to be the map i

0

: � ! �X. Then (STR7.3) implies that

there exists a natural quasi-isomorphism Cone(
�X ! �)

'

!�X. It follows that one obtains

a long-exa
t sequen
e:

� � �

//
H

n

(
�X)

//
H

n

(�)

//
H

n

(�X)

//
� � �

Sin
e X ! � ! �X ! � is a strong triangle, one also gets a similar long exa
t sequen
e

involving the 
ohomology of X, � and �X. A 
omparison of these two long exa
t sequen
es

shows that X and 
�X are naturally quasi-isomorphi
. The quasi-isomorphism �
X ' X

is obtained similarly. The last assertion follows from the hypothesis in (STR3) that the

fun
tor H

�


ommute with �nite sums and produ
ts. �

2.0.1. Convention. Apart from this se
tion, we will routinely omit the fun
tors m and

e in forming the 
ylinder or 
o
ylinder obje
ts; we hope this will keep our notations simpler

throughout.

Axioms on 
o�brant and �brant obje
ts

Now we will further assume the existen
e of full sub-
ategories of C 
alled the sub-


ategory of 
o�brant obje
ts (denoted C


f

) and the sub-
ategory of �brant obje
ts (denoted

C

f

) with the following properties:

(STR8.1) there is given a fun
tor Q : C ! C

f

, along with a natural transformation

id ! Q so that the map X ! Q(X) is a quasi-isomorphism for all X"C. Moreover, we

require that the sub-
ategory C

f

be stable by the fun
tor Q and that the fun
tor Q preserves

admissible monomorphisms and �ltered 
olimits.

(STR8.2) For every obje
tX"C, there exists a map C(X)

'

!X that is a quasi-isomorphism,

with C(X)"C


f

(STR8.3) For ea
h P"C


f

and K"C, the natural map Hom

HC

(P;QK)! Hom

DC

(P;K)

is an isomorphism.

(STR8.4) If X is 
o�brant (�brant) the obvious map � ! X is an admissible monomor-

phism (X ! � is an admissible epimorphism, respe
tively).

Remark 2.5. Observe as a 
onsequen
e, that the 
ondition � ! X being an admissible

monomorphism is assumed to be weaker than X being 
o�brant. If C = Presh = a 
ategory

of presheaves on a site that forms a stable simpli
ial model 
ategory as in Chapter II,

Theorem 4.10, the 
ondition � ! X is an admissible monomorphism 
orresponds to requiring

the stalks of X be 
o�brant whereas X being 
o�brant 
orresponds to X being 
o�brant in

the given model stru
ture of presheaves. Similarly the 
ondition that X ! � is an admissible

epimorphism 
orresponds to requiring the stalks of X to be �brant, whereas X being �brant
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orresponds to X being �brant in the given model stru
ture of presheaves. The last 
ould

be mu
h stronger than the �rst.

Examples 2.6. (i) Let C denote the 
ategory of all 
omplexes in an abelian 
ategory.

This satis�es the axioms (STR0) through (STR5) with T = [1℄. The axiom (STR1) ((STR3))

is satis�ed with the homotopy being 
hain-homotopy (the 
ohomology fun
tor being the

usual one sending a 
omplex to its 
ohomology obje
ts, respe
tively). The triangles are the

diagrams A

0

! A! A

00

! A

0

[1℄ whi
h are isomorphi
 in the homotopy 
ategory to mapping


one sequen
es whi
h are de�ned as usual. One may take the admissible monomorphisms

(epimorphisms) in (STR6) to be the maps of 
omplexes that are degree-wise split monomor-

phisms (epimorphisms, respe
tively). Moreover the axioms (STR7.1) through (STR7.3) are

satis�ed where the 
ylinder obje
ts and 
o-
ylinder obje
ts may be de�ned as in ([Iver℄ p. 24

or [T-T℄ (1.1.2). (For the sake of 
ompleteness we will presently re
all these de�nitions. Let

g : A! G denote a map. Then Cyl(g) is the 
omplex de�ned by Cyl(g)

n

= A

n

�A

n+1

�G

n

with the di�erential de�ned by d(a

n

; a

n+1

; x

n

) = (d(a

n

)+a

n+1

;�d(a

n+1

); d(x

n

)�g(a

n+1

)).

Co
yl(g) is the 
omplex de�ned by Co
yl(g)

n

= A

n

�A

n�1

�G

n

with the di�erential de�ned

by d(a

n

; a

n�1

; y

n

) = (d(a

n

);�d(a

n�1

) + a

n

� g(y

n

); d(y

n

)).) The remaining axioms need

not be satis�ed in general.

(ii) Let C denote the 
ategory of (bounded below) 
hain-
omplexes in an exa
t 
ategory E

that is also 
losed under �nite limits and 
olimits. Assume further that, for ea
h morphism

f : K ! L in C, the sequen
e 0 ! ker(f) ! K ! Coim(f) ! 0 is exa
t. (Observe

that, the existen
e of �nite 
olimits and limits show that both ker(f) and Coim(f) exist in

C.) A typi
al example of this is the 
ategory of all �ltered obje
ts in an abelian 
ategory

provided with an as
ending �ltration. Let T = [1℄. Let the triangles denote the 
olle
tion

of diagrams A ! B ! C ! TA in C that are isomorphi
 to mapping-
one-sequen
es

in the homotopy 
ategory, whi
h may be de�ned as in (i). (i.e. diagrams of the form :

A

u

!B ! Cone(u)! A[1℄). Let a map u : K ! L be 
alled an admissible monomorphism if

ea
h of the maps u

n

: K

n

! L

n

is an admissible mono-morphism in the exa
t 
ategory E ;

admissible epimorphisms may be de�ned similarly.

Proposition 2.7. Assume the situation in 2.6(ii). Then C satis�es all the axioms

(STR0) through (STR7.3) ex
ept possibly for the existen
e of arbitrary small 
olimits and

limits.

Proof. Clearly the homotopy 
ategory is additive and a triangulated 
ategory. Let

h : E ! A denote a fully-faithful imbedding of the exa
t 
ategory into an abelian 
ategory.

(See [Qu℄ se
tion 2.) Then one de�nes a 
omplex K to be a
y
li
 if h(K) is a
y
li
 as a


omplex in the abelian 
ategory A. It is shown in ([Lau℄ p. 158) that this is equivalent to

the map d

n�1

: K

n�1

! ker(d

n

) being an admissible epimorphism for all n. Now one may

de�ne a map f : K ! L to be a quasi-isomorphism if Cone(f) is a
y
li
. It is shown in

([Lau℄ p. 159) that the 
lass of 
omplexes that are a
y
li
 form a null system in the sense

of ([K-S℄ p. 43) and hen
e that the 
lass of maps that are quasi-isomorphisms admits a


al
ulus of left and right fra
tions. One may de�ne the natural t-stru
ture on C as in [Hu℄

p. 11 or [Lau℄ p. 160. This de�nes a 
ohomology fun
tor H on C taking values in the heart

of the derived 
ategory.

H

n

(K) = (:::! 0! Coim(d

n�1

)! ker(d

n

)! 0! :::)

Then H

n

(K) = 0 if and only if the above map Coim(d

n�1

) ! ker(d

n

) is an isomorphism.

The admissible epimorphism K

n�1

! Coim(d

n�1

) implies H

n

(K) = 0 if and only if K is

a
y
li
 in degree n. In parti
ular, it follows that K is a
y
li
 if and only if H

n

(K) = 0

for all n. It follows that we obtain the axioms (STR0) through (STR5). The mapping
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ylinders and 
o-
ylinders may be de�ned as in the 
ase of 
omplexes in an abelian 
ategory


onsidered in (2.5)(i). One may readily verify that these (as well as the mapping 
ones and

the homotopy �bers as in (STR7.1) and (STR7.2)) 
ommute with the imbedding h. The map

h(Cone(i))! h(B) exists and is a quasi-isomorphism in the setting of (STR7.3); therefore

one obtains the map Cone(i) ! B whi
h is also a quasi-isomorphism. To verify (STR6)

observe that if L

0

u

!L is an admissible mono-morphism, then h(Cone(u)) is quasi-isomorphi


to h(L=L

0

). One may similarly verify the hypothesis on admissible epimorphisms. �

2.1. To obtain another example of a di�erent 
avor, let C denote the 
ategory of

all (simpli
ial) spe
tra as in [B-F℄. (See Appendix A, se
tion 2 for details.) Let T denote

the suspension fun
tor. Given a map u : A ! B, let Cone(u) denote the mapping 
one

of u. One has a well-de�ned unstable (or stri
t) homotopy 
ategory de�ned in the usual

manner - see [Qu-1℄. We will denote this HC. (Observe that this 
ategory is not additive,

sin
e we are 
onsidering the unstable situation.) Then we let the triangles be the diagrams

A

u

!B

v

!C ! TA that are isomorphi
 in HC to mapping 
one-sequen
es. The �brant (
o-

�brant) obje
ts in this 
ategory are the stri
tly �brant spe
tra (the stri
tly 
o�brant spe
tra,

respe
tively) in the sense of [B-F℄. Let Q

st

: C ! C denote a fun
tor that 
onverts a spe
trum

into a �brant spe
trum as in Appendix A. We de�ne the stable homotopy groups of a

spe
trum K, by �

n

(K) = Hom

HC

(�

n

S; Q

st

K), where S denotes the sphere spe
trum, �

n

S

is its n-fold suspension. A map f : K ! L of spe
tra is a quasi-isomorphism if it indu
es an

isomorphism on all the stable homotopy groups. (Thus the 
ohomology fun
tor H

n

is given

by the stable homotopy group �

�n

.) Then one de�nes the derived 
ategory asso
iated to C

(denoted D(C)) to be the lo
alization of HC by inverting maps that are quasi-isomorphisms.

This is an additive 
ategory and is 
ommonly 
alled the stable homotopy 
ategory. Moreover,

it is a triangulated 
ategory when one de�nes the distinguished triangles to be the ones that

are isomorphi
 in D(C) to mapping 
one sequen
es. One thus obtains all the axioms through

(STR5). One de�nes the 
ylinder and 
o-
ylinder obje
ts the usual manner: this readily

shows (STR7.1) through (STR7.2) are satis�ed. The axiom (STR7.3) is satis�ed sin
e we

are working in the stable homotopy 
ategory. In (STR6) one takes the admissible mono-

morphisms to be stri
t 
o�brations and admissible epi-morphisms to be stri
t �brations in

the sense [B-F℄. Moreover the axioms (STR8.1) through (STR8.4) are also satis�ed with Q

in (STR8.1) identi�ed with the fun
tor Q

st

.

2.2. One may 
onsider in a similar manner the 
ategory of all �-spa
es, or the 
ategory

of symmetri
 spe
tra. (We skip the details here. One may 
onsult Appendix A for more

details in this dire
tion.)

3. Axioms on the monoidal stru
ture

(M0) Next we assume C also has a unital monoidal stru
ture, the operation being

denoted 
, whi
h we will assume, 
ommutes with all 
olimits in both arguments. An obje
t

M"C is 
at if M 
K is a
y
li
 for all a
y
li
 obje
ts K"C. (An obje
t K in C is a
y
li
 if it

is quasi-isomorphi
 to the zero-obje
t �.) Moreover, we require that every 
o�brant obje
t

is 
at. In addition, we require that � 
M = � =M 
 � for any M"C.

We will further assume there exists a small full sub-
ategory F of 
at obje
ts su
h that

the following hold:

(M1) for every obje
t M"C, there exists an obje
t P (M)"F and a quasi-isomorphism

P (M)

'

!M .
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Remark 3.1. The hypothesis that every 
o�brant obje
t is 
at shows (STR8.2) implies

(M1).

Observe as a 
onsequen
e of the hypotheses in (ST0) on the existen
e of a small family

of generators and the Spe
ial Adjoint Fun
tor theorem (see [Ma
℄ p.125) the following: let

m, K"C be �xed. Now the fun
tor M !M 
� has a right adjoint whi
h will be denoted

Hom(�, K). If K

'

!K

0

(M

0

'

!M ) is a quasi-isomorphism between �brant obje
ts (obje
ts

that are mono, respe
tively), Hom(M , K) ' Hom(M

0

, K

0

). IfM is an obje
t that is mono,

Hom(M; ) preserves triangles between obje
ts that are �brant; if K is a �brant obje
t,

Hom( ;K) preserves triangles between obje
ts that are mono.

(M2) If F"F, the fun
tors F 
� and �
F send triangles in C to triangles and preserve

admissible monomorphisms.

Let S"C denote the unit for the operation 
. We require the following additional

hypotheses on S.

(M3) S is a 
o�brant obje
t in C.

(M4.0)There exists a bi-fun
tor � 
 � : ( pointed simpli
ial sets) �C ! C 
ommuting

with 
olimits in the se
ond argument and satisfying the following properties.

(M4.1) Let K denote a �xed pointed simpli
ial set. Now the fun
tor Y ! K 
 Y ,

C ! C has a right adjoint whi
h will be denoted Y

K

. The fun
tor K ! K 
 Y , (pointed

simpli
ial sets) ! C has a right adjoint, whi
h will be denoted Map(Y; :)

K

. (Observe that

Map(Y; :)

�[n℄

+

=Map(Y; :)

n

.)

(M4.2) If K is a pointed simpli
ial set and X, Y "C, there exist an isomorphism X 


(K 
 Y )

�

=

K 
 (X 
 Y ) natural in K, X and Y . (The naturality implies that if � : K ! L

is a map of pointed simpli
ial sets, then id

X


 (�
 id

Y

)

�

=

�
 (id

X


 id

Y

).)

(M4.3) If K

0

! K ! K=K

0

! �K

0

is a 
o�bration sequen
e of pointed simpli-


ial sets (i.e. the map K

0

! K is a mono-morphism) and X"C is su
h that � ! X

(X ! �) is an admissible monomorphism (epimorphism, respe
tively), the indu
ed dia-

gram K

0


 X ! K 
 X ! K=K

0


 X ! �K

0


 X (X

�K

0

! X

K=K

0

! X

K

! X

K

0

)

is a strong triangle in C. Moreover, the indu
ed map K

0


 X ! K 
 X (X

K

! X

K

0

) is

an admissible monomorphism (epimorphism, respe
tively). If Y

0

'

!Y (Z

0

'

!Z) is a quasi-

isomorphism between 
o�brant obje
ts (�brant obje
ts, respe
tively), the indu
ed map

Map(Y; Z

0

) ! Map(Y

0

; Z) is a weak-equivalen
e of pointed simpli
ial sets. If Y is a 
o�-

brant obje
t, Map(Y; ) sends triangles between �brant obje
ts to �bration sequen
es of

simpli
ial sets. If Z is a �brant obje
t,Map( ; Z) sends triangles between 
o�brant obje
ts

to �bration sequen
es of simpli
ial sets.

(M4.4) If K is a pointed simpli
ial set and X

f

!Y is a quasi-isomorphism in C, then the

indu
ed maps id

K


 f : K 
X ! K 
 Y and f

id

: X

K

! Y

K

are also quasi-isomorphisms.

(M4.5) If X

0

! X ! X

00

! TX is a strong triangle in C and K is a pointed simpli
ial

set, then the indu
ed diagrams K
X

0

! K
X ! K
X

00

! K
TX and X

0

K

! X

K

!

X

00

K

! TX

K

are also triangles in C.

(M4.6) We also require that the fun
tors X ! X � I and X ! X

I

are 
ompatible

with the given tensor stru
ture in the following manner: there exists natural isomorphisms

X 
 (Y � I)! (X 
 Y )� I and (X � I)
 Y ! (X 
 Y )� I and similarly Hom(Y;X

I

)

�

=

Hom(Y � I;X)

�

=

Hom(Y;X)

I

.
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(M5) Compatibility of the fun
tors, m, e and Q with the tensor stru
ture. Given obje
ts

K

i

"C, i = 1; :::; n, there exists a map 


i=n

i=1

Q(K

i

) ! Q(


i=n

i=1

K

i

), natural in K

i

. The same

holds with the fun
tor Q repla
ed by m (e, respe
tively).

Remark 3.2. The hypotheses in (M4.0) through (M4.6) imply the axioms in (STR7.1)

and (STR7.2) provided for every obje
t X"C, the map � ! X (X ! �) is an admissible

monomorphism (epimorphism, respe
tively). To see this, observe that now one may de�ne

the 
anoni
al 
ylinder (
o
ylinder) obje
t A�I to be �[1℄

+


A (A

I

= A

�[1℄

+

, respe
tively).

Proposition 3.3. Assume that C is a 
ategory satisfying the axioms (STR0) through

(STR8.4) provided with a bi-fun
tor 
 : C � C ! C satisfying the hypotheses (M1) and

(M2). Now the bi-fun
tor 
 indu
es a derived fun
tor

L


 : D(C)�D(C)! D(C) that sends

distinguished triangles in either argument to distinguished triangles. D(C) is a monoidal


ategory with respe
t to

L


. S is a unit for this monoidal stru
ture on D(C).

Proof. LetM , N"C and let P (M)

�

M

!

'

M , P (N)

�

N

!

'

N , P (N)

0

�

0

N

!

'

N denote 
at obje
ts in C


hosen as in (M1). Now the indu
ed map d

1

: Co
yl(�

0

N

)! N is an admissible epimorphism.

Let Q = Co
yl(�

0

N

)�

N

P (N); sin
e fib

h

(�

0

N

) = ker(d

1

) is a
y
li
, it follows that the indu
ed

maps Q ! Co
yl(�

0

N

) and Q ! P (N) are quasi-isomorphisms. Now apply (M1) to �nd a

P (N)

00

'

!Q with P (N)

00

"F. It follows that we may assume without loss of generality that

there exists a map P (N)

0

!

�

P (N) in C making the square

P (N)

0

'

����! N

?

?

y

id

?

?

y

P (N)

'

����! N


ommute. Now we will show that the natural maps P (M) 
 P (N)

0

! M 
 P (N)

0

and

P (M)
P (N)!M 
P (N) are quasi-isomorphisms. To see this let � : P (M)!M denote

the given map and let Cone(�) be its 
one. Sin
e P (N)

0

and P (N) are 
at, the diagrams:

P (M)
 P (N)

0

�
id

! M 
 P (N)

0

! Cone(�)
 P (N)

0

and

P (M)
 P (N)

�
id

! M 
 P (N)! Cone(�)
 P (N)

are triangles. Sin
e Cone(�) is a
y
li
 and P (N)

0

, P (N) are 
at, the last terms are also

a
y
li
 showing the �rst maps are quasi-isomorphisms.

Now we will show that the indu
ed map P (M)
P (N)

0

id
�

! P (M)
P (N) is also a quasi-

isomorphism. To see this let Cone(�) denote the 
one of �. Sin
e P (M) is 
at, by (M2),

the diagram P (M)
P (N)

0

id
�

! P (M)
P (N)! P (M)
Cone(�)! P (M)
TP (N)

0

is a

strong triangle. Sin
e Cone(�) is a
y
li
 and P (M) is 
at, it follows P (M)
Cone(�) is also

a
y
li
. It follows that the map P (M)
P (N)

0

!

id
�

P (M)
P (N) is a quasi-isomorphism.

The arguments above show that we may 
hoose a 
at obje
t P (N)

'

!N as in (M2) and


onsider the fun
tor �
 P (N) : H(C)! H(C). The arguments above show that the above

fun
tor preserves quasi-isomorphisms and indu
es a fun
tor at the level of derived 
ategories.

(Moreover the same arguments show that the 
orresponding fun
tor is independent of the


hoi
e of P (N)

'

!N .) A similar argument works with N in the �rst argument. �

Remark 3.4. Amonoidal 
ategory will always mean one whi
h satis�es all of the axioms

(M0) through (M5) above. For emphasizing the existen
e of a unit, we will, however refer



14 I. THE BASIC FRAMEWORK

to su
h 
ategories as unital monoidal. For the appli
ations in Chapter IV, we will also need

to assume the monoidal stru
ture is symmetri
.

4. Axioms on the strong t-stru
ture

(ST1): For ea
h integer n, there exists a fun
tor �

�n

: C ! C along with a natural

transformation �

�n

Q(K) ! Q(K) whi
h is an admissible mono-morphism for ea
h K"C.

The fun
tors �

�n

preserve homotopies and quasi-isomorphisms; the indu
ed fun
tors at the

level of the derived 
ategories are idempotent.

(ST2): Moreover we require that H

i

(�

�n

QX)

�

=

H

i

(X) if i � n and

�

=

0 otherwise.

The fun
tors �

�n

de�ne a �ltration on ea
h Q(K) by F

n

Q(K) = �

�n

Q(K). We 
all this

the 
anoni
al Cartan �ltration . Clearly this is a non-de
reasing �ltration. Sin
e we have as-

sumed C is 
losed under small 
olimits, it follows thatGr

C

(Q(K)) = t

n

F

n

(Q(K))=F

n�1

(Q(K))

also belongs to C.

(ST3): LetD(C)

�n�

denote the heart ofD(C) shifted by n i.e. D(C)

�n�

= fX"D(C)jH

i

(X) =

0 if i 6= ng Let A denote the abelian 
ategory in (STR3). We will assume that A is provided

with a unital symmetri
 monoidal stru
ture whi
h we denote by 
. Furthermore, we will

assume that the fun
tor H

n

: D(C)

�n�

! A is an equivalen
e of 
ategories. Moreover,

there exists a sub-
ategory, C

�n�

f

of C

f

so that the obvious fun
tor C ! D(C) indu
es an

equivalen
e of C

�n�

f

with D(C)

�n�

.

(ST4) Let EM

n

: A! C

�n�

f

denote an inverse to the 
omposition C

�n�

f

! D(C)

�n�

!

A. Ea
h EM

n

sends short-exa
t sequen
es in A to triangles in C.

(ST5) We require that there exist a natural map Gr

C

(Q(X)) ! GEM(H

�

(X)) =

�

n

EM

n

(H

n

(X)) natural in X"C.

(ST6) Given �, �

0

in A, there exists an indu
ed pairing EM

n

(�) 
 EM

m

(�

0

) !

EM

n+m

(� 
 �

0

) natural in � and �

0

where the 
 on the left-hand-side (right-hand-side)

denotes the given tensor stru
ture 
 in C (the tensor produ
t in A, respe
tively). Moreover

we require that this pairing makes the fun
tor GEM (de�ned in (ST5)) into a monoidal

fun
tor sending the tensor produ
t on A to the fun
tor 
 on C.

(ST7) We require that the tensor stru
ture is 
ompatible with the t-stru
ture. i.e. If

X

i

"C, i = 1; :::; n are provided with a pairing 


i=n

i=1

X

i

! Z, there exists an indu
ed pairing




i=n

i=1

Gr

C

(Q(X

i

))! Gr

C

(Q(Z)).

(ST8) Finally we require that the maps in (ST5) and (ST7) are 
ompatible. i.e. if

Gr

C

(Q(X)) ! GEM(�), Gr

C

(Q(Y )) ! GEM(�

0

) and Gr

C

(Q(Z)) = GEM(�

00

), then the

pairings Gr

C

(Q(X)) 
 Gr

C

(Q(Y )) ! Gr

C

(Q(Z)) and GEM(�) 
 GEM(�

0

) ! GEM(�

00

)

are 
ompatible.

Corollary 4.1. Assume the above situation. Now Gr

C

(Q(A)) and GEM(H

�

(A)) are

both algebras in C and the map in (ST5) is a quasi-isomorphism of algebras.

Proof. The proof is 
lear. �

Definition 4.2. We say C is a strong t-
ategory if C is a 
ategory satisfying the hy-

potheses (STR0) through (STR8.4) along with a strong t-stru
ture satisfying the axioms

(ST1) through (ST5)
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4.1. We may also generalize the above situation as follows - see (6.1) for an example.

A pairing of strong-t-sub-
ategories is the following data:

two strong t-sub-
ategories C

0

, C

00

of C along with a bi-fun
tor 
 : C

0


 C

00

! C so that

the following 
onditions are satis�ed:

(i)there exists a small sub-
ategory F

0

(F

00

) of C

0

(C

00

, respe
tively) so that if F

0

"F

0

(F

00

"F

00

) then the fun
tor F

0


� : C

00

! C (the fun
tor �
F

00

: C

0

! C, respe
tively) sends

an a
y
li
 obje
t to an a
y
li
 obje
t,

(ii) for ea
h obje
tM

0

"C

0

(M

00

"C

00

) there exists a quasi-isomorphism P (M

0

)!M

0

with

P (M

0

)"F

0

(P (M

00

)!M

00

with P (M

00

)"F

00

, respe
tively) and

(iii) Compatibility of the t-stru
tures with the pairing. There exist strong t-sub-
ategories,

C

0

gr

, C

00

gr

of C so that the fun
tor Gr

C

sending an obje
t in C to its asso
iated graded obje
t

with respe
t to the Cartan �ltration sends C

0

(C

00

) to C

0

gr

(C

00

gr

, respe
tively) and there exists

a bi-fun
tor 


gr

: C

0

gr

� C

00

gr

! C

gr

so that if M"C

0

, N"C

00

and M 
 N"C one obtains a

natural map: Gr

C

(M)


gr

Gr

C

(N)! Gr

C

(M 
N).

Proposition 4.3. Assume the above situation. Now the bi-fun
tor 
 indu
es a derived

fun
tor

L


 : D(C

0

)�D(C

00

)! D(C).

Proof. This is similar to that of (3.4) and is therefore skipped. �

In addition to these we will also need to de�ne the analogue of the homotopy 
olimits

and limits. For these we require the axioms denoted (HCl) and (Hl) below.

Let I denote a small 
ategory and let C

I

op

denote the 
ategory of 
ontravariant fun
tors

from I to C. Let n! S(n) denote an obje
t in C

I

op

i.e. a fun
tor I

op

! C. Now we 
onsider

the fun
tor:

T (fS(n)jng) : I � I

op

! C, de�ned by (n;m)! I=m
 S(n)

4.1.1. We de�ne the homotopy 
olimit ho
olim

I

fS(n)jng to be the 
o-end of this fun
tor

in the sense of [Ma
℄ p. 222. Now we require the axiom:

(HCl) A map f : S

0

! S of obje
ts in C

I

op

is 
alled a quasi-isomorphism if the maps

f(n) : S

0

(n)! S(n) (in C) are all quasi-isomorphisms. A diagram S

0

! S ! S

00

! TS

0

in

(C)

I

op

is a strong triangle if the 
orresponding diagrams S

0

(n) ! S(n)! S

00

(n) ! TS

0

(n)

are strong-triangles in C for all n. Then the fun
tor ho
olim

I

preserves triangles and quasi-

isomorphisms. Moreover, in 
ase I = �, there exists a spe
tral sequen
e:

E

2

s;t

= H

�s

(fH

�t

(S

n

)jng)) H

�s�t

(ho
olim

�

S)

The E

2

s;t

-term is the�s-th 
o-homology group of the simpli
ial abelian group fH

�t

(S

n

)jng.

Let n ! C(n) denote an obje
t in C

I

i.e. a 
ovariant fun
tor I ! C. Now we 
onsider

the fun
tor:

T (fC(n)jng) : I � I

op

! C, de�ned by (n;m)! C(n)

Inm

4.1.2. We de�ne the homotopy limit holim

I

fC(n)jng to be the end of this fun
tor in the

sense of [Ma
℄ p. 218. Now we require the axiom:
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(Hl) A map f : C

0

! C of obje
ts in C

I

is 
alled a quasi-isomorphism if the maps

f(n) : C

0

(n)! C(n) (in C) are all quasi-isomorphisms. A diagram C

0

! C ! C

00

! TC

0

in

(C)

I

is a strong triangle if the 
orresponding diagrams C

0

(n) ! C(n) ! C

00

(n) ! TC

0

(n)

are strong-triangles in C for all n. Then the fun
tor holim

�

ÆQ preserves triangles and quasi-

isomorphisms. Moreover, when I = �, there exists a spe
tral sequen
e:

E

s;t

2

= H

s

(fH

t

(C

n

)jng)) H

s+t

(holim

�

C)

if ea
h C

n

is a �brant obje
t in C. The E

s;t

2

-term is the s-th (
o-)homology of the 
osimpli
ial

abelian group fH

t

(C

n

)jng.

In addition we will require the following axiom that enables one to 
ompare two homo-

topy inverse limits or 
olimits.

Let I denote a small 
ategory and let f : I ! J denote a 
ovariant fun
tor. We say

f is left-
o�nal if for every obje
t j"J , the nerve of the obvious 
omma-
ategory f=j is


ontra
tible. Let F : J ! C be a fun
tor.

Co�nality. We require that the indu
ed map holim

J

F ! holim

I

F Æ f is a quasi-

isomorphism if the fun
tor f is left-
o�nal. We also require a parallel axiom on the 
o�nality

of homotopy 
olimits.

Proposition 4.4. Assume the above situation. Let �

Z

A denote the 
ategory of Z-graded

obje
ts in A and let C

0

(�

Z

A) denote the 
ategory of 
o-
hain 
omplexes in �

Z

A that are trivial

in negative degrees. Then one may de�ne a fun
tor Sp

0

: C

0

(�

Z

A) ! C that sends distin-

guished triangles (quasi-isomorphisms) of 
hain 
omplexes to triangles (quasi-isomorphisms,

respe
tively) in the 
ategory C.

Proof. LetM = �

n"Z

M(n) be a graded obje
t ofA. Now re
allGEM(M) = �

n

EM

n

(M(n))

in C. Next let K = K

0

d

0

!K

1

d

1

!:::

d

n�1

! K

n�1

d

n

!K

n

! ::: denote a 
o-
hain 
omplex in �

Z

A that

is trivial in negative degrees. DN(K) denotes a 
o-simpli
ial obje
t in �

Z

A. We apply the

fun
tor GEM degree-wise to DN(K) to obtain a 
osimpli
ial obje
t of �brant obje
ts in

C. Finally we take the homotopy inverse limit of this 
osimpli
ial obje
t to de�ne Sp

0

(K).

Now the proposition follows readily from the hypothesis that the fun
tor GEM preserves

sends distinguished triangles to triangles and from the standard properties of the homotopy

inverse limit fun
tor. �

Remarks 4.5. (i) IfM"�

Z

A and M [0℄ is the asso
iated 
omplex 
on
entrated in degree

0, Sp

0

(M [0℄) ' GEM(M). This follows from the degeneration of the spe
tral sequen
e for

the homotopy limit 
onsidered in (Hl).

(ii) We may extend the fun
tor Sp

0

to the whole 
ategory of bounded below 
o-
hain


omplexes in �

Z

A as follows. Let N denote an integer and let C

N

(�

Z

A) denote the 
ategory

of all 
o-
hain 
omplexes of Z-graded obje
ts in A that are trivial in degrees less than N .

Let M denote su
h a 
o-
hain 
omplex and let M [�N ℄ denote the same 
omplex shifted to

the right N -times. Then M [�N ℄ is trivial in negative degrees. We let

(4.1.3) Sp

N

(M) = �

N

Sp

0

(M [�N ℄)
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4.2. We pro
eed to show that there are natural maps Sp

N

(M)! Sp

N+1

(M) that are

quasi-isomorphisms for any N so that the 
omplex M is trivial in degrees less than N . To

see this, re
all �rst of all that the fun
tor GEM sends short-exa
t sequen
es of 
omplexes

to triangles and preserves quasi-isomorphisms; the de�nition of the fun
tor Sp

0

as above

shows, it inherits the same property. One may dedu
e from this property that there exists

a natural quasi-isomorphism Sp

0

(M [�N � 1℄) ' 
Sp

0

(M [�N ℄). This proves the required

assertion.

Definition 4.6. We let Sp(M) = lim

N!1

Sp

N

(M).

It follows that the fun
tor Sp de�nes an extension of the fun
tor Sp

0

to the 
ategory of all

bounded below 
o-
hain 
omplexes in �

Z

A.

(ST9) Standing hypothesis. We will make the following hypothesis from now on. Let

�

M = �

i

�

M(i) (

�

N) denote a 
o-
hain 
omplex in �

Z

A (in A) trivial in negative degrees and

bounded above by m. Then there exists a quasi-isomorphism:

Sp(

�

M) ' 


m

ho
olim

�

DN(GEM(

�

M [m

h

℄))

(holim

�

DN(EM

n

(

�

N)) ' 


m

ho
olim

�

DN(EM

n

(

�

N [m

h

℄)), respe
tively)

natural in

�

M (in

�

N , respe
tively), where

�

M [m

h

℄ (

�

N [m

h

℄) is the 
hain-
omplex de�ned by

(

�

M [m

h

℄)

i

=

�

M

m�i

((

�

N [m

h

℄)

i

=

�

N

m�i

, respe
tively) and DN denotes the denormalization

fun
tor as in Appendix B that produ
es a simpli
ial obje
t from a 
hain 
omplex.

Remark. The purpose of this 
ondition is to be able to pass between homotopy limits

and 
olimits with ease. One knows that, in general, they are quite di�erent; but for bounded

simpli
ial and 
osimpli
ial obje
ts in abelian 
ategories, they are both equivalent to a (in

fa
t, the same) total 
omplex 
onstru
tion. By making use of the given t-stru
ture, one is

able to redu
e the general homotopy limits and 
olimits we 
onsider to ones taking pla
e in

Abelian 
ategories.

Definitions 4.7. (i) A 
ategory C is 
alled a strongly triangulated 
ategory if it satis�es

the axioms (STR0) through (STR8.4) and the axioms on the homotopy 
olimits and limits.

(ii) C is a strongly triangulated monoidal 
ategory if it is strongly triangulated and

satis�es the axioms (M0) through (M5).

(iii) C is an enri
hed monoidal t-
ategory if it is a strongly triangulated monoidal 
ategory

satisfying the axioms (ST1) through (ST9) on the strong t-stru
ture as well.

The next 
hapter is devoted to a thorough examination of various examples of su
h


ategories.





CHAPTER II

The basi
 examples of the framework

1. Sites

In this 
hapter, we 
onsider in detail, various 
on
rete examples of the axiomati
 frame-

work introdu
ed in the �rst 
hapter. After dis
ussing the general frame-work, we 
onsider

in detail three distin
t 
ontexts for the rest of our work: these are dis
ussed in se
tions

two, three and four respe
tively. Throughout this 
hapter S will denote a site satisfying the

following hypotheses.

1.0.1. In the language of [SGA℄4 Expos�e IV, there exists a 
onservative family of points

on S. Re
all this means the following. Let (sets) denote the 
ategory of sets. Then there

exists a set

�

S with a map p : (sets)

�

S

! S of sites so that the map F ! p

�

ÆU Æ a Æ p

�

(F ) is

inje
tive for all Abelian sheaves F on S. (Equivalently, if i

�s

: (sets)! S denotes the map

of sites 
orresponding to a point �s of

�

S, an Abelian sheaf F on S is trivial if and only if

i

�

�s

F = 0 for all �s"

�

S.) Here (sets)

�

S

denotes the produ
t of the 
ategory (sets) indexed by

�

S. a is the fun
tor sending a presheaf to the asso
iated sheaf and U is the forgetful fun
tor

sending a sheaf to the underlying presheaf. We will also assume that the 
orresponding

fun
tor p

�1

: S! (sets)

�

S


ommutes with �nite �bered produ
ts.

1.0.2. If X is an obje
t in the site S, we will let S=X denote the 
ategory whose

obje
ts are maps u : U ! X in S and where a morphism � : u! v (with v : V ! X in S)

