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The Quillen Q-construction allosws us to define the K-theory of an exact 1-category C. The

K-theory functor K : Exact → Top, taking the category of exact 1-categories to the category of

topological spaces, is defined by K : C 7→ Ω |NQ(C)|. We may generalize and define an analog of

the Quillen Q-construction for a colored operad M satisfying certain conditions, where the K-theory

K : A→ Sp takes a subcategory A of the category of colored operads Op to the category of spectra

Sp. It is natural to generalize in a different way, from exact 1-categories to exact ∞-categories, to

define the Quillen Q-construction. Barwick has done so in [Bar], which we now outline.

Let X be a simplicial set; we can define another simplicial set by (O(X))n := Map(∆n ?∆n, X),

where ? is the concatenation operator on ∆. The Quillen Q-construction uses O(∆n), but in order

to define the Quillen Q-construction, we have to define ambigressive pullbacks and ambigressive

functors.

Let C∞ be an exact ∞-category, and let C!
∞ and C•∞ be full subcategories of C∞ containing all

the equivalences. Given a pullback square

X //

��

Y

��
X ′ // Y ′

we call it ambigressive if X ′ → Y ′ and Y → Y ′ are morphisms in C!
∞ and C•∞, respectively. We call

a functor O(∆n)→ C∞ ambigressive if for all integers 0 ≤ i ≤ k ≤ l ≤ j ≤ n, the pullback square

Xij
//

��

Xkj

��
Xil

// Xkl

is ambigressive. We may now finally proceed to the Quillen Q-construction: define a simplicial set

Q(C∞), whose n-simplices are the ambigressive functors O(∆n)op → C∞. The K-theory is then

simply ΩQ(C∞), and this defines a functor from the∞-category Exact∞ of exact∞-categories and

exact functors between them to the ∞-category Cat∞ of ∞-categories.

Let C∞ be an exact ∞-category. If we equip it with a map C∞ → N(Fin∗) satisfying certain

conditions that make it an ∞-operad, we call C∞ a unital ∞-operad. To signify that it is equipped
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with a map C∞, we will write it as C⊗∞. Let Exact⊗∞ be the subcategory of Exact∞ spanned by

the unital ∞-category. The K-theory construction for exact ∞-categories passes over to unital ∞-

categories, so we can ask what additional structure/properties K(C⊗∞) have? This can be answered

by looking at a pattern in the codomain of the K-theory functors; a simple analysis shows that for

∞-operads, the K-theory takes K : Exact⊗∞ → CatEx
∞ , where CatEx

∞ is the ∞-category of stable

∞-categories and exact ∞-functors between them. Note that what we call exact functors are exact

functors between exact ∞-categories, in the sense of [Bar], and what we call exact ∞-functors are

exact ∞-functors between stable ∞-categories.

Consider the homotopy category hK(C⊗∞), which, because K(C⊗∞) is a stable ∞-category, is a

triangulated category. We would like to develop some sort of derived Morita theory, and so we’d

like to consider the homotopy category of some ∞-operad of module objects.

Lurie has defined such objects in [Lura]; more specifically, he has defined an∞-operad ModO(C⊗∞)⊗

of O-module objects over C⊗∞, and an ∞-category Alg/O(C⊗∞) of O-algebra objects over C⊗∞, where

O⊗ is an ∞-category. We can define the ∞-operad ModO
A(C⊗∞)⊗ of O-module objects over an O-

algebra object A over C⊗∞ as the pushout ModO(C⊗∞)⊗
∏

Alg/O(C⊗∞){A}. Since we’d like to provide

a derived category structure on hK(C⊗∞) through ModO
A(C⊗∞)⊗, we will study ModO

A(C⊗∞)⊗ first.

We provide two interesting properties that it satisfies, one of which will help us define the derived

category of an algebra over an ∞-operad.

The first follows from induction using [Lura, Corollary 3.4.1.9]:

Theorem 0.1. Let (ModO
A)n(C⊗∞) denote ModO

A(C⊗∞)⊗ iterated n times. Then (ModO
A)n(C⊗∞) is

equivalent to ModO
A(C⊗∞)⊗ for any n ≥ 1.

