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Organization of the talk

Definition of the oriented cobordism groups Ωn

Isomorphism between Ωn and a certain homotopy
group πn+k(T (γ̃k), t0)

Isomorphism πn+k(T (γ̃k), t0)⊗Q ∼= Hn(G̃rk(R∞))⊗Q.
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Oriented Cobordism

Convention

We assume all manifolds to be smooth, compact and oriented.

Definition

A cobordism between two n-dim. manifolds M1 and M2 is an
(n + 1)-dim. manifold with boundary W together with an orientation
preserving diffeomorphism ∂W ∼= M1 t (−M2).
Two manifolds are said to be cobordant if there is a coboridsm between
them.
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Oriented Cobordism

Lemma

Being cobordant is an equivalence relation on the class of manifolds.

Proof.

Reflexive: ∂(M × [0, 1]) ∼= M t (−M)

Symmetric: ∂(−W ) ∼= −∂W ∼= (−M1) tM2

Transitive: For W1 cobordism between M1 and M2, W2 cobordism
between M2 and M3 use collar neighborhood theorem for gluing W1

and W2 along M2
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Oriented Cobordism

Definition

Let Ωn be the set of cobordism classes of n-dimensional manifolds.

Lemma

The disjoint union induces a map Ωn × Ωn → Ωn turning Ωn into an
abelian group. This group is called the n-th oriented cobordism group.

Proof.

For W cobordism between M1, M2 and N another n-dim. manifold, then
W t N × [0, 1] is cobordism between M1 t N and M2 t N.
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Oriented Cobordism

Lemma

The product induces a map Ωm × Ωn → Ωm+n turning Ω∗ into a graded
commutative ring. It is called the oriented cobordism ring.

Proof.

For W cobordism between M1 and M2, W × N is cobordism between
M1 × N and M2 × N because ∂(W × N) ∼= (M1 × N) t (−M2 × N)

Example

Ω0
∼= Z. Spanned by point with positive orientation.

Ω1
∼= 0. S1 is boundary of D2

Ω2
∼= 0. S2 and genus g surfaces bound

Ω3
∼= 0. (Rohlin, 1951)

Ω4
∼= Z. Spanned by CP2
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Cobordism classes of complex projective spaces

Theorem (Pontryagin)

As (i1, . . . , ik) ranges over all partitions of r , the manifolds

CP2i1 × · · · × CP2ik

represent linearly independent elements of Ω4r .

Proof.

Follows immediatly from the facts that

Pontryagin numbers are additive, i.e. pI (M) + pI (N) = pI (M t N).

All Pontryagin numbers of the boundary of a (4r + 1)-dimensional
manifold are 0.

Pontryagin numbers define a group homomorphism Ω4r → Zp(r)

The above manifolds have linearly independent Pontryagin numbers
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The Thom Space of a Euclidean Vector Bundle

Definition

Let ξ be a k-dim. Euclidean vector bundle. Let A ⊂ E (ξ) be the subset
of all vectors v with |v | ≥ 1. The Thom space T (ξ) of ξ is defined as
E (ξ)/A. Let t0 denote the canonical base point.

Remark

If ξ has a compact base space, then T (ξ) is homeomorphic to the
one-point-compactification of E (ξ).

Proof.

Extend the E (ξ)− A→ E (ξ), v 7→ v/(1− |v |) to a map
T (ξ)→ E (ξ) ∪ {∞}.
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Theorem of Thom

Definition

Let γ̃k denote the universal oriented k-bundle over G̃rk(R∞).

Theorem (Thom, 1954)

There is an isomorphism πn+k(T (γ̃k), t0) ∼= Ωn for k ≥ n + 2.
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The Thom-Pontryagin Construction:
α : Ωn → πn+k(T (γ̃k), t0)

For [M] ∈ Ωn, choose an embedding M ↪→ Rn+k .

Choose tubular neighborhood M in Rn+k , i.e. extend embedding to
embedding i : E (νM) ↪→ Rn+k

Get Thom-Pontryagin collapse map Sn+k = Rn+k ∪ {∞} → T (νM)

i−1 : i(E(νM))→ E(νM) ⊂ T (νM) on i(E(νM))
∞ outside tubular neighborhood

Define α([M]) = [f ] where f : Sn+k → T (νM)
Gauss−−−→ T (γ̃k)
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Well-definiteness of α : Ωn → πn+k(T (γ̃k), t0)

Independence of choice of tubular neighborhood: Any two tubular
neighborhoods are isotopic.

Independence of choice of embedding: Two embeddings M → Rn+k are
isotopic if k ≥ n + 2.
Independence of choice of M.