is a 
ommutative triangle

U

//

u

  @
@@

@@
@@

V

v

~~~~
~~

~~
~

X

We will further assume that the site S has a terminal obje
t whi
h will be denoted X (i.e.

S=X = S) and that the 
ategory S is 
losed under �nite inverse limits.

1.0.3. Let Y be an obje
t in the site S and i

�s

: �s ! S a point of the site S. We say

i

�s

is a point of Y if the map i

�s

: �s ! S fa
tors through S=Y . Given a point i

�s

of Y , a

neighborhood of i

�s

in the site S is an obje
t U in the site with a map u : U ! Y together

with a lifting of i

�s

to U .

1.0.4. We will assume that the system of neighborhoods of any point has a small 
o�nal

family.

1.0.5. We will also assume the sites we 
onsider are 
oherent and lo
ally 
oherent sites

as in [SGA℄4 Expos�e VI (2.3). Let S denote a site and let U"S. Then U is quasi-
ompa
t

if every 
over of U has a �nite sub-
over. An obje
t U"S is quasi-separated if for any two

maps V

v

!U andW

w

!U in S, the �bered produ
t V�

U

W is quasi-
ompa
t. An obje
t U"S is


oherent if it is both quasi-
ompa
t and quasi-separated. A site S is 
oherent if the following

hold:

1.0.6. (i) Every obje
t quasi-separated inS is quasi-separated over the terminal obje
t,

X, of the site S (an obje
t U"S is quasi-separated over the terminal obje
t X if the indu
ed

map � : U ! U�

X

U is quasi-
ompa
t) and

19
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(ii) The terminal obje
t X of the site S is 
oherent.

A site S satisfying the 
ondition (i) is 
alled algebrai
. A site S is 
alled lo
ally 
oherent

if there exists a 
overing fX

i

jig of the terminal obje
t X so that the sites S=X

i

are all


oherent. Observe that if X is a s
heme and the site S is either the Zariski or the small

�etale site of X, then S is 
oherent if and only if X is quasi-
ompa
t and separated as a

s
heme. (See [SGA℄4 Expos�e VI.)

(The main need for 
oheren
e is given by the following result in [SGA℄4 Expos�e VI,

Th�eoreme (5.1):

Theorem. Let f : S! S

0

denote a map of sites.

(i) Suppose S satis�es the �rst 
ondition in ( 1.1) and S

0

is lo
ally 
oherent. Then the

fun
tors R

n

f

�


ommute with �ltered dire
t limits of abelian sheaves for ea
h n.

(ii) Suppose S is 
oherent (and X is the terminal obje
t of S). Then, for ea
h n, the

fun
tor F ! H

n

(S; F ) = R

n

�(X;F ) ,

(abelian sheaves on S)!(abelian groups)


ommutes with �ltered dire
t limits. �)

Observe that the same 
on
lusions as in (i) hold if the sites are the obvious sites asso-


iated to lo
ally 
ompa
t Hausdor� topologi
al spa
es and f is a 
ontinuous map of these

topologi
al spa
es. Therefore, we will make either of the following assumptions throughout

the rest of the paper:

1.0.7. The site is lo
ally 
oherent or

1.0.8. The site is the obvious site asso
iated to a lo
ally 
ompa
t Hausdor� topologi
al

spa
e.

We will expli
itly 
onsider only the �rst 
ase, leaving the 
orresponding statements in the

se
ond 
ase to the reader.

1.0.9. Godement resolutions. Let Presh = Presh(S) denote a 
ategory of presheaves

on a site S so that it satis�es the axioms (STR0) through (STR8.4)) and the axioms (Hl),

(HCl) on the existen
e of homotopy limits and 
olimits. We will further assume that the

abelian 
ategory A is a 
ategory of abelian sheaves on the site S. Re
all our site has

a 
onservative family of points as in ( 1.0.1). We will assume further that Presh(

�

S))

denotes a 
ategory of presheaves on the dis
rete site

�

S satisfying the same axioms and

that p indu
es fun
tors p

�

: Presh(S) ! Presh(

�

S), p

�

: Presh(

�

S) ! Presh(S). Given

a presheaf P"Presh, we let G

�

P : P:::GP:::G

2

P:::G

n

P::: denote the obvious 
osimpli
ial

obje
t in Presh, where G = p

�

Æ U Æ a Æ p

�

. We let GP = holim

�

fG

n

P jng. From the

properties of the homotopy limits as in (Hl), the following are now obvious:

The indu
ed map

(1.0.10) �(U;GQ(P

0

))! �(U;GQ(P ))

is a quasi-isomorphism for ea
h U in the site and for ea
h quasi-isomorphism P

0

! P of

presheaves.

The indu
ed diagram

(1.0.11) 
�(U;GQ(P

00

))! �(U;GQ(P

0

))! �(U;GQ(P ))! �(U;GQ(P

00

))

is a triangle for ea
h U in the site and ea
h diagram 
P

00

! P

0

! P ! P

00

whi
h is a

triangle.

A map of presheaves that indu
es a quasi-isomorphism at ea
h stalk, will be denoted '.



1. SITES 21

1.1. De�nition of derived fun
tors via the Godement resolution. Let Presh,

Presh

0

denote two 
ategories of presheaves on sites as above and let � : Presh ! Presh

0

denote a fun
tor so that the following two properties hold.

� Given a triangle P

0

! P ! P

00

! P

0

[1℄ in Presh, the indu
ed diagram �GP

0

!

�GP ! �GP

00

! �GP

0

[1℄ is a triangle in Presh

0

and

� Given a quasi-isomorphism P

0

! P in Presh, the indu
ed map �GP

0

! �GP is also

a quasi-isomorphism.

In this 
ase we may de�ne the right derived fun
tor, R� of � by � Æ G. Then the spe
tral

sequen
e for the homotopy inverse limit in Chapter I provides a spe
tral sequen
e:

(1.1.1) E

s;t

2

= H

s

(f�G

n

H

t

(P )jng)) H

s+t

(R�P )

The E

s;t

2

-term is the s-
ohomology of the 
osimpli
ial abelian sheaf f�G

n

H

t

(P )jng. We will


onsider various examples of this in this paper. For example, let S

0

denote another site and

let � : S ! S

0

denote a map of sites. We may now de�ne the right derived fun
tor R� to

be � Æ G. In parti
ular, one may take S

0

to be the pun
tual site pt. A map of sites S! pt

may be identi�ed with the global se
tion fun
tor (i.e. se
tions over X= the terminal obje
t

of the site S.) Then we let R�(X;P ) = �(X;GP ). We will also denote this by H (X;P ) and


all it the hyper
ohomology obje
t asso
iated to X and P .

1.2. Algebras and modules. Assume in addition that the 
ategory Presh is sym-

metri
 monoidal with respe
t to a bi-fun
tor 
 and that it satis�es the axioms (M0) through

(M4.6) in Chapter I ex
ept possibly for the existen
e of a unit for the monoidal stru
ture.

(Often we require, in addition, that there exist a unit S for 
) . Let A be an algebra

in Presh. i.e. A is an obje
t in Presh provided with a 
oherently asso
iative pairing

� : A
A ! A. (Moreover if S is a unit, we require that there is a unit map i : S ! A so

that the 
omposition A

�

=

S 
 A

i
id

! A 
 A

�

!A is the identity and that i is an admissible

monomorphism.) LetMod

l

(S;A) (Mod

r

(S;A)) denote the 
ategory of left-modules (right-

modules, respe
tively) over A. A left-module M over A 
onsists of an obje
t M"Presh

provided with a 
oherently asso
iative pairing A 
M ! M .) We will always require that

the presheaf U ! H

�

(�(U;A)) be a presheaf of Noetherian rings.

1.2.1. In what follows we need to 
onsider two distin
t situations: (i) where the fun
tors

m and e (as in Chapter I, (STR6) are the identity. (See for example, se
tion 3.) and (ii)

where these fun
tors are not ne
essarily the identity. (See for example, se
tions 2 and 4).

We will �rst 
onsider the situation in (i).

We will next de�ne a pairing (i.e. a bi-fun
tor)

(1.2.2) 


A

:Mod

r

(S;A)�Mod

l

(S;A)! Presh

If M"Mod

r

(S;A) and N"Mod

l

(S;A), M


A

N is de�ned as the 
o-equalizer:

Coeq(

M 
A
N

f //

g

// M 
N )

where f : M 
 A 
 N ! M 
 N (g : M 
 A 
 N ! M 
 N) is the map f = �

M


 id

N

,

with �

M

:M 
A !M the module stru
ture on M (g = id

M


 �

N

, with �

N

: A
N ! N

the module stru
ture on N , respe
tively). If M"Mod

l

(S;A) and N"Mod

l

(S;A) we also
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de�ne:

(1.2.3)

Hom

A

(M;N) = Equalizer(

Hom

Mod

l

(S;A)

(A; N)

f //
g

// HomMod

l

(S;A)

(A
M;N)

)

where f = Hom

Mod

l

(S;A)

(�

M

; N) and g = Hom

Mod

l

(S;A)

(A
M;�

N

).

Let Hom denote the internal Hom in the 
ategory Presh. This exists as a right adjoint

to 
 sin
e the 
ategory Presh has a small generating set. Observe that if M , N and

P"Presh, then,

(1.2.4) Hom

Presh

(M;Hom(P;N))

�

=

Hom

Presh

(M 
 P;N)

One de�nes Hom

A;l

: Mod

l

(S;A)

op

� Mod

l

(S;A) ! Presh as in ( 1.2.3) using the

fun
tor Hom in the pla
e of Hom. Similarly one may de�ne Hom

A;r

: Mod

r

(S;A)

op

�

Mod

r

(S;A) ! Presh. (When there is no 
ause for 
onfusion, we will omit the the sub-

s
ript l, r in Hom

A;l

and Hom

A;r

.) Finally one may also de�ne the stru
ture of a simpli
ial


ategory on Mod

l

(S;A) by

(1.2.5) Map

A

(M;N)

n

= Hom

A

(�[n℄

+


M;N);M;N"Mod

l

(S;A)

Re
all that �[n℄

+


M is de�ned as part of the axiom (M4.0) in Chapter I. One may now

observe, the isomorphisms:

Map

A

(M;N)

0

�

=

Hom

A

(M;N); Hom

A

(A
M;N)

�

=

Hom(M;For(N))

Map

A

(A
M;N)

�

=

Map(M;For(N)) and Hom

Presh

(M


A

P;N)

�

=

Hom

A

(P;Hom(M;N))

(1.2.6)

whereM , N"Mod

l

(S;A) in the �rst three terms above,M , N"Mod

r

(S;A), P"Mod

l

(S;A)

in the last term above and For :Mod

l

(S;A)! Presh is the obvious forgetful fun
tor.

Next we 
onsider the situation in (ii) where the fun
tors m and e in Chapter I, (STR6)

are non-trivial. Now will de�ne a pairing (i.e. a bi-fun
tor) for P"Mod

r

(S;A),m, N"Mod

l

(S;A).

We may assume without loss of generality that A is mono.

(1.2.7) P


A

M = ho
olim( m(P )
A
M

f //

g

// m(P )
M )

where the two maps f and g are as in 1.2.2 and ho
olim denotes the homotopy 
olimit.

Similarly,

(1.2.8) Hom

A;l

(M;N) = holim( Hom(m(M); e(N))

m

�

//
n

�

// Hom(A
m(M); e(N)) )

where the maps m

�

and n

�

are again as in 1.2.3 and holim denotes the homotopy inverse

limit. We will de�ne a bi-fun
tor Map

A

: Mod

l

(S;A)�Mod

l

(S;A)! (simpli
ial sets)

by

Map

A

(M;N) = holim( Map(m(M); e(N))

m

�

//
n

�

// Map(A
m(M); e(N)) ).

(Map : Presh�Presh! (simpli
ial sets) is the obvious fun
tor. Observe that �

0

(Map

A

(M;N))

denotes homotopy 
lasses of maps f :M ! N whi
h belong to the 
ategory Mod

l

(S;A).
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2. When Presh is a strongly triangulated unital monoidal 
ategory

Throughout the rest of this se
tion, we will assume that S is a unit for 
. Let B, A

denote two algebras in Presh. We will let Mod

bi

(S;A;B) denote the 
ategory of obje
ts in

Presh that have the stru
ture of a presheaf of left-B and weak right A bi-modules so that

the two 
ommute. (This means if � : A
M !M and � :M 
B !M are the two module

stru
tures, then � Æ (id 
 �) = � Æ (� 
 id).) Now one of the key te
hni
al results we need

in the body of the paper is the following.

Proposition 2.1. (i) Assume the above situation. Now P


A

A ' P , A


A

N ' N and

Hom

A

(A; N) ' N , P , N"Mod

l

(S;A).

(ii) Assume that M"Mod

bi

(S;A;A).

Now Hom

A

(M; ) and 


A

M indu
e fun
tors Mod

r

(S;A)!Mod

r

(S;A). Moreover

if N , P"Mod

r

(S;A), one obtains a natural weak-equivalen
e:

Map

A

(P


A

M;N) 'Map

A

(P;Hom

A

(M;N))

(iii) Assume that N"Mod

bi

(S;B;A), P"Mod

r

(S;B) and M"Mod

r

(S;A). In this 
ase

one also obtains

(2.0.9) Hom

B

(M


A

N;P ) ' Hom

A

(M;Hom

B

(N;P )) and

(2.0.10) Map

B

(M


A

N;P ) 'Map

A

(M;Hom

B

(N;P ))

Moreover, one may also repla
e ' everywhere by

�

=

in the situation (ii) 
onsidered in 1.2.1.

Proof. The diagram

A
A
N

f //
g

// A
N
//
N

is a split fork in the sense of [Ma
℄ p. 145, the splitting

provided by the maps N

�

=

S 
N ! A
N and A
N

�

=

S 
 A 
N ! A
A
N . By

([Ma
℄ Lemma p. 145) N is in fa
t the 
o-equalizer of the above diagram i.e.

(2.0.11) A


A

N

�

=

N

The weak-equivalen
e Hom

A

(A; N) ' N is established similarly. This 
ompletes the proof

of (i). Clearly one may repla
e ' by

�

=

everywhere in the situation (i) of 1.2.1.

The right-module stru
ture on Hom

A

(M;N) (P


A

M) is indu
ed by the left-module

stru
ture (the right-module stru
ture) of M over A. Let p : P 
A ! P , m : A
M !M ,

m

0

:M 
A !M and n : N 
A ! N denote the given module stru
tures. Then

(2.0.12) Map

A

(P


A

M;N) = holim

Map(P


A

M; e(N))

n

�

//

m

0

�

// Map(P


A

M 
A; e(N))

Next re
all P


A

M = ho
olim(

m(P )
A
m(M)

p

� //

m

�

// m(P )
m(M)

). This homotopy


olimit pulls out of the Map as a homotopy inverse limit; the two homotopy inverse limits


ommute. Using the adjun
tion between 
 and Hom, we see that the last term may be
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identi�ed with

holim( Map(m(P );Hom

A

(M;N))

p

�

//

m

�

// Map(m(P )
A;Hom

A

(M;N)) )

'Map

A

(m(P );Hom

A

(M;N))

(2.0.13)

Therefore, this proves (ii) in the 
ase the fun
tors m and e are nontrivial. The other


ase may be established more dire
tly. The �rst identity in (iii) may be established in the

situation (i) of 1.2.1 as follows. N"Mod

bi

(A;B) and P"Mod

r

(S;B). Now 
onsider the

fun
tor

(2.0.14) Mod

r

(S;A)!Mod

r

(S;B); M !M


A

N

The observation that the 
omposition M 
 S ! M 
 A ! M is the identity for any

M"Mod

r

(S;A), shows that if F is a small generating set for Presh, fF 
 AjF"Fg is a

generating set for Mod

r

(S;A). Clearly the fun
tor in ( 2.0.14) preserves all 
olimits and

the 
ategory on the left is 
o-
omplete. By the spe
ial adjoint fun
tor theorem (see [Ma
℄

p. 125) the above fun
tor has a right adjoint whi
h we may identify with Hom

B

(N;P ). i.e.

we obtain the isomorphism

(2.0.15) Hom

B

(M


A

N;P )

�

=

Hom

A

(M;Hom

B

(N;P ))

We skip the proofs of the remaining assertions. �

Remark 2.2. Observe that, in the situation of (ii) of 1.2.1, one really needs to adopt

the de�nition of 


A

in 1.2.7 and 1.2.8 to obtain the results of the last proposition.

Hom

A

( ; ) to obtain the

Definition 2.3. LetM"Mod

l

(S;A). M is 
at if for every a
y
li
 moduleN"Mod

r

(S;A),

M


A

N is also a
y
li
. M is lo
ally proje
tive if for every a
y
li
 obje
t N"Mod

l

(S;A),

Hom

A

(M;N) is a
y
li
 as well. If P"Presh, P is 
at if for every K"Presh that is a
y
li


P 
 K is also a
y
li
. P is lo
ally proje
tive if Hom(P;R) is a
y
li
 for every a
y
li


R"Presh. (Here Hom is the internal Hom in the 
ategory Presh.) We let P denote the full

sub-
ategory of obje
ts in Mod

l

(S;A) that are both 
at and lo
ally proje
tive.

2.0.16. Lo
ally proje
tive and 
at resolutions. Let Presh denote a 
ategory of presheaves

on a site S so that it satis�es the axioms (STR0) through (STR7.3) and the axiom (HCl)

on the existen
e of homotopy 
olimits. Now we may de�ne a bi-fun
tor Map : Presh �

Presh

op

! (simpli
ial sets) byMap(M;N) = Hom

Presh

(�[n℄

+


M;N) where the fun
-

tor 
 is de�ned as in Chapter I, (M4.0). We will further assume that the following hypothesis

holds:

(2.1.1.*) the abelian 
ategory A in Chapter I, (STR3), admits an imbedding into

the 
ategory of abelian presheaves on the site S where the latter is provided with the

obvious tensor stru
ture. Let the latter 
ategory be denoted Presh

Ab

(S) and let the

given imbedding be denoted U . We assume that U is 
ompatible with the tensor stru
-

tures and that the the presheaf P ! U Æ H

n

(P ) may be identi�ed with the presheaf

P ! �

�n

(Map(j

�

U

(S); j

�

U

Q(P ))), j

U

: S=U ! S in the site.

Remark 2.4. 1. We will often denote U Æ H

n

by just H

n

.

2. Observe that the restri
tion fun
tor j

�

U

: Presh(S) ! Presh(S=U) has always a

left-adjoint (see [SGA4℄ Expos�e IV) whi
h we will denote by j

#

U !

.
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Lemma 2.5. Let M"Mod

l

(S;A). Then there exists a set of integers fn

s

jsg, a set of

obje
ts fj

U

: U ! SjUg in the site S and a map

� : t

U

t

s

j

#

U !

j

�

U

�

n

s

(S)
A !M

(where �

n

s

is the n

s

-fold iterate of � if n

s

� 0 and the �n

s

-fold iterate of 
 if n

s

< 0)

indu
ing a surje
tion:

H

�k

(�)

p

: t

U

t

s

H

�k

(j

#

U !

j

�

U

�

n

s

(S)
A))

p

H

�k

(�)

p

! H

�k

(M)

p

, for all k and all points p.

Proof. Re
all the fun
tor Q is 
ompatible with the tensor stru
ture. Therefore, we

may assume, without loss of generality that M has been repla
ed by Q(M). For ea
h

integer n, ea
h point p and ea
h 
lass [�℄ � H

�n

(M)

p

, let � : j

#

U !

j

�

U

(�

n

S) ! Q(M) denote

a representative map. If i : S ! A denotes the unit of the algebra A, we obtain the


ommutative diagram

S 
 j

#

U !

j

�

U

�

n

S

i
id //

id

��

A
 j

#

U !

j

�

U

�

n

S

id
� //
A
Q(M)

�

��
S 
 j

#

U !

j

�

U

�

n

S ' j

#

U !

j

�

U

�

n

S

� //
Q(M)

where � : A
Q(M)! Q(M) is part of the stru
ture making Q(M) an A-module. It follows

that one may let S = f� : �

n

S ! M j�; ng; that this is a set follows from the hypotheses

that one has a 
onservative family of points and that the system of neighborhoods of any

point has a small 
o�nal family. �

Definition 2.6. (i)The modules of the form t

s�S

�

n

s

A will be 
alled free A�modules.

(ii). The modules M for whi
h there exists a �nite set S so that the map H

�

(�) in

Lemma ( 2.5) is a surje
tive map of H

�

(A)-modules will be 
alled 
onstru
tible A�modules.

(Re
all that we have assumed the presheaf of graded rings H

�

(A) to be Noetherian, whi
h

justi�es this terminology. Nevertheless, the notion of 
onstru
tibility is useful only when

H

�

(A) is lo
ally 
onstant.)

(iii) The free fun
tor. We de�ne a free fun
tor F : Presh ! Mod

l

(S;A) by F(N) =

A
N . One de�nes a free fun
tor F : Presh!Mod

r

(S;A) by F(N) = N 
A.

Proposition 2.7. Assume the hypotheses as in 2.0.16. Let M"Presh. (i) Then there

exists an obje
t

~

M , whi
h is 
at and lo
ally proje
tive, and a map � :

~

M ! M whi
h is

a quasi-isomorphism at ea
h stalk. Moreover, there exists a simpli
ial obje
t P

�

= fP

k

jkg,

ea
h P

k

"P with an augmentation P

0

! M so that the following hold: a)

~

M = ho
olim

�

P

�

and � is the obvious indu
ed map. (We will 
all P

�

a simpli
ial resolution of M .) b)

fH

�

(P

n

)~jng is a resolution of the sheaf of H

�

(A)~-modules H

�

(M)~.

(ii) The same 
on
lusions hold ifM"Mod

l

(S;A) (orM"Mod

r

(S;A)) with A an algebra

in Presh

Proof. Observe that by taking A = S, we see that (i) is a spe
ial 
ase of (ii). Therefore

we will only prove (ii) in detail. Let For :Mod

l

(S;A)! Presh denote the obvious forgetful

fun
tor.

LetM"Mod

l

(A) and let p denote a point of the siteS. Then For(M)

p

= 
olim

p"U

�(U; For(M))

andH

�n

(For(M)

p

)

�

=


olim

p"U

H

�n

(�(U; For(M)))

�

=


olim

p"U

H

�n

(Hom(j

#

U !

j

�

U

S; For(M))) where



26 II. THE BASIC EXAMPLES OF THE FRAMEWORK

S is the 
onstant presheaf on S with stalks isomorphi
 to S. In view of Lemma ( 2.5), it

follows that one may �nd a set S, a 
overing U = fU

s

js"Sg of X and a 
olle
tion of

maps j

#

U !

j

�

U

(�

n

s

S)

�

s

!For(M) so that for ea
h integer n, the indu
ed map H

�n

~( t

s"S

�

s

)) :

H

�n

~( t

s"S

j

#

U

s

!

j

�

U

s

(�

n

s

S)! H

�n

~(For(M)) is a surje
tive map of Abelian sheaves.

Next we 
onsider P

0

0

= A
 ( t

s"S

j

#

U !

j

�

U

(�

n

s

S)) = F( t

s"S

j

#

U !

j

�

U

(�

n

s

S)). Then the natural

map P

0

0

! t

s"S

j

#

U !

j

�

U

(�

n

s

A) is an isomorphism. Let d

�1

denote the 
omposition:

id

A


 t

s"S

�

s

: A
 ( t

s"S


 j

#

U !

j

�

U

(�

n

s

S))! A
M !M

Sin
e the 
omposition of the map

S 
 ( t

s"S


 j

#

U !

j

�

U

(�

n

s

S))! A
 ( t

s"S

j

#

U !

j

�

U

(T

n

s

S))

and the map d

�1

indu
es the map H

�n

( t

s"S

�

s

))~ in 
ohomology, it follows that H

�n

(d

�1

)~

is a surje
tion for ea
h n.

2.0.17. Let Q

0

= M and u

0

0

= d

�1

: P

0

0

! M the above map. We 
onsider P

0

=

Co
yl(u

0

0

) and u

0

: P

0

!M is the map denoted d

1

in Chapter I, (STR7.2). (As mentioned

in Chapter I, Remark (2.0.1), throughout the rest of the proof we will suppress mentioning

the fun
tor E expli
itly, though it needs to be applied �rst before taking the 
o-
ylinders.

We hope this makes our dis
ussion simpler.) Let n > 0 be a �xed integer. Assume we have

de�ned P

i

"P , X

i

, u

0

i

: P

0

i

! X

i

, and P

i

for all 0 � i � n so that the following hold

P

i

= Co
yl(u

0

i

), X

i

= fib

h

(P

0

i�1

u

0

i�1

! X

i�1

), u

i

: P

i

! X

i

is the map indu
ed by u

0

i

(as in

Chapter I, (STR7.2))

H

�k

(u

i

)~is surje
tive as a map of Abelian sheaves for all k and

H

�

(P

i

)

p

is a free graded module over the graded ring H

�

(A)

p

for all points p

We let X

n+1

= fib

h

(u

0

n

: P

0

n

! X

n

). By repla
ingM"Presh by X

n+1

and applying the

arguments in 2.0.17 one may �nd an obje
t P

0

n+1

"Presh along with a map u

0

n+1

: P

0

n+1

!

X

n+1

so that the following hold:

P

0

n+1

is lo
ally proje
tive and 
at

H

�

(P

0

n+1

)

p

is a free graded module over H

�

(A)

p

for all points p and

H

�k

(u

0

n+1

)~ is surje
tive as a map of Abelian sheaves for all k.

Now we let P

n+1

= Co
yl(u

0

n+1

) and u

n+1

: P

n+1

! X

n+1

the obvious map indu
ed by

u

0

n+1

. Now observe that there exists a natural homotopy-equivalen
e between P

n

and P

0

n

for all n. It follows that if K"Presh, K
P

n

is homotopy equivalent to K
P

0

n

for all n and

hen
e a
y
li
 if K is. Therefore P

n

is 
at. One may similarly prove that P

n

is also lo
ally

proje
tive. Now observe that X

n

= ker(u

n�1

: P

n�1

! X

n�1

) for all n > 0. We will let the


omposite map P

n

u

n

!X

n

! P

n�1

, n > 0, be denoted d

n

. It follows that the diagram

! :::P

n

d

n

!P

n�1

d

n�1

! :::

d

0

!P

0

is a 
omplex in Mod

l

(S;A) i.e. the 
omposition of the two maps d

n�1

Æ d

n

= �. Moreover

the map u

0

: P

0

! X

0

= M is an augmentation. Next we apply the denormalization

fun
tor DN to the above 
omplex to produ
e a simpli
ial obje
t in Mod

l

(S;A); this will
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be denoted DN(P

�

). We let

~

M = ho
olim

�

DN(P

�

). Let K"Mod

r

(S;A). Then K


A

DN(P

�

)

is a simpli
ial obje
t in Presh. Clearly ea
h DN(P

�

)

k

"Mod

l

(S;A) is 
at and lo
ally

proje
tive; now the spe
tral sequen
e in Chapter I, (HCl) for the homotopy 
olimit shows

that ho
olim

�

DN(P

�

) is also 
at. The 
orresponding spe
tral sequen
e for the homotopy

inverse limit ( and the observation that homotopy 
olimits in the �rst argument in Hom


omes out of the Hom as homotopy limits) shows that it is also lo
ally proje
tive. �

2.0.18. The homotopy 
ategories and the derived 
ategories. We de�ne

(2.0.19) Hom

HMod

l

(S;A)

(K;L) = �

0

(Map(S;Hom

A

(K;L)))

Now observe that we obtain the following isomorphisms:

Hom

HMod

l

(S;A)

(K;L) = �

0

(Map(S;Hom

A

(K;L))

�

=

�

0

Map

A

(S 
K;L)

�

=

�

0

Map

A

(K;L)

The �rst isomorphism follows from ( 2.0.15) by taking B = A and A = S in ( 2.0.15).

Finally re
all that 
 may be identi�ed with 


S

: this provides the last isomorphism. It follows

immediately that there exists a fun
tor from the 
ategory Presh to the homotopy 
ategory

sending a map f : K ! L to its 
lass in �

0

Map

A

(K;L)

�

=

Hom

HMod

l

(S;A)

(K;L). Observe

that the derived 
ategory asso
iated to Mod

l

(S;A) is obtained from the above homotopy


ategory by inverting maps that are stalk-wise quasi-isomorphisms. (See Proposition 2.9

below.) This will be denoted D(Mod

l

(S;A)).

We pro
eed to obtain a 
on
rete realization of the derived 
ategory. Let P (K) ! K

denote a quasi-isomorphism from a lo
ally proje
tive obje
t as in Proposition 2.7 .

Proposition 2.8. Assume the above situation. Then there exists isomorphisms:

Hom

D(Mod

l

(S;A))

(K;L)

�

!

�

=

�

0

(Map

A

(P (K);GQ(L)))

�

=

�

0

(Map(S;Hom

A

(P (K);GQ(L))))

�

=

�

0

(holim

�

fMap(S;Hom

A

(P (K);G

n

Q(L)))jng)

Proof. The identi�
ation of the last term on the right-hand-side with

�

0

(Map(S;Hom

A

(P (K);GQ(L)))) follows sin
e holim

�


ommutes withMap(S;�) andHom

A

(P (K);�);

this in turn follows from the de�nition of holim

�

in the 
ategory Mod

l

(S;A) as an end (see

se
tion 1). The se
ond

�

=

is 
lear. Clearly there is a natural map from Hom

HPresh

(K;L)

to �rst term on the right-hand-side. One may readily see that if K

0

! K, L ! L

0

are

stalk-wise quasi-isomorphisms, then one obtains an isomorphism:

�

0

(Map

A

(P (K);GQ(L

0

))))

�

=

�

0

(Map

A

(P (K);GQ(L)))

�

=

�

0

(Map

A

(P (K

0

);GQ(L))).

This shows the above map � fa
tors through the derived 
ategory. If � : P (K)! GQ(L) is

a map (representing a 
lass on the right-hand-side), the diagram

K

'

 P (K)! GQ(L)

de�nes a 
lass in the left hand side. Moreover if K

'

 K

0

! L is sent to the map P (K

0

) !

GQ(L) whi
h is null-homotopi
, one 
an see readily that the map K

'

 K

0

! L ! GQ(L)

in the derived 
ategory D(Mod

l

(A)) is itself identi�ed with the trivial map. Therefore the

given map K

'

 K

0

! L also is identi�ed with the trivial map in the derived 
ategory. This

provides the required isomorphism. �
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Proposition 2.9. Assume the above situation. Then Mod

l

(S;A) is a strongly trian-

gulated 
ategory satisfying the axioms (STR8.1) through (STR8.4) with the fun
tor Q in

Chapter I, (STR8.1) given by the 
omposition G ÆQ

0

where G = the Godement resolution,

the fun
tor Q

0

= the given fun
tor Q in Presh and the 
o�brant obje
ts being identi�ed

with the lo
ally proje
tive obje
ts. In 
ase the given monoidal stru
ture is symmetri
 and

A is a 
ommutative algebra, Mod

l

(S;A) = Mod

r

(S;A) is symmetri
 monoidal with re-

spe
t to 


A

and A is a 
o�brant obje
t in Mod

l

(S;A). Moreover there exists a fun
tor

F : Presh!Mod

l

(S;A) left adjoint to the forgetful fun
tor For :Mod

l

(S;A)! Presh.

Proof. One begins with the observation that the 
ategory Mod

l

(S;A) is 
losed under

the formation of the 
ylinder and 
o-
ylinder obje
ts as well the 
anoni
al homotopy �ber

and mapping 
ones. This follows from the axioms (M4.6) and (M5). This also shows

that HMod

l

(S;A) admits a 
al
ulus of left and right fra
tions. The abelian 
ategory A in

Chapter I, (STR3) and the 
ohomology fun
tor H

n

are the same as the ones for the 
ategory

Presh. One may now readily verify that the 
ategory obtained by lo
alizing with respe
t to


ohomology isomorphisms is triangulated. The admissible monomorphisms (epi-morphisms)

and the fun
tors m, e are de�ned to be the 
orresponding ones in the 
ategory Presh.

Propositions 2.7 and Proposition 2.8 show that the axiom (STR8.2) is satis�ed; i.e. one may

take 
o�brant obje
ts to be the lo
ally proje
tive ones. We de�ne �brant obje
ts to be those

obje
tsM so that the obvious map �(U;M)! �(U;GQM) is a quasi-isomorphism for every

U in the site S. Now the axioms (STR8.1) and (STR8.4) are 
lear. The axiom (STR8.3)

follows from Proposition 2.8 above. The assertions on the symmetri
 monoidal stru
ture

of Mod

l

(S;A) are 
lear. Re
all the free fun
tor F is de�ned by F(N) = A 
 N . That

this is left adjoint to the forgetful fun
tor follows from the observation that the 
omposition

S 
N ! A
N ! N is the identity for any N"Mod

l

(S;A). �

Remark 2.10. It follows from the above result that the 
ategory of 
omplexes of sheaves

of modules over a ringed site (S;R), where R is a sheaf of 
ommutative rings with unit,

is strongly triangulated. We will assume here that for every obje
t X, the obvious map

� ! X (X ! �) is an admissible monomorphism (admissible epimorphism, respe
tively).

One de�nes the tensor produ
t S 
 K (between a pointed simpli
ial set S and an obje
t

K"C(Mod(S;R))) by taking the ho
olim

�

of the obvious simpli
ial obje
t n ! �

S

n

K; this

de�nes a bi-fun
tor (pointed simpli
ial sets)�Mod

l

(C;A)!Mod

l

(C;A). Moreover the

remaining axioms on the monoidal and t-stru
ture are satis�ed so that C(Mod(S;R)) is an

enri
hed unital symmetri
 monoidal t-
ategory. If A is a sheaf of di�erential graded algebras

over a site S, the 
ategory of sheaves of modules over A is a strongly triangulated 
ategory.

It is neither monoidal nor has a strong t-stru
ture in general. We pro
eed to establish that,

similarly, if A is a sheaf of di�erential graded algebras over an E

1

-operad on a site S, the


ategory of sheaves of modules over A is strongly triangulated. However, in general, the


ategory of modules over su
h an E

1

sheaf of DGAs is neither monoidal nor has a strong

t-stru
ture. These observations make it ne
essary to 
onsider this 
ase separately in the next

se
tion. Observe that, sin
e C(Mod(S;R)) is an enri
hed unital monoidal 
ategory, many

of the te
hniques from the last se
tions 
arry over with minor modi�
ations.

3. Sheaves of algebras and modules over operads

Let S denote a site and let R denote a sheaf of 
ommutative Noetherian rings on S.

For the purposes of this introdu
tion to operads in C(Mod(S;R)) we will let 
 denote 


R

.

(See [K-M℄ for more details.)

Re
all that an (algebrai
) operad O in Mod(S; R) is given by a sequen
e fO(k)jk � 0g

of di�erential graded obje
ts in Mod(S; R) along with the following data:

for every integer k � 1 and every sequen
e (j

1

; :::; j

k

) of non-negative integers so that

�

s

j

s

= j there is given a map 


k

: O(k)
O(j

1

)
 :::
O(j

k

)! O(j) so that the following
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asso
iativity diagrams 
ommute, where �j

s

= j and �i

t

= i; we set g

s

= j

1

+ ::: + j

s

and

h

s

= i

g

s�1

+1

+ :::+ i

g

s

for 1 � s � k:

(3.0.20)

O(k)
 (

k




s=1

O(j

s

))
 (

j




r=1

O(i

r

))

shuffle

��



id

//
O(j)
 (

j




r=1

O(i

r

))




��
O(i)

O(k)
 (

k




s=1

O(j

s

))
 (

j

s




q=1

O(i

g

s�1

+q

))

id
(


s


)

//
O(k)
 (

k




s=1

O(h

s

))




OO

In addition one is provided with a unit map � : R! O(1) so that the diagrams

O(k)
 (R

k




) �

=

//

id
�

k

��

O(k)

O(k)
O(1)

k







99ttttttttttt

and

R
O(j)

�

=

//

�
id

��

O(j)

O(1)
O(j)




99rrrrrrrrrr


ommute.

An A

1

-operad is an asso
iative operad fO(k)jkg so that ea
h O(k) is a
y
li
. A sym-

metri
 operad is an asso
iative operad as above provided with an a
tion by the symmetri


group �

k

on ea
h O(k) so that the above diagrams are equivariant with respe
t to the

a
tions by the appropriate symmetri
 groups. (See [K-M℄ p. 13.) An E

1

-operad is an

A

1

-operad fO(k)jkg whi
h is also symmetri
 so that, in addition, the given a
tion of �

k

on ea
h O(k) is free.

Remark 3.1. An operad of pointed simpli
ial sets, topologi
al spa
es, Gamma spa
es

or symmetri
 spe
tra is de�ned similarly with the following important 
hanges: we repla
e

C(Mod(S;R)) with the 
ategory of pointed simpli
ial sets, Gamma spa
es or symmetri


spe
tra. Observe that these are all (unital) monoidal 
ategories. The obje
ts fO(k)jkg

will be a sequen
e of obje
ts in this 
ategory satisfying similar hypotheses. Now all of

the dis
ussion in this se
tion applies with minor 
hanges: for example the term di�erential

graded obje
t will need to be repla
ed by an obje
t in one of the above 
ategories. In

parti
ular su
h a dis
ussion will de�ne A

1

and E

1

obje
ts in the 
ategory of Gamma

spa
es or symmetri
 spe
tra.

Remark 3.2. Next observe that if O

0

is an operad of topologi
al spa
es (as above), by

applying the singular fun
tor followed by the free-abelian-group-fun
tor one may 
onvert it

to an operad whi
h will be a 
hain 
omplex of abelian groups. One may now tensor the

resulting 
omplex with R to obtain an algebrai
 operad in the above sense.

An A

1

-di�erential graded algebra A over an A

1

-operad O is an obje
t in C(Mod

r

(S;

R)) provided with maps � : O(j)
A

j

! A for all j � 0 that are asso
iative and unital in

the sense that the following diagrams 
ommute:
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O(k)
O(j

1

)
 :::
O(j

k

)
A

j



id

//

shuffle

��

O(j)
A

j

�

��
A

O(k)
O(j

1

)
A

j

1


 :::
O(j

k

)
A

j

k

id
�

k

//
O(k)
A

k

�

OO

and

R
A

'

//

�
id

��

A

O(1)
A

�

::vvvvvvvvv

If A is an A

1

algebra over an operad O as above, one de�nes a left A-module M to

be an obje
t in C(Mod

r

(S; R)) provided with maps � : O(j)
A

j�1


M !M satisfying

similar asso
iativity and unital 
onditions. Right-modules are de�ned similarly.

An E

1

algebra over an E

1

-operad O is an A

1

algebra over the asso
iative operad O

so that the following diagrams 
ommute:

O(j)
A




j

�
�

�1

//

�

$$J
JJJJJJJJJ

O(j)
A




j

�

zztttttttttt

A

Given an E

1

-algebra A over a 
ommutative operad O, an E

1

left-module M over A is an

A

1

left-module M so that the following diagrams 
ommute:

O(j)
A

j�1


M

�
�

�1


id

//

�

''NNNNNNNNNNNN
O(j)
A

j�1


M

�

wwpppppppppppp

M

If A denotes either an A

1

or E

1

-algebra in C, the 
ategory of all left modules (right

modules) over A will be denoted Mod

l

(S;A) (Mod

r

(S;A), respe
tively).

One may now observe the following. For ea
h integer, let R[�

n

℄ = �

�

n

R denote the sum

of R indexed by the symmetri
 group �

n

. Now one may de�ne the stru
ture of a monoid

on R[�

n

℄ as follows:

let R

g

denote the 
opy of R indexed by g"�

n

. Now we map R

g


R

h

to R

g:h

by the given

map � : R
R ! R.

If O is a 
ommutative operad in Mod(S;R), one may now observe that ea
h O(k) is a

right-module over the monoid R[�

k

℄. (Observe that O(k) 
 R[�

k

℄

�

=

�

g"�

k

O(k) 
 R

g

. We

map O(k)
R

g

to O(k)
R by the map g
id. Now apply the given map O(k)
R ! O(k).)

Finally observe that if O is an operad as above, the stru
ture in ( 3.0.20) with k = 1

and j = 1 shows O(1) is a di�erential graded algebra. Moreover O(2)"Mod

r

(S;O(1)) as

well by letting the se
ond fa
tor in O(1)




2

a
t trivially on O(2).
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We may assume without loss of generality that the operad fO(i)jig is obtained from the

linear isometries operad as in [K-M℄ p. 130. In this 
ase, we make the following additional

observations.

3.1. (i) there exist maps � : O(2)! O(1) and � : O(1)! O(2) in Mod

r

(S;O(1))

(ii) there exist homotopies H : �[1℄ 
O(2) ! O(2) in Mod

r

(S;O(1)) and K : �[1℄ 


O(1)! O(1) in Mod

r

(S;O(1)) so that H Æ d

0

= � Æ �, H Æ d

1

= id

O(2)

, K Æ d

0

= � Æ � and

K Æ d

1

= id

O(1)

(iii) there exist augmentations � : R! O(i) and � : O(i)!R so that the 
ompositions

� Æ� and � Æ� are 
hain homotopi
 to the identity. (In 
ase i = 1, we assume these are maps

of sheaves of di�erential graded algebras.)

Now we may de�ne a (non-unital) symmetri
-monoidal stru
ture � (
alled the operadi


tensor produ
t on the 
ategory Mod(S;O(1)) by :

(3.1.1) M �N = O(2) 


O(1)

2

M


R

N; M; N"Mod(C;O(1))

(Observe that M 
 N belongs to Mod

l

(S;O(1)) using the left-module stru
ture of O(2)

over O(1).) See [K-M℄ p. 101 for a proof that this de�nes a symmetri
 monoidal stru
ture

on C(Mod(S;O(1))). We will let C denote the monoidal 
ategory Mod(S;O(1)) provided

with the operadi
 tensor produ
t.

Remark 3.3. One may now de�ne all the fun
tors in ( 2.0.14) and ( 1.2.3) in this


ontext if A is an algebra in the monoidal 
ategory C. However, sin
e R is not in general, a

unit for the fun
tor �, one will not obtain the isomorphisms M�

A

A

�

=

M, M"Mod

r

(S;A),

N

�

=

A�

A

N , N"Mod

l

(S;A) and similarly Hom

A

(A; N)

�

=

N . We 
orre
t this problem by

de�ning the following fun
tors.

Remark 3.4. Observe that O(1) is a DGA provided with augmentations R ! O(1)

and O(1) ! R whose 
omposition is the identity. A sheaf of modules M over O(1) is a

unital O(1)-module if there is an augmentation R!M 
ompatible with the augmentation

of O(1). It is shown in [K-M℄ pp. 112-113 that the 
ategory of unital O(1)-modules may be

provided with a bi-fun
tor (whi
h is a variant of the operadi
 tensor produ
t) with respe
t

to whi
h it is symmetri
 monoidal. A 
ommutative monoid in this 
ategory now 
orresponds

to an E

1

-algebra over the operad fO(k)jkg.

Let A denote an algebra in the 
ategory C as above. Re
all that R[0℄ is not, in general,

a unit for the bi-fun
tor � provided on C. Let M"C. Now we may de�ne A / M by the

pushout:

R�M

i
id

����! A�M

�

?

?

y

?

?

y

�

M ����! A /M

One may de�neM.A similarly by inter
hanging theA andM . Moreover the above de�nition

applies to any algebra in C. Therefore it applies in parti
ular to the algebra R[0℄. It should

be 
lear from the above de�nition that R[0℄ / M

�

=

M

�

=

M . R[0℄. We let Mod

l

(C;A)

(Mod

r

(C;A)) denote the full sub-
ategory of C = Mod(S;O(1)) of left-modules (right-

modules, respe
tively) over A. By identifying 
hain-homotopy 
lasses of maps we obtain

the (additive) homotopy 
ategories asso
iated to Mod

l

(C;A) and Mod

r

(C;A). We use the

same 
ohomology fun
tors H

n

to de�ne quasi-isomorphisms inMod

l

(C;A) andMod

r

(C;A).

(The Abelian 
ategory A in (STR3) is simply the 
ategory Mod(S;R).) Observe that
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both Mod

l

(C;A) and Mod

r

(C;A) are 
losed under the formation of the mapping 
ylinder,

mapping 
one, the 
o-
ylinders and the 
anoni
al homotopy �bers. Sin
e quasi-isomorphisms

are de�ned as above, one may readily see that the axioms (STR0) through (STR7.3) for a

strongly triangulated 
ategory are satis�ed. (One de�nes the tensor produ
t S
K (between

a pointed simpli
ial set S and an obje
t K"C(Mod(S;R))) as in Remark 2.10; this de�nes

a bi-fun
tor (pointed simpli
ial sets) �Mod

l

(C;A) ! Mod

l

(C;A). As in remark 3.2,

Chapter I, one may use this observation to 
onstru
t fun
torial 
ylinder and 
o-
ylinder

obje
ts.) Therefore one may de�ne the homotopy 
ategory asso
iated to these 
ategories in

the obvious manner. The derived 
ategories D(Mod

l

(C;A)) and D(Mod

r

(C;A)) are de�ned

by inverting maps in the homotopy 
ategories that are quasi-isomorphism. Next we may

de�ne the free-fun
tor

F

A;l

: C !Mod

l

(C;A) (F

A;r

: C !Mod

r

(C;A)) by F

A;l

(M) = A / M

(F

A;r

(M) =M .A; respe
tively)

(3.1.2)

Definition 3.5. Let C be as before. We de�ne an internal hom in C as an adjoint to �

exa
tly as in 2.0.15. This will be denoted Hom

C

. We say an obje
t F (P ) in C is 
at (lo
ally

proje
tive) if for every a
y
li
 obje
t K"C, F �K (Hom

C

(P;K), respe
tively) is a
y
li
.

Proposition 3.6. Let F

O(1)

: C(Mod(S;R)) ! Mod(S;O(1)) be the fun
tor de-

�ned by F

O(1)

(M) = O(1)


R

M . Then F

O(1)

is right adjoint to the forgetful fun
tor For :

Mod(S;O(1))! C(Mod(S;R)). Moreover the following 
onditions are satis�ed

(i) if K"C, the natural map F

O(1)

(For(K))! K is an epimorphism

(ii)O(1) is 
at with respe
t to the operadi
 tensor produ
t �

(iii) if K"C and M"C(Mod(S;R)), K �F

O(1)

(M) (F

O(1)

(M)�K) is naturally 
hain-

homotopy equivalent to K


R

M (M


R

K).

(iv)Hom

C

(F

O(1)

(L);K) is homotopy equivalent to Hom

R

(L;K), for every K"C and

L"C(Mod(S;R)), with the homotopy equivalen
e being natural in L and K

Proof. The epimorphism in the �rst statement is indu
ed by the epimorphism O(1)!

R and is therefore obvious. If K"C, K�O(1) is 
hain homotopy equivalent to K. (See 3.1.)

Therefore, if K is a
y
li
, so is K �O(1). This proves (ii). Similar observations prove (iii).

LetK

0

,K"C and let L"C(Mod(S;R)). NowHom

C

(K

0

;Hom

C

(F

O(1)

(L);K))

�

=

Hom

C

(K

0

�

O(1)


R

L;K) ' Hom

C

(K

0




R

L;K) where the last is a 
hain homotopy equivalen
e. Making

use of the fa
t that R is 
ommutative and that any map of O(1)-modules is a map of

R-modules, one may show the last term is 
learly isomorphi
 to Hom

C

(K

0

;Hom

R

(L;K)).

Sin
e this holds for all K

0

"C, it follows from lemma ( 3.8) below that Hom

C

(F

O(1)

(L);K)

is 
hain homotopy equivalent to Hom

R

(L;K). This proves (iv). �

Proposition 3.7. (i) F

A;l

(F

A;r

) is left-adjoint to the forgetful fun
tor For :Mod

l

(C;A)!

C

(For :Mod

r

(C;A)! C) and the following 
onditions are satis�ed:

(ii) if M"Mod

l

(C;A) (N"Mod

r

(C;A)), the natural map F

A;l

(For(M))!M

(F

A;r

(For(N))! N) is an epimorphism

(iii) if M"Mod

r

(C;A) and K"C, M


A

F

A;l

(K) is naturally isomorphi
 to K �M while

Hom

A

(F

A;l

(K);M) is naturally isomorphi
 to Hom

C

(K;M).
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(iv)F

A;l

(O(1)
K) is naturally isomorphi
 in the derived 
ategory to A


R

K,

K"C(Mod(S;R)).

(v) F

A

(O(1)) and A are 
at and lo
ally proje
tive in Mod

l

(C;A)

(vi) Hom

A

(F

A;l

(F

O(1)

(K)); L) is 
hain homotopy equivalent to Hom

R

(K;For(L)),

L"Mod

l

(C;A) and K"C(Mod(S;R)) with the 
hain homotopy-equivalen
e being natural in

L and K and preserving the obvious �ltrations.

Proof. The �rst two statements follow from the observation that the 
omposition

R/M ! A/M !M (N.R ! N.A ! N) is the identity ifM"Mod

l

(C;A) (N"Mod

r

(C;A),

respe
tively).

One may obtain the �rst assertion in (iii) as follows. Take P = F

A;l

(K), K"C in the

last adjun
tion in ( 1.2.6) to obtain the isomorphism

Hom

C

(M


A

F

A;l

(K); N)

�

=

Hom

Mod

l

(S;A)

(F

A;l

(K);Hom

C

(M;N)).

By (i) this is isomorphi
 to Hom

C

(K;Hom

C

(M;N))

�

=

Hom

C

(M �K;N). Sin
e this holds

for all N"C, one obtains a natural isomorphism M


A

F

A;l

(K)

�

=

M � K. One obtains the

se
ond assertion in (iii) similarly.

Next we 
onsider (iv) assuming (vi). By (vi) Hom

A

(F

A;l

(F

O(1)

(K)); N) is 
hain-

homotopy equivalent to Hom

R

(K;N). On the other hand, if K = j

U !

j

�

U

(R) for an obje
t U

in the site S, we see that Hom

A

(A


R

K;N) ' Hom

R

(K;N) by 
hain homotopy equivalen
es

that are natural in K. In general, one may �nd a resolution of the given K by a 
omplex

ea
h term of whi
h is a sum of terms of the form j

U !

j

�

U

(R), U"S. Therefore (iv) follows.

Take K = O(1) in (iii) to see that M


A

F

A;l

(O(1)) is 
hain homotopy equivalent to

M � O(1); therefore, if M"Mod

r

(C;A) is a
y
li
, so is M


A

F

A;l

(O(1)). This shows that

F

A;l

(O(1)) is 
at. Now one observes that A is 
hain homotopy equivalent to A / O(1) =

F

A;l

(O(1)). Therefore A is also 
at. Finally observe that Hom

A

(F

A;l

(F

O(1)

(K)); L)

�

=

Hom

C

(F

O(1)

(K); L) ' Hom

R

(K;L) whi
h proves (vi) and the assertion on the lo
al pro-

je
tivity in (v). �

Lemma 3.8. Let A and B denote two 
ategories of 
hain 
omplexes of abelian sheaves

on a site S. Let F; F

0

: A ! B (G;G

0

: B ! A) denote two fun
tors so that F (F

0

) is

left-adjoint to G (G

0

, respe
tively). Let � : F ! F

0

and  : F

0

! F denote two natural

transformations so that the 
omposition  Æ � (� Æ ) is homotopy-equivalent to the identity

natural transformation id

F

(id

F

0

, respe
tively). Assume that F (�[1℄
K)

�

=

�[1℄ 
 F (K),

and similarly F

0

(�[1℄
K)

�

=

�[1℄
 F

0

(K) for K"A.

Let �

�

: G

0

! G and  

�

: G! G

0

denote the two indu
ed natural transformations. Then

there exists an indu
ed homotopy equivalen
e  

�

Æ �

�

' id

G

0

(�

�

Æ  

�

' id

G

, respe
tively)

Proof. This is straightforward �

Corollary 3.9. Assume the situation as above. Then the 
ategories Mod

l

(C;A) and

Mod

r

(C;A) are strongly triangulated 
ategories.

Proof. The proof is more or less 
lear from the above dis
ussion. We begin with the

observation that the 
ategory C(Mod(S;R)) is 
learly a strongly triangulated 
ategory.
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Now we obtain a free fun
tor:

(3.1.3) F : C(Mod(S;R))!Mod

l

(C;A)

by F(M) = F

A;l

(F

O(1)

(M)) and similarly F : C(Mod(S;R)) ! Mod

r

(C;A) by F(N) =

F

A;r

(F

O(1)

(N)). These are now left adjoint to the obvious forgetful fun
tors. Using these and

the observation that C(Mod(S;R)) has a small family of generators, one 
on
ludes that so

doMod

l

(C;A) andMod

r

(C;A). For this observe that the 
ompositionsR/M ! A/M !M

and N .R ! N . N ! N are the identity if M"Mod

l

(C;A) and N"Mod

r

(C;A): now the

same argument as in ( 2.0.15) applies. ClearlyMod

l

(C;A) andMod

r

(C;A) are 
losed under

all small limits. As observed earlier, these 
ategories satisfy all the axioms (STR0) through

(STR7.3) for a strongly triangulated 
ategory.

In order to prove the remaining hypotheses (STR8.1) through (STR8.4) it suÆ
es to

show that lemma 2.5 as well as Propositions 2.7 and 2.8 again hold in this setting on
e we

repla
e j

#

U !

j

�

U

�

n

(S) 
 A with F(j

#

U !

j

�

U

(R)). This is 
lear for Lemma ( 2.5) and Proposi-

tion 2.7 by the above propositions. Observe that the fun
tor Q in this 
ontext is the identity.

Now the isomorphism

Hom

D(Mod

l

(C;A))

(K;L)

'

!�

0

(Map

A

(P (K);GL)) is 
lear by the same argument as in Propo-

sition 2.8. The fun
tor Map

A

:Mod

l

(C;A)

op

�Mod

l

(C;A)! (pointed simpli
ial sets)

is de�ned so that we obtain the isomorphism:

(3.1.4) Hom

pointed simpl sets

(S;Map

A

(M;N))

�

=

Hom

Mod

l

(C;A)

(S 
M;N)

) �

Definition 3.10. In the above situation we will denote the 
ategoryMod

l

(C;A) (Mod

r

(C;A))

by Mod

l

(S;A) (Mod

r

(S;A), respe
tively).

Remark 3.11. Observe that the 
ategory C(Mod(S;R)) satis�es all the axioms (ST1)

through (ST8) on the strong t-stru
ture with �

�n

denoting a familiar fun
tor that kills

the 
ohomology in degrees above n. One lets the fun
tor EM

n

in this 
ontext be de�ned

by EM

n

(

�

M) =

�

M [�n℄. Observe also that if

�

A = �

i

�

A(i) is a sheaf of graded modules

in Mod(S;R), one may de�ne GEM(

�

A) = �

i

EM

i

(

�

A(i)) = �

i

�

A(i)[i℄ and GEM(

�

M) =

�

i

EM

i

(

�

M(i)). Now GEM(

�

A) is a sheaf of di�erential graded algebras in C(Mod(S;R))

whi
h one may view as a sheaf of algebras over an operad in a trivial manner. Moreover if

�

M"Mod

l

(

�

A), GEM(

�

M)"Mod

l

(GEM(

�

A)). One may now see readily that C(Mod(S;R)) is

an enri
hed monoidal t-
ategory. However, the 
ategory Mod(S;O(1)) is not unital though

otherwise symmetri
 monoidal with the operadi
 tensor produ
t and 
learly the axioms

on the strong t-stru
ture do not hold here. Therefore Mod(S;O(1)) is not an enri
hed

monoidal t-
ategory. SimilarlyMod

l

(S;A) andMod

r

(S;A) are also not enri
hed monoidal

t-
ategories, if A"C(Mod(S;R)) is an E

1

-algebra over an E

1

-operad. Nevertheless the

observation that the 
ategory C(Mod(S;R)) is an enri
hed symmetri
 monoidal t-
ategory

enables us to 
onsider the 
ategories Mod

l

(S;A) and Mod

r

(S;A) without diÆ
ulty in the

next 
hapter.

4. Presheaves with values in a strongly triangulated symmetri
 monoidal


ategory

As one of the last examples, we will establish the following theorem.

Theorem 4.1. Let C denote a strongly triangulated monoidal 
ategory and let S denote

a site as in se
tion1. Let S denote the unit for the tensor stru
ture on C. Assume further

that the hypothesis (2.1.1.*) is satis�ed. Now the 
ategory Presh

C

(S) of presheaves on S

with values in C is also a strongly triangulated monoidal 
ategory. In 
ase C is an enri
hed
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monoidal t-
ategory, the 
ategory Presh

C

(S) is also an enri
hed monoidal t-
ategory. In


ase C is symmetri
 monoidal, so is Presh

C

(S).

Remark 4.2. We will establish below that both the 
ategories of symmetri
 spe
tra

and �-spa
es are enri
hed symmetri
 monoidal t-
ategories. It will follow as a 
onsequen
e

that the 
orresponding 
ategories of presheaves on a site (as in se
tion 1) are also enri
hed

symmetri
 monoidal t-
ategories.

Proof. Observe that if fP

�

j�g is a diagram of presheaves indexed by a small 
ategory

I, the 
olimit lim

!

I

P

�

(the limit lim

I

P

�

) is the presheaf de�ned by �(U; lim

!

I

P

�

) = lim

!

I

�(U; P

�

)

(�(U; lim

I

P

�

) = lim

I

�(U; P

�

), respe
tively). It follows that the 
ategory Presh

C

(S) is 
losed

under all small 
olimits and limits. One de�nes a pairing 
 : Presh

C

(S) � Presh

C

(S) !

Presh

C

(S) by �(U; P

0


 P ) = �(U; P

0

) 
 �(U; P ). One may verify that this fun
tor is

symmetri
 monoidal with the 
onstant presheaf S asso
iated to S as a unit. Next we

de�ne a pairing (pointed simpli
ial sets)�Presh

C

(S)! Presh

C

(S) by �(U;K 
P ) =

K 
 �(U; P ).

We let f ' g be the equivalen
e relation of homotopy de�ned on the morphisms of

Presh

C

(S) and generated by the following: if H : �[1℄

+


P ! P

0

is a map, then H de�nes

a homotopy between H Æ (d

0


 id) and H Æ (d

1


 id) where d

i

: P

�

=

�[0℄

+


P ! �[1℄

+


P

is the obvious fa
e map. The resulting homotopy 
ategory is denoted HPresh

C

(S).

Given a map f : P

0

! P , we may de�ne Cyl(f) (Cone(f)) by �(U;Cyl(f)) = Cyl(�(U; f))

(�(U;Cone(f)) = Cone(�(U; f)), respe
tively). One de�nes Co
yl(f) and fib

h

(f) similarly.

We de�ne the fun
tor T (f) by �(U; T (f)) = �(U;�(f)) where � is de�ned as in Chapter I,

De�nition (2.3). A diagram P

0

! P ! P

00

! TP

0

is a triangle if it is isomorphi
 in the

homotopy 
ategory to a diagram of the form: P

0

f

!P ! Cone(f)! �(f).

Let fH

n

jng denote the 
ohomology fun
tor on the 
ategory C. Now we de�ne a 
o-

homology fun
tor fH

n

jng on Presh

C

(S) by letting H

n

denote the sheaf asso
iated to the

presheaf P ! H

n

(�(U; P )), U in the site S. We de�ne a map f : P

0

! P to be a quasi-

isomorphism if the indu
ed maps H

n

(f) are all isomorphisms. The following lemma shows

that HPresh

C

(S) admits a 
al
ulus of left and right fra
tions.

Lemma 4.3. The 
lass of maps in HPresh

C

(S) that are quasi-isomorphisms admits a


al
ulus of left and right fra
tions

Proof. Let Qis denote the 
lass of maps in HPresh

C

(S) that are quasi-isomorphisms.

Re
all that Qis admits a 
al
ulus of left fra
tions, if the following hold:

(i) Qis is 
losed under �nite 
ompositions and 
ontains all the maps that are the iden-

tities

(ii) Given a diagram X

2

q

 X

1

f

!X

3

in Presh

C

(S) with q in Qis, there exists a diagram

X

2

g

!X

4

q

0

 X

3

in Presh

C

(S) with q

0

in Qis so that the square:

X

1

f

����! X

3

q

?

?

y

?

?

y

q

0

X

2

g

����! X

4


ommutes.

(iii) Given

X

1

q //
X

2

f //

g

// X3

with q in Qis with f Æ q = g Æ q, there exists a map

X

3

q

0

!X

4

so that q

0

Æ f = q

0

Æ g and q

0

"Qis.
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Now (i) is 
lear. In order to prove (ii), one may �rst repla
e the map q : X

1

! X

2

by

the indu
ed map X

1

! Cy
l(q) and f : X

1

! X

3

by the 
orresponding map X

1

! Cyl(f).

Now take X

4

= X

2

t

X

1

X

3

. The natural map X

2

=X

1

! X

4

=X

3

is now an isomorphism. Sin
e

X

1

! X

2

! X

2

=X

1

! TX

1

is a triangle and the homology fun
tor H

�

takes it long-

exa
t sequen
es with H

�

(X

1

)

H

�

(q)

! H

�

(X

2

) an isomorphism, it follows that H

�

(X

4

=X

3

)

�

=

H

�

(X

2

=X

1

)

�

=

0. Now X

3

! X

4

! X

4

=X

3

! �X

3

is a strong triangle and therefore the

map q

0

is a quasi-isomorphism.

In order to prove (iii), one may assume on
e again that q is also repla
ed by the 
orre-

sponding map X

1

! Cyl(q). Let H : �[1℄

+


 X

1

! X

3

denote a homotopy between the

two maps f Æ q and g Æ q. Now let Spool denote the dire
t limit of the diagram

�[0℄
X

2

j �[1℄

+


X

1

�[0℄
X

2

�[0℄
X

1

id
q

ggNNNNNNNNNNN d

0


id

77ppppppppppp

�[0℄
X

1

d

1


id

ggNNNNNNNNNNN id
q

88ppppppppppp

and let Cyl denote �[1℄

+


X

2

. Now one may observe readily that the obvious map Spool!

Cyl is a quasi-isomorphism. (To see this: observe that Spool! Cyl! �(X

2

=X

1

)! �Spool

is a strong-triangle and that the map q : X

1

! X

2

is a quasi-isomorphism. It follows that

H

�

(�(X

2

=X

1

))

�

=

0 whi
h proves the map Spool ! Cyl is also a quasi-isomorphism.) Now

let X

4

be de�ned by the pushout square:

Spool ����! X

3

?

?

y

?

?

y

Cyl ����! X

4

The top row is de�ned by the two maps f , g and the homotopy H. Now the indu
ed

map X

3

! X

4

is also a monomorphism and the natural map Cyl=Spool ! X

4

=X

3

is an

isomorphism. It follows that the indu
ed map X

3

! X

4

is also a quasi-isomorphism. These

arguments prove that Qis admits a 
al
ulus of left fra
tions. The proof that it also admits

a 
al
ulus of right fra
tions is similar using 
o-
ylinders instead. �

Observe that S is an algebra in Presh

C

(S). Taking A = S, in Proposition 2.7, one

may produ
e 
o�brant resolutions for presheaves. A presheaf P"Presh

C

(S) will be 
alled


o�brant if it is lo
ally proje
tive and 
at. We de�ne the fun
tor Q

C

on Presh

C

(S) by

�(U;Q

C

P ) = Q(�(U; P )) where the Q on the right is the fun
tor as in (STR8.1) for C.

A presheaf P (as above) is �brant if the obvious map �(U; P )! �(U;GQ

C

P ) is a quasi-

isomorphism for ea
h U in the site S. (We also let the fun
tor Q = G ÆQ

C

.) Now the axiom

Chapter I, (STR8.3) may be veri�ed as in Proposition 2.7. One may also readily verify the

axiom Chapter I, (M5). One de�nes admissible monomorphisms (epimorphisms) to be maps

F

0

! F so that for ea
h stalk, the indu
ed map is an admissible monomorphism (epimor-

phism, respe
tively). In order to prove that the derived 
ategory is additive, observe in view

of (STR8.3) that it suÆ
es to show the homotopy 
ategory is additive. More spe
i�
ally

observe that if f , g : �P (X)! 
�Y are two maps, their sum in Hom

HPresh

C

(S)

(P (X); Y )

is given by the 
omposition:

�P (X)

�

=

S

1


 P (X)

O

!(S

1

t S

1

)
 P (X)

�

=

(�P (X)) t (�P (X))

ftg

!
�Y .

Observe 
�Y is a homotopy asso
iative monoid with the operation indu
ed by the map

S

1

! S

1

tS

1

. Now [Sp℄ p. 43 shows that the above sum is 
ommutative. i.e. Hom

D(C)

(X;Y )

is an Abelian group for all X and Y . It follows that the derived 
ategory D(C) is additive.
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We leave the veri�
ation that the triangles de�ned above in fa
t satisfy the axioms for

distinguished triangles.

One may take the sub-
ategory F to be the same as 
o�brant obje
ts. The remaining

axioms in Chapter I, (M0) through (M5) are easily veri�ed. We have thereby shown that if

C is a strongly triangulated symmetri
 monoidal 
ategory, so is Presh

C

(S).

Next assume that C satis�es the axioms on the strong t-stru
ture as well. We de�ne

fun
tors �

�n

on Presh

C

(S) by �(U; �

�n

P ) = �

�n

�(U; P ). Now the axioms in Chapter I,

(ST1) and (ST2) are 
lear. Observe thatD(Presh

C

(S))

�n�

= fX"D(Presh

C

(S))jH

i

(X) =

0 if i 6= ng. Let A

C

denote the Abelian 
ategory whi
h is equivalent to the heart of

D(C). We let A = the 
ategory of sheaves on S with values in A

C

. We de�ne a fun
tor

EM

0

n

: A ! Presh

C

(S) by �(U;EM

0

n

(F )) = EM

C

n

(�(U; F )) where EM

C

n

is the fun
tor

in Chapter I, (ST3) asso
iated to the 
ategory C as part of its strong t-stru
ture. We let

EM

n

= G ÆEM

0

n

. Now it is 
lear that the axioms in Chapter I on the strong t-stru
ture are

satis�ed. �

4.0.5. Presheaves with values in enri
hed stable model 
ategories. With a view to further

possible appli
ations, (see Chapter V and Appendix A) we show that the following set of

axioms on a 
ategory C imply the 
ategory is strongly triangulated.

Definition 4.4. (Stable simpli
ial model 
ategories) A 
ategory C is 
alled a stable

simpli
ial model 
