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PREFACE 

Let M be a closed manifold and L C M a closed submanifold of codimen-

~ion 1 with trivial normal bundle. If one cuts M open along L one obtains a 

manifold H' with boundary aM' L + L (disjoint union), and by pasting these 

two copies of L together again in a different way one can obtain a new closed 

manifold Mi" Mi is said to have been obtained by cutting and pasting M. 

The theory of so-called SK-invariants--invariants under cutting and past

ing of manifolds--was born in a series of papers [13], [14J, by Klaus Janich, 

characterizing signature and euler characteristic by additivity properties. Later 

Karras and Kreck, in their Diplam theses, extended many of Janich's results to 

cutting and pasting of bundles. 

The idea of defining SK-groups brought many simplifications and in 

summer, 1971, a study group was organized in which the authors incorporated these 

simplifications in a summary of the known results, in particular, of Karras' and 

Kreck's Diplom theses. The results were also extended somewhat. A survey lecture 

by Neumann for the Bonn-Heidelberg Colloquium (Dec., 1970) served as a basis for 

this study group, of which these notes are the proceedings. 

Chapter 1 brings the general theory of SK-invariants and SK-groups and 

proves Janich's results in this framework. Basic for the theory are Theorems (1.1) 

and (1.2), which reduce calculations of SK-groups to the solution of problems of 

the following type: which bordism classes in, say, D*(X) can be represented by 

an M ~ X where M is a manifold which fibres over Sl? The results of these 

notes solve this in many cases. 

Chapter 2 is mainly the Diplom thesis work of Karras and Kreck on SK 

of bundles. An important by-product is results on multiplicativity of signature 
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fOr fibre bundles--this was originally the main motivation for much of this wOrk. 

Chapter 3 on unoriented equivariant SK is based on work of Neumann and 

Ossa at a mini conference in Regensburg in June, 1970. It generalizes a result 

of Karras from Zl to arbitrary groups. Since euler characteristics of fixpoint 

sets and similar invariant subsets are SK-invariants, a complete calculation of 

equivariant SK-invariants would give some general Smith-type theorems. 

Chapter 4 brings a generalization of the concept of SK-invariant, due to 

K. Janich. The complete calculation of the corresponding universal group, de-

noted by SKK*, is based on work of K. Janich, Ossa and Neumann. Ossa has proved 

that SKK* can be identified with the vector-field bordism groups of Reinhart 

[16]. The index of an elliptic operator is an important example for an SKK-

invariant which is generally not an SK-invariant; this was originally the main 

motivation for SKK-invariants. 

The cutting and pasting concepts which have previously appeared in the 

literature differ in some cases from ours, and Chapter 5 fits them into the frame-

WOrk of these notes. Finally in Chapter 6 some recent results of Neumann which 

result from Elmar Winkelnkemper's "open book theorem" are described. In particular, 

it is shown that in odd dimensions + 5 all SK-invariants for bundles over orient-

able manifolds vanish, and the connection between SK and multiplicativity of 

signature is reconsidered. 

An appendix by Gottfried Barthel on the extension of the theory to cate-

gories of manifolds with (B,f)-structure completes the notes. 

W. D. Neumann was supported in part by National Science Foundation 

grant GP7952X3 and E. Ossa was supported in part by National Science Foundation 

grant GP7952X2. 

The work in Bonn was supported in part by the Sonderfor.sohung:!bereioh 

"Theoretische Mathematik". 

vii. 

After tm~e notes were typed it "as noticed that the methods of 

chapters 2 and 6 ea~ily lead to the re~lUlt that for a simply oormected space X 

tru:. oriented SK-groups SKn(X) ere equal to SKn(pt) for n f 4,6 , and. that 

t.his still holds up to torsion if' X ha:! a non-trivial but rim te fundamental 

group. Thi:! lends a .small amount of credibility to the probably very wild conjec-

tura that only depends on the fundamental group This conjec-, 
tura has 'been confirmed for n , ) 

Since it "as too late to incorporate the:!e latter result:! into these 

notes, they are left as exercises for the reader and may possibly appear in a 

later paper by the third named author. 
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CHAPTER 1: Introduction. 

In these notes manifold always means smooth manifold, usually compact, 

and an invariant p for n-dimensional manifolds is assumed to take values in an 

abelian group and to be additive with respect to disjoint union +. That is, if 

Let p be an invariant in this sense for closed oriented n-manifolds. 

P is called an SK-invariant if whenever Nand N' are compact oriented 

n-manifolds and ~.Y : oN ~ oN' orientation preserving diffeomorphisms, then 

p(NU -N') " p(NUI-N'). 
'1' ~ 

Here -N' means N' with reversed orientation, and NU - N' means N pasted 
'1' 

to N' along the boundary by ~ and smoothed. In other words p is invariant 

under "cutting and pasting" (== ~chneiden and .!Sieben) of the closed manifold 

M = NU 
CO 

N' along the submanifold L = oN. 

Note that L is a l-codimensional two-sided submanifold which separates 

M. It is no gain in generality to drop the condition that L separate M, since 

the union of L with a second copy of L, suitably embedded near L, will 

separate M. 

In the non-orientable case "cutting and pasting" and "SK-invariant" are 

defined analogously. 

Examples: 1) Euler characteristic e is an SK-invariant for arbitrary 

manifolds. This follows from the fact that euler characteristic is zero for closed 

odd-dimensional manifolds, together with the additivity property 
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e(X U Y) e(X) + e(Y) - e(X n Y) 

which holds for any "nice" spaces X and Y which intersect nicely. 

2) Signature T is an SK-invariant for orientable manifolds. This 

is due to the Novikov additivity property 

h N N' b e A p·oof can fo' 'nstanee be found in Atiyah-were , '9 are as a ov • ~ ~ ... 

Singer [3J. 

If G is a compact Lie group one can also consider equivariant cutting 

and pasting of G-manifolds. The case that G acts freely is of particular 

interest, as clearly the problem of calculating SK-invariants for free G-actions 

with oriented (resp. arbitrary) orbit space is the same as the problem of calculat

ing invariants for cutting and pasting of locally trivial fibre bundles with fixed 

fibre, structure group G, and oriented (resp. arbitrary) closed base manifold. 

If the total space of the fibre bundle is also a closed orientable 

manifold, then T(Base manifold) and ~(Total space) are both SK-invariants, so 

non-multiplicity of signature will show up in the SK-invariants. This will be 

discussed in more detail in Chapter Z. 

We now construct the basic tools for calculating SK-invariants. 

Let X be a space. A singUlar oriented n-manifold in X is an equi-

valence class (M,f), where M is a closed oriented n-manifold, f: M -.......? X a 

continuous map, and (M,f) is equivalent to (M',f') if there is an orientation 

.,. . 

3. 

preserving diffeomorphism M ~ M' such that 

M ~~~....,.> M' 

x 

cormrutes. Let 

m~O(X): "" {singular oriented n-manifolds in X}. 

is a commutative sernigroup with respect to disjoint union + and has a 

zero given by M = ~. 

Let M = NU - N' 
1 '" 

and M2 = NU,t, - N' , be closed orientable manifolds 

obtainable from each other by cutting and pasting along oN C MI' Let f i : Mi ~ X 

be continuous maps. We say the singular manifold (MZ,fZ) is obtained from 

(MI,f
l

) by cutting and pasting in X if there are homotopies 

'YHSO 
Two singular oriented n-manifolds (MI,f l ), (MZ,fZ) E oO~n (X) are called 

SK-equivalent if there is an (M, £) E m~O(X) such that the disjoint union 

(MZ,fZ) + (M,f) can be obtained from (MI,f
l

) + (M,f) by a sequence of cutting and 

pastings in X (Ed Miller at Harvard has recently observed that for non-empty MI,MZ' 

this definition is equivalent to the "unstabilized versiou"--without adding (M,£). 

See end of Chapter 5.) The quotient semigroup 

yvso(X): = J1tSo(X)/SK-equivalence , n n 

is a cancellative semigroup. Define 
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SO k f '"nSO(X). SK (X): '" Grothendiec group 0 II 
n 

Since ~o(X) is cancel1ative, it injects into SK~O(X), $0 two singular 

manifolds represent the same element in SK!O{X) if and only if they are SK-

equivalent. In fact it follows from Theorem (1.1) below that rSo(X) actually 
n 

equals but we won't need this. 

By construction, any SK-invariant for singular oriented n-manifolds 

in X factors over the natural map 

and this map is itself an SK-invariant. Thus yields the universal 

SK-invariant. 

Example: X = Be (classifying space for e) where e is a Lie group. 

Then SKSo(Be) gives the universal SK-invariant for fibre bundles with fixed fibre 
n 

and structure group e, over oriented n-manifolds. 

x ~ * (the one-point space). SKSO (*) gives the universal SK-invariant 
n 

for oriented n-manifolds. 

One can make completely analogous definition in the not-necessarily

oriented case, to obtain a universal SK-invariant JjLO(X) ~ SKO(X). 
n n 

Conventions: In the oriented case we omit the superscript 

SKSO(X). Furthermore, we write 
n 

SO and write 

SK : 
n 

5. 

the SK-groups for oriented resp. arbitrary n-manifolds. 

SKn clearly defines a covariant functor from the homotopy 

category of topological spaces to the category of abelian groups. Product of 

singular manifolds induces a functorial bilinear map 

In particular is a graduated ring, and for any X, SK*(X) is a 

graduated SK*-module. There is an augmentation 

induced by X ~ * 

Similar remarks hold in the unoriented case. 

Statement of Results. 

Let SKn(X) be SKn(X) factored by the bordism relations, that is, 

SKn(X) factored by the subgroup generated by all elements which have a represen-

tati ve (M, f) which bounds in X. SiZ"(X) 
n 

is defined analogously. A basic tool 

in these notes will be: 
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THEOREM (1.1): Let X be path-connected. There is a split exact 

sequence 

where In is the subgroup of SKn(X) generated by [Sn,*J (here * denotes 

the -unique up to horootopy- constant map Sn ~ X) and 

In ~ Z n even, 

o n odd. 

In the non-orientable case exactly the same holds except that the sequence does 

not split for n even. 

A useful corollary of Theorem (1.1) is: 

THEOREM (i.lh); If [M, fJ "" [M', f' J in SKn (X) and e(M) = e(M'), 

then [M,f] = [M',f'] in SKn(X).· The same also in the non-oriented case. 

Indeed, the assumptions of (l.lb) imply [M,f] - [M',f'] E 

Ker(SKn(X) ~ SKn(X» = In and e([M,f] - [M',e]) = O. Since euler character-

istic clearly classifies the elements of In by Theorem (1.1), it follows that 

[M, f] - [M', f' ] is zero in In and hence certainly in SKn(X). 

There are obvious epimorphisms 0n(X) ---? SKn(X) and nn(X) ~ ~(X). 

Let aod FO(X) C YL (X) 
o 0 

be the subgroups of all elements which 

admit a representative (M, f) such that M fibres over the circle Sl. 

