Thom Spaces and the Oriented Cobordism Ring

Branko Juran

2020-5-20

Branko Juran Thom Spaces and the Oriented Cobordism Ring

▲ 문 ▶ ▲ 문 ▶ ... 문

• Definition of the oriented cobordism groups Ω_n

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆

- Definition of the oriented cobordism groups Ω_n
- Isomorphism between Ω_n and a certain homotopy group $\pi_{n+k}(T(\tilde{\gamma}^k), t_0)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Definition of the oriented cobordism groups Ω_n
- Isomorphism between Ω_n and a certain homotopy group $\pi_{n+k}(T(\tilde{\gamma}^k), t_0)$
- Isomorphism $\pi_{n+k}(T(\tilde{\gamma}^k), t_0) \otimes \mathbb{Q} \cong H_n(\tilde{Gr}_k(\mathbb{R}^\infty)) \otimes \mathbb{Q}$.

|▲■▶ ▲国▶ ▲国▶ | 国|||のQ()~|

Convention

We assume all manifolds to be smooth, compact and oriented.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲三 シタペ

Convention

We assume all manifolds to be smooth, compact and oriented.

Definition

A cobordism between two *n*-dim. manifolds M_1 and M_2 is an (n+1)-dim. manifold with boundary W together with an orientation preserving diffeomorphism $\partial W \cong M_1 \sqcup (-M_2)$. Two manifolds are said to be *cobordant* if there is a coboridsm between them

them.

《曰》《聞》《臣》《臣》 [臣]

Lemma

Being cobordant is an equivalence relation on the class of manifolds.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Lemma

Being cobordant is an equivalence relation on the class of manifolds.

Proof.

(日)

Lemma

Being cobordant is an equivalence relation on the class of manifolds.

Proof.

• Reflexive: $\partial(M \times [0,1]) \cong M \sqcup (-M)$

(1日) (日) (日) (日) 日

Being cobordant is an equivalence relation on the class of manifolds.

Proof.

- Reflexive: $\partial(M \times [0,1]) \cong M \sqcup (-M)$
- Symmetric: $\partial(-W) \cong -\partial W \cong (-M_1) \sqcup M_2$

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト … 臣

Being cobordant is an equivalence relation on the class of manifolds.

Proof.

- Reflexive: $\partial(M \times [0,1]) \cong M \sqcup (-M)$
- Symmetric: $\partial(-W) \cong -\partial W \cong (-M_1) \sqcup M_2$
- Transitive: For W_1 cobordism between M_1 and M_2 , W_2 cobordism between M_2 and M_3 use collar neighborhood theorem for gluing W_1 and W_2 along M_2

1

Let Ω_n be the set of cobordism classes of *n*-dimensional manifolds.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQで

Let Ω_n be the set of cobordism classes of *n*-dimensional manifolds.

Lemma

The disjoint union induces a map $\Omega_n \times \Omega_n \to \Omega_n$ turning Ω_n into an abelian group. This group is called the n-th oriented cobordism group.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Let Ω_n be the set of cobordism classes of *n*-dimensional manifolds.

Lemma

The disjoint union induces a map $\Omega_n \times \Omega_n \to \Omega_n$ turning Ω_n into an abelian group. This group is called the n-th oriented cobordism group.

Proof.

For W cobordism between M_1 , M_2 and N another *n*-dim. manifold, then $W \sqcup N \times [0,1]$ is cobordism between $M_1 \sqcup N$ and $M_2 \sqcup N$.

Lemma

The product induces a map $\Omega_m \times \Omega_n \to \Omega_{m+n}$ turning Ω_* into a graded commutative ring. It is called the oriented cobordism ring.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The product induces a map $\Omega_m \times \Omega_n \to \Omega_{m+n}$ turning Ω_* into a graded commutative ring. It is called the oriented cobordism ring.

Proof.

For W cobordism between M_1 and M_2 , $W \times N$ is cobordism between $M_1 \times N$ and $M_2 \times N$ because $\partial(W \times N) \cong (M_1 \times N) \sqcup (-M_2 \times N)$

▲ロト ▲周ト ▲国ト ▲国ト 三国 - の々で

The product induces a map $\Omega_m \times \Omega_n \to \Omega_{m+n}$ turning Ω_* into a graded commutative ring. It is called the oriented cobordism ring.

Proof.

For W cobordism between M_1 and M_2 , $W \times N$ is cobordism between $M_1 \times N$ and $M_2 \times N$ because $\partial(W \times N) \cong (M_1 \times N) \sqcup (-M_2 \times N)$

Example

The product induces a map $\Omega_m \times \Omega_n \to \Omega_{m+n}$ turning Ω_* into a graded commutative ring. It is called the oriented cobordism ring.

Proof.

For W cobordism between M_1 and M_2 , $W \times N$ is cobordism between $M_1 \times N$ and $M_2 \times N$ because $\partial(W \times N) \cong (M_1 \times N) \sqcup (-M_2 \times N)$

Example

• $\Omega_0 \cong \mathbb{Z}$. Spanned by point with positive orientation.

The product induces a map $\Omega_m \times \Omega_n \to \Omega_{m+n}$ turning Ω_* into a graded commutative ring. It is called the oriented cobordism ring.

Proof.

For W cobordism between M_1 and M_2 , $W \times N$ is cobordism between $M_1 \times N$ and $M_2 \times N$ because $\partial(W \times N) \cong (M_1 \times N) \sqcup (-M_2 \times N)$

Example

- $\Omega_0 \cong \mathbb{Z}$. Spanned by point with positive orientation.
- $\Omega_1 \cong 0$. S^1 is boundary of D^2

The product induces a map $\Omega_m \times \Omega_n \to \Omega_{m+n}$ turning Ω_* into a graded commutative ring. It is called the oriented cobordism ring.

Proof.

For W cobordism between M_1 and M_2 , $W \times N$ is cobordism between $M_1 \times N$ and $M_2 \times N$ because $\partial(W \times N) \cong (M_1 \times N) \sqcup (-M_2 \times N)$

Example

- $\Omega_0 \cong \mathbb{Z}$. Spanned by point with positive orientation.
- $\Omega_1 \cong 0$. S^1 is boundary of D^2
- $\Omega_2 \cong 0$. S^2 and genus g surfaces bound

The product induces a map $\Omega_m \times \Omega_n \to \Omega_{m+n}$ turning Ω_* into a graded commutative ring. It is called the oriented cobordism ring.

Proof.