ategory if it satis�es the following axioms (PM0) through (PM4), (M4),

(SM0) through (SM3.4), (SM4) through (SM6), and the axioms (HCl), (Hl) along with

(
o�nality) on the homotopy limits and 
olimits.

We will assume that C has a zero obje
t � and that it is 
losed under all small 
olimits

and limits. Sums in the 
ategory C will be denoted t. We will further assume that �ltered


olimits in C 
ommute with �nite limits.

(PM0) A partial model stru
ture on C is provided by three 
lasses of maps 
alled weak-

equivalen
es, 
o�brations and �brations satisfying the following 
onditions:

(PM1) The 
lass of �brations is stable under 
ompositions and base 
hange; any iso-

morphism is a �bration. The 
lass of 
o�brations is stable under 
ompositions and 
o-base


hange; any isomorphism is a 
o�bration. Moreover any retra
t of a �bration (a 
o�bration,

a weak-equivalen
e) is a �bration (a 
o�bration, a weak-equivalen
e respe
tively).

(PM2) Any isomorphism is a weak-equivalen
e. If f and g are maps in C so that g Æ f

is de�ned and two of the maps f , g or g Æ f are weak-equivalen
es, so is the third.

Any map that is both a �bration and a weak-equivalen
e (a 
o�bration and a weak-

equivalen
e) will be 
alled a trivial �bration ( trivial 
o�bration, respe
tively).

(PM3) Any map f 
an be fa
tored as f = p Æ i with p a �bration, i a trivial 
o�bration

and both depending fun
torially on f . Any map f 
an also be fa
tored as f = p Æ i with p

a trivial �bration, i a 
o�bration and both depending fun
torially on f .

(PM4) Every 
o�bration in C is a monomorphism. (The 
onverse is not assumed to be

true. In parti
ular, not every obje
t in C need be 
o�brant.)

A model 
ategory stru
ture on C is a partial model 
ategory stru
ture satisfying the

axioms (PM1) through (PM3) and also satisfying the following lifting axiom:

(M4) For every 
ommutative square
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A ����! X

i

?

?

y

?

?

y

p

B ����! Y

in C, there is a map h : B ! X making the two triangles 
ommute provided either

(a) i is a trivial 
o�bration and p is a �bration or

(b) i is a 
o�bration and p is a trivial �bration.

Su
h a model stru
ture is 
losed if the �brations (
o�brations) are 
hara
terized by the

lifting property in (a) ((b), respe
tively) and a map is a weak-equivalen
e if and only if it


an be fa
tored as the 
omposition of a trivial 
o�bration and a trivial �bration. (We will

always assume this is the 
ase and omit the adje
tive 
losed hen
eforth.) It is a simpli
ial

model stru
ture if one has a bi-fun
tor Map : C

op

� C ! (pointed simpli
ial sets) so

that Map

0

= Hom

C

. Moreover we require the following. For ea
h �xed M"C, the fun
tor

N 7!Map(M;N), C ! (pointed simpli
ial sets) has a left adjoint whi
h will be denoted

�
M .

A stable simpli
ial model 
ategory stru
ture on C is provided by two stru
tures:

(SM0) a simpli
ial model stru
ture on C where the 
o�brations (�brations, weak-equivalen
es)

are 
alled stri
t 
o�brations (stri
t �brations, stri
t weak-equivalen
es, respe
tively) as well

as another simpli
ial model stru
ture (where the �brations (
o�brations, weak-equivalen
es)

are 
alled stable �brations (stable 
o�brations, stable weak-equivalen
es, respe
tively)) so

that the 
onditions (SM1) through (SM7) are satis�ed:

(SM1) every stri
t weak-equivalen
e is a stable weak-equivalen
e

(SM2) every stable �bration (stable 
o�bration) is a stri
t �bration (stri
t 
o�bration,

respe
tively)

(SM3.1) There exist two fun
tors Q : C ! C and Q

st

: C ! C along with natural

transformations id ! Q, Q ÆQ! Q and id ! Q

st

, Q

st

ÆQ

st

! Q

st

so that if X"C, Q(X)

is stri
tly �brant while Q

st

(X) is stably �brant.

(SM3.2) The maps X ! Q(X), Q(Q(X)) ! Q(X) (X ! Q

st

(X), Q

st

Æ Q

st

(X) !

Q

st

(X)) are required to be stri
t weak-equivalen
es (stable weak-equivalen
es respe
tively).

(SM3.3) The fun
tor Q (Q

st

) preserves stri
t �brations (stable �brations, respe
tively).

(SM3.4) We will also require that the two fun
tors 
 : (pointed simpli
ial sets) �

C ! C de�ned as part of the simpli
ial model stru
ture for the stri
t and stable model

stru
tures 
oin
ide. (Observe, as a 
onsequen
e, that the two fun
tors Map asso
iated

to the stri
t and stable simpli
ial model stru
tures also 
oin
ide.) Moreover the following

are assumed to hold: if K is a pointed simpli
ial set, K 
 � preserves stri
t and stable


o�brations as well as stri
t and stable weak-equivalen
es. If M"C is a stably 
o�brant

obje
t of C, � 
M sends 
o�brations of simpli
ial sets to stable 
o�brations and weak-

equivalen
es to stable weak-equivalen
es. It is also required to 
ommute with 
olimits in

either argument.

Observe that the axiom (PM3) implies the existen
e of fun
torial 
ylinder and 
o
ylinder

obje
ts for the partial model stru
ture - see [Qu℄ 
hapter I. (Using the simpli
ial stru
ture,

it is possible to de�ne them expli
itly in the usual manner as well.)
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4.0.6. Now we de�ne 
ylinder and 
o
ylinder obje
ts using the stri
t and stable model

stru
tures as follows - see [Qu℄ 
hapter I. Let X t X

d

0

+d

1

! Cyl

stri
t

(X)

s

!X denote a fa
-

torization of the obvious map O : X t X ! X as the 
omposition of a stri
t 
o�bration

followed by a stri
t weak-equivalen
e. We will 
all Cyl

stri
t

(X) an stri
t 
ylinder obje
t for

X. A 
ylinder obje
t de�ned using the stable model stru
ture will be denoted Cyl

st

(X).

Let �[1℄ denote the obvious simpli
ial set; �[1℄

+

will denote this with an extra base point

added. If X"C, we let Cyl


an

(X) = �[1℄

+


X with d

i

: X

�

=

�

+

[0℄
X ! �[1℄

+


X, the

obvious map for i = 0; 1 and s : �

+

[1℄ 
X ! �[0℄

+


X

�

=

X the obvious maps. We 
all

Cyl


an

(X) the 
anoni
al 
ylinder obje
t for X. If the obje
t X is stri
tly 
o�brant, this is in

fa
t a stri
t 
ylinder obje
t for X, and it is a stable 
ylinder obje
t for any X that is stably


o�brant. (These 
on
lusions follow readily sin
e the bi-fun
tor 
 is 
onsidered part of the

stable stru
ture.)

4.0.7. Let f : X ! Y denote a map in C; now we let Cyl

stri
t

(f) = Cyl

stri
t

(X)t

X

Y

and 
all it a stri
t mapping 
ylinder of f . Cyl


an

(f) = Cyl


an

(X)t

X

Y will be 
alled the


anoni
al mapping 
ylinder of f . Similarly we let Cyl

st

(f) = Cyl

st

(X)t

X

Y and 
all it the

stable mapping 
ylinder of f . Observe that the 
anoni
al mapping 
ylinder will be a stable

mapping 
ylinder if X and Y are stably 
o�brant. We will often denote any one of the above

mapping 
ylinders generi
ally by Cyl(f).

(1.1.3) Now the map indu
ed by d

1

, X ! Cyl(f) is a stri
t 
o�bration (stable 
o�bration

if X and Y are stri
tly 
o�brant (stably 
o�brant, respe
tively). (This map will be denoted

d

1

hen
eforth.) The pushout

X

d

1

����! Cyl(f)

?

?

y

?

?

y

� ����! Cone(f)

de�nes the mapping 
one Cone(f). This is stri
tly 
o�brant (stably 
o�brant) if X and

Y are stri
tly 
o�brant (if X and Y are stably 
o�brant, respe
tively). The mapping 
one

de�ned using the 
anoni
al (stri
t, stable) mapping 
ylinder will be denoted Cone


an

(f)

(Cone

stri
t

(f), Cone

st

(f), respe
tively). If both X and Y are stri
tly (stably) 
o�brant,

this 
oin
ides with Cone

stri
t

(f) (Cone

st

(f), respe
tively).

4.0.8. Next we 
onsider the dual notion of a 
o-
ylinder obje
t. LetX ! Co
yl

stri
t

(X)!

X�X denote the fa
torization of the diagonal as the 
omposition of a stri
t weak-equivalen
e

and a stri
t �bration. We 
all Co
yl

stri
t

(X) a stri
t 
o-
ylinder of X. A 
o-
ylinder obje
t

de�ned similarly using the stable model stru
ture will be 
alled a stable 
o-
ylinder obje
t

of X and will be denoted Co
yl

st

(X). We will let Co
yl


an

(X) = X

�[1℄

+

with the map

d

0

� d

1

: X

�[1℄

+

! X

�[0℄

+

t�[0℄

+ �

=

X � X and s : X

�

=

X

�[0℄

+

! X

�[1℄

+

the obvious

maps. This will be a stri
t (stable) 
o-
ylinder obje
t for X if X is stri
tly �brant (stably

�brant, respe
tively). On
e again these 
on
lusions follow readily from the assumption that

the bi-fun
tor Map is 
onsidered part of the stable stru
ture.

4.0.9. Let f : X ! Y denote a map in C. We let Co
yl

stri
t

(f) = Co
yl

stri
t

(Y )�

Y

X

and 
all it a stri
t mapping 
o-
ylinder for f . The 
orresponding fun
tor de�ned us-

ing Co
yl

st

will be 
alled a stable mapping 
o-
ylinder for f . Finally Co
yl


an

(f) =

Co
yl


an

(Y )�

Y

X will be 
alled the 
anoni
al mapping 
o-
ylinder for f : this will be a stri
t

(stable) mapping 
o-
ylinder for f if X and Y are stri
tly �brant (stably �brant, respe
-

tively). We will denote any one of the above mapping 
o-
ylinders generi
ally by Co
yl(f).
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4.0.10. The map indu
ed by d

1

, Co
yl(f) ! Y is a stri
t (stable ) �bration if X and

Y are stri
tly (stably, respe
tively) �brant. (This map will be denoted d

1

hen
eforth.) The

pull-ba
k

fib

h

(f) ����! Co
yl(f)

?

?

y

d

1

?

?

y

� ����! Y

de�nes the homotopy-�ber of f . This is stri
tly �brant (stably �brant) ifX and Y are stri
tly

�brant (stably �brant, respe
tively). The homotopy �ber de�ned using the 
anoni
al (stri
t,

stable) 
o-
ylinder for f will be denoted fib


an

h

(f) (fib

stri
t

h

(f), fib

st

h

(f), respe
tively).

Now we will require several axioms that will ensure that the derived 
ategory asso
iated

to the stable model stru
ture is in fa
t an additive 
ategory. Let P

st

: C ! C denote the

fun
tor of stably 
o�brant approximation as in (PM3); i.e. the obvious map � ! X fa
tors

as � ! P

st

(X) ! X with P

st

(X) stably 
o�brant and the map P

st

(X) ! X a stable

weak-equivalen
e.

Let f : X ! Y denote a map in C. Let i : fib


an

h

(Qf)! QX and p : Y ! Cone


an

(f)

denote the obvious maps. Now

(SM4) Cone


an

(f) is stably equivalent to Cone

st

(P

st

(f)) always. If f : X ! Y is

a monomorphism, there exists a stable weak-equivalen
e Cone


an

(f) ' Coker(f) where

Coker(f) denotes the 
okernel of f .

(SM5) Cone


an

(i) is naturally stably weakly equivalent to QY and hen
e Y as well

(SM5)' fib


an

h

(Qp) is naturally stably weakly equivalent to QX.

(SM6) fib

st

h

(Q

st

(f)) is naturally stably weakly equivalent to Q

st

(fib


an

h

(Q(f))). (Ob-

serve that this axiom implies that the fun
tor Q

st

preserves stable �bration sequen
es.)

(SM6)' Cone

st

(P

st

(f)) and Cone

st

(f) are naturally weakly-equivalent to Cone


an

(f).

Remark 4.5. (SM4) along with the axioms above imply that if f : X ! Y is a mono-

morphism, Coker(f) is stably weakly equivalent to Cone

st

(f) and also to Cone

st

(P

st

(f))

where P

st

(f) is de�ned as above. Moreover the above axioms imply that a stri
t �bration

(
o�bration) sequen
e when viewed as a diagram in the stable model 
ategory on C may

be identi�ed with a stable �bration (
o�bration, respe
tively) sequen
e. This is true in the

setting of both �-spa
es as we show in detail in se
tion 5. (To see this simply observe any

monomorphism of �-spa
es indu
es a monomorphism of the asso
iated spe
tra. Therefore,

it is possible to repla
e any monomorphism of �-spa
es by a stable 
o-�bration up-to natural

stable weak-equivalen
e.) Moreover this fa
ilitates work with stable �bration and 
o�bration

sequen
es and enables us to obtain the spe
tral sequen
es in se
tions 3 and 4.

Definition 4.6. We de�ne stable 
o�bration sequen
es in C to be diagrams T

0

! T !

T

00

! �T

0

that are isomorphi
 in the homotopy 
ategory HC

st

(see below) to diagrams

of the form: T

0

i

!T ! Cone

st

(i) ! �T

0

. One may de�ne stable �bration sequen
es in C

to be diagrams 
T

00

! T

0

! T

f

!T

00

that are isomorphi
 in HC to diagrams of the form:


T

00

! fib

st

h

(Q(f))! Q(T )

f

!Q(T

00

).

Remark 4.7. In view of the axioms above, one may identify stable 
o�bration sequen
es

with stable �bration sequen
es.
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Axioms on homotopy limits and 
olimits. We will 
on
lude this list of hypotheses by

axiomatizing the existen
e of homotopy 
olimits and homotopy limits of small diagrams

in C with suitable properties. For this we invoke standard material from [B-K℄. Let I

denote a small 
ategory; for ea
h obje
t i"I, I=i (Ini) will denote the nerve of the 
omma


ategory denoted I=i (Ini, respe
tively) also. We let (C)

I

o

((C)

I

) denote the 
ategory of

all 
ontravariant (
ovariant, respe
tively) fun
tors from I taking values in C. We de�ne the

fun
tor ho
olim

I

: (C)

I

o

! C exa
tly as a 
o-end in Chapter I. Now the above fun
tor is

left-adjoint to the fun
tor Hom(I= � 
S;�) : C ! (C)

I

o

that sends an obje
t K"C to the

simpli
ial obje
t fHom(I=n
 S;K)jng. (Hom is the internal Hom in the 
ategory C.) We

require the following hypotheses:

(HCl):there exists a simpli
ial model stru
ture on (C)

I

o

with weak-equivalen
es be-

ing stable weak-equivalen
es in C in ea
h simpli
ial degree so that ho
olim

I

sends weak-

equivalen
es to stable weak-equivalen
es. Moreover ho
olim

I

sends diagrams fA

0

! A !

A

00

! �A

0

g in (C)

I

o

that are triangles in C in ea
h simpli
ial degree to a triangle in C. In

addition, we require, in 
ase I = � (so that (C)

I

o

= the 
ategory of simpli
ial obje
ts in C)

that there exist a spe
tral sequen
e:

E

2

s;t

= H

s

(f�

t

(S

n

)jng)) �

s+t

(ho
olim

�

fS

n

jng)

(The homotopy groups are de�ned below.) We de�ne the fun
tor holim

I

: (C)

I

! C as an end

in Chapter I. Now the above fun
tor is right-adjoint to the fun
tor I=�
 : C ! (C)

I

o

that

sends an obje
t K"C to the diagram fI=n
Kjng. We require the following hypotheses:

(Hl):there exists a simpli
ial model stru
ture on (C)

I

with weak-equivalen
es being

stable weak-equivalen
es in C in ea
h 
osimpli
ial degree so that holim

I

ÆQ

st

sends weak-

equivalen
es to stable weak-equivalen
es. Moreover holim

I

ÆQ

st

sends diagrams f
A

00

!

A

0

! A! A

00

!g in (C)

I

that are triangles in C in ea
h degree to a triangle in C. Moreover

we require that, in 
ase I = � (so that (C)

I

= the 
ategory of 
osimpli
ial obje
ts in C) there

exist a spe
tral sequen
e with E

s;t

2

= H

s

(f�

t

(C

n

)jng)) �

�s+t

(holim

I

C

:

). The E

s;t

2

-term is

the s-th (
o-)homology of the 
osimpli
ial Abelian group f�

t

(C

n

)jng.

In addition we will require the following axiom that enables one to 
ompare two homo-

topy inverse limits or 
olimits.

Let I denote a small 
ategory and let f : I ! J denote a 
ovariant fun
tor. We say

f is left-
o�nal if for every obje
t j"J , the nerve of the obvious 
omma-
ategory f=j is


ontra
tible. Now let F : J ! C be a fun
tor.

(
o�nality). We require that the indu
ed map holim

J

F ! holim

I

F Æ f is a stable weak-

equivalen
e if the fun
tor f is left-
o�nal.

Remark 4.8. The hypothesis that C

I

and C

I

op

are simpli
ial model 
ategories is satis�ed

if the 
ategory C is a 
o�brantly generated simpli
ial model 
ategory.

The stri
t homotopy 
ategory. Let X, Y "C. By (fun
torially) fa
toring the map � ! X

we may �nd a stri
t weak-equivalen
e P (X) ! X with P (X) 
o�brant. Let Q denote the

fun
tor as in (SM3.1). Now we let Hom

C

stri
t

(X;Y ) = �

0

(Map(P (X); Q(Y )). It follows

readily from the axioms of the (stri
t) simpli
ial model 
ategory stru
ture that this depends

only on X and Y . One de�nes the stri
t homotopy 
ategory HC

stri
t

to have the same

obje
ts as C, but where the morphisms are de�ned as above.
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4.0.11. We de�ne the stable homotopy 
ategory HC

st

by

Hom

HC

st

(X;Y ) = Hom

HC

stri
t

(P

st

(X); Q

st

Y )

and with the same obje
ts as C. (Re
all the right hand side = �

0

(Map(P

st

(X); Q

st

Y ). Re-


all also that the fun
torMap asso
iated to the stri
t and stable simpli
ial model stru
tures


oin
ide.)

Now the fun
tor Q

st

sends stable �brations to stable �brations and hen
e preserves

stable �bration sequen
es. Given a stable 
o�bration sequen
e as above, one may also

obtain a triangle: P

st

(X

0

) ! P

st

(X) ! P

st

(X

00

) ! P

st

(�X

0

). Therefore if we de�ne

Ext

�n

(X;Y ) = Hom

D(C)

(�

n

X;Y ), then fExt

�n

jng is a 
ohomologi
al fun
tor from D(C)

to the 
ategory of Abelian groups sending distinguished triangles in ea
h argument to long

exa
t sequen
es of Abelian groups. (The derived 
ategory is de�ned by lo
alizing HC

st

with

respe
t to stable weak-equivalen
es.)

Let K"C. We de�ne

(4.0.12) �

n

(K) = Hom

HC

stri
t

(�

n

S; Q

st

(K))

�

=

Hom

D(C)

(�

n

S;K)

where S is de�ned in (M3.1). If K

0

'

!K is a stable weak-equivalen
e, the indu
ed maps

�

n

(K) ! �

n

(K

0

) are all isomorphisms. Moreover if K

0

! K ! K

00

! �K

0

is a stable


o�bration sequen
e, one obtains a long-exa
t sequen
e:

:::! �

n

(K

0

)! �

n

(K)! �

n

(K

00

)! �

n�1

(K

0

)! :::

These are 
lear sin
e S is stably 
o�brant and Q

st

(L) for any L is stably �brant. We will

show below that a map f is a stable weak-equivalen
e if and only if it indu
es an isomorphism

on �

n

for all n.

Proposition 4.9. (i) Given any obje
t Z"C, there exists a 
olle
tion fn

s

jsg of integers

and a map � : t

n

s

�

n

s

S ! Q

st

Z that indu
es an epimorphism on all �

n

. (We use the notation:

�

n

s

= the n

s

-fold iterate of � if n

s

� 0 and = the �n

s

fold iterate of 
 if n

s

< 0.)

(ii) Given an obje
t Z"C, there exists a simpli
ial obje
t S(Z)

�

in C along with an

augmentation � : S(Z)

0

! Q

st

Z so that ea
h term S(Z)

k

is of the form in (i) and (ii)

ho
olim

�

(�) is a stable-weak-equivalen
e. Moreover ho
olim

�

S(Z)

�

is stably 
o�brant.

(iii) f : X ! Y in C indu
es an isomorphism on all �

n

if and only if f is a stable

weak-equivalen
e.

Proof. (i) is 
lear from the de�nition of �

n

. Now we let S(Z)

0

to be the term given in

(i). (ii) is a spe
ial 
ase of Proposition 2.7 where the site S is the pun
tual site and A = S.

It is 
lear that if f is a stable weak-equivalen
e, it indu
es an isomorphism on all �

n

.

Therefore, it suÆ
es to prove the 
onverse. Let S(Z)

�

! Z denote a simpli
ial obje
t 
hosen

as in (ii). Let P (Z) = ho
olim

�

S(Z)

�

. Now 
onsider Map(P (Z), Q

st

(f)) : Map(P (Z),

Q

st

X) ! Map(P (Z), Q

st

Y ). One may identify this with holim

�

Map(S(Z)

�

, Q

st

(f)) :

holim

�

Map(S(Z)

�

, Q

st

X)! holim

�

Map(S(Z)

�

, Q

st

Y ). Sin
e f indu
es an isomorphism on

all �

n

, Map(S(Z)

n

, Q

st

(f)) is a weak-equivalen
e for all n; it follows from the hypothesis

(Hl) that so is holim

�

Map(S(Z)

�

; Q

st

(f)). �

Theorem 4.10. A stable simpli
ial model 
ategory and the 
ategory of presheaves with

values in su
h 
ategory de�ne a strongly triangulated 
ategory in the sense of Chapter I.
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Proof. The assertion about the 
ategory of presheaves follows exa
tly as in Theorem

( 4.1). Therefore we will skip this and prove only the assertion that a stable simpli
ial

model 
ategory is a strongly triangulated 
ategory. Clearly the axiom (STR0) is implied

by the axiom (PM0). The axioms (STR1) through (STR5) are shown to be satis�ed by

Chapter I, 2.1, 2.2 and Proposition 2.7 with H

n

= �

�n

and with A = the 
ategory of all

abelian groups. The admissible mono-morphisms (epi-morphisms) in (STR6) are the stable


o�brations (stable �brations, respe
tively). The hypotheses in the axiom (STR6) is implied

by the stable simpli
ial model stru
ture. The 
ylinder and 
o-
ylinder obje
ts were already

de�ned in (1.1) Chapter I. Now the axioms (STR7.1) through (STR7.3) are 
lear. We let

the fun
tor Q in (STR8.1) be the fun
tor Q

st

as in (SM4). The 
o�brant (�brant) obje
ts

in (STR8.1) and (STR8.2) are the stably 
o�brant (stably �brant ones, respe
tively) in the

sense of the stable model stru
ture. Now the axioms in (STR8.1) through (STR8.4) are

implied by the stable model stru
ture and Proposition 2.5 above. �

Definition 4.11. An enri
hed stable simpli
ial model 
ategory C is a stable simpli
ial

model 
ategory provided with a symmetri
 monoidal bi-fun
tor 
 satisfying the following:

i) the axioms in Chapter I, (M0) through (M4.6) with the strong triangles de�ned to

be stable 
o�bration (or equivalently stable �bration) sequen
es and with the bi-fun
tor


 : (pointed simpli
ial sets)� C ! C in Chapter I, (M4.0) de�ned by (SM3.4).

ii) the axiom Chapter I, (M5) with Q = Q

st

, e = Q

st

and m = P

st

.

Definition 4.12. Let Presh denote a 
ategory of presheaves on a site so that it falls

into any one of the three situations 
onsidered in the previous three se
tions. Let F de-

note the free fun
tor de�ned there. Let A denote an algebra in Presh. Now we de�ne

RHom

A

(M;N) = holim

�

�fHom

A

(P (M)

�

;GQ(N)) where P (M)

�

! M is a resolution de-

�ned as in Proposition 2.4 using the free fun
tor. One de�nes RMap

A

in a similar manner.





CHAPTER III

Homologi
al algebra in enri
hed monoidal 
ategories

1. Basi
 Spe
tral Sequen
es

In this se
tion we provide several spe
tral sequen
es that are 
ru
ial for the development

of a satisfa
tory theory of Grothendie
k-Verdier duality as in 
hapter IV.

1.1. Basi
 Hypotheses. Throughout the remaining 
hapters, we will assume that the

following hypotheses are satis�ed:

S will denote a site as in Chapter II, se
tion 1 and either (i) Presh is an enri
hed unital

monoidal 
ategory of presheaves on S or

(ii) Presh = C(Mod(S;R)) for a ringed site (S;R) with R a 
ommutative sheaf of

Noetherian rings and that A is a sheaf of algebras over an operad in Presh in the sense of

Chapter II, se
tion 3. (Re
all that, in this 
ontext, the fun
tor Q as in Chapter I, (STR8.1)

is the identity.)

1.2. Terminology. In the situation in (i) we will let S denote the unit of the symmetri


monoidal stru
ture on Presh. fH

n

jng will denote a 
ohomologi
al fun
tor as in Chapter II,

2.1.1. In this 
ase, if A is a given algebra in Presh, using the observation that the fun
tor

Q (in Chapter I, (STR8.1)) is 
ompatible with the monoidal stru
ture, we will repla
e A by

Q(A) and we will hen
eforth 
onsider only modules over Q(A) of the form Q(M) for some

M"Mod

l

(S;A) or M"Mod

r

(S;A). However, we will denote Q(A) by A and Q(M) by M

for simpli
ity. Moreover, if ne
essary, by repla
ing an obje
t M"Mod

l

(S; Q(A)) by Q(M),

one may assume that every obje
t in Mod

l

(S;A) will have a 
anoni
al Cartan �ltration.

The same applies to Mod

r

(S;A). F : Presh!Mod

l

(S;A) (Mod

r

(S;A)) will denote the

free fun
tor de�ned by F(M) = A 
M , (F(N) = N 
 A, M;N"Presh. We will let 


denote 


S

and Hom de�ned as the internal hom in Presh. (See Chapter II, (1.2.3).) In the

situation in (ii), we let S = R and if A is a sheaf of algebras over an operad fO(k)jkg, we let

F(M) = F

A;l

(F

O(1)

(M)) ( =F

A;r

(F

O(1)

(N))) as in Chapter II, se
tion 3. Now 
 will denote




R

and Hom will denote Hom

R

(whi
h is the internal hom in C(Mod(S;R)). Moreover, the

fun
tors 


A

:Mod

l

(S;A)�Mod

r

(S;A)! Presh, Hom

A

:Mod

l

(S;A)

op

�Mod

l

(S;A)!

Presh and Hom

A

: Mod

r

(S;A)

op

�Mod

r

(S;A)! Presh will denote the ones de�ned as

in Chapter II, se
tion 1. The external hom in the 
ategory Presh will be denoted Hom and

the fun
tor T

n

: Presh! Presh (where T is as in Chapter I, (STR2)) will be denoted [n℄.

1.2.1. Throughout, a map f : P

0

! P of obje
ts in Presh will be 
alled a quasi-

isomorphism, if it indu
es a quasi-isomorphism of the stalks. This will be denoted '.

1.2.2. One may observe readily that, for ea
h obje
t U in the siteS, the obje
t j

#

U !

j

�

U

(S)

is a 
ompa
t obje
t in Presh in the sense that giving any map from it to a �ltered 
olimit

of obje
ts in Presh is equivalent to giving a map to one of the obje
ts forming the �ltered


olimit.

45
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Remark 1.1. Observe that the hypotheses in (i) are in fa
t satis�ed in both the sit-

uations 
onsidered in Chapter II, se
tions 2 and 4. We begin with the following spe
tral

sequen
es and then pro
eed to obtain a vast generalization of them.

Proposition 1.2. Assume the above situation. LetM"Mod

r

(S;A) and N;N

0

"Mod

l

(S;A).

Then there exist spe
tral sequen
es

E

2

s;t

= T or

H

�

(A)

s;t

(H

�

(M), H

�

(N))) H

�s+t

(M

L




A

N)

E

s;t

2

= Ext

s;t

H

�

(A)

(H

�

(N);H

�

(N

0

))) H

s+t

(RHom

A

(N;N

0

)) and

E

s;t

2

= Ext

s;t

H

�

(A)

(H

�

(N);H

�

(N

0

))) H

s+t

(RHom

A

(N;N

0

)).

The �rst always 
onverges strongly, while the last two 
onverge 
onditionally, in general, in

the sense of [Board℄. The identi�
ation of the E

2

s;t

-term (E

s;t

2

-term) is as the t-th graded

pie
e of the s-th Tor (the t-th graded pie
e of the s-th Ext or Ext, respe
tively).

Proof. (See [Qu℄ 
hapter II, se
tion 6.8, Theorem 6 and also [K-M℄ Chapter V for a

similar result for simpli
ial rings.) Let Q ! N denote a quasi-isomorphism with Q lo
ally

proje
tive and 
at; let P

�

= P (M)

�

! M denote a simpli
ial resolution as in Chapter II,

Proposition 2.4. Re
all ea
h term P (M)

n

is a sum of terms of the form F(j

#

U

s

!

j

�

U

s

(S)). Now

we 
onsider the �rst spe
tral sequen
e. We 
onsider the simpli
ial obje
t P

�




A

Q in Presh.

As n varies fH

t

(P

n




A

Q)jng forms a simpli
ial Abelian sheaf. We take the homology

of this simpli
ial Abelian sheaf. The required spe
tral sequen
e is given by the spe
tral

sequen
e for the homotopy 
olimit as in Chapter I:

E

s;t

2

= H

s

(H

t

(P

�




A

Q))) H

�s+t

(ho
olim

�

(P

�




A

Q)).

It suÆ
es to identify the abutment withH

�s+t

(M

L




A

N) and theE

2

-term with T or

H

�

(A)

s;t

(H

�

(M),

H

�

(N)). Observe that ea
h term P

n

is of the form F(P

0

n

) for some P

0

n

an obje
t in Presh

whi
h is a sum of terms j

U !

j

�

U

(S). Therefore, P

n




A

Q ' P

0

n


Q

�

=

t

s"S

j

U

s!

j

�

U

s

(Q) for ea
h n.

Now H

�

(P

n

) = H

�

(P

0

n


A)

�

=

�

s"S

j

U

s!

j

�

U

s

H

�

(A)

�

=

H

�

(P

0

n

)
H

�

(A). Therefore, H

�

(P

n




A

Q)

is isomorphi
 to:

H

�

(P

n

) 


H

�

(A)

H

�

(Q).

Re
all H

�

(Q)

�

=

H

�

(N) and that fH

�

(P

n

)jng is a 
at resolution of H

�

(M). Therefore, one

obtains the required identi�
ation of the E

2

-terms. To identify the abutment it suÆ
es to

show that ho
olim

�

fP

�




A

Qg ' ho
olim

�

P

�




A

Q ' M


A

Q. The last quasi-isomorphism follows

sin
e Q is 
at and the �rst follows from the fa
t that the homotopy 
olimit 
ommutes with


o-equalizers. This establishes the �rst spe
tral sequen
e.

Next we 
onsider the last two spe
tral sequen
es. We begin with the identi�
ation:

Hom

A

(F(j

#

U

s

!

j

�

U

s

(S)), G

n

N) ' Hom

S

(j

#

U

s

!

j

�

U

s

(S), G

n

N)

' Hom

S

(j

�

U

s

(S), j

�

U

s

G

n

N) ' j

�

U

s

G

n

N)

The �rst identi�
ation follows in the situations of Chapter II, se
tions 2 or 4 by Chapter II,

Proposition 2.1 (i) while it follows in the situation of Chapter II, se
tion 3 by Chapter II,

Proposition 3.8 (vi). Therefore
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H

�

(Hom

A

(F(j

#

U

s

!

j

�

U

s

(S)), G

n

N)) ' H

�

(j

�

U

s

G

n

N)

' Hom

H

�

(A)

(j

#

U

s

!

j

�

U

s

H

�

(A), H

�

(G

n

N)) ' Hom

H

�

(A)

(j

#

U

s

!

j

�

U

s

H

�

(A) , G

n

H

�

(N))

Next observe that fHom

A

(P (M)

k

;G

n

N)jk; ng is a double 
osimpli
ial obje
t; we take

its diagonal. The required spe
tral sequen
e is simply the spe
tral sequen
e for the homotopy

limit of the 
orresponding 
osimpli
ial obje
t. Sin
e

holim

�

�fHom

A

(P (M)

k

;G

n

N)jk; ng ' holim

�

holim

�

fHom

A

(P (M)

k

;G

n

N)jk; ng

where the outer (inner) holim

�

is in the dire
tion of n (k, respe
tively), the latter identi�es

with RHom

A

(M;N) and thereby provides the identi�
ation of the abutment.

Taking the diagonal of the double 
osimpli
ial Abelian sheaf

fHom

H

�

(A)

(H

�

(P (M))

k

;G

n

(H

�

(N)))jk; ng provides the termRHom

H

�

(A)

(H

�

(M);H

�

(N)).

Taking the 
ohomology of this 
osimpli
ial Abelian sheaf one obtains the identi�
ation of

the E

2

-terms. �

2. Stronger spe
tral sequen
es

Definition 2.1. Let L"Presh. A non-de
reasing �ltration on L is given by a 
olle
tion

fF

k

Ljkg of obje
ts in Presh provided with the following stru
ture:

(i) for ea
h k and ea
h U in the site S, there exist admissible monomorphisms i

k;k+1

:

j

#

U !

j

�

U

(F

k

L) ! j

#

U !

j

�

U

(F

k+1

L) and i

k

: j

#

U !

j

�

U

(F

k

L) ! j

#

U !

j

�

U

(L) so that i

k

= i

k+1

Æ i

k;k+1

.

(Here j

U

: U ! S is the obvious map asso
iated to an obje
t in the site S. j

�

U

is the

restri
tion to S=U and j

#

U !

is its left adjoint.)

(ii) on taking the dire
t limits over all neighborhoods of any point p in the site S, the

admissible monomorphisms in (i) indu
e admissible monomorphisms i

k;k+1;p

: i

p�

i

�

p

(F

k

L)!

i

p�

i

�

p

(F

k+1

L) and i

k;p

: i

p�

i

�

p

(F

k

L) ! i

p�

i

�

p

(L). (Here i

�

p

is the restri
tion fun
tor from

presheaves on the site S to presheaves on the point p and i

p�

is its right adjoint.)

(iii) A non-de
reasing �ltration fF

k

Ljkg on L as above is exhaustive ( 
omplete) if the

natural map


olim

k!1

H

n

(F

k

L)! H

n

(L) (the natural map H

n

(L)! H

n

(holim

�1 k

L=F

k

L), respe
tively) is an

isomorphism of sheaves for all n. Su
h a �ltration is strongly separated if for ea
h integer q,

there exists an integer N

q

so that H

q

(F

k

L) = 0 for all k < N

q

. It is separated if L = t

�

L

�

with ea
h L

�

"Presh and strongly separated. (If L"Mod

l

(S;A), we will in fa
t require that

ea
h summand L

�

"Mod

l

(S;A).)

(iv) Let L"Mod

l

(S;A). A non-de
reasing �ltration fF

k

Ljkg on L as above is 
ompatible

with the Cartan �ltration on A if:

Gr(L) = t

k

F

k

L=F

k�1

L belongs toMod

l

(S; Gr

C

(A)). (Equivalently, the pairing A
L!

L sends F

i

A
F

k

L! F

i+k

L where fF

i

(A)jig denotes the Cartan �ltration onA and fF

k

Ljkg

denotes the given �ltration on L.)

Proposition 2.2. Let M , N"Presh be provided with exhaustive �ltrations. Then the

indu
ed produ
t �ltration on M 
N (de�ned by F

k

(M 
N) = Image( t

i+j=k

F

i

M 
 F

j

N !

M 
N)) is also exhaustive. It will be separated if either of the two holds:

� the given �ltration on M is separated and N = t

�

�

n

�

S or

� the given �ltration on N is separated and M = t

�

�

n

�

S
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Here S"Presh is the unit as in 1.0.2.

Proof. Sin
e 
olimits 
ommute with sums and 
, it is 
lear that the indu
ed �ltration

on M 
 N is exhaustive. To see it is also separated, one may pro
eed as follows. Re
all

M
�

n

S = �

n

M provided with the indu
ed �ltration whi
h is 
learly separated if the given

�ltration on M is separated. One 
onsiders the other situation similarly. �

2.0.3. Convention. Throughout the remaining se
tions, the full sub-
ategory ofMod

l

(S;A)


onsisting of obje
ts provided with a an exhaustive and separated non-de
reasing �ltration

will be denoted Mod

filt

l

(S;A).

Theorem 2.3. Assume as in the above situation that A is an algebra in Presh. Then

the following hold:

Let M"Mod

l

(S;A) be provided with a non-de
reasing exhaustive �ltration.Then there exists

a lo
ally proje
tive and 
at obje
t P

00

0

provided with a non-de
reasing exhaustive and �ltration


ompatible with the Cartan �ltration on A and a �ltration preserving map P

00

0

! M whi
h

indu
es a stalk-wise surje
tion H

n

(P

00

0

)

k

)! H

n

(F

k

M) for all n and all k. Moreover, P

00

0

is

lo
ally proje
tive and 
at in Mod

l

(S;A) and the �ltration on P

00

0

is separated if the given

�ltration on M is separated.

Proof. We will �rst 
onsider the 
ase when Presh is a unital symmetri
 monoidal


ategory. Let j

U

: U ! X denote an obje
t in the site S, let n denote an integer and let

M"Presh. Now we will let

(2.0.4) S(n; U)(M) = Hom

Presh

(�

n

j

#

U !

j

�

U

(S);M)

and

(2.0.5) P

0

0

= t

n"Z

( t

UinS

t

S(n;U)(M)

�

n

j

#

U !

j

�

U

(S))

with the �ltration on it de�ned by F

k

P

0

0

= t

n"Z

( t

UinS

t

S(n;U)(F

k

M)

�

n

j

#

U !

j

�

U

(S)). One de�nes

a map u

0

�1

: P

0

0

!M by mapping the summand indexed by � : �

n

j

#

U !

j

�

U

(S)!M to M by

the map �. Now u

0

�1

is a map of �ltered obje
ts. The de�nition of the �ltration fF

k

P

0

0

jkg

shows that ea
h

(2.0.6) H

n

(F

k

(u

0

�1

)) : H

n

(F

k

(P

0

0

))! H

n

(F

k

M)

is a surje
tion for ea
h k and n. Moreover, the �ltration on P

0

0

is exhaustive sin
e ea
h

obje
t j

#

U !

j

�

U

(S) was observed to be 
ompa
t.

Next we let

(2.0.7) P

00

0

= F(P

0

0

)(= A
 P

0

0

);

u

0

�1

indu
es a map u

00

�1

: P

00

0

!M obtained as the 
omposition A
P

0

0

id

A


u

0

�1

! A
M !M .

We �lter P

00

0

using the produ
t �ltration with the Cartan �ltration on A and the above

�ltration on P

0

0

. This is 
learly exhaustive; in view of Proposition 2.2 and the observation

that the Cartan �ltration (on A) is 
learly strongly separated, it is also separated. Sin
e the

map S 
 P

0

0

! A
 P

0

0

! A
 P

0

0

! P

0

0

is the identity and is �ltration preserving, ( 2.0.6)

shows that the indu
ed map H

n

(F

k

(P

00

0

))! H

n

(F

k

M) is also surje
tive for ea
h k and n.

Next we 
onsider the operadi
 
ase. In this 
ase we will let

(2.0.8) S(n; U)(M) = Hom

Mod(S;R)

(j

U !

j

�

U

(R)[n℄;M)

and

(2.0.9) P

0

0

= �

n"Z

(�

U

�

S(n;U)(M)

j

U !

j

�

U

(R))[n℄
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with the �ltration on it de�ned by F

k

P

0

0

= �

n"Z

(�

U

�

S(n;U)(F

k

M)

�

n

j

U !

j

�

U

(R)[n℄). (Here U

varies over a 
o�nal set of open neighborhoods of every point of X.) One de�nes a map

u

0

�1

: P

0

0

! M by mapping the summand indexed by � : j

U !

j

�

U

(R)[n℄ ! M to M by the

map �. Now u

0

�1

is a map of �ltered obje
ts. The de�nition of the �ltration fF

k

P

0

0

jkg shows

that ea
h

(2.0.10) H

n

(F

k

(u

0

�1

)) : H

n

(F

k

(P

0

0

))! H

n

(F

k

M)

is a surje
tion. Next we let

(2.0.11) P

00

0

= F

A;l

(F

A(1)

(P

0

0

))(= A / (O(1)
 P

0

0

));

u

0

�1

indu
es a map u

00

�1

: P

00

0

!M obtained as the 
ompositionA/(O(1)
P

0

0

)

id

A

/(id

O(1)


id)

! A/

(O(1)
M)! A /M !M . (The last map is the A-module stru
ture on M , while the one

before that is the O(1)-module stru
ture on For(M)"Mod(S;O(1)).) We �lter P

00

0

using

the produ
t �ltration with the Cartan �ltration on A and A(1) and the above �ltration

on P

0

0

. Sin
e the given �ltration on M is 
ompatible with the given �ltration on A and

O(1), it follows that the map u

00

�1

: P

00

0

! M is a map of obje
ts in Mod

l

(S;A). This

�ltration will be exhaustive and separated by similar reasons. Moreover, sin
e the 
ompo-

sition P

0

0

�

=

R / P

0

0

! A / (O(1)
 P

0

0

)! P

0

0

is the identity and is also �ltration preserving,

( 2.0.10) shows that the indu
ed map H

n

(F

k

(P

00

0

))! H

n

(F

k

M) is also surje
tive for ea
h k

and n. �

Proposition 2.4. Assume the above situation. Let M"Mod

l

(S;A) be provided with an

exhaustive �ltration. Then there exist lo
ally proje
tive and 
at obje
ts P

i

"Mod

l

(S;A), i � 0

provided with non-de
reasing �ltrations fF

k

(P

i

)jig and maps d

i

: P

i

! P

i�1

in Mod

l

(S;A),

i � 1, and a map d

�1

: P

0

!M so that the following 
onditions hold:

(i) for ea
h i, Gr(P

i

)"Mod

l

(S; Gr

C

(A)) is lo
ally proje
tive and 
at

(ii) the maps d

i

preserve the �ltrations

(iii) d

i

Æ d

i+1

= �

(iv) for ea
h �xed n and k,

:::

H

n

(F

k

(d

i+1

))

! H

n

(F

k

(P

i

))

H

n

(F

k

(d

i

))

! H

n

(F

k

(P

i�1

))! :::

H

n

(F

k

(d

�1

))

! H

n

(F

k

M)

is exa
t stalkwise.

(v) Moreover, the �ltration fF

k

(P

n

)jng on ea
h P

n

is exhaustive and separated.

Proof. We de�ne P

0

i

and P

i

using as
ending indu
tion on i. We will let P

0

0

be as

de�ned in ( 2.0.5) or ( 2.0.9). We let P

00

0

as in ( 2.0.7) or ( 2.0.11). Next we let

(2.0.12) P

0

= Co
yl(u

00

�1

)

with the indu
ed map u

�1

: P

0

! M . We provide P

0

with the indu
ed �ltration. i.e.

F

k

P

0

= Co
yl(F

k

(u

00

�1

)) = (F

k

M)

I

�

F

k

M

F

k

(P

00

0

). Re
all fib

h

(u

�1

) = fib(u

�1

) = u

�1

�1

(�);

this is �ltered by F

k

fib(u

�1

) = fib(F

k

(u

�1

)). It follows that the indu
ed �ltration on

P

0

is exhaustive. It is also separated by Proposition 2.2. Let Gr

k

denote the asso
iated

graded term with respe
t to the above �ltration. Observe that F

k�1

P

0

! F

k

P

0

! Gr

k

P

0

is a triangle in Presh and that there exists a natural quasi-isomorphism fib

h

(Gr

k

(u

�1

)) '

Gr

k

(fib(u

�1

)). Furthermore, P

0

is a 
at obje
t in Mod

l

(S;A) whi
h is lo
ally proje
tive;

this follows from the fa
t that P

0

is naturally homotopy equivalent to P

00

0

= F(P

0

0

). Similarly

Gr(P

0

) is a 
at obje
t inMod

l

(S; Gr

C

(A)) whi
h is lo
ally proje
tive - this follows from the
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fa
t that Gr(P

0

) is naturally homotopy equivalent to Gr(P

00

0

) = F

Gr

C

(A)

(Gr(P

0

0

)). Finally,

it follows from the 
onstru
tion that, for ea
h k and n, the indu
ed map of Abelian sheaves

H

n

(F

k

(u

�1

)) : H

n

(F

k

P

0

)! H

n

(F

k

M) is an epi-morphism.

Now repeat the same 
onstru
tion withM repla
ed by fib(u

�1

) provided with the above

�ltration. (Stri
tly speaking one needs to �rst apply the fun
tor e as in Chapter I, (STR6)

to P

0

before pro
eeding with the 
onstru
tion; however, for the sake of simpli
ity, we will

not mention the fun
tor e expli
itly.) This provides an obje
t P

1

"Mod

l

(S;A) provided

with a non-de
reasing �ltration fF

k

P

1

jkg and a �ltered map u

0

: P

1

! fib(u

�1

) so that the

following hold:

(i) F

k�1

P

1

! F

k

P

1

! Gr

k

P

1

is a triangle in Presh for all k"Z

(ii) P

1

is a 
at and lo
ally proje
tive obje
t in Mod

l

(S;A); similarly Gr

C

(P

1

) is a 
at

and lo
ally proje
tive obje
t in Mod

l

(S; Gr

C

(A)).

(iii) there exists a natural quasi-isomorphism fib

h

(Gr

k

(u

0

)) ' Gr

k

(fib

h

(u

0

))

(iv) the diagrams F

k

(fib

h

(u

0

)) = fib

h

(F

k

(u

0

)) ! F

k

(P

1

)

F

k

(u

0

)

! F

k

fib

h

(u

�1

) are trian-

gles for all k. The same 
on
lusion holds for the diagram: fib

h

(u

0

) ! P

1

u

0

!fib

h

(u

�1

) as

well as for Gr

k

(fib

h

(u

0

)) ' fib

h

(Gr

k

(u

0

))! Gr

k

(P

1

)

Gr

k

(u

0

)

! Gr

k

(fib

h

(u

�1

))

(v) for ea
h k and n, the indu
ed map of Abelian sheaves H

n

(F

k

(u

�1

)) : H

n

(F

k

P

1

) !

H

n

(F

k

(fib

h

(u

�1

))) is an epi-morphism.

Continuing this way we obtain a 
olle
tion of 
at obje
ts fP

n

jn � 0g in Mod

l

(S;A)

that are 
at and lo
ally proje
tive. Moreover, there exists a non-de
reasing exhaustive and

separated �ltration fF

k

P

n

jkg on ea
h P

n

so that the above 
onditions hold with P

n

(P

n�1

)

repla
ing P

1

(P

0

, respe
tively). In this situation, one may now observe the following:

The map u

i

: P

i

! fib(u

i�1

) is the one 
orresponding to u

�1

when fib(u

i�1

) (P

i

)

repla
es N (P

0

, respe
tively).

For i � 0, d

i+1

: P

i+1

! P

i

be the 
omposition P

i+1

u

i

!fib

h

(u

i�1

)! P

i

and d

�1

= u

�1

:

P

0

!M . Now one may readily verify the 
onditions of the proposition. �

2.1. Let M and fP

i

jig be as in the proposition above. First one observes that

fP

i

d

i

!P

i�1

ji � 0g, fF

k

(P

i

)

F

k

(d

i

)

! F

k

(P

i�1

ji � 0g and fGr

k

(P

i

)

Gr

k

(d

i

)

! Gr

k

(P

i�1

)ji � 0g are


omplexes i.e. the 
omposition of the su

essive di�erentials is �. (This follows from the


onstru
tion where the map d

i

fa
tors through the �ber of u

i�1

and d

i�1

is the 
ompo-

sition of u

i�1

and another map. Observe that this is true, though we have omitted the

fun
tors e throught the dis
ussion.) Therefore, one may apply the denormalization fun
tor

DN to it to obtain a simpli
ial obje
t DN(P

�

) provided with a non-de
reasing �ltration

fF

k

(DN(P

�

))jkg by sub-simpli
ial obje
ts. Now one may take the homotopy 
olimits to

obtain:

ho
olim

�

DN(P

�

) 'M; ho
olim

�

F

k

(DN(P

�

)) ' F

k

(M) and

ho
olim

�

Gr

k

(DN(P

�

)) ' F

k

M=F

k�1

M for all k

(2.1.1)

The �rst two follow readily from the observation that the spe
tral sequen
e for the homotopy


olimit of the above simpli
ial obje
ts degenerates in view of the 
on
lusions (iv) and (v)

in the Proposition. We pro
eed to establish the third quasi-isomorphism. Sin
e the maps

F

k�1

DN(P

�

)

n

i

k

!F

k

DN(P

�

)

n

are admissible monomorphisms in Presh for all k and all n,



2. STRONGER SPECTRAL SEQUENCES 51

we see that Cone(i

k

)

n

' Gr

k

(DN(P

�

))

n

for all k and all n. (This follows from the hy-

pothesis (STR6) of Chapter I. Stri
tly speaking one needs to 
onsider Cone(m(i

k

))

n

.) Here

Cone(i

k

)

�

is the simpli
ial obje
t de�ned by fCone(i

k

)

n

jng. Sin
e ho
olim

�

preserves quasi-

isomorphisms, it follows that ho
olim

�

Gr

k

DN(P

�

) ' ho
olim

�

Cone(i

k

)

�

�

=

Cone(ho
olim

�

(i

k

)) '

Cone(F

k�1

M ! F

k

M) ' F

k

(M)=F

k�1

(M) = Gr

k

(M).

Definition 2.5. The simpli
ial obje
t DN(P

�

) de�ned in the last proposition will be

denoted P(M)

�

hen
eforth. This will be referred to as a �ltered simpli
ial resolution of the

�ltered obje
t M .

2.1.2. Let M , N"Mod

l

(S;A) be provided with non-de
reasing �ltrations 
ompatible

with the Cartan �ltration on A. Now we de�ne an indu
ed �ltration on Hom

A

(M;N) and

on Hom

A

(M;N) as follows. Let K"Presh and let k denote a �xed integer. We let K 
M

be �ltered by F

i

(K 
M) = Image(K 
 F

i

(M)! K 
M). We let

F

k

Hom

A

(K 
M;N) = ff : K 
M ! N"Hom

A

(K 
M;N)jf

K
F

i

M

fa
tors through

the obvious map F

i+k

N ! Ng.

Now �x k, M and N . Consider the fun
tor K ! F

k

Hom

A

(K 
M;N), Presh ! (sets).

Sin
e the fun
tor 
 preserves 
olimits in either argument, it is 
lear that the above fun
tor

sends 
olimits in K to limits. Now, we let F

k

Hom

A

(M;N) be de�ned by:

Hom

A;k

(K 
M;N)

�

=

Hom

Presh

(K;F

k

Hom

A

(M;N)).

(It should be 
lear that fF

k

Hom

A

(M;N)jkg de�nes a �ltration of Hom

A

(M;N).) Let M

and N be provided with non-de
reasing �ltrations 
ompatible with the Cartan �ltration on

A. Let P(M)

�

! M denote a simpli
ial resolution 
hosen as above applied to M instead

of L. Ea
h P(M)

k

"Mod

l

(S;A); it is provided with a non-de
reasing �ltration 
ompatible

with the stru
ture maps of the augmented simpli
ial obje
t P(M)

�

! M and 
ompatible

with the Cartan �ltration on A. The above �ltration, along with the one on N , de�nes an

indu
ed �ltration on ea
h Hom

A

(P(M)

k

;G

n

N) ' Hom

A

(P(M)

k

;G

n

N) and hen
e on

RHom

A

(M;N) = holim

�

�fHom

A

(P(M)

k

;G

n

N)jn; kg

We will denote this by fF

k

RHom

A

(M;N)jkg. One de�nes a similar �ltration on onRMap

A

(M;N).

Lemma 2.6. Let M"Presh be provided with a non-de
reasing �ltration fF

k

M jkg. As-

sume the �ltration is separated. Let j

U

: U ! X be in the site S and let n denote an integer.

A map f"S(n; U)(F

k

M) will be 
alled a trivial map if H

�

(f) is the trivial map. Then, after

identifying the trivial map with the base point, one obtains the isomorphisms


olim

k!1

S(n; U)(F

k

M)

�

=

t

k

S(n; U)(F

k

M)=S(n; U)(F

k�1

M)

(Observe that S(n; U)(F

k�1

M) is a subset of S(n; U)(F

k

M) for ea
h k. Ea
h S(n; U)(F

k

M)

is pointed with the trivial map being the base point. The quotient on the right hand side is

the set theoreti
 quotient where all maps in S(n; U)(F

k�1

M) are identi�ed with the base

point.)

Let f : M

0

! M denote a �ltration preserving map between obje
ts in Presh provided

with �ltrations as above. If the �ltrations on M

0

and M are exhaustive (separated), so is the

indu
ed �ltrations on Co
yl(f) and fib

h

(f).

Proof. Fix an integer k. Suppose f"S(n; U)(F

k

M) be a non-trivial map, i.e. H

�

(f) 6=

�. The hypothesis that the �ltration is separated shows that, there exists a smallest in-

teger m � k so that f"S(n; U)(F

m

M). Now f does not belong to S(n; U)(F

m�1

M).

Therefore, f represents a non-trivial 
lass in S(n; U)(F

m

M)=S(n; U)(F

m�1

M). The map
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S(n; U)(F

m

M)! S(n; U)(F

m

M)=S(n; U)(F

m�1

M) is bije
tive on all maps f"S(n; U)(F

m

M)�

S(n; U)(F

m�1

M). This provides the required isomorphisms.

The last assertion follows readily by 
onsidering the long-exa
t sequen
e on applying

the 
ohomology fun
tor fH

q

jqg to the triangle fib

h

(f)!M

0

' Co
yl(f)!M ! Tfib

h

(f)

and sin
e H

q

is assumed to 
ommute with sums. �

Proposition 2.7. Assume in addition to the hypotheses of Proposition 2.4 that the

�ltration on M is separated.

(i) If F

k

Hom

A

(P(M)

i

;G

n

N) denotes the k-th term of the �ltration, then

(2.1.3) F

t�1

Hom

A

(P(M)

i

;G

n

N)! F

t

Hom

A

(P(M)

i

;G

n

N)! Gr

t

Hom

A

(P(M)

i

;G

n

N)

is a triangle in Presh.

(ii) Moreover, there exists a quasi-isomorphism

(2.1.4) Gr

t

(RHom

A

(M;N)) ' RHom

Gr

C

(A)

(Gr(M); Gr(N))

t

and

a triangle:

(2.1.5) F

t�1

RHom

A

(M;N)! F

t

RHom

A

(M;N)! Gr

t

RHom

A

(M;N)

Proof. Throughout the proof we will let S denote the unit of Presh (i.e. for the

symmetri
 monoidal stru
ture) in the situations of Chapter II, se
tions 2 and 4; in the

situation of Chapter II, se
tion 3, it will denote R. Observe that the triangle in ( 2.1.5) is

obtained from the triangle in ( 2.1.3) by taking the diagonal followed by homotopy limits.

Moreover, by ( 2.1.1), fGr(P(M)

i

)jig is a resolution of Gr(M). Therefore, it suÆ
es to

prove (i) and show the existen
e of a natural quasi-isomorphism for all t, i and n:

(2.1.6) Gr

t

(Hom

A

(P(M)

i

;G

n

N) ' RHom

Gr

C

(A)

(Gr(P(M))

i

;G

n

GrN)

t

Next re
all that fP(M)

i

ji � 0g is de�ned using as
ending indu
tion on i as in Propo-

sition 2.4. We let P

i

in Proposition 2.4 be given by P (M)

i

. Now P(M)

�

= DN(P (M)

�

).

Observe that Hom(DN(P (M)

�

); L) = DN(fHom(P (M)

�

; L)g) for any L"Presh where the

DN on the right is the denormalization fun
tor sending 
o-
hain 
omplexes to 
osimpli-


ial obje
ts. Therefore, to prove (i), it suÆ
es to prove the 
orresponding statement when

P(M)

�

has been repla
ed by P (M)

�

. Re
all

(2.1.7) P (M)

i

= t

m"Z

t

U"S

t

S(n;U)(fib

h

(u

i�1

))

Fj

#

U !

j

�

U

(�

m

S)

where the free fun
tor F is de�ned as in ( 1.0.2) . Let

P (M)

0

i

= t

m"Z

t

U"S

t

S(n;U)(fib

h

(u

i�1

))

j

#

U !

j

�

U

(�

m

S).

Now P (M)

0

i

is �ltered by the �ltration:

F

k

P (M)

0

i

= t

m"Z

t

U"S

t

S(n;U)(F

k

(fib

h

(u

i�1

)))

j

#

U !

j

�

U

(�

m

S)

and P (M)

i

= F(P (M)

0

i

) is given the �ltration indu
ed from the Cartan �ltration of A and

the above �ltration on P(M)

0

i

.

Now we will �x an i and j

U

: U ! X in the siteS. Let S

k

(U) = t

n

S(n; U)(F

k

fib

h

(u

i�1

))

and S(U) = 
olim

k!�1

S

k

(U). Sin
e the indu
ed �ltration on fib

h

(u

i�1

) is also separated,
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Lemma 2.6 shows S(U) = t

k

S

k

(U)=S

k�1

(U) modulo the identi�
ation of the trivial map

with the base point. Next 
onsider the situations in Chapter II, se
tions 2 or 4 where

Presh is provided with a unital symmetri
 monoidal stru
ture. In this 
ase, one ob-

tains the quasi-isomorphism (making use of the �ltration preserving quasi-isomorphism:

Hom

A

(F(M);M

0

)

�

=

Hom

S

(M;M

0

), M"Presh, M

0

"Mod

l

(S;A)):

F

t

(Hom

A

(P (M)

i

;G

n

N) ' �

k

�

j

U

�

S

k

(U)=S

k�1

(U)

j

U�

G

n

F

t+k

N , for ea
h t.

Therefore, in this 
ase, one obtains a quasi-isomorphism:

Gr

t

(Hom

A

(P (M)

i

;G

n

N)

�

=

�

k

�

j

U

�

S

k

(U)=S

k�1

(U)

j

U�

G

n

Gr

t+k

N

Sin
e the map F

t+k�1

N ! F

t+k

N is an admissible monomorphism, the diagram in (i) is

indeed a triangle. On the other hand, in the same situation,

RHom

Gr

C

(A);t

(Gr(P (M))

i

;G

n

GrN)

�

=

�

k

�

j

U

�

S

k

(U)=S

k�1

(U)

j

U�

G

n

Gr

t+k

N

as well. This proves the proposition in the situations of Chapter II, se
tions 2 or 4. In

the situation of Chapter II, se
tion 3, where A is assumed to be a sheaf of di�erential

graded algebras over an operad, Chapter II, Proposition 3.7 shows that one instead obtains

a �ltration preserving 
hain homotopy equivalen
e between the 
orresponding terms, that is

natural in the arguments M and N . Therefore one obtains the required quasi-isomorphism

in this 
ase as well. This proves the isomorphism in ( 2.1.6). �

Remark 2.8. Now �x an integer t

0

. The given �ltrations on M and N indu
e a non-

de
reasing �ltration F

t

on F

t

0

(RHom

A

(M;N)). The same proof as above now shows one

obtains

Gr

t

(F

t

0

RHom

A

(M;N)) ' RHom

Gr(A)

(Gr(M); Gr(N))

t

; t � t

0

and(2.1.8)

' � t > t

0

(2.1.9)

and therefore a triangle:

(2.1.10) F

t�1

RHom

A

(M;N)! F

t

RHom

A

(M;N)! Gr

t

RHom

A

(M;N); t � t

0

Lemma 2.9. Let �

�

: Mod

l

(S; Gr

C

(A)) ! Mod

l

(S; GEM(H

�

(A))) denote the fun
-

tor sending an obje
t

~

M to GEM(H

�

(A)) 


Gr

C

(A)

~

M . If � :

~

M !

~

M

0

denotes a quasi-

isomorphism of obje
ts inMod

l

(S; Gr

C

(A)), the indu
ed map �

�

(�) is also a quasi-isomorphism.

Similar 
on
lusions hold for the 
ategory of right-modules.

Proof. Consider a 
ommutative square:

P

�

0

����! P

0

�

~

M

?

?

y

�

~

M

0

?

?

y

~

M

�

����!

~

M

0

with P , P

0


at obje
ts in Mod

l

(S;A) and where the verti
al maps are quasi-isomorphisms.

Now L�

�

(

~

M) = GEM(H

�

(A)) 


Gr

C

(A)

P and L�

�

(

~

M

0

) = GEM(H

�

(A)) 


Gr

C

(A)

P

0

; the �rst

spe
tral sequen
e in Proposition 1.2 
omputes both terms. Consider the spe
tral sequen
e

for the �rst term:
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E

s;t

2

= Tor

H

�

(A)

s;t

(H

�

(GEM(H

�

(A)), H

�

(P ))) H

�s+t

(GEM(H

�

(A)) 


Gr

C

(A)

P ):

This spe
tral sequen
e degenerates sin
e H

�

(GEM(H

�

(A)))

�

=

H

�

(A). The same 
on
lu-

sions hold for the 
orresponding spe
tral sequen
e for the se
ond term. It follows that the

required 
on
lusions hold with L�

�

in the pla
e of �

�

.

Next re
all that P = ho
olim

�

P

�

, with P

�

a simpli
ial obje
t in Mod

l

(S; Gr

C

(A)) with

ea
h P

n

being 
at. The augmentation �

~

M

is indu
ed by a map of simpli
ial obje
ts �

~

M

:

P

�

! K(

~

M; 0), the right-hand-side being the obvious 
onstant simpli
ial obje
t. Re
all

that spe
tral sequen
e above is the spe
tral sequen
e for the homotopy 
olimit as in se
tion

1. Therefore the above simpli
ial map indu
es a map of the above spe
tral sequen
e to

the 
orresponding spe
tral sequen
e for the homotopy 
olimit of the 
onstant simpli
ial

obje
t GEM(H

�

(A)) 


Gr

C

(A)

K(

~

M; 0). Clearly the spe
tral sequen
e for the above 
onstant

simpli
ial obje
t also degenerates thereby showing the augmentation L�

�

(

~

M) ! �

�

(

~

M) is

a quasi-isomorphism. �

2.1.11. We let �

�

: Mod

l

(S; GEM(H

�

(A))) ! Mod

l

(S; Gr

C

(A)) denote the obvious

fun
tor sending an obje
t K in the �rst 
ategory to an obje
t in the se
ond 
ategory using

the map �.

Proposition 2.10. (i) LetM"Mod

fil

r

(S;A), N"Mod

fil

l

(S;A). Let

�

M"D(Mod

l

(S;H

�

(A)))

and

�

N"D(Mod

l

(S;H

�

(A))) so that Gr

F

(M) ' �

�

(Sp(

�

M)) and Gr

F

(N) ' �

�

(Sp(

�

N)). Then

there exist quasi-isomorphisms:

Gr

F

(M)

L




Gr

C

(A)

Gr

F

(N) ' Sp(

�

M)

L




Sp(H

�

(A))

Sp(

�

N)

(ii) Let M , N"Mod

filt

l

(S;A). Let

�

M"D(Mod

l

(S;H

�

(A))) and

�

N"D(Mod

r

(S;H

�

(A))) so

that Gr

F

(M) ' �

�

(Sp(

�

M)) and Gr

F

(N) ' �

�

(Sp(

�

N)). Then there exist quasi-isomorphisms:

RHom

Gr(A)

(Gr(M), Gr(N)) ' RHom

Sp(H

�

(A))

(Sp(

�

M), Sp(

�

N))

Proof. Observe that the maps

Gr

F

(M) ' Gr

F

(M)

L




Gr

C

(A)

Gr

C

(A) ! Gr

F

(M)

L




Gr

C

(A)

GEM(H

�

(A)) = L�

�

(Gr

F

(M))

and

Gr

F

(N) ' Gr

F

(N)

L




Gr

C

(A)

Gr

C

(A)! Gr

F

(N)

L




Gr

C

(A)

GEM(H

�

(A)) = L�

�

(Gr

F

(N))

are quasi-isomorphisms. (This follows readily from the degeneration of the �rst spe
tral

sequen
e in Proposition 1.2 .) The given quasi-isomorphisms Gr

F

(M) ' �

�

Sp(

�

M) and

Gr

F

(N) ' �

�

Sp(

�

N) show that

L�

�

(Gr

F

(M)) ' L�

�

(�

�

(Sp(

�

M))) and L�

�

(Gr

F

(N)) ' L�

�

(�

�

(Sp(

�

N))).

Finally observe that there exist natural maps L�

�

(�

�

(Sp(

�

M)))! Sp(

�

M) and

L�

�

(�

�

(Sp(

�

N))) ! Sp(

�

N). These maps are quasi-isomorphisms, on
e again by the degen-

eration of the spe
tral sequen
es in Proposition 1.2. It follows that

Gr

F

(M)

L




Gr

C

(A)

Gr

F

(N) ' Gr

F

(M)

L




Gr

C

(A)

Sp(H

�

(A))

L




Sp(H

�

(A))

Gr

F

(N)

L




Gr

C

(A)

Sp(H

�

(A))
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' Sp(

�

M)

L




Sp(H

�

(A))

Sp(

�

N).

The �rst assertion follows.

Next we 
onsider the se
ond assertion. Let P(M)

�

!M denote the 
omplex 
onstru
ted

as in De�nition ( 2.5). Now

Hom

Gr

C

(A)

(Gr(P (M)

i

, G

n

Gr(N))) ' Hom

Gr

C

(A)

(Gr(P (M)

i

, G

n

�

�

(Sp(

�

N))))

sin
e Gr(P (M))

i

is lo
ally proje
tive inMod

l

(Gr

C

(A)). The latter term is quasi-isomorphi


to

Hom

Gr

C

(A)

(Gr(P (M)

i

, �

�

G

n

(Sp(

�

N))))

�

=

Hom

Gr

C

(A)

(Gr(P (M)

i

, �

�

(Hom

Sp(H

�

(A))

(Sp(H

�

(A));G

n

(Sp(

�

N))))))

�

=

Hom

Gr

C

(A)

(Gr(P (M)

i

, Hom

Sp(H

�

(A))

(Sp(H

�

(A));G

n

(Sp(

�

N)))))

where Hom

Sp(H

�

(A))

(Sp(H

�

(A));G

n

(Sp(

�

N))) has the stru
ture of a sheaf of left-modules

overGr

C

(A) indu
ed from the stru
ture of a sheaf of right-modules overGr

C

(A) on Sp(H

�

(A)).

By Chapter II, (2.0.9) with B repla
ed by Sp(H

�

(A)) and A repla
ed by Gr

C

(A), the last

term above is quasi-isomorphi
 to

Hom

Sp(H�(A))

(F

Gr

C

(A)

(Gr(P (M)

0

i

)) 


Gr

C

(A)

(Sp(H

�

(A)));G

n

Sp(

�

N))

Here F

Gr

C

(A)

is the free fun
tor asso
iated to Gr

C

(A). Re
all

P (M)

0

k

= t

m"Z

t

U"S

t

S(m;U)(fib

h

(u

i�1

))

j

#

U !

j

�

U

(�

m

S)

whi
h is �ltered as in Theorem ( 2.3). Therefore

F

Gr

C

(A)

(Gr(P(M)

0

))

�

=

t

m"Z

t

U"S

t

S(m;U)(Gr(fib

h

(u

i�1

)))

j

#

U !

j

�

U

(�

m

Gr

C

(A)).

We de�ne a 
omplex

�

d

i+1

!

�

P

i

�

d

i

!

�

P

i�1

�

d

i�1

! :::

�

d

�1

!

�

M of Abelian sheaves as follows. We let

�

P

0

=

H

�

(P

0

),

�

P

i

= H

�

(P

i

), �u

i

= H

�

(u

i

) :

�

P

i+1

= H

�

(P

i+1

) ! H

�

(fib

h

(u

i�1

))

�

=

ker(H

�

(u

i�1

))

and

�

d

i

= H

�

(d

i

) : H

�

(P

i

)! H

�

(P

i�1

). Now one may observe that

:::

�

P

i

�

d

i

!

�

P

i�1

�

d

i�1

! :::

�

d

0

!

�

P

0

�

d

�1

!

�

M

is a resolution of

�

M by a 
omplex of sheaves of H

�

(A)-modules. Moreover, there exists

a natural map (see Chapter I, (ST8)) F

Gr

C

(A)

Gr(P(M)

0

i

= Gr(P(M))

i

! �

�

Sp(

�

P

i

) of

obje
ts in Mod

l

(S; Gr

C

(A)); this map is a quasi-isomorphism. Therefore, there exists a

quasi-isomorphism:

F

Gr

C

(A)

(Gr(P (M)

0

)

i

) 


Gr

C

(A)

(Sp(H

�

(A)))

'

!�

�

(Sp(

�

P ))

i




Gr

C

(A)

(Sp(H

�

(A))) ' �

�

�

�

(Sp(

�

P )

i

) ' Sp(

�

P )

i

where one obtains the last quasi-isomorphism as in (i). By �rst applying the denormalization

fun
tor and then taking the homotopy limit over �, one 
ompletes the proof of (ii). �

Definition 2.11. Let M"Mod

fil

r

(S;A). We will 
onsider the following two 
onditions

on the given �ltration F :
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(i) Gr(M) = fF

n

M=F

n�1

M jng"Mod

r

(S; Gr

C

(A)) and

(ii) Gr(M) ' Sp(

�

M),

�

M"D(Mod

r

(S;H

�

(A))).

We say M is of �nite tor dimension or f.t.d if

�

M is. We say M is globally of f.t.d

if in addition

�

M

:

is globally of f:t:d. Similar de�nitions apply to N"Mod

l

(S;A). We

say M is pseudo-
oherent (perfe
t) if the hypotheses (i) is satis�ed and Gr(M) ' Sp(

�

M),

�

M"D((Mod

r

(S;H

�

(A))) with

�

M pseudo-
oherent (perfe
t, respe
tively).

Proposition 2.12. Let

�

M"D

b

(Mod

r

(S;H

�

(A))) and

�

N"D

b

(Mod

l

(S;H

�

(A))). As-

sume that

�

M is globally of �nite tor dimension. Then there exists a quasi-isomorphism:

Sp(

�

M)

L




Sp(H

�

(A))

Sp(

�

N) ' Sp(

�

M 


H

�

(A)

�

N)

Proof. First assume that both

�

M and

�

N are 
omplexes 
on
entrated in degree 0. Now

we show that there exists a natural map

(2.1.12) GEM(

�

M) 


GEM(H

�

(A))

GEM(

�

N)! GEM(

�

M 


H

�

(A)

�

N)

The hypothesis in Chapter I, (ST6) shows there exists a 
ommutative diagram:

GEM(

�

M)
GEM(H

�

(A))
GEM(

�

N)! GEM(

�

M)
GEM(

�

N)

?

?

y

?

?

y

GEM(

�

M 
H

�

(A)


�

N)! GEM(

�

M 


�

N)

The horizontal map in the �rst row is given by �

GEM(

�

M)


 id

GEM(

�

N)

, with �

GEM(

�

M)

:

GEM(

�

M) 
GEM(H

�

(A)) ! GEM(

�

M) the indu
ed module stru
ture on GEM(

�

M) and

the horizontal map in the se
ond row is given by GEM(�

�

M


 id

�

N

, with �

�

M

:

�

M 
H

�

(A)!

�

M being the module stru
ture on

�

M . A similar 
ommutative square also exists where the

top horizontal map is given by id

GEM(

�

M)


 �

GEM(

�

N)

, with �

GEM(

�

N)

: GEM(H

�

(A)) 


GEM(

�

N)! GEM(

�

N) the indu
ed module stru
ture on GEM(

�

N) and where the bottom

row is given by GEM(id

�

M


�

�

N

), with �

�

N

being the module stru
ture on

�

N . The de�nition

of GEM(

�

M) 


GEM(H

�

(A))

GEM(

�

N) as in Chapter II, (1.2.2) and (1.2.7), shows that the map

in ( 2.1.12) exists.

Next 
onsider the 
ase when

�

M is a presheaf of graded 
at modules over H

�

(A). Now

the �rst spe
tral sequen
e in Proposition 1.2 
omputes

H

�

(GEM(

�

M) 


GEM(H

�

(A))

GEM(

�

N)

i

)

�

=

H

�

(GEM(

�

M)) 


H

�

(GEM(H

�

(A)))

H

�

(GEM(

�

N)

i

)

�

=

�

M 


H

�

(A)

�

N

i

for ea
h i. One may dire
tly 
ompute H

�

(GEM(

�

M 


H

�

(A)

�

N

i

))

�

=

�

M 


H

�

(A)

�

N

i

for ea
h �xed

i. (See for example the proof of 2.17 below.) It follows that in this 
ase the map in ( 2.1.12)

is a quasi-isomorphism.

Now one may observe from ( 2.1.12) and Appendix B that there exists a map:

DN(GEM(

�

M)) 


GEM(H

�

(A))

DN(GEM(

�

N))! DN(GEM(

�

M)) 


H

�

(A)

GEM(

�

N))
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(Here DN is the fun
tor 
onsidered in Appendix B, 0.1.) Next we will assume that

�

M and

�

N are bounded above by an integer m. In this 
ase we may �nd a resolution of the 
hain


omplex

�

M [m

h

℄ by a 
hain-
omplex

�

F

�

all whose terms as in Theorem 2.3. By Chapter I,

(ST9)

Sp(

�

M) ' 


m

ho
olim

�

DN(GEM(

�

M [m

h

℄)) ' 


m

ho
olim

�

DN(

�

F :) and

Sp(

�

N) ' 


m

ho
olim

�

DN(GEM(

�

N [m

h

℄)).

Therefore

Sp(

�

M)

L




Sp(H

�

(A))

Sp(

�

N)

' 


m

ho
olim

�

DN(GEM(

�

F:)) 


GEM(H

�

(A))




m

ho
olim

�

DN(GEM(

�

N [m

h

℄))

' 


2m

ho
olim

�

�[DN(

�

F ) 


GEM(H

�

(A))

DN(GEM(

�

N [m

h

℄))℄

' 


2m

ho
olim

�

DN(GEM(TOT (

�

F [m

h

℄ 


H

�

(A)

�

N [m

h

℄)))

= 


2m

ho
olim

�

DN(GEM(TOT (

�

F 


H

�

(A)

�

N)[m

h

℄)) ' Sp(TOT (

�

F 


H

�

(A)

�

N) = Sp(

�

M

L




H

�

(A)

�

N).

(Here TOT denotes the total 
omplex.) �

Proposition 2.13. Let

�

M"D(Mod

l

(S;H

�

(A))) and

�

N"D(Mod

l

(S;H

�

(A))). Assume

that

�

M is globally of �nite tor dimension. Then there exists a quasi-isomorphism:

RHom

Sp(H

�

(A))

(Sp(

�

M), Sp(

�

N)) ' Sp(RHom

H

�

(A)

(

�

M ,

�

N))

Proof. We will �rst 
onsider the 
ase when the site S is pun
tual,

�

M =

�

P is a proje
-

tive module over H

�

(A) and

�

N is a single module over H

�

(A). Now the right-hand-side iden-

ti�es with Sp(Hom

H

�

(A)

(

�

P;

�

N)) and the left-hand-side identi�es withHom

Sp(H

�

(A))

(P; Sp(

�

N))

where P ! Sp(M) is a quasi-isomorphism with P a proje
tive obje
t inD(Mod

l

(S; Sp(H

�

(A)))).

Using the observation that

�

P is a split summand of a free H

�

(A)-module, one may now

obtain a quasi-isomorphism: Hom

Sp(H

�

(A))

(P; Sp(

�

N)) ' Hom

Sp(H

�

(A))

(Sp(

�

P ); Sp(

�

N)) =

Hom

GEM(H

�

(A))

(GEM(

�

P ); GEM(

�

N)). Using the de�nition of the latter as an equalizer

(see Chapter II, (1.2.2) and (1.2.8)), one may now obtain a natural map

Sp(Hom

H

�

(A)

(

�

P;

�

N)) = GEM(Hom

H

�

(A)

(

�

P;

�

N))! Hom

GEM(H

�

(A))

(GEM(

�

P ); GEM(

�

N)).

One may 
ompute the 
ohomology sheaves of the left-hand-side as in Proposition 2.17 below

and one may 
ompute the 
ohomology sheaves of the right-hand-side by the third spe
tral

sequen
e in Proposition 1.2. It follows the above map is a quasi-isomorphism.

Next we 
onsider the 
ase when

�

M is a sheaf of graded modules over H

�

(A) that is

stalk-wise proje
tive (as a module over the 
orresponding stalks of H

�

(A)) and

�

N is a single

sheaf. Now the right-hand-side identi�es with Sp(Hom

H

�

(A)

(

�

P ;G

�

N)). Using the �rst 
ase,

one may identify the left-hand-side now with Hom

Sp(H

�

(A))

(Sp(

�

P );GSp(

�

N)). Sin
e the

homotopy inverse limits 
ommute with themselves and with produ
ts, one may identify the

former (the latter) with

holim

�

GEM(Hom

H

�

(A)

(

�

P;G

n

�

N))

(holim

�

Hom

GEM(H

�

(A))

(GEM(

�

P ); G

n

GEM(

�

N)), respe
tively)
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Next we pro
eed to show these are quasi-isomorphi
. Clearly it suÆ
es to show

(2.1.13) GEM(Hom

H

�

(A)

(

�

P;G

�

N))

and

(2.1.14) Hom

GEM(H

�

(A))

(GEM(

�

P ); GGEM(

�

N))

are quasi-isomorphi
. Re
all that G = �p

�

ÆU Æa Æ �p

�

as in Chapter II, (1.0.1). Now ( 2.1.13)

identi�es with GEM(�p

�

U(Hom

aÆ�p

�

H

�

(A)

(a Æ �p

�

(

�

P ); a Æ �p

�

(

�

N)))) whi
h, by the �rst 
ase


onsidered above identi�es with

�p

�

UHom

GEM(aÆ�p

�

H

�

(A))

(GEM(a Æ �p

�

(

�

P ); a Æ �p

�

(

�

N))).

( 2.1.14) identi�es with �p

�

U(Hom

aÆ�p

�

(GEM(H

�

(A)))

(a Æ �p

�

GEM(

�

P ); a Æ �p

�

GEM(

�

N))).

Moreover, as in the �rst 
ase above, one may show there exists a natural map from the former

to the latter. Next observe that �p

�

GEM(

�

P ) is a proje
tive module over �p

�

GEM(H

�

(A))

while GEM(�p

�

(

�

P )) is a proje
tive module over GEM(�p

�

(

�

P )). Now 
onsider the third

spe
tral sequen
e in Proposition 1.2 applied to these. It follows readily that they degenerate

at the E

2

-terms and the above map indu
es an isomorphism there. It follows that the terms

in ( 2.1.13) and ( 2.1.14) are quasi-isomorphi
, thereby proving the proposition in this 
ase.

Next 
onsider the 
ase where everything remains as above, ex
ept that

�

N is a bounded


omplex that is trivial in negative degrees. In this 
ase Sp(

�

N) = �

i

holim

�

DN(GEM(

�

N(i))),

if

�

N = �

i

�

N(i). The above holim

�


omes out of the Hom and 
ommutes with the holim

�

asso
iated to the Godement resolution. Therefore, this 
ase follows readily from the previous

one.

Next we assume

�

M is a bounded 
omplex that is globally of �nite tor-dimension. We

may now repla
e

�

M by a bounded 
omplex

�

P ea
h term of whi
h is stalk-wise proje
tive

over the 
orresponding stalk of H

�

(A). By applying appropriate shifts (see the proof of the

previous proposition), one may now write Sp(

�

P ) = 


m

ho
olim

�

DN(GEM(P [p

h

℄)). Then

RHom

Sp(H

�

(A))

(Sp(

�

M); Sp(

�

N)) identi�es with

holim

�

f�

m

Hom

Sp(H

�

(A))

(DN(GEM(P [p

h

℄)); G

n

DNGEM(

�

N))jng. Sin
e ea
h term of the

simpli
ial obje
t

DN(GEM(P [p

h

℄)) is stalkwise proje
tive over the stalks of H

�

(A), one may apply the

previous 
ase along with the results on shifts and suspension in Appendix B to identify it

with holim

�

fSp(RHom

H

�

(A)

(

�

P;G

n

(

�

N)))jng. The 
ase when

�

N is not ne
essarily trivial in

negative degrees is also handled by applying 
ertain shifts. (See Appendix B.) �

Lemma 2.14. Let

�

M"Mod

l

(S;H

�

(A)). Then the following are true:

(i)

�

M has a resolution by sheaves of the form

~

F

n

= �

�

j

#

U

�

!

((H

�

(A))

jU

�

),

where ea
h U

�

"S.

(ii) If

�

M is lo
ally of �nite type, for ea
h point �x of S, there exists a neighborhood U

x

of x in S so that ea
h

~

F

n

has only �nitely many summands

(iii) If

~

M is of f.t.d, we may �nd a resolution

�

F

�

!

�

M , so that the following 
onditions

are also satis�ed:

for ea
h point �x of X there is a neighborhood U

x

and an integer m

�x

>> 0 so that

(a) (

�

F

i

)

�x

= 0 if i > N

�x

,

�

F

i

for i < m

�x

are as in (i) and
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(b) (

�

F

m

�x

) = ker(�

�

j

U

�

!

((

�

F

m

�x

�1

)

jU

�

)! �

�

j

U

�

!

((

�

F

m

�x

�2

)

jU

�

))

whi
h is a sheaf of 
at graded H

�

(A)-modules. (If the site S is quasi-
ompa
t, one may �nd

a 
ommon m that works for all points �x.)

Proof. Sin
e the site S has enough points, the above three statements are 
lear. �

Lemma 2.15. Let fK

i;j

ji; jg denote a double 
omplex in Mod

l

(S;H

�

(A)) so that the

di�erentials in the indi
es i and j are of degree +1. Assume that K

i;j

= 0 if i < 0 or j < 0.

Now DN ÆDN(

b

GEM(K)) is a double 
osimpli
ial obje
t in Mod

l

(GEM(H

�

(A))). If Tot

1

and Tot

2

denote the fun
tor Tot (whi
h is the Tot fun
tor as in [B-K℄), applied in the �rst

and se
ond degrees respe
tively, one obtains a natural quasi-isomorphism:

Tot

1

Æ Tot

2

DN ÆDN(GEM(K)) ' Tot�(DN ÆDN(GEM(K)))

' Tot(DN(TOT (fGEM(K

i;j

)ji; jg)))

where TOT (fGEM(K

i;j

)ji; jg) is the total 
o-
hain 
omplex de�ned by

(TOT (fGEM(K

i;j

)ji; jg))

k

= �

u+v=k

GEM(K

u;v

)

Remark 2.16. Observe that TOT (fGEM(K

i;j

)ji; jg) = GEM(TOT (fK

i;j

ji; jg)).

Proof. This is 
lear sin
e we are working in an Abelian 
ategory. �

Proposition 2.17. (i) Let

�

M = �

i

�

M(i)"D(Mod

r

(S;H

�

(A))) be globally of �nite tor

dimension,

�

N = �

i

�

N(i)"Mod

l

(S;H

�

(A)). Then

H

s+t

(Gr

t

[Sp(

�

M

L




H

�

(A)

�

N)℄)

�

=

H

s

([

�

M

L




H

�

(A)

�

N ℄(t))

�

=

H

s

([

�

F 


H

�

(A)

�

N ℄(t))

�

=

Tor

H

�

(A)

�s;t

(

�

M;

�

N)

(ii) Let

�

M = �

i

�

M(i)"D(Mod

l

(S;H

�

(A))) be globally of �nite tor dimension,

�

N = �

i

�

N(i)"D(Mod

l

(S;H

�

(A))). Then

H

s+t

(Gr

t

[Sp(RHom

H

�

(A)

(

�

M ,

�

N))℄)

�

=

H

s

([RHom

H

�

(A)

(

�

M ,

�

N)℄(t))

�

=

H

s

([Hom

H

�

(A)

(

�

F ,

G

�

�

N)℄(t))

�

=

Ext

s;t

H

�

(A)

(

�

M;

�

N)

Proof. This follows from the following 
omputation. Let

�

K = �

i

�

K(i)"D(Mod

r

(S;H

�

(A))).

By applying some shifts as in Appendix B, one may assume without loss of generality that

this 
o-
hain 
omplex is trivial in negative degrees. Now re
all that Sp(

�

K) = �

i

holim

�

(EM

i

(

�

K(i)).

Moreover, H

k

(EM

i

(

�

K(i))

�

=

�

K(k) if i = k and

�

=

0 otherwise. Moreover, observe that the

�ltration on Sp(

�

K) is given by Sp(

�

K)

t

= �

i�t

EM

i

(

�

K(i)). Therefore the spe
tral sequen
e

for the homotopy inverse limit in Chapter I, (Hl) shows that

H

s+t

(Gr

t

[Sp(

�

K)℄)

�

=

H

s+t

(holim

�

(EM

t

(

�

K(t))))

�

=

H

s

(H

t

(EM

t

(

�

K(t))))

�

=

H

s

(

�

K(t))
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Let

�

P !

�

M denote a quasi-isomorphism from a bounded 
omplex of sheaves of H

�

(A)-

modules that is stalkwise proje
tive. Take

�

K =

�

P 


H

�

(A)

�

N (

�

K = Hom

H

�

(A)

(

�

P;G(

�

N))) to

obtain the �rst (se
ond, respe
tively) result. �

Theorem 2.18. (i) LetM"Mod

fil

r

(S;A), N"Mod

fil

l

(S;A) and let

�

M"D(Mod

r

(S;H

�

(A))),

�

N"D(Mod

l

(S;H

�

(A))) so that Gr(M) ' Sp(

�

M) and Gr(N) ' Sp(

�

N).

In this situation, there exists a spe
tral sequen
e:

E

2

s;t

= T or

H

�

(A)

s;t

(

�

M;

�

N)) H

�s+t

(M

L




A

N)

Moreover, this spe
tral sequen
e 
onverges strongly if at least one of M or N is of �nite tor

dimension.

(ii) Let M"Mod

fil

l

(S;A), N"Mod

fil

l

(S;A) and let

�

M"D(Mod

l

(S;H

�

(A))),

�

N"D(Mod

l

(S;H

�

(A))) so that Gr(M) ' Sp(

�

M) and Gr(N) '

Sp(

�

N). Assume further that both

�

M and

�

N are globally of �nite tor dimension (and in

parti
ular, bounded).

In this situation, there exists a spe
tral sequen
e:

E

s;t

2

= Ext

s;t

H

�

(A)

(

�

M;

�

N)) H

s+t

(RHom

A

(M , N))

In general, this spe
tral sequen
e 
onverges only 
onditionally in the sense of [Board℄. How-

ever, this spe
tral sequen
e 
onverges strongly in the following 
ases:

(a) if M is perfe
t (with no further hypotheses) or

(b) if H

�

(A) is lo
ally 
onstant on the site S and

�

M is 
onstru
tible.

Proof. Let P(M)

�

!M denote a resolution as in Proposition 2.4. Consider (i). Now

we �lter M

L




A

N = ho
olim

�

P(M)

�




A

N by the �ltration indu
ed from the given �ltrations on

M , N and the Cartan �ltration on A. Now we obtain the identi�
ation:

Gr(M

L




A

N) = Gr(ho
olim

�

P(M)

�




A

N)

' ho
olim

�

Gr(P(M)

�




A

N) ' ho
olim

�

[GrP(M)

�




Gr

C

(A)

Gr(N)℄

' (ho
olim

�

GrP(M)

�

) 


Gr

C

(A)

Gr(N) ' Gr(M)

L




Gr

C

(A)

Gr(N)

The �rst ' is 
lear sin
e ho
olim

�


ommutes with taking the asso
iated graded terms, while

the se
ond ' follows from the observation that taking the asso
iated graded terms 
ommutes

with 
o-equalizers, the third follows from the 
ommutativity of ho
olim

�

with 


Gr

C

(A)

and the

fourth follows from ( 2.1.1).

i.e. F

t�1

(M

L




A

N)! F

t

(M

L




A

N)! Gr

t

(M

L




A

N) = [Gr(M)

L




Gr

C

(A)

Gr(N)℄

t

is a triangle. We take H

�

of the above triangle to obtain a long exa
t sequen
e and the

asso
iated exa
t-
ouple. This provides the required spe
tral sequen
e. Now the identi�
ation

of the E

2

-terms follows from Proposition 2.10 (i), Proposition 2.12 and Proposition 2.17.
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The strong 
onvergen
e of the spe
tral sequen
e is 
lear from the hypotheses that either M

or N is of �nite tor dimension.

Now we 
onsider (ii). GrRHom

A

(M;N) ' RHom

Gr

C

(A)

(Gr(M); Gr(N)) by ( 2.1.4).

i.e. we obtain the triangle

F

t�1

RHom

A

(M;N)! F

t

RHom

A

(M;N)! RHom

Gr

C

(A);t

(Gr(M); Gr(N)).

On taking the 
ohomology sheaves, we get a long exa
t sequen
e whi
h provides the exa
t


ouple for the spe
tral sequen
e in (ii). It suÆ
es to identify the E

2

-terms of this spe
tral

sequen
e. Now Proposition 2.10 (ii) and Proposition 2.13 show that

F

t

RHom

Gr

C

(A)

(Gr(M); Gr(N)) ' Sp(F

t

RHom

H

�

(A)

(

�

M;

�

N))

Proposition 2.17(ii) 
omputes the 
ohomology sheaves of the last term to obtain the iden-

ti�
ation of the E

2

-terms. Under either of the assumptions one may show that there exists

an integer N >> 0 so that E

s;t

2

= 0 if s > N . Observe that the system of neighborhoods

of any point have uniform �nite 
ohomologi
al dimension. Therefore the spe
tral sequen
e


onverges strongly under the given hypotheses. �

Remark 2.19. Re
all the results in Remark 2.8. These show that, under the same

hypotheses as in the theorem, for any �xed t

0

, one obtains a spe
tral sequen
e:

E

s;t

2

�

=

Ext

s;t

H

�

(A)

(

�

M;

�

N); t � t

0

�

=

0; t > t

0

) H

s+t

(F

t

0

RHom

A

(M;N))

In parti
ular taking t

0

= 0, one obtains a spe
tral sequen
e whose E

s;t

2

terms are trivial

if s < 0 or t > 0 i.e. the spe
tral sequen
e is a fourth quadrant spe
tral sequen
e. The


onvergen
e of this spe
tral sequen
e is 
onditional, in general, under the same hypotheses

as in (ii) of the above theorem. However, [Board℄ Theorem (7.2) shows that if M

0

, N

0

are

two obje
ts in Mod

l

(S;A) satisfying the hypotheses of (ii) in the above theorem provided

with maps M

0

! M , N

0

! N indu
ing an isomorphism of the 
orresponding E

2

-terms

of the above spe
tral sequen
e, then one obtains an isomorphism of the abutments. In a

similar manner, one obtains a spe
tral sequen
e

E

2

s;t

�

=

T or

H

�

(A)

s;t

(

�

M;

�

N); t � t

0

�

=

0; t > t

0

) H

�s+t

(F

t

0

T or

A

(M;N))

3. Triangulated 
ategory stru
ture on the derived 
ategory of obje
ts with

�nite tor dimension or obje
ts that are perfe
t

We end this 
hapter by de�ning a derived 
ategory asso
iated to the 
ategory of obje
ts

that are globally of f.t.d or perfe
t in the sense of De�nition 2.11.

Definition 3.1. Assume the situation in se
tion 1. (i) If A"Presh is an algebra,

we will let Mod

f:t:d

l

(S;A)) (Mod

perf

l

(S;A)) denote the following 
ategory. An obje
t of

Mod

f:t:d

l

(S;A) (Mod

perf

l

(S;A)) is an obje
tM"Mod

l

(S;A) whi
h is globally of f.t.d (per-

fe
t, respe
tively) together with the a non-de
reasing exhaustive and separated �ltration F


ompatible with the Cartan �ltration onA along-with the 
hoi
e of an

�

M"D

b

(Mod

l

(S;H

�

(A)))

globally of f.t.d (perfe
t) so that Sp(

�

M) ' Gr

F

(M). In 
ase H

�

(A) is lo
ally 
onstant on
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the site S, we will de�ne an M"Mod

l

(S;A) to be 
onstru
tible, if H

�

(M) is 
onstru
tible

as a sheaf of modules over H

�

(A). The full sub-
ategory of D(Mod

f:t:d

l

(S;A)) 
onsisting of

obje
ts that are also 
onstru
tible will be denoted D(Mod


;f:t:d

l

(S;A)).

(ii) Given two su
h obje
ts M , N , we let Hom(M;N) denote the subset of all maps

f"Hom

A

(M;N) so that f preserves the given �ltrations on M and N i.e. Hom(M;N) =

F

0

Hom

A

(M;N).

(iii) Given a map f : M ! N as in (ii), f is a �ltered quasi-isomorphism if it indu
es

a quasi-isomorphism F

i

M ! F

i

N for all i. (Observe that this implies Gr

F

(M)! Gr

F

(N)

is also a quasi-isomorphism; 
onversely, if the �ltrations are bounded below in the sense

F

i

M = F

i�1

M for all i << 0 and similarly for N , the last 
ondition is equivalent to f being

a �ltered quasi-isomorphism.)

(iv) In the situation of Chapter II, se
tions 2 or 4, we observe that F

0

Hom

A

(M;N) =

Map(S; F

0

Hom

A

(M;N)). In this 
ase we de�ne the homotopy 
ategory asso
iated to

Mod

f:t:d

l

(S;A) (Mod

perf

l

(S;A)) to be given by the same obje
ts as Mod

f:t:d

l

(S;A)

(Mod

perf

l

(S;A), respe
tively) and with morphisms H

0

(Map(S; F

0

Hom

A

(M;N))). In the

situation of Chapter II, se
tion 3, we de�ne the homotopy 
ategory asso
iated toMod

f:t:d

l

(S;A)

(Mod

perf

l

(S;A)) by the same obje
ts as Mod

l

(S;A) (Mod

perf

l

(S;A), respe
tively) and

where the morphisms are given by H

0

(F

0

Map

A

(M;N)).

Proposition 3.2. Assume the above situation.

(i) The

�

M in (i) in the above de�nition is uniquely determined by the given �ltration

(ii) The homotopy 
ategories de�ned above are additive

(iii) The 
lass of �ltered quasi-isomorphisms admits a 
al
ulus of left and right fra
tions.

Proof. Observe that H

�

(Gr

F

(M))

�

=

H

�

(Sp(

�

M))

�

=

�

M . Therefore

�

M is uniquely

determined by the given �ltration. This proves (i). In the situation of Chapter II, se
tions

2 or 4, observe that F

0

Hom

A

(M;N)"Presh and therefore H

0

(Map(S; F

0

Hom

A

(M;N))) is

an abelian group. In the 
ase of Chapter II, se
tion 3, it is 
lear that H

0

(F

0

(Map

A

(M;N)))

may be identi�ed with 
ertain 
hain homotopy 
lasses of �ltration preserving maps M to N

in Mod

l

(S;A). Therefore this group is also abelian. Moreover, the 
ategory Mod

l

(S;A)

is 
learly 
losed under sums and one may readily verify now that the homotopy 
ategory is

additive. In order to prove (iii), we simply remark that the proof in Chapter II, lemma (4.3)


arries over to the �ltered setting, sin
e all the 
onstru
tions there preserve �ltrations. �

Definition 3.3. D(Mod

f:t:d

l

(S;A)) (D(Mod

perf

l

(S;A))) will denote the lo
alization of

the homotopy 
ategory asso
iated to Mod

f:t:d

l

(S;A) (Mod

perf

l

(S;A)) by inverting �ltered

quasi-isomorphisms.

Proposition 3.4. Let D denote one of the above derived 
ategories. Now

(i) Hom

D

(M;N)

�

=

H

0

(Map(S; F

0

RHom

A

(M;N))) in the situation of Chapter II,

se
tions 2 or 4 and

�

=

H

0

(F

0

RMap

A

(M;N)) in the situation of Chapter II, se
tion 3. (ii)

The above derived 
ategory has the stru
ture of a triangulated 
ategory.

Proof. We will only 
onsider the �rst situation, sin
e the proof of the se
ond situ-

ation is similar. If M

0

! M and N ! N

00

are �ltered quasi-isomorphisms, the spe
tral

sequen
e in Remark 2.19 shows that the indu
ed maps H

0

(Map(S; F

0

RHom

A

(M

0

; N)))!

H

0

(Map(S; F

0

RHom

A

(M;N))) ! H

0

(Map(S; F

0

RHom

A

(M;N

00

))) are isomorphisms. It
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follows that the natural map from H

0

(F

0

Map

A

(M;N)) to H

0

(Map(S; F

0

RHom

A

(M;N)))

fa
tors through the derived 
ategory de�ned above. Now an argument as in the proof of

Chapter II, Proposition 2.7 
ompletes the proof of (i).

Sin
e the homotopy 
ategory is additive, so is the derived 
ategory. Now it suÆ
es to

de�ne the triangles. We de�ne these to be diagrams of the form: X

u

0

!Y

v

0

!Z

w

0

!�X where

the maps all preserve the given �ltrations and whi
h are isomorphi
 in the �ltered derived


ategory above to diagrams of the form: X

u

!Y

v

!Cone(u)

w

!�X (Here all the maps are again

supposed to preserve the obvious �ltrations.) We skip the veri�
ation that these satisfy the

usual axioms on distinguished triangles. �

3.1. Next assume one of the following: under the hypotheses that Presh is a unital

symmetri
 monoidal 
ategory, A is a 
ommutative algebra in Presh or under the hypotheses

that Presh = C(Mod(S;R)) for a 
ommutative ringed site (S;R), A is an E

1

-sheaf of

algebras over an E

1

-operad. We may identify Mod

l

(S;A) and Mod

r

(S;A) and denote

them by Mod(S;A). The results of the last se
tion show the following:

There exists bi-fun
tors

L




A

: D(Mod

f:t:d

(S;A))�D(Mod

f:t:d

(S;A))! D(Mod

f:t:d

(S;A))(3.1.1)

RHom

A

: D(Mod

f:t:d

(S;A))

op

�D(Mod

f:t:d

(S;A))! D(Mod

f:t:d

(S;A))(3.1.2)

so that RHom

A

(M;RHom

A

(U; V )) ' RHom

A

(M

L




A

U; V ). Similar 
on
lusions hold for the


ategory

D(Mod

perf

(S;A)). i.e. The 
ategories D(Mod

f:t:d

(S;A)) and D(Mod

perf

(S;A)) are ten-

sor 
ategories with an internal hom de�ned by RHom

A

. In the next 
hapter, we will

establish the formalism of Grothendie
k-Verdier duality in the setting of the above derived


ategories.

3.1.3. We end this 
hapter with a summary of the basi
 results.

� There are essentially two distin
t frameworks for the rest of the paper: a 
ategory

of presheaves on a site that is an enri
hed unital symmetri
 monoidal t-
ategory

and presheaves (and sheaves) of modules over an E

1

-operad on a site. Though the

latter is not an enri
hed unital symmetri
 monoidal 
ategory, it is a sub-
ategory of

the 
ategory of 
omplexes of sheaves of modules over a ringed site in the usual sense.

The latter is an enri
hed unital symmetri
 monoidal t-
ategory: this observation

enables one to apply the te
hniques for enri
hed unital symmetri
 monoidal t-


ategories to presheaves and sheaves of modules over an E

1

-operad. For example,

one may obtain a sheaf of E

1

-DGAs asso
iated to the motivi
 
omplex on the

�etale, Nisnevi
h or Zariski site of a s
heme and one may 
onsider the 
ategory of

sheaves of E

1

-modules over it. (See [J-6℄.)

� In the �rst 
ase one 
an 
onsider either a 
ategory of presheaves on a site whi
h is

an enri
hed (unital symmetri
) monoidal 
ategory or one 
an 
onsider a 
ategory

of presheaves on a site taking values in an enri
hed unital symmetri
 monoidal


ategory. Presheaves taking values in a stable simpli
ial model 
ategory (for ex-

ample the stable simpli
ial model 
ategory of �-spa
es, symmetri
 spe
tra) form

an example of the latter. The A

1

-lo
al presheaves of spe
tra in the sense of [M-V℄

form an example of the former. (On
e the axioms on the strong t-stru
ture are

veri�ed in this 
ase, the entire theory of Grothendie
k-Verdier duality developed

here, will apply to this 
ase.)
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� In all the above situations, one has an asso
iated homotopy 
ategory (whi
h is

additive) and a derived 
ategory whi
h is obtained by lo
alizing the homotopy


ategory by inverting a 
lass of morphisms that are quasi-isomorphisms. The

additivity of the homotopy 
ategory follows as in the dis
ussion following the proof

of Lemma (4.3) in Chapter II for the 
ase of enri
hed unital symmetri
 monoidal


ategories: this is 
lear in the 
ase of presheaves of algebras and modules over an

E

1

-operad. One may also verify readily that �nite sums are 
anoni
ally quasi-

isomorphi
 to �nite produ
ts in all of the above 
ases.

� Assume any one of the above situations and that A is either an algebra with respe
t

to the unital symmetri
 monoidal stru
ture in that 
ase or that A is an algebra

over the given E

1

-operad in the operadi
 
ase. Let S denote the unit for the

symmetri
 monoidal stru
ture and let it denote the sheaf of rings R as in 
hapter

II, se
tion 3 (i.e. in the operadi
 
ase.) Let Mod

l

(S;A) denote the 
ategory of all

left-modules over A and letD(Mod

l

(S;A)) denote the asso
iated derived 
ategory.

Let D(Mod(S;S)) denote the derived 
ategory of modules over S. In this 
ase

there exists a free-fun
tor F : D(Mod(S;S)) ! D(Mod

l

(S;A)) adjoint to the

forgetful fun
tor U : D(Mod

l

(S;A))! D(Mod(S;S)).



CHAPTER IV

Grothendie
k-Verdier duality

1. Introdu
tion

In this 
hapter we 
omplete the theory of Grothendie
k-Verdier duality in the setting of

enri
hed symmetri
 monoidal t-
ategories. We show that the familiar six derived fun
tors

of Grothendie
k may be de�ned in this setting with reasonable properties. The key to mu
h

of these is the frame-work developed in the �rst three 
hapters; in parti
ular the spe
tral

sequen
es in 
hapter 3 play a key role.

Throughout this se
tion we will 
losely follow the framework and terminology adopted

in Chapter II, se
tion 1. In addition to the hypotheses and 
onventions there, we will adopt

the following as well.

1.0.1. We will often impose various other hypotheses on the sites. Some of our results

are often easier to establish if all the obje
ts in a given site have �nite L-
ohomologi
al

dimension for some (possibly empty) set of primes L in the following sense: an obje
t U

in the site S has �nite L-
ohomologi
al dimension , if there exists an integer N >> 0

so that for every abelian l-torsion sheaf F , l"L, H

i

S

(U; F ) = 0 for all i > N . (Here H

i

S

denotes the 
ohomology 
omputed on the site S.) (If L is empty, the above hypothesis will

mean that for every abelian sheaf F on the site S, H

i

S

(U; F ) = 0 for suÆ
iently large i.)

Nevertheless, sin
e we will need to 
onsider s
hemes de�ned over arbitrary base s
hemes (for

example, �elds that have in general in�nite 
ohomologi
al dimension), we will never make

this hypothesis a requirement. (On the other hand, when 
onsidering the right derived

fun
tor of the dire
t image fun
tor and the dire
t image fun
tor with proper supports, there

is no loss of generality in making a similar assumption: see ( 2.2) below.)

1.0.2. There are often properties that we 
an require of morphisms between sites. Some

of these are left as primitive, as the meaning may 
hange from one situation to another.

For example, the notion of a morphism being proper, of �nite type, an open immersion or

imbedding are left as primitive. If the sites are asso
iated to s
hemes or algebrai
 spa
es,

these will have the familiar meaning.

Examples of sites. Clearly most of the sites that one en
ounters often satisfy these hypothe-

ses: these in
lude the big and small �etale, Nisnevi
h and Zariski sites as well as the h-topology

or site in [MV℄ asso
iated to algebrai
 spa
es of �nite type over a Noetherian base s
heme.

In addition, one 
an also 
onsider the familiar sites asso
iated to lo
ally 
ompa
t Hausdor�

topologi
al spa
es as shown in 2.13.

1.0.3. We will assume that if S is a site (as above), Presh(S) denotes a 
ategory of

presheaves on the site S satisfying either one of the two hypotheses as in Chapter III, and

B is an algebra in Presh(S). Re
all this means it is either an enri
hed unital symmetri


monoidal t-
ategory and A is an algebra in the underlying symmetri
 monoidal 
ategory or

that Presh(S) = C(Mod(S;R)) for a sheaf of 
ommutative Noetherian rings R and that

A is a sheaf of algebras over an E

1

-operad. In the either 
ase, we will let S denote the unit

of the 
ategory Presh(S), i.e. in the �rst 
ase S will denote the unit of the given unital

symmetri
 monoidal stru
ture and in the se
ond 
ase it will denoteR. (The existen
e of su
h

65
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a unit will simplify the proofs often.) H

�

will denote the 
orresponding 
ohomology fun
tor

taking values in an Abelian 
ategory A: we will require that this satisfy the hypothesis

as in Chapter II, (2.1.1.*). The homotopy 
ategory and the derived 
ategory asso
iated to

Presh(S) will be again as in Chapter II. If B is an algebra, the derived 
ategory asso
iated to

Mod

l

(S;B) will often be denoted by D(Mod

l

(S;B)). In 
ase X is the terminal obje
t of the

site S, we will often denote the ringed site (S;B) by (X;B) and the above derived 
ategory

by D(Mod

l

(X;B)). We will also 
onsider the derived 
ategories D(Mod


;f:t:d

l

(X;B)) (in


ase H

�

(B) is lo
ally 
onstant on the site) and also D(Mod

perf

l

(X;B)) in the sense of last


hapter.

LetS and S

0

denote two sites as above provided with presheaves of algebras B (onS) and B

0

on S

0

. Let X and X

0

denote the 
orresponding terminal obje
ts. If f : (X;B)! (X

0

;B

0

) is

a map of su
h ringed sites, we de�ne several derived fun
tors asso
iated to f in this se
tion.

The main result we obtain shows that these derived fun
tors satisfy the usual formalism of

Grothendie
k-Verdier duality. These may be stated as follows. (Throughout, we will require

the hypotheses as in 2.2 hold in the following statements.)

Theorem 1.1. (See 2.9.) Let f : (X;B)! (X

0

;B

0

) denote a map as in 2.4. (i) Under

the hypotheses of 2.5 through 2.7, there exists a fun
tor

Rf

#

!

: D(Mod

l

(X;B))! D(Mod

l

(X

0

;B

0

))

whi
h satis�es a proje
tion formula as in 2.17. (ii) In 
ase f is proper, Rf

#

!

may be identi�ed

with Rf

�

= the derived fun
tor of the dire
t image fun
tor. (iii) Moreover, the fun
tor Rf

#

!

has a right-adjoint Rf

!

#

: D(Mod

l

(X

0

;B

0

))! D(Mod

l

(X;B)).

(iv) Let Sp denote the fun
tor in Chapter I, De�nition 4.6. Then there exist natural iso-

morphisms of fun
tors Rf

#

!

ÆSp ' SpÆRf

#

!

: D(Mod

l

(X;H

�

(B)))! D(Mod

l

(X

0

; Sp(H

�

(B

0

))))

and Rf

!

#

Æ Sp ' Sp ÆRf

!

#

: D(Mod

l

(X

0

;H

�

(B

0

)))! D(Mod

l

(X;Sp(H

�

(B)))).

1.0.4. Next we 
onsider dualizing presheaves both in the relative and absolute situation.

We will assume throughout that all maps are 
ompa
ti�able in the sense of 2.4. Further-

more we will assume that (S;A) is a 
ommutative base-ringed site and that all ringed sites

we 
onsider are 
ommutative and de�ned over it. We let D(Mod

?

l

(S;B)) denote either

D(Mod

perf

l

(S;B)) in general or D(Mod


;f:t:d

l

(S;B)) when H

�

(B) is lo
ally 
onstant on the

site S. (We will similarly let D(Mod

?

l

(S;H

�

(B))) denote either one of the derived 
ategories

D(Mod

perf

l

(S;H

�

(B))) and D(Mod


;f:t:d

l

(S;H

�

(B))).) In this 
ase we let D

B

= Rp

!

#

(A)

and 
all it the dualizing presheaf. We let D

B

: D(Mod

l

(X;B)) ! D(Mod

r

(X;B)) denote

the fun
tor F !RHom

B

(F;D

B

). Now we obtain the bi-duality theorem.

Theorem 1.2. Bi-duality Theorem(See Theorem 4.7.) Assume in addition to the

above situation that the following hypothesis holds.

Let D

H

�

(B)

denote the dualizing 
omplex (de�ned in the usual sense) for the 
ategory

D(Mod

?

l

(S;H

�

(B))) of 
omplexes of sheaves of H

�

(B)-modules. Let

�

F"D(Mod

?

l

(S;H

�

(B)))

be so that the natural map

�

F ! D

H

�

(B)

(D

H

�

(B)

(

�

F ) is a quasi-isomorphism.

Let F"D(Mod

?

l

(S;B)) so that Gr(F ) ' Sp(

�

F ). Then the natural map F ! D

B

(D

B

(F ))

is a quasi-isomorphism.

The above theorem applies in (at least) the following three situations:



1. INTRODUCTION 67

(i) Consider s
hemes or algebrai
 spa
es of �nite type over a base s
heme S. Assume

all the s
hemes and algebrai
 spa
es are provided with the �etale topology and L is a non-

empty set of primes di�erent from the residue 
hara
teristi
s. Let A denote a presheaf

of 
ommutative algebras on S so that for ea
h n, H

n

(A) is lo
ally 
onstant on the �etale

topology of S and has L-primary torsion. Now the hypotheses in the Bi-duality theorem

are satis�ed by any

�

F"D(Mod


;f:t:d

l

(S;H

�

(A))). (See [SGA℄4

1=2

p. 250.) Therefore, the

bi-duality theorem holds for any F"D(Mod


;f:t:d

l

(S;A)). The bi-duality theorem also holds

for suitable L-
ompletions of a presheaf of algebras A. See 6.1 for a detailed dis
ussion of

this appli
ation.

(ii) Next assume

�

F"D(Mod

perf

l

(S;H

�

(B))) and that D

H

�

(B)

is lo
ally quasi-isomorphi


to H

�

(B) modulo 
ertain shift. In this 
ase, the 
on
lusion of the theorem holds for any

F"D(Mod

perf

l

(S;B)) so that Gr(F ) ' Sp(

�

F ).

(iii) Consider lo
ally 
ompa
t Hausdor� topologi
al spa
es over a base spa
e S of the

same type. Assume that L is a (possibly empty) set of primes for whi
h all the spa
es are of

�nite L-
ohomologi
al dimension. (Re
all that if L is empty, this means all the spa
es are of

�nite 
ohomologi
al dimension.) Let A denote a presheaf of 
ommutative algebras on S so

that ea
h H

n

(A) is lo
ally 
onstant and of L-primary torsion. Then the hypotheses in the

bi-duality theorem are satis�ed by any

�

F"D(Mod


;f:t:d

l

(S;H

�

(A))). (See [K-S-2℄ 
hapter

III.) Therefore, the bi-duality theorem applies to the 
ase when A is the 
onstant presheaf

of spe
tra representing a generalized 
ohomology theory, for example topologi
al (
omplex)

K-theory. The details are worked out at the end of this 
hapter. (See 6.4.)

In the following theorem, if (S;A) is a ringed site, D(Mod

?

l

(S;A)) will denote either

D(Mod


;f:t:d

l

(S;A)) or D(Mod

perf

l

(S;A)).

Theorem 1.3. (Grothendie
k-Verdier duality)

Assume in addition to the situation of the above theorem that f : (X;H

�

(B))! (X

0

;H

�

(B

0

))

is either of �nite tor dimension or perfe
t.

(i) If Rf

!

: D(Mod

?

l

(X;B)) ! D(Mod

?

l

(X

0

;B

0

)) is de�ned by D

B

0

Æ Rf

�

Æ D

B

, there

exists a natural isomorphism Rf

!

' Rf

#

!

. If Rf

!

= D

B

Æ Lf

�

Æ D

B

0

, there exists a natural

isomorphism Rf

!

' Rf

!

#

of fun
tors D(Mod

?

l

(X

0

;B

0

))! D(Mod

?

l

(X;B)).

(ii) There exist the following natural isomorphisms of fun
tors:

Rf

�

Æ D

B

' D

B

Æ Rf

#

!

: D(Mod

l

(X;B)) ! D

r

(X

0

;B

0

), Rf

!

#

Æ D

B

0

' D

B

Æ Lf

�

:

D(Mod

l

(X

0

;B

0

))! D(Mod

r

(X;B)),

D

B

0

ÆRf

�

' Rf

!

Æ D

B

: D(Mod

?

l

(X;B))! D(Mod

?

r

(X

0

;B

0

)) and Lf

�

Æ D

B

0

' D

B

ÆRf

!

:

D(Mod

?

l

(X

0

;B

0

))! D(Mod

?

r

(X;B))

If X belongs to the site S, we de�ne the generalized homology of X with respe
t to

A to be the hyper
ohomology of X with respe
t to Rp

!

#

(A). (Here X denotes the ter-

minal obje
t of the site S.) We say that X has Poin
ar�e-Verdier duality if there exists a


lass [X℄"H

�n

(H (X;Rp

!

#

(A))) so that 
ap-produ
t with this 
lass indu
es an isomorphism

H

k

(H (X; p

�

(A))) ! H

�n+k

(H (X;Rp

!

#

(A))). We 
on
lude by showing that if we are 
on-

sidering s
hemes over a base-s
heme provided with the �etale site, Poin
ar�e-Verdier duality

in the above sense implies an isomorphism between the fun
tors Rf

!

and f

�

Æ�

n

. We also

derive various other formal 
onsequen
es of Grothendie
k-Verdier duality.
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Next we will provide a qui
k summary of the various se
tions. In the se
ond se
tion

we 
onsider the derived fun
tors of the dire
t image and inverse image fun
tors asso
iated

to a map of ringed sites as in 2.1 or 2.4. We also de�ne the hyper
ohomology spe
trum

fun
tor, the derived fun
tor of the dire
t image fun
tor with proper supports and obtain a

proje
tion formula. In the third se
tion we show, under the hypothesis that the sites are

lo
ally 
oherent and 
oherent, that there exists a right adjoint to the derived fun
tor of the

dire
t image with proper supports.

In the fourth se
tion, we de�ne various dualizing presheaves and end with the bi-duality

theorem. In the �fth se
tion we derive the Grothendie
k-Verdier formalism of duality be-

tween the various derived fun
tors: we show that all the familiar results on Grothendie
k-

Verdier duality 
arry over to our general setting. (In turn, these are applied in the next


hapter to provide mi
ro-lo
al 
hara
ter-
y
les for 
onstru
tible sheaves with values in 
om-

plex K-theory.) We end by 
onsidering some 
on
rete examples in se
tion six.

2. The derived fun
tors of the dire
t and inverse image fun
tors

2.1. Maps of ringed sites. Let Presh (Presh

0

) denote the 
ategory of presheaves

on a site S

0

(S, respe
tively) as in Chapter III, 1.2. We will further assume one of the

following:

� Both are unital symmetri
 monoidal t-
ategories. X

0

(X) is the terminal obje
t

of the site S

0

(S) and B

0

(B) is a presheaf of algebras in Presh(S

0

) (Presh(S),

respe
tively) or

� O

0

(O) is an E

1

-operad on the ringed site (S

0

;R

0

) ((S;R), respe
tively). B

0

(B)

is a presheaf of algebras over the operad O

0

(O, respe
tively) and X

0

(X) is the

terminal obje
t of the site S

0

(S, respe
tively)

Definition 2.1. In the �rst 
ase, a map f : (X;B) ! (X

0

;B

0

) of ringed sites is a

map of sites f : S ! S

0

so that the indu
ed fun
tors: f

�

: Presh(S) ! Presh(S

0

), f

�

:

Presh(S

0

)! Presh(S) satisfy the following 
onditions. f

�

preserves admissible monomor-

phisms and 
ommutes with the fun
tors EM

n

, n"Z, while f

�

preserves the monoidal stru
-

ture. We let S (S

0

) denote the unit of Presh(S) (Presh(S

0

), respe
tively). The inverse-

image fun
tor Mod(S

0

;S

0

)!Mod(S;S) indu
ed by f will be denoted f

�1

and we require

that f

�1

(S

0

) = S. Moreover, in 
ase B = f

�1

(B

0

), we require that f

�

also preserves the

strongly triangulated stru
ture and strong t-stru
ture.

In the se
ond 
ase, a map f : (X;B)! (X

0

;B

0

) is given by a map of sites f : (S;R)!

(S

0

;R

0

) so that f

�1

(R

0

) = R, f

�1

(O

0

(k)) = O(k) for all k � 0. In addition one is given a

map B

0

! f

�

(B) of algebras over the operad O

0

.

In this 
ontextMod

l

(X;B) andMod

l

(X

0

;B

0

) will denote the 
ategory of sheaves of mod-

ules over (X;B) and (X

0

;B

0

) respe
tively. f

�

(f

�

) now indu
es a fun
tor f

�

:Mod

l

(X;B)!

Mod

l

(X

0

;B

0

) (f

�

:Mod

l

(X

0

;B

0

)!Mod

l

(X;B), respe
tively).

(Following 1.0.3, we let S (S

0

) denote the unit of Presh(S) (Presh(S

0

), respe
tively).

Re
all that in the se
ond 
ase this is R (R

0

, respe
tively).)

Remark 2.2. Often we may assume that there is a base-ringed site (S;A) and that the

given map f : (X;B)! (X

0

;B

0

) is a map of ringed sites over (S;A).
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Example 2.3. As an example of the �rst 
ase of maps of ringed sites, we may 
onsider

the following. Let C denote a �xed enri
hed unital symmetri
 monoidal t-
ategory. Let

B (B

0

) denote a presheaf of algebras with values in C on the site S (S

0

). Then any map

f : S ! S

0

for whi
h there exists an indu
ed map B

0

! f

�

(B) of presheaves of algebras

de�nes a map of ringed sites f : (X;B)! (X

0

;B

0

) if X

0

(X) denotes the terminal obje
t of

the site S

0

(S, respe
tively).

2.2. Let f : (X;B) ! (X

0

;B

0

) denote a map of ringed sites in the above sense. If

F"D(Mod

l

(X;B)), we de�ne Rf

�

(F )"D(Mod

l

(X

0

;B

0

)) as in Chapter II, (1.1). The de�ni-

tion of holim

�

as an end shows one may identify Rf

�

(F ), upto a natural quasi-isomorphism,

with f

�

holim

�

G

�

F . In this 
ontext we will always make the following assumption:

there exists an integerN >> 0 so thatR

s

f

�

(

�

M) = 0 for all s > N and all

�

M"Mod

l

(X;H

�

(B)).

One may de�ne the hyper
ohomology of an obje
t U"S=X with respe
t to an F"D(Mod

l

(X;B))

by H (U; F ) = holim

�

f�(U;G

n

F )jng. Observe that there exist spe
tral sequen
es:

(2.2.1) E

s;t

2

= R

s

f

�

H

t

(F )) H

s+t

(Rf

�

(F )) and

(2.2.2) E

s;t

2

= H

s

(U;H

t

(F ))! H

s+t

(H (U; F ))

In view of the hypothesis 2.2, the �rst spe
tral sequen
e 
onverges strongly. Sin
e we do not

assume a similar 
ondition of �nite 
ohomologi
al dimension on the obje
ts of the site, the

se
ond spe
tral sequen
e does not 
onverge strongly in general.

2.3. One may de�ne Lf

�

: D(Mod

l

(X

0

;B

0

))! D(Mod

l

(X;B)) by

Lf

�

(K) = B

L




f

�1

(B

0

)

f

�1

(K), K"D(Mod

l

(X

0

;B

0

))

where the left derived fun
tor

L




f

�1

(B

0

)

is de�ned as ho
olim

�

(B 


f

�1

(B

0

)

f

�1

(P (K)

�

)) where

P (K)

�

! K is a 
at resolution as in Chapter II, Proposition 2.4. Now there exist spe
tral

sequen
es:

(2.3.1) E

2

s;t

= L

s

f

�

(H

t

(N))) H

�s+t

(Lf

�

(N)); N"D(Mod

l

(X

0

;B

0

))

Proposition 2.4. (i) If 
F

00

! F

0

! F ! F

00

is a triangle in D(Mod

l

(X;B)),

Rf

�

(
F

00

) ! Rf

�

(F

0

) ! Rf

�

(F ) ! Rf

�

(F

00

) is a triangle in D(Mod

l

(X

0

;B

0

)). Moreover,

if F

0

! F is a quasi-isomorphism in D(Mod

l

(X;B)), the indu
ed map Rf

�

(F

0

)! Rf

�

F is

a quasi-isomorphism in D(Mod

l

(X

0

;B

0

)).

(ii) If F

0

! F ! F

00

! �F

0

is a triangle in D(Mod

l

(X

0

;B

0

)), the indu
ed diagram

Lf

�

(F

0

)! Lf

�

(F )! Lf

�

(F

00

)! Lf

�

(�F

0

) is a triangle in D(Mod

l

(X;B)). Moreover, if

F

0

! F is a quasi-isomorphism in D(Mod

l

(X

0

;B

0

)), the indu
ed map Lf

�

F

0

! Lf

�

F is a

quasi-isomorphism in D(Mod

l

(X;B)).

Proof. These are immediate from our de�nitions, and the hypotheses on homotopy

limits and homotopy 
olimits. �

Next we re
all the fun
tors RHom

B

for an algebra B"Presh(S). We de�ne RHom

B;l

(RHom

B;r

) to be the fun
tor RHom

B

applied to the 
ategory Mod

l

(X;B) (Mod

r

(X;B),

respe
tively). We pro
eed to 
onsider variants of these presently.
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Lemma 2.5. Let B

0

, B denote two algebras in Presh(S). We will let Mod

B;l;B

0

;r

(S)

denote the 
ategory of obje
ts in Presh(S) that have the stru
ture of a presheaf of left-B

and right B

0

-bi-modules. Let N"Mod

B;l;B

0

;r

(S) and P"Mod

B;r

(S). Assume there exists a

map B

0

! B of algebras. Then

(i) RHom

B

0

;r

(M

L




B

N;P ) ' RHom

B;r

(M;RHom

B

0

;r

(N;P )) and

(ii) RMap

B

0

;r

(M

L




B

N;P ) ' RMap

B;r

(M;RHom

B

0

;r

(N;P ))

Proof. Let P (M)

�

!M denote a simpli
ial resolution as in Chapter II, Proposition 2.4

by obje
ts in Mod

r

(S;B

0

) and let P (N)

�

! N denote a 
orresponding simpli
ial resolution

in Mod

r

(S;B). Let fG

n

P jng denote the Godement resolution. Now

RHom

B

0

;r

(M

L




B

N;P ) = holim

�

�fHom

B

0

;r

(P (M)

�




B

P (N)

�

; P )g

' holim

�

�fHom

B;r

(P (M)

�

:;�Hom

B

0

;r

(P (N)

�

:;G

n

QP )g

' holim

�

fHom

B;r

(P (M)

�

; holim

�

fHom

B

0

;r

(P (N)

�

;G

n

QP )g)g

' RHom

B;r

(M;RHom

B

0

;r

(N;P ))

The �rst ' follows from Chapter II, (2.0.15) while the se
ond ' follows from 
hapter I,


o�nality of the homotopy limits. The last ' is 
lear from the de�nition of the above

derived fun
tors. This proves (i). The proof of (ii) is similar. �

Proposition 2.6. Let f : (X;B) ! (X

0

;B

0

) denote a map of ringed sites as before.

Then one obtains the quasi-isomorphism:

(i) Rf

�

RHom

B;r

(Lf

�

M;N) ' RHom

B

0

;r

(M;Rf

�

N), M"D(Mod

r

(S

0

;B

0

)) and

N"D(Mod

r

(S;B)).

Under the same hypotheses, one also obtains:

(ii) RMap

B;r

(Lf

�

M;N) ' RMap

B

0

;r

(M;Rf

�

N). (i.e. The fun
tor Rf

�

is right adjoint

to Lf

�

.)

Proof. We will let S (S

0

) denote a unit for the 
ategory Presh(S) (Presh(S

0

), re-

spe
tively) as in 1.0.3. Clearly it suÆ
es to show that one obtains a quasi-isomorphism after

applying the fun
tor RMap

S

(K;�) to both sides, where K"Presh

C

(S

0

). On applying this

fun
tor to the left-hand-side, one obtains:

RMap

S

(K;Rf

�

RHom

B;r

(Lf

�

(M); N)) ' RMap

S

0

(f

�1

(K);RHom

B;r

(Lf

�

(M); N))

' RMap

B;r

(f

�1

(K)

L




S

0

Lf

�

(M); N) = RMap

B;r

(f

�1

(K)

L




S

0

f

�1

(M)

L




f

�1

(B

0

)

B; N)

' RMap

f

�1

(B

0

);r

(f

�1

(K)

L




S

0

f

�1

(M);RHom

B;r

(B; N))

' RMap

f

�1

(B

0

);r

(f

�1

(K)

L




S

0

f

�1

(M), N) ' RMap

B

0

;r

(K

L




S

M , Rf

�

N)

' RMap

S

(K;RHom

B

0

;r

(M;Rf

�

N))
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The �rst ' follows from the adjun
tion between f

�1

and f

�

while the se
ond and third

follow from Lemma ( 2.5). The next ' follows from Chapter II, Proposition 2.1 (i), while

the one following it results from the adjun
tion between f

�1

and f

�

. Finally the last '

follows by another appli
ation of Lemma 2.5. Chapter II, 2.4.2, shows how to obtain the

se
ond assertion from the �rst. �

Proposition 2.7. Let f : (X;B) ! (X

0

;B

0

), g : (X

0

;B

0

) ! (X

00

; C) denote maps of

ringed sites. Then the natural map R(g Æ f)

�

F ! Rg

�

Æ Rf

�

F , F"D(Mod

l

(X;B)) is a

quasi-isomorphism.

Proof. This results readily from the following observations:

(i) R(g Æ f)

�

F = holim

�

f(g Æ f)

�

G

n

F jng ' g

�

Æ f

�

holim

�

fG

n

F jng and

(ii) the natural map g

�

Æ f

�

holim

�

fG

n

F jng ! g

�

holim

�

fG

m

f

�

(holim

�

fG

n

F jng)jmg is a

quasi-isomorphism.

The �rst is 
lear. Now observe that both sides of (ii) are fun
torial in F and send triangles

in F to triangles. This shows that there exist spe
tral sequen
es:

E

s;t

2

= R

s

(g Æ f)

�

H

t

(F )~) H

s+t

(R(g Æ f)

�

(F ))~and

E

s;t

2

= H

s

(Rg

�

ÆRf

�

H

t

(F ))~) H

s+t

(Rg

�

ÆRf

�

(F ))~

These spe
tral sequen
es 
onverge strongly in general in view of the hypothesis 2.2. There-

fore the above spe
tral sequen
es redu
e the proof to that of abelian sheaves. In this


ase the quasi-isomorphism R(g

�

Æ f

�

)(F ) = R(g Æ f)

�

(F )

'

!Rg

�

Æ Rf

�

(F ) is 
lear, sin
e

Rf

�

(F ) = f

�

fG

n

F jng is a 
omplex of sheaves, ea
h term of whi
h is 
abby on the site

S

0

. �

Theorem 2.8. Let f : (X;B)! (X

0

;B

0

) denote a map of ringed sites.

(i) Suppose S is algebrai
 and S

0

is lo
ally 
oherent. Let fF

�

j�g denote a �ltered dire
t

system of obje
ts in D(Mod

l

(X;B)). Now the natural map 
olim

�

Rf

�

(F

�

)

'

!Rf

�

(
olim

�

F

�

)

is a quasi-isomorphism in general (under the hypothesis 2.2). The fun
tor Rf

�


ommutes

upto quasi-isomorphism with �nite sums and hen
e with all small sums.

(ii) Suppose S is 
oherent. Then, for ea
h n, the fun
tor F ! H

�

(H(X;F )) , F ,

D(Mod

l

(X;B))! (abelian groups) 
ommutes with �ltered dire
t limits under the hypothesis

of �nite L-
ohomologi
al dimension as in 1.1 on the site S and the presheaves all have

l-torsion 
ohomology sheaves. For ea
h n, the fun
tor F ! H

n

(H(X;F )) 
ommutes with

�nite sums.

Proof. Under the hypothesis of 2.2, the spe
tral sequen
e in ( 0.5.2) 
onverges strongly

for all F . Therefore the above spe
tral sequen
e redu
es the �rst assertions to abelian sheaves

whi
h are 
lear. The assertion about Rf

�

and F 7! H

(

X;F ) 
ommuting with �nite produ
ts

is 
lear. Finite sums were observed to be �nite produ
ts in our basi
 framework - see 
hapter

I, Proposition 2.4. Under the hypothesis on �nite L-
ohomologi
al dimension, the spe
tral

sequen
e in ( 0.5) 
onverges strongly redu
ing the statements in (ii) to the 
orresponding

ones for abelian sheaves whi
h were observed to be true by the dis
ussion in 
hapter II,

(1.0.6). �
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We end this se
tion by 
onsidering the derived fun
tor of the dire
t image fun
tor with

proper supports. For this we will 
onsider 
olle
tions of ringed sites f(X;B)g, with B a sheaf

of algebras in Presh(X) so that the following hypotheses are satis�ed:

2.4. Every map f : (X;B) ! (X

0

;B

0

) is 
ompa
ti�able, i.e. �ts in a 
ommutative

triangle

(X;B)

j

//

f $$J
JJJJJJJJ

(

�

X;

�

B)

�

fzzttttttttt

(X

0

;B

0

)

with

�

f proper and j an open imbedding and B

�

=

j

�

(

�

B).

In this situation, we de�ne Rf

#

!

F = R

�

f

�

(j

#

U !

F ), F"Presh(S

0

). This will be 
alled the

derived fun
tor of the dire
t image fun
tor with proper supports asso
iated to f .

We will further assume that, so de�ned Rf

#

!

has the following properties:

2.5. if j

U

: U ! X is an obje
t in the site S and f

U

= f Æ j

U

, Rf

#

U !

F ' Rf

#

!

j

#

U !

F ,

F"D(Mod

l

(U;B))

2.6. if f is proper, Rf

#

!

(F ) ' Rf

�

(F ), F"D(Mod

l

(X;B))

2.7. Moreover, Rf

#

!

is independent (upto natural quasi-isomorphism) of the fa
tor-

ization of f into

�

f and j.

We will next 
onsider, under what hypotheses, the properties 2.4 through 2.7 hold.

For this we begin by 
onsidering proper base-
hange. Let f : (X;B)! (X

0

;B

0

) denote

a map of ringed sites as before. Let F"D(Mod

l

(X;B)). We say that the pair (F; f) is


ohomologi
ally proper if for every map g : (Y

0

; C

0

)! (X

0

;B

0

) of ringed spa
es, the indu
ed

map

(2.7.1) Lg

�

(Rf

�

F )! Rf

0

�

Lg

0

�

F

is a quasi-isomorphism, where the maps g

0

, f

0

are de�ned by the 
artesian square:

(Y; C)

g

0

����! (X;B)

f

0

?

?

y

?

?

y

f

(Y

0

; C

0

)

g

����! (X

0

;B

0

)

where C = f

0

�1

(C

0

) 


f

0

�1

(g

�1

(B

0

))

g

0

�1

(B).

2.8. We say that proper-base-
hange holds for all presheaves F we 
onsider, if the


on
lusions above are valid for every proper map f : (X;B) ! (X

0

;B

0

) and for any map

g : (Y

0

; C

0

)! (X

0

;B

0

) of sites.

2.9. An alternate, somewhat weaker, hypothesis is the following: let
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(

�

X;

�

B)

�

f

��
(U;B

jU

)

�

j

::ttttttttt

j

//
(X;B)

denote a 
ommutative triangle with

�

j and j open imbeddings and

�

f proper. Then the natural

map j

#

U !

! R

�

f

�

Æ

�

j

#

U !

is an isomorphism of fun
tors: D(Mod

l

(U;B

U

)! D(Mod

l

(X;B)).

Proposition 2.9. Assume that the hypothesis ( 2.4) holds and that either ( 2.8) or

( 2.9) holds for every sheaf F we 
onsider. Then Rf

!

# is independent of the fa
torization

of f as above. This also implies the hypotheses in 2.5 and 2.6.

Proof. This is a standard proof. Consider two 
ompa
ti�
ations (X;B)

j

1

!(

�

X

1

;

�

B

1

)

and (X;B)

j

2

!(

�

X

2

;

�

B

2

). Take the produ
t j

1

� j

2


omposed with the diagonal (X;B) !

(X �X; p

�1

1

(B)
 p

�1

2

(B)). Let the 
losure of X in

�

X

1

�

�

X

2

by the above map be denoted

�

X; we provide

�

X with the presheaf of algebras whi
h is the restri
tion of p

�1

1

(B)
 p

�1

2

(B).

As a result one may assume without loss of generality that there exists a proper map

p : (

�

X

1

;

�

B

1

) ! (

�

X

2

;B

2

) so that p Æ j

1

= j

2

. Now proper base-
hange shows that there is a

natural quasi-isomorphism: j

#

2!

(F ) ' Rp

�

(j

#

1!

(F )). Alternatively, the weaker hypothesis 2.9

also shows the same. Now 
ompose with R

�

f

�

to 
omplete the proof of the independen
e on

the fa
torization of f . Clearly this implies that if f is proper, Rf

#

!

(F ) ' Rf

�

(F ) and thereby

proves 2.6. To prove the hypothesis 2.5, observe that one may fa
tor the map U

j

0

!X

j

1

!

�

X as

the 
omposition of an open imbedding U

j

!

�

U followed by a proper map p :

�

U !

�

X. Now

both 2.8 and 2.9 on
e again provide a quasi-isomorphism: Rp

�

Æ j

#

!

(F ) ' j

#

1!

Æ j

#

0!

. Finally


ompose with R

�

f

�

to obtain 2.5. �

2.10. Moreover, 2.4 through 2.7 imply that if f : (X;B)! (X

0

;B

0

) and g : (X

0

;B

0

)!

(X

00

;B

00

) are maps of ringed sites as above, thenRg

#

!

ÆRf

#

!

(F ) ' R(gÆf)

#

!

(F ), F"D(Mod

l

(X;B)).

This may be established exa
tly as Proposition 2.7. (See, for example, [SGA℄4 Expos�e XVII.)

We skip the details.

Next we will spe
ialize to various spe
ial sites to apply the above results. We will mention

at least three distin
t situations where the hypotheses in 2.4 through 2.7 are satis�ed.

2.11. The simplest situation is where, for every ringed site (S;B) we 
onsider, S is

proper over a base S and where for every morphism between ringed sites (S;B)

f

!(S

0

;B

0

),

the underlying map f : S ! S

0

of sites is proper. For example: we restri
t to proper

s
hemes or proper algebrai
 spa
es over a Noetherian separated base s
heme. In this 
ase

Rf

#

!

identi�es with Rf