7. 

THEOREM (1.2): The sequences 

o -.. F (X) -0- fl (X) -0- SK (X) -.. 0 
000 

are exact. 

This theorem reduces the calculation of SKn (X) 

bordism problem. 

The calculation of the absolute SK-groups i, as 

THEOREM 0.3a), For 0 odd both SK aod SK
O 

0 0 

0 ooe has: 

flo $1. with basis [ Sll], [pod::], for 

SKn ~ 

L [slli zt with basis Eor 

SKO .... l. with basis [po"] for 
0= 

and ~(X) 
o 

follows: 

are zero. 

0 ~ 0 (mod 

0 - 2 (mod 

0 - 0 (mod 

to a 

For even 

4); 

4) ; 

2) . 

Recall that for oriented manifolds euler characteristic and Signature 

are congruent modulo 2. The claim as to what one can choose as bases of the 

above groups is clearly equivalent to: the above three isomorphism can be given 

by 
e-,- e 
-2-$ 'T, 2' e respectively. Thus 

COROLLARy (1.4): Any SK-invariant for smooth manifolds is a linear 

combination of euler characteristic, and signature in the oriented case. 
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In view of Theorems (1.1) and (1.2) we can give two equivalent formula-

tians of Theorem (1.3a): 

THEOREM (1. 3b): 

n one has isomorphisms 

T 

e(mod 2) 

THEOREM (1.3c): 

For n odd both SK 
n 

SK '" f2 
ns 0 (mod 

n~ 

lo n :=: 2 (mod 

SK?~ 
n~ 22 n ::0 0 (mod 

and 

4) ; 

4) ; 

2) . 

([MJ E 3"2:n !e(M) _ 0 (mod 2)}. 

are zero. For even 

Theorem (1.3c) has been proved by Conner and Floyd [9} in the non-

oriented case, and up to torsion by Conner and Burdick 2nd [51 in the oriented 

case (that is Fn + Tors(On) ::: ([M] E 0nh"(M) ::: O}f. Thus to prove (l.3c), and 

hence also (1.3b) and (1.3a), it suffices to prove 

The proof we shall give is based on Janich's proof [14] of (1.3b). 

Actually Janich works with invariants and uses a different concept of SK-invariant 

but as we shall show in Chapter 5, his concept is equivalent to "SK-invariant." 

Essentially the same proof of (1.3b) has also been found independently by Rowlett 

[17J, who also had independently had the idea of defining SK-i~roup;::. He also had 

9. 

a different SK-concept, which also turns out to give precisely SK (see Chapter 

5). An independent proof of (1.3c) in the oriented case for n > 5 can be 

found in H. E. Winkelnkemper's dissertation [19J (see also [20J). Theorems 0.1) 

and (1.2), which show the equivalence of the three formulations of (1.3), are of 

later vintage, though they are latent already in the work of Janich, Burdick and 

others. 

The proof of Theorem 0.1): 

We first give some lemmas on cutting and pasting which will also be 

useful later on. If (M,f) is a singular manifold in X we write [M,fJ
SK

' 

[M,fJO' etc., for the class of (M,f) in SK*(X), O*(X), etc., but omit the 

subscript if no confusion can occur. If X = * is the one-point space, we 

simply write [M]SK' [MJO' etc., for classes in the respective groups. 

LEMMA (1.5): For any space X we have in and 

i) [
. 1 • 
S ,f j ::: 0 for any f 

ii) If M fibres over Sn with typical fibre F and f 

[M,f] = [Sn][F,fIFJ (recall that SK'l'/X) is an SK'l',-module). 

iii) If M fibres over PnC with typical fibre F and f 

[M,f] = [PnCJ[F,qF]. 

M-+ X then 

M...........".. X then 

iv) In the non-oriented case iii) also holds with PnC replaced by Pn~. 
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Proof: We prove the orientable case; in the non-arientable case the 

proofs are the same. 

i) Let N = -N' = I + I, where 1= [O,lJ is the unit interval. We can 

paste N to -N' in two ways to obtain either 51 or 

N (~~ -N' 
N o -N' 

-N' ~~ N -N' () N 

Hence lSI J = 2[SI], '0 [S I J O. This cutting and pasting can clearly also be 

done in any space X. 

ii) We can write Sll = nil U _on, pasted along the boundary n-l 
S • Since a 

fibration over the disc D
n 

is trivial, we have M == (Dn X F) U _(Dn X F). If 

f . M -.;::,. X is any map, then restricted to each piece Dn X F, f is homotopic 

to * X fjF. On the other hand (Sn X F, * X flF) is also of the form 

«D
n 

X F) U _(D
n 

X F), * X fIF), so [M, fJ [sn X F, * X flF] = [snJ[F,fIFJ. 
iii) We prove iii) by induction on n; for n == 0 it is trivial. Suppose 

fibres over PnC with fibre F. We can write PnC 

where is diffeomorphic to the normal disc bundle of pn_le Let 

If f:M--.,....X is a map. we define maps of MO and Ml to X by taking the 

restriction of f on MID2n and MIN d k' I an ta 1ng * X f F on N X F and 

11. 

n2n X F. On the boundaries Sn-l X F of these pieces all these maps are homo-

topic to * X f i F 1 so we can paste Mo to ~\ in two ways in X to obtain 

(M, f) + (-PnC X F, * X flF), 

(E,g) + (52n X F, * X fIF). 

In the second case we have pasted the first part of MO to the second part of 

~ and vice versa. E is a fibration over the double £IN = NUid - N of N 

with fibre F, and g is a map with giF = f!F. However, .QN fibres over 

Pn_1C with fibre F', where F' fibres over S2 with fibre F. By part ii) 

we have [F',gIF'] == [s2][F,g\F] == [S2J[F,fIF], so by induction hypothesis 

[E,g] = [Pn_lC][F',gIF'] == [Pn_lC][S2][F,fiF]. The above cutting and pasting 

thus shows 

That is, 

It hence only remains to prove that 

but this follows by taking F == * in the above. The proof of iv) is completely 

analogous to iii). Q.E.D. 

LEMMA (1.6): Suppose the singular manifold (M',f') in X results 

from (M, f) by surgery of type (k+l,n-k) in X. Then in SKn(X) ( resp. 
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[M,t] + [Sn,*J [M' ,f'J + [Sk X Sn-1,*J. 

Proof: We must look closely at the surgery and its trace. Let 

be the embedding on which surgery was done. Then 

where "u" is the obvious identification of boundaries 
k n-k-l 

S X S • The trace 

T of the surgery can be CQnstructed as follows. 

Re<;.all that 

pasted by the obvious identification of boundaries (think of Sn as o(n
k
+

l X nn-k)!). 

T is the manifold obtained by taking the disjoint union of M X [0,1] and 

nk+ l X nn-k and then identifying Sk X nn-k ~ (i(Sk X nn-k).l) eM X [O,lJ with 

Sk X On-k C Sn ~ o(nk+ l X nn-k), and then smoothing corners. 

M X [O,lJ Ok+l X nn-k T 

CD (--~ J3 CD 
____ Cf' 

The boundary of T is clearly an =- M + (-M'). The fact that we did surgery in 

X means by definition that we have a continuous map 

g 

13. 

with giM = f and g!M' f' . 

Now 

A) 

always with the obvious identihcation of boundaries, so M' + Sk X nu
-

k 
results 

by cutting and pasting ~ + Sll. But we must cut and paste in X. For thiS, con-

and as subsets of 

CT. Then we have maps: nta X of all the pieces on the right hand side of A) by 

restricting the map g. The cutting and pasting is compatible with these maps and 

the resulting maps of M and M' into X are the ones we want. The resulting 

maps of Sn and Sk X Sn-k into X factor over glnk+1 X nn-k : nk+1 X Dn-k~ X, 

and are hence both homotopic to the constant map_ This completes the proof of the 

lermna. Q.E.D. 

As an application of this lemma note that Sk+l X Sn-k-l results from 

Sn by surgery of type (k+l,n-k). since 

Thus the lemma gives 

[sn,*] + [Sn,*J 

Putting k ° (alternatively, by Lemma (1.5) i) and ii» we have 



14. 

0, and a simple induction now shows 

COROLLARY (1.7): In SK*(X): 

even 

o k odd. 

COROLLARY (1.8): Let (Y,g) be a bordism in X between the singular 

Proof: First suppose Y is an elementary bordism, that is the trace of 

a surgery of type (k+l,n-k) say. Then by Lemma (1.6) and Corollary (1.7) 

so it suffices to prove that ely) - e(M
I

) = (_1)k+1. But Y i, obtained by 

pasting Ok+l X On-k to M1 X I along suhmanifolds Sk X nn-k of 

o(nk+ l X On-k) and a(M
l 

X I) and then smoothing the result, '0 

ely) 

proving this case. 

In the general case we can split Y up into a sequence of elementary 

bordisms and the corollary then follows easily from the case just proved and the 

additivity property of euler characteristic. Q. E. D. 

15. 

Theorem (1.1) is now easily proved. Namely, the kernel In of 

SKn (X) ~ SKn (X) is clearly generated by all classes [M, f] such that (M. f) 

bounds in X. By Corollary 0.8) such an [M,f] is a multiple of [Sn,*]. so 

I i, generated by n [Sn,*]. If n " odd, ,ay n '" 2k+l, then Sn fibres 

over Pke with fibre Sl, so by Lemna (1.5), iii) and i), it follows that 

[Sn,*] = O. If n i, even the fact that e(Sn) = 2 shows that [S",*] ha, 

infinite order in SK*(X), so In ~Z. The same arguments all hold in the non-

oriented ~ase. so it only remains to prove the claim on when the sequence of 

Theorem (1.1) splits. 

Assume n is even. In the oriented case the map (e-T)/2 

z ~ In is a retraction of In~ SKn(X) Which splits the sequence 

In the non-oriented case Sn and 2P
n
t both bound, so they are in the kernel In 

But euler characteristic classifies the elements of In 

and e(Sn) 2 (2 ) '" '" e Pnt, '0 

is not indivisible in SKO(X), 
n 

in SK~(X). 

so the sequence 

does not split. The proof of Theorem (1.1) is complete. 

Fibrations over sl. 

Thus the generator of 

Let N be a closed manifold and t'p N ~ N a diffeomorphism. 
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Definition: N is the manifold obtained from N X I by identifying 
o 

the ends N X {OJ and N X {I} via m ; that is (x,l) is identified with 

(0(x),0) for each x E N. 

The projection 

Nco is called the mapping torus of <:po 

N X I ~ I induces a fibration 

with fibre N. conversely any fibration over 8 1 'With fibre N is clearly of 

this form for suitable <po N is orientable if and only if N is orientable 
q> 

and o:p orientation preserving. The following len:ma holds in the orientable and 

in the non-orientable category. We formulate the orientable case. 

