K-THEORY AND MORITA THEORY

SANATH DEVALAPURKAR

The Quillen Q-construction allosws us to define the K-theory of an exact 1-category \mathcal{C} . The K-theory functor $\mathbf{K} : \mathbf{Exact} \to \mathbf{Top}$, taking the category of exact 1-categories to the category of topological spaces, is defined by $\mathbf{K} : \mathcal{C} \mapsto \Omega |\mathbf{NQ}(\mathcal{C})|$. We may generalize and define an analog of the Quillen Q-construction for a colored operad \mathcal{M} satisfying certain conditions, where the K-theory $\mathbf{K} : \mathbf{A} \to \mathbf{Sp}$ takes a subcategory \mathbf{A} of the category of colored operads \mathbf{Op} to the category of spectra \mathbf{Sp} . It is natural to generalize in a different way, from exact 1-categories to exact ∞ -categories, to define the Quillen Q-construction. Barwick has done so in [Bar], which we now outline.

Let X be a simplicial set; we can define another simplicial set by $(\mathscr{O}(X))_n := \operatorname{Map}(\Delta^n \star \Delta^n, X)$, where \star is the concatenation operator on Δ . The Quillen Q-construction uses $\mathscr{O}(\Delta^n)$, but in order to define the Quillen Q-construction, we have to define ambigressive pullbacks and ambigressive functors.

Let \mathcal{C}_{∞} be an exact ∞ -category, and let $\mathcal{C}_{\infty}^{!}$ and $\mathcal{C}_{\infty}^{\bullet}$ be full subcategories of \mathcal{C}_{∞} containing all the equivalences. Given a pullback square

we call it ambigressive if $X' \to Y'$ and $Y \to Y'$ are morphisms in $\mathcal{C}^!_{\infty}$ and $\mathcal{C}^{\bullet}_{\infty}$, respectively. We call a functor $\mathscr{O}(\Delta^n) \to \mathcal{C}_{\infty}$ ambigressive if for all integers $0 \le i \le k \le l \le j \le n$, the pullback square

$$\begin{array}{ccc} X_{ij} \longrightarrow X_{kj} \\ & & \downarrow \\ & & \downarrow \\ X_{il} \longrightarrow X_{kl} \end{array}$$

is ambigressive. We may now finally proceed to the Quillen Q-construction: define a simplicial set $\mathbf{Q}(\mathbb{C}_{\infty})$, whose n-simplices are the ambigressive functors $\mathscr{O}(\Delta^n)^{op} \to \mathbb{C}_{\infty}$. The K-theory is then simply $\Omega \mathbf{Q}(\mathbb{C}_{\infty})$, and this defines a functor from the ∞ -category \mathbf{Exact}_{∞} of exact ∞ -categories and exact functors between them to the ∞ -category $\mathbb{C}at_{\infty}$ of ∞ -categories.

Let \mathcal{C}_{∞} be an exact ∞ -category. If we equip it with a map $\mathcal{C}_{\infty} \to \mathcal{N}(\operatorname{Fin}_*)$ satisfying certain conditions that make it an ∞ -operad, we call \mathcal{C}_{∞} a unital ∞ -operad. To signify that it is equipped

Date: December 7, 2014.

²⁰¹⁰ Mathematics Subject Classification. Primary 18D05, 18D10, 18D50, 18D99, 18E10, 18E30, 19D06, 55N15, 55P43, 55P48, 55U40.

Key words and phrases. Algebraic K-theory, Higher Algebra, Morita Theory, Derived Categories of Rings, Ring Spectra, ∞ -Operads.

I would like to thank Dr. Marcy Robertson and Dr. David Carchedi for providing many suggestions to the content of this paper. I would also like to thank my parents for supporting me while this paper was being written.

with a map \mathcal{C}_{∞} , we will write it as $\mathcal{C}_{\infty}^{\otimes}$. Let $\mathbf{Exact}_{\infty}^{\otimes}$ be the subcategory of \mathbf{Exact}_{∞} spanned by the unital ∞ -category. The K-theory construction for exact ∞ -categories passes over to unital ∞ categories, so we can ask what additional structure/properties $\mathbf{K}(\mathcal{C}_{\infty}^{\otimes})$ have? This can be answered by looking at a pattern in the codomain of the K-theory functors; a simple analysis shows that for ∞ -operads, the K-theory takes $\mathbf{K} : \mathbf{Exact}_{\infty}^{\otimes} \to \operatorname{Cat}_{\infty}^{\mathbf{Ex}}$, where $\operatorname{Cat}_{\infty}^{\mathbf{Ex}}$ is the ∞ -category of stable ∞ -categories and exact ∞ -functors between them. Note that what we call exact functors are exact functors between exact ∞ -categories, in the sense of [Bar], and what we call exact ∞ -functors are exact ∞ -functors between stable ∞ -categories.

