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PREFACE

Let M be a closed manifold and L UM a closed submanifoid of codimen-
@ion 1 with trivial normal bundle, 1f one cuts M open along L one obtains g
manifeld #' with boundary oM' = L + L {disjoint union), and by pasting these
two copies of L together again in a different way cne can obtain a mew closed

manifold M Ml is said to have been obtained by cutring and pasting M.

1

The theory of so-galled SK-invarfiants--invariants under cutting and past-
ing of manifolds--was born in a series of papers [13], {14], by Rlaus Janich,
characterizing signature and ewler characteristic by additivity properties. Later
Karras and Kreck, in their Diplom theses, extended many of Jénich's results to
cutting and pasting of bundles.

The idea of defining SK-groups brought many simplifications and in
summer, 1971, a study group was organized in which the authors incoxporated these
simplifications in 2 summary of the known results, in particular, of Karras' and
Kreck's Diplom theses. The results were also extended somewhat. A survey lecture
by Neumann [or the Bomn-Heidelberg Colloaquium (Dec., 1970} served as a basis for
this study group, of which these notes are the proceedings,

Chapter [ brings the general theory of SK-invariants and SK-groups and
proves Janich's resalts in this framework. Basic For the theory are Theorems (1.1)
and (1.2}, which reduce calculations of SK-groups te the solution of problems of
the following type: which berdism classes in, say, 0.(X) can be represented by
an M — X where M is a manifold which fibres over Sl? The results of these
netes solve this in many cases,

Chapter 2 is mainly the Diplom thesis work of Karras and Kreck on SE

of bundles. An important by-product is results on multiplicativity of signature



for fibre bundles--this was originally the main motivation for much of this work,

Chapter 3 on unoriented eguivariant SKE is based on work of Neumann and
0ssa at 2 miniconference in Regensburg in June, 1970. It generalizes a resuolt
of Karras from z, ro arbitrary groups, Since euler characteristics of fixpoint
sets and similar iovaxiant subsets are SK-invariants, a complete calculation of
equivariant SK-invarilants would give some general Smith-type theovems,

Chapter &4 brings a generalization of the concept of SK-invariant, due to
¥, J¥nich. The complete calculation of the corresponding umiversal group, de-
noted by SKK,, is based on work of K. J3nich, Ossz and Neumanu. Ossa has proved
that 5KK, can be identified with the vector-field bordism groups of Reirhart
{16]., The index of an elliptic operator is an important example for an SKK-
iovariant which is generally mot an SR-imvariant; this was origirally the main
motivation for SKK-invariants.

The cutting and pasting concepts which have previcusly appeared in the
literature differ in some cases from ours, and Chapter 5 fits them into the frame-

wark of these notes. PFinally in Chapter 6 some recent resunlts of Neumann which

result from Elmar Winkelnkemper's "open book theorem" are described, Im particular,

it iz shown that in odd dimeunsions + 5 all SH-invariants for bundles over orient~
zble manifolds vanish, and the connection betweem SK  and multipligativity of
signature is reconsidered.

An appendix by Gottfried Baxthel on the extension of the theery to cate-
gories of menifolds with {B,f}-structure completes the notes.

¥W. D. Meumann was suppoTted in part by National Science Foundation
grant GP7952X3 and E. Ossa was supported in part by National Sciemce Foundation
grant GP7952X2,

The work in Bonn was aupporied in part by the Sonderforschungsbereich

"Thecretische ¥athematik".

Aftar these notes were typed 1t waa potdced that the methods of
chapters 2 and & easily lead to the result that for & simply sornectad space X ,
thy orlented SK-groups szn(x) are agual to SKn(pt) for n#£ 4,6 , and that
thia still holds up to torsion if X has & pom-trivial but finite fundamental
group. Thia lenis a =mell smount of credibility to the probebly very wild conjee-
ture that sicn(x) only depends on the fundemental group ¥,(X) . This conjee-
ture has been confirmed for n < 3 .

Sinee 1t was too lats to incorporate these latter results into these
notes, they are laf't es exercises for the readsr eond may possibly appear in a

later paper by tom third named suthor.



CHAPTER l: Imtroduction.

In these notes manifold always means smooth wanifold, usually compact,
and am invariant p for n-dimexsional manifelds is assumed to take values ina 2m
abelian group and ke be additive with respect to disjoint uniom +, That is, if
M= M + M, then p(M) = plef)) + plH,).

Let p be an Lnvariant in this sense for closed oriected n-manifolds.
p 1Is called an SK-invariant if whenever N and N' are compact oriented

nemanifolds and ¢,¢ : BN —> W' orientation preserving diffeomorphisms, them

).

p(Nq?~N') = p(NU¢

Here ~N' means N' with reverxsed crientation, and NUm - W' means N pasted
to N' aleng the boundary by ¢ and smoothed. In othe; words p i3 invariant
under 'cutting and pasting” (= Schneiden and Kleben} of the closed manifold
M= NUCD - N' along the submanifold L = 3N,

I Hote that L is a l-codimensional two-sided sabmanifold which separates
M., It is no gain in generality te drop the condition that L separate M, since
the ynion of L with a second copy of 1, suitably embedded near L, will
separate M,

In the non-orientable case "cutting and pasting” and "SK-invariant" are

defined analogously.

Exawples: 1} Euler characteristic e is an SK-jnvariast for arbitrary
manifolds, This follows from the fact that euler characteristic is zero for closed

odd-dimensional manifolds, together with the additivity property



2.

e{A Y)Y = e{X) + e{Y) - e{XnY)

which holds for any 'nice" spaces ¥ and Y which intersect nicely.
2} Signature T 1is an SK-invarisnt for eorientable manifcids. This

is due to the Novikov additivity property

(U =N") = ¢(N) - (K],
fis]

where N,N',pm are as above. A proof cam for instance be found in Atiyah-

Singer [3].

If G is a compact Lie group one can also consider equivariant cutting
and pasting of G-manifolds. The case that € acts freely is of particular
interest, as clearly the problem of calculating SK-iuvariants for free G-actious
with oriented (resp. arbitrary) orbit space is the same as the problem of calculat-
ing invariants for cutting and pasting of locally trivial fibre bundles with fixed
fibre, structure group G, and orxiented {resp. arbitrary} closed base manifeld.

If the total space of the fibre bundle is also a clesed orientable
manifold, them r(Base manifold} and 1(Total space) are hoth SK-invariants, so
non-multiplicity of signature will show up in the Sﬁ-invariants. This will he

discussed in more detail in Chapter 2,

We now construct the basic tools for caleulating SK-invariants,

Let X be a space. & singular oriented n-manifold in X is en equi-

valence class {M,f), where M is a closed oriented n-manifeld, £ : M-—3 X g

continuous map, and (M,f} iz equivalent te {(M',f') if there is an orientatien

preserving diffeomorphism M —= M' such that

M ——
f\ /
X
commtes, Let

qﬁlio(x): = {singular oriented n-manifolds in X}

??L:O(X} is a commtative semigroup with respect to disjoint union + and has a

zero given by M = 4.

Let Ml =8 - H and HE = NU¢ - %' be closed orientable manifolds

™ !
obtainable from each other by cutting and pasting along W ((M,. Let £ : M;~—>X
be continnous maps. We say the singular manifold (Hz,fz) is obtained from

(Ml’EIJ by cutting and pasting in X 1if there are homotopies
£l¥~ f2|N, fi|n' = fziw'.

Two singular oriented n-manifolds (Mi’fl)’ (Mz,fz) € Q?Iiotx) are called
Sk-equivalent if there is an (M, f) € 3?@i0{x) such that the disjoint union
{MZ’fZ} + {M,f} can be ohtained from (Ml,fl} + {M,f} by a sequence of cutting anrd
pastings in X (Bd Miller atHarvard has recently observed that for non-empty MI’NZ’
this definition is equivalent to the "umstabilized version™--without adding (M,f),

See end of Chapter 5.} The quotient semigroup

Xuio(sz = g?ﬁio(x)fSK-equivalence

is a cancellative semigroup, Define



SKEO(X): = Grothendieck group of ﬁ”ﬁo(x).

Since B”SO(X) is cancellative, it injects inte SK:O(X), so twe singular
i
menifolds represent the same element in SKEO{X) if and only if they are 5K«
equivalent., Im fact it follows from Theorem (1.1} below that Xﬁo{x) actually
aquals SKio(X), Mt we won't need this,
By construction, any SK-invariant for simgular oriented m-manifolds

in X fectors over the matural map
M — s,

and this map is itself an SK-invariant, Thus SKiG(K) yields the universal

SE~-invariant.

Example: X = BG (classifying space for G) where § is a Lie group.
Then SKiO(BG) gives the universal $K-invariant for fibre bundles with fixed fibre
and structure group G, over oriented n-manifolds,

X = % (the one-point space), 5 0(*} ives the pniversal SK-invariant
P P g

for oriented n-manifolds.
One can make completely analogous definition in the not-necessarily-
. . . . . ] ]
oriented case, to obtain a universal SK-invariant mﬂ(}() —— SKn(X),

Conventions: In the oriented case we omit the superscript 50 and write

SKn(X): = SKﬁO(X). Furthermore, we write

3K = SKh(*L

sx%: = sk,
n mn

the SK-groups for oriented resp. arbitrary n-manifoelds.

Retiarks: SKn clearly defines 2 covariant functor from the homotopy
category of topological spaces to the category of abelian groups. Product of

singular manifolds induces a functeorial bilipear map

SK_(X) x sxn(\r)——a- 5 {X x Y).

KIH'ﬂl
In particular SKE, = j& SK_ is a graduated ving, and for any X, SK, (X} 1is a

graduated SK,-module. There is a0 augmentation
2 3 SR, (X} —> SK_

induced by X—> %,

Similar remarks hold in the nnoriented case,

Statement of Results,

Let gﬁn(}() be SKH(X) factored by the bordism relations, that is,
SKn(X) factored by the subgroup generated by all elements which have & represen-
tative (M,f) which bounds in X. SKE(X) is defined analogously. A basic tool

in these notes will be:



THEOREM (1.l}: Let X be path-commected. There is a split exact

sequence
0 > In — SKn(x)-——} SKh(X) —= 0,

where [n is the subgroup of SKﬂ(X} generated by fsn,*] {here * denotes

the -unique up to homotopy- constaant map §t X)  and

I =% n even,

0 n odd,

In the non-orientable case exactly the same holds except that the seguence does

unot split for n  even.

A useful corollary of Theorem (1.1} is:
THEOREM (L.1b): If [M,f] = [M*,£'] ia 's'f('n{x} and  e(M) = e(M')},

then [M,f} = [M",f"] in SKO(X).' The same also in the non-oriented case,

Indeed, the assumpticus of (1,1b) imply [M,f] - [M',£'] €
Ret{Sk_(X) —= §En(x)) =TI end e(lM,f] - [M',£7]) = 0. Since euler character-
istic clearly classifies the elements of X by Theorem (l.1), it follows that

[,£} - f1',£'] is zere in I, and hemce certainly in SK (X).

There are obvious epimorphisms Qn(x} ——5-§E;(X) and ILn(K) ——m 522(3).
Let Fn(x) C 0 (X} and Fg(x) C.}Zn(x) be the sebgroups of all elements which

admit a representative (M,f) such that M fibres over the circle Sl.

THEQREM {1.2): The segquences
0 —== Fn(}{) — (R} == sxﬂ(x) ——i>
-,
0 > FO(X) —> Y[ () > () = 0
are exact.

This theorem reduces the calculation aof EE;(X) and SKn(X) to a

bordism problem,

The calculation of the absolute SK-groups is as folleows:
THEOREM (1.3a): For n odd both SK_ and SKO ere cero. For even

n oune hass

Z®Z with hasis [s"], [B,/€]s for n =0 (mod 4);

SK_ g
" ]b & with basis [s"] ., for o= 2 (mod 4);
K z  with basis [P ®] , for a0 {mod 2).