~ (1.9): If the singular manifold (M',f') results from (M,f) by 

cutting and pasting along N in X, say M """ MI Uq> - H
2

, H' "" HI U~ - H
2

, where 

q>,~ : OMI = N ~ OM2 are diffeomorphisms, then 

for suitable g ,N -1 -? X. 
\>:p 

Proof: A bordism is constructed as fol~ows. Let Y be the union of 

Ml X [O,lJ and MZ X [O,IJ with the following identifications: for x E N 

identify (x,t) E aMI X [o,iJ with (tp(x),t) E OM
2 

X [o,i] and 

(x,t) E OM1 x [~,1] with (q>(x),t) E OM, X [~,ll. 

o 1/3 '/3 

l7. 

After smoothing it is easily seen that oY = M - N -1 - M', so Y is the 

cp* 
required bordisffi. Since we are doing cutting and pasting in X we have homo-

f'IM, which can clearly be used to construct 
-topies 

a map h : Y ~ X with f and hiM' " f' . Putting g " h IN -1' the 

'l'V 
Q.E.D. lemma is proved. 

To prove Theorem (1.2) note that Ker(O*(X)~ SK*(X» is generated 

by classes of the form 

- , [., 1 LM,fJo. - M ,f (1' 

where [M',f'] results from [M,f] by cutting and pasting in X, so by the 

above lerrnna 

The reverse inclusion is an immediate consequence of Lemma (1.5) i) and ii), so 

Theorem (1.2) is proved in the orientable case. The non-orientable case is the 

same proof. 

Before we prove Theorem (1.3) we need a lemma. 

LEMMA (1.10), Suppose M
i

::: (N.) 
1 GO i 

for i ::: 1, ••• , k, 

Q. E.D. 

with each N. , 
orientab1e and each tpi orientation reversing. Then there exists orientable N 

and orientation reversing 'P : N ---? N with 

Furthermore if k> 2 then N itself fibres over S1. 
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Proof: The general case folloYls from k '= 2 by a trivial induction, 

so assume k "" 2. (i = 1,2) be the projections. Then the 

fibration 

p 

has typical fibre 

N 

There is a fibration 

q 

with typical fibre 

I} 

and one easily checks that this fibration is given by 

Since ::PI and q:l2 both reverse orientations, qll X ql2 preserves it, so N is 

orientable. But is non-orientable, so 

with q; orientation reversing. 

must be of the farm N 
'i' 

Q.E.D. 

Recall that to prove the three versions a), b), c) of Theorem (1.3) it 

only remains to prove 

19. 

so the first thing to do is describe T*" We recall C. T. C. Wall's description 

in [18J. 

Let M be a closed manifold. Then one can always find a closed 

l-codimensional submanifold We M such that 

1) M - W is orientahle, and 

2) no submanifold of W satisfies 1). 

C. T. C. Wall proves that if W can be chosen orientable with trivial normal 

bundle in M then the class [wJ
O 

E ~ is a torsion element which only depends 

on Under these conditions he defines is a 

homomorphism from a subgroup of 0[* to T* = Tors(O*). 

Example (1.11): Let with N orientable and ~ orientation 

reversing. Then clearly O):M] 

Now let P(m,n) be the quotient manifold of the free involution 

(x)z)~ (-x,z) on Sm X PC 
n 

(the "Dold manifold") and Ct : P(m, n) ~ P(m, n) 

the involution induced by the map (x,z)r--> (x',z) on 

is reflection in an equator of Sm. Let 

Q(m,n) ~ p(m,n)u" 

P(m,n) is orientable < >mtn is odd. 

U is orientation reversing ~ m is odd. 

If a is a natural number write a ~ and define 
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XZa ~ Q(m,n), m = zr - 1, n 

According to Wall (loc. cit.), the torsion T*C ~ is generated as a ring by 

classes of the form 

"3[X2 X 
a , 

°3[XZal 
X 

If k> 2 then by the above remarks, Lemma (1.10) and Example (1.11), 

x X
2 

] a
k 

is represented by a manifold which fibres over S', 

X X2 ] E F*, ak 
as was to be shown. If k = 1 then by Example {I. 11) 

we have "3(X2a) ~ [P(rn,n)]O' 

(by Theorem (l.2», I)(m,n)] 

so we must show or equivalently 

o The map induces a 

fibration P{m,n) ~ pmm with fibre and Pol'- fibres over PO: 
q 

with 

fibre 

fibre 

S' , where q = (m-l)/2 = 2
r

-
l 

1. Thus P{m,n) fibres over P ~ 
q 

F which fibres over S' , so by Le_ (1.5) [P(m,n)] ~ [p O:][F] 
q 

SK*, and hence certainly in SK*. This completes the proof. 

with 

o in 

Q.E.D. 
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CHAPTER 2: SK of Fibre Bundles. 

Let G be a Lie group. In this chapter we investigate SK for fibre 

bundles over closed differentiable manifolds with fixed fibre F and structure 

group C. As in Chapter 1, SK-equivalence for fibre bundles is defined by saying 

that the fibre bundle E U [' 

'" 
is obtained from E U E' 

!if 
by cutting and pasting 

if E and E' are fibre bundles with fibre F and structure group Gover 

compact manifolds M and M' respectively and Gh ¢ ElaM ~ E' 10M' are bundle 

isomorphisms which induce diffeomorphisms oM ~ oM' in the bases. SK-groups 

for fibre bundles can then be defined in the obvious way. By the homotopy classi-

fication of fibre bundles it is clear that these groups are SK*{BG) in the 

oriented case and SK~(BG) in the non-oriented case. 

Remark: If the fibre F is a smooth manifold one can consider SK of 

smooth fibre bundles. This makes no difference for (as is well known) any con-

tinuous fibre bundle admits a smooth structure, unique up to bundle isomorphism. 

Interpreting SK*(BG) as the SK-group for fibre bundles ~th structure 

group G, the augmentation 

is just the map which sends the SK-class of a bundle (E,n,B) to the SK-class [B] 

of its base manifold. We have the trivial lemma: 

LEMMA (2.1): There are natural isomorphisms 
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Proof: The map pt ~ BG, which is unique up to homotopy, induces 

a retraction SK* ----:;:.. SK*(BG) of 

one has that 

BG , proving the first isomorphism. Similarly, 

where EBG : SK*(BG) ~ SK* is the augmentation. But Theorem (1.1) implies 

that Ker EBG ~ Ker E
BC , so the second isomorphism is also proved. 

This lemma can be interpreted as saying that the SK-invariants for 

bundles split in a natural way into the SK-invariants of the base space, which 

we already know are euler characteristic and signature, together with certain 

bordism invariants of the whole bundle, given by Ker £BG. As we are about to 

state precisely, these latter additional invariants are in most cases torsion, 

and often actually zero. 

THEOREM (2.2): i) If G is a Lie group with finitely many components 

then Ker E
BG 

is a torsion group. 

ii) If G is compact and H*(BG) torsion free, for instance, 

G 

~: The conclusion of part i) above can be formulated: given any 

bundle (£,'1,B) with structure group G, some multiple mE of £ is SK-equiv-

alent to the trivial bundle with base manifold mB. If now the fibre F is also 

a compact manifold, so that the signatures T(F) and T(E) are defined, then it 

clearly follows from this that mr(E) =; mT{B X F) =; mT(Bh(F), so T(E) "" T(Bh{F). 

That is, signature is multiplicative for E. Atiyah [2J has given an example of 

non-multiplicativity of signature, so Theorem (2.2) does not generalize to 
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arbitrary G. We wiLL see another example of this later, but first to the proof 

of (2.2). 

By Lemma (2.1) it is sufficient to prove that 

is a mod-torsion isomorphism (kernel and cokernel are torsion groups) and an 

isomorphism if H*(BG) is torsion-free. We shall prove this first for G a 

torus, then for G compact, and then finally in the generality of the theorem. 

Because of the epimorphism O.,,(X) ~ SK*(X), to calculate SK*(X) one need 

only do cutting and pasting on a generating set of O*(X). The basic idea of 

the proof is that in our case such a generating set can be represented by products 

of projective spaces up to torsion, so Lemma (1.5) iii) gives the result. 

Let 

be the canonical map given by ~[M,fJ f*('5, where ('5 is the fundamental homol-

ogy class of M. 

THEOREM (2.3): Let X be a CW-complex such that H*(X) has no torsion. 

Let singular manifolds (Mi,f i ) in X be given such that (~[Mi'fJ} is a 

generating set of H*(X). Then ([Mi,fiJl is a generating set of ~{X} as an 

0* -module. 

Proof: See Conner and Floyd [lOJ, §18, p. 49. In fact, Conner and Floyd 

prove more, namely that if X is a finite CW-complex then the above holds with 
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"generating set" replaced by "base" each time, The finiteness of X is only 

used in proving the independence of the base ([M
i
,f

i
]1, so it is not needed 

for our formulation. 

An easy application of this theorem is the following lemma. whose proof 

we leave to the reader. Let ~* PkC ~ Bsl be the classifying map for the 

canonical line bundle over PkC. 

LEMMA (2.4): The set [[P. C X 
'1 

as an O*-module (recall that 

O*-base, but we do not need this. 

••• X PinC,l1il X .•• X 'I'li ]} 
n 

BCS1)n = (BSl)n). In fact it 

generates 

is an 

- 1 n -
It follows that SK*(B(S» is generated as an SK*-module by the 

elements l·p. ex ... X P. C,n. 
. 11 ln 11 

now follows by Lemma (l.S) iii). 

X ••• X 'li J, 
n 

so if e is a torus, Theorem (2.2) 

Now let G be any compact Lie group and T C G its maximal torus. The 

projection BT ~ BG induces a map 

and the composition 

p 

Be 
SK*(BT).....f4.. SK*(BG) ~ SK* 

is just EBT which we already know to be an isomorphism. Hence to show that EBG 

is an isomorphism or mod-torsion isomorphism it suffices to show that p is sur-

jective or mod-torsion surjective respectively. By a result of Borel [4J the map 
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is mod-torsion injective, and even injective for H*(BG) torsion-free. Hence 

is mod-torsion surjective, and surjective if H*(BG) is torsion-free, so all we 

need is the following lemma: 

LEMMA (2.5): Let f: X --? Y be a map of CW-complexes. If the 

induced map H*(X) ~ H*(Y) is mod-torsion surjective, then so is O*(X) -;. D*(Y) 

and hence also SK*(X) ~ SK*(Y). If H*(X) has no odd torsion and 

H*(X)~ H*(Y) is surjective, then so is O*(x) ~ '\.(Y) , and hence also 

SK*(X)~ SK*(y). 

Proof: We need the bordism spectral sequence (see for instance Conner 

and Floyd [lOJ for details) so we recall the essentials. For a CW-complex X 

the E2 -term is 

00 
and the E -term is 

where 

EO:> (X) 
p,q 

H (X;O ) 
p q 

J IJ p,q p-l,q+l 

OeJo C ... CJ 0 ,n n, 

is the skeleton filtration of 0n(X), that is 

J 
p,q 
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Furthermore, the bordisrn spectral sequence is trivial modulo odd torsion. 

