Cutting and Pasting of Manifolds; SK-Groups

U. Karras, M. Kreck,
W.D. Neumann, E.Ossa

Bonn University, Germany
and
Institute for Advanced Study, Princeton, N.J.

COPYRIGHT © WALTER NEUMANN 1973 All rights reserved.

AMS 1970 SUBJECT CLASSIFICATION

Primary 55C $35,55 \mathrm{~F} 15,55 F 35,57015,57 \mathrm{D} 75$ 57D85, 57D90, 57E15. 57E30 Secondary 55G99, 57025,58G15.

PREFACE

CHAPTER 1: Introduction

CHAPTER 2: SK of Fibre Bundles

CHAPTER 3: Equivariant $S K$

CHAPTER 4: Controllable Invariants

CHAFTER S; Othex $S K$ Concepts

CHAPTER 6: Winkelnkemper's 'Open Book Theorem"

APpendix I: Cutting and Pasting of (B, f)-manifolds, by G. Bart REFERENCES

PUBLISH OR PERISH, INC.
6 BEACON STREET
BOSTON, MASS. 02108 (U.S.A.)

Let M be a closed manifold and $L C M$ a closed submanifold of codimenSion 1 with trivial normal bundle, If one cuts M open along L one obtains a manifold M^{\prime} with boundary $\mathrm{mM}^{\prime}=\mathrm{L}+\mathrm{L}$ (disjoint union), and by pasting these two copies of L together again in a different way one can obtain a new closed manifold M_{1}. M_{I} is said to have been obtained by cutting and pasting M.

The theory of so-called $S K$-invariants--invariants under cutting and pasting of manifolds-was born in a series of papers [13], [14], by KLaus Janich, characterizing signature and euler charactexistic by additivity properties. Later Karras and Kreck, in their Diplon theses, extended many of Jänich's results to cutting and pasting of bundles.

The idea of definimg $S K$-groups brought many simplifications and in sumer, 1971, a stady group was organized in which the authors incorporated these simplifications in a sumary of the known results, in particulax, of Karras' and Kreck's Diplom theses. The resuits were also extended somewhat. A survey lecture by Neumann for the Bonn-Heidelberg Colloquium (Dec., 1970) served as a basis for this study group, of which these notes axe the proceedings.

Chapter I brings the general theory of SK-invariants and SK-groups and proves Jänich's results in this framework. Basic for the theory are Theorems (i.1) and (1.2), which redoce calculations of $5 K$-groups to the solution of problems of the following type: which bordism classes in, say, $\Pi_{s}(X)$ can be represented by an $M \rightarrow X$ where M is a manifold which fibres over S^{1} ? The results of these notes solve this in many cases.

Chaptet 2 is mainly the Diplom thesis work of Karras and Kreck on SK of bundles. An important by-product is results on multiplicativity of signature
for fibre bundlesw-this was originally the main motivation for much of this work.
Chapter 3 on unoriented equivariant $S K$ is based on work of Neumann and Ossa at a miniconfereace in Regensburg in June, 1970. It generalizes a result of Karras from z_{2} to arbitrary groups. Since euler chaxacteristics of fixpoint sets and similar invariant subsets axe 5 X -invariants, a complete calculation of equivariant Sk-invariants would give some general Smith-type theorems.

Chapter 4 brings a generallzation of the concept of SK-invariant, due to K. Jänich. The complete calculation of the correspondiog universal group, denozed by $S K K_{\star}$, is Dased on work of K. Järich, Ossa and Neuman. Ossa has proved that $S K K_{,}$can be identified with the vector-field bordism groups of Reinhart [16]. The index of an elliptic operator is an important example for an sKKinvariant which is generally not an SR-invariant; this was originally the main motivation for SKX-invariants.

The cutting and pasting concepts which have previously appeazed in the literature differ in some cases from ours, and Chapter 5 fits them into the framework of these notes. Finally in Chapter 6 some recent results of Neumann which result from Elmar Winkelnkemper's "open book theorem" are described. In particular, it is shown that in odd dimensions $\neq 5$ all Sk-invariants for bundies ovex orientable manifolds vanish, and the connection between $S K$ and maltiplicativity of signature is reconsidered.

An appendix by cottried Barthel on the extension of the theory to categories of manifolds with ($8, f$)-structare completes the notes.
W. D. Neumann was supported in part by National Science Foundation grant GP7952X3 and E. Ossa was supported in part by National Science Foundation grant 6P7952X2.

The work in Bonn was supported in part by the Sonderforsohungsbereich "Theoretisch Hathematik".

After these notes were typed it was noticed that the methodis of

 chapters 2 and 6 easily lead to the result that for a simply somectad space X, the omented SK-groups $S K_{n}(x)$ aro aqual to $S K_{2}(p t)$ for $n \neq 4,6$, and that this still holds up to torsion if \vec{A} has a non-trivial but finito fundamental group. This lenis a small amount of credibility to the probebly yery wila conjecture that $\mathrm{SK}_{\mathrm{n}}(X)$ only depends on the fundamental group $\pi_{1}(X)$. This conjecture hes been confirmed for $n \leqslant 3$Since it was too late to incorporate these latter results into these notes, they are left as exercises for the readar and may possibly appear in a later paper by the third namad author.

CHAPTER 1: Introduction.

In these notes manifold always means smooth manifold, usually compact, and an invariant p for n-dimensional manifolds is assumed to take values in an abelian group and to be additive with respect to disjoint union + . That is, if $M=M_{1}+M_{2}$ then $\rho(M)=\rho\left(M_{1}\right\rangle+\rho\left(M_{2}\right)$.

Let ρ be an invariant in this sense for clased oriented a-manifolds. ρ is called an SK-invariant in whenever N and N^{\prime} are compact oriented n-manifolds and $\varphi, 4: \partial N \rightarrow \partial N^{+}$orientation preserving diffeomorphisms, then

$$
\rho\left(\mathrm{MU}_{\varphi}-\mathrm{N}^{\top}\right)=\rho\left(\mathrm{N}_{\phi}-\mathrm{N}^{\prime}\right)
$$

Here $\sim N^{\prime}$ means N^{\prime} with reversed orientation, and $N U-N^{\prime}$ means N pasted to N^{\prime} along the boundary by φ and smoothed. In other words ρ is invariant under "cutting and pasting" ($=$ Schneiden and Kleben) of the closed manifold $M=\operatorname{mal}_{\varphi}-N^{\prime}$ along the submanifold $L=\partial N$.

Note that L is a 1 -codimensional two-sided subnanifold which separates M. It is no gain in generality to drop the condition that L segarate M, since the union of L with a second copy of L, suitably embedded near L, will separate M.

In the non-orientable case "cutting and pasting" and "SK-invariant" are defined analogously.

Examples: 1) Euler characteristic e is an SK-invariant for arbitrary manifolds. This follows from the fact that euler characteristic is zero for closed odd-dimensional manifolds, together with the additivity property

$$
e(X \cup Y)=e(X)+e(Y)-e(X \cap Y)
$$

which holds for any "nice" spaces X and Y which intersect nicely.
2) Signature T is an Sk-invariant for orientable manifolds. This is due to the Novikov additivity property

$$
T\left(\mathrm{~N}_{\varphi} \mathrm{H}^{\prime} \mathrm{N}^{\prime}\right)=T(N)-T\left(N^{\prime}\right),
$$

where N, N, , Singer [3].

If G is a compact lie group one can also consider equivatiant cutting and pasting of G-manifolds. The case that c acts freely is of particular interest, as clearly the problem of calculating SK-invariants for free 6 -actions with oriented (resp. arbitrary) orbit space is the same as the problem of calculating invariants for cutting and pasting of locally trivial fibre bundles with fixed fibre, structure group G, and oxiented (resp. arbitrary) closed base manifold,

If the total space of the fibre bundle is also a closed orientable manifold, then T (Base manifold) and T (Total space) are both SK-invariants, so non-multiplicity of signature will show up in the SK-invariants. This will be discussed in more detail in Chapter 2.

We now construct the basic tools for calculating SK-iavariarts,
Let X be a space. A singular oriented n-manifold in X is an equiFalence class (M, f), where M is a closed oriented n-manifold, $f: M \rightarrow X$ a continuous map, and (M, f) is equivalent to $\left\langle M^{\prime}, f^{\prime}\right\rangle$ if there is an orientation

preserving diffeomorphism $M \longrightarrow M^{\prime}$ such that

commutes. Let

$$
\gamma_{\mathrm{n}}^{\mathrm{SO}}(\mathrm{x}):=\{\text { singular oriented } n \text {-manifolds in } x\} .
$$

$\gamma_{\gamma 6}^{S O}(x)$ is a commetative semigroug with respect to disjoint union + and has a zero giwen by $M=\phi$.