Recall that for oriented manifolds euler chavacteristic and signatute
are congruent medule 2, The claim as to what oune can choose as bases of the
above groups is clearly equivalent teo; the above three isomorphism can be given

by %‘T-@ T, % e xespectively, Thus

COROLLARY {1.4): Any SK-invariant for swooth manifolds is a linear

combination of eulex characteristic, and signatore in the oriented case.



In view of Theorems {1.1) and (1.2) we can give two equivalent formula-

tions of Theorem (l,3a):

THEOREM (1.3B): Ffor o odd both ﬁn and sxg are zero, For even

& ene has isomorphisms

0 {mod &);

TS F

o my
M
E]
Ul

—
=
=

]l
b

{mod &);

—0

elmod 2} : SKn_ Z. n =0 {mod 23.

THEOREM {1.3c):

F,={{M] € nninr{:-{) 0}

F0 = [[M] € F_|e0) = 0 (mod 2)].

Theorem (1,3c) has been proved by Comner 2nd Floyd 9] in the non-
oriented case, and wp to torsion by Conner and Burdick [} 2ud [3] in the oriented
case (that is F, +‘T0r5{nn) = {[M} € ﬂn|T(M) = 0}¥. Thus to prove (1.3c), and

hence also (1,3b) angd (Ll.3a), it suffices to prove
Tors(ﬂn) C:F“.

The proaf we shall give is based on Jinich's proof [14] of (1.3b).
Actually Janich works with invariants and uses a different concept of SK-invariant
but a3 we shall show in Chapter 5, his concept is equivalent to "SK-invariant,”
Essentially the same proof of (1,3b) has also been found independentiy by Rowlett

[17], who also had independently had the idea of defining SK-groups, He ziso had

a different SK-concept, which also turns out to give precisely SK {see Chapter
5). An independent proof of (1.3¢) in the oriented case for n > 35 can be

found in H. E. Winkelnkemper's dissertation [19] (see also {201}, Theorems {1.1)
and (1.2}, which show the eguivalence of the three formumiations of (1.3), are of
later vintage, though they are latent already in the work of Jidnich, Burdick and

others.

The proof of Theoxem (1.1):

We first give some lesmmas on cutting and pasting which will also be
useful latexr en. If (M,f) is a singular manifold in X we write [M,f}SK,
[, f}n, ete., for the class of (M,f) in SK {(¥), O_(X), etc., dut omit the

subscript if no confusion can oceur. If X = % i3 the one-point space, we

simply write [H]SK, [Mig, ete., for classes in the respective groups.

LEMMA (1.5): For any space X we have in SK,{X) and SKg(X):
i [Sl,fj =0 for any £ : Sl-—ﬁb X.
i3) If M fibves over 5" with typical fibre F and £ : M —> X then
[%,£] = {S"J[F, £]F] (vecall that $K,(X) is an SK,-module).
iii) If M fibres over B with typical fibre F and £ : ¥ —> X then

(£} = fp e][F, £]F].

iv) In the non-oriented case {ii) also holds with P Teplaced by PJR.
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Pruof: We prove the orientable case; in the non-orientable case the

procfs are the same,

1) let N=N'=1+1, where I = {0,1] is the unit interval, We can

paste N to -¥' in two ways to obtain either Sl or 31 %—Sl:

N n'

PO

r’f \\ _
-y \\/ N LU 4P WL B

Hence {Sl] = Z[SI], sa [Sl] = 0. This cutting and pasting can clearly also be
done in any space X,

ii) We can write S" =Py -Dn, pasted along the boundary Su'l. Since a
fibration over the disc D° is trivial, we have M = (0" x ¥) U -®" x £}, If
f+M—>X is any map, then restricted to each piece DY X F, f 1is homotopic
to % x £|F. On the other hand (3" % ¥, * x flF} is also of the form
(" x ) U (0" x B, * x £]F), so [Me] = (8" x F, * x £]F] = {s°I[F, £]#).

iii) We prove iii) by induction on =n; for n =0 it is trivial, Suppose

M fibres over P“C with fibre F. We can write Pnp as

PC = p?® y

n . -
where -} is diffeomorphic to the normal disc bundle of Pn 1c in P C. Let

2
My =Hp 4N x P x P4 N X F

M, =My + b % §

If £:M—= X is a map, we define maps of My and M, to X by taking the

- 2
restriction ¢f £ on M{D" and M|N and taking * % £]F on N X F and

11,

0" X F. On the boundaries S° - x F of these pieces all these maps are homo-

topic to * X fiF, 5o we can paste MO te M, in two ways in X to obtain

H

(moucp -HLE) = (0 + (-RE X F, * X £[F),

M, - M, f

n
= * -
o pr ) = (Bg) + (87 x Fy & x £1F)

In the second case we have pasted the first part of M, te the second part of
M1 and vice versa, FE is a fibration over the double EIN¥ = NUid - ¥ of N
with fibre F, and g 1is a map with g|F = E!F. However, N fibres over
anft with fibre F', where F" fibres over S2 with fibre F. By patrt ii)
we have {F',gEF‘] = [SZEIF,glF} = [SZ]EF,f|F], 30 by induction hypothesis
[E,g] = [Pn_1C]EF',gEF‘] = [Pn_fﬂjfsz]{F,f|F}_ The above cutting and pasting
thus shows

(m,£) + [-p €){F,£}F] = [r__€l{s”I[F,£{F) + {s""1I¥, £[F].

That is,

fn, i} = ([P

nﬁlc]{sz] + (5™ - f-pehir £]F].

It hence only remains to preve that
i . 2= r 2w " =
(2] = [P, €)(s5] + [s2%] - [-n€],
but this follows by taking F = % in the above. The proof of iv} is completely

analogous to iii). Q.E.D.

LEMMA {1.6): Suppose the singuiar manifold (M',£"} in X results

from (M,f) by surgery of type (ltl,n-k) in X. Then in SKn(X) {resp. SK:{X))



12.
(M, £] + [s%,%] = [M',£'] + Fs% x Sn-i,*].

Proof: We must look closely at the surgery and its trace. Let

i: s xple—sn

be the embedding on which surgery was done. Then

M o= (M - (Sk x Dn-k))u . {ﬂk+1 % Snmk-i)

where "U" is the obvious identification of boundaries Sk X Sn-k'l. The trace
T of the surgery can be constructed as follows,

Be-all that
Sn - (Sk X Dn-k}u _ (Dk+1 X Sn-kul)

pasted by the obvious identification of boundaries (think of §% as afD.m-L X Dﬂ-k)').

T is the manifold obtained by taking the disjoint union of H x [0,1] and
Yt 1 - - -
ol PR na then idemtifying s° x p%°F = (1(sF x 0%%),1) M x [0,1] with

k -k -
sEx 0" KO s = a0 x 0™, and thea smoothing corners.

ket-1 n-k

02 &

The beundary of T is clearly 3B =M + (-M'), The fact that we did surgery in

% means by definition that we have a continuous map

g T—X

13,

with giM=f and g|H = £'.

Now

- - - k=
Mg = - (% x 0PEYu-(sE x Py 4 (85 x B -0 x 52Dy
)
et a sE x 0PE o (- 5% x DPThu- R x PNy 4 5% x 0% Bu-ste™ ™,

K

. n~k
always with the cbvicus idemtification of boundaries, so M +S5 XD results

by cutting and pasting M + s™. But we must cut and paste im X. For this, con-

n-k ol -kl

-k 1 -k
sidex S5 x D and DTl x § MLy ™ 0 xoo

as subhsats of (D
CT. Then we have maps inte X of all the pieces on the right hacd side of A) by
restricting the map g. The cutting and pasting is compatible with these maps apd

the resultiog maps of M and M’ inte X are the ones we want. The resulting

- - -l
maps of s"  and Sk % §° * inte X factor eover g|Dk+1 x DV K : Dm-i % D> X,

and are hence both homotopic to the constant map. This cowpletes the proof of the

lemma, Q.E.D.

Kl n=k=-1

As an application of this lemma note that 5 xS results from

st by surgery of type (ktl,n-k), since

e+l o-k-1 kel

s¥ 5 ¢ = (D k-

x st E by xR

k n-k-1

x B E- (0 x s 3

u

s" - s
Thus the lemms gives
[Sn,*} " [Sn,*] _ [sk+i % Sn-k-l’*j + [Sk x Su—k'*}.

Putting k = 0 (altermatively, by Lemma (1.5} i) and ii)) we have
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" i i F N | £
{sl x s® I,w] = 0, and z simple induction mow shows .+ Theorem (1.1} is now easily proved., Namely, the kerme n @

SKn(X}-*> §EREX} s clearly gemerated by all classes [M,f] such that (M, f)

a
COROLLARY {1.7): 1Im SK,(X): bovads in X, By Coroellary (I.8) such an [M,f] is a multiple of [§,%], so
)Y L (X)s
- B n
. - b
e ax j’gisn,*], ¥ even I, is gemerated by (S ,%]. If n is odd, say n = 2itl, them S fidbres
[s™ x 775, %) = £ 6 % oad over B.L with fibre S', so by L (1.5), 1ii) and i}, it follows that
L 0k o ¢ ema
[Sn,*] =0, If n is even the fact that E(Sn) = 2 shows that ]:Sn,*] has
- - . i t -
COROLLARY {1.8): Let ({¥,g) be a bordism in X between the singular infinire orxder in SK, (X), so I, w&. The same argements all hold in the nom
3 oriented case, so it only remsins to prove the claim on when the sequence of
manifolds (Hl,fl) and (Mz,fz). Then in SK*(X); : '

Theorem (1.1) splits.
- 1 _ n
fb‘Il’flj = 1My, 55 (e¥) e(Ml))[S y*3 Assume n is even. In the oriented case the map (e-t}/2 : SK&(X)-—ﬁ*

X ~I is aretraction of InC-%’ SKH(X) which splits the sequence

Proof: First syppose Y 1is an elementary bordism, that iz the trace of

a surgery of type (ll,n-k} say. Then by Lemma (1.6) and Corollary (1.7) 0> 1, SKR(X) KL {%) 0-

. n .
[Ml’fij - [Hz’f2] 4 (_l)k{sn,*]‘ In the non-oriented case 5  and ZPal beth bound, so they are in the kernel L,

of SK:(X)~——5 §§;(X). But euler characteristic classifies the elements of In
so it suffices to prove that e(Y) - e(Ml} = (-1)k+1. But Y is obtained by

pasting Dk+l % Dn"k to MI %X 1 along submanifolds Sk X Du_k of

B(Dk+1 4 Dn-k) and a(l-i1 X I) and then smoothing the result, so

and e(S") = 2 = e(2p ), so [s",%] = 2{e ®X,*] i SKg(x}. Thus the generator of

In is not indivisible in sxﬁ(x), s0 the sequence

) 06— 1 —> sxﬁ(x) - SKnD(R) -3 0

L o2 Ey L oers® x ™Ry

elY)}

e(t-s1 X I} + e(D

does not split. The proof of Theorem {1.1l) is couplate,

ety + (1R,

proving this case.

ln the general case we can split Y up into a sequence of elementary

- . . i
bordisms and the corollary then follows easily From the case just proved and the Fibrations over 5°.

additivity property of euler characteristie, Q.E.D.

Let N be a closed wanifold and @ : W—> N a diffeomorphism.
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Definition: N:g is the manifold obtained froem N x I by identifying
the ends N % {0] and N X {1} wvia 4 ; that is {(x,1} is identified with
(p{x),0} for each x € N. R is called the mapping torus of g.

The projection N X I —# I induces a fibration

N-—-—}Sl

3]

with fibre N, C(onversely any fibration over Sl with fibre N is clearly of
this form fer suitable . Ncp is erientable if amd only Iif N is orieotable
and ¢ orientation preserving. The following lemma holds in the orienmtable and

in the nop-orientable category. We formulate the orientable case.

