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Physics? M-theory?

M-theory?

M-theory is an 11-dimensional theory that is “compactified” on a
7-dimensional manifold M7, which (for supersymmetry) admits a parallel
spinor. Such manifolds are known as G2 manifolds, and have Riemannian
holonomy contained in the exceptional Lie group G2 ⊆ SO(7).

G2 manifolds are always Ricci-flat. They are 7-dimensional analogues
of Calabi-Yau 3-folds, which are the 6-dimensional compactification
spaces in 10-dimensional string theory.

They possess 3-dimensional “instantons”: associative submanifolds,
the analogue of J-holomorphic curves.

They possess 4-dimensional “branes”: coassociative submanifolds, the
analogue of special Lagrangian 3-folds.
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Physics? Mirror Symmetry?

Mirror Symmetry?

In type IIA/IIB string theory, very different Calabi-Yau 3-folds can
determine the same physics – this is mirror symmetry.

The Strominger–Yau–Zaslow conjecture describes a differential
geometric explanation/construction of mirror symmetry, motivated by
physical considerations (T-duality?).

SYZ: a Calabi-Yau 3-fold X should admit a fibration f : X → B over
a real 3-manifold B, whose generic fibre is a special Lagrangian torus.
To obtain the mirror, one “dualizes the non-singular fibres”, then
does something(?) to compactify and obtain “the mirror” X̂ .

A notion of “mirror symmetry” should(?) also exist for G2 manifolds.
Work of Acharya and others suggests that a G2 manifold M should
admit a fibration f : M → B over a real 3-manifold B, whose generic
fibres are coassociative tori or K3’s.

No one really knows how to do this yet.
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Physics? Singularities necessary for good physics?

Singularities necessary for good physics?

The simplest singularities that can be considered in physics are
isolated conical singularities.
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G2 manifolds Manifolds with G2 structure

Manifolds with G2 structure

Definition

Let M7 be a smooth 7-manifold. A G2 structure on M is a reduction of
the structure group of the frame bundle from GL(7,R) to G2 ⊂ SO(7).

A G2 structure exists if and only if M is orientable and spin, which is
equivalent to w1(M) = 0 and w2(M) = 0.

A G2 structure is encoded by a “non-degenerate” 3-form ϕ which
nonlinearly determines a Riemannian metric gϕ and an orientation.
We thus have a Hodge star operator ∗ϕ and dual 4-form ψ = ∗ϕϕ.

On a manifold (M, ϕ) with G2 structure, each tangent space TpM
can be canonically identified with the imaginary octonions O ∼= R7.
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G2 manifolds G2 manifolds

G2 manifolds

Definition

Let (M, ϕ) be a manifold with G2 structure. Let ∇ be the Levi-Civita
connection of gϕ. We say that (M, ϕ) is a G2 manifold if ∇ϕ = 0. This is
also called a torsion-free G2 structure, where T = ∇ϕ is the torsion.

Properties of G2 manifolds:

The holonomy Hol(gϕ) is contained in G2. If Hol(gϕ) = G2, then
(M, ϕ) is called an irreducible G2 manifold. A compact G2 manifold
is irreducible if and only if π1(M) is finite.

The metric gϕ is Ricci-flat.

G2 manifolds admit a parallel spinor. They play the role in M-theory
that Calabi-Yau 3-folds play in string theory.

A G2 structure is torsion-free if and only if dϕ = 0 and d ∗ϕϕ = 0.
(Fernàndez–Gray, 1982.) Both ϕ and ∗ϕϕ are calibrations.
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G2 manifolds Comparison with Kähler and Calabi-Yau geometry

Comparison with Kähler and Calabi-Yau geometry

G2 manifolds are very similar to Kähler manifolds.

Both admit calibrated submanifolds and connections.

Both admit a Dolbeault-type decomposition of their cohomology,
which implies restrictions on the topology.

However, unlike G2 manifolds, not all Kähler manifolds are Ricci-flat.
Those are the Calabi-Yau manifolds.

By the Calabi-Yau theorem, we have a topological characterization of
the Ricci-flat Kähler manifolds.

We are still very far from knowing sufficient topological conditions for
existence of a torsion-free G2 structure.
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G2 manifolds G2 geometry is more nonlinear

G2 geometry is more nonlinear

In Kähler geometry, the ∂∂̄ lemma often reduces first order systems of
PDEs to a single scalar equation.

The natural PDEs which arise in G2 geometry are usually first order
fully nonlinear systems.