Let $M_{1}=M_{P}-N^{*}$ and $M_{2}=W_{V}-N^{\prime}$ be closed orientable manifolds obtainable from each other by cutting and pasting along $\partial \mathrm{N} C M_{1}$. Let $f_{i}: M_{i} \rightarrow X$ be continuous maps. We say the singular manifold (M_{2}, F_{2}) is obtained from (M_{1}, F_{1}) by cutting and pasting in X if there are homotopies

$$
\mathrm{f}_{1}\left|N \simeq \mathrm{f}_{2}\right| \mathrm{N}, \quad \mathrm{~F}_{1}\left|\mathrm{~N}^{+} \simeq \mathrm{f}_{2}\right| \mathrm{N}^{\prime}
$$

Two singular oriented n-manifolds $\left(M_{2}, f_{1}\right),\left(M_{2}, f_{2}\right) \in \gamma \gamma \int_{n}^{S O}(X)$ are called SK-equivalent if there is an $(M, f) \in \mathcal{H F}_{n}^{S O}(X)$ such that the disjoint anion $\left\langle M_{2}, f_{2}\right\rangle+\langle M, f)$ can be obtained from $\left(M_{I}, f_{1}\right)+\langle M, f)$ by a sequence of cutting and pastings in X (Ed Miller at Harvard has recently observed that for non-empty M_{3}, M_{2}, this definition is equivalent to the "unstabilized version"-without adding (M, f), See end of chapter 5.) The quotient semigroup

$$
\gamma_{n}^{S O}(x):=\gamma_{n}^{S O}(x) / S K \text {-equivalence }
$$

is a cancellative semigroup. Define

$$
S K_{0}^{S O}(x):=\text { Grothendieck group of } \gamma_{n}^{S O}(x) .
$$

Since $\gamma_{n}^{\text {SO }}(x)$ is cancellative, it injects into $S X_{n}^{S O}(X)$, so two singutar manifolds represent the same element in $\mathrm{SK}_{\mathrm{n}}^{\mathrm{SO}}(\mathrm{X})$ if and only if they are SK_{K} equivalent. In fact it follows fxom Theorem (1.1) below that $\gamma_{n}^{S 0}(X)$ actually equals $\operatorname{SK}_{n}^{S O}(x)$, but we won't need this.

By construction, any Sk-invariant for singular oriented n-manifolds
in X factors over the natural map

$$
\gamma C_{\mathrm{n}}^{\mathrm{SO}}(\mathrm{x}) \longrightarrow S K_{\mathrm{n}}^{S O}(\mathrm{x}),
$$

and this map is itself an $S K$-invariant. Thus $\mathrm{SK}_{\mathrm{n}}^{\mathrm{SO}}(\mathrm{X})$ yields the universal SR-invaxiant.

Example: $X=B G$ (classifying space for G) where G is a Lie group. Then $S K_{n}^{S O}(B G)$ gives the universal SK-invariant for fibre bundles with fixed fibre and structure group G, over oriented n-mamifolds.
$x=*$ (the one-point space). $S K_{n}^{S O}(*)$ gives the universal $S K$-invariant for oriented n-manifolds.

One can make completely analogous definition in the not-necessarilyorieated case, to obtain a universal $\$ k$-invariant $\gamma_{j}^{0}(X) \rightarrow S K_{n}^{0}(x)$.

Conventions: In the oriented case we omit the superscript 50 and write $S K_{n}(X):=S K_{n}^{S O}(X)$. Furthermoxe, we write

$$
\begin{aligned}
& S K_{n}:=S K_{n}(*) \\
& S K_{n}^{O}:=S K_{n}^{O}(\hbar)
\end{aligned}
$$

the $\$ k$-groups for oriented resp. axbitrary n-manifolds.

Remarks: $S K_{n}$ clearly defines a covariant functor from the homotopy category of topological spaces to the category of abelian groups. Product of singular manifolds induces a functorial bilinear map

$$
\mathrm{SK}_{\mathrm{n}}(X) \times \mathrm{SK}_{\mathrm{n}}(Y) \longrightarrow \mathrm{SK}_{\mathrm{n}+\mathrm{a}}(X \times Y) .
$$

In particular $S K_{\hbar}=\Lambda_{n} \mathrm{SK}_{\mathrm{n}}$ is a graduated ring, and for any $\mathrm{X}, \mathrm{SK}_{N_{N}}(\mathrm{X})$ is a graduated SK_{*}-module. There is an augmentation

$$
\varepsilon: \mathrm{SK}_{*}(\mathrm{X}) \longrightarrow \mathrm{SK}_{\lambda}
$$

induced by $x \rightarrow$.
Similar remarks hold in the unoriented case.

Statement of Results.

Let $\overline{S K}_{n}(X)$ be $\mathrm{SK}_{\mathrm{n}}(X)$ factored by the bordisa relations, that is, $\mathrm{SK}_{\mathrm{n}}(\mathrm{X})$ factored by the subgroup generated by all elements which have a representative (M, f) which bounds in $X, \overline{S K}_{\mathbf{n}}^{0}(X)$ is defined analogousiy. A basic tool in these notes will be:

THEOREM (1.1): Let X be path-connected. There is a split exact sequence

$$
0 \rightarrow \mathrm{I}_{\mathrm{n}} \rightarrow \mathrm{SK}_{\mathrm{n}}(\mathrm{x}) \rightarrow \overline{\mathrm{SK}}_{\mathrm{n}}(\mathrm{X}) \rightarrow 0,
$$

where I_{n} is the subgroup of $\mathrm{SK}_{n}(X)$ generated by $\left[S^{n}\right.$,*] (here $*$ denotes the -unique up to homotopy- constant map $s^{n} \rightarrow X$) and

$$
\begin{aligned}
I_{n} & \cong z \quad n \text { even } \\
& =0 \quad n \quad \text { add }
\end{aligned}
$$

In the non-orientable case exactly the same holds except that the sequence does not split for n even.

A useful corollary of Theorem (1.1) is:
THEOREM (1.1b): If $[M, f]=\left[M^{2}, f^{\prime}\right]$ in $\overline{S K}(X)$ and $e(M)=e\left(M^{\prime}\right)$, then $\left[M, f^{\prime}\right]=\left[M^{\prime}, f^{\prime}\right]$ in $S k, X_{0}(X)$. The same also in the non-oriented case.

Indeed, the assumptions of (i. Lb) imply $[\mathrm{M}, \mathrm{f}]-\left[\mathrm{M}^{\prime}, \mathrm{F}^{2}\right] \in$ $\operatorname{Ker}\left(S K_{n}(X) \longrightarrow \overline{S K}_{n}(X)\right)=I_{n}$ and $e\left([M, f]-\left[M^{\prime}, f^{\prime}\right]\right)=0$. Since euler characteristic clearly classifies the elements of f_{n} by Theorem (1.1), it follows that $[M, f]-\left[M^{\prime}, f^{\prime}\right]$ is zero in I_{n} and hence certainly in $S_{n}(X)$.

There are obvious epimorphisms $\cap_{n}(x) \rightarrow \overline{S K}_{n}(x)$ and $\chi_{n}(x) \rightarrow \overline{S K}_{n}^{0}(x)$. Let $F_{n}(X)\left(\Omega_{n}(X)\right.$ and $F_{n}^{0}(X) C Z_{n}(X)$ be the subgroups of all elements which admit a representative (M, f) such that M fibres over the circle S^{l}.

THEOREM (1.2): The sequences

$$
\begin{aligned}
& 0 \rightarrow F_{n}(x) \rightarrow \Omega_{n}(x) \rightarrow \overline{S R}_{n}(x) \rightarrow 0 \\
& 0 \rightarrow F_{n}^{0}(x) \rightarrow{K_{n}}_{n}(x) \rightarrow \overline{S K}_{n}^{0}(x) \rightarrow 0
\end{aligned}
$$

are exact.

This theorem reduces the calculation of $\overline{\mathrm{SK}}_{\mathrm{R}}(\mathbb{X})$ and $\overline{\mathrm{SK}}_{\mathrm{n}}^{0}(\mathrm{X})$ to a bordism problem.

The calculation of the absolute $S k$-groups is as follows: THEOREM (1.3a): FOT n odd both $S K_{n}$ and $S K_{n}^{\circ}$ are zero. For even In one has:

Recall that for oriented manifolds euler characteristic and signature are congruent modulo 2. The claim as to what one can choose as bases of the above groups is clearly equivalent to: the above three isomorphism can be given by $\frac{e-T}{2} \oplus \tau, \frac{e}{2}$, e respectively. Thus

COROLLARY (1.4): Any SK-invariant for smooth manifolds is a linear combination of eulex characteristic, and signatore in the oriented case.