LEMMA (1.%): If the singular manifold (M',£") results from (M,f) by
cutting and pasting zloag N in X, say M= Hl Ucp - ME’ M = M, UW - Hz, where

.4 ¢ M) = W oM, are diffeomorphisms, then

¥, f}ﬂ = [ !f'}n + {Nl{kp-l,g]ﬂ

in ©,(X) for suitable g : W i R,

-1
Proof: A boerdism is constructed as follows. Let Y be the unien of

M, x [0,1] and M, x [0,1] with the following identifications: for x €N

. . 1 .

identify (x,t) € M, x [0,5] with (p(x),t) € M, x [0,"1-} and

(x,6) € M) X [5,1]  wieh  (pGo,t) € w, x (5,10

M ™
L
P v L
< ]
!-(2 1-12

g i/3 373 i

i7.

Afrer smocthing it is easily seen thet ¥ =M - N _, - M,
Y
required boxdism. Since we are deoing cutting and pasting in X we have homo-

s8¢ Y 1is the

n

topies f!ﬁl ~ £'[M, and fEM2 £']M, which can clearly be used to comstruct
amap h:Y—>X with h|M=f and h|M' = £'. Putting g =h|[ -1’
¥

lemma is proved. Q.E.D.

the

To prove Theorem (1.2} mote that Ker{Q*{X)-——} E*(x}} is generated

by classes of the form

where [M',f'] results from [M,f] by cutting and pasting in X, s0 by the

above lemma
Ker(f, (X) —= SR (X)) CF().

The reverse inclusion is an immediate consequence of Lemms {1.5) i) and ii), so
Theorem (1.2} is proved in the orientable case. The nog-orientable case is the

same proof. q.E.D,
Before we prove Theorem (1.3) we need a lemma:
LEMMA (1.10): Suppose LA {Ni)q:l for % = 1,...,k, with each N,
i

orientable and each @; orientation reversing, Then there exists orientable &

and orientation reversiag ¢ : N~ N with

Furthermore if k> 2 then N itself fibres over SI.
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Proof: The general case follows from k=2 by a trivial inductiom, T, = Toxdll ) C F,

50 assume k = 7, Let Byt Mi—:- 51 {i = 1,2} be the projections, Then the

so the first thing to do is deseribe T,. We vecall C. 7. C. Wall's desecription

fibration
in [18],
P Hl *x ME e 51 Let M be a closed manifoeld. Then one can always find z clesed
1 l-codimensional submanifold W{ M such that
Goy) > pl(x)pz[}f) 1} M - W is orientable, and
has typical fibre 2} mno submanifold of W sstisfies 1),
_ -1 ~ ) GC. T. €. Wall proves that if W ¢an be chosen orientable with trivial normal
e = Ly € e M21pl(x) B DZ(Y)}' bundle in M then the class [T.\.T:{ﬂ € fi, is a torsion element which only depends
There is a fibration : on [M]'H, 3 ?fI*_ Under these conditions he defines 33{1‘{]}1 = [w]n, 50 33 is 2
Ce N Sl homomorphism fxom a subgroup of R* to T, = Tors{{l).
(Xr}"}"——"»"pl(x) Example (1.11): Let M = Ncp with N orientable and g orientstion
‘ ‘ reversing., Then clearly 3,{M] = [N],.
with typical fibre
q-l(l) = {{x,y) € My X leplfx) = pz(y) =1} = Nl X NZ’ Now let P{m,n) be the quotient manifold of the free involution

(x,2) s (-x,2) om §" & P (the "Dold manifold") and & : P{m,n) = P{m,n)
and one easily checks that this fibratfon is given by

. the involution induced by the map (x,z)r—> (x',z} on s™ x Pnc., where x+—2> x'
N . . . ]
~ (Nl x® N?-)(‘Pl sz, is reflection in an equator of 5, lLet
Simce @, and g, both veverse orientations, @y X, preserves it, so N is Q{m,n) = LCHOM

oerientable, But M) X M, 1is non-orientable, so My XM, must be of the form N

] . ) ) Remark: p(m,n) is oriemtable -om—> mwn is odd.
with ¢ orientation reversing, Q.E.D,

¢ 1is orientation reversing <= m is odd,

Recall that to prove the three versions a), b), c} of Theorem {1,3} it

) If a iz a natural number write a = 21——1(2&'_1) and define
only remasins to prove
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Xy, = wa), m= 2T -1, n=2s,
According to Wall (loc. cit.,), the torsion T, (:Q* is generated as a ring by
classes of the form

1.
?,ak

33{x23 X eeo XX
1
If k> 2 then by the above remarks, Lemma {(1.10) and Example {1.1l},
63[)(231 Xoaae X xZak} is represented by a manifold which fidres over SI, so
'+ 45 was bo be shewn, If k=1 then by Example (1,11}
we have 33(3{23) = {P(m,n)]n, so we must show {P(m,n)]ﬂ € F,, ox equivalently
(by Theorem (1.2}}, [P(mmn)] =0 i gf*. The map S™ ¥ PC > 8% induces a
fibration Plm,n} —> PR with fibre PC, and PR fibres over qu:: with
fibre sl, where q = (m-1)/2 = 2L 1. Thus P{m,n) Fidbres over Pe with
fibre F which fibres over S', so by Lemma {1.5) [P{m,u}] = [ch.}[F} =0 in

3K,: and hence certainly in "S?*. This completes the proof, Q.E.D.
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CHAPTER 2: BSK of Fibre Bundies.

Let € be a Lie group. In this chapter we investigate 35K fox fibre
bunadlies over closed differentiable wanifolds with fixed fibre F and structure
group C. As in Chapter 1, SK-equivalence for fibre bundles is defined by saying
¥ E' by rutting and pasting

if E and E' are fibre bumdles with fibre F and structure group G over

that the Fibre bundle E Utp E' is obtained from E U

compact manifolds M end M' respectively and ¢,% : Ej3M — E'[2M' are bundle
isomorphisms which induce diffeomorphisms @M —= 3M" in the bases. SK-groups
for fibre bundles can then be defined in the obvious way. By the homotopy c¢lassi-
fication of fitre bundles it is clear that these groups are SK (BG) in the
oriented case and SKg(BG) in the non-oriented case.

Remark: If the fibre F is a smooth manifold ome can comsider 5K of
smooth fibre bundles. This makes no difference for {as is well knowu) any con-

tinvous fibre bundle admits a smooth structure, unigue up to bundle iscmorphism,

Interpreting 5K, (BG} as the SK-group for fibre bundles with structure

group ¢, the augmentation

BG
& 1 SK(BGY —> SK, = SK (pt)

is just the map which sends the SK-cless of a bundile (E,n,B) to the 5K-class [B]

of its base manifold, We have the trivial lemma;

LEMMA (2,1): There are natural isomorphisms

BG
SK, ©Ker &,

5{* &P Ker EBG.

5K, (BC)

SK,(36)

0y

nt
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Proof: The map pt —3 BG, which is unique up to homotopy, induces arbitrary G. We will see another example of this lster, but first to the proof
" L] L4

a retraction 5K, —> SK_(BG) of EBC, proving the first isomorphism. Similarly, of (2.2).
one has that

= = BG

SK,(BG) = SK, © Ker £77, By Lemma {2.1) it is sufficient to prove that
where 0 , BR,(BG) —> BK_ is the augmentation, But Theorem (1.1} implies -BG

T 1 SK(BE) —= SK,
that FKer EBG = Hey EBG, so the second isomorphism is also proved.

is a mod-torsion isomorphism (kernel and cokexnel are torsion groups) and an

%
This lemma can be interpreted as saying that the SK-invariants for isomorphism if # (BG) is tovsion-free. We shall prove this first for ¢ a

bundies split in a natural way into the 5K-invariants of the base space, which torus, then foxr G compact, and then finally im the gemerality of the theorem.

we already know are evler characteristic end signature, together with certain Because of the epimorphism Q*(X)'ﬁ_b EE*{x), to calculate Eﬁ*(x) one need
bordism invariants of the whole bundle, given by Ker EBG. As we are about to only do cutting and pasting on a generating set of (L (X}, The basic idea of
state precisely, these latter additional invariamts are in most cases teorsion, the proof is that ia our case such a generating set can he represented by products
and often actually zero. of projective spaces up to torsion, so Lemma {I,5) 1ii) gives the resnlr,

Let

THEQREM {2.2): 1} If G is a Lie group with finitely many components

2o u ot XY — 1 (X))

then FKer ¢ iz a torsion group.

) 1f ¢ is compact and ﬂ*{BG) torsion free, for instaace, be the canonical map given by y[M,f] = £,0, where g is the fundamental homol-
G = (Sl)n, U(n}, SU{n), Sp{n), then Ker EBG =0, - ogy ¢lass of M.

BRemark: The conclusion of part i) above can be formmlated: given any THEQREM (2.3): Let X be a Cl-complex such that H(X) has no torsiom.
bundle (£,7,B) with structure group G, some multiple mR of E is SK-equiv- Let singelar mamifolds (Mi’fi) in X be given such that [“[Hi‘fi]} is 2
alent to the trivial bundle with base manifold mB. If pow the fibre F is alss generating set of B (X). Then {[Mi!fi]} is a gemerating set of (L (X} as an
2 compact manifold, so that the signatures ¢(F) and <(E) are defined, them it - (,-module,

clearly follows from this that mr(E} = mr(B x F) = mp{B}F{F), so T(E} = v(B}r{F).
That is, sigmature is multiplicative for E. Atiyah [2] has given an exawple of Proof: See Conner and Floyd [10], §18, p. 49, In fact, Commer and Floyd

non-muitiplicativity of signature, so Theorem (2.2) does not generalize to prove more, namely fhat if X is a finite CW-complex then the above holds with
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"generating set' replaced by '"hase" each time., The fimiteness of X is oculy
used in proving the indepeadence of the base {[Mi,fi]}, so it is not needed

for our formilaktionm,

An easy application of this theorem is the following lemma, whose proof
we leave to the reader. ILet g, : PL —> BS1 be the classifying map for the

cangnical line bundle over Pkp.

Lems (2.4): The set {[P, € x ... X B Comg, X oee X7y 1} generates
i Q n
Q*(B(Sl)n) as an (i -module {recall that B(Sljn = ¢es1Hy®), In fact it is am

{,-base, but we do not need this.

It follows that EE%(B(SL}“} is generated as an §Eﬁ-modu1e by the
elements [Pi CX.ooe %P Cm XXy ], se if G 1is & torus, Theorem (2.2)
n n

1
now follows by Lemma (1.5} iii).

Now let & be any compact Lie group and T { G its maxiwmal torus, The

projection BT — BG induces a map
P & SK, (BT) —> SR (BG)
and the composition
—— J— EBG —
3K, (81} ~E> TR, (BG) ——> FK_

P BT
is just =7, which we already know to be an isomorphism. Hermce to show that EBG

is gn isomorphism or mod-torsion isomorphism it suffices to show that p is sur-

jective or mod-torsion surjective respectively, By a result of Borel [4] the map

25,

*
K (BG) —= H (BT}
is mod-torsion injective, and even injective for H*{BG} torsion-free. Hence
H (BT} ~> H, (BG)

+* .
s mod-torsion surjective, and sorjective if H (BG) 1s torsion-free, 30 all we

need Is the following leamar

LEMMA (2.5): Let f : X—= ¥ be a map of (W-complexes, 1If the
induced map H*(x)-—4> H*(Y) is mod-torsion surjective, then seo is ﬂ*(x}—%; 0,01}
and hence also EE;(X) -na-gﬁ*(Y). Lf H,{X)} bas nc odd rorsior and
H*(K)~+€r H*(Y} is surjective, then so is ﬂ*(X)~——} Q*(Y), and hence alse

E'E*(x)-»--:wﬁk(‘f).

Proof: We need the bordism spectral sequence {see for instance Conmer
and Floyd [10] for details) so we recall the essentials. ¥For a CW-complex X

the Ez-tarm is

2 = .
Ep,q<x) = Hy%00)

o
and the E -term is

o
E (X)) =17 J
£:9 p,q/ p-l,qti

where
o CJU,HC CJH,O = (%)
is the skeleton filtratiom of Qn(x), that is

< p
Toq = W@ ) chx))_
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BG,

Furthermore, the bordism spectral sequence is trivial modulo odd torsiom. is mod-torsion surjective, so again, since the compesition with FCogs e 0,

It follows that a map f : ¥ —> ¥ whick is wod-torsion surjective which we know is a med-tarsion isomoxphism, 56 is a mod-torsion isomorphism,
in homology, and hence for the Ez—tem, stays mod-torsion surjective up to £ Q.E.D.
and hence also for {,, proving the first statement of the lemma.