In Kähler geometry, the Kähler form ω and the complex structure J
are essentially independent. Together they determine the metric g .

Therefore, Kähler geometry can be thought of as ‘decoupling’ into
complex geometry and symplectic geometry.

However, if M admits a G2 structure, the 3-form ϕ determines the
metric g in a nonlinear way:

(u ϕ) ∧ (v ϕ) ∧ ϕ = C gϕ(u, v) volϕ

Thus, we cannot ‘decouple’ G2 geometry in any way.
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G2 manifolds Examples of G2 manifolds

Examples of G2 manifolds

Complete noncompact examples

Bryant–Salamon (1989): these examples are total spaces of vector
bundles Λ2

−(S4), Λ2
−(CP2), /S(S3); they are all asymptotically conical:

far away from the base of the bundle, they “look like” metric cones.

There exist many other complete examples with “nice” asymptotic
behaviour at infinity, found by physicists.

These examples are all explicit cohomogeneity one G2 manifolds —
they have enough “symmetry” so that the nonlinear PDE reduces to
a system of fully nonlinear ODEs, which can often be solved exactly.

It can be shown (using the Bochner–Weitzenböck formula) that
compact examples cannot have any symmetry. So the construction of
compact examples is necessarily much more difficult.
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G2 manifolds Examples of G2 manifolds

Examples of G2 manifolds

Compact examples
These are all found using glueing techniques — constructing an “almost”
example and then proving there exists a genuine example by solving an
elliptic nonlinear PDE.

Joyce (1994) — analogue of the Kummer construction (glueing to
resolve orbifold singularities)

Kovalev (2000) — glueing asymptotically cylindrical manifolds
together after “twisting”

Corti–Haskins–Nördstom–Pacini (2012) — vast generalization of
Kovalev construction

Joyce–Karigiannis (2014?) — glueing a 3-dimensional family of
Eguchi-Hanson spaces
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G2 manifolds Examples of G2 manifolds

These compact constructions all invoke the following very general result.

Theorem (Joyce, 1994)

Let M be a compact manifold with a closed G2 structure ϕ such that the
torsion is sufficiently small. (One needs good control of the L14 norm of
the torsion and some other estimates.) Then there exists a torsion-free
G2 structure ϕ̃ close to ϕ in the C 0 norm, with [ϕ̃] = [ϕ] in H3(M,R).

Idea of the proof: Write ϕ̃ = ϕ+ dσ. Torsion-freeness of ϕ̃ is equivalent
to ∆dσ = Q(σ). Existence of a solution is established by iteration.

These constructions provide thousands of examples, but they are likely
only a very small part of the “landscape.”
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G2 manifolds Moduli space of compact G2 manifolds

Moduli space of compact G2 manifolds

Let M be the moduli space of torsion-free G2 structures on M,
modulo the appropriate notion of equivalence.

Theorem (Joyce, 1994)

The space M is a smooth manifold, and is locally diffeomorphic to an
open subset of the vector space H3(M,R).

Thus, deformations of compact G2 manifolds are unobstructed, and
the infinitesimal deformations have a topological interpretation.

The proof has the following ingredients:

[1] Banach space implicit function theorem

[2] Fredholm theory of elliptic operators

[3] Hodge theory

Ingredients [2] and [3] require compactness of M, and thus need to be
modified in any noncompact setting.
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G2 conifolds G2 cones

G2 cones

Definition

A G2 cone is a 7-manifold C = (0,∞)× Σ, with Σ compact, and a
torsion-free G2 structure ϕC with induced metric

gC = dr 2 + r 2gΣ (a Riemannian cone)

The link Σ of a G2 cone C is necessarily a compact strictly nearly
Kähler 6-manifold (also called a Gray manifold.)

These are almost Hermitian manifolds (Σ, J, g , ω) with c1(Σ) = 0,
such that

dω = −3Re(Ω) dIm(Ω) = 4 ∗ ω

There are only three known compact examples, all homogeneous, but
there are expected to exist many examples.
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There are three known examples of asymptotically conical G2 manifolds, whose asymptotic cones
have links given by the strictly nearly Kähler manifolds of Examples 2.6, 2.7, and 2.8, respectively.
They are all total spaces of vector bundles over a compact base. They were discovered by Bryant–
Salamon [5] and were the first examples of complete G2 manifolds.
Example 2.35. ⇤2

�(S4), the bundle of anti-self-dual 2-forms over the 4-sphere. This is a non-trivial
rank 3 vector bundle over the standard round S4. This AC G2 manifold is asymptotic to the cone
over the non-Kähler CP3 of Example 2.6, with rate ⌫ = �4.
Example 2.36. ⇤2