In view of Theorems (1.1) and (1.2) we can give two equivalent formulations of Theorem (1.3a):

THEOREM (1.3b): FOI a odd both $\overline{S K}_{n}$ and $\overline{S K}_{\mathrm{B}}^{0}$ are zero. For even
ar one has isomorphisms

$$
\begin{aligned}
& \tau: \overline{\mathrm{SK}}_{\mathrm{n}} \underset{\sim}{\underset{\sim}{\rightrightarrows}} \begin{cases}\mathrm{z} & \mathrm{n} \equiv 0(\bmod 4) ; \\
0 & n \equiv 2(\bmod 4) ;\end{cases} \\
& e(\bmod 2): \overline{\mathrm{SK}}_{\mathrm{n}}^{0} \underset{\rightrightarrows}{\rightrightarrows} \mathrm{z}_{2} n \equiv 0(\bmod 2) .
\end{aligned}
$$

THEOEM (1.3c):

$$
\begin{aligned}
& F_{\mathrm{n}}=\left\{[M] \in \Omega_{\mathrm{n}} \mid T(M)=0\right\} \\
& F_{\mathrm{n}}^{0}=\left\{[M] \in \tilde{U}_{\mathrm{n}} \mid \mathrm{e}(M) \equiv 0(\bmod 2\rangle\right\}
\end{aligned}
$$

Theorem (1.3c) has been proved by Conner and Floyd [9] in the nonoriented case, and up to torsion by Conner and Burdick $[8$ and [5] ink the oriented case (that is $F_{n}+\operatorname{Tors}\left(\Omega_{n}\right)=\left\{[M] \in \cap_{n} \mid \tau(M)=0\right\}$). Thus to prove (1.3c), and hence also (1.3 b) and (1.3a), it suffices to prove

$$
\operatorname{Tors}\left(\Omega_{n}\right)\left(F_{n}\right.
$$

The proof we shall give is based on Jünich's proof [14] of (1.3b). Actually jänich works with invariants and uses a different concept of SK-invariant but as we shall show in chapter 5 , his concept is equivalent to " $\overline{\mathrm{SK}}$-invariant." Essentially the same proof of ($1,3 b$) has also been found independentiy by Rowlett [17], who also had independently had the idea of defining SK-croups. He also had
a different SK -concept, which also turns out to give precisely $\overline{\mathrm{SK}}$ (see Chapter 5). An indeperdent proof of (1.3 F) in the oriented case for $n>5$ can be found in H. E. Winkelaketupex's dissertation [19] (see aiso [20]). Theorems (1.1) and (1.2), which show the equivalence of the three formatations of (1.3), are of later vintage, though they are latent already in the work of Jänich, Burdick and others.

The proof of Theorem (1.1):

We first give some legmas on cutting and pasting which will also be usefut later on. If (M, f) is a singular manifold in X we write $[M, f]_{S K}$, $[M, f]_{\Omega}$, etc., for the class of (M, f) in $S K_{s}(X), \Omega_{\sim}(X)$, etc., but onit the subscript if no confusion can occur. If $X=\%$ is the one-point space, we simply write $[M]$ SK, $[M]_{\Omega}$, etc., for classes in the respective groups.

LEMMA (1.5): For any space X we have in $S K_{A}(X)$ and $S R_{\%}^{\circ}(X)$:
i) $\left[s^{1}, f\right]=0$ for any $f: s^{1} \rightarrow x$.
ii) if M fibxes over $S^{\text {a }}$ with typical fibre F and $£: M \longrightarrow X$ then $[M, E]=\left[S^{n}\right][F, f \mid F]$ (xecall that $S K_{*}(X)$ is an $S K_{\text {t }}$-module).
iii) If M fibres over $P_{n} \mathbb{C}$ with typical fibre F and $f: M \longrightarrow X$ then $[\mathrm{M}, \mathrm{f}]=\left[\mathrm{P}_{\mathrm{r}} \mathrm{C}\right][\mathrm{F}, \mathrm{f} \mid \mathrm{F}]$.
iv) In the non-oriented case iii) also holds with $P_{n} \mathbb{C}$ replaced by P_{n}.

Proof: We prove the orientable case; in the non-orientable case the proofs are the same.
i) Let $N=-\mathrm{N}^{\dagger}=\mathrm{I}+\mathrm{I}$, where $\mathrm{I}=[0,1]$ is the unit interval. We can paste N to $-\mathbb{N}^{\text {' }}$ in two ways to obtain either s^{1} or $s^{1}+s^{1}$;

$0(2)-\mathrm{N}^{2}$
$-2=(2) \mathrm{N}$
Hence $\left[s^{1}\right]=2\left[s^{1}\right]$, so $\left[s^{1}\right]=0$. This cutting and pasting can clearly also be done in any space X.
ii) We can write $s^{n}=D^{n} \cup-D^{n}$, pasted along the boundary s^{n-1}. Since a fibxation over the disc D^{n} is trivial, we have $M=\left(D^{n} \times F\right) \cup-\left(D^{n} \times f\right)$, If $f: M \rightarrow X$ is any map, then restricted to each piece $D^{n} \times F, f$ is homotopic to $\pm X f \mid F$. On the other hand $\left\{S^{n} \times F, \pi \times f \mid F\right\}$ is also of the form $\left(\left(D^{n} \times F\right) U-\left(D^{n} \times F\right), * \times f \mid F\right)$, so $[M, E]=\left[S^{n} \times F, * \times f \mid F\right]=\left[S^{n}\right][F, f \mid F]$.
iii) We prove ifi) by iaduction on n; for $n=0$ it is trivial. Suppose M fibres over $p_{n} G$ with fibre F. We can write $P_{n} C$ as

$$
P_{n} c=D^{2 n} U-N^{2 n}
$$

where $-N^{20}$ is diffeomorphic to the normal disc bundle of $P_{n-1} C$ in $P_{n} C$. Let

$$
\begin{aligned}
& M_{0}=m D^{2 n}+N \times F=D^{2 n} \times F+N \times F \\
& M_{1}=M \mid N+D^{2 n} \times F .
\end{aligned}
$$

If $f: M \longrightarrow X$ is a map, we define maps of M_{0} and M_{1} to X by taking the restriction of f on $M \mid D^{2 n}$ and $M \mid N$ and taking $* X f \mid F$ on $N X F$ and
$\mathrm{D}^{2 \mathrm{n}} \times \mathrm{F}$. On the boundaries $\mathrm{s}^{\text {th-1 }} \times \mathrm{F}$ of these pieces all these maps are homotopic to $\# X f \mid F$, so we catt paste M_{0} to M_{1} in two ways in X to obtain

$$
\begin{aligned}
& \left(M_{0} U_{\oplus}-M_{1}, f_{1}\right)=(M, G)+\left(-P_{n} c \times F, * \times f \mid F\right), \\
& \left(M_{0} U_{\varphi}-M_{1}, f_{2}\right)=(E, g)+\left(S^{2 n} \times F, * \times f \mid F\right)
\end{aligned}
$$

In the second case we have pasted the first part of M_{0} to the second part of M_{1} and vice versa. E is a fibration over the double $\mathcal{E N}=\mathrm{M}_{\mathrm{id}}-\mathrm{N}$ of N with fibre F, and g is a map with $g|F=f| F$. However, \mathbb{N} fibres over $\mathrm{P}_{\mathrm{n}-\mathrm{L}} \mathrm{C}$ with fibre F^{\prime}, where F^{\prime} fibres over S^{2} with fibre F . By part in) we have $\left[F^{\prime}, g \mid F^{\prime}\right]=\left[S^{2}\right][F, g \mid F]=\left[S^{2}\right][F, f \mid F]$, so by induction hypothesis $[E, g]=\left[P_{n-1} C\right]\left[F^{\prime}, g \mid F^{t}\right]=\left[P_{n-1} \mathbb{C}\right]\left[S^{2}\right][F, f \mid F]$. The above cutting and pasting thus shows

$$
[M, f]+\left[-P_{n} C\right][F, f \mid F]=\left[p_{n-1} c\right]\left[S^{2}\right][F, f \mid F]+\left[S^{2 n}\right][F, f \mid F]
$$

That is,

$$
[M, f]=\left(\left[P_{n-1} \mathbf{c}\right]\left[s^{2}\right]+\left[s^{2 n}\right]-\left[-P_{n} \mathbf{c}\right]\right)[P, f \mid F]
$$

It hence only remains to prove that

$$
\left[P_{n} \mathbb{C}\right]=\left[P_{n-1} \mathbb{C}\right]\left[s^{2}\right]+\left[s^{2 \mathfrak{n}}\right]-\left[-P_{n} \boldsymbol{E}\right]
$$

but this follows by taking $F= \pm$ in the above. The proof of iv) is completely analogous to iii).
Q.E.D.