For W cobordism between M_1 and M_2 , $W \times N$ is cobordism between $M_1 \times N$ and $M_2 \times N$ because $\partial(W \times N) \cong (M_1 \times N) \sqcup (-M_2 \times N)$

Example

- $\Omega_0 \cong \mathbb{Z}$. Spanned by point with positive orientation.
- $\Omega_1 \cong 0$. S^1 is boundary of D^2
- $\Omega_2 \cong 0$. S^2 and genus g surfaces bound
- $\Omega_3 \cong 0$. (Rohlin, 1951)

æ

The product induces a map $\Omega_m \times \Omega_n \to \Omega_{m+n}$ turning Ω_* into a graded commutative ring. It is called the oriented cobordism ring.

Proof.

For W cobordism between M_1 and M_2 , $W \times N$ is cobordism between $M_1 \times N$ and $M_2 \times N$ because $\partial(W \times N) \cong (M_1 \times N) \sqcup (-M_2 \times N)$

Example

- $\Omega_0 \cong \mathbb{Z}$. Spanned by point with positive orientation.
- $\Omega_1 \cong 0$. S^1 is boundary of D^2
- $\Omega_2 \cong 0$. S^2 and genus g surfaces bound
- $\Omega_3 \cong 0$. (Rohlin, 1951)
- $\Omega_4 \cong \mathbb{Z}$. Spanned by $\mathbb{C}P^2$

• □ ▶ • • □ ▶ • • □ ▶ •

æ

Cobordism classes of complex projective spaces

Theorem (Pontryagin)

As (i_1, \ldots, i_k) ranges over all partitions of r, the manifolds

 $\mathbb{C}P^{2i_1} \times \cdots \times \mathbb{C}P^{2i_k}$

represent linearly independent elements of Ω_{4r} .

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□▶

Cobordism classes of complex projective spaces

Theorem (Pontryagin)

As (i_1, \ldots, i_k) ranges over all partitions of r, the manifolds

 $\mathbb{C}P^{2i_1} \times \cdots \times \mathbb{C}P^{2i_k}$

represent linearly independent elements of Ω_{4r} .

Proof.

Follows immediatly from the facts that

æ -

Cobordism classes of complex projective spaces

Theorem (Pontryagin)

As (i_1, \ldots, i_k) ranges over all partitions of r, the manifolds

 $\mathbb{C}P^{2i_1} \times \cdots \times \mathbb{C}P^{2i_k}$

represent linearly independent elements of Ω_{4r} .

Proof.

Follows immediatly from the facts that

• Pontryagin numbers are additive, i.e. $p_I(M) + p_I(N) = p_I(M \sqcup N)$.

• □ ▶ • • □ ▶ • • □ ▶ •

프 > 프

Theorem (Pontryagin)

As (i_1, \ldots, i_k) ranges over all partitions of r, the manifolds

 $\mathbb{C}P^{2i_1} \times \cdots \times \mathbb{C}P^{2i_k}$

represent linearly independent elements of Ω_{4r} .

Proof.

Follows immediatly from the facts that

- Pontryagin numbers are additive, i.e. $p_I(M) + p_I(N) = p_I(M \sqcup N)$.
- All Pontryagin numbers of the boundary of a (4*r* + 1)-dimensional manifold are 0.

《曰》《聞》《臣》《臣》 [臣]

Theorem (Pontryagin)

As (i_1, \ldots, i_k) ranges over all partitions of r, the manifolds

 $\mathbb{C}P^{2i_1} \times \cdots \times \mathbb{C}P^{2i_k}$

represent linearly independent elements of Ω_{4r} .

Proof.

Follows immediatly from the facts that

- Pontryagin numbers are additive, i.e. $p_I(M) + p_I(N) = p_I(M \sqcup N)$.
- All Pontryagin numbers of the boundary of a (4*r* + 1)-dimensional manifold are 0.
- Pontryagin numbers define a group homomorphism $\Omega_{4r} \to \mathbb{Z}^{p(r)}$

・ロト ・ 日 ・ ・ 三 ・ ・ 三 ・ つ へ で 7/25

Theorem (Pontryagin)

As (i_1, \ldots, i_k) ranges over all partitions of r, the manifolds

 $\mathbb{C}P^{2i_1} \times \cdots \times \mathbb{C}P^{2i_k}$

represent linearly independent elements of Ω_{4r} .

Proof.

Follows immediatly from the facts that

- Pontryagin numbers are additive, i.e. $p_I(M) + p_I(N) = p_I(M \sqcup N)$.
- All Pontryagin numbers of the boundary of a (4*r* + 1)-dimensional manifold are 0.
- Pontryagin numbers define a group homomorphism $\Omega_{4r} \to \mathbb{Z}^{p(r)}$
- The above manifolds have linearly independent Pontryagin numbers

・ロト・日本・モート ほうのくで

The Thom Space of a Euclidean Vector Bundle

Definition

Let ξ be a *k*-dim. Euclidean vector bundle. Let $A \subset E(\xi)$ be the subset of all vectors v with $|v| \ge 1$. The *Thom space* $T(\xi)$ of ξ is defined as $E(\xi)/A$. Let t_0 denote the canonical base point.

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● の Q ()

Let ξ be a k-dim. Euclidean vector bundle. Let $A \subset E(\xi)$ be the subset of all vectors v with $|v| \ge 1$. The *Thom space* $T(\xi)$ of ξ is defined as $E(\xi)/A$. Let t_0 denote the canonical base point.

Remark

If ξ has a compact base space, then $T(\xi)$ is homeomorphic to the one-point-compactification of $E(\xi)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ④ ● ●

Let ξ be a *k*-dim. Euclidean vector bundle. Let $A \subset E(\xi)$ be the subset of all vectors v with $|v| \ge 1$. The *Thom space* $T(\xi)$ of ξ is defined as $E(\xi)/A$. Let t_0 denote the canonical base point.

Remark

If ξ has a compact base space, then $T(\xi)$ is homeomorphic to the one-point-compactification of $E(\xi)$.

Proof.

Extend the
$$E(\xi) - A \rightarrow E(\xi), v \mapsto v/(1 - |v|)$$
 to a map $T(\xi) \rightarrow E(\xi) \cup \{\infty\}.$

◆□▶ ◆母▶ ◆臣▶ ◆臣▶ 三臣 - 釣�?

Let $\tilde{\gamma}^k$ denote the universal oriented k-bundle over $\tilde{Gr}_k(\mathbb{R}^\infty)$.