�(CP2), the bundle of anti-self dual 2-forms over the complex projective plane.
This is a non-trivial rank 3 vector bundle over the standard Fubini-Study CP2. This AC G2 manifold
is asymptotic to the cone over the complex flag manifold F1,2 of Example 2.7, also with rate ⌫ = �4.
Example 2.37. /S(S3), the spinor bundle of the 3-sphere. This is a trivial rank 4 vector bundle
over the standard round S3, hence is topologically S3 ⇥ R4. This AC G2 manifold is asymptotic to
the cone over the nearly Kähler S3 ⇥ S3 of Example 2.8, with rate ⌫ = �3.
Remark 2.38. Explicit formulas for the asymptotically conical G2 structures of Examples 2.35, 2.36,
and 2.37, as well as the fact that their rates are �4, �4, and �3, respectively, can be found in Bryant–
Salamon [5], and also in Atiyah–Witten [1]. We will not have need for these explicit formulas.

Next we discuss the AC analogue of Proposition 2.28, which is di↵erent in a very important way
which will lead to topological obstructions to our desingularization procedure.
Proposition 2.39. The two closed 3-forms h⇤('

N
) and '

C
on (R,1) ⇥ ⌃ represent the same

cohomology class in H3((R,1)⇥⌃, R) ⇠= H3(⌃, R) if the rate ⌫ satisfies ⌫ < �3. This also holds if
H3(⌃, R) = 0. Similarly the two closed 4-forms h⇤( 

N
) and  

C
on (R,1) ⇥ ⌃ represent the same

cohomology class in H4((R,1)⇥⌃, R) ⇠= H4(⌃, R) if the rate ⌫ satisfies ⌫ < �4. This also holds if
H4(⌃, R) = 0.

Proof. This follows immediately from |(h⇤('
M

) � '
C
)|g

C
= O(r⌫) and |(h⇤( 

M
) �  

C
)|g

C
= O(r⌫),

using Lemma 2.12. The second part of each statement is automatic.

Therefore, in contrast to the case of G2 manifolds with ICS as discussed in Proposition 2.28,
we cannot conclude that the cohomology classes [h⇤('

N
)] and [h⇤( 

N
)] are trivial in H3(⌃, R) and

H4(⌃, R), respectively, and indeed in general when the rate ⌫ is not su�ciently negative, they will
not be. This will introduce some obstructions to our glueing procedure, which are discussed in
Section 3.2. These observations lead us to make the following definition.
Definition 2.40. For an AC G2 manifold (N,'

N
, 

N
, g

N
), we define the cohomological invariants

�(N) 2 H3(⌃, R) and  (N) 2 H4(⌃, R) to be the cohomology classes [h⇤('
N

)] and [h⇤( 
N

)],
respectively. By Proposition 2.39, �(N) = 0 if the rate ⌫ < �3 and  (N) = 0 if ⌫ < �4.
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Conically singular (CS) G2 manifolds

Definition

Let M be a topological space with M = M \ {x1, . . . , xn} a noncompact
smooth 7-manifold. We say (M, ϕM) is an CS G2 manifold of rate
(ν1, . . . , νn), where νi > 0, asymptotic to the G2 cones (Ci , ϕCi

), if outside
of a compact set K ⊆ M, we have M \ K ∼= ⊔n

i=1(0,R)× Σi , and

∇k(ϕM − ϕCi
) = O(rνi−k

i ) as ri → 0 ∀k ≥ 0, i = 1, . . . , n

where ri is the distance to the vertex of Ci .

Definition 2.26. The space M is called a G2 manifold with isolated conical singularities, with cones
C1, . . . , Cn at x1, . . . , xn and rates µ1, . . . , µn, where each µi > 0, if all of the following holds:

• The smooth part M 0 is a G2 manifold with torsion-free G2 structure '
M

and metric g
M

.

• There are G2 cones (Ci,'Ci
, g

Ci
) with links ⌃i for all i = 1, . . . , n.

• There is a compact subset K ⇢ M 0 such that M 0\K is a union of open sets S1, . . . , Sn whose
closures S̄1, . . . , S̄n in M are all disjoint in M .

• There is an " 2 (0, 1), and for each i = 1, . . . , n, there is a smooth function fi : (0, ")⇥⌃i ! M 0

that is a di↵eomorphism of (0, ")⇥ ⌃i onto Si.