Now suppose H,(X) hes me 0d4d torsien and H*{X)—-& H.(Y) is sur-
jective. Them EZ(I() has no odd torsion, so¢ by kriviality modrlo odd torsiom We now shall calculate SK*{BG) in some of the cases not covered by
of the spectral sequence, the differential dz(x) : Ez’q(x)««ﬁb E;Z,q-itx) is the previous theorem.
trivial, Alse EZ(X)——éb EZ{Y) is surjective, so dZ(Y) ig also trivial, Hence
EZ(K) = Ea(x), EZ(Y) = ES(Y), aud repeating the argument we eventually get that THEOREM (2.6): For G =727 ¢r P am odd prime, and for & = Ez,
both spectral seguences are trivial and E‘”(){)—} Ew(‘[} is surjective, Hence Ker EBG = 0. P
D*(X}—)- {3, (¥} is surjective, as was to be proved, Q.E.D. Proof: For any X we have the short exact sequence of Theorem (l.2):

. ) ¢ — F (%) —= (X)) —= 5K (X) —> 0,

Theorenm (2.2} is thus proved for compact . If ¢ is connected but
not necessarily compact, choose a maximal conmected cempact subgroup H C G, Denote Ker{F, (X) —> F*(pt)) by 'i-'*(x), The above sequence surjects at all
Simce the structuye group of any bundle with structure group & can be reduced three places onto the short exact sequence
to H,

0 —>F,—= 0, —> 5K, —> 0,
5K, {BH) —== SK,_(BC)
$0 the kerxmel sequence

is surjective. Since the composition with aBG : ﬁ*(BG)—-}ﬁ* is EBH, which 8
we know to be a med-torsion isomorphism, EBG is itseif 2 mod~torsion isomorphism, 2.7 0= g;(X)-—‘;’ﬁ*(x)-_ﬁi Ker & —>0

Finally if @ ha.s finitely many, say n, comnected compoments and C-O is also exact, Im particular Ker EBG is the image of TE*(x} 4 n*{x).
is the component of ynity, then BGo—b BG is anm m-fold coverimg. Hence We first consider the case X = BG with G =2 ¢ {p an odd prime},

Hy (BG,) —> H,(BG) vhere we ‘."’“Sider ¢ zi:a Subsrzup of the cizcle group 5% s aects freely
on the unit sphere § in © by

is mod-torsion surjective {the n-fold of any homology ciass in BG clearly comes

from BGO). By Lemma (2.5} t(21"“’211) = (tzl"“’”n)’ (’ti = 1)

ﬁ*(mg)‘“"‘ ﬁi_(EG) This gives a free action of G om SZn-l, inducing a singular manifald (Szn'l/c, £)
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- b that thi bri ipti £f i i Eibhle with
in BG. By Comner and Floyd [10], p. 99, the elements [SZn IIG,E} generate serve tha is peomebric description of & s compabihle

EG oo cutting and ti i d
TL.(BG) as an (-module. They hence also generate Ker & as an 5K -module. R pasting, so we have an induced map

2a-1 . 2p=1,.1 . . i i RZ
But § /G fibres over § f$° = P & with fibre §7/G~ 5", so by i' "S?S T Rer £ 2
o - BG "
Lewma (1,5), [Szn l/G, £] is zevo in SK (BE), aud hence certainly im Xer €.
BX
The case G = 12 is rather more difficult, and we mest first recall By {2.7) above, ﬁn{mz}_} Ker £ 2 is surjective, so the commtative square
some facts on frees iavolutions and bordism of IE..
2 =0
n-l_} SKn-l
Let © : ¥ —>¥ be a principal Z,-bundle, T : ® —» ¥ the covering
transformation. Recall that a l-codimensional submanifold W M is called = - 1 i
characteristic submanifold if W= w"l(w) is the boundary BA of 2 compact
hiv 4
submanifold A of W satizfying:s A TA = W and AN TA=W. It is easy to 'ﬁn(mz)-—} ¥er £ 2
see that such a W exists and is unique up to noum-oriented bordism (for instance, Bl,z
shows that 1' is surjective. Thus for n even it follows that Ker €, = 0,
by showing that W is a transversal selfeintexrsection of the zero-section of the

since 5K, = O {Theorem {1.3b}).
real line bundle E —-> M associated with M —= M), The characteristic submami-

We can hevce assome ©  is odd. Then by (1.3b) the diagram becomes
fold in fact defines a map

€
W= Z

2
v () —=3L ;. |

y ~ ii i (0 odd)
By Burdick [8] {see alsc Hirzebruch and Jinich [11]} the restriction ”l

fi(m Y==K z
2.Ina(&z}”"’ H’n-; B2 *

. ) . ) where e is euler characteristic modulo 2, Since i' is surjective, we must
iz an isomorphism whose inverse

only show that it maps 1 € 22 0nte zero,

: :Tﬁn—l > ?in(gzz) Let & : PJ.B-H.- B2, {3 =1,3) be the cla.ss.ifying wmap for the double

i .
L. : covering $°— PR, Then for k = In/4] and ! = n-4k = | 3 h that
is given as follows. For [W] £ :ﬂn-l let E—> N be the line bundle associated J [n/4] 1 OF 9y we have tha

- [P,,& x PR, * % a] represents an element of Bz e _— H %
with the orientation covering ®W—=n, and 5 the sphere bundle of the Whitney 2% i ] P ?fn( 2). Sinc i w is given by

taking a characteristic submanifold, &i” '[P.,@ x PR, * = & . K] =
sum E@ 1l of E with a trivial line bundle, § is oriented and has 2 free orieata- ’ [ 2k X e T X 2] {PZKQ X Pl"i )

1 €£2,. On the other hand, PIR, and hence also P,@ X ij fibres over §° for

. . j =3 and over § for 5 =1 by I 1. it
singular manifold [Sﬂz,f] in HE, represents HE:JN J » 50 by Lemma (1.5) 1i) we bave that

tion preserving involution given by the antipodal map in the Ffibres 51. The induced
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[szc: X ij, x X a} =0 in EE*(BZZ)’ and hence certainly alse in  Eer EBG. By
. . . . ii i i e more F squired, na .
the comvutativity of the disgram it follows that i'(1) = 0, as was to be proved, Li) Ue again prove more than required, namely

Q& S, (x) = 0

To close the discussion of 3K of bundles in the eriented case we men- for any simply connected X,

3
i i i a E iented 3-manifold M is ank E 37,
tion some isolated results in low dimensioms, In dimensions 0 and 1 everythi Recall that any commected oriented 3-manifold {1 is bordant to '

2
is trivial and can be veduced to S° by surgecies of bype £2,2). If {(M,f) 1% a connected

singulatr 3-manifold in X, then restcicted to each solid torus, f ig null-

THEOREM {2.8): i) If ¢ is a Lie group with G/G(} abelian then homotopic, 50 we can do surgery in X to reduce (M, )} to (57,5} for some g,

Keyg agc =0, f.e., 51(2(5(;) = SK, =%, By Lemma {1.5) we deduce that iM,fi = 0 in 3"123(}:). o.E.b.
i1) If ¢ is connected then also Ker egc =0, so SKB(BG) = SK3 =0,
k
Finally we give ao example where EJG is not an isomorphism, uot even
Proof: i) BG has fundamental group 1y (BG) = n-c((;) = G/GO’ which is module torsion, Let F  be an orientable surface of genus = 2. The universal
hence abelian. We shall in fact show more than required, namely cover of F is contractible so F = BT:L(I’).
K, (x) = 0
THEOREM (2.9}+ If § is an orientable surface of genus - 2 then
for amy space X with abelian fundamental ETOUpP, B'—'L(F) —
Ker ¢, = S, {8 {F)) 2.

Let {Fn,f) be a singular 2-manifold im X, where £ is the oriented

surface of genus n, We can write ¥ as F = F # (5" x 8'). TLet st Cr
) B o n~1 b Proof: The bordism specival scquence shows for any CW-complex X that

be the circle along which the connected sum operation ¥ was carried out. Sl
1 2,(X) = H,(X;2). Since Bt (F) = F and 8,(F,Z) = Z, we must show that F,(F) = 0

represents the zero homology class ia H}_(F )y so E{8") zxepresents =zero in R )
1 n and the theotem then follews by Theorem {1,2). That is, we must show that any
Hi{x} = .—-:I(x). Thas £($") is ovll-homotopic in X and we can do surgery of type
' singular torus in F  bounds.

{2,1) in X on this circle, reducing (Pn,f) ko (Fn 1+ (S1 X Sl),g) for some g
B ) Since Sl % S.1 and I° are K, l)-spaces, the homolopy classes of maps
In this way one sees that any oriented singular Z2-manifold in X is co~ 1 i
$° X8 ~—= T are classified by the set Hom{Z O Z. =, {F)) {sce for instance
bordant to a sum of singular tori in X, and hence equal e zero in SK,(X)} by !
rheoren (1.3, Thus £} 5a I 2 Mosher aud Tangara ['15!. p. 3}. But it is weil kneown that any abelian subgroup of

Wy (F) is trivial or infinite cyeciie, so any f € HomfZ ¢ Z, = (M)} factors as
t Y Y L

[

PR - 2 - :ri(l"],
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where I is, withowt loss of geunerality, surjective. By & change of splitting of

5L bt Sl as a product if necessary, and hence a change of base in Z &%, we can
= L L

assume that f is the projection Py~ The corresponding map 5 X 5 —= I thus

splits as

1 P
Sl x5 ——}—;-SI i F

and hence extends Lo the selid torus 51 s Dz. QLE.D,

The above proof in fact shows that for any discrete group 6. zll of
whese abelian subgroups are cyclie, §Eé(BG) = QZ(BG) = Hz{BG;E}. The finite groups
of this type are just the groups with periodic cohomology {see Cartan-Eileaberg [71},
which all have zero sccond hemelogy and hence do not yield anything interesting

haere,

The Non=crientable Case.

In the non-orientable case, the analog of Lemma (2,1) of couxse still helds.
o s . X : =)
The analog of Theorem (2.2} i} is trivial: Ker =, being a subgroup of SK*(X) .
Ls always a torsiom group for any connected space X, We hence have:
Triviality (2.10): Fo¥ any connecred space X
4] .
SKE(}(} = SKn@ 2-torsion,

o . . P . . .
whetre SE, is #Z, given by euler characteristic, in even dimensions and zero

otherwisze,

33,
THEOREM i 56 . skOso) — sk 3 ;
{2.11}: The argumentation - € = : SK_ SK, is an iso-~
morphism for € = (zz}k, o{k), solk), (S‘}k, U(k), SU{k}, Sp(k), and products of

these groups.

The proof is by showing that ome can gemnerate n*(BG) as a n*-module,
and hence §ﬁg(Bc) as an gﬁz-moduie by singular manifolds (M,f}, where M is a
product of real and complex projective spaces. Lemma (1.5} iii) and iv} then shows
£ 3 §E€(BG)-—%> EEg is an isomorphism, 3o the theorem folleows by (1.1).