Consider the homotopy category $h\mathbf{K}(\mathbb{C}_{\infty}^{\otimes})$, which, because $\mathbf{K}(\mathbb{C}_{\infty}^{\otimes})$ is a stable ∞ -category, is a triangulated category. We would like to develop some sort of derived Morita theory, and so we'd like to consider the homotopy category of some ∞ -operad of module objects.

Lurie has defined such objects in [Lura]; more specifically, he has defined an ∞ -operad Mod^{\heartsuit}($\mathbb{C}^{\otimes}_{\infty}$)^{\otimes} of \mathbb{O} -module objects over $\mathbb{C}^{\otimes}_{\infty}$, and an ∞ -category $\mathcal{A}lg_{/\mathbb{O}}(\mathbb{C}^{\otimes}_{\infty})$ of \mathbb{O} -algebra objects over $\mathbb{C}^{\otimes}_{\infty}$, where \mathbb{O}^{\otimes} is an ∞ -category. We can define the ∞ -operad $\operatorname{Mod}^{\mathcal{O}}_{A}(\mathbb{C}^{\otimes}_{\infty})^{\otimes}$ of \mathbb{O} -module objects over an \mathbb{O} algebra object A over $\mathbb{C}^{\otimes}_{\infty}$ as the pushout $\operatorname{Mod}^{\mathcal{O}}(\mathbb{C}^{\otimes}_{\infty})^{\otimes} \prod_{\mathcal{A}lg_{/\mathbb{O}}(\mathbb{C}^{\otimes}_{\infty})} \{A\}$. Since we'd like to provide a derived category structure on $\mathbf{hK}(\mathbb{C}^{\otimes}_{\infty})$ through $\operatorname{Mod}^{\mathcal{O}}_{A}(\mathbb{C}^{\otimes}_{\infty})^{\otimes}$, we will study $\operatorname{Mod}^{\mathcal{O}}_{A}(\mathbb{C}^{\otimes}_{\infty})^{\otimes}$ first. We provide two interesting properties that it satisfies, one of which will help us define the derived category of an algebra over an ∞ -operad.

The first follows from induction using [Lura, Corollary 3.4.1.9]:

Theorem 0.1. Let $(\operatorname{Mod}_{A}^{\mathbb{O}})^{n}(\mathbb{C}_{\infty}^{\otimes})$ denote $\operatorname{Mod}_{A}^{\mathbb{O}}(\mathbb{C}_{\infty}^{\otimes})^{\otimes}$ iterated *n* times. Then $(\operatorname{Mod}_{A}^{\mathbb{O}})^{n}(\mathbb{C}_{\infty}^{\otimes})$ is equivalent to $\operatorname{Mod}_{A}^{\mathbb{O}}(\mathbb{C}_{\infty}^{\otimes})^{\otimes}$ for any $n \geq 1$.

Consider the identity morphism $\operatorname{id}_{\mathbf{K}(\mathbb{C}_{\infty}^{\otimes})} : \mathbf{K}(\mathbb{C}_{\infty}^{\otimes}) \to \mathbf{K}(\mathbb{C}_{\infty}^{\otimes})$, which is an equivalence of categories. Since $\operatorname{Mod}_{A}^{\mathbb{O}}(\mathbb{C}_{\infty}^{\otimes})^{\otimes} \simeq \mathbb{C}_{\infty}^{\otimes}$ when $\mathbb{O}^{\otimes} = \mathbb{E}_{0}^{\otimes}$, we expect one of the following three statements to hold true:

- (1) There is a fully faithful non-essentially surjective functor $\operatorname{Mod}_{A}^{\mathcal{O}}(\mathbf{K}(\mathfrak{C}_{\infty}^{\otimes})) \to \mathbf{K}(\operatorname{Mod}_{A}^{\mathcal{O}}(\mathfrak{C}_{\infty}^{\otimes})^{\otimes}).$
- (2) There is a fully faithful non-essentially surjective functor $\mathbf{K}(\operatorname{Mod}_{A}^{\mathcal{O}}(\mathcal{C}_{\infty}^{\otimes})^{\otimes}) \to \operatorname{Mod}_{A}^{\mathcal{O}}(\mathbf{K}(\mathcal{C}_{\infty}^{\otimes}))$.
- (3) There is a fully faithful essentially surjective functor $\mathbf{K}(\operatorname{Mod}_{A}^{\mathcal{O}}(\mathcal{C}_{\infty}^{\otimes})^{\otimes}) \to \operatorname{Mod}_{A}^{\mathcal{O}}(\mathbf{K}(\mathcal{C}_{\infty}^{\otimes})).$

We will proceed to inspect each of these points separately:

- (1') There is a fully faithful non-essentially surjective functor $\operatorname{Mod}_A^{\mathcal{O}}(\mathbf{K}(\mathbb{C}_{\infty}^{\otimes})) \to \mathbf{K}(\operatorname{Mod}_A^{\mathcal{O}}(\mathbb{C}_{\infty}^{\otimes})^{\otimes})$. This induces a map $\operatorname{Mod}_A^{\mathcal{O}}(\mathbf{K}(\mathbb{C}_{\infty}^{\otimes})) \to \operatorname{Mod}_A^{\mathcal{O}}(\mathbf{K}(\operatorname{Mod}_A^{\mathcal{O}}(\mathbb{C}_{\infty}^{\otimes})^{\otimes}))$, which implies the existence of a forgetful functor $\mathbf{K}(\mathbb{C}_{\infty}^{\otimes}) \to \operatorname{Mod}_A^{\mathcal{O}}(\mathbf{K}(\operatorname{Mod}_A^{\mathcal{O}}(\mathbb{C}_{\infty}^{\otimes})^{\otimes}))$, and this is obviously false, meaning that there is no fully faithful non-essentially surjective functor $\operatorname{Mod}_A^{\mathcal{O}}(\mathbf{K}(\mathbb{C}_{\infty}^{\otimes})) \to \mathbf{K}(\operatorname{Mod}_A^{\mathcal{O}}(\mathbb{C}_{\infty}^{\otimes})^{\otimes})$. When $\mathcal{O}^{\otimes} = \mathbb{E}_0^{\otimes}$, this means that there is no fully faithful non-essentially surjective functor $\mathbf{K}(\mathbb{C}_{\infty}^{\otimes}) \to \mathbf{K}(\mathbb{C}_{\infty}^{\otimes})$.
- (2') There is a fully faithful non-essentially surjective functor $\mathbf{K}(\operatorname{Mod}_{A}^{\mathcal{O}}(\mathfrak{C}_{\infty}^{\otimes})^{\otimes}) \to \operatorname{Mod}_{A}^{\mathcal{O}}(\mathbf{K}(\mathfrak{C}_{\infty}^{\otimes}))$. This reduces to the statement that there is a fully faithful non-essentially surjective functor $\mathbf{K}(\mathfrak{C}_{\infty}^{\otimes}) \to \mathbf{K}(\mathfrak{C}_{\infty}^{\otimes})$, and we just showed this to be false. This implies that the only left option must hold true:
- (3') There is a fully faithful essentially surjective functor $\mathbf{K}(\mathrm{Mod}_A^{\mathcal{O}}(\mathcal{C}_{\infty}^{\otimes})^{\otimes}) \to \mathrm{Mod}_A^{\mathcal{O}}(\mathbf{K}(\mathcal{C}_{\infty}^{\otimes})).$

We will state this as a theorem to emphasize that this is a very important result:

Theorem 0.2. There is a fully faithful essentially surjective functor $\mathbf{K}(\operatorname{Mod}_{A}^{\mathcal{O}}(\mathbb{C}_{\infty}^{\otimes})^{\otimes}) \to \operatorname{Mod}_{A}^{\mathcal{O}}(\mathbf{K}(\mathbb{C}_{\infty}^{\otimes})).$

Returning to derived categories, we see that we can define the derived category $\mathcal{D}(A)$ to be the homotopy category h $\mathbf{K}(\operatorname{Mod}_{A}^{\mathcal{O}}(\mathbb{C}_{\infty}^{\otimes})^{\otimes})$, because of two reasons:

- (i) $\mathbf{K}(\operatorname{Mod}_{A}^{\mathbb{O}}(\mathbb{C}_{\infty}^{\otimes})^{\otimes})$ is a stable ∞ -category, and so its homotopy category must have the structure of a triangulated category.
- (ii) $\mathbf{K}(\operatorname{Mod}_{A}^{\mathcal{O}}(\mathbb{C}_{\infty}^{\otimes})^{\otimes})$ has the structure of an ∞ -operad of modules by Theorem 0.2, so its homotopy category must be similar to the derived category of an algebra.