�

.

2.12. Assume next that the sites we 
onsider are all sites asso
iated to s
hemes or

algebrai
 spa
es of �nite type over a Noetherian base s
heme S provided with a presheaf of

algebras A. For example, the sites 
ould be the small or big Zariski, �etale or the Nisnevi
h

sites, the 
at site, or the re
ent h-site as in [Voe-1℄ of s
hemes of �nite type over a Noetherian

base s
heme S. We will further assume that the morphism f : S ! S

0

of sites is indu
ed

by a map of s
hemes f : X ! Y over S. (Here X (Y ) is the terminal obje
t of S (S

0

,

respe
tively).) Furthermore, if p

X

: X ! S is the stru
ture map of X, we let the site S

be provided with the pre-sheaf of algebras B = p

�1

X

(A). We say a map f : X ! Y of

s
hemes (or algebrai
 spa
es) is 
ompa
ti�able, if it 
an be fa
tored as the 
omposition of

an open immersion j : X !

�

X and a proper map

�

f :

�

X ! Y . (If we restri
t to s
hemes

that are quasi-proje
tive over the base s
heme S, this is always possible.) Now every map
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f : (S;B) ! (S

0

;B

0

) of ringed sites is 
ompa
ti�able in the sense of 2.4 if the map of

s
hemes (or algebrai
 spa
es) f : X ! Y is 
ompa
ti�able.

Proposition 2.10. Assume we are in the situation of 2.12 and that proper-base-
hange

holds for all sheaves of H

�

(A)-modules. Then proper base-
hange in the sense of 2.7.1 holds.

Proof. Observe that, under the hypotheses of 2.12, the fun
tor Lg

�

(Lg

0

�

) may be

identi�ed with g

�1

(g

0

�1

, respe
tively). There exist spe
tral sequen
es:

E

s;t

2

= g

�

R

s

f

�

(H

t

(F ))~) H

s+t

(g

�

Rf

�

F ) and E

s;t

2

0

= R

s

f

0

�

g

0

�

H

t

(F )~! H

s+t

(Rf

0

�

g

0

�

F )~

for any F"D(Mod

l

(X;B)). These spe
tral sequen
es 
onverge strongly in view of the hy-

pothesis 2.2. In this 
ase, it suÆ
es to show that one obtains an isomorphism at the E

2

-terms.

This is 
lear from the proper base-
hange for all sheaves of H

�

(A)-modules. �

Corollary 2.11. (i) Assume we are in the situation of 2.12 and that proper base 
hange

holds for all sheaves of H

�

(A)-modules. Assume all maps of s
hemes or algebrai
 spa
es

we 
onsider are 
ompa
ti�able and the sites we 
onsider are all 
oherent in the sense of

Chapter II. Then the fun
tor Rf

#

!

: D(Mod

l

(X;B))! D(Mod

l

(X

0

; ;B

0

) is well de�ned and

has the properties in 2.4 through 2.7 for all maps f : (X;B)! (X

0

;B

0

) of sites. Moreover,

it 
ommutes upto quasi-isomorphism with �ltered 
olimits and sums upto quasi-isomorphism

in general.

(ii) In parti
ular, the 
on
lusions above hold if the sites 
onsidered are the small �etale

sites asso
iated to s
hemes or algebrai
 spa
es, all maps are 
ompa
ti�able and ifH

n

(�(U;B))

is torsion for all n, all U in the 
orresponding site of the base s
heme S.

Proof. (i) The �rst statement is 
lear from Proposition 2.9. The last statement in (i)

is 
lear from 2.8. (ii) follows from (i) sin
e, proper base-
hange holds for all torsion abelian

sheaves on the �etale site. �

2.13. We will next 
onsider sites whi
h are the usual sites asso
iated to lo
ally 
ompa
t

Hausdor� topologi
al spa
es over a base topologi
al spa
e S whi
h is also assumed to be

lo
ally 
ompa
t and Hausdor�. We will assume that all spa
es are of �nite 
ohomologi
al

dimension. If X is a topologi
al spa
e, the asso
iated site will be denoted simply by X. Let

A denote a presheaf of algebras on S. If p : X ! S is the stru
ture map of X, we will let

B = p

�1

(A). The morphism f : (X;B)! (X

0

;B

0

) of sites will be the one asso
iated in the

obvious manner to a 
ontinuous map f : X ! Y of topologi
al spa
es. In this 
ase we may

de�ne a fun
tor f

#

!

: D(Mod

l

(X;B))! D(Mod

l

(X

0

;B

0

)) (intrinsi
ally) by

(2.13.1)

�(V; f

!

#(M)) = fs"�(V; f

�

M)jf : support(s)! Y is properg; M"D(Mod

l

(X;B))

(Re
all that a 
ontinuous map f : X ! Y of topologi
al spa
es is proper if and only if the

image of 
losed sets is 
losed.) So de�ned, one may readily verify that if f = j : X ! Y is

an open imbedding, then f

#

!

is merely extension by zero. Moreover, if f is proper, f

#

!

= f

�

.

Therefore, it follows that if the map f admits a fa
torization f =

�

f Æj with

�

f proper and j an

open imbedding, the fun
tor f

#

!

=

�

f

�

Æ j

#

!

and therefore the right-hand-side is independent

of the fa
torization of f =

�

f Æ j.

Assume as above that f : (X;B) ! (X

0

;B

0

) is a map of ringed spa
es with X, X

0

lo
ally 
ompa
t Hausdor� topologi
al spa
es. Assume that f fa
tors as the 
omposition

(X;B)

j

!(

�

X;

�

B)

�

f

!(X

0

;B

0

) with j an open imbedding and

�

f proper. Now we de�ne

Rf

#

!

: D(Mod

l

(X;B))! D(Mod

l

(X

0

;B

0

)) by Rf

#

!

(M) = R

�

f

�

(Æj

#

!

)(M)),M"D(Mod

l

(X;B)).
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One may readily see, in view of the hypothesis on �nite 
ohomologi
al dimension, that

the last fun
tor is independent of the fa
torization.

Proposition 2.12. Re
all the fun
tors

Sp : D

+

(Mod

l

(S;H

�

(B)))! D

+

(Mod

l

(S; Sp(H

�

(B))))

( and Sp : D

+

(Mod

l

(S

0

;H

�

(B

0

)))! D

+

(Mod

l

(S

0

; Sp(H

�

(B

0

))))

from Chapter I, De�nition 4.6. Let f : (S;B)! (S

0

;B

0

) denote a map of ringed sites. Then

one obtains natural quasi-isomorphisms:

(i) Sp(Rf

�

�

M) ' Rf

�

(Sp(

�

M)) ,

�

M"D

+

(Mod

l

(S;H

�

(B)~)) and

Sp(Lf

�

(

�

N)) ' Lf

�

(Sp(

�

N)),

�

N"D

+

(Mod

l

(S

0

;H

�

(B

0

)~))

(ii) The same 
on
lusions hold with the fun
tor Rf

�

repla
ed by Rf

#

!

if f is a 
ompa
t-

i�able map of s
hemes or algebrai
 spa
es in the situation of 2.12, or in the situation as

in 2.13

Proof. Re
all that if K = �

i

K(i)"D

+

(S;H

�

(A)), Sp(K) = �

i

holim

�

DN(EM

i

(K(i))).

Now the hypotheses in 2.1 , shows that the fun
tor f

�


ommutes with EM

i

. f

�

also 
learly


ommutes with produ
ts and homotopy inverse limits. This proves the �rst assertion for the

derived fun
tor of the dire
t image fun
tor.

Re
all that the fun
tor EM

n

is exa
t and therefore 
ommutes with �ltered 
olimits.

Now the hypotheses in 2.1 shows the fun
tor f

�1


ommutes with EM

n

. This readily shows

that Sp(f

�1

(

�

N)) ' f

�1

(Sp(

�

N)). Now 
hapter III, Proposition (2.12) with

�

M = H

�

(B)

and B repla
ed by f

�1

(B

0

) shows that Lf

�

(Sp(

�

N)) = Sp(H

�

(B))

L




f

�1

Sp(H

�

(B

0

))

f

�1

Sp(

�

N) '

Sp(H

�

(B)

L




f

�1

H

�

(B

0

)

f

�1

�

N) = Sp(Lf

�

(

�

N)). This proves the se
ond quasi-isomorphism in (i).

Now we 
onsider the assertion in (ii). Let j : X !

�

X denote the given open imbed-

ding and let i : Z =

�

X � X !

�

X denote the 
losed imbedding of its 
omplement. Let

�

N"D(Mod

l

(

�

X;

�

B)). Now one obtains the triangles:

j

#

!

j

�

�

N !

�

N ! i

�

i

�1

�

N and j

#

!

j

�

Sp(

�

N)! Sp(

�

N)! i

�

i

�1

Sp(

�

N).

Sin
e the fun
tor Sp sends triangles to triangles (see Chapter I, Proposition 4.4), one also

obtains the triangle: Sp(j

#

!

j

�

�

N)! Sp(

�

N)! Sp(i

�

i

�1

�

N). The natural quasi-isomorphism

of the last and middle terms with the 
orresponding terms of the previous triangle show

that there exists a natural quasi-isomorphism j

#

!

j

�

Sp(

�

N)

'

!Sp(j

#

!

j

�

�

N). This proves the

assertion in (ii) in view of (i). �

Definition 2.13. Let f : (X;B) ! (X

0

;B

0

) denote a map of ringed sites. We say

Rf

�

is perfe
t (of �nite tor dimension, respe
tively) if it sends D(Mod

perf

(X;H

�

(B)))

to D(Mod

perf

(X

0

;H

�

(B

0

))) (D(Mod

f:t:d

(X;H

�

(B))) to D(Mod

f:t:d

(X

0

;H

�

(B))), respe
-

tively). We will similarly de�ne Rf

#

!

to be perfe
t (of �nite tor dimension, respe
tively).

We will say f is perfe
t (of �nite tor dimension) if both Rf

#

!

and Rf

�

are perfe
t (of �nite

tor dimension, respe
tively).

Proposition 2.14. Let f : (X;B)! (X

0

;B

0

) denote a map of ringed sites.
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(i) If Rf

�

is perfe
t (of �nite tor dimension) the fun
tor Rf

�

sends D(Mod

perf

l

(X;B))

to D(Mod

perf

l

(X

0

;B

0

)) (D(Mod

f:t:d

l

(X;B)) to D(Mod

f:t:d

l

(X

0

;B

0

)), respe
tively). The 
or-

responding assertion also holds with Rf

#

!

in the pla
e of Rf

�

.

(ii) Lf

�

is always perfe
t (of �nite tor dimension). i.e. Lf

�

sends D(Mod

perf

l

(X

0

;B

0

))

to D(Mod

perf

l

(X;B))

(D(Mod

f:t:d

l

(X

0

;B

0

)) to D(Mod

f:t:d

l

(X;B)), respe
tively).

Proof. Let fF

k

N jkg denote the exhaustive and separated �ltration of N with re-

spe
t to whi
h N is globally of �nite tor dimension. Re
all this means there exists an

obje
t

�

N"D(S;H

�

(B)) globally of �nite tor dimension so that Sp(

�

N) ' Gr

F

(N). Now

Rf

#

!

(F

k�1

N) ! Rf

#

!

(F

k

N) ! Rf

#

!

(Gr

F;k

N) ! Rf

#

!

(�F

k�1

N) is a triangle and the �rst

map is an admissible mono-morphism (sin
e produ
ts and homotopy limits preserve admis-

sible mono-morphisms). Therefore fRf

#

!

F

k

N jkg is a �ltration of Rf

#

!

N and GrRf

#

!

N '

Rf

#

!

(Gr

F

N) ' Rf

#

!

(Sp(

�

N)) ' Sp(Rf

#

!

(

�

N)). Clearly, the same arguments show that

fRf

�

F

k

N jkg is a �ltration of Rf

�

N and that GrRf

�

N ' Rf

�

(Gr

F

N) ' Rf

�

(Sp(

�

N)) '

Sp(Rf

�

(

�

N)). To 
omplete the proof of the �rst assertion, now it suÆ
es show that Rf

#

!

sends an exhaustive (separated) �ltration to an exhaustive (a separated) �ltration. Sin
e

Rf

#

!


ommutes with �ltered 
olimits (as shown in Theorem 2.8), it follows immediately that

Rf

#

!

sends an exhaustive �ltration to an exhaustive �ltration. In view of the hypotheses

in 2.2 and Theorem 2.8, one may show readily that the separatedness of the �ltration on N

implies the �ltration fRf

#

!

F

k

N jkg is also separated.

Now we 
onsider the se
ond assertion. We may �rst repla
e M"D(Mod

perf

l

(X

0

;B

0

)) by

an obje
t that is also 
at over B

0

by Chapter II, 2.1.1. Therefore we may assume M itself

is 
at; now we will show f

�

(M) = B 


f

�1

(B

0

)

f

�1

(M) belongs to D(Mod

perf

l

(X;B)). For this

observe that the �ltration onM is 
ompatible with the Cartan �ltrations on B and f

�1

(B

0

).

Therefore, Gr

F

(f

�

(M)) = Gr

F

(B 


f

�1

(B

0

)

f

�1

(M)) = Gr

C

(B) 


f

�1

(Gr

C

(B

0

))

f

�1

(Gr

F

(M)) =

f

�

(Gr

F

(M)). Now the morphism F

k�1

(B 


f

�1

(B

0

)

f

�1

(M))! F

k

(B 


f

�1

(B

0

)

f

�1

(M)) is an ad-

missible mono-morphism, sin
e it is the kernel of the admissible epimorphism

F

k

(B 


f

�1

(B

0

)

f

�1

(M))! Gr

k

(B 


f

�1

(B

0

)

f

�1

(M)).

(To see the last map is in fa
t an admissible epimorphism, re
all

F

k

(B 


f

�1

(B

0

)

f

�1

(M)) = Coequalizer(

F

k

(B 
 f

�1

(B

0

)
 f

�1

(M))

f //

g

// Fk(B 
 f�1(M)

))

while

Gr

k

(B 


f

�1

(B

0

)

f

�1

(M)) = Coequalizer(

Gr

k

(B 
 f

�1

(B

0

)
 f

�1

(M))

f //

g

// Grk(B 
 f�1(M)

))

and 
o-equalizers preserve admissible epimorphisms. See axiom (STR6) in Chapter I. (Al-

ternatively, one repla
es the 
o-equalizers above with homotopy 
o-equalizers as in Chapter

II, 1.2.1.) One may see readily that Lf

�

sends an exhaustive �ltration to an exhaustive

�ltration; one may use the se
ond strongly 
onvergent spe
tral sequen
e of Chapter III,

Remark 2.19 to 
on
lude that the indu
ed �ltration on f

�

(M) is also separated. Therefore,

it follows readily that Lf

�

sends D(Mod

perf

l

(X

0

;B

0

)) ! D(Mod

perf

l

(X;B)). The proof in

the 
ase of �nite tor dimension is similar. �
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Corollary 2.15. Suppose (X

0

;B

0

) is the ringed site asso
iated to the �etale site of a

s
heme or algebrai
 spa
e X

0

so that in addition H

�

(B) = �

n

H

n

(B) is lo
ally 
onstant. Let

f : X ! X

0

be a map of algebrai
 spa
es and B = f

�1

(B

0

). Then Rf

#

!

indu
es a fun
tor

D(Mod

f:t:d

l

(X;B))! D(Mod

f:t:d

l

(X

0

;B

0

)).

Proof. In view of the hypothesis in 2.1.1, it is a standard result (whi
h one may readily

prove using the proje
tion formula) that Rf

#

!

(

�

N) is of �nite tor dimension as an obje
t in

D(Mod

l

(X

0

;H

�

(B

0

))) if

�

N"D(Mod

l

(X;H

�

(B))) is of �nite tor dimension. �

Proposition 2.16. (Base-
hange) Assume the situation of 2.8. Then the map Lg

�

Rf

#

!

F !

Rf

0

#

!

Lg

0

�

F is a quasi-isomorphism provided proper base-
hange as in 2.8 holds.

Proof. This is 
lear sin
e every morphism is assumed to be 
ompa
ti�able. �

Proposition 2.17. (Proje
tion formula). Assume in addition to the above situation

that Rf

#

!

has �nite tor dimension. Then

Rf

#

!

(N

L




B

f

�

M) ' Rf

#

!

(N)

L




B

0

M

for N"D(Mod

r

(X;B)), M"D(Mod

l

(X

0

;B

0

) and either N or M is of �nite tor dimension.

Proof. One �rst observes that there exists a map Rf

#

!

(N

L




B

f

�

M)! Rf

#

!

(N)

L




B

0

M that

preserves the �ltration on either side. (Re
all these �ltrations are indu
ed in the obvious

manner from the 
anoni
al Cartan �ltrations on N , B,M and B

0

.) Now 
onsider the spe
tral

sequen
es obtained from these �ltrations:

E

s;t

2

= H

s+t

(Gr

t

[Rf

#

!

(N

L




B

f

�

M)℄)~) H

s+t

(Rf

#

!

(N

L




B

f

�

M))~ and

E

s;t

2

= H

s+t

(Gr

t

[Rf

#

!

(N)

L




B

0

M ℄)~) H

s+t

(Rf

#

!

(N)

L




B

0

M)~

The natural map above indu
es a map of these spe
tral sequen
es; the two spe
tral sequen
es


onverge strongly by the hypotheses 2.2 and on �nite tor dimension. (See also 2.15 as well

as the identi�
ation of the E

2

-terms below.) Therefore it suÆ
es to show one obtains

an isomorphism at the E

2

-terms. Now Chapter III, Proposition (2.10)(i), Chapter III,

Proposition (2.12) and the proof of Proposition (2.12) above show that

Gr[Rf

#

!

(N

L




B

f

�

M)℄ ' Rf

#

!

[Gr(N

L




B

f

�

M)℄

' Rf

#

!

(Gr(N)

L




Gr(B)

Grf

�

(M)) ' Rf

#

!

(Sp(

�

N)

L




Sp(H

�

(B))

Sp(f

�

(

�

M)))

' Rf

#

!

(Sp(

�

N

L




H

�

(B)

f

�

(

�

M))) ' Rf

#

!

(Sp(

�

N

L




f

�1

(H

�

(B

0

))

f

�1

(

�

M)))

' Sp(Rf

#

!

(

�

N

L




f

�1

(H

�

(B

0

))

f

�1

(

�

M))).

By the usual proje
tion formula, one may now identify the last term with Sp(Rf

#

!

(

�

N)

L




H

�

(B

0

)

�

M).

An argument (just as above) using Chapter III, Propositions (2.10)(i) and (2.12) as well as

the proof of Proposition (2.12) above identi�es this with Gr[Rf

#

!

(N)

L




B

0

M ℄. �
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3. The right adjoint to the derived dire
t image fun
tor with proper supports

We will assume throughout this se
tion that f : (X;B) ! (X

0

;B

0

) is a map of ringed

sites and that one may de�ne a fun
tor Rf

#

!

: D(Mod

l

(X;B))! D(Mod

l

(X

0

;B

0

)) satisfying

the hypotheses of 2.4 through 2.7. The goal of this se
tion is to de�ne a right adjoint to

this fun
tor. We will �rst de�ne a fun
tor Rf

!

#

expli
itly and show this is in fa
t a right

adjoint for obje
ts of �nite tor dimension or obje
ts that are perfe
t. We also provide a

se
ond 
onstru
tion of this fun
tor using a re
ent theorem of Neeman that applies sin
e the

fun
tor Rf

#

!

is shown to 
ommute with all (small) sums upto quasi-isomorphism. We will

then 
onsider various properties of this fun
tor.

We begin by de�ning the fun
tor Rf

!

#

: D(Mod

l

(X

0

;B

0

)) ! D(Mod

l

(X;B)). Let

K"D(Mod

l

(X

0

;B

0

)). Let j

U

: U ! X be in the site S

0

and let B

U

= j

#

U !

j

�

U

(B). We let

(3.0.2) �(U;Rf

!

#

K) = R�(X

0

;RHom

B

0

(Rf

#

!

(B

U

);K))

Alternatively we may de�ne a sequen
e of fun
torsRf

!

#;n

: D(Mod

l

(X

0

;B

0

))! D(Mod

l

(X;B)),

n � 1, by �(U;Rf

!

#;n

K) = R�(X

0

;Hom

B

(Rf

#

!

(B

U

); G

n

QK)). Now f�(U;Rf

!

#;n

(K))jng

forms a 
osimpli
ial obje
t and we let

(3.0.3) �(U;Rf

!

K) = holim

�

f�(U;Rf

!

#;n

(K))jng

Let j : X !

�

X denote an open imbedding and

�

f :

�

X ! X

0

a proper map so that f =

�

f Æj. Let

�

B denote a presheaf of algebras on

�

X so that j

�

(

�

B) = B and

�

f : (

�

X;

�

B)! (X

0

;B

0

)

is a map of ringed sites. Observe the pairing

j

�

Æ j

U�

j

�

U

j

�

(

�

B)
 j

#

!

Æ j

#

U !

j

�

U

j

�

(

�

B)
 j

�

Æ j

U�

j

�

U

j

�

(

�

B)! j

#

!

Æ j

#

U !

j

�

U

j

�

(

�

B)

that fa
tors in the obvious two ways showing that j

#

!

Æj

#

U !

j

�

U

j

�

(

�

B)"Mod

bi

(X; j

�

Æ j

U�

j

�

U

j

�

(

�

B)),

i.e. j

#

!

Æ j

#

U !

j

�

U

j

�

(

�

B) has the stru
ture of a presheaf of bi-modules over j

�

Æ j

U�

j

�

U

j

�

(

�

B). This

shows that Rf

#

!

(B

U

) = R

�

f

�

(j

#

!

Æ j

#

U !

j

�

U

j

�

(

�

B)) has the stru
ture of a presheaf of bi-modules

over the presheaf of algebras R(

�

f

�

Æ j

�

Æ j

U�

)j

�

U

j

�

(

�

B)). The latter is a presheaf of alge-

bras over B

0

. Therefore, by taking se
tions over X

0

and using ( 3.0.2), it follows that both

RHom

B

0

(Rf

#

!

(B

U

);K) and RHom

B

0

(Rf

#

!

(B

U

);G

n

QK) have the stru
ture of a presheaf of

left modules over the presheaf of algebras over B. i.e.

So de�ned, Rf

!

#

(K) and Rf

!

#;n

(K)"D(Mod

l

(X;B)).

Proposition 3.1. Assume the above situation. Then

(i) R�(U;RHom

B

(B

U

; Rf

!

#

K)) ' R�(U;RHom

B

0

(Rf

#

!

(B

U

);K))

(ii) If K

0

! K ! K

00

! �K

0

is a triangle in D(Mod

l

(X

0

;B

0

)) and j

U

: U ! X is in

the site S, the diagram

�(U;Rf

!

#

K

0

)! �(U;Rf

!

#

K)! �(U;Rf

!

#

K

00

)! �(U;Rf

!

#

�K

0

)

is a triangle in D(Mod

l

(X;B)).

(iii) IfK

0

! K is a quasi-isomorphism in D(Mod

l

(X

0

;B

0

)), the indu
ed map �(U;Rf

!

#

K

0

)!

�(U;Rf

!

#

K) is a quasi-isomorphism for ea
h U in the site S.

(iv) If f = j : U ! X belongs to the site S, Rf

!

#

= j

�

.
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The properties in (i) through (iii) also hold for the fun
tors Rf

!

#;n

, n � 0.

Proof. (i) is 
lear from the de�nition and Chapter II, (1.2.6). (ii) is 
lear from the

de�nition of the fun
tor RHom

B

0

as in Chapter II, De�nition (4.12), and the de�nition of

R�(X;�) as in Chapter II, (1.1.1). (iii) is also 
lear for the same reasons. In the 
ase of

(iv), the fun
tor j

#

!

has a right adjoint j

�

; therefore Rj

!

#

may be identi�ed with j

�

. �

Remark 3.2. The above proposition shows that the fun
tor Rf

!

#

indu
es a fun
tor

Rf

!

#

: D(Mod

l

(X

0

;B

0

))! D(Mod

l

(X;B)).

Next we pro
eed to prove a result that holds for the fun
tor Rf

#

!

as well as the fun
tor

Rf

!

#

. To handle both 
ases simultaneously we will 
onsider the following abstra
t situation.

3.1. Let (X;B), (X

0

;B

0

) denote two ringed sites as above. Let � : D(Mod

l

(X;B))!

D(Mod

l

(X

0

;B

0

)) denote a fun
tor with the following properties.

(i) � preserves triangles and quasi-isomorphisms and ea
h �(F ) has a �ltration indu
ed

by the Cartan �ltration on F .

(ii) there exist a sequen
e of fun
tors f�

n

: Mod

l

(X;B)) ! Mod

l

(X

0

;B

0

)jng so that

if K"D(Mod

l

(X;B)), f�

n

(K)jng forms a 
osimpli
ial obje
t in Mod

l

(X

0

;B

0

) and �(K) =

holim

�

f�

n

(K)jng

(iii) for ea
h n � 0, there exists a fun
tor

�

�

n

:Mod

l

(X;H

�

(B))!Mod

l

(X

0

;H

�

(B)

0

) so

that Sp Æ

�

�

n

is naturally quasi-isomorphi
 to �

n

Æ Sp

(iv) There exists a spe
tral sequen
e E

u;v

2

= H

u

(f�

n

(H

v

(F ))jng)~) H

u+v

(�(F ))~,

F"D(Mod

l

(X;B)) with E

u;v

2

= 0 for u < 0. Moreover, there exists an integer N >> 0 so

that E

u;v

2

= 0 if u > N independent of v and F"D(Mod

l

(X;B)).

3.2. Let f : (X;B) ! (X

0

;B

0

) denote a map of ringed sites as above. Now Rf

#

!

:

D(Mod

l

(X;B))! D(Mod

l

(X

0

;B

0

)) as de�ned above 
learly satis�es the above hypotheses.

To see this just observe that the hypothesis in 2.2 implies the vanishing 
ondition (iv) above,

whereas the other 
onditions (i) through (iii) are 
lear. Moreover, one may readily see, in

view of the de�nition of the fun
tor Rf

!

#

above, that the same hypotheses as above, imply

the 
onditions in (iv) for the fun
tor Rf

!

#

at least if H

�

(B

0

) is lo
ally 
onstant, B = f

�1

(B

0

)

and the sites are Noetherian. (See ?? for a proof.) See Proposition 5.12 for an appli
ation

of this result.

Lemma 3.3. Let L"D(Mod

l

(S;B)) be of �nite tor dimension in the sense of 
hapter

III, De�nition (3.1). If P (L)

�

! L is a simpli
ial resolution of L in the sense of Chapter

II, Proposition (2.4) we obtain the quasi-isomorphisms:

ho
olim

�

f�(P (L)

n

)jng ' �(ho
olim

�

fP (L)

n

jng ' �(L)

Proof. The 
ondition (iv) in 3.1 shows that if M"D(Mod

l

(S;A)), and n is a �xed

integer, there are only �nitely many E

u;v

2

-terms whose sub-quotients appear as the asso
iated

graded terms of H

�n

(�(M))~.

For su
h an M , we will de�ne a non-in
reasing �ltration by letting F

m

(M) = �

��m

M

where �

��m

is de�ned as in 
hapter I. We let F

m

(�(L)) = �(F

m

L): by the hypotheses this

de�nes a �ltration of �(L). Let n denote a �xed integer throughout the rest of the proof.

By the de�nition of the �ltration F

m

on F and by the hypothesis (iv) above, for ea
h �xed

integer q,
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(3.2.1) H

q

(F

m

(�(L)))~

�

=

H

q

(�(L))~

if m is suÆ
iently small.

The key-step in the proof will be to show that for ea
h �xed integer q, the natural map

ho
olim

�

fF

m

(�(P (L)

k

))jkg ! F

m

(�(L)) indu
es an isomorphism:

(3.2.2) H

q

(ho
olim

�

fF

m

(�(P (L)

k

))jkg)~

�

=

H

q

(F

m

(�(L)))~

if m is suÆ
iently small.

We will �rst 
omplete the proof assuming ( 3.2.2). Observe that


olim

m!�1

ho
olim

�

fF

m

(�(P (L)

n

))jng ' ho
olim

�

f
olim

m!�1

F

m

(�(P (L)

n

))jng

' ho
olim

�

f�(P (L)

n

)jng

(where the last ' is by ( 3.2.1)) applied to ea
h P (L)

n

instead of L; by ( 3.2.1) again


olim

m!�1

F

m

(�(L)) ' �(L).

Therefore, it will follow ho
olim

�

f�(P (L)

n

)jng ' �(L).

Now we pro
eed to prove ( 3.2.2). First observe that H

v

(F

m

(L))~

�

=

0 if v > �m and

for all F . Now 
onsider the spe
tral sequen
e for the homotopy 
olimit in 
hapter I, se
tion

1, (HCl):

(3.2.3) E

2

u;v

= H

u

(H

v

(F

m

(f�(P (L)

n

)jng)))~) H

�u+v

(ho
olim

�

fF

m

(�(P (L)

n

))jng)~

For a �xed integer q, the only E

2

u;v

-terms whose sub-quotients appear as the asso
iated

graded terms of H

q

(ho
olim

�

fF

m

(�(P (L)

n

))jng)~are those with q � v � q + u and v � �m

and hen
e in parti
ular m � �q. The same spe
tral sequen
e in ( 3.2.3) for F

m

L also shows

that E

u;v

2

6= 0 only form � �q. Therefore, form > �q, H

q

(ho
olim

�

fF

m

(�(P (L)

n

))jng)~= 0

and H

q

(F

m

(�(L)))~= 0. Therefore, in order to prove ( 3.2.2), it suÆ
es to show that the

natural map

(3.2.4) ho
olim

�

f(F

n

�(P (L)

k

)=F

m

�(P (L)

k

))jkg ! F

n

(�(L))=F

m

(�(L))

indu
es an isomorphism on H

q

for all m and n with n � m and all q (in fa
t it suÆ
es to


onsider m � �q). Sin
e both sides preserve triangles, one may use as
ending indu
tion on

m� n and redu
e to the 
ase where m = n+ 1. Now the left-hand-side (right-hand-side) of

( 3.2.4) may be identi�ed with

ho
olim

�

fGr

n

(�(P (L)

k

))jkg ' ho
olim

�

f�(Gr

n

(P (L)

k

))jkg ' ho
olim

�

f�(Sp(P (

�

L)

k

)

n

jkg

' ho
olim

�

fSp(

�

�(P (

�

L)

k

))

n

jkg
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(�(Gr

n

(L)) ' �(Sp(

�

L)

n

) ' Sp(

�

�(

�

L))

n

, respe
tively).

Therefore, it suÆ
es to show :

(3.2.5) ho
olim

�

fSp(

�

�(P (

�

L)

k

))jkg ' Sp(

�

�(

�

L))

Now one may identify the left-hand-side of ( 3.2.5) with

ho
olim

�

holim

�

fDN ÆGEM(

�

�

r

(P (

�

L)

s

))jrg

where the outer homotopy 
olimit is over all s and the inner homotopy limit is over all r.

For a �xed s, f

�

�

r

(P (

�

L)

s

)jrg is a 
osimpli
ial abelian presheaf. Therefore its normalization

N(f

�

�

r

(P (

�

L)

s

)jrg) is a 
o-
hain 
omplex. Now the hypothesis ( 3.1(iv)) shows we may

repla
e this 
o-
hain 
omplex, by the bounded 
o-
hain 
omplex �

�N

N(f

�

�

r

(P (

�

L)

s

)jrg).

By axiom (ST9) of 
hapter I, we see that, for ea
h �xed s:

(3.2.6)

holim

�

DN(GEM(�

�N

N(f

�

�

r

(P (

�

L)

s

)jrg))) ' 


N

ho
olim

�

DNGEM(�

�N

N(f

�

�

r

(P (

�

L)

s

)jrg))[N

h

℄

Sin
e two homotopy 
olimits 
ommute, the left-hand-side of ( 3.2.5) may be identi�ed with:




N

ho
olim

�

ho
olim

�

fGEM(DN(GEM(�

�N

N(f

�

�

r

(P (

�

L)

s

)jrg))[N

h

℄))g

where the inner (outer) ho
olim

�

is over the s (r, respe
tively). A dire
t 
omputation using

the spe
tral sequen
e for the homotopy 
olimit shows the latter may be identi�ed with




N

ho
olim

�

fDN(GEM(�

�N

(

�

�

r

(

�

L))[N

h

℄))jrg. By the same argument as above, one may

identify this with

holim

�

fDNGEM(�

�N

(

�

�

r

(

�

L)))jrg ' holim

�

fSp(�

�N

(

�

�

r

(

�

L)))jrg

' holim

�

fSp(

�

�

r

(

�

L))jrg ' holim

�

f�

r

Sp(

�

L)jrg ' �Sp(

�

L).

We have thereby shown that the map in ( 3.2.5) is a quasi-isomorphism. �

Remark 3.4. Observe that we have used the strong-t-stru
ture in an essential manner.

As pointed out in Chapter I this is needed mainly to be able make homotopy 
olimits and

limits 
ommute.

Theorem 3.5. Assume the above situation. LetK"D(Mod

l

(X

0

;B

0

)) and L"D(Mod

l

(X;B)).

Let j

U

: U ! X

0

be in the site S and let V = U�

X

0

X. Then one obtains:

(i) R�(V;RHom

B

(L;Rf

!

#

(K))) ' R�(U;RHom

B

0

(Rf

#

!

(L);K)) (or equivalently

Rf

�

(RHom

B

(L;Rf

!

#

(K))) ' RHom

B

0

(Rf

#

!

(L);K)) and therefore

(ii) RMap

B

(L;Rf

!

#

(K))

�

=

RMap

B

0

(Rf

#

!

(L);K)

Proof. Choose a simpli
ial resolution P (L)

�

! L as in 
hapter II, Proposition 2.7.

Re
all ea
h term P (L)

n

is of the form t

s"S

j

#

U !

j

�

U

(�

n

s

B). Now

RHom

B

(L;Rf

!

#

(K)) = holim

�

fRHom

B

(P (L)

n

; Rf

!

#

K)jng

Next �x an integer n. Now
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RHom

B

(P (L)

n

; Rf

!

#

K) = RHom

B

( t

s"S

j

#

U !

j

�

U

(�

n

s

B), Rf

!

#

K)

' �

s"S

RHom

B

(j

#

U !

j

�

U

(�

n

s

B), Rf

!

#

K) ' �

s"S

RHom

B

(Rf

#

!

(j

#

U !

j

�

U

(�

n

s

B)), K)

where the last ' follows from Proposition 3.0.2 (i) and Chapter II, Proposition 2.1. The pre-

vious ' follow from the de�nition of Hom

B

as an equalizer in 
hapter II, (1.2.3) and(1.2.7).

(See also 
hapter II, Propositions (3.5), (3.7) for the operadi
 
ase.) Now one may identify

the last term with:

RHom

B

( t

s"S

Rf

#

!

(j

#

U !

j

�

U

(�

n

s

B)), K) ' RHom

B

(Rf

#

!

( t

s"S

j

�

U

(�

n

s

B)), K)

= RHom

B

0

(Rf

#

!

(P (L)

n

);K)

The ' follows from Theorem 2.8. Now

RHom

B

(L;Rf

!

#

(K)) = RHom

B

(ho
olim

�

P (L)

�

; Rf

!

#

(K))

' holim

�

fRHom

B

(P (L)

n

; Rf

!

#

(K))jng ' holim

�

fRHom

B

0

(Rf

#

!

(P (L)

n

);K)jng

' RHom

B

0

(ho
olim

�

fRf

#

!

(P (L)

n

)jng, K) ' RHom

B

0

(Rf

#

!

(L);K)

The last ' follows from the observation that ho
olim

�

fRf

#

!

(P (N))

n

jng ' Rf

#

!

L. This in

turn follows from the previous lemma. This proves (i). The assertion (ii) follows from (i) by

Chapter II, Proposition (2.8). �

Remark 3.6. Observe that the proof uses in an essential way the hypothesis in 2.2 as

well as the axiom (ST9) from 
hapter I.

Corollary 3.7. Let f : (X;B) ! (X

0

;B

0

) and g : (X

0

;B

0

) ! (X

00

;B

00

) denote two

maps of ringed sites as before. Now there is a natural isomorphism Rf

!

#

ÆRg

!

#

' R(g Æf)

!

#

:

D(Mod

l

(X;B))! D(Mod

l

(X

00

;B

00

)).

Proof. Observe from 2.10 that there is a natural isomorphism of the derived fun
tors

Rg

#

!

ÆRf

#

!

' R(g Æ f)

#

!

. Now theorem 3.5 provides the required isomorphism. �

Proposition 3.8. Assume the above situation. Let

�

K"D(Mod

l

(X

0

;H

�

(B

0

)) and K =

Sp(

�

K). Now Rf

!

#

(Sp(

�

K)) ' Sp(Rf

!

#

(K))

Proof. Take B = Sp(H

�

(B)), B

0

= Sp(H

�

(B

0

)) and L = j

#

U !

j

�

U

Sp(H

�

(B)) in the above

theorem. Let

�

L = j

�

U !

j

�

U

(H

�

(B)). Now

RHom

Sp(H

�

(B))

(L;Rf

!

#

(Sp(

�

K))) ' Rf

�

RHom

Sp(H

�

(B))

(Rf

#

!

(L); Sp(

�

K))

' Rf

�

RHom

Sp(H

�

(B))

(Rf

#

!

(Sp(

�

L)); Sp(

�

K)) ' Rf

�

RHom

Sp(H

�

(B))

(Sp(Rf

#

!

(

�

L)); Sp(

�

K))

' Rf

�

Sp(RHom

H

�

(B)

(Rf

#

!

(

�

L);

�

K)) ' Sp(Rf

�

RHom

H

�

(B)

(Rf

#

!

(

�

L);

�

K))

' Sp(RHom

H

�

(B)

(

�

L;Rf

!

#

(

�

K))) ' RHom

Sp(H

�

(B))

(Sp(

�

L); Sp(Rf

!

#

(

�

K)))

The third and �fth ' are by Proposition 2.12 while the fourth and last ' are by Chapter

III, Proposition (2.13). Now take R�(U;�) of both sides. The left-hand-side now be
omes

R�(U;Rf

!

#

(Sp(

�

K))) while the right-hand-side be
omes R�(U; Sp(Rf

!

#

(

�

K))). �
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Proposition 3.9. (i) Let i : Y ! X denote a 
losed imbedding with j : U = X �

Y ! X the 
orresponding open imbedding. De�ne a fun
tor i

�

Ri

!

: D(Mod

l

(X;B)) !

D(Mod

l

(X;B)) by

i

�

Ri

!

F = the 
anoni
al homotopy �ber of the map F ! Rj

�

j

�

F , F"D(X;B).

Then there exists a natural quasi-isomorphism i

�

Ri

!

F ' i

�

Ri

!

#

F , natural in F .

(ii) Consider a 
artesian square:

(Y; C)

g

0

����! (X;B)

f

0

?

?

y

?

?

y

f

(Y

0

; C

0

)

g

����! (X

0

;B

0

)

where Y = Y

0

�

X

0

X and C = f

0

�1

(C

0

) 


(f

0

�1

(g

�1

(B

0

)))

f

�1

(B). Assume further that the base-


hange map Lf

�

Rg

#

!

! Rg

0

#

!

Lf

0

�

is a natural isomorphism of fun
tors D(Mod

l

(Y

0

; C

0

))!

D(Mod

l

(X;B)). Then one obtains the 
anoni
al isomorphism of fun
tors Rg

!

#

Æ Rf

�

'

Rf

0

�

Æ Rg

0

!

#

as fun
tors D(Mod

l

(X;B)) ! D(Mod

l

(Y

0

; C

0

)) and Lf

0

�

Æ Rg

!

#

' Rg

0

!

#

Æ Lf

�

as fun
tors D(Mod

l

(X

0

;B

0

))! D(Mod

l

(Y; C)).

(iii) Let f : (X;B)! (X

0

;B

0

) denote a map of ringed sites. Then there exists a natural

transformation:

Rf

!

#

(�)

L




B

Lf

�

(�)! Rf

!

#

(�

L




B

0

�)

Proof. (i) Let K"D(Mod

l

(X;B)). We begin with the triangle j

#

!

j

�

(K) ! K !

i

�

i

�1

K. Taking RHom

B

, we obtain the triangle:

RHom

B

(i

�

i

�1

K;F )!RHom

B

(K;F )!RHom

B

(j

#

!

j

�

K;F )

Now the �rst term may be identi�ed with i

�

RHom

A

(K; i

�

Ri

!

#

F ) while the last may be

identi�ed with

RHom

B

(K;Rj

�

j

�

F ). Now take K = B to obtain the triangle: i

�

Ri

!

#

F ! F ! Rj

�

j

�

F .

The de�nition of i

�

Ri

!

shows one may identify i

�

Ri

!

F and i

�

Ri

!

#

F . This proves (i).

(ii) Let K"D(Mod

l

(X;B)) and L"D(Mod

l

(X

0

;B

0

)). Now

RMap

C

0

(L;Rg

!

#

Rf

�

K) ' RMap

B

0

(Rg

#

!

L;Rf

�

K) ' RMap

B

(Lf

�

(Rg

#

!

L);K)

' RMap

B

(Rg

0

#

!

Lf

0

�

L;K) ' RMap

C

(Lf

0

�

L;Rg

0

!

#

K) ' RMap

C

0

(L;Rf

0

�

Rg

0

!

#

K).

The �rst and fourth ' are by Theorem 3.5, the se
ond and last are by Proposition 2.6 and

the third by our assumption. This proves the �rst assertion in (ii). The se
ond is established

similarly.

(iii) Let S denote the unit of 
ategory Presh(S) as in 1.0.3. Let F"D(S

0

;S), F

1

"D(Mod

l

(X

0

;B

0

)),

F

2

"D(Mod

r

(X

0

;B

0

)) respe
tively. We obtain:

RMap

S

(Rf

!

#

F

1

L




B

Lf

�

(F

2

); Rf

!

#

F ) ' RMap

S

(Rf

#

!

(Rf

!

#

F

1

L




B

Lf

�

(F

2

)); F )
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' RMap

S

(Rf

#

!

Rf

!

#

(F

1

)

L




B

0

F

2

; F )

The last ' follows by the proje
tion formula in se
tion 1. Now take F = F

1

L




B

0

F

2

. The natural

map Rf

#

!

Rf

!

#

(F

1

)! F

1

provided by Theorem 3.5 provides a map Rf

#

!

Rf

!

#

(F

1

)

L




B

F

2

! F .

This provides the required map by the above quasi-isomorphisms. �

We will 
on
lude this se
tion with a some-what di�erent 
onstru
tion of the fun
tor

Rf

!

#

making use of some re
ent results of Neeman. We begin by re
alling the notion of


ompa
t obje
ts from [Neem℄ p. 210. An obje
t K"D(Mod

l

(X; B)) is 
ompa
t if for any


olle
tion fF

�

j�g of obje
ts in D(Mod

l

(X; B))

(3.2.7) Hom

D(Mod

l

(X;B))

(K;�

�

F

�

)

�

=

�

�

Hom

D(Mod

l

(X;B))

(K;F

�

)

Proposition 3.10. (i) Every obje
t of the form j

#

U !

j

�

U

(�

n

B) for U"S and n an integer

is 
ompa
t. (ii) The 
ategory D(Mod

l

(X; B)) is 
ompa
tly generated by the above obje
ts

as U varies among a 
o�nal set of neighborhoods of all the points i.e. the above 
olle
tion

of obje
ts is a small set T of 
ompa
t obje
ts in D(Mod

l

(X; B)), 
losed under suspension,

so that Hom

D(Mod

l

(X;B))

(T; x) = 0 for all T implies x = 0.

Proof. On
e again we will let S denote the unit of Presh(S) as in 1.0.3.

(i) Observe that

Hom

D(Mod

l

(X;B))

(j

#

U !

(j

�

U

�

n

B)), F )

�

=

Hom

D(Mod

l

(X;B))

(j

�

U

(�

n

B), j

�

U

F )

�

=

Hom

D(Mod

l

(X;S)

(�

n

S

jU

, j

�

jU

(F ))

�

=

H

�n

(R�(U , F ))

- see 
hapter II, Proposition 2.1 and 
hapter II, Proposition 3.7. Therefore, by Theorem 2.8,

one now observes that

Hom

D(Mod

l

(X;B))

(j

#

U !

(j

�

U

(�

n

B)), �

�

F

�

)

�

=

H

�n

(R�(U , �

�

F

�

))

�

=

�

�

H

�n

(R�(U , F

�

))

This proves (i). Suppose H

�n

(R�(U , F )) = 0 for all U that form a 
o�nal system of

neighborhoods of all points in the site S and all n. It follows immediately that F is a
y
li


and therefore is isomorphi
 to 0 in the derived 
ategory D

l

(S; B). This proves (ii). �

Definition 3.11. (Compa
tly generated triangulated 
ategories) Let S denote a trian-

gulated 
ategory. Suppose all small 
o-produ
ts exist in S. Suppose also that there exists a

small set of obje
ts S of S so that

(i) for every s"S, Hom

S

(s;�) 
ommutes with 
o-produ
ts in the se
ond argument and

(ii) if y"S is an obje
t so that Hom

S

(s; y) = 0 for all s"S, then y = 0.

Su
h a triangulated 
ategory is said to be 
ompa
tly generated. An obje
t s in a triangulated


ategory S is 
alled 
ompa
t if it satis�es the hypothesis (i) above.

Theorem 3.12. (Neeman: see [N℄ Theorems 4.1 and 5.1) Let S denote a 
ompa
tly

generated triangulated 
ategory and let F : S! T denote a fun
tor of triangulated 
ategories.

Suppose F has the following property:
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if fs

�

j�g is a small set of obje
ts in S, the 
o-produ
t t

�

F (s

�

) exists in T and the natural

map t

�

F (s

�

)! F (t

�

s

�

) is an isomorphism.

Then F has a right adjoint G. Moreover, the fun
tor G preserves 
o-produ
ts (i.e. if

ft

�

j�g is a small set of obje
ts in T whose sum exists in T, G(t

�

t

�

) = t

�

G(t

�

)) if for every

s in a generating set S for S, F (s) is a 
ompa
t obje
t in T.

We will apply the above theorem in the following manner.

Theorem 3.13. Let T denote a fun
tor T : D(Mod

l

(X;B)) ! D(Mod

l

(X

0

;B

0

)). If T

sends sums in D(Mod

l

(X;B)) to sums in D(Mod

l

(X

0

;B

0

)), T has a right adjoint whi
h we

will denote by T

!

#

. Moreover, if T (j

#

U !

(j

�

U

(�

n

B))) is a 
ompa
t obje
t in D(Mod

l

(X

0

;B

0

))

for all obje
ts j

U

: U ! X in the site S and all integers n, then the fun
tor T

!

#

preserves

sums.

Proof. Re
all the derived 
ategories D(Mod

l

(X;B)) and D(Mod

l

(X

0

;B

0

)) are tri-

angulated 
ategories and that (see Proposition 3.10 above), that fj

#

U !

(j

�

U

(�

n

B))jj

U

!

S in S; n"Zg is a small set of 
ompa
t obje
ts that generate the 
ategoryD(Mod

l

(X;B)).

Therefore, if T preserves sums, Theorem 3.12 shows it has an adjoint T

!

#

. The fun
tor T

!

#

preserves sums, if T (j

#

U !

(j

�

U

(�

n

B))) is a 
ompa
t obje
t in D(Mod

l

(X

0

;B

0

)) for all obje
ts

j

U

: U ! X in the site S and all integers n. �

Theorem 3.14. (Existen
e of a right adjoint to Rf

#

!

) Let f : (X;B)! (X

0

;B

0

) denote

a map of ringed sites. Suppose the site S is algebrai
 and S

0

is lo
ally 
oherent. Suppose

the fun
tor Rf

#

!

is well-de�ned. Then the fun
tor

Rf

#

!

: D(Mod

l

(X;B))! D(Mod

l

(X

0

;B

0

))

has a right adjoint (whi
h we denote by Rf

!

#

). Moreover, if Rf

#

!

sends a 
ompa
t generating

set for D(Mod

l

(X;B)) to 
ompa
t obje
ts in D(Mod

l

(X

0

;B

0

)), the fun
tor Rf

!

#

preserves

sums.

Proof. First observe from Theorem 2.8 that the fun
tor Rf

#

!


ommutes with �ltered

dire
t limits of presheaves. Therefore, it follows that if fM

�

j�g is a 
olle
tion of obje
ts in

D(Mod

l

(X;B)), the natural map:

t

�

Rf

#

!

(M

�

)

'

!Rf

#

!

(t

�

M

�

)

is a quasi-isomorphism. It follows that the fun
tor Rf

#

!

preserves sums. Sin
e the derived


ategory D(Mod

l

(S;B)) is 
ompa
tly generated as shown in Proposition 3.10, it follows

that Rf

#

!

has a right adjoint. The last assertion is now 
lear from the last assertion of

Theorem 3.12. �

Remark 3.15. Despite the elegan
e of the above 
onstru
tion, one looses the bi-module

stru
ture (see the remarks in 4.2 below) on Rf

!

#

(B) by the above 
onstru
tion. This bi-

module stru
ture is essential in obtaining a bi-duality theorem and hen
e the full strength

of Grothendie
k-Verdier duality as in the next se
tion.

4. The dualizing presheaves and the bi-duality theorem

We begin by de�ning dualizing presheaves both in the relative and absolute situation.

We will assume throughout that all maps are 
ompa
ti�able in the sense of 2.4. Furthermore
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we will assume that (S;A) is a base-ringed site and that all ringed sites we 
onsider are

de�ned over it. Let Z denote the terminal obje
t in the site S. Moreover, we will assume

that the following hypothesis holds:

A"Presh(S) and B"Presh(S) are 
ommutative algebras.

Definition 4.1. (i) Let f : (X;B) ! (X

0

;B

0

) denote a map of ringed sites. Now we

de�ne the relative dualizing presheaf D

f

to be Rf

!

#

(B

0

).

(ii) If p : (X;B)! (Z;A) is the stru
ture map of the ringed spa
e, we let D

B

= Rp

!

#

(A)

and 
all it the dualizing presheaf for the 
ategories D(Mod

l

(X;B)) and D(Mod

r

(X;B)).

(iii) Assume the situation in (ii). We de�ne a fun
tor D

B

: D(Mod

l

(X;B))! D(Mod

r

(X;B))

(and similarly D

B

: D(Mod

r

(X;B))! D(Mod

l

(X;B)) by D(F ) = RHom

B

(F;D

B

).

Remark 4.2. Re
all that

(4.0.8) �(U;D

B

) = R�(S;RHom

A

(Rp

#

!

(B

U

);A))

for ea
h U in the site S. In taking the RHom

A

, we use the stru
ture of a presheaf of left A-

modules on Rf

#

!

(B

U

). We already saw in ( 3.0.2) thatD

B

belongs toD(Mod

l

(X;B)). In fa
t

one may show readily that D

B

has the stru
ture of a presheaf of bi-modules over B: ( 4.0.8)

in fa
t shows that the left -module- stru
ture (right-module-stru
ture) is indu
ed from the

stru
ture of a presheaf of right B-modules (right-B-modules, respe
tively) on Rp

#

!

(B

U

).)

Observe that, in this 
ase, the 
ommutativity of the algebras implies the left A-module

stru
ture on Rp

#

!

(B

U

) 
ommutes with the left B-module stru
ture. Therefore D

B

has the

stru
ture of a presheaf of bi-modules and therefore de�nes fun
tors D

B

as stated.

4.1. Let D

B

be �ltered by the �ltration indu
ed from the Cartan �ltration on A and

B. Now Gr(D

B

) ' D

Gr(B)

' D

Sp(H

�

(B))

. The �rst ' follows from the de�nition of D

B

along with Chapter III, Proposition 2.7. The se
ond ' now follows from Chapter III,

Proposition 2.10 (ii) and Chapter III, Proposition 2.13.

Proposition 4.3. Assume the situation of 4.1. Then Rf

�

D

B

(F ) ' D

B

0

(Rf

#

!

(F ))

Proof. This follows readily from Theorem 3.5(i) and 
orollary 3.7. �

In order to prove the dualizing pre-sheaf is re
exive (see Theorem 4.7 below) one will

have to further restri
t to one of the following two situations:

4.2. (i) (S;A) is a ringed site so that H

�

(A) is lo
ally 
onstant on the site S, B =

p

�1

(A) and we restri
t to the full sub-
ategory D(Mod


;f:t:d

(S;B)) of D(Mod

f:t:d

(S;B))

of obje
ts that are 
onstru
tible in the sense of the following de�nition or

(ii) with no further restri
tion on the ringed site (S;A), we restri
t toD(Mod

perf

(S;B)).

Definition 4.4. Assume the �rst situation above. (i) Let F"D(Mod

l

(S;B)). We say

F is lo
ally 
onstant on S if H

�

(F )~ is lo
ally 
onstant as a sheaf of graded left modules

over the sheaf H

�

(B)~.

(ii) F is 
onstru
tible if H

�

(F )~ is 
onstru
tible as a sheaf of graded left-modules over

the sheaf H

�

(B)~. Re
all this means: there exists a �nite �ltration

X

0

i

0

�X

1

i

1

�:::

i

n

�X

n
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by lo
ally 
losed subspa
es of X, so that H

�

(F )

~

jX

i

�X

i�1

is lo
ally 
onstant (and �nitely

generated) as a sheaf of H

�

(B)

~

X

i

�X

i�1

-modules for ea
h i. (Re
all that H

�

(B) is assumed

to be a sheaf of Noetherian rings so that there is no distin
tion between �nitely generated

and �nitely presented obje
ts.)

Proposition 4.5. Let f : (X;B)! (X

0

;B

0

) denote a map of ringed sites as before. Sup-

pose that Rf

#

!

(Rf

�

) sends 
onstru
tible sheaves of H

�

(B)~-modules to 
onstru
tible sheaves

of H

�

(B

0

)~-modules on X

0

. Then Rf

#

!

(Rf

�

, respe
tively) sends 
onstru
tible presheaves of

modules over B to 
onstru
tible presheaves of modules over B

0

.

Proof. Re
all the spe
tral sequen
e:

E

s;t

2

= R

s

f

#

!

H

t

t(F )~! H

s+t

(Rf

#

!

F )~, F"D(Mod

l

(S;A))

Now the hypothesis of 2.2 shows that it suÆ
es to prove �

s

R

s

f

#

!

H

t

(F )~is 
onstru
tible as a

sheaf of modules over H

�

(B

0

)~. This is 
lear from the hypothesis. The assertion about Rf

�

is established similarly. �

Definition 4.6. We say f is 
onstru
tible if Rf

�

and Rf

#

!

send 
onstru
tible sheaves

of H

�

(B)-modules to 
onstru
tible sheaves of H

�

(B

0

)-modules.

4.3. Terminology and 
onventions for the rest of the 
hapter. For the rest

of this 
hapter, we will adopt the following terminology. With no further restri
tions on

the site, D(Mod

?

(X;B)) = D(Mod

perf

l

(X;B)). In 
ase the ringed site (X;B) satis�es the

hypotheses in 4.2 (i), D(Mod

?

(X;B)) will denote D(Mod


;f:t:d

l

(X;B)) as in de�nition 4.4.

In the former 
ase D

?

(X;H

�

(B))) will denote the derived 
ategory D(Mod

perf

l

(X;H

�

(B)))

of perfe
t 
omplexes of sheaves of H

�

(B)-modules. Moreover, any map f : (X;B)! (X

0

;B

0

)

of ringed sites in the above sense will be automati
ally assumed to be perfe
t in the �rst 
ase

and of �nite tor dimension and 
onstru
tible in the se
ond 
ase in the sense of de�nition 2.13

and the de�nition ?? above. In either 
ase D

H

�

(B)

will denote the dualizing 
omplex in the

derived 
ategory D

?

(X;H

�

(B)).

Theorem 4.7. (Bi-duality) Assume in addition to the above situation that the natural

map

�

F ! D

H

�

(B)

(D

H

�

(B)

(

�

F ))

is a quasi-isomorphism for every

�

F"D

?

(X;H

�

(B)~). Let F"D(Mod

?

(X;B)). Then the natu-

ral map F ! D

B

(D

B

(F )) is a quasi-isomorphism. The same 
on
lusions hold if D

B

"D

?

(Mod

bi

(X;B))

so that the hypotheses in 4.1 are satis�ed.

Proof. The se
ond spe
tral sequen
e in Chapter III, Theorem 2.18 plays a key-role in

the proof. Observe next that the given �ltration on F and the 
anoni
al Cartan �ltration on

B indu
e a �ltration on D

B

(F ) as well as on D

B

(D

B

(F )). The natural map F ! D

B

(D

B

(F ))

is 
ompatible with the above �ltrations. Now the �ltrations provide us with spe
tral se-

quen
es; sin
e the above map is 
ompatible with the �ltrations, we also obtain a map of

these spe
tral sequen
es.

Next re
all that for F , Gr(F ) = Sp(

�

F ), where

�

F"D

?

(X;H

�

(B)) is a bounded 
omplex

of �nite tor dimension (or is a perfe
t 
omplex). Re
all

�

F = �

i

�

F (i). The spe
tral sequen
e
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for F now is given by:

E

s;t

2

= H

s+t

(Gr

t

(F ))~

�

=

H

s+t

(Gr

t

(Sp(

�

F )))~

�

=

H

s+t

(Gr

t

(holim

�

�

i

EM

i

(

�

F (i))))~

�

=

H

sf+t

(holim

�

EM

t

(

�

F (t)))~) H

s+t

(F )~

(4.3.1)

One may 
ompute H

s+t

(holim

�

EM

t

(

�

F (t)))~by means of the spe
tral sequen
e:

E

u;v

2

= H

u

(H

v

(EM

t

(

�

F (t))))~) H

u+v

(holim

�

EM

t

(

�

F (t)))~.

This spe
tral sequen
e degenerates sin
e E

u;v

2

= 0 unless v = t and E

u;v

2

= H

u

(

�

F (t)) if

v = t. i.e.

H

s+t

(holim

�

EM

t

(

�

F (t)))~

�

=

H

s

(

�

F (t)). Sin
e

�

F is a bounded 
omplex, there exists an integer

N >> 0, independent of t so that H

s

(

�

F (t)) = 0 if s > N or if s << 0. It follows that

H

s+t

(Gr

t

(F ))~

�

=

0 if s > N or if s << 0. Thus the spe
tral sequen
e in ( 4.3.1) 
onverges

strongly.

Now we 
onsider the spe
tral sequen
e for D

A

(D

A

(F )) = RHom

A

(RHom

A

(F;D

A

); D

A

).

The E

s;t

2

-terms are given by

(4.3.2) E

s;t

2

= H

s+t

(Gr

t

(RHom

A

(RHom

A

(F;D

A

); D

A

)))~

By Chapter III, Proposition 2.7 applied twi
e we see thatGr(RHom

B

(RHom

B

(F;D

B

); D

B

))

' RHom

Gr(B)

(Gr(RHom

B

(F;D

B

)); Gr(D

B

))

' RHom

Gr(B)

(RHom

Gr(QB)

(Gr(F ); Gr(D

B

)); Gr(D

B

)).

By Chapter III, Proposition 2.10(ii) and Proposition 2.13 this may be identi�ed with

RHom

Sp(H

�

(B))

(RHom

Sp(H

�

((B)))

(Sp(

�

F ); D

Sp(H

�

(B))

); D

Sp(H

�

(B))

)

' RHom

Sp(H

�

(B))

(Sp(RHom

H

�

(B)

(

�

F;D

H

�

(B)

)); Sp(D

H

�

(B)

))

' Sp(RHom

H

�

(B)

(RHom

H

�

(B)

(

�

F ;D

H

�

(B)

); D

H

�

(B)

)).

Now one may apply the 
omputation in Chapter III, Proposition 2.17(ii) to identify the E

s;t

2

-terms in ( 4.3.2) with

Ext

s;t

H

�

(B)

(RHom

H

�

(B)

(

�

F ;D

H

�

(B)

); D

H

�

(B)

).

Under the hypothesis of the theorem, we see that natural map

�

F !RHom

H

�

(B)

(RHom

H

�

(B)

(

�

F;D

H

�

(B)

); D

H

�

(B)

)

is a quasi-isomorphism. Therefore we obtain an isomorphism of the E

s;t

2

-terms in ( 4.3.1)

and ( 4.3.2). (In parti
ular the se
ond spe
tral sequen
e also 
onverges strongly.) Sin
e

both the spe
tral sequen
es 
onverge strongly (re
all the hypothesis of �nite tor dimension

or perfe
tion on F ), it follows that the map F ! D

B

(D

B

(F )) is a quasi-isomorphism. �

Situations where the theorem applies.

4.4. Consider s
hemes or algebrai
 spa
es of �nite type over a base s
heme S. Assume

all the s
hemes and algebrai
 spa
es are provided with the �etale topology and L is a non-

empty set of primes di�erent from the residue 
hara
teristi
s. Let A denote a presheaf
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of 
ommutative algebras on S so that, H

�

(A) = �

n

H

n

(A) is lo
ally 
onstant on the �etale

topology of S and has L-primary torsion. Now the hypotheses in the Bi-duality theorem

are satis�ed by any

�

F"D(Mod


;f:t:d

l

(S;H

�

(A))). (See [SGA℄4

1=2

p. 250.) The bi-duality

theorem also holds for suitable L-
ompletions of a presheaf of algebras A. See 6.1 for a

detailed dis
ussion of this appli
ation.

4.5. Next assume B is a 
ommutative algebra on X,

�

F"D

perf

(Mod(X;H

�

(B))) and

that (modulo a globally determined shift) D

H

�

(B)

is lo
ally quasi-isomorphi
 to H

�

(B). In

this 
ase the 
on
lusion of the theorem holds for any F"D(Mod

perf

(X;B)) so that Gr(F ) '

Sp(

�

F ).

4.6. Consider lo
ally 
ompa
t Hausdor� topologi
al spa
es over a base spa
e S of the

same type. Assume that L is a (possibly empty) set of primes for whi
h all the spa
es are of

�nite L-
ohomologi
al dimension. (Re
all that if L is empty, this means all the spa
es are

of �nite 
ohomologi
al dimension.) Now let A denote a presheaf of 
ommutative algebras

on S so that H

�

(A) = �

n

H

n

(A) is lo
ally 
onstant and of L-primary torsion. Let X denote

a topologi
al spa
e as above and let p : X ! S denote the obvious stru
ture map. Now

the hypotheses in the bi-duality theorem are satis�ed by any

�

F"D


;f:t:d

(X;H

�

(A)). (See

[K-S-2℄ 
hapter III.)

We 
on
lude this se
tion by de�ning the homology with 
ompa
t supports. Assume one

of the above situations. Let F"D(Mod

l

(X;B)). We let

Definition 4.8. H

�

(X;F ) = H(X; D

B

(F )) and H

�

(X;F ) = H

��

(H

�

(X;F )). We 
all

this the homology of X with 
ompa
t supports with respe
t to F .

5. The extra-ordinary derived fun
tors and the formalism of

Grothendie
k-Verdier duality

In this se
tion we 
omplete formalism of Grothendie
k-Verdier duality. Throughout we

will assume all the hypotheses in 4.3.

Proposition 5.1. Let f : (X;B)! (X

0

;B

0

) denote a map of ringed sites.

(i) Now there exists a natural isomorphism of derived fun
tors: Rf

�

Æ D

B

�

=

D

B

0

ÆRf

#

!

:

D(Mod

l

(X;B))! D(Mod

r

(X

0

;B

0

))

(ii) There exists also a natural isomorphism of derived fun
tors: Rf

!

#

Æ D

B

0

�

=

D

B

Æ

Lf

�

: D(Mod

l

(X

0

;B

0

)) ! D(Mod

r

(X;B)). More generally, if L, K"D(Mod

l

(X

0

;B

0

)),

there exists a quasi-isomorphism

Rf

!

#

(RHom

B

0

(L;K)) ' RHom

B

(Lf

�

(L); Rf

!

#

K)

Proof. We will let S denote the unit of Presh(S) as in 1.0.3. The �rst assertion follows

readily from Theorem 3.5 and Corollary 3.7 by taking K = D

B

. Let P"D(Mod

l

(X

0

;S).

Then one obtains the following quasi-isomorphisms:

RMap

S

(P;Rf

!

#

(RHom

B

0

(L;K))) ' RMap

S

(Rf

#

!

(P );RHom

B

0

(L;K))

' RMap

B

0

(Rf

#

!

(P )

L




S

L;K) ' RMap

B

0

(Rf

#

!

(P

L




S

Lf

�

(L));K)

' RMap

B

(P

L




S

Lf

�

(L); Rf

!

#

(K)) ' RMap

S

(P;RHom

B

(Lf

�

(L); Rf

!

#

(K)))
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The �rst and fourth quasi-isomorphisms are by Theorem 3.5, the se
ond and last quasi-

isomorphisms are by Chapter II, 2.0.15 and the third by the proje
tion formula. This proves

the se
ond assertion in (ii). The �rst assertion in (ii) follows by taking K = D

B

0

. Observe

in view of 
orollary 3.7 that Rf

!

#

(D

B

0

) ' D

B

.) �

5.1. Next we de�ne fun
tors

(5.1.1) Rf

!

: D(Mod

?

(X;B))! D(Mod

?

(X;B

0

)) by Rf

!

(F ) = D

B

0

(Rf

�

(D

B

(F ))) and

(5.1.2) Rf

!

: D(Mod

?

(X

0

;B

0

))! D(Mod

?

(X;B)) by Rf

!

(K) = D

B

(Lf

�

(D

B

0

(K)))

Proposition 5.2. (i) Let f : (X;B)! (X

0

;B

0

) denote a map of ringed sites as above.

Then Rf

!

#

(D

B

0

) ' D

B

.

(ii) There exists a natural isomorphism of fun
tors Rf

!

�

=

Rf

#

!

: D(Mod

?

(X;B)) !

D(Mod

?

(X

0

;B

0

))

(iii) There exists a natural isomorphism of fun
tors Rf

!

�

=

Rf

!

#

: D(Mod

?

(X

0

;B

0

)) !

D(Mod

?

(X;B)).

Proof. (i) Let p : (X;B) ! (S;A) (p

0

: (X

0

;B

0

) ! (S;A)) denote the stru
ture map

of the ringed site (X;B) ((X

0

;B

0

), respe
tively). Let K"D(Mod

?

(X;B)). Now one obtains

the quasi-isomorphisms:

RHom

B

0

(Rf

#

!

(K); D

B

0

) ' RHom

B

0

(Rf

#

!

(K); Rp

0

!

#

(A)) ' RHom

A

(Rp

0

#

!

Rf

#

!

(K);A)

' RHom

A

(R(p

0

Æ f)

#

!

(K);A) ' RHom

B

(K;R(p

0

Æ f)

!

#

(A)) ' RHom

B

(K;D

B

).

By Theorem 3.5, the �rst term above may also be identi�ed with RHom

B

(K;Rf

!

#

D

B

).

Sin
e this holds for all K"D(Mod

?

(X;B)), we see that there exists a quasi-isomorphism

Rf

!

#

(D

B

0

) ' D

B

. This 
ompletes the proof of (i).

Let K"D(Mod

?

(X;B)). By the de�nition of Rf

!

, Rf

!

Æ D

B

(K) = D

B

0

Rf

�

D

B

(D

B

(K)) '

D

B

0

Rf

�

(K). Moreover, by our hypotheses f is perfe
t (or of �nite tor dimension and 
on-

stru
tible as the 
ase may be), so that Rf

�

(K)"D(Mod

?

(X

0

;B

0

)). Therefore, Rf

�

(K) '

D

B

0

(D

B

0

(Rf

�

(K))) ' D

B

0

(Rf

!

(D

B

(K))). Finally repla
eK, by D

B

(K) to obtain: Rf

�

(D

B

(K)) '

D

B

0

(Rf

!

(K)). Next re
all from Proposition 5.1 above that Rf

�

Æ D

B

�

=

D

B

0

ÆRf

#

!

. It follows

that there is a natural quasi-isomorphism D

B

0

(Rf

#

!

(K)) ' D

B

0

(Rf

!

(K)). Take the dual

with respe
t to D

B

0

on
e more to obtain (ii).

In view of (ii), it suÆ
es to show that the fun
tor Rf

!

is right adjoint to Rf

!

. This may

be established as follows. Let P"D(Mod

?

(X;B)) and K"D(Mod

?

(X

0

;B

0

)). Then

RHom

B

(P;Rf

!

K) = RHom

B

(P; D

B

(Lf

�

D

B

0

(K))) = RHom

B

(P;RHom

B

(Lf

�

D

B

0

(K); D

B

))

' RHom

B

(Lf

�

D

B

0

(K)

L




B

P;D

B

) = RHom

B

(Lf

�

D

B

0

(K)

L




B

P;Rf

!

#

(D

B

0

))

' RHom

B

0

(Rf

#

!

(Lf

�

D

B

0

(K)

L




B

P ); D

B

0

) ' RHom

B

0

(D

B

0

(K)

L




B

Rf

#

!

(P ); D

B

0

)

' RHom

B

0

(Rf

#

!

(P ); D

B

0

(D

B

0

(K))) ' RHom

B

0

(Rf

#

!

(P );K)

This 
ompletes the proof of (iii). �
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Definition 5.3. Hen
eforthRf

!

will denote eitherRf

#

!

: D(Mod

?

(X;B))! D(Mod

?

(X

0

;B

0

))

or the fun
tor D(Mod

?

(X;B)) ! D(Mod

?

(X

0

;B

0

)) de�ned above. Similarly Rf

!

will de-

note either the fun
tor Rf

!

#

: D(Mod

?

(X

0

;B

0

)) ! D(Mod

?

(X;B)) or the fun
tor Rf

!

:

D(Mod

?

(X

0

;B

0

)) ! D(Mod

?

(X;B)) de�ned above. The tra
e map will be the natural

transformation Rf

!

ÆRf

!

! id adjoint to the identity Rf

!

! Rf

!

.

Corollary 5.4. Let f : (X;B) ! (X

0

;B

0

). Then there exists a natural isomorphism

of derived fun
tors: D

B

0

ÆRf

�

�

=

Rf

!

Æ D

B

: D(Mod

?

(X;B))! D(Mod

?

(X

0

;B

0

)).

(ii) There exists also a natural isomorphism of derived fun
tors: D

B

ÆRf

!

�

=

Lf

�

Æ D

B

0

:

D(Mod

?

(X

0

;B

0

))! D(Mod

?

(X;B))

Proof. (i) It suÆ
es to apply D

B

0

to both sides of the isomorphism Rf

�

Æ D

B

�

=

D

B

0

Æ

Rf

#

!

followed by the observation that D

B

ÆD

B

�

=

id on D(Mod

?

(X;B)) and D

B

0

ÆD

B

0

�

=

id on

D(Mod

?

(X

0

;B

0

)). This proves (i). Apply D

B

to both sides of the isomorphism Rf

!

Æ D

B

0

�

=

D

B

ÆLf

�

followed by the observation that D

B

ÆD

B

�

=

id onD(Mod

?

(X;B)) and D

B

0

ÆD

B

0

�

=

id

on D(Mod

?

(X

0

;B

0

)). This proves (ii). �

5.2. Cohomologi
al 
orresponden
e. Consider the following 
artesian squares:

X

1

�

S

X

2

p

1

||xxxxxxxx
p

2

""F
FFFFFFF

X

1

g

$$H
HH

HH
HH

HH
H

X

2

h

zzvvv
vv

vv
vv

v

S

Y

1

�

S

Y

2

q

1

}}zz
zz

zz
zz q

2

!!D
DD

DD
DD

D

Y

1

g

0

##G
GGGGGGGG Y

2

h

0

{{wwwwwwwww

S

We will let A denote a sheaf of algebras on the base site S so that H

�

(A) is lo
ally


onstant. The 
orresponding inverse image of this presheaf of algebras on all the spa
es 
on-