• The pullback f⇤i ('
M

) is a torsion-free G2 structure on the subset (0, ")⇥⌃i of Ci. We require
that this approach the torsion-free G2 structure '

Ci
in a C1 sense, with rate µi > 0. This

means that
|rj

Ci
(f⇤i ('

M
)� '

Ci
)|g

Ci
= O(rµi�j) 8j � 0 (2.41)

in (0, ")⇥ ⌃i. Note that all norms and derivatives are computed using the cone metric g
Ci

.

The third condition ensures that the singular points are isolated in M . It is easy to see that the
holonomy necessarily has to be exactly G2, because the holonomy of the asymptotic cones is exactly
G2, and the holonomy of M must be at least as big as the holonomy of its asymptotic cones, but it
is contained in G2 since '

M
is a torsion-free G2 structure.

Since the metric g
M

and the 4-form  
M

are pointwise smooth functions of '
M

, by Taylor’s theorem
we also have

|rj
Ci

(f⇤i (g
M

)� g
Ci

)|g
Ci

= O(rµi�j) 8j � 0,

|rj
Ci

(f⇤i ( 
M

)�  
Ci

)|g
Ci

= O(rµi�j) 8j � 0.
(2.42)

A G2 manifold with isolated conical singularities will sometimes be called a G2 manifold with ICS
for brevity. Figure 2.1 shows a compact manifold with isolated conical singularities.

x1

x2

M

x3

Figure 2.1: A compact manifold M with isolated conical singularities

Remark 2.27. It can be shown that if we assume that (2.41) holds only for j = 0 and j = 1, then there
exists particular di↵eomorphisms fi that satisfy (2.41) for all j � 0. These special di↵eomorphisms
satisfy a gauge-fixing condition which forces them to solve (in some sense) an elliptic equation, and
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G2 conifolds Conically singular (CS) G2 manifolds

Conically singular (CS) G2 manifolds

Physics of M-theory/supergravity requires compact CS G2 manifolds.

Examples:

There are no known examples.
They are expected to exist in abundance. (see below and next slide)
Possible construction of CS G2 manifolds by generalizing
Joyce–Karigiannis glueing construction. (2015?)

CS G2 manifolds should arise as boundary points in the moduli space
of compact smooth G2 manifolds, as singular limits of families of
compact smooth G2 manifolds.
One way to show this, and thus to provide evidence for their likely
existence, is to prove that they would often be desingularizable into
families of compact smooth G2 manifolds.
A way to desingularize them is to cut out a neighbourhood of the
singular points, and glue in AC G2 manifolds, such as the
Bryant–Salamon examples.
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Desingularization of CS G2 manifolds

Theorem (Karigiannis, Geometry & Topology, 2009)

Let M be a CS G2 manifold with isolated conical singularities x1, . . . , xn,
modelled on G2 cones C1, . . . ,Cn. Suppose that N1, . . . ,Nn are AC
G2 manifolds modelled on the same G2 cones, with all rates νi ≤ −3.

If a certain necessary topological condition (relating all the singular points)
is satisfied, then the Ni ’s can always be glued to M\{x1, . . . , xn} to obtain
a smooth compact G2 manifold.
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U3,s

L1

L2
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K = M 0\ t3
i=1 Si

Figure 3.3: The smooth compact manifold M̃s

3.2 Construction of the G2 structure 's on M̃s

We will now construct a closed G2 structure 's on M̃s, by patching together the torsion-free G2 struc-
tures on M 0 and the Ni’s. Strictly speaking, we will actually construct a pair ('s, s), which are
non-degenerate closed 3-forms and 4-forms on M̃s, respectively, but  s will not equal ⇤g's

's, al-
though it will be ‘close’ in a sense to be made precise, when s is su�ciently small. It is from this pair
that we will be able to measure the torsion of 's. We will see that sometimes the construction of the
pair ('s, s) will only be possible if certain topological conditions are satisfied. Finally in Section 3.3
we will show that for s su�ciently small, 's has small enough torsion to apply Theorem 3.1.

In this section we will require two analytic results, Theorems 3.6 and 3.8, whose proofs will be
postponed until Sections 6 and 5, respectively, as they require Fredholm theory on weighted Sobolev
spaces and are best treated separately.