α additive
Let W be (n + 1)-dim. manifold with boundary. Want to show:
Thom-Pontryagin collapse map of ∂W null-homotopic
Embedding ∂W → Sn+k extends to neat embedding W ↪→ Dn+k+1

Intersection of Sn+k and a tubular neighborhood of W in Dn+k+1 is
a tubular neighborhood of ∂W in Sn+k

Use Thom-Pontryagin construction for W :

Sn+k T (ν∂W )

T (γ̃k)

Dn+k+1 T (νW )

Branko Juran Thom Spaces and the Oriented Cobordism Ring
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Thom-Pontryagin collapse map of ∂W null-homotopic
Embedding ∂W → Sn+k extends to neat embedding W ↪→ Dn+k+1

Intersection of Sn+k and a tubular neighborhood of W in Dn+k+1 is
a tubular neighborhood of ∂W in Sn+k

Use Thom-Pontryagin construction for W :

Sn+k T (ν∂W )

T (γ̃k)

Dn+k+1 T (νW )
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The inverse map β : πn+k(T (γ̃k), t0)→ Ωn

How do we get back M from the map f : Sn+k → T (γ̃k) representing
α([M])? Solution: M = f −1(G̃rk(R∞)) (inverse of the zero-section).

Idea: For f : Sn+k → T (γ̃k): β([f ]) = f −1(G̃rk(R∞)).

Problem: f −1(Grk(R∞)) does not need to be a manifold (even if f
is smooth!)

Need transversality.
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Sard’s Theorem

Definition

Let f : M → N be a smooth map. A point y ∈ N is a regular value of f if
for all x ∈ f −1(y), the map Tx f : TxM → TyN is surjective.

Theorem (Sard)

Let f : M → N be a smooth map. The set of regular values of f is dense
in N.
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Transversality

Definition

Let M,N be manifolds, X a subset of M and Y a submanifold of N. A
smooth function f : M → N is transverse to Y throughout X if

TxM
Tx f−−→ Tf (x)N → Tf (x)N/Tf (x)Y is surjective for all x ∈ f −1(Y ) ∩ X .

Lemma

If f : M → N is transverse to Y ⊂ N, then f −1(Y ) is a smooth manifold.
The normal bundle of Y in N pulls back to the normal bundle of f −1(Y )
in M. In particular, f −1(Y ) inherits an orientation from an orientation on
M and an orientation of the normal bundle of Y in N.

Proof.

If ϕ is a local defining function for Y in N, then ϕ ◦ f is one for f −1(Y )
in M.
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Thom’s Transversality Theorem

Lemma

Let W ⊂ Rm open subset, f : W → Rk smooth, origin regular value
throughout closed subset X ⊂W , K a compact subset of W and ε > 0.
There exists smooth g : W → Rk such that

f = g outside compact subset

Origin regular value throughout X ∪ K

|f (x)− g(x)| ≤ ε

Proof.

Construct map λ : W → [0, 1] such that λ(x) = 1 in a neighborhood
of K and λ vanishes outside compact set.

Set g(x) = f (x)− λ(x)y for y regular value of f and |y | < ε

If g(x) = 0 for x ∈ K , then f (x) = y =⇒ Tx f =Txg full rank at x

We can choose partial derivatives of f and g uniformly close to each
other =⇒ origin regular value throughout X
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Thom’s Transversality Theorem

Theorem

Every map Sm → T (ξ) is homotopic to a map f̂ which is smooth
throughout f̂ −1(T (ξ)− t0) and transverse to the zero-section.
The map πn+k(T (ξ), t0)→ Ωn, f 7→ [f̂ −1(B(ξ))] is well-defined.

Branko Juran Thom Spaces and the Oriented Cobordism Ring



17/25

Thom’s Transversality Theorem

Existence.

Approximate f by f0, smooth throughout f −10 (T − t0)

Cover f −10 (B) by opens W1, . . . ,Wk , images contained in local
trivialization of vector bundle ξ

Cover f −10 (B) by compacts Ki ⊂Wi (1 ≤ i ≤ k) such that
f −10 (B) ⊂ int (K1 ∪ · · · ∪ Kk). =⇒ |f0(x)| ≥ c > 0 outside
K1 ∪ · · · ∪ Kk

Obtain f̂ = fk by inductively define maps fi : Sm → T (ξ) smooth
throughout f −1i (T − t0) = f −10 (T − t0) such that

fi = fi−1 outside compact subset of Wi

fi transverse to B throughout K1 ∪ · · · ∪ Ki

ξ ◦ f0 = ξ ◦ fi on f −1
0 (T − t0)

|fi (x)− fi−1(x)| < c/k

Use coordinates Ui × Rk ∼= ξ−1(Ui ) ⊃ f0(Wi ): Need to construct
map fi |Wi : Wi → Ui × Rk transversal to Ui throughout
(K1 ∪ · · · ∪ Ki−1) ∪ Ki . First coordinate given by third condition.
Second coordinate given by lemma.
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ξ ◦ f0 = ξ ◦ fi on f −1
0 (T − t0)

|fi (x)− fi−1(x)| < c/k

Use coordinates Ui × Rk ∼= ξ−1(Ui ) ⊃ f0(Wi ): Need to construct
map fi |Wi : Wi → Ui × Rk transversal to Ui throughout
(K1 ∪ · · · ∪ Ki−1) ∪ Ki . First coordinate given by third condition.
Second coordinate given by lemma.
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Thom’s Transversality Theorem

Independence of f̂ −1(B) representative.