LEMMA (1.6): Suppose the singuzar manifold (M^{\prime}, f^{\prime}) in X results from (M, f) by surgery of type ($k+1, n-k$) in X. Then in $S K_{n}(x)$ (resp. $S K_{n}^{0}(X)$)

$$
[M, f]+\left[s^{n}, *\right]=\left[M^{\prime}, f^{\prime}\right]+\left[s^{k} \times s^{n-1}, *\right]
$$

Proof: We must look closely st the surgery and its trace. Let

$$
i: s^{k} \times D^{n-1} \longrightarrow M
$$

be the embedding on which surgery was done. Then

$$
M^{\prime}=\left(M-\left\langle s^{k} \times D^{n-k}\right\rangle\right) \cup-\left\langle 0^{k+1} \times s^{n-k-1}\right)
$$

where " U " is the obvious identification of boundaries $s^{k} \times s^{n-k-I}$. The trace τ of the surgery can be constructed as follows.

Recall that

$$
s^{n}=\left(s^{k} \times 0^{n-k}\right) U-\left(D^{k+1} \times s^{n-k-1}\right)
$$

pasted by the obvious identification of boundaries (think of S^{n} as $\left.3\left(0^{k+1} \times y^{n-k}\right):\right)$. T is the manifold obtained by taking the disjoint union of $M \times[0, L]$ and $D^{k+1} \times D^{n-k}$ and then identifying $S^{k} \times D^{n-k}=\left(\mathrm{a}^{n}\left(S^{k} \times \mathrm{D}^{n-k}\right), 1\right)(M \times[0,1]$ with $s^{k} \times D^{n-k} C s^{n}=\partial\left(D^{k+1} \times D^{n-k}\right)$, and then smoothing corners.

T

The boundary of T is clearly $\partial 0=M+\left(-M^{\prime}\right)$. The fact that we did surgery in X means by definition that we have a continuous map

$$
g=T \longrightarrow X
$$

with $\mathrm{g} \mid \mathrm{M}=\mathrm{f}$ and $\mathrm{g} \mid \mathrm{H}^{\prime}=\mathrm{f}^{\prime}$.
Now

$$
\begin{align*}
& M+S^{n}=\left(M-\left(S^{k} \times D^{n-k}\right)\right) U-\left(S^{k} \times D^{n-k}\right)+\left(S^{k} \times D^{n-k}\right) U-\left(D^{k+1} \times s^{n-k-1}\right\rangle \\
& \left.M^{+}+S^{k} \times D^{n-k}=\left(M-S^{k} \times D^{n-1}\right)\right) \cup-\left(D^{k+1} \times S^{n-k-1}\right)+\left\langle S^{k} \times D^{n-i}\right) U-\left(S^{k} \times D^{n-k}\right),
\end{align*}
$$

always with the obvious identification of boundaries, so $M^{\prime}+S^{k} \times D^{\text {d-k }}$ results by cutting and pasting $y+s^{n}$. But we must cut and paste in X. for this, consider $S^{k} \times D^{n-k}$ and $D^{2+1} \times s^{r \times k-1}$ as subsets of $\partial\left(D^{k+1} \times D^{n-k}\right)\left(D^{k+1} \times D^{n-k}\right.$ (T. Then we have maps into x of all the pieces on the right hand side of A) by restricting che map g. The cutting and pastiag is compatible with these maps and the resultiog maps of M and M^{\prime} into X are the ones we wart. The resulting maps of s^{x} and $5^{k} \times 5^{n-k}$ into x factor over $g \mid D^{k+1} \times D^{n-k}: D^{k+1} \times D^{n-k} \rightarrow x$, and are hence both homotopic to the constant map. This coupletes the proof of the lenma.

As an application of this lemma note that $S^{k+1} \times s^{n-k-1}$ results from s^{n} by surgery of type $(k+1, n-k)$, since

$$
\begin{aligned}
s^{k+1} \times s^{\mathrm{a}-\mathrm{k}-1} & =\left(0^{\mathrm{k}+1} \times s^{\mathrm{n}-\mathrm{k}-1}\right) \mathrm{U}-\left(\mathrm{D}^{\mathrm{k}+1} \times s^{\mathrm{n}-\mathrm{k}-\frac{1}{2}}\right) \\
& =\left(s^{\mathrm{n}}-s^{k} \times \mathrm{D}^{\mathrm{n}-\mathrm{k}}\right) \mathrm{U}-\left(0^{\mathrm{k}+1} \times \mathrm{s}^{\mathrm{n}-\mathrm{k}-1}\right)
\end{aligned}
$$

Thus the lemana gives

$$
\left[s^{n}, *\right]+\left[s^{n}, *\right]=\left[s^{k+1} \times s^{n-k-1}, *\right]+\left[s^{k} \times s^{n-k}, *\right] .
$$

Putting $k=0$ (altexnatively, by Lema (1.5) i) and ii)) we have
$\left[s^{1} \times s^{a-1}, *\right]=0$, and a simple induction now shows

COROLLARY (1.7): $\mathrm{In}_{\mathrm{SK}_{*}(\mathrm{X})}$:

$$
\left[s^{k} \times s^{n-k}, *\right]=\left\{\begin{aligned}
2\left[s^{n}, t\right], & k
\end{aligned} \text { even } \quad \begin{array}{rl}
0, k & \text { odd } .
\end{array}\right.
$$

COROLLARY (I.8): Let ($Y, 8$) be bordism in X between the singular manifolds $\left\langle M_{1}, f_{1}\right\rangle$ and $\left(M_{2}, F_{2}\right)$. Then in $S K_{\hbar}(X)$:

$$
\left[M_{1}, f_{1}\right]=\left[M_{2}, f_{2}\right]-\left(e(Y)-e\left(M_{1}\right)\right)\left[S^{n}, \star\right] .
$$

Proof: First suppose Y is an elementary bordism, that is the trace of a surgery of type ($k+1, \mathrm{n}-\mathrm{k}$) say. Then by Lema (1.6) and Corollary (1.7)

$$
\left[M_{1}, f_{1}\right]=\left[M_{2}, f_{2}\right]+(-1)^{k_{[}}\left[s^{n}, *\right],
$$

so it suffices to prove that $e(Y)-e\left(M_{1}\right)=(-1)^{k+1}$. But Y is obtained by pasting $D^{k+1} \times D^{n-k}$ to $M_{1} \times I$ along submanifolds $s^{k} \times D^{a-k}$ of $\partial\left(D^{k+I} \times D^{n-k}\right)$ and $\partial\left(m_{1} \times I\right)$ and then smoothing the result, so

$$
\begin{aligned}
e(Y) & =e\left(m_{1} \times I\right)+e\left(D^{k+1} \times D^{n-k}\right)-e\left(S^{k} \times D^{n-k}\right) \\
& =e\left(m_{1}\right)+(-1)^{k+1}
\end{aligned}
$$

proving this case.
In the general case we can split Y up into a sequence of elementary bordisms and the corollary then follows easily from the case just proved and the additivity property of euler characteristic.

Theorem (1.1) is now easily proved. Namely, the kernel I_{n} of $S K_{n}(X) \rightarrow \overline{S K}_{n}(X)$ is clearly generated by all classes $[M, f]$ such that (M, f) bougds in X. By Corollaxy (1.8) such an $[M, f]$ is a multiple of $\left[s^{a}, t\right]$, so I_{n} is generated by $\left[S^{n}, \star\right]$. If n is odd, say $n=2 k+1$, then S^{n} fibres over $P_{k} L^{2}$ with fibre S^{I}, so by Lemma (1.5), iii) and i), it follows that $\left[S^{n}, *\right]=0$. If n is even the fact that $e\left(S^{n}\right)=2$ shows that $\left[S^{I I}, *\right]$ has infinite order in $S K_{\star}(X)$, so $I_{n} \cong \mathbf{X}$. The same arguments all hold in the nonoriented case, so it only remains to prove the claim on when the sequence of Theorem (1.1) splits.