It follows that a map f: X ~ Y which is mod-torsion surjective 

in homology, and hence for the E2_term, stays mod-torsion surjective up to E~ 

and hence also for 0*, proving the first statement of the lemma. 

Now suppose H*(X) has no odd torsion and H*(X) --? H*(Y) is sur

jective. Then E2(X) has no odd torsion, so by triviality modulo odd torsion 

of the spectral sequence, the differential d2(X): 

trivial. Also E2 (X) ~ E2(y) is surjective, so 

2 2 
E (X) ---» EP+2 ,(X) p,q ,q-

d2(y) is also trivial. Hence 

E2(X) = E3(X), E2(y) = E3(y), and repeating the argument we eventually get that 

both spectral sequences are trivial and Eco(X) ~ Eoo(y) is surjective. Hence 

O*(X)~ O*(Y) is surjective, as was to be proved. Q.E.D. 

Theorem (2.2) is thus proved for compact G. If G is connected but 

not necessarily compact, choose a maximal connected compact subgroup H C G. 

Since the structure group of any bundle with structure group G can be reduced 

to H, 

is surjective. Since the composition with which 

we know to be a mod-torsion isomorphism, is itself a mod-torsion isomorphism. 

Finally if G has finitely many. say n, connected components and GO 

is the component of unity. then BGO ~ BG is an n-fold covering. Hence 

is mod-torsion surjective (the n-fold of any homology class in BG clearly comes 

from BG
O
)' By Lemma (2.5) 
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is mod-torsion surjective, so again, since the composition with £BG is 

which we know is a mod-torsion isomorphism, eBC is a mod-torsion isomorphism. 

Q.E.D. 

We now shall calculate SK*(BC) in some of the cases not covered by 

the previous theorem. 

THEOREM (2.6) , For G =Zl 
t' P an odd prime, and for G ::: ?lZ' 

BG P 
Ker , o. 

Proof: For any X we have the short exact sequence of Theorem (1.2): 

Denote Ker(F*(X) --? F*(pt» by F*(X). The above sequence surjects at all 

three places onto the short exact sequence 

so the kernel sequence 

(2.7) 

is also exact. In particular Ker cBG is the image of TI*(X) C [l*(X). 

We first consider the case X '" BG with G '" Z 

where we consider G as a subgroup of the circle group 

on the unit sphere S2n-l in en by 

t(Zl",·,zn) 

t (p 
p , 

S • 

an odd prime), 

Sl acts freely 

This gives a free action of G on 2n-l 
S , inducing a Singular manifold 
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in BG. By Conner and Floyd [10J, p. 99, the elements [S2n-l/G,f] generate 

ni«BG) as an 0* -module. 

But S2n-l/G fibres over 

They hence also generate Ker cBG as an SK*-module. 

S2n-ljS l"" p q;: with fibre 
n-l 

1 1 
S IG ~ S, so by 

Lemna 0.5), [S2n-l/G,f] is zero in SK~ ... {BG), and hence certainly in Ker E
BG 

The case G = Xz is rather more difficult, and we must first recall 

some facts on free involutions and bordism of ElZ' 

Let IT : M -----? M be a principal Z2-bundle, T: M -,» M the covering 

transformation. Recall that a l-codimensional submanifold W (M is called a 

characteristic submanifold if ~ = n-1(W) is the boundary oA of a compact 

submanifold A of 1f satisfying: A U TA '" M and A n TA "" 'Tit. It is easy to 

see that such a W exists and is unique up to non-oriented bordism (for instance, 

by showing that W is a transversal self-intersection of the zero-section of the 

real line bundle E ~ M associated with M---:?:- M). The characteristic submani-

fold in fact defines a map 

By Burdick [6] (see also Hirzebruch and Janich [11]) the restriction 

is an isomorphism whose inverse 

is given as follows. For [NJ E 'Jln_l let E --......,.. N be the line bundle associated 

with the orientation covering ~ ~ N, and S the sphere bundle of the Whitney 

sum E E9 1 of E with a trivial line bundle. S is oriented and has a free orienta-

tion preserving involution given by the antipodal map in the fibres Sl The induced 

Singular manifold [S/Z2,f] in BZ2 represents i[NJ. 
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Observe that this geometric description of i is compatible with 

cutting and pasting, so we have an induced map 

i' 
BZ2 , 
n 

By (2.7) above, is surjective, so the commutative square 

shows that i' is surjective. Thus for n even it follows that Ker 0, 

since s.zO n-l o (Theorem (1.3b». 

We can hence assume n is odd. Then by (1.3b) the diagram becomes 

-yy ~ 
"'n-l 

I 

i . 
~r 

(n odd) 

rr (Bll. ) ----? Ker 
n 2 

where e is euler characteristic modulo 2. Since i' is surjective, we must 

only show that it maps 1 E 22 onto zero. 

Let (j 1,3) be the classifying map for the double 

j 
covering S -----:> P l" Then for k [n/4] and j = n-4k '" 1 or 3, we have that 

[P2k<t: X P}Ji, * X a] represents an element of ~n(BZ2)' Since 

taking a characteristic submanifold, - -1 
ei [P2kcr::: X Pf' * X a] 

On the other hand, and hence also 

. -1 , w is given by 

e[P2k'" X Pi - 1,.] 

fibres over S2 for 

and over S' for j '" 1, So by Lemma (1.5) ii) we have that 
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[p 2kC x P }l, * x a] '" 0 in SK* (BZ
Z
)' and hence certainly also in Ker eSC By 

the commutativity of the diagram it follows that i'(l) = 0, as was to be proved. 

Q.E.D. 

To close the discussion of SK of bundles in the oriented case we men-

tion some isolated results in low dimensions. In dimensions 0 and 1 everything 

is trivial. 

~ (2.8): i) If G is a Lie group with GIGO abelian then 

ii) If G is connected then also 0, so o. 

Proof: i) BG has fundamental group TIl(BG) = TIO(G) = GIGO' which is 

hence abelian. We shall in fact show more than required, namely 

o 

for any space x with abelian fundamental group. 

Let (Fn , f) be a singular 2-manif01d in X, where Fn is the oriented 

surface of genus n. We can write Fn as Fn '" F
n

_
l 

# (Sl X S'). Let Sl ( Fn 

be the circle along which the connected sum operation * was carried out. Sl 

represents the zero homology class in H
1

{F
n

), so represents zero in 

Hl(X) = ITi(X). Thus f(S1) is null-homotopic in X and we can do surgery of type 

(2,1) in X on this circle, reducing to 1 1 (Fn _1 + (S X S ),g) for some g. 

In this way one sees that any oriented Singular 2-manifold in X is co-

bordant to a sum of singular tori in X, and hence equal to zero in SK
2

(X) by 

Theorem (1.2). Thus i) is proved. 

J J , 

li) He agnin prove more thnn required, nameiy 

o 

for any simply connected X. 

Recall that any connected oriented 3-mani.[old ~j 

and can be l-educed to 53 by surgeries of type (2,2). If (~1, f) is a connected 

singular 3-manifold in X, then restricted to each solid torus, f is nu I 1-

homotopic. so ("e can do surgery in X to reduce (N. f) to (S3,g) for some 1,;. 

By Lemma (1.5) \,'C deduce that IN,f 0 in SK
1

(X). Q.E.D. 

BG 
is not an isomorphism, not (;V('l1 

modulo torsion. Let F be an orienlab!.e surface of genus The universal 

cover of F is contractible so F::= I}.-< 1 (F). 

THEOREN (2.9): If F i", <om orientable surface of genus 2. then 

Ker 

Proof: The bordism spectral sequence shO\,'s for any Gi-complex X that 

o 

and the theorem then [0110\.;.'> by Theorem (l.2). That is, \.;c must shOl,' that "my 

singular torus in F bounds. 

Since and K(,-:, I)-spaces, the: homotopy classes of maps 

Sl X st ~-:: F arG classified by tbe set l:om(;Z 47L, '"'1(0) (sec for fnsL:mce 

Nosher and Tangora 15 i, p. 3). But il is lo.'ell known thal any abdi-;]n subgroup of 

TIl(F) is trivial or infinite cyclic, so ,1n)' f ( Hom(~ 4'2, :-:l(F») factors as 
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where f is, Hithout loss of generality, surjective. By a change of splitting of 

51 X 51 as a product if necessary, and hence a change of base in 7l EBa>:, we can 

assume that I is the projection The corresponding map thus 

splits as 

and hence extends to the solid torus SlX])2. Q.E.D. 

The above proof in fact shm"s that for any discrete group G, all of 

",hose abelian subgroups are cyclic, The finite groups 

of this type are just the groups Hith periodic cohomology (see C.'lrt.:ln-t:ilenherg ['7 i), 

v.'hi.ch ail. have zero second homology and hence do not yield anything interesting 

here. 

The Non-orientable Case. 

In the non-orientable case, the analog of Lentrlla (2.1) of course still holds. 

The ana tog of Theorem (2.2) i) is trivial: Ker sX, being a subgroup of ~(X) 

is always .:l torsion group for any connected space X. \~e hence have: 

Triviality (2.10): Foi any connected space X 

SK~(X) '" SK~ @ 2-Torsion, 

where SK~ is Zl, given by euler characteristic, in even dimen.';ions and ~-<:ro 

othCrv.'ise. 
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THEOREM (2.11): The argumentation E
BG : SK~(BG) ~ SK~ is an iso

morphism for G ~ (z2)k, O(k), SO(k), (S,)k, U(k), SU(k), Sp(k), and products of 

these groups. 

The proof is by showing that one can generate OZ*(BG) as a 4Z*-rnodule. 

and hence ~(BG) =D 
as an SK*-module by singular manifolds (M, f), where M is a 

product of real and complex projective spaces. Lemma (1.5) iii) and iv) then shows 

E : ~(BG)~ ~ is an isomorphism, so the theorem follows by (I. I}. 

It is convenient to work with vector bundles having G as structure 

group rather than with singular manifolds in BG. If ill 

of positive integers. 

p P k X ••• X P t. w ", Uk 

Let Sw be the bundle over 

where ~n. , is the canonical line bundle over P I.. 
ll. , 

LEMMA (2.12), The following bundles represent a generating set of Ob*-mod-

ule "t£*(BG), 

i) the bundles 

ii) the bundles > n
k 

for G = O(k). 

iii) the bundles Sw EEl det gw with n
l 

> SO(kH) • 

In cases i) and ii) the generating set is even a base. 

Proof: The analogon of Theorem (2.3) holds in the non-oriented case 

(see for instance Conner and Floyd [lOJ. Theorem 8.3). Hence we need only show 

that under the canonical map 

the set in question goes over to a generating set or base of H*(BG;Z2). 