Given two homotopic maps f̂1 and f̂2, choose homotopy
h0 : Sm × [0, 3]→ T (ξ), smooth throughout h−10 (T − t0),

h0(x , t) = f̂1(x) for t ≤ 1 and h0(x , t) = f̂2(x) for t ≥ 2.

Construct new homotopy h : Sm × [0, 3]→ T (ξ) which coincides
with h0 outside compact subset of Sm × (0, 3), transverse to B.

h−1(B) is cobordism between f̂ −11 (B) and f̂ −12 (B)
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Proof of Thom’s Theorem

Theorem

The Thom-Pontryagin construction α : Ωn → πn+k(T (γ̃k), t0) and
β : πn+k(T (γ̃k), t0)→ Ωn, f 7→ f̂ −1(G̃rk(R∞)) are mutually inverses.

Proof.

Clear: β ◦ α = id (recall motivation for map β)

Let f : Sn+k → T (γ̃k) represent element of πn+k(T (γ̃k), t0).
Assume that f is transverse to G̃rk(R∞).

Choose tubular neighborhood U of M = f −1(G̃rk(R∞)) and disc
subbundle D ⊂ U.

Input 1: f transverse to B =⇒ f homotopic to a map
Φ: Sn+k → T (γ̃k) which restricts to a bundle map on D

Φ|D : D → E (γ̃k) is differential of f at M. Homotopic to f |D via
homotopy ht(x) = f (tx)/t.

Input 2: The Thom-Pontryagin collapse map and Φ agree on D and
they map Sn+k − int (D) to the contractible space
T (γ̃k)− G̃rk(R∞) =⇒ they are homotopic
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Topology of the Thom space

Lemma

If the base space B of ξ admits a CW-structure, then T (ξ) admits a
(k − 1)-connected CW-structure where the (n + k)-cells correspond
one-to-one to n-cells of B (and one additional base point).

Proof.

Preimage of open n-cells in B under ξ are open (n + k)-cells in E .
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Homotopy and Homology groups modulo C

Definition

Let C ⊂ Ab denote the class of all finite abelian groups. A map f : A→ B
of abelian groups is a C-isomorphism if ker(f ) ∈ C and coker(f ) ∈ C.

Theorem

Let X be finite (k − 1)-connected CW-complex for an integer k ≥ 2. The
Hurewicz morphism πn(X , x0)→ Hn(X ) is a C-isomorphism for
n < 2k − 1.
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C-isomorphism πn(T (ξ), t0)→ Hn−k(B(ξ))

Corollary

There is a C-isomorphism: πn+k(T (ξ), t0)→ Hn(B(ξ)) in degree
n < k − 1.

Proof.

Generalized Hurewicz: There is C-isomorphism
πn+k(T (ξ), t0)→ Hn+k(T (ξ))

Let T0 denote the complement of the zero-section in T (ξ). Since T0

is contractible: Hn+k(T (ξ)) ∼= Hn+k(T (ξ),T0). By Excision:
Hn+k(T (ξ),T0) ∼= Hn+k(E (ξ),E0). Thom isomorphism:
Hn+k(E (ξ),E0) ∼= Hn(B(ξ)).
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Description of Ωn

Theorem (Thom, 1954)

The oriented cobordism group Ωn is finite for 4 - n and finitely generated
of rank p(r) (numbers of partitions of r) if n = 4r .

Proof.

We know that Ωn
∼= πn+k(T (γ̃k), t0) for k � 0

There is a C-isomorphism πn+k(T (γ̃k), t0)→ Hn(G̃rk(R∞)).

This group is finite for 4 - n and finitely generated of rank p(r)
(number of partitions) if n = 4r .

Corollary

The graded ring Ω∗ ⊗Q is a polynomial algebra over Q with linearly
independent generators CP2,CP4,CP6, . . . .
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Classification of oriented boundaries

Corollary

The multiple of an n-dimensional manifold M is diffeomorphic to an
oriented boundary if and only if all Pontrjagin numbers vanish.

Theorem (Wall, 1960)

An n-dimensional manifold M is an oriented boundary if and only if all
Pontrjagin numbers and all Stiefel-Whitney classes vanish.
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