Assume n is even. In the oriented case the map $(e-\tau) / 2: S_{n}(X) \longrightarrow$ $x \simeq I_{n}$ is a retraction of $I_{n} \longrightarrow \mathrm{SK}_{\mathrm{n}}(\mathrm{x})$ which splits the sequence

$$
0 \rightarrow r_{n} \rightarrow S x_{n}(x) \rightarrow \overline{S K}_{n}(x) \rightarrow 0
$$

In the non-oriented case S^{n} and $2 P_{n}$ both bound, so they are in the kernel I_{B} of $\mathrm{SK}_{\mathrm{n}}^{\mathrm{O}}(\mathrm{X}) \rightarrow \overline{\mathrm{SK}}_{\mathrm{n}}^{0}(\mathrm{X})$. But eulex characteristic classifies the elements of I_{n} and $e\left(S^{n}\right)=2=e\left(2 \mathrm{P}_{\mathrm{n}} \mathrm{m}\right)$, so $\left[S^{n}, \star\right]=2\left[\mathrm{R}_{\mathrm{n}} \mathrm{m}^{*} *\right]$ in $\mathrm{SK}_{\mathrm{n}}^{0}(\mathrm{X})$. Thus the generator of I_{n} is not indivisible in $\mathrm{SK}_{\mathrm{n}}{ }^{0}(\mathrm{X})$, so the sequence

$$
0 \rightarrow I_{n} \rightarrow S K_{n}^{0}(X) \rightarrow \overline{S K}_{n}^{0}(X) \rightarrow 0
$$

does not split. The proof of Theorem (1.1) is complete.

Fibrations over s^{1}.

Let N be a closed manifold and $\varphi: N \rightarrow N$ a diffeomorphism.

Definition: N is the manifold obtained from $N x$ by identifying the ends $N \times\{0\}$ and $N \times\{1\}$ via φ; that is $(x, 1)$ is identified with ($\varphi(x), 0)$ for each $x \in N$. ${ }_{\phi}$ is called the mapping torus of φ. The projection $N \times I \longrightarrow I$ induces a fibration

$$
\mathrm{N}_{\varphi} \rightarrow \mathrm{s}^{1}
$$

with fibre N. Conversely any fibration over S^{1} with fibre N is clearly of this form for suitable φ. N_{φ} is orientable if and only if N is orientable and φ orientation preserving. The following leman holds in the orientable and in the now-orientable category. We formulate the orientable case.

LEMMA (1.9): If the singular manifold (M^{+}, f^{\prime}) resules from (M, f) by cutting and pasting along N in X, say $M=M_{1} U_{\varphi}-M_{2}, M^{\prime}=M_{1} U_{\psi}-M_{2}$, where $\varphi, \frac{f}{f}: \partial M_{1}=\mathrm{N} \rightarrow \partial M_{2}$ are diffeomorphisms, then

$$
[M, f]_{\Omega}=\left[M^{\prime}, f^{\prime}\right]_{\Omega}+\left[N_{\psi \varphi}-1, g\right]_{\Omega}
$$

in $\Omega_{\pi_{k}}(X)$ for suitable $g: N_{40}-1 \longrightarrow X$.

Proof: A bordism is constructed as follows. Let Y be the union of $M_{1} \times[0,1]$ and $M_{2} \times[0,1]$ with the following identifications: for $x \in N$ identify $(x, t) \in \partial M_{2} \times\left[0, \frac{1}{3}\right]$ with $\quad(\varphi(x), t) \in \partial M_{2} \times\left[0, \frac{1}{3}\right]$ and $(x, t) \in \partial M_{1} \times\left[\frac{2}{3}, 1\right] \quad$ with $\quad(\varphi(x), t) \in \partial M_{2} \times\left[\frac{2}{3}, 1\right]$.

$\overline{0} \quad 1 / 3 \quad 2 / 3-1$

After smoothing it is easily seen that $\partial Y=M-N M_{\psi^{4}}^{-1}-M^{\prime}$, so Y is the required bordism. Since we are doing cutring and pasting in x we have homotopies $f\left|M_{1} \cong f^{1}\right| M_{1}$ and $f\left|M_{2} \cong f^{t}\right| M_{2}$ which can clearly be used to construct

lemme is proved.

To prove Theorem (1.2) note that $\operatorname{Ker}\left(\Omega_{*}(X) \longrightarrow \overline{\mathrm{SK}}_{\star}(X)\right)$ is generated by classes of the form

$$
[M, f]_{\Omega}-\left[M^{\prime}, f^{x}\right]_{\Omega}
$$

where [M^{\prime}, f '] results from $[M, f]$ by cutting and pasting in X, so by the above lenma

$$
\operatorname{Ker}\left(\Omega_{\star}(X) \longrightarrow \overline{S K}_{\star}(X)\right) \subset F_{\hbar}(X) .
$$

The reverse inclusion is an imediate consequence of lempa (1.5) i) and ii), so Theorem (1.2) is proved in the orientable case. The noo-orientable case is the same proof.

Before we prove Theorem (1.3) we need a lemaz:

LEMMA (L.10): Suppose $M_{i}=\left\langle N_{i}\right)_{\varphi_{i}}$ for $i=1, \ldots, k$, with each N_{i} orientable and each φ_{i} orientation reversing. Then there exists orientable N and orientation reversiag $\varphi: \mathrm{N} \rightarrow \mathrm{N}$ with

$$
M_{l} \times \ldots \times M_{k}=N_{\varphi} .
$$

Furthermore if $k \geq 2$ then N itself fibres over S^{1}.

Proof: The general case follows from $k=2$ by a trivial induction, so assume $k=2$. Let $p_{i}: M_{i} \longrightarrow s^{1}(i=1,2)$ be the projections. Then the fibration

$$
\begin{aligned}
& P: M_{1} \times M_{2} \rightarrow s^{1} \\
&(x, y) \longrightarrow p_{1}(x) p_{2}(y)^{-1}
\end{aligned}
$$

has typical fibre

$$
N=p^{-1}(I)=\left\{(x, y) \in M_{1} \times M_{2} \mid p_{1}(x)=p_{2}(y)\right\}
$$

There is a fibration

$$
\begin{aligned}
q: & N \longrightarrow s^{1} \\
(x, y) & \mapsto p_{1}(x)
\end{aligned}
$$

with typical fibre

$$
q^{-1}(1)=\left\{(x, y) \in M_{1} \times M_{2} \mid p_{1}(x)=p_{2}(y)=1\right\}=N_{1} \times N_{2}
$$

and one easily checks that this fibration is given by

$$
\mathrm{N} \cong\left\langle\mathrm{~N}_{1} \times \mathrm{N}_{2}\right\rangle_{\varphi_{1}} \times \varphi_{2} .
$$

Since φ_{1} and φ_{2} both reverse orientations, $\varphi_{1} \times \varphi_{2}$ preserves it, so N is orientable. But $M_{1} \times M_{2}$ is non-orientable, so $M_{I} \times M_{2}$ mast be of the form \mathbb{N}_{φ} with φ orientation reversing.
Q.E.D.

Recall that to prove the three versions a), b), c) of Theorem (1.3) it only remains to prove

$$
\tau_{n}:=\operatorname{cor}\left(n_{n}\right) C F_{n}
$$

so the first thing to do is describe $T_{\text {s. }}$. We recall C. T. C. Wall's description in $[18]$.

Let M be a closed manifoid. Then one can always find a closed l-codimensional submanifold $W C M$ such that

1) $\mathrm{M}-\mathrm{W}$ is orientable, and
2) no submanifold of W satisfies 1).
C. T. C. Wall proves that if W can be chosen orientable with trivial normal bundle in M then the class $[W]_{\Omega} \in \Omega_{\lambda}$ is a torsion element which only depeads on $[M] \mathcal{H} \in \partial Z_{x^{*}}$ under these conditions he defines $\partial_{3}[M]_{\gamma \mathcal{L}}=[W]_{\Omega^{\prime}}$ so ∂_{3} is a homomorphism from a subgroup of γ_{*} to $T_{*}=\operatorname{Tors}\left(\Pi_{*}\right)_{*}$

Example (1.11): Let $M=N$ with orientable and φ orientation reversing. Then clearly $\partial_{3}[M]=[N]_{\Omega}$.

Now let $P(m, n)$ be the quotient manifold of the free involution $(x, z) \longrightarrow(-x, \bar{z})$ on $S^{m} \times P_{n} C$ (the "Dold manifold") and $a=p(m, n) \longrightarrow p(m, n)$ the involution induced by the map $(x, z) r \longrightarrow\left(x^{\prime}, z\right)$ on $S^{m} \times P_{n} c$, where $x \mapsto x^{\prime}$ is reflection in an equator of $s^{\text {min }}$. Let

$$
Q(m, n)=P(m, n){ }_{a} .
$$

Remark: $P(m, n)$ is orientable $\Longrightarrow \quad \mathrm{m}+\mathrm{n}$ is odd,
\approx is oxientation reversing $\longleftrightarrow m$ is odd.