The proof of i) is completely analogous to Lemma (2.4) and therefore 

also left as an exercise. 
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For ii) recall that 

in the Stiefel-Whitney classes. In fact the inclusion (ZZ)k C O(k) induces an 

inclusion and is the i-th 

elementary symmetric polynomial in tl,~ •• ,tk' For OJ = (nl •••• '~) with 

be the smallest symmetric polynomial in the containing 

the monomial Th' clearly form a base of * H (BO(k) ;:&,). On the 

other hand the homology class represented by the bundle Sw is (£oo}*Ooo' where 

fOJ : Pw~ BOCk) is the classifying map for Sw and (jw the fundamental ltZ-

homology class of Pw' A trivial computation shows 

<s",.,(f",)*oo? = <f:$",. '0o? = {: 

w = w' 

OJ '" w' 

so the set {(fw)*Ow} is the basis of H*(BO(k);~) dual to {Sill}' 

iii) Let / be the universal Ilk-bundle over BO(k). Then yk ~ det yk 

is orientable, hence has a classifying map g: BO(k) --? BSO(k+l). Now 

* H (BSO(k+l)~2) = ~2[w2 •••• ,wk+l] and 

is given by for i < k and Since these 

* elements are algebraically independent, g is injective. Thus ~ is surjective 

and case iii) follows from ii). Q.E.O. 

Theorem (2.11) is hence proved for k G = ("',) , O(k), SO(k). If i, 

the complex analogon of the bundle gill then Lemma (2.12) and its proof carry over 

to k 
G = (S~) , U(k) and SUCk) if one replaces by '\.v everywhere. Also a 

proof similar to the proof of iii) above shows that d&*(BSp(k» has a generating 

set represented by the bundles '\.v@~' This proves (2.11) for (S,)k. U(k), SUCk} 

and Sp(k). 

the singular manifolds 
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is generated by singular manifolds 

If the M. , and N. 
J 

and 

are products of 

projective spaces, then so are the Mi X Njo Hence (Z.ll) also holds for products 

of the groups listed. Q.E.D. 
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CHAPTER 3: Equivariant SK 

In this chapter G always denotes a compact Lie group and G-manifolds 

are manifolds with smooth G-actions. We are interested in invariants for equi-

variant cutting and pasting of closed G-manifolds. As usual, the Grothendieck 

group of n-dimensional G-manifolds modulo the relations given by cutting and 

pasting gives a universal such invariant. We denote this group by 

(respectively in the oriented case). 

The calculation of equivariant SK-groups is made difficult by the fact 

that we no longer have Theorem (1.1). In this chapter we calculate SKO up to 
C,n 

2-torsion. To state and prove the result it is convenient to have the language of 

"slice types" which we therefore recall briefly. For details see Janich [12J. §4. 

If H is a closed subgroup of G and V a smooth H-manifold, then 

G XH V denotes the fibre bundle over G/H with fibre V, associated to the 

principal H-bundle G ----? G/H. Recall that G X
H 

V is G X V factored by the 

equivalence relation; (g,x) _ (gh,h-lx) for h E H. With the G-action induced 

by left multiplication G XH V is a G-manifold. 

If V is a vector space and the H-action is given by a representation 

H ~ GL(V) then we also write G XH a for G x
H 

V. 

A slice ~ for G is a conjugacy class in G of pairs (H,(cr)), where 

H is a closed subgroup of G and (0) an equivalence class of real representa-

tions of H. The slice type represented by (H,o) is denoted by [H,OJ. One 

Checks that [H,~J' '" I,H' ,~' 1 'f d 1 . fed C ' v V >. an on y 1 X
H 

a an X
H

, a are isomorphic 

G-manifolds. 

If M is a G-manifold and x E M, then the slice ~ at the pOint x 

37. 

is [Cx'Ox}' where Ox is the representation of the isotropy subgroup Gx 

normal to the orbit through x (the "slice representation"). Slice type deter-

mines the local structure of M completely, for the "slice theorem" states (see 

for instance Janich [12], p. 3). 

THEOREM (slice theorem): There is a G-invariant open neighborhood of 

x in M which is C __ diffeomorphic to G Xc CT
x

' 
x 

There is a partial order on the set of all slice types for C given by: 

[H,OJ ~ [U,T] means [O,T] is a slice type of the G-manifold G XH O. A family 

g;' of slice types for G will be called permissible if it contains with each 

[H,OJ also each [U,T] greater than [H,OJ. By the slice theorem, the family 

~(M) of all slice types of a G-manifold M is a permissible family. 

If '1 is a permissible family of slice types, a G-manifold of ~ :f 
is a G-manifold M all of whose slice types are in '1. That is '1' (M) C 1" . 
Denote by SKO(G,~) the SK-group resulting from cutting and pasting G-manifolds 

of type 1. 

Examples. If 'f", U[e},8 n ]} where en is the n-dimensional trivial 

representation, then SKO(G,~) = SK~(BG). 

If ~ is the family of all n-dimensional slice types for G (by dim [H,a J we 

mean dim(G X
H 

0», then 

If M is a G-manifold and [H,O] a slice type, define 

Via the slice theorem M[H,o] eM is given iocally by G X
H 

00 CG XH cr, where 
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ao is the trivial component of 0', is a smooth submanifold of M. M[H,a J 
[H,a] Clearly is a closed submanifold if is a minimal element of g;(M). 

Note that it also follows that any l-codimensional G-invariant submanifold N eM 
along which one can cut and paste M intersects each M[H,cr] 

G, and hence certainly also H, acts trivially normal to N. 

transversally, as 

M[H,O] fibres over M[H,oiC 

defined by 

with fibre CJH. By the above comments 

it follows that 

is an SK-invariant. It will turn out that the give all equivariant 

SK-invariants up to 2-torsion. We first need a further definition. 

Let n: E ~ B be a differentiable G-vector-bundle over a differentiable 

manifold B. Let [H,aJ be a slice type for G. We say TT : E~ B has ~ 

[H,a] if just the points of the zero-section of E have slice type [H,a]; that 

is, E[H,aJ is the zero-section BeE. The typical example of this is the normal 

bundle of in a G-manifold M. 

Equivariant cutting and pasting of G-vector-bundles of type [H.a] whose 

bases are closed manifolds leads to an SK-group ° SK [H,O]. 

Now let :f be an admissible family of slice types for G and [H,a] E 1 
a minimal element in the partial ordering of 'f'. Then~' "" :f - ([H,aJ) is 

also an admissible family and we have an obvious homomorphism 

Furthermore, if M is a G-manifold of type ~ then the minimality of [H.a] 

implies that M[H,a] is closed, so M~ v(M[H,a]) defines a homomorphism 
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THEOREM (3. 1) : If '::f is an admissible family of slice types, 

[H,O] E ~ a minimal element, and ~' "1- ([H,OJ], then the following 

sequence is split exact. 

...::. o[ " ['_ ~ SK H,O'J.gJZl. 2J~ o. 
d 

Proof: We first describe the splitting homomorphism d. Recall that 

for any manifold X the "double" £'X is defined as X U X pasted along the 

corrmon boundary by the map id: oX~ ax. If E is a vector bundle of type 

[H,OJ, define 

where DE is the disc bundle of E. Clearly ned ~ id. 

It follows that n is surjective. Since it is clear that 

injective and n ~ i = 0, it only remains to show Ker(n) C Im(i). 

Suppose n<[MJ} '" O. Let N be a small tubular neighborhoud of M[H.a] 

in M, isomorphic to the normal bundle v(M[H,al) as a G-manifold. Since 

n([MJ) '" 0, certainly d" n([Mj) "" 0, that is [i)'NJ "" o. But by cutting and 

pasting one has 

[£)(M-N)] + [.8NJ 

[j) (M-N)] 

in SKO(G, -:P), and the right hand side is clearly in Im(i). Q.E.D. 
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Assigning co a G-vector-bund1.e E~ B of type [H,cr] 

the SK-c1.ass [B/C] defines an isomorphism 

where p is the dimension of the trivial component of 0'. 

Proof: Write (J == 0'0 Efl (J, where 0'0 is the trivial component of o. 

The composite map E ~ B ~ BIG identifies E as a fibre bundle over BIG 

with fibre G X
H 

0'1 and structure group rCo l ) AutC(G ~ 0'1)' Since 

dim(B/G) = dim(O'O) ~ p, we hence have 

so the lemma follows from (2.10). 

Remark: It is not hard to calculate the structure grOup real) explicitly. 

Since H is compact we can assume (J 1 : H ----?- O(k) is an orthogonal representation, 

and then 

where H ~ [(h,O,(h» E G X O(k)lh E HJ. 

Now by Theorem (1.3) it follows that SKO[H,O'J ®2t[tJ is zero if 

p ~ dim(O'O) is odd and is ~[iJ, generated by the bundle EO' Pp~ x (G XH 0'1)' 

if p is even. Thus by Theorem (3.1) and a trivial induction, SKO(G,'f-) ®z[~J 

is the free ~['-}J-module with basis ([£)DEO'J I[H,O'] E -:f. dim(C"O) even}. 
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COROLLARY (3.3): The SK-invariants e[H,O] 

dim(a
O

) even define an isomorphism 

with 

where the sum is over all [H,O] E -~ with dim(O'a) even. 

[H,cr] E':f and 

Proof: Let [Hl,ol],[H2,cr2], •.• be those [H,O] in -;; with even 

dimensional trivial component, with indexing so chosen that [Hi ,oil::: [Hj,cr
j

] 

implies i:::. j. Order the basis of SKO(G,:f) 0 z[ {J mentioned above correspond

ingly. Now 

if j 

if < 

That is, the matrix of the map (erH 0'"1 ® id) with respect to the above basis is 
- , " 

triangular with invertible diagonal entries, so the map is an isomorphism. Q.E.D. 

The above corollary can also be formulated that the map 

E~ (e[Hcr])' SKo(G,f)--o> 1L 7l 
, [H,cr] 

(as usual [H,cr] E j( with dim(crO) even) is a modulo 2-torsion isomorphism. 

That is Ker(E) and CoKer(E) are 2-groups. Thus Ker(E) is the torsion sub

group of SKO(G,~) and its calculation would complete the calculation of SKO(G,~). 

The calculation of CoKer(E) is equivalent to finding the relations between the 

e[H,a] and would be in a sense a general Smith type theorem. Note that the 

odd are ~ necessarily zero. However, they are linear corn-

binations of the with [u.1"] :.:: [H,O'] and dime 1" 0) even. 
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Janich [14J and Rowlett [17] have some further results on equivariant 

SK for G = Z2" They both use different SK¥relations and it turns out that 

what they are actually calculating is respectively 

J is the ideal generated by manifolds of the form 

s.;.o /J and , 
£)X, -with 

s~ IJ, where , 
X an oriented 

resp. arbitrary compact XZ-manifold. Rowlett obtains complete results, however 

Janich's result is not quite complete and is only modulo torsion. 

Using these results, it is probably not too hard to obtain a complete 

calculation of S~ in both the oriented and unoriented case, using the following , 
two remarks: 

Remark (3.4): SKG is a quotient of SKG/J. 