The basic idea behind the construction of the pair ('s, s) on M̃s is that we need to smoothly
interpolate between the pair ('

Ni,s
, 

Ni,s
) on Ni,s and the pair ('

M
, 

M
) for each i = 1, . . . , n. To be

able to do this, we first need a good asymptotic expansion of the G2 structure near infinity for an
asymptotically conical G2 manifold.
Definition 3.3. Let Ni be an AC G2 manifold, with di↵eomorphism hi : (R,1) ⇥ ⌃i ! Ni\Li.
We say that hi satisfies the gauge-fixing condition if h⇤

i ('Ni
)� '

Ci
lies in ⌦3

27 with respect to '
Ci

.
Remark 3.4. The reason for making this definition is the following. One can show that if the
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Deformation theory of G2 conifolds

Understanding the moduli space of AC G2 manifolds tells us
something about how many ways we can desingularize a CS
G2 manifold.

Understanding the moduli space of CS G2 manifolds tells us
something about how much of the “boundary” of the moduli space of
compact smooth G2 manifolds consists of CS manifolds.

Definition

Let M be a G2 conifold of rate ν. Define Mν to be the moduli space of
all torsion-free G2 structures on M, asymptotic to the same G2 cones at
the ends, with the same rates νi , modulo the action of diffeomorphisms
which preserve this condition.

There are natural maps Υk : Hk(M)→ ⊕n
i=1Hk(Σi ). Let Ki (λ) be the

space of homogeneous closed and coclosed 3-forms on Ci of rate λ.
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Deformation theory of G2 conifolds

Theorem (Karigiannis–Lotay, 2012)

For generic ν (away from a finite set of “critical rates”):

In the AC case with ν ∈ (−4,−5
2 ), the moduli space Mν is a smooth

manifold with dimMν equal to

dim H3
cs(M); −4 < ν < −3

dim H3
cs(M) + rank(Υ3); −3 < ν < −3 + ε

dim H3
cs(M) + rank(Υ3) +

X
λ∈(−3,ν)

dim K(λ); −3 + ε < ν < −
5

2

In the AC case with ν < −4, the moduli space may be obstructed,
and its virtual dimension v- dimMν is

dim H3
cs(M) − rank(Υ4); −4 − ε < ν < −4

dim H3
cs(M) − rank(Υ4) −

X
λ∈(ν,−4)

dim K(λ); ν < −4 − ε
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Deformation theory of G2 conifolds

Theorem (Karigiannis–Lotay, 2012)

For generic ν = (ν1, . . . , νn):

In the CS case, one must define a reduced moduli space M̌ν , which
in many cases equals Mν , because of a technical issue with the “slice
theorem”. The reduced moduli space may be obstructed, and its
virtual dimension v- dimM̌ν is

dim H3(M) − rank(Υ4) −
nX

i=1

X
λ∈(−3,νi )

dim Ki (λ)

In all cases, the obstruction space is a space of forms on the cones, of
degree 2 + 4, which are in the kernel of d + d∗ but whose pure degree
components are not independently closed and coclosed.
The proof uses the Lockhart–McOwen machinery of weighted Sobolev
spaces and its associated Fredholm theory, plus new Hodge-theoretic
results in this context, and other G2 specific ingredients (surjectivity
of Dirac operator, L2 harmonic 1-forms are parallel, more ...)
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G2 conifolds Applications

Applications

[1] The Bryant–Salamon examples are rigid as AC G2 manifolds. That is,
they have no deformations, apart from trivial scalings.

[2] If a CS G2 manifold has singularities whose links are all from 2 of the 3
known examples (either S3 × S3 or CP3) then the obstructions vanish,
and M̌ν =Mν , so the CS moduli space is smooth. This remains true
if we also allow singularities with links from the other known example,
SU(3)/T 2, provided it has no strictly nearly Kähler deformations.

[3] In such cases, the dimension of the CS moduli space is exactly one less
than the dimension of the moduli space of compact smooth
desingularizations of the conifold, so the CS singularities are the
“highest dimensional stratum” of the boundary. That is, “most” of
the ways the desingularized G2 manifold can become singular is to
develop such isolated conical singularities.

[4] Statements [2] and [3] will be true in general if certain conjectures
about the spectrum of the Laplacian on forms are true for all compact
strictly nearly Kähler 6-manifolds.
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A new construction of compact G2 manifolds

A new construction

of compact G2 manifolds
(which may possibly generalize to construct compact CS G2 manifolds)
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A new construction of compact G2 manifolds [Step 1] Construct an orbifold bM
[Step 1] Construct an orbifold M̂

Let (N6, g , ω,Ω, J) be a compact Calabi-Yau manifold admitting an
antiholomorpic isometric involution τ :

τ∗(g) = g , τ∗(ω) = −ω, τ∗(Ω) = Ω, τ∗(J) = −J.