Branko Juran Thom Spaces and the Oriented Cobordism Ring

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへで

Let $\tilde{\gamma}^k$ denote the universal oriented k-bundle over $\tilde{Gr}_k(\mathbb{R}^\infty)$.

Theorem (Thom, 1954)

There is an isomorphism $\pi_{n+k}(T(\tilde{\gamma}^k), t_0) \cong \Omega_n$ for $k \ge n+2$.

イロト イポト イヨト イヨト ヨー シタクト

The Thom-Pontryagin Construction: $\alpha: \Omega_n \to \pi_{n+k}(T(\tilde{\gamma}^k), t_0)$

• For $[M] \in \Omega_n$, choose an embedding $M \hookrightarrow \mathbb{R}^{n+k}$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

The Thom-Pontryagin Construction: $\alpha: \Omega_n \to \pi_{n+k}(T(\tilde{\gamma}^k), t_0)$

- For $[M] \in \Omega_n$, choose an embedding $M \hookrightarrow \mathbb{R}^{n+k}$.
- Choose tubular neighborhood M in \mathbb{R}^{n+k} , i.e. extend embedding to embedding $i: E(\nu_M) \hookrightarrow \mathbb{R}^{n+k}$

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■

The Thom-Pontryagin Construction: $\alpha: \Omega_n \to \pi_{n+k}(T(\tilde{\gamma}^k), t_0)$

- For $[M] \in \Omega_n$, choose an embedding $M \hookrightarrow \mathbb{R}^{n+k}$.
- Choose tubular neighborhood M in \mathbb{R}^{n+k} , i.e. extend embedding to embedding $i: E(\nu_M) \hookrightarrow \mathbb{R}^{n+k}$
- Get Thom-Pontryagin collapse map $S^{n+k} = \mathbb{R}^{n+k} \cup \{\infty\} \to T(\nu_M)$
The Thom-Pontryagin Construction: $\alpha: \Omega_n \to \pi_{n+k}(\mathcal{T}(\tilde{\gamma}^k), t_0)$

- For $[M] \in \Omega_n$, choose an embedding $M \hookrightarrow \mathbb{R}^{n+k}$.
- Choose tubular neighborhood M in \mathbb{R}^{n+k} , i.e. extend embedding to embedding $i: E(\nu_M) \hookrightarrow \mathbb{R}^{n+k}$
- Get Thom-Pontryagin collapse map $S^{n+k} = \mathbb{R}^{n+k} \cup \{\infty\} \to T(\nu_M)$
 - i^{-1} : $i(E(\nu_M)) \rightarrow E(\nu_M) \subset T(\nu_M)$ on $i(E(\nu_M))$

The Thom-Pontryagin Construction: $\alpha: \Omega_n \to \pi_{n+k}(\mathcal{T}(\tilde{\gamma}^k), t_0)$

- For $[M] \in \Omega_n$, choose an embedding $M \hookrightarrow \mathbb{R}^{n+k}$.
- Choose tubular neighborhood M in \mathbb{R}^{n+k} , i.e. extend embedding to embedding $i: E(\nu_M) \hookrightarrow \mathbb{R}^{n+k}$
- Get Thom-Pontryagin collapse map $S^{n+k} = \mathbb{R}^{n+k} \cup \{\infty\} \to T(\nu_M)$
 - i^{-1} : $i(E(\nu_M)) \rightarrow E(\nu_M) \subset T(\nu_M)$ on $i(E(\nu_M))$
 - ullet ∞ outside tubular neighborhood

The Thom-Pontryagin Construction: $\alpha: \Omega_n \to \pi_{n+k}(\mathcal{T}(\tilde{\gamma}^k), t_0)$

- For $[M] \in \Omega_n$, choose an embedding $M \hookrightarrow \mathbb{R}^{n+k}$.
- Choose tubular neighborhood M in \mathbb{R}^{n+k} , i.e. extend embedding to embedding $i: E(\nu_M) \hookrightarrow \mathbb{R}^{n+k}$
- Get Thom-Pontryagin collapse map $S^{n+k} = \mathbb{R}^{n+k} \cup \{\infty\} o T(\nu_M)$
 - i^{-1} : $i(E(\nu_M)) \rightarrow E(\nu_M) \subset T(\nu_M)$ on $i(E(\nu_M))$
 - ullet ∞ outside tubular neighborhood

• Define $\alpha([M]) = [f]$ where $f \colon S^{n+k} \to T(\nu_M) \xrightarrow{\mathsf{Gauss}} T(\tilde{\gamma}^k)$

◆□ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 ⑦ < ♡ 10/25</p>

Independence of choice of tubular neighborhood: Any two tubular neighborhoods are isotopic.

▲御▶ ▲理▶ ▲理▶ 三理 …

Independence of choice of tubular neighborhood: Any two tubular neighborhoods are isotopic.

Independence of choice of embedding: Two embeddings $M \to \mathbb{R}^{n+k}$ are isotopic if $k \ge n+2$.

◆□ → ◆□ → ◆ 三 → ▲ 三 → ○ へ ⁰ 11/25

Independence of choice of tubular neighborhood: Any two tubular neighborhoods are isotopic.

Independence of choice of embedding: Two embeddings $M \to \mathbb{R}^{n+k}$ are isotopic if $k \ge n+2$.

Independence of choice of M.

 $\bullet \ \alpha$ additive

◆□ → ◆□ → ◆ 三 → ▲ 三 → ○ へ ⁰ 11/25

Independence of choice of tubular neighborhood: Any two tubular neighborhoods are isotopic.

Independence of choice of embedding: Two embeddings $M \to \mathbb{R}^{n+k}$ are isotopic if $k \ge n+2$.

Independence of choice of M.

- α additive
- Let W be (n + 1)-dim. manifold with boundary. Want to show: Thom-Pontryagin collapse map of ∂W null-homotopic

◆□▶ ◆□▶ ◆ ミ▶ ◆ ミ▶ ミー のへで 11/25

Independence of choice of tubular neighborhood: Any two tubular neighborhoods are isotopic.

Independence of choice of embedding: Two embeddings $M \to \mathbb{R}^{n+k}$ are isotopic if $k \ge n+2$.

Independence of choice of M.

- α additive
- Let W be (n + 1)-dim. manifold with boundary. Want to show: Thom-Pontryagin collapse map of ∂W null-homotopic
- Embedding $\partial W \to S^{n+k}$ extends to neat embedding $W \hookrightarrow D^{n+k+1}$

◆□▶ ◆□▶ ◆ ミ▶ ◆ ミ▶ ミー のへで 11/25

Independence of choice of tubular neighborhood: Any two tubular neighborhoods are isotopic.