sidered above will also be denoted A. Let M

1

, N

1

"D(Mod

?

bi

(X

1

;A)), N

2

"D(Mod

?

l

(X

2

;A))

and M

2

"D(Mod

?

l

(X

2

;A)). Let M = M

1

L

�

A

M

2

= p

�

1

(M

1

)

L




A

p

�

2

(M

2

), N = N

1

� N

2

=

p

�

1

(N

1

)

L




A

p

�

2

(N

2

). There exists a natural map

(5.2.1) RHom

A

(M

1

; N

1

)

L

�

A

RHom

A

(M

2

; N

2

)!RHom

A

(M;N)

as in [SGA℄5 Expos�e III, (2.2.4).

Proposition 5.5. The above map is a quasi-isomorphism.

Proof. We will provide all the presheaves with the Cartan �ltration; now Chapter

III, 2.1 and Chapter III, Proposition 2.7 show that the asso
iated graded terms for the

indu
ed �ltrations on the terms above are given by:

Gr(RHom

A

(M

1

, N

1

)

L

�

A

RHom

A

(M

2

, N

2

))

' RHom

Gr(A)

(Gr(M

1

), Gr(N

1

))

L

�

Gr(A)

RHom

Gr(A)

(Gr(M

2

), Gr(N

2

))

while Gr(RHom

A

(M , N)) ' RHom

Gr(A)

(Gr(M), Gr(N)). Now Gr(M

i

) ' Sp(H

�

(M

i

)),

and 
learly
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�

n

H

n

(M

i

)"Mod

H

�

(A);r

(X

i

), i = 1; 2. Therefore Chapter III, Proposition 2.10(ii) provides

the identi�
ation:

RHom

Gr(A)

(Gr(M

i

), Gr(N

i

)) ' RHom

Gr(A)

(Sp(H

�

(M

i

)), Sp(H

�

(N)))

' Sp(RHom

H

�

(A)

(H

�

(M

i

), H

�

(N

i

)))

Chapter III, 2.1 and Proposition 2.10 again show

(5.2.2) Gr(RHom

A

(M

1

; N

1

)

L

�

A

RHom

A

(M

2

; N

2

))

' Sp(RHom

H

�

(A)

(H

�

(M

1

), H

�

(N

1

))

L




H

�

(A)

RHom

H

�

(A)

(H

�

(M

2

), H

�

(N

2

)))

Clearly the last term is quasi-isomorphi
 to

(5.2.3) Sp(RHom

H

�

(A)

(H

�

(M

1

)

L




H

�

(A)

H

�

(M

2

); H

�

(N

1

))

L




H

�

(A)

H

�

(N

2

))

(See [SGA℄ Expos�e III, Proposition (2.3).) Moreover,

RHom

H

�

(A)

(H

�

(M

1

)

L




H

�

(A)

H

�

(M

2

), H

�

(N

1

))

L




H

�

(A)

H

�

(N

2

))

�

=

RHom

H

�

(A)

(H

�

(M

1

), RHom

H

�

(A)

(H

�

(M

2

), H

�

(N

1

))

L




H

�

(A)

H

�

(N

2

))

Therefore two appli
ations of Chapter III, Propositions 2.10(2.11), 2.12 and 2.13 show

the term in ( 5.2.2) is quasi-isomorphi
 to:

RHom

Gr(A)

(Sp(H

�

(M

1

)), RHom

Gr(A)

(Sp(H

�

(M

2

)), Sp(H

�

(N

1

))

L




H

�

(A)

H

�

(N

2

)))

' RHom

Gr(A)

(Sp(H

�

(M

1

)

L

�

Gr(A)

Sp(H

�

(M

2

)), Sp(H

�

(N

1

))

L




Gr(A)

Sp(H

�

(N

2

)))

' RHom

Gr(A)

(Gr(M), Gr(N))

These also show that the spe
tral sequen
e (obtained from the indu
ed �ltrations) for

both sides of ( 5.2.1) are strongly 
onvergent and that therefore it suÆ
es to obtain a quasi-

isomorphism at the asso
iated graded terms. We have therefore 
ompleted the proof that

the map of ( 5.2.1) is a quasi-isomorphism. �

Proposition 5.6. (Kunneth formulae). Consider the situation in 5.2. Assume further

that base-
hange as in ( 2.7.1) holds.

Let L

1

"D(Mod

?

r

((X

1

;A), L

2

"D(Mod

?

l

((X

2

;A)), N

1

"D(Mod

?

r

(Y

1

;A)), N

2

"D(Mod

?

l

(X

2

;A));

let f

i

: X

i

! Y

i

denote maps over S and let f = f

1

�

S

f

2

: X ! Y denote the indu
ed map.

Now there exists a natural quasi-isomorphism:
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(5.2.4) Rf

1�

L

1

L

�

A

Rf

2�

L

2

' Rf

�

(L

1

L

�

A

L

2

) and Rf

1!

L

1

L

�

A

Rf

2!

L

2

' Rf

!

(L

1

L

�

A

L

2

)

(5.2.5) f

�

1

N

1

L

�

A

f

�

2

N

2

�

=

f

�

(N

1

L

�

A

N

2

) and

(5.2.6) Rf

!

1

N

1

L

�

A

Rf

!

2

N

2

' Rf

!

(N

1

L

�

A

N

2

):

Proof. We 
onsider the proof of the se
ond quasi-isomorphism in ( 5.2.4). First observe

that left-hand-side and the right-hand-side are related by maps natural in the arguments.

Now it suÆ
es to prove these maps are quasi-isomorphisms at ea
h point of Y

1

�

S

Y

2

. By

base-
hange we redu
e to the 
ase where q

1

, q

2

, g

0

and h

0

are all isomorphisms and that S

is a point (i.e the 
orresponding site is trivial). Observe that f = f

1

�

S

f

2

= f

1

Æ p

1

= f

2

Æ p

2

where the maps p

i

: X

1

�

S

X

2

! X

i

, i = 1; 2, are the two proje
tions. Now

Rf

1!

L

1

L

�

A

Rf

2!

L

2

'

!Rf

1!

L

1

L




A

Rf

2!

L

2

'

!Rf

1!

(L

1

L




A

Lf

�

1

(Rf

2!

(L

2

)))

'

!Rf

1!

(L

1

L




A

Rp

1!

Lp

�

2

(L

2

))

'

!Rf

1!

Rp

1!

(Lp

�

1

(L

1

)

L




A

Lp

�

2

(L

2

)) = Rf

!

(p

�

1

(L

1

)

L




A

Lp

�

2

(L

2

))

where the last = is obvious from the de�nition, the se
ond and the fourth are by the

proje
tion formula 2.17 while the �rst ' is by the hypotheses whi
h redu
e to the 
ase

where g

0

and h

0

are the identity maps. This proves the se
ond quasi-isomorphism in ( 5.2.4).

The �rst is established similarly.

One may readily establish ( 5.2.5) using the observations that q

i

Æ f = f

i

Æ p

i

, i = 1; 2.

Now we 
onsider the proof of ( 5.2.6). First observe that Rf

!

i

(N

i

) = D

A

Lf

�

i

D

A

(N

i

),

Rf

!

(N

1

L

�

A

N

2

) = D

A

Lf

�

(D

A

(N

1

)

L

�

A

D

A

(N

2

)). Therefore, by ( 5.2.5) and Proposition 5.5 it

suÆ
es to 
onsider the 
ase where N

1

and N

2

are both A on the respe
tive sites. i.e. it

suÆ
es to show that

(5.2.7) D

A

L

�

A

D

A

' D

A

where the D

A

on the right is the dualizing presheaf for X

1

�

S

X

2

. One may easily show that

there exists a natural from the left-hand-side to the right-hand-side whi
h is 
ompatible with

the indu
ed �ltrations on ea
h. Therefore we redu
e, as in the proof of Proposition 5.5, to

the 
ase where A is repla
ed by H

�

(A). This is 
lear, for example, by [SGA℄ 5, Expos�e III,

(1.7.3). �

5.3. Consider the situation of 5.2.1. Assume that S is a point. LetM

1

= L

1

, N

2

= L

2

,

M

2

= the 
onstant pre-sheaf S on X

2

and N

1

= Rg

!

(S) ' D

S

in D(Mod


;f:t:d

l

(X

1

; S)).

Moreover, D

S

(L

1

) = RHom

S

(L

1

, Rg

!

(S)) and L

2

' RHom

S

(S, L

2

). Therefore one obtains

a natural quasi-isomorphism:

D

S

(L

1

)� L

2

= RHom

S

(L

1

, Rg

!

(S))

L

�

S

RHom

S

(S, L

2

)

'

!RHom

S

(L

1

L

�

S

S, Rg

!

(S)

L

�

S

L

2

)

'

!RHom

S

(p

�

1

(L

1

), p

�

1

Rg

!

(S)

L




S

p

�

2

(L

2

))
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Next let Y

1

= S, Y

2

= X

2

, g

0

: Y

1

! S = the identity and f

2

: X

2

! Y

2

= the identity. Now

( 5.2.6) provides the quasi-isomorphism:

Rg

!

(S)

L

�

S

L

2

'

!Rp

!

2

(S

L

�

S

L

2

) ' Rp

!

2

(L

2

)

Combining this with the above quasi-isomorphisms, in the above 
ase, one obtains a natural

quasi-isomorphism:

(5.3.1) D

S

(L

1

)� L

2

'

!RHom

S

(p

�

1

(L

1

); Rp

!

2

(L

2

))

5.4. Poin
ar�e-Verdier duality. Let A denote a 
ommutative presheaf of algebras on S

so that H

�

(A) is lo
ally 
onstant. Let X denote an obje
t over S with the stru
ture map

p : X ! S. Let F"D(Mod

l

(S;A)). Now one obtains a pairing:

(5.4.1) Rp

!

(A)
 p

�

(F )! Rp

!

(F )

This is adjoint to a map Rp

!

(Rp

!

(A)
 p

�

(F )) ' Rp

!

(Rp

!

(A))
 F

tr

A


id

! A
 F ! F where

the last map is given by the stru
ture of a presheaf of left-A-modules on F . It follows that

taking hyper
ohomology, we obtain a pairing:

(5.4.2) H(X;Rp

!

(A))
H(X; p

�

(F ))! H(X;Rp

!

(F ))

In parti
ular it follows that if �"H

n

(X;A) is a 
lass, we obtain a pairing:

(5.4.3) � \ � : H

k

H(X; p

�

(F ))! H

n�k

(X;F )

For the following dis
ussion, we will assume that S is a s
heme and that we are 
onsid-

ering s
hemes or algebrai
 spa
es of �nite type over S.

Definition 5.7. (Poin
ar�e duality property) Suppose the L-
ohomologi
al dimension

of X over S is n. We say that X has the Poin
ar�e-Verdier duality property for X, if there

exists a 
lass [X℄"H

n

(X;A) so that [X℄ \ � is an isomorphism with F = p

�

(A) and for all

k. We 
all [X℄ a fundamental 
lass of X in the homology with 
ompa
t supports of X with

respe
t to A. We say that the algebra A has the Poin
ar�e-Verdier duality property over

S provided all smooth s
hemes (or algebrai
 spa
es) X over S have the Poin
ar�e-Verdier

duality property.

Proposition 5.8. Assume that p : X ! S is smooth and that A is a presheaf of algebras

on S having the Poin
ar�e-Verdier duality property. If D

X

A

= Rp

!

(A), D

X

A

' �

n

Lp

�

(A) where

n denotes the l-
ohomologi
al dimension of X over S.

Proof. Fix a (geometri
) point p of X. Now the fundamental 
lass of X restri
ts

to fundamental 
lasses [U ℄"H

n

(U ;A) for ea
h open neighborhood U of p. Ea
h su
h [U ℄

de�nes an isomorphism [U ℄ \ � : H

k

(H(U ;A))

�

=

H

k�n

(H(U ; �

n

A)) ! H

n�k

(U ;A)

�

=

H

k�n

(H(U ;Rp

!

A)). Taking the 
olimit over all open neighborhoods of the point p, we

obtain a quasi-isomorphism: �

n

p

�

(A)

p

' Rp

!

(A)

p

. Sin
e this holds for all points p, we

obtain �

n

p

�

(A) ' Rp

!

(A) = D

X

A

. �
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The following proposition is 
onsidered solely for the appli
ations in Chapter V. We let

pt denote a point in the usual sense provided with the trivial topology. Let A = KU = the

obvious 
onstant sheaf on pt, where KU is the spe
trum representing 
omplex K-theory.

(Re
all from Appendix A that this has the stru
ture of a ring obje
t in the 
ategory of

symmetri
 spe
tra.)

Proposition 5.9. Let p : R

1

! pt denote the obvious proje
tion of R

1

to a point. Now

Rp

!

KU ' �p

�1

KU .

Proof. It suÆ
es to show that if K




(R

1

) denotes the spe
trum of 
omplex K-homology

with 
ompa
t supports for R

1

, there exists a fundamental 
lass [R

1

℄"�

1

(K




(R

1

)). One may


ompute the above group using an Atiyah-Hirzebru
h spe
tral sequen
e and the observation

that the integral Borel-Moore homology of R

1

is trivial in all degrees ex
ept 1 where it is

Z. �

5.5. For the rest of the dis
ussion we will restri
t to the 
ategory of algebrai
 spa
es (or

s
hemes) of �nite type over a base s
heme S provided with the big �etale topology. In either


ase we will assume that there exists a set L of primes so that all the spa
es we 
onsider are

of �nite L-
ohomologi
al dimension. Let Presh(S) denote a 
ategory of presheaves on the

big �etale site of S. Let A denote a presheaf of algebras on S and let A denote their inverse

images on X, X

0

, Y and Y

0

. Let f : (X;A)! (Y;A) denote a map of ringed sites as before.

We will say smooth base-
hange holds if the following 
ondition is satis�ed: let

(5.5.1) (X

0

;A)

f

0

//

g

0

��

(X;A)

g

��
(Y

0

;A)

f //
(Y;A)

denote a 
artesian square with f smooth. Now the natural map f

�

(Rg

�

(F ))! Rg

0

�

f

0

�

(F )

is a quasi-isomorphism for all F"D


;f:t:d

(Mod

l

(X;A)).

Lemma 5.10. Smooth-base 
hange holds in the following situations. We are 
onsidering

algebrai
 spa
es provided with the �etale topology and for ea
h ringed spa
e (X;A) as above

ea
h H

�n

(A) is torsion. Moreover, the base-s
heme S has �nite L-
ohomologi
al dimension

for some non-empty set L of primes di�erent from the residue 
hara
teristi
s and ea
h

H

�n

(A) is L-torsion.

Proof. The proof is entirely similar to that of Proposition 2.10. �

Proposition 5.11. Assume the above situation. Then the fun
tor

Rf

!

#

: D


;f:t:d

(Mod

l

(Y;A))! D


;f:t:d

(Mod

l

(X;A))

satis�es the hypotheses of 3.1(iv).

Proof. Re
all �(U;Rf

!

#

(K)) = R�(Y;RHom

A

(Rf

#

!

(A

U

);K)). Moreover one has the

spe
tral sequen
e

E

u;v

2

= H

u

(R�(Y; )ÆGr

v

(RHom

H

�

(A)

(Rf

#

1

(H

�

(A

U

));H

�

(K))))) H

u+v

(�(U;Rf

!

#

(K))

In view of the hypotheses on uniform �nite 
ohomologi
al dimension and the hypothesis that

f

�

is 
onstru
tible, one may now readily verify that there exists an N >> 0 independent of

K and v so that E

u;v

2

= 0 for u > N . �
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Proposition 5.12. Assume the situation of 5.5. Let f : X ! Y denote a smooth map

as above and let the L-
ohomologi
al dimension of the �ber be n. Then there exists a natural

isomorphism of fun
tors:

Rf

!

�

=

f

�

�

n

: D(Mod

?

l

(Y;A))! D(Mod

?

l

(X;A)).

Proof. Step 1. We �rst 
onsider a presheaf of the form j

#

U !

j

�

U

(A), where j

U

: U ! Y

belongs to the big �etale site of Y . Then Gr(j

#

U !

j

�

U

(A)) ' j

#

U !

j

�

U

(Gr

C

(A) ' j

#

U !

j

�

U

(Sp(H

�

(A)))

and therefore, by the hypotheses, j

#

U !

j

�

U

(A) has �nite tor dimension . Let V = X�

Y

U =

f

�1

(U). We will show there exists a quasi-isomorphism

(5.5.2) Rf

!

(j

#

U !

j

�

U

(A)) ' j

#

V !

j

�

V

f

�

�

n

(A)

natural in U . First observe that if f

U

: V ! U is the indu
ed map, there exists a natural

map

(5.5.3) j

#

V !

Rf

!

U

j

�

U

(A)! Rf

!

(j

#

U !

j

�

U

(A))

By Proposition 5.8, Rf

!

U

(j

�

U

(A)) ' f

�

U

�

n

(A). Therefore the left-hand-side identi�es with

j

#

V !

f

�

U

�

n

(j

�

U

(A))

' f

�

�

n

(j

#

U !

j

�

U

(A)) ' j

#

V !

j

�

V

f

�

U

�

n

(A). Thus it suÆ
es to show the map in ( 2.1.4) is a quasi-

isomorphism. Re
all j

#

V !

Rf

!

U

j

�

U

(A) ' D

A

Rj

U�

D

A

D

A

f

�

U

(D

A

j

�

U

(A)) ' D

A

Rj

U�

f

�

U

j

�

U

(D

A

)

and Rf

!

(j

#

U !

j

�

U

(A))

' D

A

f

�

D

A

D

A

Rj

U�

D

A

j

�

U

(A) ' D

A

f

�

Rj

U�

j

�

U

(D

A

) . The last two are quasi-isomorphi
 by

the smooth-base 
hange in ( 5.5.1). This 
ompletes step 1.

Step 2. Next 
onsider an L"D(Mod

l

(Y;A)) and let P (L)

�

! L denote a simpli
ial

resolution as in Chapter II, Proposition (2.4). Re
all ea
h term P (L)

k

= t

U;k

j

#

U !

j

�

U

�

n

(A).

Therefore, by step 1, there exists a quasi-isomorphism

Rf

!

(P (L)

k

)

'

!f

�

�

n

(P (L)

k

)

natural in k. Now take the homotopy 
olimit ho
olim

�

fRf

!

(P (L)

k

)jkg. By Lemma 3.3

with � = Rf

!

= Rf

!

#

this is quasi-isomorphi
 to Rf

!

ho
olim

�

fP (L)

k

jkg ' Rf

!

L. (See the

proposition above whi
h shows that Rf

!

in fa
t satis�es the hypotheses there.) On the other

hand taking homotopy 
olimits preserve quasi-isomorphisms and 
ommute with the fun
tor

f

�

. It follows that ho
olim

�

ff

�

�

n

(P (L)

k

)jkg ' f

�

�

n

(ho
olim

�

f(P (L)

k

)jkg) ' f

�

�

n

(L). �

Corollary 5.13. Let f : X ! Y denote a smooth between 
omplex quasi-proje
tive

varieties of relative dimension n. Now the fun
tor

Rf

!

: D(Mod


;f:t:d

l

(Y;KU)! D(Mod


;f:t:d

l

(X;KU))

identi�es naturally with the fun
tor f

�

�

2n

. In parti
ular, there exists a fundamental 
lass

in H

�

(X;KU) whi
h is the homology of X with 
ompa
t supports with respe
t to KU as

de�ned earlier.

Proof. This is similar to the proof of the last proposition. �

6. Examples

With a view towards further appli
ations (see for example, the next 
hapter), we will

presently dis
uss in detail the two examples 
onsidered in (i) and (iii) after the statement

of the bi-duality theorem in se
tion 1.
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6.1. The

�

Etale topoi. Here S will denote a base Noetherian s
heme. (s
hemes=S)

will denote the 
ategory of s
hemes lo
ally of �nite type over S. ((smt:s
hemes=S) will

denote the full-sub
ategory of smooth s
hemes over S.) We will provide this 
ategory with

the big �etale topology: this site will be denoted (s
hemes=S)

Et

. (One may similarly 
onsider

the big �etale site of all algebrai
 spa
es lo
ally of �nite type over S, though for simpli
ity

we will restri
t to s
hemes.) Presh((s
hemes=S)

Et

) will denote a 
ategory of presheaves

on this site as before. Let l denote a prime di�erent from the residue 
hara
teristi
s of S.

Presently we will dis
uss an l-adi
 variant of the basi
 theory developed so far, under some

mild additional assumptions.

Let l denote a �xed prime. We let Presh((s
hemes=S)

Et

; l) denote the full sub-
ategory

of Presh((s
hemes=S)

Et

) 
onsisting of obje
ts P so that ea
h H

n

(P ) is l-primary torsion

as a presheaf.

6.2. Existen
e of 
ompletions. We will assume that the obvious in
lusion of

Presh((s
hemes=S)

Et

; l) into Presh((s
hemes=S)

Et

) has a left-adjoint whi
h we 
all the

l-
ompletion fun
tor.

Given an obje
t P"Presh((s
hemes=S)

Et

), its l-
ompletion will be denoted P

^

l

. We will

assume that this fun
tor preserves the stru
ture of strongly triangulated 
ategories and that

any pairingM

1


M

2


:::
M

n

! N will indu
e a pairing (M

1

)

^

l


(M

2

)

^

l


:::
(M

n

)

^

l

! (N)

^

l

.

It follows readily that if A is an algebra in Presh((s
hemes=S)

Et

), then its l-
ompletion A

^

l

will also be an algebra in Presh((s
hemes=S)

Et

).

Examples 6.1. (i) As examples of this one may 
onsider the following. Let

Presh((s
hemes=S)

Et

) denote a 
ategory of presheaves of spe
tra; in this 
ase the Bous�eld-

Kan 
ompletion fun
tor for simpli
ial sets extends to su
h a 
ompletion fun
tor.

(ii) In 
ase Presh((s
hemes=S)

Et

) = C(Mod((s
hemes=S)

Et

;R)) where R is the 
on-

stant sheaf asso
iated to a 
ommutative ring with unit, the 
ompletion at l will have the

usual meaning.

Let A denote a 
ommutative algebra in Presh((s
hemes=S)

Et

). We will put the fol-

lowing assumption on A:

6.3. (i) for ea
h � � 0, there is natural map l

�

:

b

A

l

!

b

A

l

whi
h on H

�

indu
es

multipli
ation by l

�

.

(ii) the natural map

b

A

l

! holim

�

(

b

A

l

=l

�

) is a quasi-isomorphism and

(ii) the natural map H

n

(holim

�

(

b

A

l

=l

�

))! lim

�

H

n

((

b

A

l

))=l

�

is an isomorphism for ea
h n.

Examples 6.2. (i) Let Presh((s
hemes=S)

Et

) denote the 
ategory of all presheaves of

symmetri
 spe
tra on (s
hemes=S)

Et

. We letKU denote the spe
trum representing 
omplex

(topologi
al) K-theory. Let

d

KU

l

denote the l-adi
 
ompletion of the 
onstant presheaf of

spe
tra representing 
omplex K-theory. In this 
ase

d

KU

l

=l

�

has the usual meaning. If KU

denotes the spe
trum representing 
omplex K-theory, re
all that �

n

(KU)

�

=

Z if n is even

and trivial otherwise. Therefore, the above hypotheses are met by

d

KU

l

. (The next 
hapter

will 
onsider a detailed appli
ation of these ideas to the 
onstru
tion of Euler-
lasses.)

(ii) Let S = Spe
 k denote the spe
trum of an algebrai
ally 
losed �eld of 
hara
-

teristi
 p. We will 
onsider the big �etale site of all quasi-proje
tive smooth s
hemes over

k: this will be denoted ((qp:sm:s
hemes=k))

Et

. Let Presh((qp:sm:s
hemes=Spe
 k)

Et

) =

C(Mod((s
hemes=Spe
 k)

Et

;Z[1=p℄)). We letA denote the sheaf of E

1

di�erential graded
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algebras asso
iated to the motivi
 
omplex as in [J-6℄: we will denote this by �

n

Z

mot

(n).

In this 
ase, the rigidity property of mod-l

�

motivi
 
omplexes shows that Z

mot

=l

�

(n) is

simply the pull-ba
k of the 
omplex (Z

mot

=l

�

)

jSpe
 k

. The latter is 
omputed in [FSV℄ to

be given by H

i

((Z

mot

=l

�

)

jSpe
 k

(n)) = Z=l

�

, i = 2n � 0 and trivial otherwise. Therefore

the hypotheses in 6.3 are satis�ed by A

^

l

.

Definition 6.3. Let S denote one of the sites 
onsidered above. We will de�ne

M"Mod

filt

l

(S;

b

A

l

) to be 
onstru
tible if the following hold:

(i) there exists an

�

M"D

b

(Mod

l

(S;H

�

(

b

A

l

))) so that Gr(M) ' Sp(

�

M) and

(ii)

�

M ' lim

�

�

M=l

�

,

�

M=l

�

"D


;f:t:d

b

(Mod

l

(S;H

�

(

b

A

l

)=l

�

)), for ea
h � � 0.

M will be of �nite tor dimension if

�

M is of �nite tor dimension.

Theorem 6.4. With the above de�nition, the formalism of Grothendie
k-Verdier duality

as in the earlier se
tions 
arries over to D(Mod


;f:t:d

l

(S;

b

A

l

)).

Proof. It suÆ
es to observe that the derived fun
tors of the dire
t and inverse image

fun
tors preserve the derived 
ategory of obje
ts with 
onstru
tible 
ohomology sheaves. �

Remark 6.5. Assume that, in addition, H

�

(

b

A

l

) is a sheaf of regular rings. In this,


ase every sheaf of modules over it is of �nite tor dimension. Therefore the formalism

of Grothendie
k-Verdier duality will hold for all obje
ts that are 
onstru
tible; i.e. every

obje
t is automati
ally of �nite tor dimension. In parti
ular, this applies to the two examples


onsidered in 6.2.

6.4. Lo
ally 
ompa
t Hausdor� spa
es of �nite 
ohomologi
al dimension.

One may 
onsider a big site where the obje
ts are lo
ally 
ompa
t Hausdor� spa
es of

�nite 
ohomologi
al dimension. The 
overings will given by 
overings in the usual sense

for the given topology on ea
h spa
e. Let S denote this big site and Presh(S) denote

the 
orresponding 
ategory of presheaves as before. Let A denote a 
ommutative algebra in

Presh(S) so that ea
h H

n

(A) is 
onstant. (For example A itself is 
onstant.) It is 
lear that

in this 
ase the entire formalism of Grothendie
k-Verdier duality as in the earlier se
tions

applies. Suppose, in addition, that H

�

(A) is a sheaf of graded regular rings. In this 
ase,

every sheaf of modules over H

�

(A) is of �nite tor dimension, so that the entire formalism of

Grothendie
k-Verdier duality applies to all obje
ts that are 
onstru
tible.

As an example of this one may let Presh(S) denote the 
ategory of presheaves of

(symmetri
) spe
tra on S. If KU"Presh(S) denotes the 
onstant presheaf asso
iated to

the spe
trum representing 
omplex K-theory, the above hypotheses are satis�ed. The next


hapter will 
onsider a detailed appli
ation of these ideas.



CHAPTER V

Chara
ter 
y
les in K-theory for 
onstru
tible sheaves

1. Introdu
tion

In this 
hapter we provide a 
on
rete appli
ation of the theory developed so far to

de�ne an additive map from the Grothendie
k group of 
onstru
tible sheaves on a spa
e to

its K-homology. There are various avatars of the basi
 te
hnique: if X is a suitably ni
e

topologi
al spa
e and F is a 
onstru
tible sheaf of Z-modules on X, we asso
iate to F a


lass in the 
omplex K-homology of X. The same te
hnique applies in the �etale setting

to 
onstru
tible l-adi
 sheaves on the �etale topology of a variety in positive 
hara
teristi


p 6= l and provides 
lasses in its �etale K-homology (
ompleted at l). These are Euler 
lasses

and generalize the 
y
le 
lasses in K-homology asso
iated to 
losed smooth subvarieties of

smooth varieties. Finally we also obtain a mi
ro-lo
al version of these 
lasses; we also show

that these are K-theoreti
 versions of the 
hara
ter 
y
les with values in homology with

lo
ally 
ompa
t supports as de�ned by Kashiwara and S
hapira.

In the se
ond se
tion we will provide de�nitions of Fourier transformation, spe
ialization

and mi
rolo
aliztion for presheaves of spe
tra. (All the spe
tra we 
onsider in this se
tion

may be assumed to be symmetri
 spe
tra (as in [H-S-S℄) and may in fa
t be repla
ed by

presheaves of �-spa
es if one is willing to 
onsider 
onne
ted spe
tra.) These will be related

by strongly 
onvergent spe
tral sequen
es whose E � 2-terms will be the 
orresponding

operations applied to the homotopy sheaves of the above presheaves of spe
tra. In the

next se
tion we de�ne and study the properties of a tra
e-map (and an asso
iated Euler-


lass) for 
onstru
tible presheaves of KU -module spe
tra on 
omplex varieties as well as

for 
onstru
tible presheaves of

d

KU

`

-module spe
tra on the �etale site of varieties in positive


hara
teristi
. (Here l is assumed to be di�erent from the 
hara
teristi
 of k and

d

KU

`

is

the 
ompletion at l in the sense of [B-K℄ and [T-1℄ of the symmetri
 ring spe
trum KU . See

Appendix A and the end of the last 
hapter for some details on this.)

In the fourth se
tion we show how to asso
iate fun
torially a 
onstru
tible presheaf of

KU - (

d

KU

`

-) module spe
tra to any 
onstru
tible sheaf of Z-modules (any 
onstru
tible

l-adi
 sheaf, respe
tively). In the �fth se
tion we explore the relationship between our


lasses in K-homology and the 
orresponding 
lasses in homology with lo
ally 
ompa
t

supports as de�ned by Kashiwara and S
hapira. (See [K-S-2℄). Topologi
al K-homology will

mean the homology with 
ompa
t supports with respe
t to the 
onstant sheaf of spe
tra

KU (or with respe
t to

d

KU

l

in positive 
hara
teristi
 p 6= l) in the sense of Chapter

IV, De�nition 4.8. For a spa
e X, H

0

(X;KU) (H

0

(X;

d

KU

l

)) will be denoted K

top

0

(X)

(

\

K

top

0

(X)

l

, respe
tively). In the �nal se
tion we 
ombine the results of the earlier se
tions

to de�ne an Euler-
lass with values in topologi
al K-homology as an additive homomorphism

from the Grothendie
k group of 
onstru
tible sheaves to topologi
al K-homology 
ommuting

with dire
t images under suitable restri
tions. We also obtain su
h a mi
ro-lo
al Euler 
lass

for Z-
onstru
tible sheaves on 
omplex varieties. One may state the main theorem as follows.

If X is a 
omplex variety, we will let Const(X;Z) denote the 
ategory of all 
onstru
tible

99
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sheaves of Z-modules on X. If X is a variety de�ned over a �eld k of positive 
hara
teristi
 p

(satisfying the 
onditions in (1.1.1)), l is a prime di�erent from p and � is a positive integer,

Const

f:t:d

(X; l� adi
) will denote the full sub-
ategory of 
onstru
tible l-adi
 sheaves that

are of �nite tor dimension. We will let K(Const(X;Z)) (K(Const

f:t:d

(X; l� adi
))) denote

the Grothendie
k group of the 
orresponding 
ategory.

Theorem 1.1. (See Theorem (6.1)) (i) If X is a 
omplex algebrai
 variety, there exists

an additive homomorphism:

Eu : K(Const(X;Z)) ! K

top

0

(X).

(ii) If X is, in addition, a smooth quasi-proje
tive variety, there exists another additive

homomorphism:

Eu

�

: K(Const(X;Z)) ! K

top

0

(T

�

X)

whi
h fa
tors through the obvious map K

top

0

(�

F

) ! K

top

0

(T

�

X) where �

F

is the mi
ro-

support of F . The Todd homomorphism sends these 
lasses to the 
orresponding Euler-


lasses in Borel-Moore homology.

(iii). If X is a variety de�ned over a �eld k as in (0.1) of 
hara
teristi
 p and l is a

prime di�erent from p, there exists an additive homomorphism

Eu : K(Const

f:t:d

(X; l� adi
))!

\

K

top

0

(X)

l

The map from K-homology to �etale homology (as in ( 5.0.7)) sends these 
lasses to the


orresponding Euler-
lasses, at least, in the 
ase of proje
tive varieties.

(iv). The maps in (i) and (iii) 
ommute with dire
t-images for proper maps. The map

in (ii) 
ommutes with dire
t images for proper and smooth maps of 
omplex varieties.

Our interest in these problems was awakened by a question of Pierre S
hapira about

the possibility of de�ning su
h 
lasses dire
tly (i.e. without the intermediary ma
hinery of

D-modules) whom we thank warmly. One may also observe that the theory of D-modules


an provide su
h 
lasses for C - 
onstru
tible sheaves, while our 
onstru
tions apply also to


onstru
tible sheaves of Z-modules and also to varieties in positive 
hara
teristi
.

1.1. Throughout the 
hapter, we will follow most of the 
onventions and terminology

of the earlier 
hapters; any ex
eption to this will be stated expli
itly below. Topologi
al

K-homology will mean topologi
al K-homology with lo
ally 
ompa
t supports for lo
ally


ompa
t Hausdor� spa
es and �etale K-homology with lo
ally 
ompa
t supports as de�ned

in 
hapter IV for varieties in positive 
hara
teristi
s. These are de�ned by ring spe
tra in

the sense of appendix A, se
tion 2: the ring spe
trum representing 
omplex K-theory will be

denoted KU . In positive 
hara
teristi
 p, we will restri
t to s
hemes of �nite type de�ned

over a �eld k with �nite 
ohomologi
al dimension and so that for ea
h prime l di�erent from

the 
hara
teristi
 of k, ea
h H

n

(Gal(

�

k=k); Z=l

�

) is �nite for all n, � � 1. Here

�

k is the

separable 
losure of k: (For example k 
ould be a �nite �eld or the separable 
losure of one.)

If X is a lo
ally 
ompa
t Hausdor� spa
e with �nite 
ohomologi
al dimension (a s
heme

of �nite type over a �eld k as above) C

X

will denote the usual site (the small �etale site,

respe
tively) asso
iated to X. We will use the generi
 term spa
e to denote a topologi
al

spa
e or a s
heme as above.

1.2. We will adopt the basi
 terminology as in [K-S-1℄ or [K-S-2℄ for various aspe
ts

of the mi
ro-lo
al theory. The fun
tor ~ will denote the shea�fying fun
tor; we will apply
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this only to abelian presheaves. If R is a noetherian ring D

+

(C

X

; R) will denote the derived


ategory of bounded-below 
omplexes of R-modules on the site C

X

. (R will denote Z if X

is a topologi
al spa
e as above while it will denote

b

Z

l

, � >> 0 and l di�erent from 
har (k)

if X is a s
heme in positive 
hara
teristi
.) D




+

(C

X

; R) (D


;f:t:d

+

(C

X

; R)) will denote its full

sub
ategory of 
omplexes with 
onstru
tible 
ohomology sheaves (that are also of �nite tor

dimension, respe
tively).

1.3. Let E denote a ring spe
trum in the sense of appendix A. Now Mod

l

(C

X

; E)

will denote the 
ategory of presheaves of left-module-spe
tra over E on the site C

X

. The

derived 
ategory D




(X;E) will denote the derived 
ategory of presheaves of E-modules

that are 
onstru
tible as in earlier 
hapters, i.e. D(Mod




l

(C

X

; E)) while D


;f:t:d

(X;E) will

denote the asso
iated full sub-
ategory of all obje
ts of �nite tor dimension. (Re
all this

was denoted D(Mod


;f:t:d

l

(X;E)) in earlier 
hapters.)

Remark 1.2. In positive 
hara
teristi
s, we will assume that the given spe
trum E is

the l-
ompletion of another spe
trum E

0

so that the homotopy groups of E are in fa
t the

l-
ompletion of the homotopy groups of E

0

. (See Appendix A, (2.2).)

2. Fourier transformation, spe
ialization and mi
ro-lo
alization for presheaves

of spe
tra

In this se
tion we will restri
t to 
omplex varieties or often to lo
ally 
ompa
t topolog-

i
al spa
es. (All our results should 
arry over to 
arry over to positive 
hara
teristi
s (at

least in prin
iple) using the �etale site using the appropriate variations of the Fourier trans-

form, spe
ialization and mi
ro-lo
alization. With su
h an extension, it would be possible to

obtain mi
ro-lo
al 
lasses in �etale K-theory for 
onstru
tible sheaves on varieties in positive


hara
teristi
s. However the details seem to be a bit involved - for example, the appropriate

notion of mi
ro-lo
alization would be that of Gabber and Laumon and the appropriate no-

tion of Fourier transformation would be that of Deligne and Laumon (see [Lau℄). We hope

to dis
uss this more fully elsewhere.)

2.1. The Fourier-transformation. Let q

1

: E ! Z denote a lo
ally trivial real ve
tor

bundle on a lo
ally 
ompa
t spa
e Z with �nite 
ohomologi
al dimension. If R denotes a

graded ring, we will let D

+

(E ; R) denote the derived 
ategory of bounded-below 
omplexes

of sheaves of graded R-modules on E . Let D

+;
oni


(E ; R) denote the full-sub
ategory of

D

+

(E ; R) of 
omplexes whose 
ohomology sheaves are lo
ally 
onstant on half-lines of E .

2.1.1. Let D




+;
oni


(E ; E) will denote the full sub-
ategory of the 
ategory D


;f:t:d

(E ;

E) 
onsisting of presheaves F so that �

�

(F )~= �

i

�

i

(F )~ belongs to D




+;
oni


(E ; �

�

(E)).

Let i

1

: Z ! E (i

2

: Z ! E

�

) denote the 
losed imbedding provided by the zero-se
tion.

Let F

0

"D




+;
oni


(E ; E). Now the map q

�1

1

Rq

1�

(F

0

)! F

0

de�nes a map

(2.1.2) Rq

1�

(F

0

)

'

!i

�1

1

q

�1

1

Rq

1�

(F

0

)! i

�1

(F

0

)

natural in F

0

.

Similarly the map i

1!

Ri

!

1

(F

0

)! F

0

de�nes a map

(2.1.3) Ri

!

1

(F

0

)

'

!Rq

1!

Æ i

1!

ÆRi

!

1

(F

0

)! Rq

1!

(F

0

);

again natural in F

0

. The Cartan-�ltration on F

0

is 
ompatible with the above maps (by

naturality); this �ltration provides spe
tral sequen
es that 
onverge to the sheaves of homo-

topy groups of the above and whose E

s;t

2

-terms are given by the 
orresponding s-th derived

fun
tor applied to the sheaf H

�t

(F

0

) ~ = �

t

(F

0

) ~ - see (7.1.2). Sin
e the above spe
tral
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sequen
es 
onverge strongly and we obtain an isomorphism at the E

2

-terms (see [K-S-2℄ p.

170), we observe that the above maps are quasi-isomorphisms in general.

Let q

2

: E

�

! Z denote the dual bundle to E . Let

P = f(x; y)"E�

Z

E

�

j < x; y >� 0g, P

0

= f(x; y)"E�

Z

E

�

j < x; y >� 0g,

Let i : P ! E�

Z

E

�

and i

0

: P

0

! E�

Z

E

�

denote the obvious 
losed imbeddings. Let R�

P

=

i

�

Ri

!

. Let p

1

: E�

Z

E

�

! E (p

2

: E�

Z

E

�

! E

�

) denote the obvious proje
tion. Let z

1

: E�

Z

Z !

E�

Z

E

�

and z

2

: Z�

Z

E

�

! E�

Z

E

�

denote the obvious zero-se
tions.

Now one de�nes the Fourier-Sato transform (see [K-S-2℄ 
hapter III and [Bryl-2℄) of

F"D




+;
oni


(E ; E) to be

(2.1.4)

b

F = Rp

2�

R�

P

(p

�1

1

(F )) ' R(p

2�

Æ �

P

)(p

�1

1

(F ))

Observe from (7.1.2), that, so de�ned, there exists a spe
tral sequen
e

(2.1.5) E

s;t

2

= H

s

(

\

�

�t

(F ) ) = R

s

(p

2�

Æ �

P

)(p

�1

1

(

\

pi

�t

(F )))) �

�s�t

(

b

F )

whi
h is strongly 
onvergent sin
e all the spa
es are assumed to have �nite 
ohomologi
al

dimension. Observe that the E

2

-terms are the 
ohomology sheaves of the Fourier transforms

of the abelian sheaf �

�t

(F )

~

. Using this spe
tral sequen
e, and various basi
 results from

Chapter IV, one 
an easily re
over all the usual properties (see [K-S-2℄ 
hapter III or [Bryl-2℄

) of the Fourier transform. For example, one may show readily that

(2.F.1)

b

F "D




+;
oni


(E

�

; E), if F"D




+;
oni


(E ; E).

There exists a natural quasi-isomorphism:

(2.F.2)

b

F ' Rp

2!

i

0

�

i

0

�

(p

�1

1

F ), F"D




+;
oni


(E ; E)

To see this, �rst observe the existen
e of the following natural maps:

Rp

2�

R�

P

(p

�1

1

F )! Rp

2�

R�

P

i

0

�

i

0

�

(p

�1

1

F ) Rp

2!

R�

P

i

0

�

i

0

�

(p

�1

1

F )! Rp

2!

i

0

�

i

0

�

(p

�1

1

F )

These maps are 
ompatible with the Cartan-�ltration on F and hen
e they indu
e maps of

spe
tral sequen
es that 
onverge to the respe
tive sheaves of homotopy groups. The E

s;t

2

-

terms are the 
orresponding s-th derived fun
tor applied to �

t

(F )~. Therefore we obtain an

isomorphism of the 
orresponding E

2

-terms as shown in in [K-S-2℄p.171. This suÆ
es to

prove the maps in (2.F.2) are quasi-isomorphisms in general - see (7.1.2).

Similarly one also obtains a quasi-isomorphism:

(2.F.3) Rq

2�

(

b

F ) ' Rq

1!

(F ).

One may dedu
e this from 2.1.2 and 2.1.3 as follows. First observe the existen
e of

natural maps:

Rq

2�

(

b

F ) = Rq

2�

(Rp

2�

R�

P

(p

�1

1

(F )))! Rq

2�

(Rp

2�

R�

P

(i

0

�

i

0

�

p

�1

1

(F )))

 � Rq

2!

(Rp

2!

R�

P

(i

0

�

i

0

�

p

�1

1

(F )))
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By [K-S-2℄ p. 171, and by (7.1) the above maps may be seen to be quasi-isomorphisms. Now

we apply 2.1.3 to p

2

and q

2

; this provides the quasi-isomorphism of the last term above with

Ri

!

1

Rz

!

1

R�

P

(i

0

�

i

0

�

p

�1

1

(F )).

It is shown in [K-S-2℄ p.171 that the support of i

0

�

i

0

�1

R�

P

(p

�1

1

(�

�

(F ))~is 
ontained in

Z�

Z

E

�

. Therefore we may repla
e the Rz

!

1

with z

�1

1

. Now there exists a natural map

Ri

!

1

z

�1

1

i

0

�

i

0

�1

R�

P

(p

�1

1

F )! Ri

!

1

z

�1

1

i

0

�

i

0

�1

(p

�1

1

F ) = Ri

!

1

(F ) ' Rq

1!

(F )

where the last quasi-isomorphism follows from 2.1.3 applied to q

1

. Now (7.1) shows the


omposition:

Rq

2�

(

b

F )! Rq

1!

(F )

is a quasi-isomorphism.

Assume E has the Poin
ar�e-duality property. Let L"D


;f:t:d

(Z; E). Now we also obtain

the natural quasi-isomorphism:

(2.F.4)

\

Rq

!

1

(L) ' q

�1

2

(L).

To see this, observe

\

Rq

!

1

(L) ' Rp

2!

i

0

�

i

0

�1

(p

�1

1

(Rq

!

1

(L))) ' Rz

!

2

i

0

�

i

0

�1

(Rp

!

2

q

�1

2

(F )) sin
e

Rq

!

i

' q

�1

i

[2d℄ and Rp

!

i

' p

�1

i

[2d

0

℄ for suitable d and d

0

by the Poin
ar�e duality property

of E. Now the last term has a natural map from Rz

!

2

Rp

!

2

(q

�1

2

(L)) = q

�1

2

(L). By (7.1) we

redu
e to showing the above maps are quasi-isomorphisms when L"D


;f:t:d

b

(Z; �

�

(E)). This

is 
lear by [K-S-2℄ p. 175.

Finally one may also observe that

(2.F.5) Sp(

b

F ) '

\

(Sp(F )), F"D




+;
oni


(E ; �

�

(E)).

where Sp : D




+;
oni


(E ; �

�

(E)) ! D




+;
oni


(E ; Gr(E)) is the fun
tor de�ned in Chapter I,

De�nition (4.6). This follows readily from Chapter IV, Proof of Proposition 2.12 and the

dis
ussion following it, where it is shown that all the fun
tors involved in the de�nition of

the Fourier transformation 
ommute with the fun
tor Sp.

2.2. Spe
ialization. Let X denote a real manifold of 
lass C

�

, � � 2 and let f :M �

X denote the imbedding of a submanifold in X. We let

~

X

M

denote the blow-up of X � R

along M � 0. We let p :

~

X

M

! X and t :

~

X

M

! R denote the obvious maps. The �bers

t

�1

(
) are isomorphi
 to X for 
 6= 0, while for 
 = 0, t

�1

(0) ' T

M

X = the normal bundle

to the imbedding of M in X. Let 
 = t

�1

(fx"R jx > 0g), j : 
 !

~

X

M

the obvious open

imbedding and s : T

M

X !

~

X

M

the obvious 
losed imbedding. If F"D




(X; E), one lets

�

M

(F ) = (Rj

�

j

�1

p

�1

F )j

T

M

X

= s

�1

Rj

�

j

�1

(p

�1

F )

and 
all it the spe
ialization of F alongM . In this 
ontext one obtains a strongly 
onvergent

spe
tral sequen
e (as in (7.1.2)):

E

s;t

2

= H

s

(�

M

(�

�t

(F )

~

))) �

�s�t

(�

M

(F ))

~

using whi
h one re
overs the usual properties (see [K-S-1℄ 
hapter 2) of spe
ialization. For

example, one obtains a natural quasi-isomorphism:

(2.S.1) �

M

(F ) ' Rs

!

j

!

j

!

Rp

!

(F )



104 V. CHARACTER CYCLES IN K-THEORY FOR CONSTRUCTIBLE SHEAVES

To see this, one begins with the �bration sequen
e:

s

�

Rs

!

(j

!

j

�1

(p

�1

F ))! j

!

j

�1

(p

�1

F )! Rj

�

j

�1

p

�1

(F )

On applying s

�1

to it, one observes that s

�1

Æ j

!

' � and hen
e

s

�1

Rj

�

j

�1

p

�1

(F ) ' �(Rs

!

j

!

j

�1

p

�1

F ) ' Rs

!

j

!

�(~p

�1

F )

where ~p = p Æ j : 
 ! X. Now 
 ' X � fr"R jr > 0g and ~p = the proje
tion to the

�rst fa
tor. One may therefore 
on
lude readily that �(~p

�1

F ) ' R~p

!

(F ) - see Chapter

IV, Proposition 5.12. This gives (2.S.1). As a 
orollary to (2.S.1) one obtains the natural

quasi-isomorphism

(2.S.2) �

M

(D

E

X

(F )) ' D

E

T

M

X

(�

M

(F )).

One also obtains the following property. Let f : M ! X denote the 
losed imbedding

of M in X, � : T

M

X !M and � : T

�

M

X !M the obvious proje
tions. Let z :M ! T

M

X

denote the zero-se
tion. Now one veri�es readily that there is a natural map:

(2.S.3) f

�1

(F )! R�

�

(�

M

(F ))

(To see this, observe f

�1

(L) = z

�1

s

�1

p

�1

(F ) ! z

�1

s

�1

Rj

�

j

�1

p

�1

(F ) = z

�1

(�

Y

(F )).

The last term may be identi�ed with R�

�

(�

M

(F )) by 2.1.2.) Using the spe
tral sequen
e

above (whi
h 
onverges strongly) along with the identi�
ation of its E

2

-terms, one may

show readily that this map is a quasi-isomorphisms stalkwise. Now apply the above map

to D

X

(F ) instead of F . Using the theory of generalized Verdier duality as in 
hapter IV,

(2.S.2) and (2.S.3) one now obtains a natural quasi-isomorphism:

(2.S.4) f

!

(F ) ' D

M

(f

�1

D

X

(F )) D

M

(R�

�

D

T

M

X

(�

M

(F )) ' R�

!

(�

M

(F ))

Next assume L"D


;f:t:d

(M ; E). Applying (2.S.4) to F = f

!

(L) = f

�

(L), one obtains a

natural map

L ' Rf

!

f

!

(L)

'

 R�

!

(�

M

(f

!

(L)))

Applying R�

!

to this map, one obtains a natural map

(2.S.5) R�

!

(L)

'

 R�

!

R�

!

(�

M

(f

!

L)) �

M

(f

!

L)

Finally one may also show that one has a natural quasi-isomorphism:

(2.S.6) Sp(�

M

(

�

F )) ' �

M

(Sp(

�

F )),

�

F"D




b

(M ; �

�

(E)). This follows readily from Chapter

IV, Proof of Proposition 2.12 and the dis
ussion following it, where it is shown that all the

fun
tors involved in the de�nition of the fun
tors involved in �

M


ommute with the fun
tor

Sp.

2.3. Mi
ro-lo
alization. Assume the situation of 1.1 through 1.3. If F"D


;f:t:d

(X;

E), we de�ne the mi
ro-lo
alization of F along M to be

�

M

(F ) =

\

(�

M

(F )).

In this 
ontext one obtains a strongly 
onvergent spe
tral sequen
e:

E

s;t

2

= H

s

(�

M

(�

�t

(F )

~

))) �

�s�t

(�

M

(F ))

using whi
h one may re
over all the usual properties (see [K-S-1℄ 
hapter 2) of mi
ro-

lo
alization. (Observe on
e again that the E

2

-terms are now the mi
ro-lo
alizations of the
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abelian sheaf �

�t

(F )

~

.) For example let f : Y ! X denote a 
losed imbedding of manifolds

as above. Now one obtains a natural quasi-isomorphism

(2.3.1) f

!

(F )

'

!R�

!

(�

Y

(F )) ' R�

�

(�

Y

(F ))

where the �rst quasi-isomorphism is from (2.S.4) while the se
ond one is from (2.F.3) with

q

1

: E ! Z (q

2

: E

�

! Z) being � : T

M

X ! M (� : T

�

M

X ! M , respe
tively). Using this

one may readily obtain the following result as well. Let f : Y ! X denote a map between

manifolds. Let q

j

, j = 1; 2 denote the j � th proje
tion on X � Y and let � denote the

graph of f in X � Y . Let � : T

�

�

(X � Y ) ! �

�

=

Y denote the obvious proje
tion. (Here

T

�

�

(X � Y ) is the 
onormal bundle asso
iated to the imbedding Æ : � ! X � Y .) Let

F"D


;f:t:d

(X; E) and let G"D


;f:t:d

(Y ; E). Then one obtains natural quasi-isomorphisms:

R�

�

�

�

RHom

E

(q

�1

2

(G); q

!

1

(F )) ' Æ

!

(RHom

E

(q

�1

2

(G); q

!

1

(F )))

' RHom

E

(Æ

�1

Æ q

�1

2

G; Æ

!

Æ q

!

1

(F )) ' RHom

E

(G;Rf

!

F )

(2.3.2)

where the �rst quasi-isomorphism follows from 2.3.1 with F (f) there repla
ed byRHom

E

(q

�1

2

(G),

q

!

1

(F )) (Æ, respe
tively) and the se
ond quasi-isomorphism follows from Chapter IV, Propo-

sition 5.1(ii). Moreover, Chapter IV (5.6.6), provides the quasi-isomorphism:

(2.3.3) RHom

E

(q

�1

2

(G); q

!

1

(F )) ' D

X

(G)� F:

Assume the situation of (1.1); let F"D


;b

(X; E) and let Æ : X ! X � X denote the

obvious diagonal imbedding. Now one obtains a natural map (observe that Æ is a 
losed

imbedding) making use of (2.F.4) and (2.S.5):

(2.3.4) �

�

(Æ

!

F ) =

\

(�

�

(Æ

!

(F )))!

\

(R�

!

(F )) ' �

�1

(F )

Let F"D


;f:t:d

(X; E) so that there are only �nitely many distin
t �

i

(F ). (i.e. either

they are nontrivial in all but �nitely many degrees or they are periodi
. For example if F

is a 
onstru
tible presheaf of KU -module spe
tra, the sheaf of homotopy groups of F are

Bott-periodi
 of period 2.) If i

1

,... i

n

are these distin
t values, one may de�ne the mi
ro-

support of F to be the smallest 
losed 
oni
 subspa
e of T

�

X 
ontaining the mi
ro-supports

of SS(�

i

j

(F )

~

), j = 1; :::; n.

3. The Tra
e map and the Euler-
lass

We will assume the basi
 situation in 1.1 through 1.3. In this se
tion we will de�ne a

tra
e-map

(3.0.5) Tr

F

: R�(X;RHom

E

(F; F ))! H (X;D

E

X

)); F"D


;f:t:d

(X;E)

where it is assumed that there are only �nitely many distin
t nontrivial �

i

(F ).

If X is a smooth variety over the 
omplex numbers or the reals and F"D


;b

(X; E) has

only �nitely many distin
t �

i

(F ) ( so that its mi
ro-support may be de�ned), we will also

de�ne a mi
ro-lo
al tra
e-map

(3.0.6) Tr

F

�

: R�(X;RHom

E

(F; F ))! H (�

F

;D

E

X

)

where �

F

is the mi
ro-support of F .
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Let F"D


;f:t:d

(X; E) be globally of �nite tor dimension. Now one observes the natural

quasi-isomorphism:

RHom

E

(F , F ) ' D

E

X

(F )� F . (Take X

1

= X

2

= S in 
hapter IV (5.6.5) and S = E.)

Therefore one obtains a natural map � : D

X

E

(F ) � F ! D

X

E

. This is simply the evaluation

map. Taking hyper
ohomology we obtain the tra
e-map

(3.0.7) Tr

F

: R�(X;RHom

E

(F; F ))! H (X;D

X

E

)

(Observe that Tr

F

(above) may also be viewed as the 
omposition of the following maps:

R�(X;RHom

E

(F


E

E;F


E

E))

'

!R�(X;RHom

E

(E;RHom

E

(F; F


E

E)))

'

 R�(X;RHom

E

(E;F


E

D

E

(F )))

�

!R�(X;RHom

E

(E;D

X

E

))

(3.0.8)

One may 
ompare this with the de�nition of the tra
e-map adopted in [Ill℄.)

Next assume that F"D


;f:t:d

(X; E) has only �nitely many distin
t �

i

(F )~ so that the

mi
ro-support �

F

of F is de�ned as a 
oni
 subset of T

�

X. Now we observe the quasi-

isomorphisms:

RHom

E

((F , F )

'

!R�

�

R�

�

F

�

�

RHom

E

(q

�1

2

F , q

!

1

F )

'

!R�

�

R�

�

F

�

�

(D

X

E

(F )� F )

Clearly there is a natural map D

X

E

(F )�F ! Æ

�

Æ

�

(D

X

E

(F )�F )! Æ

�

(D

X

E

(F )
F )! Æ

�

(D

X

E

)

where the last map is �. Now ( 2.3.4) provides a natural map :

R�

�

R�

�

F

�

�

(Æ

�

(D

X

E

))! R�

�

R�

�

F

(�

�1

(D

X

E

)).

On taking the hyper
ohomology spe
trum on X, therefore one obtains a map:

R�(X;RHom

E

(F; F ))! H (X; R�

�

R�

�

F

(�

�1

D

X

E

))) ' H (�

F

; D

E

)

3.1. The 
omposition of the above maps will be 
alled the mi
ro-lo
al tra
e and will

be denoted Tr

F

�

. (One may 
ompare this with [K-S-2℄ p. 377.) We pro
eed to establish the

main properties of these tra
e maps.

(3.Tr.1) On taking the homotopy groups, the tra
e-map indu
es an additive homomor-

phism Tr

F

: �

n

(RHom

E

(F , F )) ! �

n

(H (X; D

X

E

)) for ea
h n. Similarly the mi
ro-lo
al

tra
e indu
es an additive homomorphism Tr

�

: �

n

(R�(X;RHom

E

(F; F ))) ! �

n

(H (�

F

;

D

E

))! �

n

(H (T

�

X; D

E

)).

(3.Tr.2) Gr(Tr

F

) ' Tr

Gr(F )

and similarly Gr(Tr

F

�

) ' Tr

Gr(F )

�

, where Gr denotes the

asso
iated graded terms with respe
t to the Cartan �ltration. If

�

M

:

"D


;b

(X; �

�

(E)), one

also obtains natural quasi-isomorphisms: Tr

Sp(

�

M

:

)

' Sp(Tr

�

M

:

) and Tr

Sp(

�

M

:

)

�

' Sp(Tr

�

M

:

�

).

For the tra
e-map, this follows readily from Chapter III, Propositions 2.7, 2.10(ii), 2.13

and Chapter IV, (4.2.1). For the mi
ro-lo
al tra
e this follows from the same and (2.F.5)

along-with (2.S.6).

3.2. In order to establish the additivity of the tra
e-map, it is 
onvenient to 
onsider the

�ltered 
ategory Presh

fil;f:t:d

(C

X

;E). (See [Ill℄ 
hapitre V .) The obje
ts of this 
ategory are

presheaves F"Presh

f:t:d

(C

X

;E) provided with a �nite in
reasing �ltration by sub-obje
ts

in the same 
ategory and indexed by the integers so that there exist integers m and M su
h

that F

i

= � if i < m and F

i

= F

M

for all i > M . i.e. One obtains

� � F

m

� F

i+1

� :::: � F

M

= F
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We also require that ea
h map �(U; F

i

)! �(U; F

i+1

) is a stable 
o�bration for ea
h U"C

X

and so is (F

i

)

�x

! (F

i+1

)

�x

for ea
h point �x in the site C

X

. The 
orresponding derived


ategory will be denoted D

fil;f:t:d

(C

X

; E).

3.3. One may also de�ne the graded 
ategory Presh

gr;f:t:d

E

(C

X

). The obje
ts of this


ategory are presheaves F"Presh

f:t:d

E

(C

X

) provided with a grading by the integers so that

all but �nitely many terms are trivial. (i.e. There exist F

m

,..., F

M

"Presh

E

(C

X

) along

with an isomorphism F

�

=

W

m�i�M

F

i

. The 
orresponding derived 
ategory will be denoted

D

gr;f:t:d

(C

X

; E)

3.4. Given F , F

0

"Presh

fil;f:t:d

E

(C

X

) one puts the obvious �ltration on RHom

E

(F , F

0

).

i.e. RHom

E

(F , F

0

)

n

= ff"RHom

E

(F; F

0

jf(F

i

) � F

0

i+n

g. Given F"Presh

fil;f:t:d

E

(C

X

) and

F

0

"Presh

fil;f:t:d

E

(C

X

), we let F


E

F

0

be �ltered by (F


E

F

0

)

n

= the image of

W

i+j=n

F

i




E

F

0

j

!

F


E

F

0

3.5. Let F = f� � F

0

� F::: � F

p

= Fg be an obje
t in Presh

fil;f:t:d

E

(C

X

). Sin
e the

�ltration is �nite, it is automati
ally exhaustive and 
omplete. Moreover, by re-indexing

the �ltration, one may also assume it is de
reasing.) Therefore, Chapter III, Proposition 2.7

(where E is provided with the trivial �ltration) provides a natural quasi-isomorphism:

gr(R�(X;RHom

E

(F; F ))) ' R�(X;RHom

E

(gr(F ), gr(F )))

Here gr denotes taking the asso
iated graded terms with respe
t to the given �ltration.

3.6. Let Gr(E) denote the asso
iated graded spe
trum obtained from E using the

Cartan �ltration. Observe that an obje
t F"Presh

fil;f:t:d

E

(C

X

) 
onsists of a �ltered obje
t

so that the �ltration as above is 
ompatible with another de
reasing �ltration fF

n

jng so

that

(i) Gr(F ) = fF

n

=F

n+1

jng"Presh

fil

Gr(E)

(C

X

) and

(ii) there exists an obje
t

~

P

:

0

! ::: !

~

P

:

p

"D

fil

�

�

(E);r

(C

X

) whi
h is globally of �nite tor

dimension so that one obtains a homotopy 
ommutative diagram:

Gr(F

0

)

//

'

��

Gr(F

1

)

//

'

��

:::::

//
Gr(F

p

) ' Gr(F )

'

��
Sp(

~

P

:

0

)

//
SP (

~

P

:

1

)

//
:::::

//
Sp(

~

P

:

p

) ' Sp(

~

P

:

)

)

3.7. An obje
t F"Presh

gr;f:t:d

E;r

(C

X

) is a graded obje
t F =

W

i

F

i

"Presh

gr

E;r

(C

X

) so

that the gradation above is 
ompatible with a de
reasing �ltration fF

n

jng so that

(i) Gr(F ) = fF

n

=F

n+1

jng"Presh

gr

Gr(E)

(C

X

) and

(ii) there exists an obje
t

~

P

:

= �

0�i�p

~

P

:

i

"D

gr

�

�

(E);r

(C

X

) whi
h is globally of �nite tor

dimension so that one has a homotopy 
ommutative diagram
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W

i

Sp(

~

P

:

i

)

'

����! Sp(

~

P:)

'

?

?

y

'

?

?

y

W

i

Gr(F

i

)

'

����! Gr(F )

)

Notation. Let F"Presh(C

X

;E). Gr(F ) will denote the asso
iated graded obje
t ob-

tained from a de
reasing �ltration on F 
ompatible with the Cartan �ltration on E. If

F"Presh

fil

(C

X

), gr(F ) will denote the asso
iated graded obje
t with respe
t to the given

�ltration on F . This belongs to Presh

gr

E

(C

X

).

Observe that the same de�nition of the tra
e Tr

F

applies to the �ltered and graded


ases. Observe (from 3.4) that the dualizing presheaf D

X

E

has only the trivial �ltration

(with D

X

E

in degree 0) and that

(D

X

(F )� F )

0

= D

X

(U(F ))� U(F )

where F is a �ltered obje
t as in 3.5, U(F )"Presh

E;r

(C

X

) is the obje
t obtained by forgetting

the �ltration and D

X

(F )�F is provided with the obvious indu
ed �ltration. It follows that

(3.7.1) �

�

(Tr

F

(f)) = �

�

(Tr

U(F )

(U(f))); f"R�(X;RHom

E

(F; F ))

3.8. Next assume F

�

=

W

i

F

i

"Presh

gr;f:t:d

E;r

(C

X

). Observe that now an f"R�(X;RHom

E

(F; F ))

of grade 0 is given by a 
olle
tion ff

i

"RHom

E

(F

i

, F

i

)jig. Now one may readily show that

�

�

(Tr

F

(f)) = �

i

�

�

(Tr

F

i

(f

i

))

Let F"Presh

fil;f:t:d

E;r

(C

X

) denote a �ltered obje
t as in 3.5. In view of the quasi-

isomorphism there, the fun
tor gr indu
es a map

�

�

(R�(X;RHom

E

(F; F )))! �

�

(gr(R�(X;RHom

E

(F; F ))))

�

=

�

�

(R�(X;RHom

E

(gr(F ),

gr(F )))).

Now one obtains the 
ommutative square

R�(X;RHom

E

(F; F ))

0

Tr

F

����! R�(X;RHom

E

(E;D

X

E

))

0

gr

?

?

y

?

?

y

gr=id

R�(X;RHom

E

(gr(F ); gr(F )))

0

Tr

gr(F )

�����! R�(X;RHom

E

(E;D

X

E

))

0

by taking the asso
iated graded terms of degree 0. (Re
all that RHom

E

(E;D

X

E

) is provided

with the trivial �ltration.) Therefore, one obtains the 
ommutative square:

(3.8.1) �

�

(R�(X;RHom

E

(F; F )))

�

�

(Tr

F

)//

gr

��

�

�

(R�(X;RHom

E

(E;D

X

E

)))

gr

��
�

�

(RHom

E

(gr(F ); gr(F )))

�

�

(Tr

gr(F)

)//
�

�

(R�(X;RHom

E

(E;D

X

E

)))
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Sin
e �

�

(Tr

F

(f)) = �

�

(Tr

U(F )

(f)) (see ( 3.7.1), 3.8) the above square shows that, if

f"R�(X;RHom

E

(F; F )) is of degree 0:

(3.8.2) �

�

(Tr

U(F )

(U(f))) = �

i

�

�

(Tr

gr

i

(F )

(gr

i

(f)))

Proposition 3.1. Let

(3.8.3)

F

0

f

0

��

//
F

f

��

//
F

00

f

00

��
F

0

//
F

//
F

00

denote a 
ommutative diagram in Presh

f:t:d

E

(C

X

) so that the two rows are 
o�bration se-

quen
es. Then

Tr

F

(f) = Tr

F

0

(f

0

) + Tr

F

00

(f

00

) as 
lasses in �

�

(H (X; D

E

))

If X is a smooth variety over the real or 
omplex numbers and F , F

0

and F

00

all have

only �nitely many distin
t sheaves of homotopy groups one also obtains:

Tr

F

�

(f) = Tr

F

0

�

(f

0

) + Tr

F

00

�

(f

00

) as 
lasses in �

�

(H (�; D

E

))

where � is the smallest 
oni
 subspa
e of T

�

X 
ontaining the mi
ro-supports of all the

sheaves �

i

(F

0

)

~

, �

i

(F )

~

and �

i

(F

00

)

~

for all i.

Proof. We will only prove this for the tra
e-map sin
e the proof for the mi
ro-lo
al

tra
e will be similar. It suÆ
es to interpret the diagram in ( 3.8.3) as a map f of �ltered

obje
ts: we let F be �ltered by F

0

= F

0

and F

1

= F . We pro
eed to verify that there is an

obje
t

�

P

:

"D

fil;


�

�

(E);r

(C

X

) �ltered by

�

P

:

0

�

�

P

:

1

=

�

P

:

so that we obtain a homotopy 
ommutative

diagram:

(3.8.4) Gr(F

0

)

//

'

��

Gr(F

1

) = Gr(F )

'

��
Sp(

�

P

:

0

)

//
Sp(

�

P

:

1

) = Sp(

�

P

:

)

Let

�

F

0

:

,

�

F

:

and

�

F

00

:

"D




r

(C

X

;�

�

(E)) be globally of �nite tor dimension so that Sp(

�

F

0

:

) '

Gr(F

0

), Sp(

�

F

:

) ' Gr(F ) and Sp(

�

F

00

:

) ' Gr(F

00

). On taking the homotopy groups, the


ommutative diagram ( 3.8.3) provides the 
ommutative diagram:

�

F

0

:

��

//

�

f

0

��

�

F

:

//

�

f

��

�

F

00

:

�

f

00

��
�

F

0

:

��

//
�

F

:

//
�

F

00

:

in the 
ategory of 
omplexes of sheaves of graded modules over �

�

(E). Let

~

P

:

= Cyl(~�)

denote the mapping 
ylinder of the map � of 
omplexes. There is a monomorphism,

�

F

0

:

! Cyl(�) whi
h is split degree-wise. Therefore we may de�ne a �ltration on Cyl(�) by

Cyl(�)

0

=

�

F

0

:

, Cyl(�)

i

= � if i < 0 and Cyl(�)

1

= Cyl(�). It follows that, with the above

�ltration,

�

P

:

"D

fil;


(C

X

;�

�

(E)) is globally of �nite tor dimension and provides a diagram

as in 3.8.4. The hypotheses guarantee that we now obtain a map f in Presh

fil;f:t:d

(C

X

;E).

This 
ompletes the proof of the above proposition. �
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3.9. Assume the above situation. We de�ne the Euler 
lass of F (denoted eu(F)) to

be Tr

F

(id

F

)"�

0

(H (X; D

E

))

3.10. Next assume the situation of 3.1. Now we will de�ne the mi
ro-lo
al Euler 
lass

of F (denoted eu

�

(F)) to be the image of Tr

F

�

(id

F

)"�

0

(H (�

F

; D

E

)) in �

0

(H (T

�

X; D

E

)).

Proposition 3.2. Assume the hypotheses of (3.Tr.3). Then eu(F ) = eu(F

0

) + eu(F

00

)

and eu

�

(F ) = eu

�

(F

0

) + eu

�

(F

00

).

Proof. This is 
lear from ( 3.8.3) and ( 3.0.7), 3.1. �

Let i : Y ! X denote the 
losed immersion of a smooth sub-variety into a smooth

variety, both being de�ned over an algebrai
ally 
losed �eld k of 