If a is a natural number write $a=2^{r-1}(2 s+1)$ and define

$$
x_{2 a}=Q(m, n), m=2^{I}-1, n=2^{T} \text { s. }
$$

According to Wall (loc. cit.), the torsion $T_{\star} \subset \Omega_{*}$ is generated as a ring by classes of the form

$$
\partial_{3}\left[x_{2 a_{1}} \times \ldots \times x_{2 a_{k}}\right]
$$

If $k \geq 2$ then by the above remarks, Lema (1.10) and Example (1.11), $\partial_{3}\left[x_{2 a_{1}} \times \ldots x_{2 a_{k}}\right]$ is represented by a manifold which fibres over s^{I}, so $\partial_{3}\left[x_{2 a_{1}} \times \ldots \times x_{2 a_{k}}\right] \in F_{\star}$, as was to be shown. If $k=1$ then by Example (1.11) we have $\partial_{3}\left(X_{2 a}\right)=[P(m, n)]_{Q}$, so we mast show $[P(\pi, n)]_{\Omega} \in F_{*}$, or equivalently (by Theorem (1.2)), $[P(m, n)]=0$ in SK $_{W_{*}}$. The map $S^{m} \times P_{n} C \rightarrow S^{\mathrm{ml}}$ induces a
 fibre s^{1}, where $\mathrm{q}=(\mathrm{m}-\mathrm{L}) / 2=2^{\mathrm{r}-1}-1$. Thus $\mathrm{P}(\mathrm{m}, \mathrm{p})$ fibres over $\mathrm{P}_{\mathrm{q}} \mathbb{C}$ with fibre F which fibres over S^{1}, so by Lemen (1.5) $[P(m, n)]=[P G][F]=0$ in SK_{\star}, and hence certainly in $\overline{\mathrm{SK}}_{*^{*}}$ This completes the proof. Q.E.D.

CHAPTER 2: SK of Fibre Bundies.

Let G be a lie groap. In this chapter we investigate $S K$ for fibre bundies over closed differentiable manifolds with fixed fibre F and structure group G. As in chapter 1 , SK-equivalence for fibre bundles is defined by saying that the fibre bunde $E U_{\varphi} E^{\prime}$ is obtained from $E U_{U} E^{\prime}$ by cutting and pasting if E and E^{\prime} axe fibre bundles with fibre F and structure group G over compact manifolds M and M^{\prime} respectively and $\varphi, \psi: E\left|\partial M \rightarrow E^{\prime}\right| \partial M^{\prime}$ are bundle isomorphistns which induce diffeonorphisms $\partial \mathrm{m} \longrightarrow \partial \mathrm{M}^{\prime}$ in the bases. SK-groups for fibre bundles can then be defined in the obvious way. By the homotopy classification of fibre bundies it is cleax that these groups are SK_{f} (BG) in the oriented case and $5 K_{\pi}^{\circ}(B G)$ in the non-oriented case.

Remark: If the fibre F is a smooth manifold one can consider SK of smooth fibre bundles. This makes to difference for (as is well known) any cortinuous fibre bundle admits a smooth structure, unique up to bundle isomorphism.
rinterpxering $5 K_{*}$ (BG) as the SK-group for fibre bundles with stracture group G, the augmentation

$$
\varepsilon^{B G}: S K_{\hbar}(B G) \longrightarrow S K_{t}=S K_{\hbar}(p t)
$$

is just the map which sends the SK-class of a bundle (E, π, B) to the SK-class [B] of its base manifold, We have the trivial lemma;

LEMMA (2.1): There are natural isomorphisms

$$
\begin{aligned}
& \mathrm{SK}_{\star}(\mathrm{BC}) \cong \mathrm{SK}_{*} \oplus \operatorname{Ker~}^{\mathrm{E}} \varepsilon^{\mathrm{BG}}, \\
& \overline{S K}_{\star}(\mathrm{BC}) \cong \overline{S K}_{*} \oplus \operatorname{Ker}^{\mathrm{BG}} .
\end{aligned}
$$

Proof: The map pt $\rightarrow B C$, which is unique up to homotopy, induces a retraction $S K_{*} \rightarrow \mathrm{SK}_{*}(\mathrm{BG})$ of $\varepsilon^{\mathrm{BC}}$, proving the first isomorphism. Similarly, one has that

$$
\overline{\mathrm{SK}}_{*}(\mathrm{BG}) \cong \overline{\mathrm{SX}}_{*} \oplus \operatorname{Ker} \varepsilon^{B G}
$$

where $\bar{E}^{B G}: \overline{S K}_{\pi}(B G) \longrightarrow \overline{S K}_{*}$ is the augmentation. But Theorem (I, I) implies that Ker $\bar{\varepsilon}^{\mathrm{BG}}=\operatorname{Ker} \varepsilon^{B G}$, so the second isomorphism is also proved.

This lemma can be interpreted as saying that the $5 K$-invariants for bundles split in a natural way into the SK -invariants of the base space, which we already know are euler charactexistic and signature, together with certain bordishin invariants of the whole bunde, given by Ker $\varepsilon^{B G}$. As we are about to state precisely, these latter additional invariants are in most cases torsion, and often actually zero.
THEOREM (2.2): i) If G is a lie group with finitely many components
ii) If G is compact and $H^{*}(B G)$ torsion free, for instance, $G=\left(S^{1}\right)^{n}, U(n), \operatorname{SU}(n), S p(n)$, then $\operatorname{Ker} \varepsilon^{B G}=0 .^{.}$

Remark: The conclusion of part i) above can be formulated: given any bundle (E, π, B) with structure group G, some multiple $m E$ of E is SK-equivalent to the trivial bunde with base manifold mB . If now the fibre F is also a compact manifold, so that the signatures $T(F)$ and $T(E)$ are defined, then it cleariy follows from this that $\operatorname{mT}_{T}(E)=\operatorname{mot}(B \times F)=\operatorname{mr}(B) T(F)$, so $T(E)=T(B)_{T}(F)$. That is, signature is maltiplicative for E. Atiyah [2] has given an example of non-multiplicativity of signature, so theorem (2.2) does not generalize to
arbitrary 6 . He will see another example of this later, but first to the proof of (2.2).

By Lemma (2.i) it is sufficient to prove that

$$
\bar{\varepsilon}^{\mathrm{BG}}: \overline{\mathrm{SK}}_{*}(\mathrm{BC}) \longrightarrow \overline{\mathrm{SK}}_{\pi}
$$

is a mod-torsion isomorphism (kernel and cokernel are corsion groups) and an iscmorphism if $H^{*}(B G)$ is torsion-free. We shall prove this first for G a torus, then for G compact, and then finally in the generality of the theorem. Because of the eqimorphism $\Omega_{\pi}(X) \longrightarrow \overline{\mathrm{SK}}_{\pi}(X)$, to calculate $\overline{\mathrm{SK}}_{*}(X)$ one need only do cutcing and pasting on a generating set of $\Omega_{*}(X)$. The basicidea of the proof is that in our case such a generating set can be represented by products of projective spaces up to torsion, so Lema (1,5) iiii) gives the resulc.

Let

$$
\mu: \bigcap_{\star}(X) \longrightarrow H_{\star}(X)
$$

be the canonical map given by $\mu[M, f]=f_{j} \sigma$, where σ is the fundamental homology class of M.

THEOREM (2.3): Let X be a CW-complex such that $H_{*}(X)$ has no torsion. Let singular manifolds (M_{i}, f_{i}) in X be given such that $\left\{\mu\left[M_{i}, f_{i}\right]\right\}$ is a generating set of $H_{\lambda}(X)$. Then $\left\{\left[M_{i}, E_{i}\right]\right\}$ is a generating set of $\Omega_{X}(X)$ as an Ω_{n}-module.

Proof: See Conner and Floyd [10], §18, p. 49. In fact, Conner and Floyd prove more, namely that if X is a finite CW-complex then the above holds with
"generating set" replaced by "base" each time. The finiteness of X is only used in proving the independence of the base $\left\{\left[M_{i}, f_{i}\right]\right\}$, so it is not needed for our formulation.

An easy application of this theorem is the following lema, whose proof we leave to the reader. Let $\mathrm{T}_{\mathrm{x}}: \mathrm{P}_{\mathrm{K}} \mathrm{C} \longrightarrow \mathrm{BS}$ be the classifying map for the canonicat line bundle over $P_{k} C$.
 $\Omega_{*}\left(B\left(S^{1}\right)^{n}\right)$ as an Ω_{*} module (recall that $\left.B\left(S^{1}\right)^{n}=\left(B S^{1}\right)^{n}\right)$. In fact it is an at-base, but we do not need this.