Independence of choice of embedding: Two embeddings $M \to \mathbb{R}^{n+k}$ are isotopic if $k \ge n+2$.

Independence of choice of M.

- α additive
- Let W be (n + 1)-dim. manifold with boundary. Want to show: Thom-Pontryagin collapse map of ∂W null-homotopic
- Embedding $\partial W \to S^{n+k}$ extends to neat embedding $W \hookrightarrow D^{n+k+1}$
- Intersection of S^{n+k} and a tubular neighborhood of W in D^{n+k+1} is a tubular neighborhood of ∂W in S^{n+k}

◆□▶ ◆□▶ ◆ ミ▶ ◆ ミ▶ ミー のへで 11/25

Independence of choice of tubular neighborhood: Any two tubular neighborhoods are isotopic.

Independence of choice of embedding: Two embeddings $M \to \mathbb{R}^{n+k}$ are isotopic if $k \ge n+2$.

Independence of choice of M.

- α additive
- Let W be (n + 1)-dim. manifold with boundary. Want to show: Thom-Pontryagin collapse map of ∂W null-homotopic
- Embedding $\partial W \to S^{n+k}$ extends to neat embedding $W \hookrightarrow D^{n+k+1}$
- Intersection of S^{n+k} and a tubular neighborhood of W in D^{n+k+1} is a tubular neighborhood of ∂W in S^{n+k}
- Use Thom-Pontryagin construction for W:

The inverse map $\beta \colon \pi_{n+k}(T(\tilde{\gamma}^k), t_0) \to \Omega_n$

• How do we get back M from the map $f: S^{n+k} \to T(\tilde{\gamma}^k)$ representing $\alpha([M])$? Solution: $M = f^{-1}(\tilde{Gr}_k(\mathbb{R}^\infty))$ (inverse of the zero-section).

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ● ⑦ Q @ 12/25

The inverse map $\beta \colon \pi_{n+k}(T(\tilde{\gamma}^k), t_0) \to \Omega_n$

- How do we get back M from the map $f: S^{n+k} \to T(\tilde{\gamma}^k)$ representing $\alpha([M])$? Solution: $M = f^{-1}(\tilde{Gr}_k(\mathbb{R}^\infty))$ (inverse of the zero-section).
- Idea: For $f: S^{n+k} \to T(\tilde{\gamma}^k)$: $\beta([f]) = f^{-1}(\tilde{\mathsf{Gr}}_k(\mathbb{R}^\infty))$.

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ● ⑦ Q @ 12/25

The inverse map $\beta \colon \pi_{n+k}(T(\tilde{\gamma}^k), t_0) \to \Omega_n$

- How do we get back M from the map $f: S^{n+k} \to T(\tilde{\gamma}^k)$ representing $\alpha([M])$? Solution: $M = f^{-1}(\tilde{Gr}_k(\mathbb{R}^\infty))$ (inverse of the zero-section).
- Idea: For $f: S^{n+k} \to T(\tilde{\gamma}^k)$: $\beta([f]) = f^{-1}(\tilde{\mathsf{Gr}}_k(\mathbb{R}^\infty))$.
- Problem: f⁻¹(Gr_k(ℝ[∞])) does not need to be a manifold (even if f is smooth!)

イロト イポト イヨト イヨト 三日

- How do we get back M from the map $f: S^{n+k} \to T(\tilde{\gamma}^k)$ representing $\alpha([M])$? Solution: $M = f^{-1}(\tilde{Gr}_k(\mathbb{R}^\infty))$ (inverse of the zero-section).
- Idea: For $f: S^{n+k} \to T(\tilde{\gamma}^k)$: $\beta([f]) = f^{-1}(\tilde{\mathsf{Gr}}_k(\mathbb{R}^\infty))$.
- Problem: f⁻¹(Gr_k(ℝ[∞])) does not need to be a manifold (even if f is smooth!)
- Need transversality.

Let $f: M \to N$ be a smooth map. A point $y \in N$ is a *regular value* of f if for all $x \in f^{-1}(y)$, the map $T_x f: T_x M \to T_y N$ is surjective.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー・ のくで

Let $f: M \to N$ be a smooth map. A point $y \in N$ is a *regular value* of f if for all $x \in f^{-1}(y)$, the map $T_x f: T_x M \to T_y N$ is surjective.

Theorem (Sard)

Let $f: M \to N$ be a smooth map. The set of regular values of f is dense in N.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー・ のくで

Let M, N be manifolds, X a subset of M and Y a submanifold of N. A smooth function $f: M \to N$ is *transverse* to Y throughout X if $T_xM \xrightarrow{T_xf} T_{f(x)}N \to T_{f(x)}N/T_{f(x)}Y$ is surjective for all $x \in f^{-1}(Y) \cap X$.

◆母→ < E→ < E→ E のQで 14/25</p>

Let M, N be manifolds, X a subset of M and Y a submanifold of N. A smooth function $f: M \to N$ is *transverse* to Y throughout X if $T_xM \xrightarrow{T_xf} T_{f(x)}N \to T_{f(x)}N/T_{f(x)}Y$ is surjective for all $x \in f^{-1}(Y) \cap X$.

Lemma

If $f: M \to N$ is transverse to $Y \subset N$, then $f^{-1}(Y)$ is a smooth manifold. The normal bundle of Y in N pulls back to the normal bundle of $f^{-1}(Y)$ in M. In particular, $f^{-1}(Y)$ inherits an orientation from an orientation on M and an orientation of the normal bundle of Y in N.

イロト イポト イヨト イヨト 三日

Let M, N be manifolds, X a subset of M and Y a submanifold of N. A smooth function $f: M \to N$ is *transverse* to Y throughout X if $T_xM \xrightarrow{T_xf} T_{f(x)}N \to T_{f(x)}N/T_{f(x)}Y$ is surjective for all $x \in f^{-1}(Y) \cap X$.

Lemma

If $f: M \to N$ is transverse to $Y \subset N$, then $f^{-1}(Y)$ is a smooth manifold. The normal bundle of Y in N pulls back to the normal bundle of $f^{-1}(Y)$ in M. In particular, $f^{-1}(Y)$ inherits an orientation from an orientation on M and an orientation of the normal bundle of Y in N.

Proof.