Remark (3.5): Since for finite G, bordism of G-manifolds is given by 

G-equivariant surgery, the analog of Theorem (1.1) holds with In replaced by 

the subgroup of SKn,G generated by all effective linear G-actions on So. 
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CHAPTER 4: Controllable Invariants 

In this chapter we discuss a generalization of the concept of SK-

invariant, due to K. Janich (unpublished). 

N U - N' 

" 
and be two closed oriented mani-

folds obtained from each other by cutting and pasting via the diffeomorphisms 

tD,¢ : oN-----;.. oN'. An invariant ).. for closed orient<!!d manifolds (as usual 

additive with respect to disjoint union) is call<!!d SK-controllable if 

)'CN U 
~ 

N') - )..(N U¢ - N') only d<!!pends on the diffeomorphisms rD.\: : oN ~ oN' 

and not on the choice of the manifolds Nand N'. We then speak briefly of an 

SKK-invariant (SK-~ontrollierbar). 

Clearly any SK-invariant is an SKK-invariant, and the SKK-invariant ~ 

is an SK-invariant if and only if the "correction term" 

is always zero. 

),CNU -N') 

'" 
The above definition is obviously eqUivalent to the following: for any 

oriented manifolds N1,N 1' ,N"N,' with::>'N 'N 
'" 1 "" <.> 2 and any orienta-

tion preserving diffeomorphisms tD,V : ONl~ ONi one has 

This makes it clear how one can define a "universal" SKK-group which 

gives the universal SKK-invariant for closed oriented n-manifolds! factor the 

semigroup onso 
n of diffeomorphism classes of closed oriented n-manifolds by all 

relations of the form 
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and then take the Grothendieck group of the result. One can make precisely the 

same definitions in the non-oriented case to obtain a graded group As 

usual, we drop the superscript in the oriented case and just write SKK* for 

SKKSO 
* . 

THEOREM (4.1): a) Assigning to an oriented manifold M its bordisrn 

class in 0* is an SKK-invariant and hence defines a surjective homomorphism 

b) The analogous statement holds in the non-oriented case. 

Proof: This is just Lemma (1.9) carried over to the (un)-oriented 

category, with X = pt. Q.E.D. 

K. Janich (unpublished) had shown that for oriented manifolds bordism 

class and euler characteristic give all SKK-invariants up to torsion, It turns 

out that there can be further torsion invariants; the following theorem gives a 

complete description of SKK-invariants. 

THEOREM (4.2): Let In C SKKn (resp. I~ C SKK~) be the cyclic sub

group generated by [SO]. Then the sequences 
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are exact. Furthermore In is the quotient of Z by the subgroup generated 

by euler characteristics of closed (n+l)-dimensionaL (un)-oriented manifolds, that 

is: 

In? {:' 

n", ° (mod ') 

n - (mod 4) 

n=.3 (mod 4) 

°t 
nSQ (mod ') I _ 

n = 
n =. 1 (mod 2) • ° 

Proof: We shall first prove the exactness of the above sequences. 

Suppose we have two oriented manifolds ~ and M~ which are cobordant. We 

must show that in SKKn they differ by a multiple of [sn]. We shall in fact 

prove more, namely 

LEMMA (4.3), Let Y be an (un)-oriented bordism between "n 
1 and 

Then in SKK (resp. SKKO) 
n n 

[M1J [M,) - (e(Y) - e(M1))[Sn). 

n ",. 

We have proved this lemma for SKn as Corollary (1.8), so we need only 

show that wherever equality in SKn occurred in the proof of (I.B) it can be re

placed by equality in SKK
n

• 

Let Nand N' be oriented manifolds with oN = oN' = 2P, the disjoint 

union of two copies of a manifold P, and let t: 2P ~ 2P be the involution 

exchanging these two copies. Suppose further that P bounds an oriented manifold 

Q. Then by definition of SKK 
n 
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we have 

fNU ·N' 1 ~ [Nt! -N'] 
L id J t 

But in the proof of (1.8) only cutting and pasting of the above type occurred 

(namely the cutting and pasting (A) involved in surgery in the proof of Lemma 

(1.6», so the proof can be carried over to the SKK-case, as desired. The same 

arguments hold in the unoriented case. Q.E.D. 

To complete the proof of Theorem (4.2) we must calculate the order of 

SKKO) n • For n even, euler characteristic is an SKK-

invariant which is non-zero on the generator [Sn] of In (resp4 I~), 

n = 2m .. l. 

showing 

that I ......, 10 ....... Z'.. We may hence assume n is odd, say 
n::= n '" 

Observe first that Lemma (443) with Ml M2 

that has order at most 2 in SKK
2m

_
l 

and 

t} and Y "" S2m shows 

o 
SKK2m_l · Furthermore, if 

M2n is a closed manifold of odd euler characteristic, then Lemma (4.3) with 

2m h h [S2m-l~J -_ 0; <j and Y:: M now sows t at 

in the unoriented case, and for m even we can take M 

we can take M = P2mft 

PnC in the oriented 

case. h . h . t d th t [S2m- 1J - ° 'n It hence only remains to s ow ~n t e orlen e case a T ~ 

SKK
2m

_
1 

for m odd. We shall prove this by showing that [S2m-l] x 0 implies 

the existence of a closed manifold M2m of odd euler characteristic, which is 

impossible in the orientable category if m is odd. 

[S2m- 1J Suppose therefore that 

means that there exist orient able manifolds 

0. By definition of SKK
2m

_
l 

and Ni (i:: 1,2) with 

this 

For i == 1,2, let Y. , be the union of 

following identifications: for x E oN_ , 
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identify 

and Ni X [O,lJ with the 

(x,t) E ONi X [0.1/3J with 

(<jl(X), t) E ONi X [0,1/3] and (x,t) E ON
i 

X [Z/3,ij with ($<x),t) E oN! X [2/3,1). , 

N. , 

N! , 

° 1/3 2/3 

As in the proof of (1.9), after smoothing, 

-CONi) -1 + -(NiU~-Ni)' so by using the above equation it follows that the dis

<+>* 
joint union Y2 + -Y1 has boundary 

Thus by pasting boundary components of 2m 
Y2 + -Y l + D pairwise together we get 

a closed manifold M
2m

, whose euler characteristic is easily calculated to be 

Since this is odd, the proof of Theorem (4.2) is completed. Q.E.D. 

Remark: For unoriented manifolds, Theorem (4.2) shows that bordism class 

and euler characteristic give all SKK-invariants. 

For orientable manifolds one can show that Kervaire semi-characteristic, 

defined by 

2k 
Z; b.(M) 

i=O 1 

(modulo 2), 

where the bi(M) are the betti numbers, is an SKK-invariant SKK
4k

+
1
---? ~2' 
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which splits the sequence (4.2). So bordism Class, euler characteristic, and 

Kervaire semi-characteristic in dimensions 4k+l give all SKK-invariants for 

orientable manifolds. 

We sketch a proof of the SKK-invariance of the Kervaire semi-character

istic k. For any oriented manifold y2m an elementary homological argument 

using Poincare duality shows that 

k(ay) e(Y) - 'Y(Y) (mod 2). 

Assume m odd, say m '" 2k+l, and apply this equation to the manifold Y used 

in the proof of (1.9). This gives 

k(M U -M ) 
1 Q 2 k(M1U

V
-M2 ) - k«aM1 ) -1) - -e(OM1 ) (mod 2) 

~ 

which shows that k is an SKK-invariant with correction term k(q},ljr) 

keN -1) - e(N) (mod 2). A simple homological calculation puts this in the neater 
1)ql 

form 

where, since other dimensions pair off, we need only consider the middle dimension 

Bordism with Vector Fields. 

Reinhart [16J introduced bordism with vector fields in order to make 

euler characteristic into a bordism invariant. 
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Let and be closed (oriented) manifolds. A vector-field bord-

ism between MI is a usual (oriented) bordism N between Nl and M2 

together with a non-singular vector field on N which is the inward normal on 

Mi and the outward normal on H2" 

It is well known (Reinhart, loco cit.) that if N is connected, such 

a vector field exists on N if and only if e(M
1

) ~ e(M
2

) = e(N). 

THEOREM (4.4): Two (oriented) manifolds Ml and M2 are vector field 

cobordant if and only if they are equivalent in (resp_ Thus one 

can identify SKK* with Reinhart's vector field bordism groups. 

We prove only the oriented version, because the same arguments hold in 

the unoriented case. 

We must show that two oriented manifolds represent the 

same class in SKKn if and only if there exists an oriented bordism N between 

them with 

e(N). 

The sufficiency of this condition is immediate from (4.3) , so it remains to prove 

the necessity. Suppose therefore that [MIJ = [Mzl in SKK Since euler charac-n 
teristic is an SKK-invariant, e(M

l
) e(M2)· Also the bordism classes are equal, 

so we can find a bordism Y between M1 and MZ- Lemma (4.3) implies that 

0, so for n even Theorem (4.2) shows that e(Y) '" e(M
l
), 

and we can take N Y and are finished. For n of the form 4k+1 Theorem (4.2) 

shows that e(M l ) - e(Y) is even, so for arbitrary odd n we can certainly find a 

closed manifold Mn+l with In this case, the connected 
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sum of Y and ~l gives a boroism N of Ml and M2 with e(N) 

e(Y) + e(~l) ~ e(M1), completing the proof. 

Tangential Characteristic Numbers. 

Q.E.D. 

Janich (unpublished) has shown for oriented manifolds that the index of 

an ellipic operator is an SKK-invariant. Here, a version of this theorem will be 

proved in a more general setting. 

Let Yn be the universal bundle over BSO(n) and the universal 

bundle over BO(n). By nYn and SYn ~ ... ~ denote the corresponding disc bundle 

and its boundary sphere bundle. 

Let M be a closed oriented n-manifold. The classifying map for the 

tangent bundle of M induces a map 

where tM is the tangent disc bundle of M. Since tM has a natural stable 

almost complex structure, we obtain an element 

In the unoriented case we obtain an element 

LEMMA (4.5): X defines a homomorphism 
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respectively 

x SKK~~ 0in(DYn,SYn ). 

Proof: Suppose [Mn] " 0 in SKKn; we """t show that X(M) '" o. By 

Theorem (4.4) we can find an oriented manifold Y with oY " M and a 000-

singular vector field S on y which i, the inward normal on M. Let t 'y be 

the disc bundle of the bundle obtained by splitting the line bundle corresponding 

to S off from the tangent bundle of Y, and f 

classifying map. f is clearly a zero bordisrn of X(M). The argument also holds 

in the unoriented case. Q.E.D. 

Now let h* and h* be corresponding homology and cohomology theories 

for which stably almost complex manifolds are orientable. Then for any element 

x E h*(riY ,Sy ) 
n n 

(respectively we can consider the correspond-

ing characteristic number of a singular stably almost complex manifold. To be 

precise we consider the homomorphism 

[N,g] x 

where [N.ON]h denotes the h*-orientation class of N. 