hara
teristi
 p � 0. Let

E = KU if p = 0 and

d

KU

l

, l 6= p, � >> 0 if p > 0. Let F = i

�

i

�

(E), E being the 
onstant

sheaf on C

X

. Consider the following quasi-isomorphisms:

H (X, RHom

E

(i

�

i

�

(E), i

�

i

�

(E)))

'

!H (X, D

E

(i

�

i

�

(E))


E

i

�

i

�

(E))

'

!H (X, i

�

Ri

!

(D

X

E

)


E

i

�

i

�

(E))

'

!H (X, i

�

Ri

!

D

X

E

)

'

!H (Y , D

Y

E

)! H (X; D

X

E

)

(The last term is the presheaf-hyper
ohomology of X with respe
t to E.) The tra
e-map

sends id

F

to the image of the fundamental 
lass of Y in H

0

(X; E). By Poin
ar�e-Lefs
hetz-

duality this 
lass identi�es with the 
y
le 
lass 
l(Y )"H

0

(H (X; E)). Now observe that the


y
le 
lass 
l(Y ) = the Euler-
lass of the normal-bundle to the imbedding of Y in X. This

justi�es 
alling the 
lasses in 3.9 Euler-
lasses.

4. Passage from 
onstru
tible sheaves of Z-modules to 
onstru
tible presheaves

of KU-module spe
tra

In this se
tion we will show how to fun
torially asso
iate to any 
onstru
tible sheaf of

Z-modules (

b

Z

l

-modules) on a suitable spa
e a 
onstru
tible presheaf of KU -module spe
tra

(

d

KU

l

-module spe
tra, respe
tivelyif � >> 0).

4.1. Let X denote a spa
e as before and let C

X

denote its asso
iated site. If X is a

real or 
omplex variety with C

X

its usual site, we 
onsider the ring spe
trum KU (the ring

Z, respe
tively). If X is a s
heme of �nite type over a �eld k with 
hara
teristi
 p > 0 and

l is a prime number 6= p, � >> 0, we will instead 
onsider the ring spe
trum

d

KU

l

(the

ring

b

Z

l

, respe
tively). KU (Z,

d

KU

l

,

b

Z

l

) will denote the obvious 
onstant sheaves. One key

observation is that �

i

(KU)

�

=

Z (�

i

(

d

KU

l

)

�

=

b

Z

l

) if i is even and trivial otherwise.

We will �rst 
onsider the 
ase where X is a real or 
omplex variety. Let

�

F denote a


onstru
tible sheaf of Z-modules on C

X

. Let R(

�

F ) !

�

F denote a resolution by a 
hain


omplex of 
at sheaves of Z-modules. Let � denote the sphere spe
trum and let � denote

the asso
iated 
onstant sheaf: now form �

�

(�)


Z

R(

�

F ) = �

�

(�)

L




Z

�

F . Apply the fun
tor

GEM from Chapter I, se
tion 1 (ST4) (see also Chapter I, se
tion 4, Proposition 4.4 to

this obje
t in ea
h degree to obtain a 
hain-
omplex of presheaves of generalized Eilenberg-

Ma
lane spe
tra. Next we de-normalize this to obtain the 
orresponding simpli
ial obje
t

of presheaves of Eilenberg-Ma
lane spe
tra. Now we 
onsider:

(4.1.1) K

�

(

�

F ) = KU

L




�

DN(GEM(�

�

(�)

L




Z

(

�

F )))
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This is a simpli
ial obje
t of presheaves of KU -module spe
tra. Next one takes its homotopy


olimit to obtain a presheaf of spe
tra whi
h will be denoted

(4.1.2) K(

�

F )

By taking a �xed 
at resolution of �

�

(�), one may observe that the fun
tor

�

F 7! K(

�

F ) is

an exa
t fun
tor in the following sense:

4.2. if 0 ! F

0

! F ! F

00

! 0 is a short exa
t sequen
e of sheaves of Z-modules on

the site C

X

, the 
orresponding diagram K(F

0

)! K(F )! K(F

00

) is a distinguished triangle

in Presh(C

X

;KU).

Proposition 4.1. Assume the above situation. Now �

i

(K(F ))

~

�

=

�

F if i is an even

integer and trivial otherwise.

Proof. We 
ompute the homotopy groups of ea
h term, K

n

(

�

F ), of the simpli
ial obje
t

using the spe
tral sequen
e in Chapter III, Proposition 1.2. Here

E

s;t

2

= Tor

�

�

(�)

s;t

(�

�

(KU); �

�

([DN(GEM(�

�

(�)))

L




Z

(

�

F )℄

n

))

) �

s+t

(K

n

(

�

F ))

One may identify �

�

(DN(GEM(�

�

(�))

L




Z

(

�

F ))) with DN(�

�

(�)

L




Z

(

�

F )). The latter is a 
at

module over �

�

(�) in ea
h simpli
ial degree. Therefore

E

2

s;t

= 0 if s > 0 and

E

2

o;t

= (�

�

(KU)


Z

R

n

(

�

F )))

t

�

=

R

n

(

�

F ) if t is even and trivial otherwise.

(Re
all that �

t

(KU) = Z if t is even and trivial otherwise.) It follows that �

t

(K

n

(

�

F ))

�

=

R

n

(

�

F ) if t is even and

�

=

0 otherwise. Therefore, when we 
ompute the homotopy groups

of �

�

(K(

�

F )) using the spe
tral sequen
e for the homotopy 
olimit of a simpli
ial obje
t as

in Chapter I, se
tion 1, (HCl), we obtain the isomorphism as stated in the proposition. �

4.3. In positive 
hara
teristi
 p, we will need to modify the de�nition of K

�

(

�

F ) as

follows. We repla
e Z (KU) everywhere by its l-adi
 
ompletion

b

Z

l

(the l-
ompletion

d

KU

l

,

respe
tively). One also needs to repla
e � by its l-
ompletion

b

�

l

; R

�

(

�

F ) !

�

F will be a

resolution by a 
omplex of sheaves of 
at

b

Z

l

-modules. Then the same 
omputations show

that �

i

(K(

�

F ))

�

=

�

F if i is even and

�

=

0 if i is odd.

In 
ase F = fF

�

j�g is an inverse system of sheaves of l-adi
 sheaves one applies the

fun
tor K to ea
h term of the inverse system to obtain the inverse system fK(F

�

)j�g. Now

one takes the homotopy inverse limit of the fK(F

�

)j�g to obtain K(F ).

Proposition 4.2. In 
hara
teristi
 0, the assignment

�

F ! K(

�

F ) sends short exa
t

sequen
es of sheaves of Z-modules to �bration sequen
es of presheaves of spe
tra. In positive


hara
teristi
s, the 
orresponding statement also holds for l-adi
 sheaves.

Proof. This should be 
lear from the de�nition of the fun
tor

�

F ! K(

�

F ). �

Definition 4.3. If

�

F is a 
onstru
tible sheaf as above, we de�ne Eu(

�

F )"K

0

(X) (

\

K

0

(X)

l

)

as eu(K(

�

F )). If X is a smooth 
omplex variety, and

�

F is a Z-
onstru
tible sheaf, we let

Eu

�

(

�

F ) = eu

�

(K(

�

F )).
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5. Relations with the Euler 
lass in homology with lo
ally 
ompa
t supports

In this se
tion we will relate the above Euler 
lasses to the ones taking values in homology

with lo
ally 
ompa
t supports. Throughout this se
tion we will restri
t to 
omplex proje
tive

varieties. We also let KU denote the ring spe
trum representing 
omplex K-theory and let

Gr(KU) denote the asso
iated graded obje
t de�ned with respe
t to the Cartan �ltration;

now Gr(KU) =

W

i

Gr

i

(KU) and Gr

0

(KU) is also a ring spe
trum and the obvious map

Gr

0

(KU)! Gr(KU) is a map of ring spe
tra.

Proposition 5.1. D

Gr(KU)

' D

Gr

0

(KU)




Gr

0

(KU)

Gr(KU)

Proof. We begin with the following observations:

5.0.1. If f : X ! Y is a map of spa
es, thenRf

!

(Gr(KU)) ' Rf

!

(Gr

0

(KU)) 


Gr

0

(KU)

Gr(KU).

This follows from the proje
tion formula in Chapter IV, Proposition 2.17.

5.0.2. If K"Presh

KU

(X) so that Gr(K) = Gr

0

(K) 


Gr

0

(KU)

Gr(KU), then

RHom

Gr(KU)

(Gr(KU); Gr(K)) ' RHom

Gr

0

(KU)

(Gr

0

(KU); Gr

0

(K)) 


Gr

0

(KU)

Gr(KU).

This follows from Chapter II, (2.0.11).

Now

RHom

Gr(KU)

(Rf

!

(Gr(KU)); Gr(K))

' RHom

Gr(KU)

(Rf

!

(Gr

0

(KU)) 


Gr

0

(KU)

Gr(KU); Gr(K))

' RHom

Gr

0

(KU)

(Rf

!

(Gr

0

(KU)); Gr(K))

The �rst ' follows from the observation 5.0.1 above, while the se
ond ' follows from Chapter

II, (2.0.11). In view of the hypothesis on K, one may identify the last term with

RHom

Gr

0

(KU)

(Rf

!

(Gr

0

(KU)); Gr

0

(K) 


Gr

0

(KU)

Gr(KU)).

By repla
ing Rf

!

(Gr

0

(KU)) with a resolution as in Chapter II, Proposition 2.4 and making

use of (5.1.2), we may now identify the latter with

RHom

Gr

0

(KU)

(Rf

!

(Gr

0

(KU)); Gr

0

(K)) 


Gr

0

(KU)

Gr(KU).

Finally this identi�es with

RHom

Gr

0

(KU)

(Gr

0

(KU); Rf

!

(Gr

0

(K))) 


Gr

0

(KU)

Gr(KU) ' Rf

!

(Gr

0

(K)) 


Gr

0

(KU)

Gr(KU).

�

It follows by applying the proje
tion formula (see Chapter IV (2.17)) to the stru
ture

map p : X ! pt, (when p is proper) that

H (X;D

X

Gr(KU)

) ' H (X;D

X

Gr

0

(KU)

)

L




Gr

0

(KU)

Gr(KU) and

�

i

(H (X;D

X

Gr(KU)

))

�

=

�

n

H

2n�i

(X;�

0

(KU)); i = 0 or i = 1

(5.0.3)

whi
h is the sum of all the integral homology groups (with lo
ally 
ompa
t supports) of X.
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Let

�

F denote a 
onstru
tible sheaf of Z-modules on X and let F = K(

�

F ) denote the

presheaf ofKU -module-spe
tra de�ned as in 4.2. Re
all from Proposition 4.1 that �

i

(F )~=

�

F

for all i even and trivial otherwise. Let Gr(F ) =

W

i

Gr(F )

i

"Presh




(C

X

;Gr(KU)). Then

Gr(F ) ' Gr

0

(F ) 


Gr

0

(KU)

Gr(KU). Now one obtains the natural quasi-isomorphisms:

R�(X;RHom

Gr(KU)

(Gr(F ); Gr(F ))) ' H (X;RHom

Gr

0

(KU)

(Gr

0

(F ); Gr

0

(F ))

L




Gr

0

(KU)

Gr(KU))

' H (X; (D

X

Gr

0

(KU)

(Gr

0

(F ))�Gr

0

(F ))

L




Gr

0

(KU)

Gr(KU))

' H (X; (D

X

Gr

0

(KU)

(Gr

0

(F ))�Gr

0

(F )))

L




Gr

0

(KU)

Gr(KU))

' R�(X;RHom

Gr

0

(KU)

(Gr

0

(F ); Gr

0

(F )))

L




Gr

0

(KU)

Gr(KU)

(5.0.4)

The last-but-one quasi-isomorphism follows from the proje
tion formula in Chapter IV,

(2.17) applied to the obvious map p : X ! pt.

Moreover the spe
tral sequen
es in Chapter III, Proposition 1.2 applied to the above tensor-

produ
ts degenerate identifying

�

i

(R�(X;RHom

Gr(KU)

(Gr(F ); Gr(F ))))~

�

=

�

i

(R�(X;RHom

Gr(KU)

0

(Gr

0

(F ); Gr

0

(F ))) 


Gr

0

(KU)

Gr(KU))~

�

=

�

n

�

2n�i

(R�(X;RHom

Gr(KU)

0

(Gr

0

(F ); Gr

0

(F ))))~ and

(5.0.5)

(5.0.6) �

i

(H (X;D

X

Gr(KU)

))

�

=

�

n

�

2n�i

(H (X;D

X

Gr

0

(KU)

))~

Moreover RHom

Gr

0

(KU)

(Gr

0

(F ), Gr

0

(F )) ' Sp(RHom

Z

(

�

F ,

�

F )) a

ording to Chapter III,

Proposition 2.13 The spe
tral sequen
e in Chapter III, Theorem 2.18(ii) degenerates and

provides the identi�
ations:

�

�

(R�(X;RHom

Gr

0

(KU)

(Gr

0

(F ); Gr

0

(F ))))~

�

=

R�(X;RHom

Z

(

�

F;

�

F )) and

�

�

(H (X;D

X

Gr

0

(KU)

))~

�

=

H

�

(X; D

Z

) = H

�

(X; Z)

Next we de�ne a homomorphism

(5.0.7) Gr : K

top

(X) ' H (X;D

KU

)! H (X;D

Gr(KU)

)

as follows. Observe the left-hand side may be identi�ed with

RMap(�

0

; D

KU

)

'

!RHom

KU

(KU

X

; D

KU

).

Now the fun
torGr de�nes a map from the above term toRHom

Gr(KU)

(GrKU

X

; D

Gr(KU)

) '

RMap(�

0

, D

Gr(KU)

) ' H (X; D

Gr(KU)

). Thus the map in ( 5.0.7) indu
es a map Gr :

K

top

(X) ! H

�

(X; Z). Observe that the same de�nition applies in positive 
hara
teristi
s

and de�nes a map Gr :

\

K

top

(X)

l

' H (X;D

d

KU

l

)! H (X;D

Gr(

d

KU

l

)

).

Proposition 5.2. Assume the above situation. Then �

i=0;1

�

i

(Gr(Tr

F

(f))) = Tr

�

F

(f)

and �

i=0;1

�

i

(Gr(Eu(

�

F ))) = the Euler 
lass of

�

F with values in H

�

(X; Z). Similarly if X is
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a smooth 
omplex quasi-proje
tive variety, �

i=0;1

�

i

(Eu

�

(

�

F )) = the mi
ro-lo
al Euler 
lass of

�

F with values in H

�

(T

�

X; Z).

Proof. ( 5.0.4), ( 5.0.5) and the above dis
ussion provide us with the 
ommutative

diagram

R�(X;RHom

Gr(KU)

(Gr(F ); Gr(F )))

Tr

Gr(F)

Gr(KU) //

'

��

H (X;D

X

Gr(KU)

)

'

��
R�(X;RHom

Gr

0

(KU)

(Gr

0

(F ); Gr

0

(F ))) 


Gr

0

(KU)

Gr(KU)

Tr

Gr

0

(F )

Gr

0

(KU)




Gr

0

(KU)

Gr(KU)

//
H (X;D

X

Gr

0

(KU)

) 


Gr

0

(KU)

Gr(KU)

where we have used Tr

K

A

to denote the tra
e-map de�ned for the presheaf K of module-

spe
tra over A as in se
tion 2. Sending F to its asso
iated graded obje
t Gr(F ) de�nes a

quasi-isomorphism: Gr(RHom

KU

(F , F ))

'

!RHom

Gr(KU)

(Gr(F ), Gr(F )). One may there-

fore extend the above diagram to:

R�(X;RHom

KU

(F; F ))

Tr

F

KU //

Gr

��

H (X;D

X

KU

)

Gr

��
R�(X;RHom

Gr(KU)

(Gr(F ); Gr(F )))

Tr

Gr(F)

Gr(KU) //

'

��

H (X;D

X

Gr(KU)

)

'

��
R�(X;RHom

Gr

0

(KU)

(Gr

0

(F ); Gr

0

(F ))) 


Gr

0

(KU)

Gr(KU)

Tr

Gr

0

(F )

Gr

0

(KU)




Gr

0

(KU)

Gr(KU)

//
H (X;D

X

Gr

0

(KU)

) 


Gr

0

(KU)

Gr(KU)

We have thereby shown:

Gr(Tr

F

KU

) = Tr

Gr

0

(F )

Gr

0

(KU)




Gr

0

(KU)

Gr(KU)

One may similarly show that

Gr((Tr

F

�

)

KU

) = (Tr

Gr

0

(F )

�

)

Gr

0

(KU)




Gr

0

(KU)

Gr(KU)

Now 
onsider the map

�

�

(RHom

Gr

0

(KU)

(Gr

0

(F ); Gr

0

(F )) 


Gr

0

(KU)

Gr(KU))

�

�

(Tr

Gr

0

(F )

Gr

0

(KU)




Gr

0

(KU)

Gr(KU))

��������������������! �

�

(H (X;D

X

Gr

0

(KU)

) 


Gr

)

(KU)

Gr(KU))

On taking �

�

, the spe
tral sequen
es in Chapter III, Proposition 1.2 degenerates. Observe

that on taking the sum �

i=0;1

�

i

, the term in ( 5.0.5) identi�es with H

�

(RHom

Z

(

�

F ;

�

F )) while

the term in ( 5.0.6) identi�es with H

�

(X;Z). Therefore we obtain the �rst assertion. Con-

sidering �

i=0;1

�

i

(Tr

F

KU

(id

F

)) and �

i=0;1

�

i

((Tr

�

)

F

KU

), one obtains the remaining two assertions

as well. �
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If X denotes a 
omplex variety K

top

�

(X) will denote the (
omplex) topologi
al K-theory

of X. (Re
all this is represented by the spe
trum KU .) By arguments as in [J-3℄, one may

identify this with �

i=0;1

�

i

(H (X;KU )). One may now identify the Chern-
hara
ter map with

the map:


h

0

: �

i=0;1

�

i

(H (X;KU ))

Gr

! �

i=0;1

�

i

(H (X;Gr(KU )))

! �

i=0;1

�

i

(H (X;Gr(KU )

Q

)))

�

=

H

�

(X; Q )

(5.0.8)

(In fa
t, the above map is indu
ed by the universal 
hern-
hara
ter 
h : KU ! KU

Q

'

�

i

K(Q ; 2i).) Next 
onsider the map

�

0

: �

i=0;1

�

i

(H (X;D

KU

))

Gr

! �

i=0;1

�

i

(H (X;D

Gr(KU)

))

! �

i=0;1

�

i

(H (X;D

Gr(KU)

Q

))

�

=

H

�

(X; Q )

(5.0.9)

One may observe readily that the map �

0

is a module map over the multipli
ative map 
h

0

and that it is a natural transformation of fun
tors that are 
ovariant with respe
t to proper

maps between quasi-proje
tive 
omplex varieties. Moreover, one may see readily that, if pt

denotes a point and [pt℄

K

([pt℄) denotes the fundamental 
lass in K-homology (in homology)

�

0

([pt℄

K

) = [pt℄. (See Chapter IV, Corollary (5.12) that provides fundamental 
lasses in


omplex K-homology.) These two properties show, as in [BFM℄ p. 129 and [F-2℄ p. 166,

that the transformation �

0

must be the Todd homomorphism. Therefore, we obtain the

following theorem.

Theorem 5.3. Let X denote a 
omplex proje
tive variety. Let

�

F denote a 
onstru
tible

sheaf of Z-modules on X.

(i) Then �

0

(Eu(

�

F )) = Eu(

�

F )"H

�

(X; Q ) if X is proje
tive.

(ii) If X is a smooth proje
tive 
omplex variety, �

0

(Eu

�

(

�

F

:

)) = Eu

�

(

�

F

:

)"H

�

(T

�

X; Q )

where the Euler-
lass in rational homology (the mi
ro-lo
al Euler 
lass in rational homology)

is the one de�ned as in [K-S-2℄ p.377.

Proof. This is 
lear from the above dis
ussion. �

6. The main Theorem

We will adopt the terminology of se
tion 3 for the rest of the paper. If X is a 
omplex

variety, we will let Const(X;Z) denote the 
ategory of all 
onstru
tible sheaves of Z-modules

on X. If X is a variety de�ned over a �eld k of positive 
hara
teristi
 p (satisfying the 
on-

ditions in 1.1), l is a prime di�erent from p and � is a positive integer, Const

f:t:d

(X; l�adi
)

will denote the full sub-
ategory of 
onstru
tible l-adi
 sheaves that are also of �nite tor di-

mension. We will let K(Const(X;Z)) (K(Const

f:t:d

(X; l�adi
))) denote the Grothendie
k

group of the 
orresponding 
ategory.

Theorem 6.1. (i) If X is a 
omplex variety, there exist an additive homomorphism:

Eu : K(Const

Z

(X))! K

top

0

(X).



116 V. CHARACTER CYCLES IN K-THEORY FOR CONSTRUCTIBLE SHEAVES

(ii) If X is, in addition, a smooth quasi-proje
tive variety, there exists another additive

homomorphism:

Eu

�

: K(Const

Z

(X))! K

top

0

(T

�

X)

whi
h fa
tors through the obvious map K

top

0

(�

F

) ! K

top

0

(T

�

X) where �

F

is the mi
ro-

support of F . The Todd homomorphism sends these 
lasses to the 
orresponding Euler-


lasses in rational homology at least for proje
tive varieties.

(iii). If X is a variety de�ned over a �eld k as in 1.1 of 
hara
teristi
 p, there exists

an additive homomorphism

Eu : K(Const

f:t:d

(X;

b

Z

l

))!

\

K

top

0

(X)

l

The map from K-homology to �etale homology (as in 5.0.7) sends these 
lasses to the 
orre-

sponding Euler-
lasses at least for proje
tive varieties.

(iv). The maps in (i) and (iii) 
ommute with dire
t-images for proper maps.The map

in (ii) 
ommutes with dire
t images for proper and smooth maps of 
omplex varieties.

Proof. Clearly it suÆ
es to prove the last assertion. Let F"D(Mod

l

(C

X

; E)) where E

denotes KU and C

X

is the usual site in 
hara
teristi
 0 (

d

KU

l

and C

X

denotes the �etale site

in positive 
hara
teristi
 p, respe
tively, with l 6= p). The proof that the maps in (i) and (iii)


ommute with the dire
t image fun
tor for proper maps will follow from the 
ommutativity

of the following diagram:

Rf

�

(D

X

E

(F ))


E

Rf

�

(F ) //

��

Rf

�

(D

X

E

(F )


E

F ) //
Rf

�

(D

X

E

)

��
D

Y

E

(Rf

�

(F ))


E

Rf

�

(F ) //
D

Y

E

The left-most verti
al map exists be
ause Rf

�

D

X

E

(F ) ' Rf

!

D

X

E

(F ). One observes that the

above diagram is the same as:

Rf

�

RHom

E

(F;Rf

!

D

Y

E

)


E

Rf

�

(F )

//

��

Rf

�

Rf

!

D

Y

E

id

��
RHom

E

(Rf

�

(F ); Rf

�

Rf

!

D

Y

E

)


E

Rf

�

(F )

//

��

Rf

�

Rf

!

D

Y

E

��
RHom

E

(Rf

�

F;D

Y

E

)


E

Rf

�

(F ) //
D

Y

E

where the map Rf

�

Rf

!

D

Y

E

' Rf

!

Rf

!

D

Y

E

! D

Y

E

is the tra
e de�ned in 
hapter IV. The


ommutativity of the above diagram is 
lear and this proves (iv) for the maps in (i) and

(iii).

Next we 
onsider the proof of (iv) for the map in (ii). First one observes the 
ommuta-

tivity of the diagram:
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Rf

�

(D

X

E

(F ))�Rf

�

(F )

//

��

Rf

�

(D

X

E

(F )� F )

//
Rf

�

(Æ

Y

�

D

X

E

)

��
D

Y

E

(Rf

�

(F ))�Rf

�

(F )

//
Æ

Y

�

D

Y

E

This is established by the same argument as above. (Here Æ

Y

: Y ! Y � Y is the diagonal

immersion.) It suÆ
es to observe a natural quasi-isomorphism:

Rf

�

R�

X

�

R�

�

M

�

�

X

(F ) ' R�

Y

�

R�

�

Rf

�

F

�

�

Y

Rf

�

(F )

where �

X

: T

�

X ! X (�

Y

: T

�

Y ! Y ) is the obvious proje
tions, �

F

(�

Rf

�

F

) is the mi
ro-

support of F , �

�

X

(�

�

Y

) is the mi
ro-lo
alization along �

X

: X ! X � X (�

Y

: Y !

Y � Y , respe
tively). The hypothesis that f be proper and smooth implies f is transverse

to X ! X �X and also proper on the support of F . The above quasi-isomorphism follows

from [K-S-2℄ Proposition 4.2.4 along with the spe
tral sequen
e in (7.1.2). �

7. A general te
hnique

We will use the following general te
hnique for extending results from abelian sheaves

to presheaves of spe
tra.

Theorem 7.1. Let S and S

0

denote two sites as before. (In parti
ular they have �-

nite 
ohomologi
al dimension (�nite l-
ohomologi
al dimension in positive 
hara
teristi
,

respe
tively). Let T; T

0

: Presh

KU

(S) ! Presh

KU

(S

0

) denote two 
ovariant (or two 
on-

travariant) fun
tors that preserve �bration sequen
es and quasi-isomorphisms for any ring

spe
trum in the sense of Chapter I. Let � : T ! T

0

denote a natural transformation. Assume

there exists fun
tors T

ab

, T

0

ab

: D

b

(S, �

�

(KU)) ! D

b

(S

0

; �

�

(KU)) provided with natural

quasi-isomorphisms T (Sp(

�

F

:

)) ' Sp(T

ab

(

�

F

:

)) and similarly for T

0

. Assume further that T

ab

and T

0

ab

have �nite 
ohomologi
al dimension.

(7.1.1) Suppose in addition that there exists a natural map �

�

F

:

: T

ab

(

�

F

:

) ! T

0

ab

(

�

F

:

)

so that �

Sp(

�

F

:

)

= Sp(�

�

F

:

). Then �

F

is a quasi-isomorphism for all F"Presh

KU

(S) if and

only if �

�

F

:

is a quasi-isomorphism for ea
h

�

F

:

"D

b

(C; �

�

(KU)).

(7.1.2) Moreover there exist strongly 
onvergent spe
tral sequen
es:

E

s;t

2

= H

s

(T

ab

(�

�t

(F )~))) �

�s�t

(T (F ))~and

E

s;t

2

= H

s

(T

0

ab

(�

�t

(F )~))) �

�s�t

(T

0

(F ))~.

Proof. It is enough to 
onsider the 
anoni
al Cartan �ltration on any F"Presh(C).

Sin
e both T and T

0

preserve �bration sequen
es, they send the above �ltration to �bration-

sequen
es. These provide long-exa
t sequen
es on taking the homotopy groups. The spe
tral

sequen
es arise this way. The hypotheses on T and T

0

ensure the spe
tral sequen
es are

strongly 
onvergent.

Moreover the hypotheses ensure that there exists a natural map from the former to the

latter. Therefore an isomorphism of the E

2

-terms provides an isomorphism of the abutments.

This proves the suÆ
ien
y of the hypothesis in (7.1.1). For presheaves of spe
tra of the form

Sp(

�

F

:

),

�

F

:

"D

b

(C; �

�

(KU)) a quasi-isomorphism T (Sp(

�

F

:

)) ' T

0

(Sp(

�

F

:

)) is equivalent to

a quasi-isomorphism T

ab

(

�

F

:

) ' T

0

ab

(

�

F

:

). This proves the ne
essity of the hypothesis in

(7.1.1). �





CHAPTER VI

Survey of other appli
ations

In this 
hapter we will provide a survey of various appli
ations and potential appli
ations

of the theory developed so far.

1. Filtered Derived 
ategories

In this se
tion, we will show how to provide an extension of the basi
 theory to in
lude

algebras A that are provided with a non-de
reasing �ltration (i.e. in addition to the 
anoni-


al Cartan �ltration). We will assume that Presh(S) is as in Chapter III, (1.1) and (1.2) and

that A"Presh(S) is an algebra provided with a non-de
reasing exhaustive and separated �l-

tration F (indexed by the integers). Re
all the Cartan �ltration on any obje
t P"Presh(S)

is de�ned by f�

�n

P jng where �

�n

is the 
ohomology trun
ation fun
tor as in Chapter I.

This �ltration will be denoted C. Now f�

�n

F

m

Ajn;mg is a 
ommon re�nement of both

the �ltrations: we will let the �ltration C Æ F be de�ned by (C Æ F )

k

A = +

k=n+m

�

�n

F

m

(A).

Clearly this �ltration is also exhaustive and separated.

1.1. We will now make an assumption that the asso
iated graded term of the �ltra-

tion C Æ F in bi-degree (n;m) is Gr

C;n

(Gr

F;m

(A)) for all m and n. (We observe that the

asso
iated graded term in bi-degree (n;m) of the �ltration C ÆF is given by Gr

CÆF;n;m

(K) =

�

�n

F

m

K=(�

�n�1

F

m

K + �

�n

F

m�1

K). Observe also that sin
e �

�n

need not 
ommute with

taking quotients, the above assumption need not be satis�ed in general.)

Observe that Gr

F

(A)"Presh(S) is also an algebra and Gr

C;n

(Gr

F

(A)) is its asso
iated

graded term of degree n with respe
t to the Cartan �ltration. i.e. H

i

(Gr

C;n

(Gr

F

(A))) = 0

unless i = n. (For example 
onsider the 
ase Presh(S) is the 
ategory of 
omplexes of

abelian presheaves on a site S. Now a �ltered algebra A in Presh(S) 
orresponds to a

di�erential graded algebra provided with a �ltration 
ompatible with the stru
ture of a

di�erential graded algebra. In this 
ase one may require the di�erentials of the (di�erential

graded) algebra A are stri
t, i.e. their images and 
o-images are isomorphi
. This 
ondition

implies that the spe
tral sequen
e (in H

�

) asso
iated to the given �ltration degenerates,

whi
h in turn implies the hypothesis 1.1 at least under the hypothesis that H

i

(A) = 0 for

i << 0 and that the �ltration F is bounded below.)

In this situation, we will letMod

filt

l

(S;A) denote the 
ategory of all left-modulesM over

A provided with an exhaustive and separated �ltration F

M


ompatible with the �ltration

C Æ F on A. One de�nes Mod

filt

r

(S;A) similarly. Moreover one may 
arry over the entire

theory developed in Chapter III to this 
ontext; in parti
ular one de�nes Mod


;f:t:d

l

(S;A)

and Mod

perf

l

(S;A) as in 
hapter III. One may de�ne Mod

perf

bi

(S;A) as the 
orresponding


ategory of bi-modules over A.

In this 
ontext the Bi-duality theorem of Chapter IV, se
tion 4 applies to provide a

dualizing 
omplex for this derived 
ategory. This theorem may be restated in this 
ontext

as follows.

119
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Theorem 1.1. Assume the above situation. A perfe
t 
omplex D "Mod

perf

bi

(S;A) will

be a dualizing 
omplex for the 
ategory Mod

perf

l

(S;A) provided it 
omes equipped with a

non-de
reasing �ltration F 
ompatible with the given �ltration on A, so that Gr

F

(D ) is a

dualizing 
omplex for the 
ategory Mod

perf

l

(S;H

�

(Gr

F

(A))).

Grothendie
k-Verdier style duality for derived 
ategories asso
iated to sites provided

with �ltered sheaves of rings is 
learly a spe
ial 
ase of the above framework where the

Cartan �ltration is trivial. The following are examples of this.

Examples 1.2. 1. Let X denote a 
omplex non-singular algebrai
 variety and let

A = D

X

= the sheaf of rings of di�erential operators on X. above theorem shows what


ould be 
andidates for a dualizing 
omplex for the 
ategory of perfe
t 
omplexes of D

X

-

modules. In fa
t, sin
e, every 
oherent D

X

-module may be given a �ltration so that it

is a perfe
t 
omplex, this theorem shows why the usually de�ned dualizing 
omplex for

D

X

-modules is in fa
t a dualizing 
omplex.

2. Similar 
onsiderations apply to super-varieties and shows what are possible 
andidates

for a dualizing 
omplex. (Re
all that the stru
ture sheaves of super-varieties are �ltered so

that the asso
iated graded obje
ts are 
ommutative.)

2. Derived s
hemes

Re
all that a derived s
heme is given by a ringed site (X;A = �

i"Z

A

i

) where A = �

i"Z

A

i

is

a sheaf of graded di�erential graded algebras so that (X;A

0

) is a s
heme (in the usual sense)

and ea
h A

i

is a 
oherent A

0

-module. (See [Kon℄, [CK1℄, [CK2℄ for basi
 details on derived

s
hemes.) The derived versions of the quot-s
hemes and Hilbert s
hemes are 
onstru
ted in

[CK1℄ and [CK2℄. A quasi-
oherent (
oherent) sheaf on su
h a derived s
heme is a sheaf of

graded di�erential graded modules F = �

i

F

i

so that ea
h F

i

is a quasi-
oherent (
oherent,

respe
tively) sheaf on the s
heme (X;A

0

). The basi
 theory of Chapter IV applies now

to de�ne perfe
t 
omplexes over the ringed site (X;A). Moreover, the general theory of

Grothendie
k-Verdier duality as formulated in Chapter IV applies to extend the formalism

of Grothendie
k-Verdier duality to derived s
hemes.

In addition, the dis
ussion in the last se
tion provides a bi-duality theorem for the

derived 
ategory of 
oherent D-modules (de�ned suitably) on smooth derived s
hemes.

3. Derived 
ategories of mixed (Tate) motives over a general s
heme

Over a �eld, there has been an elegant 
onstru
tion of the 
ategory of mixed Tate

motives by Blo
h, Kriz and May. (See [Bl-3℄, [Bl-K℄ and [K-M℄.) This depends 
ru
ially

on the 
onstru
tion of a di�erential graded algebra asso
iated to the 
y
le 
omplex for the

�eld. There have been nontrivial diÆ
ulties in extending this 
onstru
tion to all smooth

quasi-proje
tive varieties over a �eld; these have been over
ome in [J-6℄, by making use of

the motivi
 
omplexes. (Re
all the motivi
 
omplex is known to be quasi-isomorphi
 to the


y
le 
omplex for all smooth quasi-proje
tive s
hemes. See [Voe-2℄.) The main idea again

is to asso
iate a DGA to the motivi
 
omplex (tensored with Q ), provide the 
ategory of

�nitely generated modules over this DGA with a t-stru
ture and then take the heart of

this t-
ategory. At least for smooth linear varieties, it is shown in [J-6℄ that this provides

a reasonable theory of relative Tate motives. Similar te
hniques are expe
ted to extend to

general smooth s
hemes: however, it seems quite likely that an appropriate shea��
ation

of the motivi
 
omplex is required. In this 
ontext, the 
onje
tures of Beilinson on motivi


derived 
ategories seem quite relevant.

For example, we quote (part of) what is referred to as the version 4 of Beilinson's


onje
ture on motivi
 derived 
ategories - see [Jan℄ p. 280.
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Let k denote a �eld. For every k-s
heme X, there exists a triangulated Q -linear tensor


ategory DM(X) with a t-stru
ture so that the following hold:

(i) If f : X ! Y is a map between su
h s
hemes, there exist the derived fun
tors f

�

,

f

!

, f

�

and f

!

between these derived 
ategories so that the usual formalism of Grothendie
k-

Verdier duality (i.e. the usual relations among these fun
tors) 
arries over.

(ii) There exist exa
t realization fun
tors:

r

l

: DM(X)! D

b

m

(X

et

; Q

l

), l 6= 
har(k) and

r

B

: DM(X)! D

b

(MH(X)), k = C

Here D

b

m

(X

et

; Q

l

) is the derived 
ategory of bounded 
omplexes of Q

l

-sheaves on the �etale

topology of X with mixed 
onstru
tible 
ohomology sheaves. MH(X) is the 
ategory of

mixed Hodge modules on X.

(iii) There exists a t-stru
ture on DM(X) so that its heart is the Q -linear abelian


ategory, M(X), of mixed motivi
 sheaves. The realization fun
tor r

l

sends M(X) to the


ategory of mixed perverse Q

l

-sheaves on X

et

. r

B

sends M(X) to MH(X). Moreover the

above realization fun
tors are exa
t and faithful on M(X).

The general theory of Grothendie
k-Verdier style duality developed in this paper should

apply in this 
ontext to provide at least part of the 
onje
tured formalism of Grothendie
k-

Verdier style duality in the setting of motivi
 derived 
ategories, perhaps for a derived


ategory of relative Tate motives.

One key issue in this setting would be the de�nition of a t-stru
ture for the 
ategory of

sheaves of modules over a DGA. In the setting of Tate motives over a �eld (or relative Tate

motives for linear varieties over a �eld) where no shea��
ation is required, su
h a t-stru
ture

is provided easily using the theory of minimal models. This is non-trivial when shea��
ation

is needed. Moreover the issue of de�ning a t-stru
ture for sheaves of modules over DGAs is

related to the following.

4. Generalized interse
tion 
ohomology theories

In fa
t this is a problem that had been the starting point of our interest in generalizing

the Grothendie
k-Verdier formalism of duality. This is stated as an open problem in [Bo℄,

last se
tion. Brie
y stated the question is the following. Interse
tion 
ohomology seems to

be the 
orre
t variant of singular 
ohomology (i.e. 
ohomology with respe
t to the 
onstant

sheaf Z) adapted to the study of singular spa
es. What are the the 
orresponding variants of

the familiar generalized 
ohomology theories (for example, topologi
al K-theory) adapted to

the study of singular spa
es?

A key step in the de�nition of su
h a theory would be the de�nition of t-stru
tures for

presheaves of module-spe
tra over the spe
trum representing the given generalized 
oho-

mology theory. There have been partial su

ess in this dire
tion in [Kom℄ and also [J-7℄.

(Komezano uses 
obordism theory with singularities and provides a de�nition of generalized

interse
tion 
ohomology theories; however a detailed analysis shows that despite super�
ial

di�eren
es, the two approa
hes are similar at least in prin
iple.) In fa
t, using the te
hniques

established in this work work, we hope to 
omplete the work begun in [J-7℄.
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5. Motivi
 Homotopy Theory

In this se
tion we will show that the basi
 formalism adopted in Chapters I and II

applies to motivi
 homotopy theory or more pre
isely the stable homotopy theory asso
iated

to the unstable A

1

-homotopy theory of [M-V℄. (Here the stabilization is with respe
t to

T = S

1

^ G

m

.)

Let S denote a Noetherian base s
heme; we will let (smt:s
hemes=S)

Nis

denote the


ategory of all s
hemes of �nite type over S provided with the Nisnevi
h topology. Re
all

now the basi
 result of unstable motivi
 homotopy theory is the following:

Theorem 5.1. (See [M-V℄.) Let SPresh((smt:s
hemes=S)

Nis

) denote the 
ategory of

all simpli
ial presheaves on (smt:s
hemes=S)

Nis

. This has the following stru
ture of a

proper simpli
ial model 
ategory:

the 
o�brations are monomorphisms

the weak-equivalen
es are the A

1

-weak-equivalen
e and

the �brations are de�ned by right lifting property with respe
t to 
o�brations whi
h are

also weak-equivalen
es.

Using smashing with T (instead of with S

1

) one may de�ne the notion of spe
tra in this


ategory; these form T -spe
tra. Moreover one may de�ne symmetri
 spe
tra in the 
ategory

SPresh((smt:s
hemes=S)

Nis

). We will let SSpPresh((smt:s
hemes=S)

Nis

) denote the


ategory of all symmetri
 spe
tra obtained this way.

Theorem 5.2. SSpPresh((smt:s
hemes=S)

Nis

) is an enri
hed stable 
losed simpli
ial

model 
ategory in the sense of Chapter II, De�nition 4.11.

Proof. The stable simpli
ial model stru
ture and the axioms on the monoidal stru
ture

as in Chapter I follow by more or less standard arguments. �

Therefore, in order, to be able to apply the results of Chapter III to this setting, it suÆ
es

to show that SSpPresh((smt:s
hemes=S)

Nis

) has a strong t-stru
ture as in Chapter I. We

will refer to obje
ts in

SSpPresh((smt:s
hemes=S)

Nis

) as motivi
 spe
tra.

Re
all that the presheaves of motivi
 stable homotopy groups are bi-graded by a degree t

and weight s and de�ned as:

(5.0.1) �

t;s

(�(U; P )) = Hom

H

(�

T

(S

t

^ G

s

m

)

jU

; P

jU

)

whereHom

H

denotes Hom in an appropriate homotopy 
ategory. One lets �

t

(P ) = �

s

�

t;s

(P )

where the latter denotes the above presheaf: by abuse of notation, we will 
all these the mo-

tivi
 stable homotopy groups. It is known that a 
o�ber-sequen
e in SSpPresh((smt:s
hemes=S)

Nis

)

provides a long-exa
t sequen
e in �

�

, where � denotes the degree.

The de�nition of the Eilenberg-Ma
lane fun
tor as in Chapter I is, however not 
lear,

sin
e the motivi
 stable homotopy seems diÆ
ult to 
ompute. To be able to de�ne Eilenberg-

Ma
lane spe
tra as in Chapter I (and therefore a strong t-stru
ture) one needs to be able

to kill o� the homotopy indexed by the weight as well the degree, for example by a suitable

analogue of atta
hing 
ells.

On the other hand, the sli
es introdu
ed in [Voe-3℄ may be related to providing a di�erent

sort of t-stru
ture.



APPENDIX A

Veri�
ation of the axioms for �-spa
es and symmetri


spe
tra

1. �-spa
es

Theorem 1.1. The 
ategory of �-spa
es endowed with the smash-produ
t de�ned in

[Lyd℄ is an enri
hed stable simpli
ial model t-
ategory.

The rest of this se
tion will be devoted to a proof of this theorem. Throughout we will

adopt the following 
onvention. A simpli
ial set (a pointed simpli
ial set) will be denoted

spa
e (pointed spa
e, respe
tively).

Let �

op

denote the 
ategory with obje
ts n

+

= f0; :::; ng. (We view n

+

as pointed by

0.) The morphisms f : m

+

! n

+

are all maps so that f(0) = 0. A �-spa
e is a fun
tor

A : �

op

! (pointed spa
es)

so that A(0) = �. The sphere �-spa
e S is the �-spa
e de�ned by: S(n

+

) = n

+

, for ea
h

n. A map between two �-spa
es is a natural transformation of fun
tors. The 
ategory of

all �-spa
es will be denoted GS. The Hom-sets in this 
ategory will be denoted Hom

GS

(or

merely Hom, if there is no 
ause for 
onfusion).

We �rst re
all the following stri
t simpli
ial model stru
tures for �-spa
es from [B-F℄

se
tion 3. This will de�ne the stri
t model stru
ture on the 
ategory of �-spa
es.

1.1. For ea
h �xed integer k � 0, let �

op

k

denote the full sub-
ategory of � 
onsisting

of obje
ts n

+

, n � k. A �

k

-spa
e is a fun
tor �

op

k

!(pointed spa
es). Now one de�nes the

k-trun
ation

Tr

k

: (�-spa
es) ! (�

k

-spa
es)

as the fun
tor restri
ting a �-spa
e A to the sub-
ategory �

op

k

. This has a left-adjoint

denoted sk

k

and a right adjoint denoted 
osk

k

. Often we will denote the 
omposition

sk

k

Æ Tr

k

(
osk

k

Æ Tr

k

) by sk

k

(
osk

k

, respe
tively) as well. (See [B-F℄ pp.89-90 for more

details.) Now a map f : A ! B of �-spa
es is a 
o�bration if for ea
h n, the indu
ed

map (sk

n�1

B)(n

+

) t

(sk

n�1

A)(n

+

)

A(n

+

) ! B(n

+

) is inje
tive and the symmetri
 group �

n

a
ts freely on the simpli
es not in the image of the above map. A map f : A ! B is a

�bration if the indu
ed map A(n

+

) ! (
osk

n�1

A)(n

+

) �

(
osk

n�1

B)(n

+

)

B(n

+

) is a �bration of

pointed spa
es for ea
h n. A �-spa
e A is 
o�brant (�brant) if the obvious map � ! A

is a 
o�bration (A ! � is a stri
t �bration, respe
tively). A map f : A ! B of �-

spa
es is a weak-equivalen
e if the map f(n

+

) : A(n

+

) ! B(n

+

) is a weak-equivalen
e

of pointed spa
es. It is shown in [B-F℄ Theorem (3.5) that this de�nes a simpli
ial model

stru
ture on the 
ategory of �-spa
es. The same proof applies to show that one may de�ne a

simpli
ial model 
ategory stru
ture on the sub-
ategories �

�k

-spa
es = the fun
tor 
ategory

fA : �

op

k

!(pointed spa
es)jA(0) = �g in an entirely similar manner. (i.e. A map f : A ! B

123
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in �

�k

-spa
es is a weak-equivalen
e (
o�bration, �bration) if the 
orresponding 
onditions

above are satis�ed for all n � k.)

1.2. The fun
tor 
 : (pointed simpli
ial sets) � (� � spa
es) ! (� � spa
es) is

given by sending a pointed simpli
ial set K and a �-spa
e A to the �-spa
e (K ^A)(n

+

) =

K ^ A(n

+

). Observe that not every monomorphism is a 
o�bration. However (PM4) of

Chapter II, se
tion 4 is shown to be satis�ed by Lemma (3.7) of [B-F℄. The above stri
t

simpli
ial model stru
ture de�nes the required partial model 
ategory stru
ture as in Chapter

II, se
tion 4.

1.3. Next we 
onsider the stable simpli
ial model stru
ture from [B-F℄. For this we

re
all the 
onne
tion between �-spa
es and 
onne
tive spe
tra. (Here spe
tra mean as in

[B-F℄ and not the more sophisti
ated symmetri
 spe
tra 
onsidered below.)

1.4. A spe
trum K is given by a 
olle
tion fK

n

jn � 0g of pointed simpli
ial sets

provided with maps S

1

^K

n

! K

n+1

for ea
h n. (Here S

1

= �[1℄=Æ(�[1℄) is the simpli
ial

one-sphere.) A map of spe
tra K = fK

n

jng ! L = fL

n

jng is given by a 
ompatible


olle
tion of maps f

n

: K

n

! L

n

of pointed spa
es 
ommuting with the suspension. The

homotopy groups of a spe
trum K are de�ned by �

k

(K) = 
olim

n!1

�

n+k

(Sing(jK

n

j). A map

f : K ! L is a stable-equivalen
e of spe
tra if it indu
es an isomorphism on the above

homotopy groups. A spe
trum K is 
onne
tive (or �1-
onne
tive) if �

k

(K) = 0 for all

k < 0.

1.5. Now let A denote a �-spa
e. One may progressively extend A to a fun
tor (�nite

pointed sets) !(pointed spa
es), (pointed sets) ! (pointed spa
es), (pointed spa
es) !

(pointed spa
es) in the obvious manner. (See [B-F℄ se
tion 4.) Now letK denote a spe
trum.

One may show that there exist natural maps S

1

^ A(K

n

) ! A(S

1

^K

n

) ! A(K

n+1

) for

ea
h n; these show that one may �nally extend A to a fun
tor (spe
tra) !(spe
tra).

Let � = fS

0

; S

1

; S

2

; :::; S

n

; :::g denote the sphere spe
trum. Now given the �-spa
e A,

A(�) is a spe
trum whi
h is 
learly 
onne
tive. This de�nes the fun
tor:

�(�) : (�-spa
es) ! (
onne
tive spe
tra)

Given the 
onne
tive spe
trum K, one de�nes the asso
iated �-spa
e �(K) by

�(K)(n

+

) =Map(�

n

;K).

Here �

n

denotes the n-fold produ
t of the sphere spe
trum and Map(�

n

;K) is the pointed

spa
e given in degree k as the set of pointed maps �

n

^�[k℄

+

! K of spe
tra. There is an

adjun
tion:

(1.5.1) Hom

��spa
es

(A;�(K))

�

=

Hom

spe
tra

(A(�);K)

Therefore one obtains natural maps A ! �(A(�)) and �(K)(�)! K for a �-spa
e A and

a 
onne
tive spe
trum K.

A map f : A ! B of �-spa
es is a stable equivalen
e if the indu
ed map f(�) : A(�)!

B(�) of 
onne
tive spe
tra is a stable equivalen
e of spe
tra. A map f : A ! B of �-spa
es

is a stable 
o�bration if it is a stri
t 
o�bration in the sense of 1.1 and a map f : A ! B of

�-spa
es is a stable �bration if it has the right lifting property with respe
t to all maps that

are stable 
o�brations and stable-equivalen
es. It is shown in [B-F℄ Theorem (4.2) that the

above stru
ture is in fa
t a simpli
ial model 
ategory stru
ture on the 
ategory of �-spa
es.

Now we will adopt the above stable model stru
ture to de�ne the stable simpli
ial model

stru
ture as in Chapter II, se
tion 4. Clearly the axiom (SM0) is satis�ed. Clearly every
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stri
t weak-equivalen
e is a quasi-isomorphism: this shows axiom (SM1) is also satis�ed. (See

[B-F℄ Lemma (4.7) to see that a stri
t weak-equivalen
e is a stable-equivalen
e.) Moreover

the above de�nition of stable 
o�brations shows that the statement in (SM2) on 
o�brations

is satis�ed. To 
omplete the proof of (SM2) it suÆ
es to 
he
k that every stable �bration

is a stri
t �bration. This may be done by 
he
king that every stable �bration satis�es the


orresponding right lifting property for �brations in the sense of 1.1. This is 
lear sin
e every

stable 
o�bration is a stri
t 
o�bration in the sense of (4.2) and every stri
t weak-equivalen
e

is a stable weak-equivalen
e.

Next we 
onsider (SM3.1) through (SM3.3). First observe that the fun
tor K !

Sing(jKj) from pointed spa
es to pointed spa
es has the following properties: there is a

natural map K ! Sing(jKj) whi
h is a weak-equivalen
e of pointed spa
es and moreover

Sing(jKj) is a �brant simpli
ial set. This fun
tor readily extends to a fun
tor �-spa
es! �-

spa
es and de�nes the fun
tor Q. If X = fX

n

jng is a spe
trum so that ea
h X

n

is a �brant

pointed spa
e, one may 
onvert X to a �brant 
-spe
trum by the (usual) fun
tor we denote

by T

0

: T

0

(X)

k

= 


n

olim


n

X

n+k

. If ea
h X

n

is not ne
essarily a �brant pointed spa
e, one

may �rst apply Sing Æ j j to X degreewise to 
onvert it to a spe
trum whi
h 
onsists of

�brant pointed spa
es in ea
h degree. The 
omposition T

0

ÆSing Æ j j will be denoted T . We

now de�ne the fun
tor Q

st

as follows: let A denote a �-spa
e. Now Q

st

(A) = �(T (A(�))).

So de�ned, we will now verify that the fun
tors Q and Q

st

satisfy the axiom (SM3). The

assertions in (SM3) are easy to verify for the fun
tor Q. We may verify the 
orrespond-

ing assertions for the fun
tor Q

st

as follows. Let A denote a �-spa
e: to obtain a map

A ! Q

st

(A) = �T (A(�)), it suÆ
es to show the existen
e of a map A(�)! T (A(�)) and

the latter 
learly exists. Next observe that there exists a natural map T ÆT ! T . In view of

the adjun
tion between the fun
tor � and A ! A(�), this suÆ
es to de�ne a natural map

Q

st

ÆQ

st

! Q

st

.

The pairing (pointed simpli
ial sets) � (� � spa
es) ! (� � spa
es) is the one


onsidered in 1.2 . This has all the properties required in (SM3.4). The hypotheses in

(SM4) through (SM6)' may be veri�ed readily at the level of spe
tra (where the model

stru
tures provided by [B-F℄ may be used). Now applying the fun
tor �(�) to pass from

a �-spa
e to a 
onne
tive spe
trum and applying the fun
tor � to pass ba
k to a stably

weakly equivalent �-spa
e proves these axioms are in fa
t satis�ed.

Next 
onsider the axioms (HCl) and (Hl). The model 
ategory-stru
ture on the 
ategory

of diagrams C

�

op

and C

�

when C is the 
ategory of pointed simpli
ial sets is established in

[B-K℄. The stable versions (i.e. when C is repla
ed by the 
ategory of spe
tra and �-spa
es)

may be de�ned as in [B-F℄: we skip the details.

Now we provide the 
ategory of �-spa
es with the smash-produ
t de�ned in [Lyd℄. This

will be denoted ^. We pro
eed to verify the axioms on the monoidal stru
ture in Chapter I.

Theorem 1.2. (Lydakis) The 
ategory of �-spa
es is symmetri
 monoidal with respe
t

to the above smash produ
t. Moreover the sphere �-spa
e is a stri
t unit.

The above theorem establishes the axiom (M0) for the 
ategory of �-spa
es. The last

assertion in the theorem 
learly shows the sphere spe
trum is a stri
t unit. We take F

to be the full sub
ategory of stably 
o�brant obje
ts. The axioms on the stable model

stru
ture now show that (M1) is satis�ed. Moreover the sphere spe
trum is known to be

stably 
o�brant, so that the axiom (M3) is also satis�ed. The pairing required in (M3)

is de�ned in (1.3) above. Moreover now one may readily verify the axiom (M4.0) through

(M4.5). [Lyd℄ (3.20) shows smashing with a �-spa
e preserves inje
tive maps and it is shown

in [Lyd℄(4.1) that if A and B"(�-spa
es) are both stably 
o�brant, the fun
tors A ^ � and
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�^B preserve stable 
o�brations and that A^ B is stably 
o�brant. Moreover it is shown

[Lyd℄(4.18) that both the above fun
tors also preserve stable weak-equivalen
es. These prove

(M2). The assertion aboutHom is now an immediate 
onsequen
e of this and the adjun
tion

with A
�.

Next we 
onsider the axiom (M5) for both the fun
tos Q and Q

st

as de�ned in. First


onsider the fun
tor Sing Æ j j applied to pointed spa
es. Let X, Y denote two pointed

spa
es. Now there exists a natural map SingjXj ^ SingjY j ! SingjX ^ Y j. (To see

this observe that su
h a map is adjoint to a map j(SingjXj) ^ (SingjY j)j ! jX ^ Y j.

The latter exists sin
e j(Sing(jXj))^ (SingjY j)j

�

=

(j(Sing(jXj))j ^ j(Sing(jY j))j)

Kelley

and

jX^Y j

�

=

(jXj^jY j)

Kelley

; here we have used the notation that if Z is a Hausdor� topologi
al

spa
e Z

Kelley

is the underlying set of Z retopologized by the �ner Kelley topology. (See

[G-Z℄ p.10, p.53.) Finally observe again that the geometri
 realization is left adjoint to the

singular fun
tor.) Now re
all that the fun
tor Q is a degree-wise extension of the fun
tor

Sing Æ j j to �-spa
es; therefore it has the property mentioned in (M5).

Next we show the axiom (M5) is satis�ed for the fun
tor Q

st

. For this it is good to

re
all the relation between pairings of �-spa
es and that of the asso
iated spe
tra again

from [Lyd℄. A spe
trum with no odd terms 
onsists of a sequen
e fE

2n

jn � 0g of pointed

simpli
ial sets and pointed maps S

2

^ E

2n

! E

2n+2

, for all n � 0. One may extend all

the standard notions like maps, homotopy groups, weak-equivalen
e et
. from spe
tra to

spe
tra with no odd terms. Let E and E

0

denote two spe
tra in the usual sense; now the

naive-smash produ
t E ^ E

0

is the spe
trum with no odd terms de�ned by

(1.5.2) (E ^ E

0

)

2n

= E

n

^ E

0

n

and where the map S

2

^ (E ^ E

0

)

2n

! (E ^ E

0

)

2n+2

is de�ned as the 
omposition: S

1

^

S

1

^ (E

n

^E

0

n

)

�

=

(S

1

^ E

n

) ^ (S

1

^ E

0

n

)! E

n+1

^ E

0

n+1

= (E ^ E

0

)

2n+2

. Convention: the

smash produ
t of two spe
tra will denote this naive smash produ
t in this se
tion

Any spe
trum E in the usual sense de�nes a spe
trum with no odd terms E

t

by (E

t

)

2n

=

E

2n

. Conversely any spe
trum with no odd terms E

t

= fE

t

2n

jng de�nes a spe
trum E in

the usual sense by (E)

n

= E

t

2n

. One may now readily observe that the 
ategory of spe
tra

is equivalent to the 
ategory of spe
tra with no odd terms. It follows that if E, E

0

are two

spe
tra in the usual sense and E

t

, E

0

t

are the asso
iated spe
tra with no odd terms, then

there is an isomorphism

Map(E;E

0

)

�

=

Map(E

t

; E

0

t

)

of pointed spa
es.

Proposition 1.3. Let A, B denote two �-spa
es. Now the following hold:

(i) There exists a natural map TA(�)^TB(�)! T (A^B)(�)

t

. (Here T is the fun
tor


onsidered in earlier.)

(ii) There exists natural maps �(TA(�))^�(TB(�))! �(TA(�)^TB(�))! �(T (A^

B)(�)

t

)

(iii) If X , Y are spe
tra, then there exists a natural map �(X) ^ �(Y ) ! �(X ^ Y )

of �-spa
es where the �-spa
e on the left is the one de�ned using the smash produ
t in 1.2.

The smash produ
t X ^ Y on the right is de�ned as in 1.5.2 .

Proof. First, it is shown in [Lyd℄ se
tion 4 that, under the above hypotheses, there

exists a natural map A(�) ^ B(�)! (A ^ B)(�)

t

of spe
tra with no odd terms. We apply

the geometri
 realization followed by the singular fun
tor degree-wise to obtain the pairing:
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Sing(jA(�)j) ^ Sing(jB(�)j)! Sing(j(A^ B)(�)

t

j).

Now we apply the fun
tor T

0

to both sides. Clearly there exists a natural map T

0

(Sing(jA(�)j))^

T

0

(Sing(jB(�)j)) ! T

0

(Sing(jA(�)j) ^ Sing(jB(�)j)). Now the de�nition of the fun
tor T

as above 
ompletes the proof of (i).

We will next 
onsider (iii). We �rst show that, in order to establish (iii), it suÆ
es to

show that if n, m are two non-negative integers, there exists a natural map:

(1.5.3) �(X)(n

+

) ^ �(Y )(m

+

)! �(X ^ Y )(n

+

_

m

+

)

To see this re
all that

(�(X) ^ �(Y ))(p

+

) = 
olim

n

+

^m

+

!p

+

�(X)(n

+

) ^�(Y )(m

+

).

Therefore, in order to prove (iii), it suÆ
es to show that for ea
h map n

+

^m

+

! p in �

op

,

there exists an indu
ed map

(1.5.4) �(X)(n

+

) ^ �(Y )(m

+

)! �(X ^ Y )(p

+

)

Observe there exist natural maps n

+

W

m

+

! n

+

^ m

+

and n

+

^ m

+

! p

+

. There-

fore the map in 1.5.4 may be obtained by pre-
omposing the map �(X ^ Y )(n

+

W

m

+

) =

Map(�

n

+

W

m

+

�+

; X^Y )!Map(�

n

+

^m

+

�+

; X^Y ) = �(X^Y )(n

+

^m

+

)!Map(�

p

+

; X^

Y ) = �(X ^ Y )(p

+

) with the map in 1.5.3. This shows that it suÆ
es to prove 1.5.3. Now

given two maps f : �[k℄

+

^ �

n

! X and g : �[k℄

+

^ �

m

! Y , we may de�ne a map

f ^ g : �[k℄

+

^�

n+m

! X ^ Y as the 
omposition:

�[k℄

+

^�

n

^ �

m

�^id

! �[k℄

+

^�[k℄

+

^ �

n

^�

m

f^Y

! X ^ Y

This proves (iii).

Now 
onsider (ii). By (iii) applied to X = TA(�) and Y = TB(�), we see that there

exists a natural map �(T (A(�))) ^ �(T (B(�))) ! �(T (A(�)) ^ T (B(�))). This provides

the �rst map in (ii). Combining this with the pairing T (A(�))^ T (B(�))! T (A^B)(�)

t

,

we obtain the se
ond map in (ii). �

Now we may 
omplete the proof that (M5) is satis�ed by the fun
tor Q

st

. Re
all

Q

st

(A) = �(TA(�)). Therefore Q

st

(A)^Q

st

(B) = �(TA(�))^�(TB(�)) maps naturally to

�(TA(�)^TB(�)). By (ii) of 1.3, the latter maps naturally to �(T (A^B)(�)

t

) = Q

st

(A^B).

Next we verify the axioms on the strong t-stru
ture as in Chapter I. (ST1) through

(ST5). We will �rst 
onsider (ST3) and (ST4). The 
ategory C

�n�

f

is given by the sub-


ategory fAjA fibrant and �

k

(A) = 0; k 6= ng of �-spa
es. The Abelian 
ategory A is

in fa
t the 
ategory of all Abelian groups. Let � denote an Abelian group. Now we 
onsider

the 
hain 
omplex �[n℄ whi
h is 
on
entrated in degree n. We may denormalize this to obtain

a simpli
ial Abelian group DN(�[n℄) whi
h has only one homotopy group that is non-trivial,

namely in degree n, and where it is �. We may deloop this simpli
ial Abelian group to obtain

a 
onne
ted spe
trum: Sp(�) = fSp(�)

m

= B

m

(DN(�[n℄))jm � 0g. This spe
trum will be

denoted K(�; n). Now we apply the fun
tor � to this spe
trum to obtain a �-spa
e whi
h we

denote by EM

n

(�). Clearly �

n

(EM

n

(�))

�

=

� and �

k

(EM

n

(�))

�

=

0 if k 6= n. Moreover the

above de�nition of the fun
tors EM

n

, n"Z shows that if �, �

0

are obje
t in A, there exists

a natural map K(�; n)^K(�

0

;m)! K(�
�

0

; n+m)

t

of spe
tra where the smash-produ
t

on the left is de�ned as in 1.5.2. Now 1.3 (ii) applies to show that there exists a pairing:
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EM

n

(�)^EM

m

(�

0

) = �(K(�; n))^�(K(�

0

;m))! �(K(�
�

0

; n+m)) = EM

n+m

(�
�

0

).

This proves (ST6).

Next re
all that the 
ategory of all 
onne
ted abelian group spe
tra is equivalent to

the 
ategory of all 
hain 
omplexes of abelian groups that are trivial in negative degrees.

Moreover the 
ategory of all su
h abelian group spe
tra is equivalent to a 
orresponding sub-


ategory of the 
ategory of all �-spa
es whi
h we 
all abelian �-spa
es. These observations

prove (ST3) and (ST4).

One may show axiom (ST9) holds by an argument as in Appendix II, (0.7.3). Now

we 
onsider the axioms (ST1), (ST2), (ST5), (ST7) and (ST8). We begin by re
alling the

fun
torial Postnikov trun
ation de�ned for �brant simpli
ial sets. Let X denote a �brant

pointed simpli
ial set and let n � 0 denote an integer. We let P

n

X be the simpli
ial set

de�ned by

(P

n

X)

k

= X

k

if k < n and = X

k

= eif k � n.

Here e denotes the equivalen
e relation where two k-simpli
es of X are identi�ed if their

n � 1-dimensional fa
es are all identi
al. Clearly there is a natural map X ! P

n

X of

pointed simpli
ial sets and X ! P

n

X de�nes a fun
tor on �brant pointed simpli
ial sets

and pointed maps. We let

~

P

n

X = the �ber of the map X ! P

n

X. Now one observes that

�

k

(

~

P

n

X)

�

=

�

k

(X) if k � n and

�

=

0 otherwise. Observe also that (

~

P

n

X)

k

= �, k < n and

= fx

k

"X

k

j all the (n � 1)-dimensional fa
es of x

k

are trivialg. As a 
onsequen
e we may


hara
terize j

~

P

n

Xj as the maximal pointed sub-spa
e of jXj having no 
ells ex
ept the base

point in degrees 0 through n � 1. In general (i.e. in 
ase X is not a �brant simpli
ial set),

one may de�ne

~

P

n

X =

~

P

n

(SingjXj).

One may also observe that if n < 0,

~

P

n

(SingjXj) = SingjXj and that \

n

~

P

n

(SingjXj) =

�.

Now we will extend the fun
tor

~

P

n

to spe
tra. ( For this purpose, the de�nition we

adopt needs to use the geometri
 realization and the singular fun
tor; the only way to avoid

this seems to be by adopting a di�erent notion of smash produ
t of pointed simpli
ial sets

as in [Kan℄. However this would then mean a reworking of all the foundational material

on spe
tra and �-spa
es that use the more familiar notion of smash produ
ts of pointed

spa
es. Even if one is willing to do so, the feasibility of this approa
h is doubtful.) Let

X = fX

m

jm � 0g denote a degree-wise �brant spe
trum i.e. ea
h X

m

is a �brant pointed

simpli
ial set. Now we de�ne

~

P

n

X = fSing(j

~

P

n+m

X

m

j)jm � 0g.

The stru
ture map S

1

^ Sing(j

~

P

n+m

X

m

j) ! Sing(j

~

P

n+m+1

X

m+1

j) is de�ned as follows.

First su
h a map is adjoint to a map jS

1

^ Sing(j

~

P

n+m

X

m

j)

�

=

jS

1

j ^ jSing(j

~

P

n+m

X

m

j)!

j

~

P

n+m+1

X

m+1

j. (See [G-Z℄ p.47 to see the isomorphism above.) Now jS

1

j^jSing(j

~

P

n+m

X

m

j)

maps naturally to jS

1

j^j

~

P

n+m

X

m

j. Clearly the latter maps into jS

1

j^jX

m

j

�

=

jS

1

^X

m

j !

jX

m+1

j where the last map is the given map S

1

^X

m

! X

m+1

. We will show that the last

map fa
tors through the natural map j

~

P

n+m=1

X

m+1

j ! jX

m+1

j. To see this observe that

jS

1

j^ j

~

P

n+m

X

m

j is isomorphi
 to a spa
e with no 
ells in degrees less than n+m ex
ept the

base point and that j

~

P

n+m+1

X

m+1

j is the maximal subspa
e of jX

m+1

j with no 
ells ex
ept

the base-point in degrees less than n +m. The required fa
torization follows and provides

the stru
ture maps of the spe
trum

~

P

n

X. In 
ase X is not a degree-wise �brant spe
trum,

we will �rst apply the fun
tor T to 
onvert it to a degree-wise �brant 
-spe
trum.

If A is a �-spa
e and n is an integer, we will de�ne
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�

�n

A = �(

~

P

�n

T (A(�)))

One may readily see that both (ST1) and (ST2) are now satis�ed. (The exhaus-

tiveness and separatedness of the �ltration will follow readily from 1.5 .) We pro