If φ is a local defining function for Y in N, then $\varphi \circ f$ is one for $f^{-1}(Y)$ in M.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ 三三 ・ つへで 14/25

Lemma

Let $W \subset \mathbb{R}^m$ open subset, $f: W \to \mathbb{R}^k$ smooth, origin regular value throughout closed subset $X \subset W$, K a compact subset of W and $\varepsilon > 0$. There exists smooth $g: W \to \mathbb{R}^k$ such that

프 🖌 🗶 프 🕨 - 프

Lemma

Let $W \subset \mathbb{R}^m$ open subset, $f: W \to \mathbb{R}^k$ smooth, origin regular value throughout closed subset $X \subset W$, K a compact subset of W and $\varepsilon > 0$. There exists smooth $g: W \to \mathbb{R}^k$ such that

• *f* = *g* outside compact subset

프 🖌 🗶 프 🕨 - 프

Lemma

Let $W \subset \mathbb{R}^m$ open subset, $f: W \to \mathbb{R}^k$ smooth, origin regular value throughout closed subset $X \subset W$, K a compact subset of W and $\varepsilon > 0$. There exists smooth $g: W \to \mathbb{R}^k$ such that

- f = g outside compact subset
- Origin regular value throughout $X \cup K$

토 🖌 🗶 토 🛌 토

Lemma

Let $W \subset \mathbb{R}^m$ open subset, $f: W \to \mathbb{R}^k$ smooth, origin regular value throughout closed subset $X \subset W$, K a compact subset of W and $\varepsilon > 0$. There exists smooth $g: W \to \mathbb{R}^k$ such that

- f = g outside compact subset
- Origin regular value throughout $X \cup K$

•
$$|f(x) - g(x)| \le \epsilon$$

토 🖌 🗶 토 🛌 토

Lemma

Let $W \subset \mathbb{R}^m$ open subset, $f: W \to \mathbb{R}^k$ smooth, origin regular value throughout closed subset $X \subset W$, K a compact subset of W and $\varepsilon > 0$. There exists smooth $g: W \to \mathbb{R}^k$ such that

- f = g outside compact subset
- Origin regular value throughout $X \cup K$

•
$$|f(x) - g(x)| \leq \epsilon$$

Lemma

Let $W \subset \mathbb{R}^m$ open subset, $f: W \to \mathbb{R}^k$ smooth, origin regular value throughout closed subset $X \subset W$, K a compact subset of W and $\varepsilon > 0$. There exists smooth $g: W \to \mathbb{R}^k$ such that

- f = g outside compact subset
- Origin regular value throughout $X \cup K$

•
$$|f(x) - g(x)| \le \epsilon$$

Proof.

 Construct map λ: W → [0, 1] such that λ(x) = 1 in a neighborhood of K and λ vanishes outside compact set.

Lemma

Let $W \subset \mathbb{R}^m$ open subset, $f: W \to \mathbb{R}^k$ smooth, origin regular value throughout closed subset $X \subset W$, K a compact subset of W and $\varepsilon > 0$. There exists smooth $g: W \to \mathbb{R}^k$ such that

- f = g outside compact subset
- Origin regular value throughout $X \cup K$

•
$$|f(x) - g(x)| \le \epsilon$$

- Construct map λ: W → [0, 1] such that λ(x) = 1 in a neighborhood of K and λ vanishes outside compact set.
- Set $g(x) = f(x) \lambda(x)y$ for y regular value of f and $|y| < \varepsilon$

Lemma

Let $W \subset \mathbb{R}^m$ open subset, $f: W \to \mathbb{R}^k$ smooth, origin regular value throughout closed subset $X \subset W$, K a compact subset of W and $\varepsilon > 0$. There exists smooth $g: W \to \mathbb{R}^k$ such that

- f = g outside compact subset
- Origin regular value throughout $X \cup K$

•
$$|f(x) - g(x)| \le \epsilon$$

- Construct map $\lambda \colon W \to [0,1]$ such that $\lambda(x) = 1$ in a neighborhood of K and λ vanishes outside compact set.
- Set $g(x) = f(x) \lambda(x)y$ for y regular value of f and $|y| < \varepsilon$
- If g(x) = 0 for $x \in K$, then $f(x) = y \implies T_x f = T_x g$ full rank at x

Lemma

Let $W \subset \mathbb{R}^m$ open subset, $f: W \to \mathbb{R}^k$ smooth, origin regular value throughout closed subset $X \subset W$, K a compact subset of W and $\varepsilon > 0$. There exists smooth $g: W \to \mathbb{R}^k$ such that

- f = g outside compact subset
- Origin regular value throughout $X \cup K$

•
$$|f(x) - g(x)| \le \epsilon$$

- Construct map $\lambda \colon W \to [0,1]$ such that $\lambda(x) = 1$ in a neighborhood of K and λ vanishes outside compact set.
- Set $g(x) = f(x) \lambda(x)y$ for y regular value of f and $|y| < \varepsilon$
- If g(x) = 0 for $x \in K$, then $f(x) = y \implies T_x f = T_x g$ full rank at x
- We can choose partial derivatives of *f* and *g* uniformly close to each other ⇒ origin regular value throughout X

Theorem

Every map $S^m \to T(\xi)$ is homotopic to a map \hat{f} which is smooth throughout $\hat{f}^{-1}(T(\xi) - t_0)$ and transverse to the zero-section. The map $\pi_{n+k}(T(\xi), t_0) \to \Omega_n$, $f \mapsto [\hat{f}^{-1}(B(\xi))]$ is well-defined.

Branko Juran Thom Spaces and the Oriented Cobordism Ring

▲◎▶ ▲■▶ ▲■▶ ■ のへで

16/25

Existence.