Definition: If M is a closed (un)-oriented manifold, the characteristic 

U - - u 
numbers of X(M) E 02n{Dyn'SYn) (resp. E 02n(DYn,SYn» are called tangential 

characteristic ~ of M. 
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COROLLARY (4.6): Tangential characteristic numbers are SKK-invariant. 

* ~: As h ,h* we can choose (complex) K-theory. If M is a 

manifold, then an element x E K*(tM,otM) can be considered as a symbol of a 

(pseudo)-differential operator. <x.[tM,OtM]i> 

An element in K*<ny ,Sy ) 
n n 

(resp. 

is then the index of this symbol. 

can thus be considered as a 

"universal differential operator" which is defined on all a-dimensional (un)-

oriented manifolds. The index of such a "universal operator" is hence an SKK-

invariant. 
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CHAPTER 5: Other SK Concepts 

Other SK concepts have been considered in the literature. In this 

chapter we show how they reduce to the concept of SK used here. For conveni-

ence we work in the oriented category; however, the discussion is also valid for 

manifolds with other structure, e.g., singular manifolds in a space X. manifolds 

with (B,f)-structure, manifolds ~th a group action, etc. 

A cutting and pasting '"'nlation" will always mean an equivalence rela-

tion _ on the class of manifolds, compatible with disjoint union +. and 

"cancellative." That is, for manifolds M,M' ,N we require 

M _ M' ~ N+M _ N+M'. 

Actually, to make our discussion valid also in the equivariant case it 

is convenient to define a further cutting and pasting relation by adding to the 

SK-relation that the double ~M % M U -M of any compact manifold be equivalent to 
id 

zero. Call this relation SK. That is, for the corresponding graded groups, 

where J is the subgroup generated in SK* by doubles of closed manifolds. 

LEMMA (5.1), In the non-equivariant case ~ -
SK =: SK. 

~: In fact we show this holds for any category of manifolds for 

which a suitable analog of Theorem (1.1) holds, i.e., bordism is given by surgery, 

and spheres are doubles of discs. 
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SK* = SK*/I, where I is the subgroup generated by manifolds which 

bound, and hence contains J. But by (1.1) I is already generated by spheres, 

and hence contained in J. Q.E.D. 

We consider the relation used by Janich [14J. This relation is gener-

ated by setting any manifold of the form 

(i) 

equivalent to zero. Here -M
i 

means Mi with reversed orientation and 

~i : OMi~ OM
i
+

l 
(indices modulo 3) are diffeomorphisms. 

THEOREM (5.2): Janich's relation is the same as SK, and hence the same 

as SK in the non-equivariant case. 

Proof: By cutting and pasting the above manifold (1) one obtains the 

union of doubles, 

so sK implies Janich's relation. On the other hand, putting MO = M, 

HI '" HZ = fI, in (1) shows that M + (-M) ,... O. Now taking MO HI 

shows that £)MO + £MO + (-SJMO) - o. so B MO ..... O. FinaLLy, MO 

(MOU" - Mi ) + (MiU - MO) + £lMO - O. 
..... 0 <::Pi 

relation implies SK. 

whence M U 
0'll0 

Hence Janich's 

Q.E.D. 
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If one is interested also in compact manifolds with boundary, the most 

natural cutting and pasting relation seems to be the one generated by the relations 

(2 ) 

where ~ pastes boundary components of MO to boundary components of M
i

" 

Call the corresponding graded group A* (the Grothendieck group of compact 

manl folds modulo these re lations). This is the universal group for "addi t i ve" 

invariants of manifolds. 

Clearly, for closed manifolds the above relations only generate the usuul 

SK-relations, so the subgroup of A* generated by closed manifolds is just SK*. 

Now let B* be the Grothendieck group of closed manifolds which bound, subject 

only to the relations M + (-M) = O. The torsion subgroup of B* is thus 2-torsion, 

generated by bounding manifolds which possess orientation reversing diffeomorphisms. 

There is an epimorphism 0: A*~ B*_l given by taking boundaries of manifolds. 

The following theorem is trivial. 

THEOREM (5.3): The sequence 

is exact. 

Thus "additive" invariants for compact manifolds reduce to the diffeo-

morphism types of their boundaries together with SK-invariants for closed manifolds. 

Observe that the above sequence does not split for n even, since 

A*, but [SUO] is an irreducible element of SK* = Ker O. 

[sn] = 2[Dn] 

Theorem (5.3) is due to Rowlett [17]. Actually Rowlett considers a 

in 
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slightly different relation, namely 

(3) 

Taking Hi = ~ this implies MO - -(-M
O
)' so in particular relation (2) follows, 

as well as the relation 

(4 ) 

that is, doubles are equivalent to zero. Conversely (2) and (4) clearly imply 

MO .... -(-M
O
)' and hence imply (3). Thus Rowlett's relation (3) leads to the same 

~ 

results as relation (2) except that SK* must be replaced by SK*. 

We now return to a comment of Chapter 1. As remarked in Chapter 1, 

SKn(X) is actually equal to the semigroup of singular n-manifolds in X modulo 

SK-equivalence. To assure this, the definition of SK-equivalence in Chapter 

was slightly unnaturally "stabilized" to make sure that it was cancellative. As 

recently remarked by Ed Miller, this is unnecessary, in fact we have: 

THEOREM (5.4): Two closed non-empty oriented singular manifolds (KI,f l ) 

and (M2,f2) in a connected space X are SK-equivalent and hence represent the 

same element of SK*(X) if and only if one is obtainable from the other by a 

sequence of cutting and pasting operations in X. 

Of course the same holds in the unoriented category. To prove Theorem 

(5.4) let denote the "unstahilized" SK-relation; that is (KI,f
t

) ..... (M
2
,f

2
) 

means that (M2,f2) results from (Ml,f l ) by a sequence of cutting and pasting 
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operations in X. It is clearly sufficient to show that the semigroup 11tn (X)/-

of singular n-manifolds in X modulo this relation is already a group, and hence 

equal to SKn(X). 

Firstly, this seroigroup has a zero, given by the class of 51 X Su-l. 

Indeed, we can cut 51 X Su-l along su-l to get I X SU-I. Now given any 

(M, f) E Ol1
n 

(X), we can cut a small disc On from M, paste to this 

disc as a collar, and paste the result back into M, showing that 

(M,f) + (51 X SU-l) _ (M,f). 

Secondly, the class of Sll has an inverse in this semigroup. Namely 

let p be the "sphere with two handles" obtained by removing two discs from 

s' X S 
n-l and pasting the resulting two boundary components Sn-l together. 

reversing this construction, clearly p+Sn ..... Sl 0-1 
X S , 

By 

We now have all we need to repeat the proof of Corollary (1.8) and show 

in mn(X)/-. It follows that any element [M,fJ of mn(X)/- has an inverse, 

namely [-M, f] - e(M}[Snl, so IDn(X)/- is a group, as was to be shown. 

Remark: The relation of SK-equivalence as given in Chapter I can be 

simplified in another direction, which is, however, less interesting. Namely, 

(M1,f 1) and (M2,f2) are SK-equivalent if and only if there exists an (M,f) 

such that (M2,f2) + (M,f) results from (MI,f
l

) + (M,f) by a single cutting and 

pasting operation. We leave this as an easy exercise for the reader. 
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CHAPTER 6: Winkelnkemper's "Open Book Theorem' 

This chapter was written after the rest of the notes were completed, 

and discusses some SK-consequences of Elmar Winkelnkemper' s "open book theorem" 

[20J. Maybe the main consequence for SK is the theorem, which strongly super-

cedes Theorem (2.8) iii): 

THEOREM (6.l): For any topological space X and all odd n r 5, 

O. This is probably also true for n = 5. 

Let us first recall Winkelnkemper's definition of an "open book." Let 

V be a manifold with aV" ¢ and h: V~ V a diffeomorphism with h lov id. 

Form the mapping torus V
h 

(see Chapter 1) which has aVh = Sl X aV, and for 

each x E oV identify the points (t,x), t E Sl, to obtain a closed manifold M 

called an open book. The fibres of the mapping torus are the "pages" and the image 

of Sl X aV under the identification, which is a codimension 2 closed manifold 

diffeomorphic to aV is called the "binding." The binding is the boundary of 

each page. 

In 1923, Alexander [lJ proved: every orientable 3-manifold is an open 

book. Winkelnkemper has extended this to the following powerful structure theorem 

for manifolds: 

THEOREM (6.2) (Open Book Theorem): a) Every orientable closed manifold 

of dimension n = 2k+l ,,5 has an open book decomposition. 
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b) A closed simply connected manifold M of dimension n 2k> 6 

has an open book decomposition if and only if ~(M) = O. 

In fact in the simply connected case, n > 6, Winkelnkemper shows 

much more, namely, that the pages and binding can also be chosen simply connected 

with Hi(V,Z) "" 0 for i> [IJ. The latter implies that h*: Hi(V,Z)............,.. Hi(V,Z) 

is the identity for i < [¥J, and Winkelnkemper also gives necessary and sufficient 

conditions that one can choose it to be the identity also for i = [%J. 

The application to SK is given by the following theorem. We first note 

a simple lemma: 

LEMMA (6.3): Let ~ be a closed connected orientable manifold. Then 

the following four conditions are equivalent: 

i) For any map f: M -> X of M into a space X, [M, fJ = 0 in S~ (X); 

ii) T(M) = 0 and for any map f , M~X, [M, f] = [M, *] in SKn (X); 

iii) [M,id] 0 in SKn (M); 

iv) T(M) = 0 and [M,idJ = [M.*] in SKn (M). 

THEOREM (6.4): If M
n 

has an open book decomposition then each of the 

equivalent conditions of Lemma (6.3) holds. 

Proofs: Lemma (6.3): The equivalences i) <===':> ii) and iii) ~iv) 
are clear by observing that [M, f] = 0 in SKn(X) implies [M,*] 0 in SKn(X} 
and applying Theorems (1.1b) and (1.3b). Trivially i) ~ iii) , and iii) => i} 

follows from the fact that [M, fJ E SK (X) 
n is the image of [M,id] E SK (M) under 

n 
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Theorem (6.4): Suppose M has an open book decomposition given by 

typical page V and diffeomorphism h: V........-..y V. We shall prove [M,id] == 0 

in SKu (M). 

Cutting the mapping torus V
h 

along two fibres to get two copies of 

V X I induces a cutting of M (along a manifold diffeomorphic to the double of 

v) into two pieces Nand N'. each of which is diffeomorphic to V X 1/-

where identifies each x X I (x E OV) to a point (in fact Nand N' are 

still diffeomorphic to V X I). Use a homotopy between id: V X I--? V X I 

and V X I~ V Cv X I, where p is the projection, to slide both Nand N' 

into a single page V of M and re-paste them there to get the double £:) N 

mapping into a page V CM. This mapping clearly extends to a mapping of N X I 

into V if we consider J0N as O(N X I). Hence [M,id] is equivalent by an 

SK-operation to something which bounds in M, and is hence zero in SKn(M). Q.E.D. 