It follows that $\overline{S K}_{*}\left(B\left(S^{1}\right)^{0}\right)$ is generated as an $\overline{S K}_{A}$-module by the elements $\left[p_{i_{1}} \in \ldots \ldots \times p_{i_{n}} \mathbf{c}, \eta_{i_{1}} \times \ldots \times \eta_{i_{n}}\right]$, so if G is a torus, Theorem (2.2) now follows by Lemma (1.5) iii).

Now let G be any compact Lie group and T C G its maximal torus. The projection $B T \longrightarrow$ BG induces a map

$$
\rho: \overline{\mathrm{SK}}_{\star}(\mathrm{BX}) \rightarrow \overline{\mathrm{SK}}_{\star}(\mathrm{BG})
$$

and the composition

$$
\overline{\mathrm{SK}}_{*}(\mathrm{BT}) \xrightarrow{\mathrm{e}} \overline{\mathrm{SK}}_{\#}(\mathrm{BG}) \xrightarrow{\varepsilon^{\mathrm{BG}}} \overline{\mathrm{SK}}_{\star}
$$

is just $\varepsilon^{8 T}$, which we already know to be an isomorphism. Hence to show that $\varepsilon^{B C}$ is an isomorphism or mod-torsion isomorphism it suffices to show that ρ is surjective or mod-torsion surjective respectively. By a result of Borel [4] the map

$$
\mathrm{H}^{*}(\mathrm{BG}) \rightarrow \mathrm{H}^{*}(\mathrm{BI})
$$

is mod-torsion injective, and even injective for $H^{*}(B G)$ torsion-free. Hence

$$
H_{ \pm}(B T) \longrightarrow H_{+}(B G)
$$

is mod-korsion surjective, and surjective if H^{*} (BG) is torsion-free, so all we need is the following leama:
 induced map $H_{A}(X) \rightarrow H_{A}(Y)$ is mod-torsion surjective, then so is $\Omega_{\hbar}(X) \rightarrow \Omega_{*}(Y)$ and hence also $\overline{S K}_{t}(X) \longrightarrow \overline{S K}_{A}(Y)$. If $H_{t}(X)$ has no odd torsion and $H_{夫}(X) \longrightarrow H_{*}(Y)$ is surjective, then so is $\Pi_{\lambda}(X) \longrightarrow \Omega_{N}(Y)$, and hence also $\overline{S K}_{\pi}(X) \longrightarrow \overline{S K}_{ \pm}(Y)$.

Proof: We need the bordism spectral sequence (see for instance Conner and Floyd [10] for details) so we recall the essentials. For a cW-complex x the E^{2}-term is

$$
E_{p, q}^{2}(x)=H_{p}\left(x ; \Omega_{q}\right)
$$

and the E^{∞}-tem is

$$
E_{p, q}^{\infty}(X)=J_{p, q} / J_{p \sim 1, q+1}
$$

where

$$
\circ \subset J_{0, n} \subset \ldots C_{J_{n, 0}}=D_{n}(x)
$$

is the skeleton filtration of $\Omega_{n}(x)$, that is

$$
J_{p, q}=\operatorname{lm}_{p}\left(\Omega_{p+q}\left(x^{p}\right) \rightarrow \Omega_{p+q}(x)\right)
$$

Furthermore, the bordisal spectral sequence is trivial modulo odd torsion,
It follows that a map $f: X \rightarrow Y$ which is mod-torsion surjective in homology, and hence for the E^{2}-term, stays mod-torsion surjective up to $\mathbb{E}^{\infty \boldsymbol{0}}$, and hence also for Ω_{N}, proving the first statement of the lemma.

Now suppose $H_{A}(X)$ has no odd torsion and $H_{A}(X) \rightarrow H_{A}(Y)$ is surjective. Then $E^{2}(X)$ has no odd torsion, so by triviality modnlo odd torsion of the spectral sequence, the differential $d^{2}(X): E_{p, q}^{2}(X) \longrightarrow \varepsilon_{p+2, q-1}^{2}(X)$ is trivial. Also $\mathrm{E}^{2}(\mathrm{X}) \rightarrow \mathrm{E}^{2}(\mathrm{Y})$ is surjective, so $\mathrm{d}^{2}(\mathrm{Y})$ is also trivial. Hence $E^{2}(X)=E^{3}(X), E^{2}(Y)=E^{3}(Y)$, and repeating the argunent we eventually get that both spectral sequences are trivial and $E^{\infty}(X) \longrightarrow E^{m o}(Y)$ is surjective. Hence $\Pi_{\star}(X) \longrightarrow \Pi_{\star}(Y)$ is surjective, as was to be proved.
Q.E.D.

Theorem (2.2) is thus proved for compact G. If G is connected but not necessarily compact, choose a maximal connected compact subgroup \& CG. Since the structure group of any bundle with structure group G can be reduced to H ,

$$
\overline{S K}_{*}(B H) \rightarrow \overline{S K}_{*}(B G)
$$

is surjective. Since the composition with $\varepsilon^{B G}: \overline{S K}_{\star}(B G) \rightarrow \overline{S K}_{*}$ is $\varepsilon^{B H}$, which we know to be a mod-torsion isomorphism, $\varepsilon^{B G}$ is itself a mod-torsion isomorphism,

Finally if G has finitely many, say n, connected components and G_{0} is the component of unity, then $B G_{0} \longrightarrow B G$ is an n-fold coverigg. Hemce

$$
\mathrm{H}_{4}\left(\mathrm{BG}_{0}\right) \rightarrow \mathrm{H}_{2}\langle\mathrm{BC}\rangle
$$

is mod-torsion suxjective (the n-fold of any homology class in B (clearly comes from BG_{0}). By Lemma (2.5)

$$
\overline{S K}_{\star}\left(\mathrm{BG}_{0}\right) \longrightarrow \overline{\mathrm{SK}}_{\star}(\mathrm{BG})
$$

is mod-torsion surjective, so again, since the composition with $\varepsilon^{B G}$ is $\varepsilon^{B G} 0$, which we know is a mod-torsion isomoxphism, $\varepsilon^{B G}$ is a mod-torsion isomorphism.

We aow shall calculate $\mathrm{SK}_{,}$(BG) in some of the cases not covered by the previous theorem.

THEOREM (2.6): For $G=\underset{p}{ } \boldsymbol{T}^{t} \quad P$ an odd prime, and for $G=\boldsymbol{Z}_{2}$, $\operatorname{Ker} E^{B G}=0$.

Proof: For any X we have the short exact sequence of Theorem (1.2):

$$
0 \rightarrow F_{*}(X) \longrightarrow \Phi_{*}(X) \longrightarrow \overline{S X}_{*}(X) \longrightarrow 0
$$

Denote $\operatorname{Ker}\left(F_{\star}(X) \rightarrow F_{n}(p t)\right)$ by $F_{*}(X)$. The above sequence surjects at all three places onto the short exact sequence

$$
0 \longrightarrow{\mathrm{~F}_{土}}^{\longrightarrow} \Omega_{\lambda} \longrightarrow \overline{\mathrm{SK}}_{\lambda_{\lambda}} \longrightarrow 0
$$

so the kexael sequence

$$
\begin{equation*}
0 \rightarrow F_{\star}(x) \longrightarrow \tilde{n}_{\star}(x) \longrightarrow \operatorname{ker}^{B G} \longrightarrow 0 \tag{2.7}
\end{equation*}
$$

is also exact. Ir particuiar Ker $\varepsilon^{B G}$ is the image of $\mathbb{\Pi}_{\star}(X) \subset \Omega_{\star}(X)$.

$$
\text { We first consider the case } X=B G \text { with } G=\boldsymbol{Z}_{\varepsilon} \text { (} p \text { an odd prime), }
$$ where we consider G as a subgroup of the circle group $P^{c} S^{1} . \quad S^{1}$ acts freely on the unit sphere $s^{2 n-1}$ in c^{n} by

$$
t\left(z_{1}, \ldots, z_{n}\right)=\left(t z_{1}, \ldots, t z_{n}\right),(|t|=1) .
$$

This gives a free action of G on $s^{2 n-1}$, inducing a singular manifold $\left(S^{2 \mathrm{n}-1} / \mathrm{G}, \mathrm{f}\right)$
in $8 G$. By Conner and Floyd [10], p. 99, the elements $\left[S^{2 n-1} / G, f\right]$ generate $\Pi_{x}(B G)$ as an Ω_{x}-module. They hence also generate $K e r \varepsilon^{B G}$ as an $\overline{S K}_{*}$-wodule. But $s^{2 n-1} / G$ fibres over $s^{2 n-1} / S^{2}=p_{\mathrm{ni-1}} \mathbb{C}$ with fibre $s^{1} / \mathrm{G} \cong \mathrm{s}^{1}$, so by Lemal (1.5), $\left[S^{2 n-1} / G, f\right]$ is zero in $S_{k}(B G)$, and hence certainly in Ker $\varepsilon^{B G}$. The case $G=\mathbf{z}_{2}$ is rather mare difficult, and we mast first recall some facts on free involutions and bordism of PR_{2}.