• Approximate f by f_0 , smooth throughout $f_0^{-1}(T - t_0)$

- Approximate f by f_0 , smooth throughout $f_0^{-1}(T t_0)$
- Cover f₀⁻¹(B) by opens W₁,..., W_k, images contained in local trivialization of vector bundle ξ

- Approximate f by f_0 , smooth throughout $f_0^{-1}(T t_0)$
- Cover f₀⁻¹(B) by opens W₁,..., W_k, images contained in local trivialization of vector bundle ξ
- Cover $f_0^{-1}(B)$ by compacts $K_i \subset W_i$ $(1 \le i \le k)$ such that $f_0^{-1}(B) \subset \operatorname{int} (K_1 \cup \cdots \cup K_k)$. $\implies |f_0(x)| \ge c > 0$ outside $K_1 \cup \cdots \cup K_k$

- Approximate f by f_0 , smooth throughout $f_0^{-1}(T t_0)$
- Cover f₀⁻¹(B) by opens W₁,..., W_k, images contained in local trivialization of vector bundle ξ
- Cover $f_0^{-1}(B)$ by compacts $K_i \subset W_i$ $(1 \le i \le k)$ such that $f_0^{-1}(B) \subset \operatorname{int} (K_1 \cup \cdots \cup K_k)$. $\implies |f_0(x)| \ge c > 0$ outside $K_1 \cup \cdots \cup K_k$
- Obtain $\hat{f} = f_k$ by inductively define maps $f_i : S^m \to T(\xi)$ smooth throughout $f_i^{-1}(T t_0) = f_0^{-1}(T t_0)$ such that

- Approximate f by f_0 , smooth throughout $f_0^{-1}(T t_0)$
- Cover f₀⁻¹(B) by opens W₁,..., W_k, images contained in local trivialization of vector bundle ξ
- Cover $f_0^{-1}(B)$ by compacts $K_i \subset W_i$ $(1 \le i \le k)$ such that $f_0^{-1}(B) \subset \operatorname{int} (K_1 \cup \cdots \cup K_k)$. $\implies |f_0(x)| \ge c > 0$ outside $K_1 \cup \cdots \cup K_k$
- Obtain $\hat{f} = f_k$ by inductively define maps $f_i \colon S^m \to T(\xi)$ smooth throughout $f_i^{-1}(T t_0) = f_0^{-1}(T t_0)$ such that
 - $f_i = f_{i-1}$ outside compact subset of W_i

- Approximate f by f_0 , smooth throughout $f_0^{-1}(T t_0)$
- Cover f₀⁻¹(B) by opens W₁,..., W_k, images contained in local trivialization of vector bundle ξ
- Cover $f_0^{-1}(B)$ by compacts $K_i \subset W_i$ $(1 \le i \le k)$ such that $f_0^{-1}(B) \subset \operatorname{int} (K_1 \cup \cdots \cup K_k)$. $\implies |f_0(x)| \ge c > 0$ outside $K_1 \cup \cdots \cup K_k$
- Obtain $\hat{f} = f_k$ by inductively define maps $f_i \colon S^m \to T(\xi)$ smooth throughout $f_i^{-1}(T t_0) = f_0^{-1}(T t_0)$ such that
 - $f_i = f_{i-1}$ outside compact subset of W_i
 - f_i transverse to B throughout $K_1 \cup \cdots \cup K_i$

- Approximate f by f_0 , smooth throughout $f_0^{-1}(T t_0)$
- Cover f₀⁻¹(B) by opens W₁,..., W_k, images contained in local trivialization of vector bundle ξ
- Cover $f_0^{-1}(B)$ by compacts $K_i \subset W_i$ $(1 \le i \le k)$ such that $f_0^{-1}(B) \subset \operatorname{int} (K_1 \cup \cdots \cup K_k)$. $\implies |f_0(x)| \ge c > 0$ outside $K_1 \cup \cdots \cup K_k$
- Obtain $\hat{f} = f_k$ by inductively define maps $f_i : S^m \to T(\xi)$ smooth throughout $f_i^{-1}(T t_0) = f_0^{-1}(T t_0)$ such that
 - $f_i = f_{i-1}$ outside compact subset of W_i
 - f_i transverse to B throughout $K_1 \cup \cdots \cup K_i$
 - $\xi \circ f_0 = \xi \circ f_i$ on $f_0^{-1}(T t_0)$
Thom's Transversality Theorem

Existence.

- Approximate f by f_0 , smooth throughout $f_0^{-1}(T t_0)$
- Cover f₀⁻¹(B) by opens W₁,..., W_k, images contained in local trivialization of vector bundle ξ
- Cover $f_0^{-1}(B)$ by compacts $K_i \subset W_i$ $(1 \le i \le k)$ such that $f_0^{-1}(B) \subset \operatorname{int} (K_1 \cup \cdots \cup K_k)$. $\implies |f_0(x)| \ge c > 0$ outside $K_1 \cup \cdots \cup K_k$
- Obtain $\hat{f} = f_k$ by inductively define maps $f_i \colon S^m \to T(\xi)$ smooth throughout $f_i^{-1}(T t_0) = f_0^{-1}(T t_0)$ such that
 - $f_i = f_{i-1}$ outside compact subset of W_i
 - f_i transverse to B throughout $K_1 \cup \cdots \cup K_i$
 - $\xi \circ f_0 = \xi \circ f_i$ on $f_0^{-1}(T t_0)$
 - $|f_i(x) f_{i-1}(x)| < c/k$

Thom's Transversality Theorem

Existence.

- Approximate f by f_0 , smooth throughout $f_0^{-1}(T t_0)$
- Cover f₀⁻¹(B) by opens W₁,..., W_k, images contained in local trivialization of vector bundle ξ
- Cover $f_0^{-1}(B)$ by compacts $K_i \subset W_i$ $(1 \le i \le k)$ such that $f_0^{-1}(B) \subset \operatorname{int} (K_1 \cup \cdots \cup K_k)$. $\implies |f_0(x)| \ge c > 0$ outside $K_1 \cup \cdots \cup K_k$
- Obtain $\hat{f} = f_k$ by inductively define maps $f_i \colon S^m \to T(\xi)$ smooth throughout $f_i^{-1}(T t_0) = f_0^{-1}(T t_0)$ such that
 - $f_i = f_{i-1}$ outside compact subset of W_i
 - f_i transverse to B throughout $K_1 \cup \cdots \cup K_i$
 - $\xi \circ f_0 = \xi \circ f_i$ on $f_0^{-1}(T t_0)$
 - $|f_i(x) f_{i-1}(x)| < c/k$
- Use coordinates $U_i \times \mathbb{R}^k \cong \xi^{-1}(U_i) \supset f_0(W_i)$: Need to construct map $f_i|_{W_i} \colon W_i \to U_i \times \mathbb{R}^k$ transversal to U_i throughout $(K_1 \cup \cdots \cup K_{i-1}) \cup K_i$. First coordinate given by third condition. Second coordinate given by lemma.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

• Given two homotopic maps \hat{f}_1 and \hat{f}_2 , choose homotopy $h_0: S^m \times [0,3] \to T(\xi)$, smooth throughout $h_0^{-1}(T - t_0)$, $h_0(x,t) = \hat{f}_1(x)$ for $t \le 1$ and $h_0(x,t) = \hat{f}_2(x)$ for $t \ge 2$.