There exist many such manifolds. For example, on a quintic in CP4

with real coefficients, complex conjugation yields such an involution.

Define M7 = N6 × S1. Then

ϕ = Re(Ω) + dθ ∧ ω
is a torsion-free G2 structure on M (with holonomy SU(3) ( G2.)

Define σ : M → M by σ(p, θ) = (τ(p),−θ). Then σ is an involution
of M such that σ∗(ϕ) = ϕ. The quotient space M̂ = M/〈σ〉 is a
G2 orbifold, with singularities locally of the form R3 × (C2/{±1}).

The singular set L3 = A3 × {±1}, where A3 = Fix(τ) is a compact
special Lagrangian submanifold of N6, and L is totally geodesic in M.

26/36



A new construction of compact G2 manifolds [Step 1] Construct an orbifold bM
[Step 1] Construct an orbifold M̂

Let (N6, g , ω,Ω, J) be a compact Calabi-Yau manifold admitting an
antiholomorpic isometric involution τ :

τ∗(g) = g , τ∗(ω) = −ω, τ∗(Ω) = Ω, τ∗(J) = −J.

There exist many such manifolds. For example, on a quintic in CP4

with real coefficients, complex conjugation yields such an involution.

Define M7 = N6 × S1. Then

ϕ = Re(Ω) + dθ ∧ ω
is a torsion-free G2 structure on M (with holonomy SU(3) ( G2.)

Define σ : M → M by σ(p, θ) = (τ(p),−θ). Then σ is an involution
of M such that σ∗(ϕ) = ϕ. The quotient space M̂ = M/〈σ〉 is a
G2 orbifold, with singularities locally of the form R3 × (C2/{±1}).

The singular set L3 = A3 × {±1}, where A3 = Fix(τ) is a compact
special Lagrangian submanifold of N6, and L is totally geodesic in M.

26/36



A new construction of compact G2 manifolds [Step 1] Construct an orbifold bM
[Step 1] Construct an orbifold M̂

Let (N6, g , ω,Ω, J) be a compact Calabi-Yau manifold admitting an
antiholomorpic isometric involution τ :

τ∗(g) = g , τ∗(ω) = −ω, τ∗(Ω) = Ω, τ∗(J) = −J.

There exist many such manifolds. For example, on a quintic in CP4

with real coefficients, complex conjugation yields such an involution.

Define M7 = N6 × S1. Then

ϕ = Re(Ω) + dθ ∧ ω
is a torsion-free G2 structure on M (with holonomy SU(3) ( G2.)

Define σ : M → M by σ(p, θ) = (τ(p),−θ). Then σ is an involution
of M such that σ∗(ϕ) = ϕ. The quotient space M̂ = M/〈σ〉 is a
G2 orbifold, with singularities locally of the form R3 × (C2/{±1}).

The singular set L3 = A3 × {±1}, where A3 = Fix(τ) is a compact
special Lagrangian submanifold of N6, and L is totally geodesic in M.

26/36



A new construction of compact G2 manifolds [Step 1] Construct an orbifold bM
[Step 1] Construct an orbifold M̂

Let (N6, g , ω,Ω, J) be a compact Calabi-Yau manifold admitting an
antiholomorpic isometric involution τ :

τ∗(g) = g , τ∗(ω) = −ω, τ∗(Ω) = Ω, τ∗(J) = −J.

There exist many such manifolds. For example, on a quintic in CP4

with real coefficients, complex conjugation yields such an involution.

Define M7 = N6 × S1. Then

ϕ = Re(Ω) + dθ ∧ ω
is a torsion-free G2 structure on M (with holonomy SU(3) ( G2.)

Define σ : M → M by σ(p, θ) = (τ(p),−θ). Then σ is an involution
of M such that σ∗(ϕ) = ϕ. The quotient space M̂ = M/〈σ〉 is a
G2 orbifold, with singularities locally of the form R3 × (C2/{±1}).

The singular set L3 = A3 × {±1}, where A3 = Fix(τ) is a compact
special Lagrangian submanifold of N6, and L is totally geodesic in M.

26/36



A new construction of compact G2 manifolds [Step 2] Glue in a family of Eguchi-Hanson spaces

[Step 2] Glue in a family of Eguchi-Hanson spaces

We want to cut out a neighbourhood of the singular locus L in M̂ and
glue in a noncompact smooth manifold to get a smooth compact
7-manifold M̃, which hopefully will admit a closed G2 structure with
small enough torsion, to to apply Joyce’s existence theorem.