It is convenient to work with vector bundles having ¢ as structure
group rather than with singular manifolds iz B8C. Tf w = (nl""’nk) is a tuple
of positive integers. Let E, be the bundle §n1 ¥ ... XE over
By = BB 2.0 X P B, where £  is the canonical line bundle over LS

i k i i
LEMMA (2.12): The foliowing bundles rTepresent a gemerating set of 3Z*-mod—

ule }'{.*(BG):
i} the bundles g, for G = Clz)k,
ii} the bugdles §y With n, > ... >n_ for &= 0{k),
i1} the bundles § @det 5, with nm > ... >n  for G = SO(k+l),

1
In cases 1) and ii) the generating set is even a base.

Proof: The analogon of Theorem {Z.3) helds in the non-orieated case

(see for instance Conmer and Fleyd [10], Theorsm 6.3). Henee we need only show

that under the cancnical map

uos W 86) — H (BG;Z,)
the set in question goes over to a generating set or base of H*(BG;IZ).
The proof of i) is completely analogous to Lemma {2.4) and therefore

also left as an exercise,
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For ii) recall that H*(BG(R);Z } is the polynomial ting zziwl,...,wk]
in the Stiefel-Whitney classes. In fact the inclusion (Zz)k { o(k) induces an
inclusion H(BOCK)@.)Y CH'(B(Z.)*2.) =&, [t ,...,t,] and w, is the i-th

4 2 Z z~71 k i
elementary symuetric polymomial in ty,...,tp. For @ = (my,...,m) with
0, > ... 20 let S be the smallest symmetric polynomial in the t; containing

n n
the monomial til - tkk. The Sy clearly form & base of H*(Bo(k) ;82). On the
othex hand the homology class represented by the bundle gw is {fw}*o’m, where
£, ¢ By B0(K) is the classifying map for §y and O the fyndamenral X -

homology class of P, A triviai computation shows
LR S A <is 05 =
L3 - L4 -
Wt oS % 6, w0,
56 the set [(fw)*cw} is the basis of H*(Eu{k) ;2.2) dual to {sm].
1ii) TLet -yk be the universal lk-bundle ovar B{k), Then yk@ det -Yk
is orientable, herce has a classifying map g : BO{k) —> BSO(k+l). WNow

KBS0l 1)4E,) = Zy{wyyn.nyi, ] am
g+ H'(8SO(H) 57, ) —> ¥ (BOCK) 52,

is given by g*(wi) = w4 oW

) *
Y. for i<k and g (wk+1) = wjw,. Since these

*
elements are algebraically independent, g  is injective, Thus g, 1is surjective

and case iii) follows from 1i), Q.ED,

Theorem (2.11) is hemce proved for ¢ = (&zjk, o{k), sofk)y, If L is
the complex analcogon of the bundle g, then Lemma (2.12) and its proof carry ov.er
to G = (S;__)k, U{k) and 59{k) if one replaces §w by T, everywhere, Also a
proof similar te the proof of iii) above shows that ﬂ*(BSp(k)} has a generating

set represented by the bundles -nmﬁanu). This proves (2.11) for {S')k, ok, sulk)
and  Sp(k),
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Finally if T{"(BGI) is generated by singulsr manifolds (Mi,fi} and
R*(BGz} by singular manifolds (Ni’gi)’ then BQ;*{B{GI X 62)) is generated by
the singular manifelds (M, X Nj’fi % gj). 1f the M, and ‘Hj are products of
projective spaces, then so are the Hi x ¥.. Hence (2.1l} atso holds for products

3
of the groups listed. Q.E.D.
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GHAPTER 3: Equivariant SK

In this chapter € always denotes a compact Lie group and G-manifolds
are manifolds with smooth G-actions. We are interested in invariants for equi-
variant cutting and pasting of closed G-manifolds. As usual, the Grothendieck
greup of n-dimensional G-msnifolds modulo the relations given by cotting and
pasting gives a2 universal such imvariant. We demote this group by ng,n
{respectively SKz?n in the oriented case}.

The calculation of equivariant SK-groups is made difficult by the fact
that we no longer have Theorem {1.1}. In this chapter we caleculate Sthn np to
2-torsion, To state and prove the result it is convenient to have the language of

"slice types" which we therefore recall briefly. For details see Jinick [12], §4.

if H is a2 closed subgroup of ¢ and V 2 smooth H-manifold, then
G %y V denotes the fibre bundle over G/H with fibre V, asscciated to the
priveipal H-bundle ©G-—> G/H. Recall that 6 gV is G XV factoved by the
equivalence relation: {g,x) ~ (gh,h'lx) for h € H. With the G-gction induced
by Left multiplicatfion G X4 V is a Gemanifold,

If V is a vector space and the H-action is given by a representation

G : H—= GL{V) then we also write { Ky © for ¢ Xy V.

A slice type for G 1iIs a conjugacy class in € of pairse (H,{s)), where

H is a closed subgroup of § and (0} am equivalence class of real representa-
tions of H. The slice type represented by (H,0) is denoted by {#,0]. Ome
checks thet [H,0] = [H',0'] if and only if & ¥y © and G %, O are isomorphic

G=manifolds,

If M is a G-manifold and x € M, chen the slice type at the point x
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is {60

x}, where O is the representation of the isotropy subgroup G

narmal to the orbit threugh x (the "slice representation”), Slice type deter-
mines the local structnre of M completely, for the "slice theorem states (see

for instamce Janich [12], p. 3.

THEOREM {slice theorew): There is a G-invariant open neighborhood of

x in M which is G-diffeomorphic to G X, O..
X

There is a partial order on the set of all slice types for G given by:
{H,0] < [U,7] means [©,7] is a slice type of the G-manifold G X, 0. A family
? of slice types for G will be called permissible 1f it contains with each
[k,5] also each (U,r] greater tham [H,0]. By the slice theorem, the family
F M) of all siice types of a G-manifold M is a permissible family.

1f F is a permissible Eamily of slice types, a G-mamifold of type F
is & G-manifold M all of whose slice types are in F . That is {F{M} C ‘:I'( .
Denote by SKO(G,fF) the SK-group vesulting from cutting and pasting G-manifolds

of type '}7

Examples, Lf T‘)C'= [[[e],ﬂn]} where Sn is the n-dimensional trivial
representation, then S[(O(G,g:) = SKg(BG).
16 F is the family of all n-dimensional slice types for ¢ (by dim [H,0] we

mean dim{G X, ¢}), then SKO(G,H:’}=SKO .
H g,n

1f M is a G-manifold and E:H,O‘] a slice type, define

My,01 t =[x €nlle,0,.] = [nal}.

Via the slice theorem H{H,a} CM is given locally by @ Xy Yo {c X, O, where
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gy 1is the trivial component of O, 3o M[H,c] is a smooth submanifold of M,
Clearly M[H,c] is a closed submanifold if [H,0] is a minimal element of ?(B).
Note that it also follows that any l-codimensional G-invariant submanifeld N Cu
along which one can cut and paste M intersects each H[H,c] transversally, as
G, and bence certainly alse H, acts trivially sormal te M.

"

i i i . bove comments
H,G] fibres over H[H,U]/G with fibre G/H. By the above c

it follows that e defined by

(4,07
“[1,0] ™ * = U0/

is an SK-invariant. It will turm out that the E[H a] give akl eguivariant
*

BK-invariants up te 2-torsion. We first need a further definition.

Let 31 + E— B bhe g differentiable G-vector-bundle over a differentiable
manifold B. iLet [H,0] be a slice type for G. We say nm : E—» B has type
[H,0] 1F just the points of the zero~section of E have slice type [H,0]; that
is, E[H,c} is the zevo-section B (C E. The typical example of this is the pormal
bundie ”{M[H,O]) of H[H,c] in a G-manifald M,

Equivariant cutting aud pasting of G-vector-bundles of type [H,0] whose
bases are closed wanifolds leads to am SK-group SKO[H,&T].

Now let 3 be an sémissible family of slice types for ¢ and [H,7] € ¥
a minimal element im the partial ordering of F. The T = F - {[4,01} 1is

also an admissible family and we have an sbvious homomorphism
i 586, B —> 5806, F).

Furthermore, {f M 1is a G-manifold of type T them the minimalicy of [H,o]

implies that M[H G} is closed, so Mi——a y(M ]) defines a homomorphism
r

{H,0
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v s 5%, Ty — sk ,0].

THEOREM {3.1): If F is au admissible family of slice types,
{#,0] € F 2 minimal element, snd F' = F- {(H,013, then the following

sequence is split exack.

- iy
0— 5%, F) o2F 1> 6, F) 0z(] = <%u,0] ®2E]—> o.
d

Progf: We first describe the splitting homomorphism 4. Recall that
for any manifold X the "double" X is defined as X U X pasted alomg the
comnon boundary by the map id : 8X—= 8X, If E iz a vector bundle of type
[H,0}, define

3([E] @1} = [Dpr] @«11; s

where DE is the disc bundle of E, Glearly ne d = id.

it follows that n is surjective., Since it is clear that i is
injective and w = i = 0, it only remains to show Ker{n) ( im(i).

Suppase n{[M]) = 0. Let N be a small tubular neighborhood of H[H,U'j
in M, isomorphic to the normal bundle \;(M[H’c}) as a G-manifold, Since -
n([¥]) = 0, certainly 4 = nf{{¥]) = 0, that is [£%] = 0. But by cutting and

pasting one has

2{M] = IR -] + [DF]
= [D0ewy]
in 3K%6,F), and the Tight hand side is clearly in Im(i)}. Q.E.D,
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LEMMA {3.2): Assigning co a G-véctor-bundle E—> 3 aof type [H,T)

the 3K-class [B/C] defimes an isomorphism
s&6,9] @2[5] —> sxg @z{%},

where p is the dimension of the trivial component of o,

Proof: Write g = 00690', where ey is the trivial component of 0.
The compesite map E—>= B—> B/G identiffes E as a fibre bundle over 3/G
with fibra & *y 01 and strieture group F(cl) = AutG(G XH Ul)_ Since
dim{B/C) = dim(cro) = p, we hence have

sk°u,q] = sxg(Br(aI))

30 the lemma follows from (2.10}.
Remark: It is not hard to calculate the structure group T'(0;) explicitly.

Since W 1is compact we cam assume g : H—> 0(k) is an orthogonal representatiom,

and then

I"(GI) = NGXO(I()(E)/E’

where H = [(h,d.(h}} € ¢ x o(k)|b € H}.

How by Theoxem (1.3) it follows that SKO[H,G] @z[é—] is zero if
. . ; i
p = dlm(co) is odd snd is R{-E], generated by the bundle Ec_ = PPR x {G XH GI),
if p is even. Thus by Theorem (3,1} sand a trivial inductiom, SKO(G,";‘F') @3’.[-;—]

iz the free Z.[-]i]-module with basis {[ODE][[¥,0] € ¥, dim(q,) even}.

Gl

COROLLARY (3,3); The SK-fovarients ery o1 with [#,0] € F and
- ¥

dim(oo) even define an isomorphism
Cepy o7 @ 1) s, F) ®z(2] — E_LJ_] 2[7]
2% 8,0

where the sum is over all [H,8] € GF, with dim{UO) even,

Proof: Let [Hl,cl],[Hz,Uzj,,,. be those [H#,0] im 3: with even
dimensional trivial component, with indexiug so chosen that {Hi,ﬁi} = [Hj,Uj}
implies i < j. Ovder the basis of SKO(G,?’) @1’.[%] mentioned above correspond-
ingly, Now

2 ifi=j
e[Hiroi](o@DEci} =
0 ifi <.
That is, the matrix of the map (e{i{,a} B id) with respect to the above basis is

triangulax with invertible diagomal entries, so the map is an isemorphism. Q.E.D,

The above covollary can also be formulated that the map
E = (e[H’c]) . SKD(G,g)'—*‘ [I-i-;& -4
»0]
(as ysual [H,0] € "7{ with dim{oo) even) is a module 2-torsion isemorphism.
That is Ker(E)} and CoKer(E) are 2-groups, Thus Kex{E) is the torsion sub-
group of SKO(G,'SC} and its calculation would complete the calculation of SKO(G,fl.
The caleulation of CoRer{E) is equivalent to finding the relations between the
Et“;cl and would be im a sense a general Smith type theorem, Note that the
e{H.U] with dim(co) odd are not necessarily zero. However, they are linear com-

binations of the eEU,ﬂ with {U,7] > [K,0] and dim('rc) even.
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JEnich [14] and Rowlett [17] have some further results on equivariant

8K for G=ZX They both use differenmt SK-relatioms sund it turms out that

2-

what they are actually calculating is respectively SEiOIJ and Sﬁg /J, vwhere
2 2

J is the ideal generated by manifolds of the form E'X, with X am oriented

resp, arbitrary compact X, -manifold. Rowlett obtains complete results, however

]
Jinich's result is not quite complete and is only modulo torsien.