・ロト ・御 ト ・ ヨ ト ・ ヨ ト ・ ヨー

- Given two homotopic maps \hat{f}_1 and \hat{f}_2 , choose homotopy $h_0: S^m \times [0,3] \to T(\xi)$, smooth throughout $h_0^{-1}(T-t_0)$, $h_0(x,t) = \hat{f}_1(x)$ for $t \le 1$ and $h_0(x,t) = \hat{f}_2(x)$ for $t \ge 2$.
- Construct new homotopy h: S^m × [0,3] → T(ξ) which coincides with h₀ outside compact subset of S^m × (0,3), transverse to B.

- Given two homotopic maps \hat{f}_1 and \hat{f}_2 , choose homotopy $h_0: S^m \times [0,3] \to T(\xi)$, smooth throughout $h_0^{-1}(T-t_0)$, $h_0(x,t) = \hat{f}_1(x)$ for $t \le 1$ and $h_0(x,t) = \hat{f}_2(x)$ for $t \ge 2$.
- Construct new homotopy h: S^m × [0,3] → T(ξ) which coincides with h₀ outside compact subset of S^m × (0,3), transverse to B.
- $h^{-1}(B)$ is cobordism between $\hat{f}_1^{-1}(B)$ and $\hat{f}_2^{-1}(B)$

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■

Theorem

The Thom-Pontryagin construction $\alpha \colon \Omega_n \to \pi_{n+k}(T(\tilde{\gamma}^k), t_0)$ and $\beta \colon \pi_{n+k}(T(\tilde{\gamma}^k), t_0) \to \Omega_n, f \mapsto \hat{f}^{-1}(\tilde{\operatorname{Gr}}_k(\mathbb{R}^\infty))$ are mutually inverses.

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ≧ のへで 19/25

Theorem

The Thom-Pontryagin construction $\alpha \colon \Omega_n \to \pi_{n+k}(T(\tilde{\gamma}^k), t_0)$ and $\beta \colon \pi_{n+k}(T(\tilde{\gamma}^k), t_0) \to \Omega_n, f \mapsto \hat{f}^{-1}(\tilde{\operatorname{Gr}}_k(\mathbb{R}^\infty))$ are mutually inverses.

Proof.

Branko Juran Thom Spaces and the Oriented Cobordism Ring

Theorem

The Thom-Pontryagin construction $\alpha \colon \Omega_n \to \pi_{n+k}(T(\tilde{\gamma}^k), t_0)$ and $\beta \colon \pi_{n+k}(T(\tilde{\gamma}^k), t_0) \to \Omega_n, f \mapsto \hat{f}^{-1}(\tilde{\operatorname{Gr}}_k(\mathbb{R}^\infty))$ are mutually inverses.

Proof.

• Clear: $\beta \circ \alpha = id$ (recall motivation for map β)

Theorem

The Thom-Pontryagin construction $\alpha \colon \Omega_n \to \pi_{n+k}(T(\tilde{\gamma}^k), t_0)$ and $\beta \colon \pi_{n+k}(T(\tilde{\gamma}^k), t_0) \to \Omega_n, f \mapsto \hat{f}^{-1}(\tilde{\operatorname{Gr}}_k(\mathbb{R}^\infty))$ are mutually inverses.

- Clear: $\beta \circ \alpha = id$ (recall motivation for map β)
- Let $f: S^{n+k} \to T(\tilde{\gamma}^k)$ represent element of $\pi_{n+k}(T(\tilde{\gamma}^k), t_0)$. Assume that f is transverse to $\tilde{Gr}_k(\mathbb{R}^\infty)$.

Theorem

The Thom-Pontryagin construction $\alpha \colon \Omega_n \to \pi_{n+k}(T(\tilde{\gamma}^k), t_0)$ and $\beta \colon \pi_{n+k}(T(\tilde{\gamma}^k), t_0) \to \Omega_n, f \mapsto \hat{f}^{-1}(\tilde{\operatorname{Gr}}_k(\mathbb{R}^\infty))$ are mutually inverses.

- Clear: $\beta \circ \alpha = id$ (recall motivation for map β)
- Let $f: S^{n+k} \to T(\tilde{\gamma}^k)$ represent element of $\pi_{n+k}(T(\tilde{\gamma}^k), t_0)$. Assume that f is transverse to $\tilde{Gr}_k(\mathbb{R}^\infty)$.
- Choose tubular neighborhood U of M = f⁻¹(G̃r_k(ℝ[∞])) and disc subbundle D ⊂ U.

Theorem

The Thom-Pontryagin construction $\alpha \colon \Omega_n \to \pi_{n+k}(T(\tilde{\gamma}^k), t_0)$ and $\beta \colon \pi_{n+k}(T(\tilde{\gamma}^k), t_0) \to \Omega_n, f \mapsto \hat{f}^{-1}(\tilde{\operatorname{Gr}}_k(\mathbb{R}^\infty))$ are mutually inverses.

- Clear: $\beta \circ \alpha = id$ (recall motivation for map β)
- Let $f: S^{n+k} \to T(\tilde{\gamma}^k)$ represent element of $\pi_{n+k}(T(\tilde{\gamma}^k), t_0)$. Assume that f is transverse to $\tilde{\operatorname{Gr}}_k(\mathbb{R}^\infty)$.
- Choose tubular neighborhood U of M = f⁻¹(G̃r_k(ℝ[∞])) and disc subbundle D ⊂ U.
- Input 1: f transverse to $B \implies f$ homotopic to a map $\Phi: S^{n+k} \to T(\tilde{\gamma}^k)$ which restricts to a bundle map on D

Theorem

The Thom-Pontryagin construction $\alpha \colon \Omega_n \to \pi_{n+k}(T(\tilde{\gamma}^k), t_0)$ and $\beta \colon \pi_{n+k}(T(\tilde{\gamma}^k), t_0) \to \Omega_n, f \mapsto \hat{f}^{-1}(\tilde{\operatorname{Gr}}_k(\mathbb{R}^\infty))$ are mutually inverses.