As L is compact in M, there exists an open neighbourhood U ⊃ L of
L in M which is diffeomorphic to a neighbourhood of the zero section
in the normal bundle N(L) of L in M, via the exponential map.
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A new construction of compact G2 manifolds [Step 2] Glue in a family of Eguchi-Hanson spaces

The submanifold L is an associative submanifold. This implies that,
given a nonvanishing 1-form α on L, the normal bundle N(L) is
actually a C2 bundle over L, and the above diffeomorphism descends
to identify M̂ with P = N(L)/{±1} near L.

The fibres of P = N(L)/{±1} are C2/{±1}. We resolve P to P̃ with

a ‘fibre-wise blow-up’, replacing each fibre with ˜C2/{±1} ∼= T ∗S2.
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A new construction of compact G2 manifolds [Step 2] Glue in a family of Eguchi-Hanson spaces

Each fibre T ∗S2 admits an S2 × (0,∞) family of Eguchi-Hanson
metrics (holonomy SU(2) metrics) that are parametrized by a choice
of complex structure on R4 = H (a unit vector in R3) and a scaling.

In fact N(L) is trivial, so P = N(L)/{±1} ∼= L× (C2/{±1}). If in
addition L ∼= T 3, then we could take any E-H metric on T ∗S2 and
the resolution P̃ ∼= L×T ∗S2 would admit a torsion-free G2 structure.

In general, the singular set L � T 3, so there does not exist a

canonical torsion-free G2 structure on P̃.

Since S2 × (0,∞) ∼= R3\{0}, the particular choice of E-H metric in
each fibre naturally corresponds to our nonvanishing 1-form α on L.

We can use α to construct a closed G2 structure ϕeP on P̃ with small
torsion, but for the torsion to have any chance of being small enough,
it is necessary that dα = 0 and d∗α = 0. For now, let us assume that
we have such a nowhere vanishing harmonic 1-form α.
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A new construction of compact G2 manifolds [Step 3] Construct a compact smooth manifold eM
[Step 3] Construct a compact smooth manifold M̃

We construct a compact smooth manifold M̃ as follows. Far from the
zero section, identify P with M̂ using the exponential map. Close to
the zero section, identify P with P̃ using the resolution map.

There is a “canonical” G2 structure ϕ on P obtained by taking the
constant term in an expansion of ϕ bM in powers of t, the distance to L.

We want to construct a closed G2 structure ϕ̃ on M̃ by interpolating
between ϕ bM and ϕeP using ϕ. We use the metric g of ϕ to measure

the torsion of ϕ̃, since we cannot compare M̂ and P̃ directly.
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A new construction of compact G2 manifolds [Step 3] Construct a compact smooth manifold eM

In fact, the G2 structures ϕ on P and ϕeP on P̃ are not closed, so
these have to be slightly modified, using smooth cut-off functions, to
“closed versions” before we can construct ϕ̃ on M̃ by interpolation.

More significantly, however, is that the torsion of ϕ̃ is always too big
to be able to apply Joyce’s theorem, even under the assumption of
the existence of a nowhere vanishing harmonic 1-form α on L.

This does not happen in the Joyce or Kovalev/C-H-N-P constructions.

The major problem is that the space P̃ that we are “glueing in” does
not have a natural torsion-free G2 structure.

Also, the fact that we need to introduce an “intermediary” manifold
with G2 structure (P, ϕ) and use its metric g to measure the size of
the torsion creates additional complications. The G2 structure ϕ is
not a priori close enough to ϕM .

We need to perform two corrections to solve these problems.
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A new construction of compact G2 manifolds [Step 4] First correction: bend horizontal and vertical

[Step 4] 1st correction: bend horizontal and vertical

We begin with the easier correction: modifying the identification
between M and N(L) so that the canonical G2 structure ϕ on
P = N(L)/{±1} is close enough to ϕM on M̂.

We can change the connection on N(L) to “bend” the horizontal
spaces and we can precompose the exponential mapping by a
diffeomorphism of M generated by an appropriately chosen vector
field W to “bend” the vertical directions as well.

These can in fact be chosen to make ϕ close enough to ϕM .
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A new construction of compact G2 manifolds [Step 5] Second correction: solving a PDE on E-H space

[Step 5] 2nd correction: solving a PDE on E-H space

We also need to modify the G2 structure ϕeP on P̃ in order to make

the torsion of ϕ̃ on M̃ small enough to apply Joyce’s theorem.