Using these results, it is probably not too hard to obtain a complete
¢alculation of SKE; in both the oriented and unoriented case, using the followiug
two remarks:

Remack (3.4): §!ZG is a quotiemt of SK./J.

Remark (3.5}: Since for finite G, bordism of G-manifolds is given by
G-equivariant surgery, the analog of Théorem {1.1) holds with In replaced by

the subgroup of 8K generated by all effective lLinear G-actioms on 7,

G
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CHAPTER 4: (Controllable Invariants

In this chapter we discuss a generalization of the comcept of SK-~
invariant, due to ¥, Jinich (unpublished),
=N U

Let M, =N Ucn ~H' and M - N' be two closed oriented mani-

Z ¥
folds obtaired from eack other by cutting and pasting via the diffeomorphisms

me§ t ON——= IN". Ar invariant } for closed ariented manifolds (as usual
additive with respect to disjeint union) is called SK-controllabie if

L(n L& - N') - AR UQ - ') only depends on the diffeomorphisms ,t : ON —> ON'
and not oo the choice of the manifelds W and W', We then speak briefly of an

SE¥-invariant (SK»Eontrollierbar)_

Cleariy any SK-inveriant is an SKK-invariant, and the SKK-invariamt )

is an SK-invariant if and eonly if the "ecorraction term”

Mep,¥) @ = k(qu-N‘) - l(NU?-N')

is always zero.

The above definition is obviously equivalent to the following: for any
oriented manifolds NL’NE’NZ’NE with 3N, = 3N2 and 3] = aNi and any orienta-
tion preserving diffeomorphisms ¢,¥ : aNl-——a 3§; one has

SLTRCE A, Ny = x(qup—Ni) - MU

This makes it clear haw one can defime a "universal” SK¥-group SKKiO, which

gives the universal SKK-invariant for closed oriented n-manifolds; factor the

. 50
semigroup ETLR of diffeomorphism classes of closed oriented n-manifolds by all

relations of the form



4.

¥ Y = _ut T N
quﬂmﬂl -+ N2U$ NZ Nsz NZ + hlUQ Nl

and then talte the Grotheadiecl group of the result, Ooe can make precisely the
same definitions ia the mon-oriented case to obtain a graded group SKK&. As
usual, we drop the superseript in the oriented case and just write SEKK,_ for
SIKS.

THEQOREM (4.1): a) Assigning to an oriented manifold M its bordism
class in [, is an SKK-invariant and hence defines a surjective homomorphism
SKE, — 0,

) The analegous statement holds in the non-sriented case.

Proof: This is just Lemma (1.9) carried over to the {un)~oriented

category, with X = pt. Q.E.D,

K. Jénich {unpublished) had shown that for oriented manifolds bordism
class and euler characteristic give 21l SKK-invariants up to tersion, It turns
out that there can be further torsiom imvariants; the following theorem gives a

complete description of SKK-invariants,

THEOREM {4.2): Let L, CSKKn {xesp. IS CSKK:) be the cyclic sub-

group gemerated by [57]. Then the sequences
0 —= 1, —> SKK —*= Q,—=0

0 Q
0— 1 —> sz(l(n—mavzrn—-:- 0

&3,

are exact. PFurthermore LN (Ig) is the quotient of # by the subgroup generared

by euler characteristies of clesed (p+l)-dimensional (un)-oriented manifelds, that

is:
z nz 0 {mod 2)
L,zd, n=1 {(md 4)
0 n=73{mod &)
0 zZ =0 (med 2)
|
n =

0 n=1I {med 2).

Proof: We shall first prove the exactness of the above sequences.
Suppese we have twe criented manifolds HI;_ and M; which are cobordant., We
mist show that in SKK - they differ by a wwltipie of {s"]. We shall in fact

pLove more, namely

LEMMA (4.3): Let Y be an (un)-oriented bordism between bf? and M;L.

Then fn SKK, (resp. SKKD)

D1 = 1,1 - (et¥) - e(m))s"].

We have proved this lemma for SI(‘:l as Corellary {1.8), so we mesd gnly
show that wherever equality in SKn occurred in the proof of (1.8} it can be re-
placed by equality in SKE_.

Let N and N' be oriented manifolds with 3N = 3N’ = 2P, the disjoint
union of two copies of a manifold P, and let t : 2P —=> 2P be the javolution
exchanging these two copies. Suppose further that

P bhounds an oriented manifold

Q. Then hy definitiom of SKE
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(M 40" ] + [20d,-20] = [2qu; 4~2] + [mu w7,
so since 20U -2Q = 2QU, -7Q, we have
oy, =n'] = [ -] i siC .

Byt in the proof of {1,8) only cutting and pasting of the above type occurred
{namely the cutting and pasting (A} involved in surgery im the proof of Lemma
{1.6)), so the proof cau be carried over to the 5XK-case, as desired. The same

arguments hold in the unoriented case, G.E.D

To complete the proof of Theorem (4.2} we must calculate the oxrder of
(" in SKK, {resp. S!ﬂ{g). For m even, euler characteristic is an SKK-

invariant which is non-zers on the generator [Sn} of L, {resp. Ig), showing
that I“ ~ z:f:a. We may hence assuome =0 is odd, say u = 2m~1l.
M, =4 and Y= $%2  shows

that 3"} has order at most 2 in SKK, . ; and srqtgm_l.
2u

M is a closed manifold of odd euler characteristi¢, then Lemma (&.3) with

Observe first that Lemma {4.3) with MI

]

Furthermore, if

M =M, =g and Y= ¥*® qow shows that [Szm'lj = 0; we cam take M=P, R

in the unoriented case, and for m even we can take M = pﬂc in the oriented

case, It hence only remains te show in the priented case that [Szm_l] # 0 io
SK.sz_l for m odd., We shall prove this by showing that [SZm-l} = 0 fmplies
the existence of a closed manifold MZm of odd suler characteristic, which is

impossible in the orientable category if m is odd.
Suppose therefore that {SEM—I] = {0, By definition of SFCK.Zm 1 this
meants that there exist orientable manifolds H, and N; (i = 1,2} with

arxl = 3, and ab:‘l = ani, and diffeomovphisms ¢,y : ON;— BNj, such that

2m-

L
ST (Y N HOGU N = (N NE) & (U, -8
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For 1= 1,2, let Y, be the union of N, x [0,1] and W} x [0,1] with the

following identifications: for x € B‘Ni identify (x,t) € B‘Ni x [a, 1/3} with

tx),t) € N7 x [0,1/3] and (x,t) € BN, X [2/3,1] with (0x),t) € ] x (243,11,

1 I

2‘9 Q j" _

[i] 1/3 373 L
As in the proof of (1.9}, after smoothing, B‘c’i = (NiUm-N]!L) +

-awy L+ -(Niu'{{'Ni)’ so by using the above equation it follows that the dis-

Pl

joint unien Yz + ~Y1 has houndacy

2m-

- i ' :
a(vr2 + =Y} =3 + (&1U{p-wl) + (N2U¢-W2) + (aul) +

oe!

- U -pr e
{(Nup W)+ (U)o () g
o d
Thus by pasting boundary components of Yo+ ~¥; + DZm paiTwise together we get

- vi b x
a closed manifold M°", whose euler characteristic is easily calculated to be

| 2e{al\'{). Singe this is odd, the proof of Thecrem (4.2} is completed. Q.E.D.

Remark: For unoriented manifolds, Theorem {4,2) shows that bordism class

and euler characteristic give all SKK-invariants,

For orientable manifolds one can shew that Kervaire semi-characteristie,

defined by

2k
ak:
k(M +1) = L b, {M) (modulo 1,
i=g *
where the b (M) are the betti numbers, is an SKK-imvariant SR 12,
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whick splits the sequence (4.2}, 350 bordism class, euler characteristic, and
Kervaire semi-chavacteristic in dimensions 4k+l give all SKK-invariants for
orientable manifoids.

We sketch a proof of the §KK-invatiance of the Kezvazire semi-character-

2m

istic k. For any oriented mapifeld Y an elementary homoleogical argument

using Poincaré duality shows that
k(AY}) = e(Y) -~ 7(Y) {med 2).

Assume m odd, say m = Zkil, and apply this equatiom to the mamifold Y used

in the proef of (1.9), This gives
R(Miucp‘mz) - k(U -M,) - k((anljw_i) = -e(3M,) (mod 2)

which shows that k is an SW~invariant with correction texm kigp,¥) =

k{N 1) - a(N) (med 2). A simple homological ecaleulation puts this in the neater

form
Kip,§) = vank((p 1), - 1) (aod 2,

where, since other dimensions pair off, we need only comsidexr the middle dimension

1 .

(™ Dy = Hyp (H) 2 H, (W),

Bordism with Vector Fields,

Reinhart [16] introduced bordism with vector fields Im order to make

exler characteristic into a bordism invariant,
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Let Ml and MZ be closed {oriented) manifolds., & veckor-field bord-

ism hetween Ml and M? is a usual {oriented) bordism N between M; and MZ

together with a non-singular vector field on N which is the inward normal on

Ml and the outward normal on MZ'

It iz well koowe (Reinhart, loc. cit.) that if ¥ is coonected, such

a vecter field exists oa N if and ounly if e(Ml) = e(Mz) = a(N}.

THEOREM {4.4): Two (oriented} manifolds M, and M, are vector field
cobordant if and only if they are equivalent im SKKS {resp. SKK ). Thus one

car identify SKK, with Reimhare's vector field bordism groups.

We prove only the oriented version, because the same arguments hold in

the vnoriented case.

He wmst show that two criented manifolds M? and Mg represent the

same clazs in SKKn if and only if there exists an oriented bordism N between

thes with

e(M)) = e{d,) = ().

The sufficiency of this condition is immediate from (4.3), so it remains to prove

.

the necessity, Suppose therefore that fﬁlj = [Mz] in SKK . Siaoce euler charac-

i

teristic iIs anm SKK-invariant, &(Ml) = e(Mz). Also the bordism classes are equal,

s¢ we can find a bordism Y between M, and M,. Lemma (4,3) implies that

(elY} - e(ﬂl)}[sn] = 6, so for T even Theorem (4.2) shows that e{Y) = e(Ml),

and we can take N = Y and are finished, For n of rhe form 4ktl Theorem (4.2}

shows that e(MI) - e{Y) is even, so for arbitraty odd n we cam certainiy find a

- L . o+l
closed maoifold Mﬂ+ with el 1= e(Ml) - e{¥). 1In this case, the connected
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s of Y and Mn+1 gives a bordism W of M, and M, with e(N} =

1 2
a(Y) + e(Mn+1) = E(Kl)’ completing the proof, . E.D,

Tangential Characteristic Numbers,

Jémich (unpublished} has shown For oriented manifolds that the index of
an ellipic operator is an SKE-invarismt. Here, a version of this theorem will be

proved in 2 more general setting.

Let ?g be the universal bundle over B3S0{n) and y_  the universal
bundle over BO(n). By D?n and S?n we denote the correspending dise bundle
and its boundary sphere bundle,

Let M be e closed oriented uwmanifoid. The classifying map for the

tangent bundle of M dnduces a map
(M, L) —a (D?n,s?n) .

where tM is the tangent disc bundle of M. Since tM has a matural stable

almost complex structure, we obtain an element
x() € o) (oy_, 5%, )
20 Y1 P,
In the uwnoxiented case we obtain an element

i
x0) € o (by_,sv).

LEMMA (4.5): y defines a homomorpht sm

v .- -
X * SKK\':_& nZn(DYn'sYn}

3.

respectively

o] U
X SKK —= (DY, Sy ).

