K-THEORY AND MORITA THEORY

SANATH DEVALAPURKAR

The Quillen Q-construction allosws us to define the K-theory of an exact 1-category C. The
K-theory functor K : Exact — Top, taking the category of exact 1-categories to the category of
topological spaces, is defined by K : € — Q|NQ(C)|. We may generalize and define an analog of
the Quillen Q-construction for a colored operad M satisfying certain conditions, where the K-theory
K : A — Sp takes a subcategory A of the category of colored operads Op to the category of spectra
Sp. It is natural to generalize in a different way, from exact 1-categories to exact oo-categories, to
define the Quillen Q-construction. Barwick has done so in [Bar]|, which we now outline.

Let X be a simplicial set; we can define another simplicial set by (€(X)), := Map(A™ x A", X),
where * is the concatenation operator on A. The Quillen Q-construction uses &(A™), but in order
to define the Quillen Q-construction, we have to define ambigressive pullbacks and ambigressive
functors.

Let €. be an exact oo-category, and let CL_ and €% be full subcategories of €., containing all

the equivalences. Given a pullback square

X —Y

L

X —Y'

we call it ambigressive if X’ — Y’ and Y — Y’ are morphisms in C._ and €%_, respectively. We call

a functor 0(A™) — €., ambigressive if for all integers 0 < i < k <[ < j < n, the pullback square

L

Xy — X

is ambigressive. We may now finally proceed to the Quillen Q-construction: define a simplicial set
Q(Cs), whose n-simplices are the ambigressive functors &(A™)°? — €. The K-theory is then
simply QQ(Cw ), and this defines a functor from the co-category Exact, of exact oo-categories and
exact functors between them to the oo-category Cats, of co-categories.

Let Gy be an exact oco-category. If we equip it with a map Cs — N(Fin,) satisfying certain

conditions that make it an oco-operad, we call C., a unital co-operad. To signify that it is equipped
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with a map Co, we will write it as C2. Let ExactZ be the subcategory of Exact,, spanned by
the unital co-category. The K-theory construction for exact oco-categories passes over to unital co-
categories, so we can ask what additional structure/properties K(€2 ) have? This can be answered
by looking at a pattern in the codomain of the K-theory functors; a simple analysis shows that for
oo-operads, the K-theory takes K : Exact® — CatEX, where CatEX is the oo-category of stable
oo-categories and exact co-functors between them. Note that what we call exact functors are exact
functors between exact co-categories, in the sense of [Bar], and what we call exact oco-functors are
exact oo-functors between stable co-categories.

Consider the homotopy category hK(CZ), which, because K(C%) is a stable oo-category, is a
triangulated category. We would like to develop some sort of derived Morita theory, and so we’d
like to consider the homotopy category of some oco-operad of module objects.

Lurie has defined such objects in [Lura]; more specifically, he has defined an oo-operad Mod® (C2))®
of O-module objects over CF, and an oo-category Alg,o(C%) of O-algebra objects over C%,, where
0% is an oco-category. We can define the oo-operad Modg(eg)@’ of O-module objects over an O-
algebra object A over €€ as the pushout Mod? (C2)® ng/o(eg){A}. Since we’d like to provide
a derived category structure on hK(€2) through Mod9(C2)®, we will study Mod$(C2)® first.
We provide two interesting properties that it satisfies, one of which will help us define the derived
category of an algebra over an oc-operad.

The first follows from induction using [Lura, Corollary 3.4.1.9]:

Theorem 0.1. Let (Mod9)™(€2) denote Mod$(C2)® iterated n times. Then (Mod$)™(C2) is
equivalent to Mod$ (C2)® for any n > 1.

Consider the identity morphism idg ee : K(C2) — K(C2), which is an equivalence of cate-
gories. Since Mod9(C2)® ~ €2 when 0% = EY, we expect one of the following three statements
to hold true:

(1) There is a fully faithful non-essentially surjective functor Mod$ (K(C2)) — K(Mod9(C2)®).

(2) There is a fully faithful non-essentially surjective functor K(Mod§ (€€)®) — Mod9 (K (C2)).

(3) There is a fully faithful essentially surjective functor K(Mod$(€2)®) — Modq(K(€2)).

We will proceed to inspect each of these points separately:

(1) There is a fully faithful non-essentially surjective functor Mod$ (K (C2)) — K(Mod§ (€2 )®).
This induces a map Mod$(K(€2)) — Mod9(K(Mod9(C2)®)), which implies the exis-
tence of a forgetful functor K(C2) — Mod$ (K (Mod4 (€2 )®)), and this is obviously false,
meaning that there is no fully faithful non-essentially surjective functor Mod$ (K(C2)) —
K(Mod$(€2)®). When O® = E®, this means that there is no fully faithful non-essentially
surjective functor K(C%2) — K(C2).

(2)) There is a fully faithful non-essentially surjective functor K(Mod$ (€2)®) — Mod§(K(€2)).
This reduces to the statement that there is a fully faithful non-essentially surjective functor
K(C2) — K(C2), and we just showed this to be false. This implies that the only left
option must hold true:

(3") There is a fully faithful essentially surjective functor K(Mod§ (€2 )®) — Mod9(K(C2)).

We will state this as a theorem to emphasize that this is a very important result:
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Theorem 0.2. There is a fully faithful essentially surjective functor K(Mod$ (€2)®) — Mod9 (K (C2)).

Returning to derived categories, we see that we can define the derived category D(A) to be the

homotopy category hK(Mod§ (€ )®), because of two reasons:

(i) K(Mod§(€2)®) is a stable oo-category, and so its homotopy category must have the struc-
ture of a triangulated category.
(i) K(Mod9(C2)®) has the structure of an oo-operad of modules by Theorem 0.2, so its ho-

motopy category must be similar to the derived category of an algebra.

Derived Morita theory is concerned with the following question:

Question 0.3. When are the derived categories D(A) and D(A’) equivalent as triangulated cate-

gories?

In order to answer this question, we’ll introduce a model structure on the homotopy category
hK (Mod$§ (€2)®).

The category hK(Mod§ (€2 )®) admits finite limits and colimits, which allows us to define the
model structure on it. We will define the cofibrations and fibrations as the isomorphisms. Let
f:T — 7 be a morphism in Mod”(C2)®. We call f a weak equivalence if for any map g : 7 — ¥/,
there is a 2-simplex:

_ idgr _
v ——=v

1

We are now ready to state our theorem regarding the derived Morita theory of algebras over oo-

operads:

Theorem 0.4. Let F : Mod$ (K (€2 )) — Mod$, (K(CE)) be a functor that induces a map between
homotopy categories LF : hMod$ (K(€2)) — hMod%(K(Gg’;)), and hence a map between the
derived categories LF : D(A) — D(A’). The following statements are equivalent:

(1) F is an equivalence of co-categories.
(2) LF is a Quillen equivalence.

(3) LF is a triangulated equivalence of derived categories.

We would now like to briefly discuss one more application of our equivalence theorem (Theorem
0.2) to a question asked by Gunnar Carlsson. Carlsson asked the following question (see [EM]):
what structure on a permutative category € would give K(C) a module structure over K(D), for D
a bipermutative category? We have already given an answer in the oo-operadical context, at least
when € is bipermuatative. I am not sure whether our result can be used when € is not necessarily

bipermutative; perhaps one must use the theory of co-preoperads...
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