To do this, we need to be able to solve an elliptic PDE on the
noncompact Eguchi-Hanson space T ∗S2 of the form

(d + d∗)η = σ

for some mixed-degree form σ given by the original G2 structure ϕeP .

This is done using Lockhart–McOwen theory of Fredholm operators
on noncompact manifolds with “well-behaved” geometry at infinity.

The theory says that such an equation can be solved if and only if σ
has appropriate asymptotic behaviour at infinity, which it does.

33/36



A new construction of compact G2 manifolds [Step 5] Second correction: solving a PDE on E-H space

[Step 5] 2nd correction: solving a PDE on E-H space

We also need to modify the G2 structure ϕeP on P̃ in order to make

the torsion of ϕ̃ on M̃ small enough to apply Joyce’s theorem.

To do this, we need to be able to solve an elliptic PDE on the
noncompact Eguchi-Hanson space T ∗S2 of the form

(d + d∗)η = σ

for some mixed-degree form σ given by the original G2 structure ϕeP .

This is done using Lockhart–McOwen theory of Fredholm operators
on noncompact manifolds with “well-behaved” geometry at infinity.

The theory says that such an equation can be solved if and only if σ
has appropriate asymptotic behaviour at infinity, which it does.

33/36



A new construction of compact G2 manifolds [Step 5] Second correction: solving a PDE on E-H space

[Step 5] 2nd correction: solving a PDE on E-H space

We also need to modify the G2 structure ϕeP on P̃ in order to make

the torsion of ϕ̃ on M̃ small enough to apply Joyce’s theorem.

To do this, we need to be able to solve an elliptic PDE on the
noncompact Eguchi-Hanson space T ∗S2 of the form

(d + d∗)η = σ

for some mixed-degree form σ given by the original G2 structure ϕeP .

This is done using Lockhart–McOwen theory of Fredholm operators
on noncompact manifolds with “well-behaved” geometry at infinity.

The theory says that such an equation can be solved if and only if σ
has appropriate asymptotic behaviour at infinity, which it does.

33/36



A new construction of compact G2 manifolds [Step 5] Second correction: solving a PDE on E-H space

[Step 5] 2nd correction: solving a PDE on E-H space

We also need to modify the G2 structure ϕeP on P̃ in order to make

the torsion of ϕ̃ on M̃ small enough to apply Joyce’s theorem.

To do this, we need to be able to solve an elliptic PDE on the
noncompact Eguchi-Hanson space T ∗S2 of the form

(d + d∗)η = σ

for some mixed-degree form σ given by the original G2 structure ϕeP .

This is done using Lockhart–McOwen theory of Fredholm operators
on noncompact manifolds with “well-behaved” geometry at infinity.

The theory says that such an equation can be solved if and only if σ
has appropriate asymptotic behaviour at infinity, which it does.

33/36



A new construction of compact G2 manifolds Remarks on the construction

Remarks on the construction

Our construction is more general. We can take any G2 manifold M
admitting an involution σ such that σ∗(ϕ) = ϕ. Then L = Fix(σ) is
an associative submanifold and everything proceeds as before.

Choosing M = N6 × S1 allows us to explicitly compute examples.
These examples are very likely still only a small part of the landscape.

In general, we cannot guarantee that the submanifold L will admit a
nowhere vanishing harmonic 1-form α. The metric on L is induced from
the Calabi-Yau metric on N, which we do not know explicitly.

However, if N is near the “large complex structure limit” of the moduli
space, from mirror symmetry arguments we expect it to contain a special
Lagrangian torus that is close to being flat, so it will admit such 1-forms.
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A new construction of compact G2 manifolds Remarks on the construction

Generically, a harmonic 1-form α on L has isolated zeroes. Then we
can resolve M to M̃ except for a finite number of singular points. In
fact, near the singular points, M̃ is topologically a cone over CP3.

Recall that there is a G2 cone whose link is CP3.

We would like to prove that in this case we can do a further
perturbation to construct a compact CS G2 manifold. This is
(partially) what physicists need to incorporate matter into M-theory.

To do this, we need: (i) a version of Joyce’s existence theorem for
such manifolds; (ii) to understand how the Eguchi-Hanson metric is
analytically related to the G2 cone as the E-H parameter goes to zero.

These would be the first such examples. If this can be done, then one
can use my theorem (2009) to desingularize further and obtain a
compact smooth G2 manifold.

This is work in progress, with Jason Lotay.
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Thank you for your attention.
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