eed

to verify the axiom (ST7). For this we begin with a pairing K ^ L ! M of �brant

pointed simpli
ial sets and let n, m � 0 be two integers. Now 
onsider j

~

P

n

Kj ^ j

~

P

m

Lj.

In general this may not have the stru
ture of a C:W -
omplex; however, by [G-Z℄ p.53,

j

~

P

n

Kj ^ j

~

P

m

Lj

�

=

(j

~

P

n

Kj ^ j

~

P

m

Lj)

Kelley

whi
h is the same underlying set re-topologized

using the Kelley topology. On applying the singular fun
tor, we therefore obtain a map

Sing((j

~

P

n

Kj ^ j

~

P

m

Lj)

Kelley

) ! Sing(j

~

P

n

K ^

~

P

m

Lj). Now there exists a natural map

(Singj

~

P

n

Kj) ^ (Singj

~

P

m

L) ! Sing((j

~

P

n

Kj ^ j

~

P

m

Lj)

Kelley

). (Su
h a map is adjoint to

a map : j(Singj

~

P

n

Kj) ^ (Singj

~

P

m

L)j

�

=

(j(Singj

~

P

n

Kj)j ^ j(Singj

~

P

m

Lj)j)

Kelley

! (j

~

P

n

Kj ^

j

~

P

m

Lj)

Kelley

. This map 
learly exists sin
e the geometri
 realization fun
tor is left adjoint

to the singular fun
tor.) As a result we have obtained a map:

(Singj

~

P

n

Kj) ^ (Singj

~

P

m

Lj)! Sing(j

~

P

n

K ^

~

P

m

Lj)

�

=

Sing((j

~

P

n

Kj ^ j

~

P

m

Lj)

Kelley

)

Clearly j

~

P

n

K ^

~

P

m

Lj maps naturally to jK ^Lj whi
h maps to jM j using the given pairing.

We pro
eed to show this fa
tors through j

~

P

n+m+1

M j. For this we will 
onsider sub-spa
es of

the spa
e j

~

P

n

K^

~

P

m

Lj of the form jF

1

j^jF

2

j, where F

1

is a 
ountable pointed sub-simpli
ial

set of

~

P

n

K and F

2

is a 
ountable pointed sub-simpli
ial set of

~

P

m

L. Now jF

1

j ^ jF

2

j has

the stru
ture of a C:W -
omplex; sin
e F

1

is trivial in degrees less than n and F

2

is trivial

in degrees less than m, it follows that jF

1

j ^ jF

2

j has no 
ells ex
ept the base-point in

degrees less than n + m. Now 
onsider j

~

P

n+m

M j. This is the maximal sub-spa
e of jM j

having no 
ells ex
ept the base-point in degrees less than n+m. Therefore the natural map

jF

1

j ^ jF

2

j ! jM j fa
tors through j

~

P

n+m

M j.

Now 
onsider the natural map j

~

P

n

Kj ^ j

~

P

m

Lj

�

!jM j. The above argument shows that

for every 
ountable pointed sub-simpli
ial set F

1

of

~

P

n

K and F

2

of

~

P

m

L, �(jF

1

j ^ jF

2

j)

has no 
ells ex
ept the base-point in degrees less than n + m and hen
e is 
ontained in

j

~

P

n+m

M j. Therefore the same 
on
lusion holds for

S

F

1

;F

2

�(jF

1

j ^ jF

2

j). It follows that the

map j

~

P

n

Kj ^ j

~

P

m

Lj ! jM j fa
tors through the natural map j

~

P

n+m

M j ! jM j.

Now 
onsider a pairing K ^ L ! M of degree-wise �brant spe
tra. (i.e. we may view

K ^L as a spe
trum with no odd terms and we have a map from this to the spe
trum with

no odd-terms asso
iated to M .) The above arguments show that if n, m are two integers,

one obtains a pairing:

~

P

n

K ^

~

P

m

L!

~

P

n+m

.

These readily show that if A ^ B ! C is map of �-spa
es, and n, m are two integers, one

obtains an indu
ed pairing of �-spa
es:

�

�n

A
 �

�m

B ! �

�n+m

C and F

n

(Q

st

(A))
 F

m

(Q

st

(B))! F

n+m

(Q

st

(C)).

On taking the asso
iated graded terms of the Cartan �ltrations, one obtains (ST7).

It remains to verify the axioms (ST5) and (ST8): these are established in the following

proposition.

Proposition 1.4. (i) Let X denote a spe
trum. Let n denote an integer so that

�

i

(X)

�

=

0 for all i 6= n. Now there exists natural maps of presheaves X ! ZX[�1,

n℄ ! K(�

n

(X); n) of abelian spe
tra whi
h are weak-equivalen
es. (Here [�1, n℄ is the
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fun
torial Postnikov-trun
ation that kills the homotopy above degree n de�ned as the homo-

topy 
o�ber

~

P

n�1

(X)! SingjXj.)

(ii) If A is a gamma-spa
e so that �

i

(A) = 0 if i 6= n, there exists a natural map

A ! EM

n

(�

n

(A); n) whi
h is a stable weak-equivalen
e.

(iii) If A^B ! C is a pairing of �-spa
es, the indu
ed pairings Gr

C

(Q

st

(A))^Gr

C

(B)!

Gr

C

(C) and �

�

(A)
 �

�

(B)! �

�

(C) are 
ompatible under the map in (ii).

Proof. The existen
e of the �rst map in (i) is 
lear; that it is a weak-equivalen
e

follows from an appli
ation of the Hurewi
z theorem. Sin
e the last two are presheaves of

abelian group spe
tra, these are both of the form A = fA

n

jng, where ea
h A

n

is a simpli
ial

abelian group and one is given maps A

n

!Map(S

1

; A

n+1

) of simpli
ial abelian groups, for

all n. The above map is adjoint to a map A

n


 S

1

! A

n+1

of simpli
ial abelian groups,

where (A

n


 S

1

)

k

= �

(S

1

)

k

(A

n

)

k

. Observe that on taking the normalizations, one obtains

the map N(Z(S

1

)) 
 N(A

n

) ! N(A

n+1

) of 
hain-
omplexes. Observe that N(Z(S

1

)) is

the 
hain-
omplex with Z in degree 1 and 0 elsewhere. One may view tensoring with this


omplex as a suspension fun
tor for 
hain 
omplexes.

Using the normalization fun
tor, one may now view both ZX[�1, n℄ and

K(�

n

(X); n) as systems of 
omplexes fA

n

jng of abelian groups 
ommuting with the above

suspension. Let D denote su
h a 
hain 
omplex. Now the Cartan �ltration on D may

be identi�ed with (D:[m;1℄)

j

= Ker(d : D

j

! D

j�1

) if j = m, = D

j

if j > m and

= 0 otherwise. Moreover �

i

(D:) = ker(d : D

i

! D

i�1

)=Im(d : D

i+1

! D

i

) whi
h is a

quotient of (D:[i, 1℄=D:[i + 1, 1℄)

�

=

D:[i, i℄. It follows that the existen
e of the last map

in the lemma is 
lear when the simpli
ial abelian groups are repla
ed by their asso
iated


hain 
omplexes. We may therefore apply the denormalization fun
tor (see Appendix II,

(0.1)) �nally to obtain the required map. That it is a weak-equivalen
e is 
lear. This

proves (i). To obtain (ii) we take X in (i) to be T (A(�)). Finally apply the fun
tor � to

the map T (A(�)) ! K(�

n

(X); n) to obtain a weak-equivalen
e: A(�) ! �(T (A(�))) !

EM

n

(�

n

(X)).

Now we 
onsider (iii). Using the fun
tor T as before, we may �rst assume that X,

Y and Z are �brant 
-spe
tra and that there is a pairing X ^ Y ! Z

t

as in 1.5.2. This

indu
es a pairing Gr

C

(X)^Gr

C

(Y )! Gr

C

(Z

t

) as in 1.5.2 and also a pairings Z(Gr

C

(X)


Z

Z(Gr

C

(Y )) ! Z(Gr

C

(Z)). As in the proof of (i), the latter pairing may be interpreted as

a pairing of 
hain-
omplexes 
ommuting with the suspension 
Z(S

1

). Therefore one may

readily verify that the above pairing is 
ompatible with the natural map to GEM(�

�

(X))


GEM(�

�

(Y ))! GEM(�

�

(Z)). �

These 
omplete the veri�
ation of the axioms for the 
ase of �-spa
es.

2. The axioms for symmetri
 spe
tra

We will prove the following theorem .

Theorem 2.1. The 
ategory of symmetri
 spe
tra with the smash produ
t of symmetri


spe
tra de�nes an enri
hed stable simpli
ial model t-
ategory.

Proof. Sin
e many of the arguments are similar to that of �-spa
es we will verify

the axioms rather brie
y. We de�ne the stri
t (partial) model stru
ture as follows. A

map f : X = fX

n

jng ! Y = fY

n

jng of symmetri
 spe
tra is a stri
t 
o�bration (stri
t

weak-equivalen
e) if for ea
h n, the map f

n

: X

n

! Y

n

is a 
o-�bration (weak-equivalen
e,

respe
tively). The �brations de�ned by the right lifting property with respe
t to 
o�brations
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that are also weak-equivalen
es. This de�nes a stri
t simpli
ial model stru
ture. Now axioms

(PM1), (PM2) and (PM3) follow, while (PM4) is 
lear. In fa
t every monomorphism is a

stri
t 
o�bration.

The stable 
o�bration, stable �brations and stable weak-equivalen
es are de�ned as in

[H-S-S℄ se
tion (3.4). This de�nes the stru
ture of a simpli
ial model 
ategory on symmetri


spe
tra. It is shown in [H-S-S℄ (See Propositions (3.3.8) and (3.4.3)) that every stri
t weak-

equivalen
e is a stable weak-equivalen
e and every stable 
o�bration is a stri
t 
o�bration.

To show every stable �bration is a stri
t �bration, we will simply observe that the free-

fun
tor Fr

n

left-adjoint to the evaluation fun
tor Ev

n

, send 
o�brations (weak-equivalen
es)

of pointed spa
es to stable 
o�brations (stable weak-equivalen
es, respe
tively) of symmetri


spe
tra. We have essentially veri�ed the axioms (SM1) through (SM3.3). Observe from [H-

S-S℄ Corollary (3.4.1.3) that a degree-wise �brant symmetri
 spe
trum is stably �brant if

and only if it is an 
-spe
trum. Now we may let Q = Sing Æ j j extended to symmetri


spe
tra; (Q

st

X)

n

= 
olim

m




n+m

(QX)

m

.

The usual smash produ
t fun
tor between pointed spa
es extends to de�ne the operation


 in (SM3.4). As in the 
ase of �-spa
es, all of the axiom (SM3.4) are dire
t 
onsequen
es of

the simpli
ial model stru
tures provided by the stri
t and stable simpli
ial model stru
tures.

Sin
e this does not appear in [H-S-S℄ we will sket
h an argument to show that the stable

stru
ture on symmetri
 spe
tra is in fa
t a simpli
ial model 
ategory stru
ture. Re
all we

have de�ned stable 
o�brations to be the ones with left lifting property for all degree-wise

�brations that are also stri
t weak-equivalen
es. As in [B-F℄ p. 84 one may now see readily

that a map i : K ! L of symmetri
 spe
tra is a stable 
o�bration if and only if the maps

K

n+1

t

S

1

^K

n

S

1

^ L

n

! L

n+1

is a level 
o�bration. Now one may readily verify the axiom

denoted (SM7)(b) in [Qu℄. Let L! K denote a 
o�bration of �nite pointed simpli
ial sets

and let A! B denote a stable 
o�bration of symmetri
 spe
tra. Now we need to show that

the indu
ed map

K ^A t

L^A

L ^B ! K ^B

is a stable 
o�bration whi
h is also a stable weak-equivalen
e if the map A ! B is a stable

weak-equivalen
e. One may 
he
k the �rst assertion readily using the 
hara
terization of sta-

ble 
o�brations mentioned above. To show that the above map is a stable weak-equivalen
e,

one may 
onsider the 
ommutative diagram:

K ^A

//

id

��

K ^A t

L^A

^B

//

'

��

(B=A) ^ L

'

��
K ^A

//
K ^B

//
(B=A)K

The two rows are distinguished triangles in the sense of se
tion 1. If A ! B is a stable


o�bration whi
h is also a stable weak-equivalen
e, B=A is stably weakly-equivalent to �

and hen
e so are B=A ^ L and B=A ^K. It follows therefore that the middle map is also a

stable weak-equivalen
e. Now the axiom (SM6) and (SM7) follow readily as in the 
ase of

�-spa
es. (See [H-S-S℄ (3.3.11).)

The tensor produ
t 
 :(symmetri
 spe
tra) �(symmetri
 spe
tra) !(symmetri
 spe
-

tra) is de�ned by the symmetri
 smash produ
t over the symmetri
 sphere spe
trum de�ned

in [H-S-S℄(2.2.3). Now (M1) and (M3) are 
lear. Observe that the unit in (M3) is now the

symmetri
 sphere spe
trum. The fun
tors Q and Q

st

are straightforward adaptations of

the 
orresponding fun
tors for spe
tra. i.e. Q = Sing Æ j j extended to symmetri
 spe
tra
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and Q

st

= T

0

Æ Q where T

0

is the fun
tor 
onsidered in (4.8). To see (M2) we pro
eed

as follows. Let Fr: (pointed spa
es) !(symmetri
 spe
tra) be the fun
tor 
onsidered in

[H-S-S℄(3.4.1). Now Fr(X) is a stably 
o�brant symmetri
 spe
trum for any pointed spa
e

X. Now axiom (M2) holds if A or B is of the form Fr(X) : Fr(X) ^ � ' X 
 � where


 on the right is the tensor produ
t de�ned in [H-S-S℄(2.1.3). Clearly the latter preserves

stable weak-equivalen
es and stable 
o�brations. To 
omplete the proof of (M2) it suÆ
es

to show that the 
lass of symmetri
 spe
tra that satisfy (M2) is 
losed retra
tions and under

trans�nite 
ompositions of maps (as in [S
h℄ appendix A) that are stable 
o�brations. This

follows readily if one observes that �ltered 
olimits are in fa
t homotopy 
olimits. (See [B-K℄

p. 332.)

Next we 
onsider the axioms on the t-stru
ture. The fun
tors �

�n

are de�ned as follows.

�

�n

X =

~

P

�n

T (X), X = a symmetri
 spe
trum

To see this applies to symmetri
 spe
tra, observe that K !

~

P

n

K is a fun
tor from pointed

�brant simpli
ial sets to pointed �brant simpli
ial sets, for ea
h n � 0. Therefore, if a

(symmetri
) group �

k

a
ts on K

~

P

n

K has an indu
ed a
tion by �

k

. Now it is 
lear that

(ST1) and (ST2) are satis�ed. (The exhaustiveness and separatedness of the �ltration follows

as in 1.5 .) To see that (ST7) is also satis�ed, it suÆ
es to make the following observations.

Let X = fX

n

jn � 0g, Y = fY

n

jn � 0g and Z = fZ

p

jpg denote symmetri
 spe
tra whi
h

are degree-wise �brant and let k, l denote two �xed integers. Assume there exists a pairing

X 
 Y ! Z where 
 now denotes the tensor-produ
t of symmetri
 spe
tra as in [H-S-S℄

(2.1.3). Re
all (X
Y )

p

= ^

n+m=p

�

+

p

^

�

n

��

m

(X

n

^Y

m

) As observed above,

~

P

k+n

X

n

^

~

P

l+m

X

m

has an indu
ed a
tion by the group �

n

� �

m

and so does

~

P

k+l+n+m

(Z

n+m

) so that the

indu
ed map (as in 1.5 )

~

P

k+n

X

n

^

~

P

l+m

X

m

!

~

P

k+l+n+m

(Z

n+m

) is �

n

� �

m

-equivariant.

This shows that axiom (ST7) is satis�ed if we use the tensor produ
t of symmetri
 spe
tra

as in [H-S-S℄ (2.1.3). Re
all the smash produ
t of the symmetri
 spe
tra X and Y is de�ned

as the 
o-equalizer of the two maps X
S
Y

id
�

�!

�!

�
id

X
Y . Sin
e taking the asso
iated graded

terms of a �ltration 
ommute with respe
t to taking 
o-equalizers, we obtain (ST7).

In (ST4) we take A to be the whole 
ategory of all abelian groups. Now we de�ne, in

outline, the fun
tors EM

n

. First we 
onsider a di�erent suspension for simpli
ial abelian

groups. LetK(Z; 1) denote the simpli
ial abelian group obtained by denormalizing the 
hain


omplex Z[1℄ 
on
entrated in degree 1. Now observe that there exists a natural map from the

simpli
ial sphere to K(Z; 1), sin
e �

1

(S

1

) = Z. Moreover if A denotes a simpli
ial abelian

group, there exists natural maps S

1

^ A! K(Z; 1) ^ A! K(Z; 1) 
 A where K(Z; 1) 
 A

denotes the degree-wise tensor produ
t of the two simpli
ial abelian groups K(Z; 1) and A.

One may readily verify that K(Z; 1) 
A ' BA: we view this as the suspension fun
tor for

simpli
ial abelian groups. Starting with a simpli
ial abelian group A one now obtains the

suspension spe
trum fK(Z; 1)


n


 Ajng. We may view this as a symmetri
 spe
trum by

letting the symmetri
 group �

n

a
t on K(Z; 1)


n


 A by letting it a
t on K(Z; 1)


n

by

permuting the n-fa
tors in the tensor produ
t. So de�ned we obtain a fun
tor

Sp:(simpli
ial abelian groups ) !(symmetri
 spe
tra)

One may readily see that this fun
tor is faithful. The fun
tor EM

n

is the restri
tion of the

above fun
tor to the sub-
ategory of simpli
ial abelian groups of the formDN(�[n℄), where �

is an abelian group, �[n℄ the 
orresponding 
omplex 
on
entrated in degree n, and DN is the

denormalization fun
tor sending a 
hain-
omplex to a simpli
ial abelian group. This proves

(ST4). The fun
tor Sp ÆDN now de�nes a faithful fun
tor from the 
ategory of all 
hain
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omplexes that are trivial in negative degrees to that of symmetri
 spe
tra. One may readily

extend this fun
tor to a faithful fun
tor from the 
ategory of all unbounded 
hain-
omplexes

of abelian groups to the 
ategory of symmetri
 spe
tra - however the details are skipped.

This proves (ST3). The remaining properties, (ST5), (ST6) and (ST8) are established by

arguments very similar to those in the 
ase of �-spa
es and are therefore skipped. Appendix

I, (0.7.3) readily adapts to the 
ase of symmetri
 spe
tra to prove axiom b(ST9). �

2.1. The spe
tra of K-theory. We 
on
lude this se
tion by making some observa-

tions that the spe
tra of algebrai
 and topologi
al K-theory are in fa
t symmetri
 spe
tra.

Theorem 2.2. (Geisser-Hasselholt: see [G-H℄) Let S denote a 
ategory with 
o�brations

and weak-equivalen
es in the sense of Waldhausen (i.e. [Wald℄). Then the asso
iated K-

theory spe
trum K(S) is a symmetri
 spe
trum. If, in addition, S is also a symmetri


monoidal 
ategory with a tensor produ
t that preserves 
o�brations and weak-equivalen
es

in both arguments, the asso
iated K-theory spe
trum K(S) is an algebra in the 
ategory of

symmetri
 spe
tra (i.e. a ring obje
t so that the unit map from the sphere spe
trum is a map

of ring obje
ts).

Corollary 2.3. It follows that if X is an algebrai
 variety or a s
heme, the spe
trum

of the K-theory of ve
tor bundles on X is an algebra in the 
ategory of symmetri
 spe
tra.

If X is a suitable topologi
al spa
e, the spe
trum of topologi
al 
omplex K-theory on X is

also an algebra in the 
ategory of symmetri
 spe
tra.

2.2. Completions of symmetri
 spe
tra. Often, espe
ially in 
onsidering presheaves

of spe
tra on the �etale site of s
hemes, it will be
ome ne
essary to assume that their

presheaves of homotopy groups are all l-primary torsion, for a prime l di�erent from the

residue 
hara
teristi
s. However the 
ommon operation of smashing with a Moore-spe
trum

often does not preserve the 
ategory of ring spe
tra. Therefore, it will be ne
essary to per-

form 
ompletions in the sense of [B-K℄ or lo
alizations. The following result shows this is

possible.

Theorem 2.4. (i) Completions (and lo
alizations) at a set of primes in the sense of

[B-K℄ extend to symmetri
 spe
tra and preserve the sub-
ategory of ring spe
tra.

(ii) Moreover, if R is a symmetri
 ring spe
trum and R

l

denotes its 
ompletion at the

prime l, the fun
tor of 
ompletion at l sends the 
ategory of module spe
tra over R to the


ategory of module-spe
tra over R

l

.

(iii) If R is an E

1

ring obje
t in the 
ategory of symmetri
 spe
tra, its l-
ompletion is

also an E

1

-obje
t in the 
ategory of symmetri
 spe
tra.

Proof. (i) The �rst assertion follows from [Hirs
h℄ se
tion 3. The main observation is

that one may 
onstru
t a new model 
ategory stru
ture on the same underlying 
ategory

of symmetri
 spe
tra, where weak-equivalen
es are repla
ed by weak-equivalen
es on the l-


ompletions. The 
o�brations will be the same as in the original 
ategory and the �brations

will be de�ned by lifting property with respe
t to 
o�brations that are also weak-equivalen
es

on l-
ompletions. Sin
e the underlying 
ategory is the same as the original one, namely

the 
ategory of symmetri
 spe
tra, it follows that the 
ompletion fun
tor sends symmetri


spe
tra to symmetri
 spe
tra.

Now we 
onsider the se
ond assertion in (i). For this we need to re
all some results in

[SS℄. A

ordingly a ring obje
t in the 
ategory of symmetri
 spe
tra is an algebra over the

monad (or triple) de�ned by:
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T (K) = StK tK

^2

::: tK

^(n)

::

where ^ denotes the smash produ
t of symmetri
 spe
tra and S is the sphere spe
trum.

Now the observation that l-
ompletion has the property (A ^ B)

l

= A

l

^ B

l

shows that

T (K)

l

= S

l

tK

l

tK

^2

l

::: tK

^(n)

l

::. (The above property of the 
ompletion may be 
he
ked

using the de�nition of the smash produ
t of symmetri
 spe
tra and will ultimately redu
e to

showing the l-
ompletion 
ommutes with the smash produ
t of two pointed simpli
ial sets.)

Therefore, if R is a ring obje
t, in the 
ategory of symmetri
 spe
tra, so is its l-
ompletion.

This proves the se
ond statement in (i). (ii) may be 
he
ked easily in a similar manner.

No we 
onsider (iii). For this we pro
eed as above repla
ing the monad by the monad

T (K) = 1 tK t E�

2

�

�

2

K

^2

t ::: t �

�

n

K

^n

:::

taking into 
onsideration the a
tion of the symmetri
 group �

n

as well. An E

1

-ring obje
t

may be identi�ed with an algebra over this monad. �

3. Presheaves with values in �-spa
es, symmetri
 spe
tra

Observe that all our 
onstru
tions in the last two se
tions were fun
torial. Therefore,

they extend to presheaves on any site satisfying the basi
 hypotheses as in Chapter II. i.e.

we obtain the following theorem.

Theorem 3.1. Let S denote a site as in Chapter I. Let Presh(S) denote the 
ategory

of presheaves of �-spa
es or symmetri
 spe
tra on the site S. Then the 
ategory Presh(S)

satis�es all the axioms of Chapter I.

Remark 3.2. The 
ategory of spe
tra in the A

1

-lo
al 
ategory of simpli
ial presheaves

on the big Zariski or Nisnevi
h site of s
hemes of �nite type over a Noetherian base s
heme

(using a suitable suspension fun
tor) satis�es many of the axioms of Chapter I. See Chapter

VI for a brief dis
ussion of this.



APPENDIX B

Chain 
omplexes and simpli
ial obje
ts

Sin
e the fun
tor Sp appearing in De�nition 4.6 of Chapter I is de�ned in terms of a

homotopy inverse limit, one has to �rst repla
e this (upto weak-equivalen
e) by a suitable

homotopy dire
t limit so that it will pull out of the Hom

Sp(�

�

(E))

-fun
tor above, so that the

axiom (ST9) will be satis�ed. In an abelian 
ategory, this is 
learly feasible provided the

above homotopy inverse limit is a homotopy inverse limit of a �nite diagram; nevertheless,

for our purposes it is ne
essary to obtain the pre
ise relationship between these homotopy

inverse limits and dire
t limits and relate them to the total-
omplex-
onstru
tion. Mu
h of

the work in the �rst few se
tions are expended in this dire
tion. While the results we obtain

are probably well-known and part of the folklore, many of the details do not exist in the

literature. (See [T-1℄ (4.2.32) for a brief dis
ussion.) One may skip the details and only

read the main results, whi
h are Proposition 0.3, Lemma 0.4, 0.7 and 0.6.3. (See 0.8 for a

te
hnique that is used often in this se
tion.)

0.1. Let A denote an abelian 
ategory 
losed under all small limits and 
olimits and

where �ltered 
olimits are exa
t; a 
hain 
omplex K

�

(
o-
hain 
omplex K

�

) in A will

denote a sequen
e K

i

"A (K

i

"A) provided with maps d : K

i

! K

i�1

(d : K

i

! K

i+1

)

so that d

2

= 0. Let C

+

(A) (C

+

(A)) denote the 
ategory of 
hain 
omplexes (
o-
hain


omplexes, respe
tively) in A that are trivial in negative degrees. One de�nes denor-

malizing fun
tors: DN

�

: C

+

(A) ! (Simpli
ial obje
ts in A) and DN

�

: C

+

(A) !

(Cosimpli
ial obje
ts in A) as in [Ill℄ pp. 8-9. DN

�

will be inverse to the normalizing

fun
tor:

N : (Simpli
ial obje
ts in A) ! C

+

(A) de�ned by (NK

�

)

n

= \

i6=0

ker(d

i

: K

n

! K

n�1

)

with Æ : (NK)

n

! (NK)

n�1

being indu
ed by the map d

0

. DN

�

will be inverse to the

fun
tor N : (Cosimpli
ial obje
ts in A) ! C

+

(A) de�ned by (NK

�

)

n

= +

i6=0


oker(d

i

:

K

n

! K

n+1

) with Æ : (NK)

n

! (NK)

n+1

indu
ed by d

0

. A map f : K

0

�

! K

�

of simpli
ial

obje
ts in A will be 
alled a weak-equivalen
e if it indu
es an isomorphism on the asso
iated

homology obje
ts. To simplify our dis
ussion, we may assume that A is in fa
t the 
ategory

of all abelian groups.

0.2. The de�nition of the normalization and denormalizing fun
tors work also in more

general settings. If C is a 
ategory with a zero-obje
t with �nite limits and 
olimits one

may de�ne a 
hain 
omplex in C to be a sequen
e of obje
ts fK

i

jig in C provided with

maps K

i

d

!K

i�1

, i � 1 so that d

2

= 0. Co-
hain 
omplexes may be de�ned similarly. For


hain 
omplexes (
o-
hain 
omplexes) that are trivial in negative degrees one may de�ne

denormalizing fun
tors that produ
e simpli
ial (
osimpli
ial, respe
tively) obje
ts by the

same formulae. There are also normalizing fun
tors de�ned similarly. For us, the important


ase will be when C is the 
ategory of spe
tra. In this 
ase the results in [Re
t℄ show that

the normalizing and denormalizing fun
tors are weak-inverses.

0.3. In addition we will often view a simpli
ial obje
t K

�

(
osimpli
ial obje
t K

�

)

in A as a 
hain 
omplex (
o-
hain 
omplex, respe
tively) with the di�erential given by

135
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Æ = �

i=n

i=0

d

i

: K

n

! K

n�1

(Æ = �

i=n

i=0

d

i

: K

n�1

! K

n

, respe
tively). (Now N(K

�

) (N(K

�

))

is a sub-
omplex of the 
omplex K

�

(K

�

, respe
tively) with the above di�erential.)

Let K

��

denote a double 
hain-
omplex in A that is trivial in negative degrees. Let

TOT (K

��

) denote the total 
omplex de�ned by

(0.3.1) TOT (K

��

)

n

= �

i+j=n

K

i;j

; Æ(k

i;j

) = (Æ

1

(k

i;j

) + (�1)

i

Æ

2

(k

i;j

))

where Æ

l

denotes the di�erential in the l-th index, l = 1; 2.

Let DN

�

Æ DN

�

(K

��

) denote the double simpli
ial obje
t in A obtained by applying

the denormalizing fun
tors in both dire
tions to K

��

. Let �(DN

�

Æ DN

�

(K

��

)) denote

its diagonal; we view this as a 
hain 
omplex as above. Now the theorem of Eilenberg-

Zilber-Cartier (see [Ill℄ p.7) shows there exists a natural map (the Alexander-Whitney map)

�(DN

�

ÆDN

�

(K

��

))! TOT (K

��

) that is a weak-equivalen
e.

0.4. Relationship between homotopy 
olimits for double simpli
ial obje
ts in

an abelian 
ategory and the total 
omplex 
onstru
tion. Next assume the situation

of Chapter II se
tion 1. We will apply the above result to a double 
omplex

�

K

��

of abelian

sheaves on a site S as in Chapter II, se
tion 1 that is trivial in negative degrees. (An abelian

sheaf will denote a sheaf with values in any abelian 
ategory satisfying the hypotheses as

above; we will assume on
e again, for simpli
ity, that the abelian 
ategory is in fa
t the


ategory of all abelian groups.) The above arguments show that if DN

�

(TOT (

�

K

��

)) is the

resulting simpli
ial obje
t, one obtains a natural weak-equivalen
e (of simpli
ial obje
ts):

ho
olim

�

(DN

�

ÆDN

�

(

�

K

��

))

'

!�(DN

�

ÆDN

�

(

�

K

��

))

'

!DN

�

(TOT (

�

K

��

))

(To see that the last map is a map of simpli
ial obje
ts, observe that there is a natural

map N(�(DN

�

Æ DN

�

(

�

K

��

))) ! �(DN

�

Æ DN

�

(

�

K

��

)) of 
omplexes (where the latter is

provided with the di�erential as above) The map in the above paragraph maps the 
omplex

�(DN

�

Æ DN

�

(

�

K

��

)) to the 
omplex TOT (

�

K

��

). On applying the denormalizing fun
tor

to this, one obtains the map �(DN

�

Æ DN

�

(

�

K

��

))

�

=

DN Æ N(�(DN

�

Æ DN

�

(

�

K

��

))) !

DN(TOT (

�

K

��

)) of simpli
ial obje
ts.)

0.5. Relationship between the Tot 
onstru
tions of [B-K℄ and [Br℄ for 
osim-

pli
ial simpli
ial obje
ts in an abelian 
ategory with the total 
omplex. (See

Proposition 0.3 and Lemma 0.4 for the �nal result.) Next let

�

K

�

�

�

�

�

�

denote a double 
omplex

in A that is trivial in negative degrees and where the di�erentials in the �rst (se
ond) index

are of degree 1 (�1, respe
tively). We will say

�

K

�

: is bounded if

�

K

i

j

= 0 for all but �nitely

many indi
es i and j. We will let TOT (

�

K

�

�

) be the total 
omplex with di�erentials of degree

�1 and de�ned by

(0.5.1) (TOT (

�

K

�

�

))

n

= �

p

�

K

p

p+n

and with di�erentials de�ned by d(k

p

p+n

) = (d

1

(k

p

p+n

) + (�1)

p

d

2

(k

p+1

p+n+1

)). This is a 
hain


omplex and is trivial in negative degrees if

�

K

i

j

= 0 for all i > j. Let DN

�

ÆDN

�

(

�

K

�

�

) denote

the 
osimpli
ial simpli
ial obje
t in A obtained by applying the denormalizing fun
tors to

�

K

�

�

. We may view this as a double 
omplex with di�erentials:

Æ

1

: (DN

�

ÆDN

�

(

�

K

�

�

))

p

q

! (DN

�

ÆDN

�

(

�

K

�

�

))

p+1

q

given by Æ

1

= �

i=p+1

i=0

(�1)

i

d

i

(Æ

2

: (DN

�

ÆDN

�

(

�

K

�

�

))

p

q

! (DN

�

ÆDN

�

(

�

K

�

�

))

p

q�1

given by Æ

2

= �

i=q

i=0

(�1)

i

d

i

, respe
-

tively)
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Let TOT

1

(DN

�

ÆDN

�

(

�

K

�

�

)) denote the 
hain 
omplex de�ned by

TOT

1

(DN

�

ÆDN

�

(

�

K

�

�

))

n

= �

p

(DN

�

ÆDN

�

(

�

K

�

�

))

p

p+n

with the di�erential de�ned by Æ(k

p

p+n

) = Æ

1

(k

p

p+n

) + (�1)

p

Æ

2

(k

p+1

p+n+1

). The de�nition of

the denormalizing fun
tors provides a natural map

� : TOT (

�

K

�

�

)! TOT

1

(DN

�

ÆDN

�

(

�

K

�

�

)) of 
hain 
omplexes

One may verify that there are spe
tral sequen
es

(0.5.2) E

s;t

1

(1) = H

t

(

�

K

s

)) H

s+t

(TOT (

�

K

�

�

)) and

(0.5.3) E

s;t

1

(2) = H

t

((DN

�

ÆDN

�

(

�

K

�

�

))

s

)) H

s+t

(TOT

1

(DN

�

ÆDN

�

(

�

K

�

�

)))

whi
h 
onverge strongly if

�

K

�

�

is bounded as assumed. The map �, being natural, indu
es

a map of these spe
tral sequen
es whi
h is 
learly an isomorphism at the E

2

-terms sin
e

E

s;t

2

(1) = E

s;t

2

(2) = H

s

( the 
o-
hain 
omplex n: ! H

t

(

�

K

n

:)). It follows that � indu
es a

weak-equivalen
e if

�

K

�

�

is bounded in the �rst or se
ond index.

Let Tot

1

(DN

�

ÆDN

�

(

�

K

�

�

)) denote the 
hain 
omplex de�ned by

Tot

1

(DN

�

ÆDN

�

(

�

K

�

�

))

n

= f(k

p

p+n

)"�

p

(DN

�

ÆDN

�

(

�

K

�

�

))

p

p+n

j

d

i

(k

p�1

p+n�1

) = d

p�i

(k

p

p+n

); s

i

(k

p+1

p+n+1

) = s

p�i

(k

p

p+n

), 0 � i � pg

and where Æ : Tot

1

(DN

�

ÆDN

�

(

�

K

�

�

))

n

! Tot

1

(DN

�

ÆDN

�

(

�

K

�

�

))

n�1

is given by Æ((k

p

p+n

)) =

�

i=n�1

i=0

(�1)

i

d

i+p+1

(k

p

p+n

). One readily veri�es that the map sending a tuple (k

p

p+n

)"Tot

1

(DN

�

Æ

DN

�

(

�

K

�

�

)) to the same tuple (k

p

p+n

)"TOT

1

(DN

�

ÆDN

�

(

�

K

�

�

)) de�nes a map of 
hain 
om-

plexes. We will denote this map by 	. We may view Tot

1

(DN

�

Æ DN

�

(

�

K

�

:)) also as a

presheaf of pointed simpli
ial obje
ts where the fa
e maps d

i

: Tot

1

(DN

�

ÆDN

�

(

�

K

�

�

))

n

!

Tot

1

(DN

�

Æ DN

�

(

�

K

�

�

))

n�1

is given by d

i

((k

p

p+n

)) = (d

i+p+1

(k

p

p+n

)) for all i � n � 1 and

d

n

= � (for non-degenerate simpli
es). The degenera
ies are de�ned similarly. One may

also view Tot

1

(DN

�

ÆDN

�

(

�

K

�

�

)) as a presheaf of simpli
ial spe
tra um-obje
t in the sense

of Kan by letting the higher d

i

and s

i

be the trivial maps. (Re
all that a spe
trum S:

in the sense of Kan (see [Kan℄) is given by a sequen
e fS

(q)

jqg of pointed sets along-with

stru
ture maps d

i

: S

(q)

! S

(q�1)

, s

i

: S

(q�1)

! S

(q)

de�ned for all i and satisfying the usual

relations. It is also assumed that for ea
h s"S

(q)

all but �nitely many d

i

(s) are di�erent

from �. Clearly one may view any pointed simpli
ial set as a spe
trum in the sense of Kan;

this will 
orrespond to the suspension spe
trum of the original simpli
ial set. Observe that

Kan's de�nitions apply to any pointed 
ategory; su
h an obje
t in a pointed 
ategory will

be referred to as a spe
trum obje
t in the sense of [Kan℄.)

One may de�ne a �ltration of Tot

1

by Tot

m

1

whi
h is de�ned in a manner similar to Tot

1

,

ex
ept that one 
onsiders only those (k

p

p+n

) with p � m. Sin
eDN

�

ÆDN

�

(K

�

:) is a 
osimpli-


ial obje
t of presheaves of simpli
ial abelian groups, the stalks are �brant 
osimpli
ial obje
ts

by [B-K℄ p. 276 and hen
e the map Tot

m

1

(DN

�

ÆDN

�

(

�

K

�

�

))! Tot

m�1

1

(DN

�

ÆDN

�

(K

�

�

)) is

a �bration at ea
h stalk (see [Br℄ p. 457). The presheaf of homotopy groups of the �ber of

the map may now be identi�ed with degree-k terms of the normalization of the 
osimpli
ial

abelian presheaf p! �

�

(DN

�

ÆDN

�

(

�

K

p

:)). It follows that, one obtains a spe
tral sequen
e:

E

s;t

2

= H

s

(the 
o-
hain 
omplex n! H

t

(

�

K

n

:))

) �

�s+t

(Tot

1

(DN

�

ÆDN

�

(

�

K

�

�

))

�

=

H

s�t

(DN

�

ÆDN

�

(

�

K

�

�

))
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The map 	 indu
es a map of the above spe
tral sequen
e to the se
ond spe
tral sequen
e

in 4.0.5 and this is an isomorphism at the E

2

-terms. If

�

K

�

: is bounded, both spe
tral

sequen
es 
onverge strongly and therefore the map 	 indu
es a weak-equivalen
e Tot

1

(DN

�

Æ

DN

�

(

�

K

�

�

))! TOT

1

(DN

�

ÆDN

�

(

�

K

�

�

))

Next re
all that if A and B are two pointed simpli
ial sets, one may de�ne their join

A � B (see [K-W℄ p. 242) to be the simpli
ial set given by: (A � B)

n+1

=

W

i+j=n

A

i

^ B

j

,

d

i

(a ^ b) = d

p�i

(a) ^ b if a"A

p

, 0 � i � p, d

i

(a ^ b) = a ^ d

i�p�1

(y), if a"A

p

, i > p and

s

i

(a ^ b) = s

i�p

(a) ^ b if a"A

p

, 0 � i � p, s

i

(a ^ b) = a ^ s

i�p�1

(y), if a"A

p

, i > p. One

obtains a homeomorphism of jA�Bj with �(jA^Bj), where A^B = (A�B)=(��B[A��)

and suspension is simply smash produ
t with S

1

: One may now de�ne 
(A �B): denote the

simpli
ial set given by (
(A � B))

n

= fx"(A � B)

n+1

jd

n

(x) = �g and where the fa
e maps

d

i

: (
(A � B))

n

(
(A � B))

n�1

and the degenera
ies s

i

: (
(A � B))

n�1

! (
(A � B))

n

,

0 � i � n� 1, are the restri
tions of the 
orresponding maps of A �B. It follows that if one

views A �B and A^B as the asso
iated simpli
ial spe
tra in the sense of Kan, one obtains

a natural weak-equivalen
e

: A ^B with 
(A �B).

(To see this more 
learly one needs to use a di�erent suspension S for a simpli
ial set T

whi
h performs an upward shift. Now jST j

�

=

�(jT j) - we skip the remaining details.)

Let

�

L

�

�

denote a 
osimpli
ial simpli
ial obje
t of abelian sheaves on S. We will view

this as a 
osimpli
ial obje
t of presheaves of abelian spe
tra in the sense of Kan on the site

S. For ea
h integer m, let �[m℄ denote the 
onstant presheaf with stalks isomorphi
 to the

simpli
ial set �[m℄; we will view this also as a presheaf of spe
tra in the sense of Kan in the

obvious manner. Now we let

Tot

2

(

�

L

�

�

)

n

= Hom(
(�[�℄

+

��[n℄

+

), G

�

L

�

�

)

where

�

L

�

�

is viewed as a 
osimpli
ial obje
t of presheaves of spe
tra in the sense of Kan and

the Hom is in the 
ategory of 
osimpli
ial obje
ts. Let Tot

m

2

(

�

L

�

�

)

n

= Hom(
(sk

k

(�[�℄)

+

�

�[n℄

+

), G

�

L

�

�

). Sin
e

�

L

�

: is a 
osimpli
ial obje
t of simpli
ial abelian groups, the stalks are

�brant as 
osimpli
ial spa
es (see [B-K℄ p. 276) and therefore the obvious maps Tot

m

2

(

�

L

�

�

)!

Tot

m�1

2

(

�

L

�

�

) are �brations. Tot

2

(

�

L

�

�

) is the inverse limit of this tower of �brations. To see

the relationship of this with the stable Tot of Bouse�eld-Kan, one may pro
eed as follows.

Re
all Tot(

�

L

�

�

)

n

= Hom(�[:℄+^�[n℄, G

�

L

�

�

) and Tot

m

(

�

L

�

�

)

n

= Hom(sk

m

(�[�℄

+

)^ (�[n℄

+

),

G

�

L

�

�

). Now Tot(

�

L

�

�

) is the homotopy inverse limit of the tower Tot

m

(

�

L

�

�

) ! Tot

m�1

(

�

L

�

�

).

One uses the natural weak-equivalen
es 
(sk

m

(�[p℄)

+

��[n℄

+

) ' sk

m

(�[p℄)

+

^�[n℄

+

, for

allm, to obtain a map of the 
orresponding homotopy inverse limit spe
tral sequen
es. As in

[B-K℄ pp. 281-283, one may identify the E

1

-terms of both the above spe
tral sequen
es with

the normalization of the 
osimpli
ial abelian presheaf p! �

�

(

�

L

p

�

). If

�

L

�

�

= DN

�

ÆDN

�

(

�

K

�

�

)

where

�

K

�

�

denotes a bounded double 
omplex of abelian sheaves onS, both spe
tral sequen
es


onverge strongly; sin
e we 
learly obtain an isomorphism at the E

1

-terms, it follows that

one now obtains a weak-equivalen
e

Tot

2

(DN

�

ÆDN

�

(

�

K

�

�

)) ' Tot(DN

�

ÆDN

�

(

�

K

�

�

)

Let

�

K

�

�

denote a bounded double 
omplex of abelian sheaves on S. Now one obtains a

natural map

Tot

2

(DN

�

ÆDN

�

(

�

K

�

�

))! Tot

1

(DN

�

ÆDN

�

(

�

K

�

�

))
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of presheaves of spe
tra by sending a map: 
(�[p℄

+

��[n℄

+

) ! DN

�

ÆDN

�

(

�

K

�

�

)

p

to the

p + n simplex whi
h is the image of the p + n simplex i

p

^ i

n

"(�[p℄

+

)

p

^ (�[n℄

+

)

n

where

i

p

(i

n

) generates �[p℄ (�[n℄, respe
tively). We have de�ned Tot

1

in su
h a manner so that

the image of the p + n-simplex i

p

^ i

n

satis�es the 
onditions in 0.5 de�ning Tot

1

. Re
all

from 4.0.5 the Bouse�eld-Kan type spe
tral sequen
e for Tot

1

whose E � 2-terms are given

by E

s;t

2

= H

s

( the 
o-
hain 
omplex n! H

t

(

�

K

n

:)). If the double 
omplex

�

K

�

�

is bounded as

in 0.5, it is 
lear that the above spe
tral sequen
e will 
onverge strongly. The 
onstru
tion

of the usual Bouse�eld-Kan spe
tral sequen
e readily applies to provide a spe
tral sequen
e

that 
onverges to the homotopy groups of Tot

2

; the E

2

-terms of this spe
tral sequen
e will

be also given by the same des
ription as above. The map in 0.5 indu
es a map of these

spe
tral sequen
es thereby showing that it is a weak-equivalen
e provided

�

K

�

�

is bounded.

Now we summarize our results in the following proposition.

Proposition 0.3. Let

�

K

�

�

denote a double 
omplex of abelian sheaves on S that is

trivial in negative degrees and where the di�erentials in the �rst (se
ond) index are of degree

1 (�1, respe
tively). Assume further that

�

K

i

j

= 0 if i > j and that

�

K

�

�

is bounded i.e.

�

K

i

j

= 0 for all but �nitely many indi
es i and j.

Now one obtains the following weak-equivalen
es of presheaves of simpli
ial abelian

groups (natural in

�

K

�

�

):

DN

�

(TOT (

�

K

�

�

)) ' DN

�

(TOT

1

(DN

�

ÆDN

�

(

�

K

�

�

))) ' Tot

1

(DN

�

ÆDN

�

(

�

K

�

�

))

' Tot

2

(DN

�

ÆDN

�

(

�

K

�

�

)) ' Tot(DN

�

ÆDN

�

(

�

K

�

:))

where the last Tot is the stable Bouse�eld-Kan Tot-fun
tor and the others are the ones

de�ned above.

Proof. The arguments above 
learly prove the assertion. �

0.5.4. Let

�

K

��

denote a double 
omplex of abelian sheaves on S so that the following


onditions are satis�ed. There exists a large positive integer m so that

�

K

i;j

= 0 if j < m� i

or i < 0 or j < 0. Let f

�

K

i

j

ji; jg denote the double 
omplex so that

�

K

i

j

=

�

K

m�i;j

. The

di�erentials in the �rst index are now of degree +1 while those in the se
ond index are

of degree �1. Let TOT (

�

K

��

) (TOT (

~

K

�

�

))) denote the 
hain 
omplex de�ned as in 0.3.1

( 0.5.1, respe
tively). (The assumptions on

�

K

��

ensure that TOT (

�

K

��

)

n

= 0 if n < m and

TOT (

~

K

�

�

)

n

= 0 if n < 0. Now DN

�

Æ DN

�

(

~

K

��

) is a 
osimpli
ial simpli
ial obje
t and

DN

�

ÆDN

�

(

�

K

��

)) is a double simpli
ial obje
t of abelian sheaves on the given site.

Lemma 0.4. Assume the above situation. Now one obtains a natural weak-equivalen
e:

�

m

Tot(DN

�

ÆDN

�

(

~

K

�

�

)) ' ho
olim

�

DN

�

ÆDN

�

(

�

K

��

)

Proof. Let DN

�

(TOT (

�

K

��

)) and DN

�

(TOT (

~

K

�

�

)) denote the obvious simpli
ial ob-

je
ts. Now the left-hand side is weakly-equivalent to �

m

DN

�

(TOT (

~

K

�

�

)) (see 4.0.5) while

the right-hand side is weakly equivalent to DN

�

TOT (

�

K

��

). (See 0.5.1.) It is 
lear that

the 
omplex TOT (

�

K

��

) is the 
omplex TOT (

~

K

�

�

) shifted up m-times. Now 0.7 shows

�

m

DN

�

(TOT (

~

K

�

�

)) ' DN

�

(TOT (

�

K

��

)). �

0.6. The fun
tor Sp for presheaves of spe
tra. In the rest of this se
tion, we

will show that one may de�ne a fun
tor Sp on bounded below 
omplexes of sheaves of

abelian groups taking values in the 
ategory of presheaves of spe
tra and satisfying the

hypotheses as in Chapter I. A

ordingly Presh will denote the 
ategory of presheaves of
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spe
tra (i.e. simpli
ial spe
tra as in [B-F℄) on a site S satisfying the hypotheses of Chapter

I, se
tion 1. We may identify the 
ohomologi
al fun
tor H

�

as in Chapter I with the

fun
tor P 7! �

��

(P ), where the latter is the presheaf of stable homotopy groups. Let

�

M

�

denote a 
o-
hain 
omplex of abelian sheaves on S and let m >> 0 be an integer so

that

�

M

i

= 0 if i < 0 or if i > m. Let l denote an integer > m. For ea
h integer n � 0,

let K(

�

M

n

; l) denote the presheaf of Eilenberg-Ma
lane spa
es so that �

i

(K(

�

M

n

; l))

e

�

=

�

M

n

if i = l and

�

=

0 otherwise. Now

~

K

�

�

= fN

�

(K(

�

M

n

, l))jng is a double 
omplex with

di�erentials in the �rst (se
ond) index of degree +1 (�1, respe
tively). Let

�

K

��

denote the

double 
hain-
omplex de�ned by

�

K

i;j

=

~

K

m�i

j

. Now

~

K

�

�

and

�

K

��

are 
omplexes that satisfy

the hypotheses of 0.3 (sin
e N(K(

�

M

n

, l))

i

= 0 if i < l and for all n). Moreover observe that

DN

�

(

~

K

�

�

) = DN

�

ÆN(K(

�

M

�

; l))

�

=

K(

�

M

�

; l). Therefore one obtains the weak-equivalen
e:

�

m

Tot(DN

�

K(

�

M

�

; l)) ' ho
olim

�

DN

�

ÆDN

�

(

�

K

��

)

Next observe the following. Let

�

M denote an abelian sheaf on the site S and let i

denote an integer. Let l denote any �xed integer. One may de�ne the presheaf of Eilenberg-

Ma
lane spe
tra




Sp(K(M; i)) be given by the sequen
e of presheaves of Eilenberg-Ma
lane

spa
es de�ned by

(




Sp(K(

�

M; i)))

j

:= �; j < l � i(0.6.1)

:= K(M; j + i); j � l � i(0.6.2)

One may observe readily that




Sp(K(M; i)) = EM

i

(M), where EM

i

is the fun
tor

de�ned in Appendix B for presheaves of symmetri
 spe
tra. Therefore, the present dis
ussion

applies equally well to presheaves of symmetri
 spe
tra.

Let E denote a ring obje
t in the 
ategory of symmetri
 spe
tra; we will also denote by

E the obvious 
onstant presheaf asso
iated to E. Let

�

M

�

= �

i

�

M

�

(i)"D

b

(Mod

r

(S;�

�

(E))).

Assume that

�

M

n

= 0 if n > m or if n < 0 and that l > m. We let




Sp(

�

M

�

)) =

�

i




Sp(K(

�

M

�

(i); i)). Now observe that for ea
h �xed n, ea
h presheaf of spa
es forming

the presheaf of spe
tra




Sp(K(

�

M

n

(i); i))

j

is given by K(

�

M

n

(i); j + i), if j � l � i and = �

otherwise. Therefore the hypotheses of 0.6 are satis�ed with l repla
ed by j + i and one

obtains:

�

m

TotDN

�

(K(

�

M

�

(i); j + i)) ' ho
olim

�

DN

�

ÆDN

�

(

�

K

��

(j))

where

�

K

��

(j) is the double 
hain 
omplex de�ned by (

�

K

��

(j))

s;t

= N

�

(K(

�

M

�

(i); j+i))

m�s

t

=

N

�

(K(

�

M

m�s

(i); j + i))

t

. Observe that inner denormalizing fun
tor DN

�

is inverse to

the fun
tor N

�

that produ
es N

�

(K(

�

M

m�s

(i); j + i)) from the simpli
ial abelian sheaf

K(

�

M

m�s

(i); j + i). (We will use the se
ond subs
ript of

�

K

��

(j) to denote this dire
tion.)

Therefore, if K(

�

M

�

(i); j + i)[m

h

℄ is the 
hain-
omplex of presheaves of Eilenberg-Ma
lane

spa
es de�ned by

(K(

�

M

�

(i); j + i)[m

h

℄)

s

= K(

�

M

m�s

(i); j + i)

and with the obvious di�erential indu
ed by that of

�

M

�

(i) and DN

�

denotes denormalizing

along the se
ond dire
tion, one obtains:

DN

�

(

�

K

��

(j)) = K(

�

M

�

(i); j + i)[m

h

℄
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Thus, for all j, we obtain the weak-equivalen
es:

�

m

TotDN

�

(K(

�

M

�

(i); j + i)) ' ho
olim

�

DN

�

(K(

�

M

�

(i); j + i)[m

h

℄)

Re
all that




Sp(K(

�

M

�

(i); i)) = fK(

�

M

�

(i); j + i)jj � l � ig and




Sp(K(

�

M

�

(i); i)[m

h

℄)

= fK(

�

M

�

(i); j + i)[m

h

℄jj � l � ig. Sin
e the se
ond equality of 0.6 holds for all j � l � i,

we obtain:

�

m

TotDN

�

(




SpK(

�

M

�

(i); i)) ' ho
olim

�

DN

�

(




SpK(

�

M

�

(i); i)[m

h

℄)

for all i. (The 
hain-
omplex K(

�

M(i); i)[m

h

℄ is de�ned as above.) Now

�

m

TotDN

�




Sp(

�

M

�

) ' �

i

�

m

TotDN

�

(




Sp(K(

�

M

�

(i); i)))

' �

i

ho
olim

�

DN

�




Sp(K(

�

M

�

(i); i)[m

h

℄)

Now one observes that for ea
h �xed integer k there are only �nitely many terms in the

above produ
t with nontrivial homotopy groups in degree k. (To see this, �rst observe that

by the hypotheses,

�

M

�

has bounded 
ohomology; therefore if one 
onsiders the spe
tral

sequen
e:

E

2

s;t

= H

s

(�

t

(DN

�




Sp(K(

�

M

�

(i); i)[m

h

℄))

e

)

) �

s+t

(ho
olim

�

DN

�




Sp(K(

�

M

�

(i); i)[m

h

℄))

e

there exists a uniform bound m (independent of i) so that E

2

s;t

= 0 if s > m, s < 0

or if t 6= i. It follows that �

k

(ho
olim

�

DN

�




Sp(K(

�

M

�

(i); i)[m

h

℄))

e

= 0 unless i � k �

i +m.) Therefore the produ
t in the last term above may be repla
ed by a

W

i

; now su
h

a

W

i


ommutes with homotopy 
olimits and with the denormalizing fun
tor for simpli
ial

obje
ts (whi
h also involve only sums). Therefore the last term above may be repla
ed by

ho
olim

�

DN

�

�

i




Sp(K(

�

M

�

(i); i)[m

h

℄) ' ho
olim

�

DN

�




Sp(

�

M

�

[m

h

℄). (Here

�

M

�

[m

h

℄ is the 
hain


omplex in Mod

r

(S; �

�

(E)) given by (

�

M

�

[m

h

℄)

s

=

�

M

m�s

and




Sp is applied degree-wise to

this 
omplex to produ
e a 
hain 
omplex in Mod(S;

b

Sp(�

�

(E))).) Re
alling the de�nition

of the fun
tor Sp from Chapter I, we now obtain a weak-equivalen
e:

(0.6.3) �

m

Sp(

�

M

�

) = �

m

TotDN

�

(




SpK(

�

M

�

)) ' ho
olim

�

DN

�




Sp(

�

M [m

h

℄)

for any

�

M

�

"D

b

(Mod

r

(S;�

�

(E))) so that M

n

= 0 if n < 0 or if n > m.

Shifts of 
omplexes and suspension. We 
on
lude the paper with a dis
ussion on

shifts of 
omplexes and how they relate to suspensions (loopings) of the asso
iated simpli
ial

and 
osimpli
ial obje
ts. For this, we will assume the 
ontext of Chapter III, 1.2.

If S and T are both pointed simpli
ial sets (or simpli
ial presheaves), one de�nes S 
T

to be the pointed simpli
ial obje
t de�ned by (S
T )

n

=

W

S

n

��

T

n

with the base points of all

T

n

identi�ed with the 
ommon base point and with the obvious stru
ture maps indu
ed from
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those of S and T . If S is a pointed simpli
ial set and T is a simpli
ial obje
t in an abelian


ategory A, S 
 T will denote the simpli
ial obje
t in A de�ned by (S 
 T )

n

= �

S

n

��

T

n

with the base points of all T

n

identi�ed with the 
ommon base point and with the obvious

stru
ture maps indu
ed from those of S and T . If S and T are both simpli
ial obje
ts in A,

S 
 T will denote the simpli
ial obje
t in A that is the diagonal of the bisimpli
ial obje
t

fS

n


 T

m

jn;m � 0g of A, where 
 has the usual meaning. Given a pointed simpli
ial set

S and a pointed simpli
ial presheaf P , S ^ P denotes the simpli
ial presheaf de�ned by

�(U; S ^ P ) = S ^ �(U; P ), U in the given site.

0.7. Shifts for 
hain 
omplexes. If S

1

denotes the simpli
ial sphere as above, one

�rst observes the isomorphism Z(S

1

)

�

=

DN

�

(Z[1℄

�

), where Z(S

1

) is the free abelian group

fun
tor applied to the pointed simpli
ial set S

1

, Z[1℄

�

denotes the 
hain-
omplex that is

trivial in all degrees ex
ept 1 and where it is Z and DN

�

is the denormalizing fun
tor

applied to this 
hain 
omplex. Next let K

�

denote a 
hain 
omplex of abelian sheaves on

the site S that is trivial in negative degrees. Now one obtains the isomorphisms:

DN

�

(K

�

[1℄)

�

=

DN

�

(Z[1℄) 
DN

�

(K

�

)

�

=

Z(S

1

)
DN

�

(K

�

)

�

=

S

1


DN

�

(K

�

)

Moreover there is a natural map S

1

^DN

�

(K

�

)! S

1


DN

�

(K

�

) of simpli
ial obje
ts. This

is a weak-equivalen
e.

Let A denote an algebra in Presh and let Let

�

M: = �

i

�

M:(i)"Mod

r

(S;H

�

(A)); now




Sp(

�

M:) = �

i

Sp(

�

M:(i), i) is a 
hain-
omplex in Mod(S; Sp(H

�

(E))). In this 
ase the map

above indu
es a map S

1

^ DN

�

(Sp(

�

M:)) ! S

1


 DN

�

(Sp(

�

M:)) of simpli
ial obje
ts in

Mod(S; Sp(H

�

(A))). One may readily show this indu
es a weak-equivalen
e on taking the

homotopy 
olimits of the 
orresponding simpli
ial obje
ts inMod(S; Sp(H

�

(A))) Combining

this with the earlier isomorphisms, we obtain a weak-equivalen
e :

ho
olim

�

DN

�

(Sp(

�

M

�

[1℄)) ' S

1

^ ho
olim

�

DN

�

(Sp(

�

M

�

))

Shifts for 
o-
hain 
omplexes. Let �[n℄

+

denote the obvious 
onstant presheaf on the

site S as before. If S is a pointed simpli
ial set, re
all that S
�[n℄

+

is the pointed simpli
ial

set given by:

(S 
�[n℄

+

)

p

=

W

S

p

��

(�[n℄

+

)

p

and with the obvious stru
ture maps. Let P denote a presheaf of pointed simpli
ial sets on

the siteS. Now we will letMap(S, P ) denote the presheaf of pointed simpli
ial sets denoted

P

S

in Chapter I, (M4.1). If S is a pointed set viewed as a 
onstant pointed simpli
ial set,

one may observe the natural isomorphisms:

Map(S, P ) = �

S

(P ).

Next let S denote a pointed simpli
ial set. Let P

�

denote a 
osimpli
ial obje
t of

presheaves of pointed simpli
ial sets. Let (P

�

)

S

denote the 
osimpli
ial presheaf given in


osimpli
ial degree n by (P

n

)

S

n

where the last term has the meaning as above when S

n

is viewed as a 
onstant simpli
ial set. The stru
ture maps are the obvious indu
ed maps.

This is the diagonal of a double 
osimpli
ial obje
t given in degrees m and n byMap(S

m

,

P

n

) when ea
h S

m

is viewed as a 
onstant simpli
ial obje
t. Thus holim

�

�(Map(S, P

�

)) =

holim

�

(P

�

S

) whereMap(S, P

�

) denotes the double 
osimpli
ial obje
t 
onsidered above. Let

the �rst (se
ond) 
osimpli
ial indi
es for this double 
osimpli
ial obje
t be in the dire
tion
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of S (the 
osimpli
ial dire
tion of P

�

, respe
tively). If

i

holim

�

denotes the holim

�

in the �rst

(se
ond) dire
tion if i = 1 (i = 2, respe
tively). Now one obtains the following 
hain of

natural maps that are weak-equivalen
es:

Map(S, holim

�

(P

�

))

'

!

2

holim

�

Map(�(S), P

�

)

'

!

2

holim

�

Æ

1

holim

�

Map(S, P

�

)

Moreover the latter maps naturally to holim

�

((P

�

)

S

) by a weak-equivalen
e.

Examples 0.5. (i) Let S = �[1℄

+

. Now we obtain the natural weak-equivalen
e:

Tot((P

�

)

S

)

'

 Map(�[1℄

+

, Tot(P

�

))

(ii) Let S = (�[1℄=

Æ

�[1℄) = the 1-dimensional simpli
ial sphere S

1

. Now we obtain the

natural weak-equivalen
e: Tot((P

�

)

S

1

)

'

 Map(S

1

; T ot(P

�

)).

LetA denote an algebra in Presh and letK

�

denote a 
hain 
omplex either inMod

r

(S;H

�

(A))

or in �

n

Mod

r

(S;A)

�n�

f

(the latter as in Chapter I, (ST4)) that is trivial in negative degrees

as above. LetDN

�

(K

�

) denote the asso
iated simpli
ial obje
t. We will view this as a 
osim-

pli
ial simpli
ial obje
t 
onstant in the 
osimpli
ial dire
tion. LetK

�

�

[�1

v

℄ denote the double


omplex (K[�1

v

℄)

1

j

= K

j

and (K[1

v

℄)

i

j

= 0 for all j and all i 6= 1. One may now readily ob-

serve the isomorphism of 
osimpli
ial obje
ts : DN

�

ÆDN

�

(K[�1

v

℄)

�

=

(DN

�

ÆDN

�

(K

�

))

S

1

where the term DN

�

Æ DN(K

�

)) is the simpli
ial obje
t DN

�

(K

�

) viewed as a 
onstant


osimpli
ial simpli
ial obje
t in the obvious manner.

Now we 
onsider the more general 
ase where

~

K

�

�

is a double 
hain 
omplex inMod

r

(S;H

�

(A))

that is trivial in negative degrees and where the di�erentials in the �rst (se
ond) index are of

degree +1 (�1, respe
tively). We may view the 
omplex

~

K

�

�

as sitting in the �rst quadrant

with the 
osimpli
ial (simpli
ial) dire
tion along the x (y-axis, respe
tively). For ea
h �xed

n, let

~

K

n

[�1

z

℄ denote the 
hain 
omplex K

n

shifted up one-step in the dire
tion of the pos-

itive z-axis. (As n varies, we now obtain a triple 
omplex, trivial everywhere ex
ept in the

plane z = 1.) Now observe the isomorphism (from the previous paragraph), for ea
h �xed

n: DN

�

Æ DN

�

(

~

K

n

�

)

S

1

�

=

DN

�

Æ DN

�

(

~

K

n

�

[�1

z

℄). (Here the 
osimpli
ial-denormalization

is along the z-axis.) Now we denormalize in the x-dire
tion to get a double 
osimpli
ial

simpli
ial obje
t: DN

�

ÆDN

�

ÆDN

�

(

~

K

�

)

S

1

.

Let

~

K[�1

v

℄ denote the double 
omplex given by (

~

K[�1

v

℄)

i

j

=

~

K

i�1

j

if i � 1 and

(

~

K[�1

v

℄)

0

j

= 0 for all j. Let DN

�

Æ DN

�

(

~

K[�1

v

℄) denote the 
orresponding 
osimpli-


ial simpli
ial obje
t. Now one may show readily that there is natural map �DN

�

ÆDN

�

Æ

DN

�

(

~

K

�

�

)

S

1

! DN

�

ÆDN

�

(

~

K[�1

v

℄) of 
osimpli
ial simpli
ial obje
ts that indu
es a weak-

equivalen
e on applying holim

�

s. (To see this simply observe that the total 
omplex in the

x; z-dire
tions of the triple 
omplex f

~

K

n

[�1

z

℄

�

jngmaps into the double 
omplex

~

K

�

bullet

[�1

v

℄

and that this is a weak-equivalen
e on taking the total 
omplexes.) Therefore one obtains

the following natural maps that are weak-equivalen
es:

holim

�

(DN

�

ÆDN

�

(

~

K[�1

v

℄))

'

 holim

�

(�DN

�

ÆDN

�

DN

�

(

~

K

�

)

S

1

)

'

 Map(S

1

, holim

�

(DN

�

ÆDN

�

(

~

K

�

�

))).

the last ' follows from the se
ond example above.
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Next observe from Chapter I, Remark 3.2 that Map(S

1

, holim

�

(DN

�

Æ DN

�

(

~

K

�

�

))) '


holim

�

(DN

�

ÆDN

�

(

~

K

�

�

)) where 
 is used in the sense of Chapter I, De�nition 2.3.

Convention. In view of the above, shifting a 
hain-
omplex K

�

to the right k times

will be denoted K

�

[k℄; for a 
o-
hain 
omplex K

�

, the 
orresponding shift will be denoted

K

�

[�k℄.

Finally we return to the setting of presheaves of spe
tra as in 0.6.3. Let

�

M

�

= �

i

�

M

�

(i)

denote a bounded 
o-
hain 
omplex in Mod

r

(S; �

�

(E)) that is trivial in negative degrees.

Let l > 0 be su
h that

�

M

k

= 0 if k � l. Now, as in the dis
ussion pre
eding 0.6,

b

Sp(K(

�

M

n

(i); i)) is the presheaf of spe
tra given by

b

Sp(K(

�

M

n

(i); i))

j

= K(

�

M

n

(i), j + i), if

j � l � i and = � otherwise. For ea
h j,

~

K

�

�

(j;

�

M

�

) = N

�

K(

�

M

�

(i); j + i) is now a double


omplex satisfying the hypotheses on

~

K

�

�

as above. Moreover if

�

M

�

[�1℄ is the 
o-
hain


omplex given by (

�

M

�

[�1℄)

i

=

�

M

i�1

, one may observe the isomorphism (using the notation

from above):

~

K

�

�

(j;

�

M

�

[�1℄) =

~

K

�

�

(j;

�

M

�

)[�1

v

℄, for ea
h j.

Therefore, 0.7 provides the weak-equivalen
e:

Tot(DN

�




Sp(K(

�

M

�

[�1℄(i); i))

j

) 'Map(S

1

; T ot(DN

�

(K(




Sp(

�

M

�

(i); i))

j

))), for all j.

It follows that

Sp(

�

M

�

[�1℄)) = �

i

Tot(DN

�

K(




Sp(

�

M

�

[�1℄(i); i)))

' �

i


Tot(DN

�

K(




Sp(

�

M

�

(i); i))) = 
Sp(

�

M

�

).

0.8. Co-
hain 
omplexes to 
hain 
omplexes and vi
e-versa by shifts. A devi
e

that we have frequently used is the following te
hnique for 
onverting a bounded 
o-
hain


omplex that is trivial in negative degrees to a 
hain 
omplex that is also trivial in negative

degrees and bounded. Let K

�

denote a bounded 
o-
hain 
omplex in an 
ategory C with

a zero obje
t and with �nite limits and 
olimits. Assume that m > 0 is an integer so that

K

i

= 0 for all i < 0 and all i > m. Now we let K[m℄ denote the 
hain-
omplex de�ned

by (K[m℄)

i

= K

m�i

and with the di�erentials indu
ed from those of K. One may apply

the same te
hnique (in reverse) to produ
e a 
o-
hain 
omplex from a 
hain-
omplex that

is trivial in negative degrees and that is bounded.
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