The open book theorem together with (6.4) clearly implies (6.1). There 

are other interesting implications. Recall that for any connected space x, the 

augmentation eX 

~[M, f] [M,f] - EM,*] 

define a direct sum representation 

Since SK* is '-ell unde-stood. 't 's Ke- oX, and hence the elements [M f] .. ~ .. "- .. <:. 11 , , 

which interest us. 

As remarked in Chapter 2, if a manifold M is the base of a compact 
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fibre bundle with structure group G and non-multiplicative signature, and 

f: M----.,. Be is the classifying map, then [M,f] # LM,*J in SK*(BG), so 

~[M,fJ is non-trivial, in fact of infinite order, in Ker e
BC Thus by Lemma 

(6.3) ~[M,id] has infinite order in Ker EM Thus 1l[M,id] E Ker EM gives an 

intrinsic obstruction to multiplicativity of signature for arbitrary bundles 

over M. Two natural questions arise: 

Question 1: We have seen that finite order of ~[M.idl in Ker eM is 

sufficient for bundles over M to have multiplicative signature. Is it also 

necessary? 

Question 2: By Theorem (6.4) triviality of [M,idJ in SK(M) (which 

is equivalent to ~[M,idJ ~ 0 and ~(M) = 0) is necessary for M to have an open 

book decomposition. Is it also sufficient? 

Atiyah's examples show that there are bundles with non-multiplicative 

signature over any product M of orientable surfaces of sufficiently high genus. 

Hence l1LM,id] '10 in Ker 
M , , so M has no open book decomposition. Thus the 

condition TTL (M) o in the open book theorem cannot be dropped entirely. It was 

this remark, made by Elmar Winkelnkemper (using a more direct argument) that led 

to this chapter. 
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APPENDIX 1: Cutting and Pasting of (B, f}-manifolds 

by G. Barthel 

Most of the preceding theory can be generalized to cutting and pasting of 

(B,f)-manifolds, so here we give a summary of the generalization. 

Let us briefly recall the definition of a (B,f)-structure on a manifold 

as given by Lashof [3] (see also Stong [7J). Let (B,f) = (Bk,fk ) be a sequence 

of fibrations f k : Bk~ BOk and maps gk: Bk~ Bk+ l such that all diagrams 

commute is the usual inclusion). 

Any smooth imbedding i
k o 

. Mn .. n+k imbeddings l. k : ---'> , 

of a compact 

by the inclusion of 

smooth n-manifold 

"'kO 
B. into yield-s 

Rn+k 
The geometric normal maps ~k H~ BOk (taking BOk as ~n infinite 

Grassman manifold) of these imbeddings are related by ~k+l = Jk-vk. Given a 

(Bk ,fk )-structure ~ 
o 0 

(M, i
k 

) 
o 

(i.e., a homotopy class of liftings 

of the normal map to Bk ), one obtains a unique sequence S 
o 

(Bk,fk)-structures on (M,i
k
). 

Provided that k is sufficiently large, any two imbeddings i
k 

and i k 
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of ~ into ~n+k are regularly homotopic and any two regular homotopies are 

homotopic through regular homotopies of the given imbeddings. The induced homo-

topy of the normal maps yield by the homotopy lifting property for the maps fk 

a one-one correspondence between (Bk,fk)-structures on (M,i k) and (M,it). 
Two sequences , ~ ('t)t~t belonging to ernbeddings 

- 0 

will be called equivalent if gr and 

correspond by the above correspondence for some r. A (B,f)-structure on M 

is then defined to be an equivalence class of such sequences of (Bk,fk)-structures, 

and a manifold M together with a (B,f)-structure , is called a (B,f)-manifold. 

If ~ : M'~ M is a diffeomorphism, any (B,f)-structure on M induces 

one on M' An isomorphism of (B,f)-manifolds is a diffeomorphism inducing the 

given structure on the source M'. This notion of induced structure and of (B,f)-

morphism can be extended to immersions with trivialized normal bundle, see Stong 

[7], p. 16, for details. 

Let ~l be a (B,f)-manifold with boundary. Imbed Wn+l in ~n+k X &+ 

such that oW lies in mn+k X [OJ and W meets ~n+k X {OJ orthogonally along 

oW. Then the (Bk,fk)-structure on W induces one on oW by restriction, called 

the boundary structure. For a closed (B,f)-manifold H, the boundary structure 

on O(M X I) induces the given structure on M = M X (o) and a structure on 

M = M X (l} called the opposite structure, briefly denoted by -M. 

Two closed (B,f)-manifolds M and M' are called bordant if M + (-M') 

is a (B,f)-boundary. The (B,f)-bordism 

manifolds form an abelian group O(B.f) 
n 

classes of closed n-dimensional (B,f)-

called the th 
n (a, f)-bordism ~. 

We remark that these groups are isomorphic to certain stable homotopy 

groups of appropriate Thorn spaces (see [3J. [7] for details). Furthermore, if a 

multiplicative structure is given (defined by maps Br X Bs~ Br+s such that the 
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projections fk preserve products up to ho,,,oc0t-lY, BOr 

usual multipl.ication), we get a graded ring structure on 

x SO --~ , 
O(B, £) 

* ' 
-.orph' om O*(B, f)----,,-- YI'.' h h' f d d . '" ~~ ------~ Dv ~s a omomorp 15m 0 gra e rlngs. 

30r+S being the 

and the horno-

Suppose that a closed manifold M is the union of two bounded manifolds 

Nand N' pasted along the common boundary oN '" oN'. Then a given {B,O-

structure on M induces (B,f)-structures on Nand N' such that the boundary 

structures on oN and oN' are opposite to each other. If cp : oN ~> -oN' is 

a (B, f)-isomorphism, the pieces Nand N' may be pasted by cp to give a new 

(B, f)-manifold M', and we say H' has been obtained from M by an SK-operation. 

Note that in general the (B,f)-structure on M' is ~ uniquely determined ~ the 

(B, f)-manifolds N, N' and.£z CD. 

As in Chapter 1, one defines an SK-group as the Grothendieck 

group of closed n-dimensional (B, f)-manifolds modulo the relations given by SK-

operations. SK(B, f) 
n is then defined by factoring SK(B, f) by 

n 

tion. If the (B,f)-structure is multiplicative, then SK(B,f) 

* 
graded rings, and the natural epimorphisms 

and 

are graded ring homomorphisms. 

the bordism rela-

and 
;;;C<B, f) 

* 
are 

We first remark that without loss of generality we can assume the spaces 

Bk to be connected. Collapsing the connected components of the fibres of 

Bk~ BOk to points yields a connected covering of BD
k

, which must be either 
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the trivial covering BOk~ BOk' or the universal covering BSOk~ BOk• Thus 

the fibres of Bk have at most two components, so there are at most two (B,£)-

structures on a point, and they are opposite to each other. The same holds for 

the spheres Sn with boundary structures induced from the disc Dn+l. These 

structures on the sphere are isomorphic by an orientation reversing diffeomorphism, 

so in fact there is only one such structure induced from the disc; we call it the 

point structure. 

Corresponding to Theorems (1.1) and (1.2) of Chapter 1 we have the follow-

ing results: 

THEOREM 1: There is an exact sequence 

where is the cyclic subgroup of generated by the class [sn] of 

the sphere Sn with the point structure, and 

,(B,f) _" 
n =' n:::O(mod2) 

,(B, f) 
n ° or Z2' n == I (mod 2). 

If the fibres of Bk have two connected components, then the sequence splits for 

n even. 

~ 2: Let F~B,f) be the subgroup of O~B,f} of all elements 

representable by a manifold which fibres over Sl. Then 

is exact. 



66. 

The proofs are a5 in Chapter 1, 'I,;-i,:'". '::1::.e foI.lowing reser:"!ti('~s: the 

connection between SK and surgery discussed in Chapter 1 goes through without 

change to prove Theorem 1, however, the cutting and pasting Lemma (1.5) needs 

additional conditions: 

LEMMA 3: i) If the (B,O-manifold M fibres over S1 then [M] 0 

in SK(B, f) 
* . 

ii) If M fibres over SO with typical fibre F then [M] = [So X FJ 

in SK(B, f) 
* ' where the structure on Sn X F is induced from on+l X F9 If the 

theory is multiplicative, then F can be given a (B,f)-structure such that 

[M] = [snl[F] in SK(B, f) * . 
iii) If the (B,f)-structure is multiplicative and if there are (B,f)-

structures on PnC for all n, then for any (B, f)-manifold M fibred over PuC 

with fibre F, 

holds in 

SK(B,f) 
2n+l ' 

SK(B,f) 
* ' for a suitable (B,f)-structure on F. 

iv) The same as iii) with Put 

COROLLARY 4. 

r(B, f) 
2nH 

Under the assumption of part iii) above, 

so o. 
o in 

Theorem 2 is proved as in Chapter 1, by showing that the (B,f)-bordism 

classes of two manifolds related by a single SK-operation differ by the class of a 

manifold which fibres over the circle. Note that two SK-operations may yield the 

same manifold fibering over the circle but with different (B,f)-structures. due to 

the non-uniqueness of (B,f)-structures under cutting and pasting mentioned earlier. 

6) . 

This means that the calculation of the SKK-groups of Chapter 4 is not the same in 

the (B,f)-case: (B,f)-bordism class needn't be an SKK-invariant. However, the 

class in O(B, f)/J 
* ' where J is the subgroup generated by all (B,f)-structures 

on manifolds of the form M X Sl, is an SKK-invariant, and the discussion of 

Chapter 4 goes through using this group in place of O(B, f) 
* . 

As au example of (B,f)-SK we now calculate the SK-groups for weakly 

complex manifolds, obtaining the following result. 

~5: The rings and are isomorphic to and 

by the obvious homomorphisms. 

to 

Proof: By Lemma 3 and Corollary 4 we know that is isomorphic 

which is a quotient of Now 0" 
* 

is known, namely, it is the 

on 2i-dimensional generators Y
i 

that 

can be represented by certain linear combinations of products of complex projective 

spaces PnC and hypersurfaces in (Milnor, Novikov, Hirzebruch 

[4], [5], [6], [1]). 

Hence the and thus also the are zero, proving 

the theorem for odd dimensions. 

In the e~en dimensional case we see that SK'-', --;> SK 
n 2n is onto, as it 

maps generators onto generators. By Lemma 3 iii) these generators may be chosen 

as prodUcts of complex projective spaces. Now one sees that Janich's proof that 

(given in [2J, 2., (4a» holds also in SK'-' 
* 

(where 

has its usual weakly complex structure). Thus is generated by products 

with at least one factor and is hence zero, while is generated by 
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Pl' (k times) and is hence isoru.o,;p~·,ic to Z by signa:..ure. Thus Pl' X ... X 

SK" SK*, and the 5-1emma on 

" 
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