Consider the identity morphism idK(C⊗∞) : K(C⊗∞) → K(C⊗∞), which is an equivalence of cate-

gories. Since ModO
A(C⊗∞)⊗ ' C⊗∞ when O⊗ = E⊗0 , we expect one of the following three statements

to hold true:

(1) There is a fully faithful non-essentially surjective functor ModO
A(K(C⊗∞))→ K(ModO

A(C⊗∞)⊗).

(2) There is a fully faithful non-essentially surjective functor K(ModO
A(C⊗∞)⊗)→ ModO

A(K(C⊗∞)).

(3) There is a fully faithful essentially surjective functor K(ModO
A(C⊗∞)⊗)→ ModO

A(K(C⊗∞)).

We will proceed to inspect each of these points separately:

(1’) There is a fully faithful non-essentially surjective functor ModO
A(K(C⊗∞))→ K(ModO

A(C⊗∞)⊗).

This induces a map ModO
A(K(C⊗∞)) → ModO

A(K(ModO
A(C⊗∞)⊗)), which implies the exis-

tence of a forgetful functor K(C⊗∞)→ ModO
A(K(ModO

A(C⊗∞)⊗)), and this is obviously false,

meaning that there is no fully faithful non-essentially surjective functor ModO
A(K(C⊗∞)) →

K(ModO
A(C⊗∞)⊗). When O⊗ = E⊗0 , this means that there is no fully faithful non-essentially

surjective functor K(C⊗∞)→ K(C⊗∞).

(2’) There is a fully faithful non-essentially surjective functor K(ModO
A(C⊗∞)⊗)→ ModO

A(K(C⊗∞)).

This reduces to the statement that there is a fully faithful non-essentially surjective functor

K(C⊗∞) → K(C⊗∞), and we just showed this to be false. This implies that the only left

option must hold true:

(3’) There is a fully faithful essentially surjective functor K(ModO
A(C⊗∞)⊗)→ ModO

A(K(C⊗∞)).

We will state this as a theorem to emphasize that this is a very important result:
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Theorem 0.2. There is a fully faithful essentially surjective functor K(ModO
A(C⊗∞)⊗)→ ModO

A(K(C⊗∞)).

Returning to derived categories, we see that we can define the derived category D(A) to be the

homotopy category hK(ModO
A(C⊗∞)⊗), because of two reasons:

(i) K(ModO
A(C⊗∞)⊗) is a stable ∞-category, and so its homotopy category must have the struc-

ture of a triangulated category.

(ii) K(ModO
A(C⊗∞)⊗) has the structure of an ∞-operad of modules by Theorem 0.2, so its ho-

motopy category must be similar to the derived category of an algebra.

Derived Morita theory is concerned with the following question:

Question 0.3. When are the derived categories D(A) and D(A′) equivalent as triangulated cate-

gories?

In order to answer this question, we’ll introduce a model structure on the homotopy category

hK(ModO
A(C⊗∞)⊗).

The category hK(ModO
A(C⊗∞)⊗) admits finite limits and colimits, which allows us to define the

model structure on it. We will define the cofibrations and fibrations as the isomorphisms. Let

f : v → v′ be a morphism in ModO(C⊗∞)⊗. We call f a weak equivalence if for any map g : v → v′,

there is a 2-simplex:

v′
idv′ // v′

v

g
??

f

OO

We are now ready to state our theorem regarding the derived Morita theory of algebras over ∞-

operads:

Theorem 0.4. Let F : ModO
A(K(C⊗∞))→ ModO′

A′(K(C⊗∞)) be a functor that induces a map between

homotopy categories LF : hModO
A(K(C⊗∞)) → hModO′

A′(K(C⊗∞)), and hence a map between the

derived categories LF : D(A)→ D(A′). The following statements are equivalent:

(1) F is an equivalence of ∞-categories.

(2) LF is a Quillen equivalence.

(3) LF is a triangulated equivalence of derived categories.

We would now like to briefly discuss one more application of our equivalence theorem (Theorem

0.2) to a question asked by Gunnar Carlsson. Carlsson asked the following question (see [EM]):

what structure on a permutative category C would give K(C) a module structure over K(D), for D

a bipermutative category? We have already given an answer in the ∞-operadical context, at least

when C is bipermuatative. I am not sure whether our result can be used when C is not necessarily

bipermutative; perhaps one must use the theory of ∞-preoperads...
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