Proof: Suppose Eb‘ln} =0 in SKK 3 we mist show that %(M) = 0. By
Theorem (4.4% we can find an oriented manifold ¥ with 3Y =M and a non-~
singular vector field € om Y which is the inward normal on M., Let t'Y be
the disc bundle of the bundle obtained by splitting the lime bundle corresponding
to £ off Ffrom the tangent bundle of Y, and f : (£'Y,0e'Y) > (D?n,s§£) its
classifying map. £ is clearly a zero bordism of y{M}. The argument aiso holds

in the unoriented case, ¢.E.D,

Now let h, aod h* be corresponding homology and cohomology theories
for which stably almost complex manifolds are orientable, Then for any element
w £ h*(d;g,s?n) {respectively x € h*(Dyn,Syn)) we can consider the correspond-
ing characteristic number of a singnlar stably almost complex manifeid., To be

precise we consider the homomorphism
ni{lﬁn,ﬁn) ® h*(n?n,s'{r'n)% h, (pt)
fn,e] @ x promm <g*x,[N,aN]H>,
where [N,Bﬁ]h denotes the h -orientation class of ®.

befinition: TIf M is a closed (un)-oriented manifold, rthe characteristic

v, - -
numhers of y{M} € (v .8y )} (resp. € an(nyn,SYn)} are called tangential

characteristic numbers of M.
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) CHAPTER 5: Other S$K Councepts
COROLLARY (4.6): Tangential characteristic numbers are SKE~invariant,

Ezample: As h*,h* we can choose (complex) K~-theory, If M is a
Other SKE  concepts have been comsidered in the literature. In this

manifold, then an element x € K*(tm,am) can be considezed as z symbol of a
chapter we show how they reduce to the comcept of SK uaed here, For conveni-

(psaudo) -differential operater, ﬁ,[tﬁ,atl\i]f is then the indax of this sywbol.
ence we work in the oriemted category; however, the discussion is also valid for

- %
An alement in }c*(nyn,syn) {resp. X ED’yn,Syn)} rcen thus be coosidered as a
mani folds with other structure, e.g., singular manifolds in a space X, manifolds

"oniversal differential operator' which is defioned on 2}l n-dimensiomal (un)-
with (B,f)-structure, msnifolds with & group action, ete,
oriented manifslds. The index of such a “universal operator™ is hence an SK-

jovariant,
A cutting and pasting "relation" will always mean an equivalence rela-

tion ~ on the clagss of manifolds, compatible with disjoint union +, and

“caocellative." That is, for mamifolds M,M°,N we require
Mo M e M M

Actually, to make our discussion valid also in the equivariant case it
is couvemient to define a further cutting and pasting relatiow by addiog to the
SK-relation that the double £)¥ = M de -M  of apy compact manifold be equivalent to
b3

zero, Call this relation SK. That is, for the correspomding graded groups,
ot
S, = $K,/J
where J is the subgroup genersted in 5K, by doubles of closed manifolds,
-t J—
LEMMA (5.1):; 1Im the non-equivariant case SK = 3K,
Proof: In fact we show this holds for any category of mamifolds for

which 2 suitable analag of Theorem {1.1) holds, i.e., bordism is given by surgery,

and spheres are doubles of discs,
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§E* = SR, /1, where 1 is the subgroup gemerated by msnifolds which
bound, and hence contains J. But by (1.1} 1 is already generated by spheres,

and hence contained in  J. Q.E.D.

We consider the relation used by Janich [141. This relation is gener-
ated by setting any manifeld of the form
1 M) M, 4 MG M, A MU =M
h 6@0 1 1¢1 2 g, 0
equivalent to zero, Here =M, means H; with reversed orientation and

;s BHiww—a-aMi+ (indices modulo 3) are d4iffeomorphiswms.

i

s
THEOREM (5.2%: Jiuich's relation is the same as 3K, and hence the same

as SK in the non-equivariant case,

Proof: By cutting and pasting the above manifold (1) one obtaius the

union of doubles,

MUy + MU M UM

0

so §ﬁ implies Jdnich's relation. On the other hand, putting MO = M,

M =M, =4 in (1} shows that M+ (-M) ~ (. Now taking My =¥, =M, (1)

shows that gDMO + £3M0 + (-SDMQ) ~ 0, so EBMG-H 0, Finally, HG = H2 gives

MU =My + (MY ~M) +OM 0, whence M|} -M ~Mi -M. Hence Jinich's
0¢0 1 I?i' V] 0 0@0 1 Oml 3
relation implies SK. Q.E.D.
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1f one is interested also in compact manifolds with bowndary, the most

eatural cutting and pasting relation seems Lo be the one generated by the relations
(2) MOUm “ M~ Mo+ (-Ml),

where ¢ pastes boundary components of HO to boundary components of Ml.
Call the corresponding graded group A, (the Grothendieck group of compact
manifolds modulo these relations). This i1s the saiversal group for "additive"
invariants of.manifolds.

Cleariy, for closed mamifolds the above velations only gemerate the usuazl
SK~zelations, so the subgroup of A, generated by closed menifolds is just SK,.
Now let B, be the Grothendieck group of closed manifolds which bound, subject
only to the relations M4 {(-M) = 0. The torsion subgroup of B, is thus 2-torsioen,
generated by bounding manifolds which possess orientation reversing diffeomorphisms.
There is5 au epimorphism 3 A —> B, ; g&iven by taking boundaries of manifolds.

The following theorewm is trivial.

THEOREM (5.3): The sequence

0 — SK, —> A, > 3*‘1-*3- o

iz exact,

Thus “additive™ invariants for compact manifolds reduce te the diffea-
morphism types of their borndaries together with S$K-invariants for closed mani folds.

Observe that the above sequence does not split for n evem, since [S7] = 2[0%] in

I

A,, but {s"]

is an irreducible element of SK, = Ker Q.

Theorem (5.3} is due to Rowlett [17], Actually Rowlett cousiders a
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slightly different relation, namely
(3} Mgk~ + (M5} + M, ~ 0.

Taking Hl = ¢ this implies MO ~ -(-MO), so in particular relatiom (2) fellows,

as well as the relation

(&) Hols =My ~ 0,

that is, doubles are equivalent to zero, Conversely {2) and (4) clearly imply
MU ~ -—(-—HO), and henmce imply {3). Thus Rowlett's relation (3} leads to the same

o~
results as relation {2} except that 5K, wmust be replaced by SK, .

We now return to a comment of Chapter 1. As remarked in Chapter 1,
sxh(x) is sctually equal to the semigroup of singular n-manifolds fa X wmedule
SK-equivalence, To assure this, the definition of SK-equivalence in Chapter I
was sI:ightly unnaturaily "stabilized” to wmake sure that it was cancellative. As

recently Temsrked by Ed Miller, this is unnecessary, In fact we have:

THEOREM {5.4): Two closed uon-empty oriented singular menifolds {M
and (Mz,fz) in a comnected space X are SK-equivalent and hence represent the
same element of SK, (X} 4f and only if one is obtalnable from the other by 2

sequence of cutting and pasting operakioms in X,

0f course the same holds in the vaoriented category. To prove Theorem
(5.4) let ~ denote the “unstabilized" SK-relation; that is (Ml’fl)" (Mz,fzj

means that (Mz,fz) results from (M,,£) by a sequence of cutting and pasting

18y
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operations inm X. It 1s clearly sufficient to show that the semigroup §f[ (X}/~
of singular n-manifelds inm X wmodulo this relation is already a2 group, and hence

equal to SK“(X).

. 1 -
Firstly, this semigroup has a zero, given by the glass of 5 X i 1.
indeed, we can cut Sl' 4 Sn—l zlong Sn-l' to get 1 X Sn-—l— Now given any
{M,f) & mn(x), we can cut a smell disc D" from M, paste I X Sﬂ"1 te this

disc as a cellar, and paste the result back inte M, showing that
w6 + (51 x 7w 4,0,

Secomdly, the class of 5" has am inverse im this semigroup, Namely
let ? be the "sphere with too handles” obtained by removing twe discs from

st x s®' and pasting the resulting two boundary compouents sot together. By

reversing this comstruction, clearly P+ S ~ 8% x 7L,

We now have all we need te repeat the proof of Corollary {1.8) and show

that if (Ml,fl) is bordant to (MZ’fE) in X by a bordism Y, then
. . n
L6 = (M, 6] - (e(Y) - e(v))s"]

in len(x)}~5 It follows that auny element (M,f]| of Ynh(x)ﬁ~ has an inverse,

namely [-M,£] - e(M)[s"], so WL (K)/~ is a gToup, as was to be shown.

Remark: The relation of SK-equivalence as given in Chapter 1 can be
simplified in another directfon, which is, however, less interesting. Namely,
(., £,) and (Hz,fz) are 3K-equivalent if and only if there exists an (M, F)
such that (M,.£,) + (M,f} results from (Hl,fl} + (M,E) by a single cutting and

pasting operation. We leave this as an tasy exercise for the reader,
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CHAPTER 6: Winkelnkemper's "Oper Book Theoremw

This chapter was written after the rest of the notes were completed,
and discusses some SK~-consequences of Elmar Winkelnkemwper's "open bock theorem”
[20]. Maybe the main consequence for SK is the theorem, which strongly super-

cedes Theorem {2.8) iii):

THEQREM {6.1): For any topological space X and all odd n # 3,

SKH(){) = (¢, This is probably alsa true for = = 5.

Tet us first zecall Winkelnkemper's defimition of am "open book.” Let
¥ be a manifold with 3V # ¢ and h i V—>» ¥ a diffeomorphism with h|av = id,
Form the mapping torus Vh {see Chapter 1) which has avh = S[ X @V, and faor
each x &€ 3V  identify the paints (t,x), t &£ Sl, to ebtain a clased manifold M
called an open book. The fibres of the mapping torus are the "pages” and the image
of Sl X @V under the identificatiom, which is a codimension 2 closed manifold
diffeomorphic Lo @V is called the "binding.” The binding is the boundary of

gach page.

In 1923, Alexender [1} proved: every orientable 3-manifold is an open
book. Winkelnkemper bas extended this to the following powerful structure theorem

for manifolds:

THEOREM (6.2) {Open Book Theorem): a} Every vrientable closed manifold

of dimemsion n = 3kt]l ¥ 53 has an open book decompesition.
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b} A closed simply comnected manifold M of dimension n = 2k > 6
has an open ook decomposition if and omly if (M) = 0.

In fact in the simply comnected case, =n > 6, Winkelnkemper shows
ouch more, namely, that the pages and binding can alse be chosen simply connected
with ﬂi(v,z) =0 for i=» [%}. The latter implies that b, : Hi{v,z}m-;» i{i{\?,l‘.}
is the idermtiry for i = [%], and Winkelnkemper also gives necessary and sufficient

conditions that ome can choose it to be the identity also for i = {%ﬂ,

The application te SK is given by the following theorem, We first note

a simpie lemma:

LEMA (6.3}: Let M° be a closed connected orientable manifold, Then

the following four conditiens are equivalent:

i) Far any map £ : M—> X of M ioto a space X, W] = ¢ in Eﬁn(x};
ii) 7{M) = 0 2and for any wmap £ : M—> X, M, £} = (H,%] in SK_(X);
iii) [M,id] = 0 in Eﬁn(m;

iv) 7(M) =0 and [M,id] = [M,2] in SK_(H).

THEOREM (6.4): If M" has an open hook decomposition then each of the

equivalent conditions of Lemma (6,3} holds.

Proofs: Lemma (6.3): The equivalences i) <= ii} and 1ii) e iv)

are clear by observing that {M,f] = 0 in §E£(I) implies [M,*] = 0 in SE (X}
- o

aud applying Theorems (1,15) and {1.3b). Trivially i) —> iii), and iii) == i)

follows from the fact that [M,£] € EEn(X} is the image of [M,id] € Efn(M) under
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b = fibre bundle with structure group G and non-multiplicative signature, and
the map SI(“(M) — SKH(X) induced by f.