Derived Morita theory is concerned with the following question:

Question 0.3. When are the derived categories $\mathcal{D}(A)$ and $\mathcal{D}(A')$ equivalent as triangulated categories?

In order to answer this question, we'll introduce a model structure on the homotopy category $h\mathbf{K}(Mod_{\mathcal{A}}^{\mathcal{O}}(\mathcal{C}_{\infty}^{\otimes})^{\otimes}).$

The category $h\mathbf{K}(\operatorname{Mod}_A^{\mathcal{O}}(\mathbb{C}_{\infty}^{\otimes})^{\otimes})$ admits finite limits and colimits, which allows us to define the model structure on it. We will define the cofibrations and fibrations as the isomorphisms. Let $f: \overline{v} \to \overline{v}'$ be a morphism in $\operatorname{Mod}^{\mathcal{O}}(\mathbb{C}_{\infty}^{\otimes})^{\otimes}$. We call f a weak equivalence if for any map $g: \overline{v} \to \overline{v}'$, there is a 2-simplex:

We are now ready to state our theorem regarding the derived Morita theory of algebras over ∞ operads:

Theorem 0.4. Let $F : \operatorname{Mod}_{A}^{\mathcal{O}}(\mathbf{K}(\mathbb{C}_{\infty}^{\otimes})) \to \operatorname{Mod}_{A'}^{\mathcal{O}'}(\mathbf{K}(\mathbb{C}_{\infty}^{\otimes}))$ be a functor that induces a map between homotopy categories $\mathbf{L}F : \operatorname{hMod}_{A}^{\mathcal{O}}(\mathbf{K}(\mathbb{C}_{\infty}^{\otimes})) \to \operatorname{hMod}_{A'}^{\mathcal{O}'}(\mathbf{K}(\mathbb{C}_{\infty}^{\otimes}))$, and hence a map between the derived categories $\mathbf{L}F : \mathcal{D}(A) \to \mathcal{D}(A')$. The following statements are equivalent:

- (1) F is an equivalence of ∞ -categories.
- (2) $\mathbf{L}F$ is a Quillen equivalence.
- (3) $\mathbf{L}F$ is a triangulated equivalence of derived categories.

We would now like to briefly discuss one more application of our equivalence theorem (Theorem 0.2) to a question asked by Gunnar Carlsson. Carlsson asked the following question (see [EM]): what structure on a permutative category \mathcal{C} would give $\mathbf{K}(\mathcal{C})$ a module structure over $\mathbf{K}(\mathcal{D})$, for \mathcal{D} a bipermutative category? We have already given an answer in the ∞ -operadical context, at least when \mathcal{C} is bipermutative. I am not sure whether our result can be used when \mathcal{C} is not necessarily bipermutative; perhaps one must use the theory of ∞ -preoperads...

References

[Bar] Clark Barwick. On the algebraic K-theory of higher categories. *Journal of Topology*. To appear.
[BM08] Clemens Berger and Ieke Moerdijk. On the derived category of an algebra over an operad, 2008.
[DS02] Daniel Dugger and Brooke Shipley. K-theory and derived equivalences, 2002.

- [EM] Anthony Elmendorf and Mike Mandell. Permuatative categories as a model of connective stable homotopy. In *Structured ring spectra and their applications*.
- [Lura] Jacob Lurie. Higher algebra. Available online in PDF.
- [Lurb] Jacob Lurie. Rotation invariance in K-theory. Available online in PDF.
- [Lur12] Jacob Lurie. Higher Topos Theory. Princeton University Press, Princeton, New Jersey, 2012.
- [Sch] Stefan Schwede. Morita theory in abelian, derived, and stable model categories. In *Structured ring spectra* and their applications.

20501 ANZA AVENUE, TORRANCE, CA 90503 *E-mail address*: devalapurkarsanath@gmail.com