- Clear: $\beta \circ \alpha = id$ (recall motivation for map β)
- Let $f: S^{n+k} \to T(\tilde{\gamma}^k)$ represent element of $\pi_{n+k}(T(\tilde{\gamma}^k), t_0)$. Assume that f is transverse to $\tilde{\operatorname{Gr}}_k(\mathbb{R}^\infty)$.
- Choose tubular neighborhood U of M = f⁻¹(G̃r_k(ℝ[∞])) and disc subbundle D ⊂ U.
- Input 1: f transverse to $B \implies f$ homotopic to a map $\Phi: S^{n+k} \to T(\tilde{\gamma}^k)$ which restricts to a bundle map on D
- $\Phi|_D: D \to E(\tilde{\gamma}^k)$ is differential of f at M. Homotopic to $f|_D$ via homotopy $h_t(x) = f(tx)/t$.

Theorem

The Thom-Pontryagin construction $\alpha \colon \Omega_n \to \pi_{n+k}(T(\tilde{\gamma}^k), t_0)$ and $\beta \colon \pi_{n+k}(T(\tilde{\gamma}^k), t_0) \to \Omega_n, f \mapsto \hat{f}^{-1}(\tilde{\operatorname{Gr}}_k(\mathbb{R}^\infty))$ are mutually inverses.

- Clear: $\beta \circ \alpha = id$ (recall motivation for map β)
- Let $f: S^{n+k} \to T(\tilde{\gamma}^k)$ represent element of $\pi_{n+k}(T(\tilde{\gamma}^k), t_0)$. Assume that f is transverse to $\tilde{\mathrm{Gr}}_k(\mathbb{R}^\infty)$.
- Choose tubular neighborhood U of M = f⁻¹(G̃r_k(ℝ[∞])) and disc subbundle D ⊂ U.
- Input 1: f transverse to $B \implies f$ homotopic to a map $\Phi: S^{n+k} \to T(\tilde{\gamma}^k)$ which restricts to a bundle map on D
- $\Phi|_D: D \to E(\tilde{\gamma}^k)$ is differential of f at M. Homotopic to $f|_D$ via homotopy $h_t(x) = f(tx)/t$.
- Input 2: The Thom-Pontryagin collapse map and Φ agree on D and they map $S^{n+k} \operatorname{int}(D)$ to the contractible space $T(\tilde{\gamma}^k) \tilde{\operatorname{Gr}}_k(\mathbb{R}^\infty) \implies$ they are homotopic \Box

Lemma

If the base space B of ξ admits a CW-structure, then $T(\xi)$ admits a (k-1)-connected CW-structure where the (n + k)-cells correspond one-to-one to n-cells of B (and one additional base point).

・ロト ・御 ト ・ ヨ ト ・ ヨ ト ・ ヨー

Lemma

If the base space B of ξ admits a CW-structure, then $T(\xi)$ admits a (k-1)-connected CW-structure where the (n + k)-cells correspond one-to-one to n-cells of B (and one additional base point).

Proof.

Preimage of open *n*-cells in *B* under ξ are open (n + k)-cells in *E*.

Homotopy and Homology groups modulo ${\mathcal C}$

Definition

Let $C \subset Ab$ denote the class of all finite abelian groups. A map $f : A \to B$ of abelian groups is a *C*-isomorphism if ker $(f) \in C$ and coker $(f) \in C$.

'문에 세면에 '문

Definition

Let $C \subset Ab$ denote the class of all finite abelian groups. A map $f : A \to B$ of abelian groups is a *C*-isomorphism if ker $(f) \in C$ and coker $(f) \in C$.

Theorem

Let X be finite (k - 1)-connected CW-complex for an integer $k \ge 2$. The Hurewicz morphism $\pi_n(X, x_0) \rightarrow H_n(X)$ is a C-isomorphism for n < 2k - 1.

イロト イポト イヨト イヨト 二日

C-isomorphism $\pi_n(T(\xi), t_0) \to H_{n-k}(B(\xi))$

Corollary

There is a C-isomorphism: $\pi_{n+k}(T(\xi), t_0) \rightarrow H_n(B(\xi))$ in degree n < k - 1.

C-isomorphism $\pi_n(T(\xi), t_0) \to H_{n-k}(B(\xi))$

Corollary

There is a C-isomorphism: $\pi_{n+k}(T(\xi), t_0) \rightarrow H_n(B(\xi))$ in degree n < k - 1.

Proof.

- Generalized Hurewicz: There is C-isomorphism $\pi_{n+k}(T(\xi), t_0) \rightarrow H_{n+k}(T(\xi))$
- Let T_0 denote the complement of the zero-section in $T(\xi)$. Since T_0 is contractible: $H_{n+k}(T(\xi)) \cong H_{n+k}(T(\xi), T_0)$. By Excision: $H_{n+k}(T(\xi), T_0) \cong H_{n+k}(E(\xi), E_0)$. Thom isomorphism: $H_{n+k}(E(\xi), E_0) \cong H_n(B(\xi))$.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ 三三 ・ つへ ○ 22/25

Theorem (Thom, 1954)

The oriented cobordism group Ω_n is finite for $4 \nmid n$ and finitely generated of rank p(r) (numbers of partitions of r) if n = 4r.

Proof.

- We know that $\Omega_n \cong \pi_{n+k}(T(\tilde{\gamma}^k), t_0)$ for $k \gg 0$
- There is a C-isomorphism $\pi_{n+k}(T(\tilde{\gamma}^k), t_0) \to H_n(\tilde{Gr}_k(\mathbb{R}^\infty))$.
- This group is finite for $4 \nmid n$ and finitely generated of rank p(r) (number of partitions) if n = 4r.

Corollary

The graded ring $\Omega_* \otimes \mathbb{Q}$ is a polynomial algebra over \mathbb{Q} with linearly independent generators $\mathbb{C}P^2, \mathbb{C}P^4, \mathbb{C}P^6, \ldots$.

Corollary

The multiple of an n-dimensional manifold M is diffeomorphic to an oriented boundary if and only if all Pontrjagin numbers vanish.

Theorem (Wall, 1960)

An n-dimensional manifold M is an oriented boundary if and only if all Pontrjagin numbers and all Stiefel-Whitney classes vanish.

(本部) (本語) (本語) (語)

Morris W. Hirsch. Differential topology. Vol. 33. Graduate Texts in Mathematics. Corrected reprint of the 1976 original. Springer-Verlag, New York, 1994, pp. x+222.

John W. Milnor and James D. Stasheff. *Characteristic classes*. Vol. 76. Annals of Mathematics Studies. Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974, pp. vii+331.

Edwin H. Spanier. *Algebraic topology*. Corrected reprint. Springer-Verlag, New York-Berlin, 1981, pp. xvi+528.

René Thom. "Quelques propriétés globales des variétés différentiables". In: *Comment. Math. Helv.* 28 (1954), pp. 17-86.