£: M—s BG is the classifying map, then [M,f] # [M,%] in SK,(BG), =0

Theorem (6.4): Suppose M has an open book decompositic.:-n given by rifhs f] is non-trivial, in fact of inflmite ordex, in Ker EBG. Thus by Lemma
typical page V¥ and diffeomerphism h : ¥-—-= V., We shall prove {M,id] =0 {(6.3) n{M,id] has infinite order in Ker EH_ Thus n[M,idI £ Ker gﬁ gives an
in ?I—(n(b'[) intrinsic obstruction to mitiplicativity of signature for arbitrary bumdles

Cuokting the mapping torus \Ih along two fibres to get two copies of over M. Two matural questions arise:
¥V x T induces a cutting of M (along a manifeld diffeomorphic to the double of
V} iInto two pieces N and N', each of which is diffeomorphic to V X I/~ , Question i: We have seen that finite order of n[}-‘i,id] in HKer aﬁ is
where -~ identifies each x % I {x € 3V) to a point (in Fack N and N' are sufficient for bundles vver M to have multiplicative signature. Is it also
still diffeomorphic to V¥ x I), Use a homotopy between id : V X I—> ¥ x I necessary?
and ¥ X I~ v CV X 1, where p is the projection, to slide botk N and X'
into a single page V of M and re-paste them there to get the deuble &N Question 2: By Theozem (6.4} triviality of [M,id] in SR(M) (which
mappitg intc a page V M. This mapping clearly extends to a mapping of N X I is equivalent to n[M,id] = 0 and (M) = 0} is necessary for M to have an open

into V if we consider 4O as 3N X I}). Hence [HM, id] is equivalent by an book decomposition., 1Is it also sufficient?
SK-operation to something which bounds in M, and is henee zero in ﬁn(}-{). Q.E.D,

Atiyah’s examples show that there are bundles with non-wultiplicative

The open baok rheorem together with (6.4) clearly implies (6.1}, There signature aver any product ¥ of orientable surfaces of sufficiently high genus.
axe other interesting implications. Recall that for any comnected space X, the Hence niM,id] # 0 in ¥Ker EM, 3¢ M has no open boak decompesitiocm. Thus the
N X - :
augmentation g SK*{X}-—-—} 5K, =and the map n : SK (X} —> Ker sx given by condition -nl(}-i) = {0 in the open hook theorem canmot be dropped eatirely, It was

[ } [ ] . ] this remark, made by Elmar Winkelokemper {using a more direct argument} that led
M E] = [M,f] - [ M, %]
to this chapter,

define a direct sum representation
SKy(X) = SR, &) Ker X,

Since BSK, is well understood, it is Rev ex, end hence the elements nfM,f],

which interest us.

As vemarked {n Chapter 2, if a manifold M is the base of a compact
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APPENDIX l: Cutting and Pasting of (B, E)-manifolds

by G. Barthal

Most of the preceding theory can be generazlized to cutting and pasting of
{B, f)-manifolds, so here we give a sumsary of the generalization.

Let us briefly recall the definition of a (B, f)-structure on a manifold
as given by Lashof {3] (see also Stong [7]). Let {(B,f) = {By,f,) be a sequence

of fibrations fk H Bk—-%* BOk and maps gy ¢ Bk-—-wa- Bk-i-i such that a2ll diagrams

g Pl
.
E, | £
k kil
Bok*""'j:;"} Bok+1
commte (jk is the yspal inelusion),
ke
Any smooth imbedding i, ot M —s & of a compact smooth m-manifold
0 otk
yields imbeddings J'.k : Mt — !n+k, k> kU’ by the inclusion of & 0 into

Bn+k. The geometric normal maps vy F M= B0, (taking BO,  as am infinite

Grassman menifold) of these imbeddings are related by Vipl = jk'vk‘ Given a

(Bk ’fk Y-structure on (M,ik } (i.e., a homotopy class of liftings
4] ] 0

k
et
M
—G*l:“*—!- Boko
Q
of the normal map to Bk }, oue obtains a unique sequence £ = {E ) of
o s k k:ko

(Bk,fk)-structures on (M,ik).

Provided that k is sufficiently large, any two imbeddings ik aud ii
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of M' imto !.n-l_k are regularly homotopic and any two regular hometopies are
homotopic through regular homotopies of the given ilmbeddings. The induced homo-
topy of the noxwal maps yield by the homotopy lifting property for the maps fk
a one-one correspondence betiween (Bk,fk)-structures on {M,i } and {M,i&).
Two sequences & = (ék)kakg and { = (cﬂ)f.gto belonging to embeddings
k) °+k0 n+£0 . - -
iko : Mo R and i‘;‘o : M R will be calied equivalent if g, and
qr correspond by the above correspondence for some v, A {B,f)-structure on M
is then defined to be an equivalence class of such sequences of (Bk,fk)-structures,
and a manifold M together with a {B,f)-structure [ is called a {B,f)-manifold,
If p : M—> M is a diffeomorphism, any (B,f)-structure on M induces
one on M'. An isomorphism of (B, f)-manifolds is a diffeomorphism inducing the
given strycture on the source M'. This notion of induced structure and of (B, £)-
worphism can be extended to immersioms with trivialized normal bundle, see Stong
{71, p. 16, for details.
L

in Rn+k AR

Let Wl pe a (B,f)-manifold with boundary. Imbed Wt .,

such that 3W lies in EC x {0} and W meets g™k % {0} orthogonally along
34, Then the (Bk,fk)—structure on W induces ome on W by restriction, called

the boundary structure. For a closed (B,f)-msnifold M, the boundary structure

on B{K x ¥) induces the given structure on M = ¥ ¥ {0} and a structure on

M =M x {1} called the opposite structure, briefly denoted by -M.

Two closed (B,f)}-manifolds M and M' are called bordant if M + (=M}
is a (B,f)-boundary. The (B,f}-bordism classes of closed n-dimensiomal (B, £)-
- : B,f
manifolds form an abelian group Gi £ c¢alled the nth (B, £)-bordism group,
We rematk that cthese groups are isomorphic to certain stable hometopy
groups of appropriate Thom spaces (see [3], [7] For details), Furthemmore, if a

multipiicative stxucture is given (defined by maps B, X B —=B_ _ such that the
T+s
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projections fk preserve products up to howotopy, BOr X Eos—~+> 30 being the

usual multiplication), we get a graded ring structure om Qin’f),
(

worphism Q*B’fl-ﬂﬁs M, is a homomorphism of graded rings.

s

and the homo-

Suppose that a closed manifold M is the union of two bounded manifelds
N and N' pasted along the common boundary ON = dN'. Then a given {(B,f}-
strugcture on M induces (B,f)-structures on N and W such that the boundary
structnres on 3N and AN’  are oppesite to each other. If gy : W -—3 -ON' is
a (B,f)-isomorphism, the pieces ¥ and HN' may be pasted by @ to give a new
(B,f)-manifold M', and we say M' has been cbtained from M by an 5K-operatiom,

Note that in gemeral the {B,f)-structure on ™' is not uniquely determined by the

(8,F)-mapifolds N, N' and by o-

As in Chapter L, one defines an SK-group SK(B’E)

o as the Grothendieck

group of closed n-dimensional {B,f)-manifolds modulo the relatioms given by SK-
]

operations. is then defined by factoring SKiB’f) by the bordism rela-

tien. If the {B,f)-structure is multiplicative, then SK&F'E) and EE&B’E} are
graded riongs, aund the natural epimorphisms

(B, £) (B, )
S, T —s BK

and

Q;E,f) B, £)

—

axe graded ring homomarphisms,

We first remark that without loss of generality we can assume the spaces

Bk to be connected, Collapsing the connected components of the fibres of

Bk~u-> Bok to points yields s connected covering of Bok, which muask be either
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the trivial covering B0

> Bok, or the universal covering BSOk-—éb BO. Thus

et
the fibres of Bk have at most Lwo components, s$o Ehere are at most two {B,f)-
structures on a point, snd they are opposite to each other. The same holds for

. i
the spheres $° with boundary structures induced from the disc i

. These
structures on the sphere are isomorphic by an orientation reversing diffeomorphism,
so in fact there is only one such structure imduced from the disc; we call it the
point structure.

Corresponding to Theorems {1.1) and {1.2) of Chapter 1 we have the Ffollow-

ing results:

THEOREM 1: There is an exact sequeace

o (862 st B Er . z(B. ) o,
n 13 n
vhere iiB’f) is the cyclic subgroup of SK(B’E) generated by the class [Sn] of

n
the sphere $% with the point structure, and

~ 7, n

L

(8.0 0 (mod 2)

1

(8, £}
| S

0 or Z,, u=1 (md 2),

I1f the fibres of Bk have two comnected components, then the sequence splits for

n aven,

THEOREM 2: Let Fr(tB’f) be the subgroup of 0 2*E)

N of all elements

representable by a manifold which fibres over Sl. Then
0 — F!";B’ f)___} n:;B, f)__d,_ ﬁgB, £ o

is exact,
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The proofs are as in Chapter 1, wi*™ the following resexrvarir~s: the
conmnection between SK and surgery discussed in Chapter 1 goes through without
change to prove Theorem 1, however, the cutting and pasting Lemma (1.5) needs

additional conditions:

1
LEMMA 3: i) TIf the (B,f)-manifold M fibres over 5  then [M} = O

in kB
i1) If M fibres over §° with typical fibre F then [M] = [8" x 7]
i
in SKiB’f), where the structuze on § X F is induced from Dn+ X F. If the

theory is multiplicative, then F can be given a {B,f)-structure such that
{#] = [s"][F] in sxiﬁ’f).

1ii} If the (B,F)-structure is multiplicative and if there are {B,f}-
structures on Pnc for all =n, then for asy {B,f)-manifold M fibred over Pdc

with fibre F,

(4] = {»€][F]

holds in SK(B’E), for a suitable (B,f)~structure on F.
*

iv) The same as iii) with PR instead of pnc.

COROLLARY &, Under the assumption of part i1i) above, [5°°71] =0 in
{B, ) (3,6) _
SKZD+1 y G 12n+1 =0,

Theorem 2 is proved as in Chespter 1, by showing that the (B,f)-bordis;
classes of two manifolds related by a single SK-operation differ by the class of a
wanifold which fibres over the cirele. Note that two SK-operatioms may yield the
same manifold fibering over the circle but with diffevent (B, f}-structures, due to

the non-unigqueness of (B, f)-structures under cutting and pasting mentionad earliex.
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This means that the calculation of the SKK-groups of Chapter 4 is not the same in
the (B,f)-case: (B,f}-bordism class needn't be an SKK-invariant., Howewver, the
class in QLB’E)/J, where J is the subgroup generated by all {B,f)-structures
on manifolds of the form M % Sl, is an SEE-imvariant, and the discession of

Chapter 4 goes through using this group in place of QiB’f).

As an example of (B,f}-SK we now calculate the 5K-groups for weakly

complex manifolds, obtaiming the following result.

THEOREM 5: The rings SKE and EEg ate isomerphic to SK, and gﬁ;

by the obvieus homomerphisms,

Prooi: By Lewma 3 and Corollary 4 we know that ngn+1 is isomerphic
= . . . . .
to SK2“+1, which is a quoetient of ﬂgn+1' How nﬂ is known, namely, it is the

integral polynomial ring I[YO,YI,YQ,...] on 2i-dimensional generators Y, that
can be represented by certain linear combimations of products of complex projective

spaces Pdm and hypersurfaces Hr L in PEE 4 ?Ec (Milnor, Wovikov, Hirzebruch
!
fal. {51, {e], f1.

) U el -
Henee the an+1, and thus also the SK2n+1 = SK2n+l are zerg, proving

the theorem for odd dimensicms.

In the even dimensional case we see that 3K o SE

2 2u
maps gemerateors onbto generators, By Lemma 3 iii) these generators may he chosen

is onto, as it

as products of complex projective spaces. How one sees that J&nich's proof that
{Pn+2c] = [Pnc}[pfc] in K, (givem in [2], 2., (42)) holds also in EEE {where

B L bas its ysual weakly complex styructure). Thus SK4R+2 is generated by products

with at least ome factox Fi£ and is hence zexo, while SKQk is generated by
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=

7%}

Pl

= 3%,
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X Piﬂ (k times) and is hence isowozphic te & by sigunature. Thus

and the 5-lemma on

00— Ig-—er SKE-——> &l U

[

40— In-—:av SKHA.- SKn—} o}

—a 0

completes the preof.

Theorems 2 and 5 yield the characterization of weakly complex manifclds

which fibre over the circle up to unitary bordism, namely, that signature vanishes,
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