$$
\text { Let } \pi: \tilde{M} \rightarrow M \text { be a principal } \mathbb{X}_{2} \text {-bundle, } T: \tilde{M} \rightarrow \tilde{M} \text { the covering }
$$ tratsformation. Recall that a l-codimensional submanifold W (M is called a characteristic submanifold if $\widetilde{W}=\pi^{-1}(W)$ is the boundary af of a compact submanifold A of \bar{M} satisfying: $A \cup T A=\widetilde{M}$ and $A \cap T A=\widetilde{W} . \quad$ It is easy to see that such a W exists and is uaique up to non-oriented bordism (for instance, by showing that W is a transversal self-intersection of the zero-section of the real line bundle $E \longrightarrow M$ associated with $\mathbb{M} \longrightarrow M$). The characteristic submanifold in fact defines a map

$$
w: \Omega_{n}\left(B \mathbb{Z}_{2}\right) \rightarrow \partial \Omega_{n-1}
$$

By Buzdick [6] (see also Hirzebruch and Jänich [1I]) the restriction

$$
\tilde{n}_{n}\left(z_{2}\right) \rightarrow \partial \mathscr{L}_{n-1}
$$

is an isomorphism whose inverse

$$
i: \partial \chi_{n-1} \rightarrow \tilde{n}_{n}\left(B z_{2}\right)
$$

is given as follows. For $[N] \in J J_{n-1}$ let $E \rightarrow N$ be the line bundle associated with the orientation covering $\tilde{A} \rightarrow N$, and S the sphere bundle of the whitney sum $E \oplus l$ of E with a trivial line bundle. S is oriented and has a free orientation presexving involution given by the antipodal map in the fibres s^{1}. The induced singular manifold $\left[S / Z_{2}, f\right]$ in $\sin _{2}$ represents $i[N]$.

Observe that this geometric description of if compatible with cutting and pasting, so we have an induced map

$$
i^{\prime}: \overline{\mathrm{SK}}_{\mathrm{n}-1}^{0} \longrightarrow \operatorname{Ker} \varepsilon_{\mathrm{n}}^{\mathrm{BZ}}{ }_{2}
$$

By (2.7) above, $\tilde{\Pi}_{n}\left(B z_{2}\right) \longrightarrow$ Ker $\varepsilon_{n} \mathrm{BX}_{2}$ is surjective, so the commotative square

shows that i^{\prime} is surjective. Thus for a even it follows that Ker $\varepsilon_{n}{ }^{\mathrm{n}} \mathrm{Z}_{2}=0$, since $\overline{5 k}_{\mathrm{H}-1}^{0}=0 \quad$ (Theorem (1.3b)).

We can hence assume a is odd. Then by (1.3b) the diagram becomes

where \vec{e} is euler characteristic modulo 2. Since i ' is suxjective, we must only show that it maps $l \in Z_{2}$ onto zero.
 covering $S^{j} \rightarrow P_{j} \not R^{\prime}$. Then for $k=[n / 4]$ and $j=n-4 k=1$ or 3 , we have that

 $1 \in z_{2^{2}}$ on the other hand, $P_{1} \mathbb{R}$, and hence also $P_{2 k} \mathbb{C} \times P_{3} \mathbb{R}^{2}$ fibres over s^{2} for $j=3$ and over S^{1} for $j=1$, so by Lema (1.5) ii) we have that
 the commativity of the diagram it follows that $i^{\prime}(L)=0$, as was to be proved.

To close the discussion of SK of bundies in the oriented case we mention some isolated results in low dimensions. In dimensions 0 and 1 everything is trivial.

THEOREM (2.8): i) If G is a Lie group with G / G_{0} abelian then Kex $\varepsilon_{2}^{\mathrm{BG}}=0$, i.e., $\quad \mathrm{SK}_{2}(\mathrm{BG})=\mathrm{SK}_{2}=\mathbb{Z}$.
ii) If G is comnected then also Ker $\varepsilon_{3}^{\mathrm{BG}}=0$, so $S K_{3}(B G)=S K_{3}=0$.

Proof: i) BG has fundamental group $\pi_{1}(B G)=\pi_{0}(G)=G / G_{0}$, which is hence abelian. We shall in fact show more than required, namely

$$
\overline{S K}_{2}(x)=0
$$

for aty space X with abelian fundamental group.
Let (F_{n}, f) be a singular 2-manifold in X, where F_{n} is the oriented surface of genus n. We can write F_{n} as $F_{n}=F_{n-1}$ 角 ($S^{\prime} \times S^{\prime}$), Let $S^{1}\left(F_{n}\right.$ be the circle along which the connected surn opexation y^{4} was carried out. S^{1} represents the vero homology class in $H_{1}\left(F_{n}\right)$, so $f\left(S^{1}\right)$ represents zero in $H_{1}(X)=\pi_{1}(X)$. Thas $f\left(S^{1}\right)$ is null-homotopic in X and we can do surgery of type (2,1) in X on this cirale, reducing ($\left.F_{n}, f\right)$ to $\left(F_{n-1}+\left\langle S^{l} \times S^{1}\right\rangle, g\right.$) for some g.

In this way one sees that any oriented singular 2 -manifold in X is cow bordant to a sum of singular tori in x, and hence equal to zero in $\overline{S K}_{2}(x)$ by Theorem (1.2). Thus i) is proved.
ii) We again prove nore than required, namely

$$
\overline{S K}_{3}(x)=0
$$

for any simply connected X .
Recall that any connected oriented 3 -manifold if is bordane to s^{3}, and can be reduced to S^{3} by surgeries of type (2,2). if (M, f) is a connected singular 3 -manifold in x, then restricted to each solid torus, f is nullbonotopic, so we can do surgery in X to reduce (M, E) to $\left(5^{3}, g\right)$ for some g. By Lentan (1.5) we deduce that $\left\{1, i=0\right.$ in $\overline{S K}_{3}(X)$.

Finally we give an example where $\underbrace{B 6}$ is not an isomorphisn, not even modulo torsion. Let \bar{F} be an orientable surface of gentas ≥ 2. The universal cover of F is contractible so $F=B=(F)$.

THEOREM (2.9): If F is an orientable surface of genas -2 then $\operatorname{Ker} \varepsilon_{2}^{B-1}(F)=\overline{S K}_{2}\left(B_{1}(F)\right) \cong \mathbb{Z}$.

Proof: The bordism spectral sequence shows for any ch-complex X that $\Omega_{2}(X)=H_{2}(X, \mathcal{Z}), \quad$ Since $\quad B_{T}(F)=F$ and $H_{2}(F, Z)=\mathbb{Z}$, we must show that $F_{2}(F)=$ and the theorem then follows by Theorem ($\mathrm{I}, 2$). That is, we must show that any singular torus in F bounds.

Since $S^{1} \times S^{1}$ and F are $k(r, l)$-spaces, the homotopy classes of maps
 Mosher and tangoxa [15 \ddagger, p. 3). But it is we! known that any abelian subgroup of

$$
\mathbb{Z} \notin \mathbb{Z} \quad \overline{\mathrm{F}} \times \mathbb{Z} \quad \therefore:_{1}(\mathrm{~F})
$$

where $\overline{\mathrm{f}}$ is, without loss of generality, surjective. By a change of splitcing of $5^{l} \times s^{1}$ as a product if necessary, and hence a change of base in $\mathbb{Z} \notin \mathbb{Z}$, we can assume that \bar{f} is the projection P_{1}. The corresponding map $S^{1} \times S^{1} \longrightarrow F$ thus splits as

$$
s^{1} \times s^{1} \xrightarrow{P_{1}}=s^{1} \rightarrow p
$$

and hence extends to the solid torus $5^{2} \times D^{2}$.

The above proof in fact shows that for any discrete group G, all of whose abelian subgroups are cyclic, $\ddot{S K}_{2}(B C)=\Omega_{2}(B G)=H_{2}(B G ; Z)$. The finitie groups of this type axe just the groups with periodic cohomlogy (see Cartan-Eilenbety [7]), which all have zero second honology and hence do not yield anything futeresting here.

The Non-orientable Case.

In the non-orientable case, the analog of Lemaa (2,1) of course still holds. The analog of Theorem (2.2) i) is trivial: Kex ε^{x}, being a subgroup of $\overline{\operatorname{Sk}}_{x}^{0}(x)$, is always a torsion group for any connected space X. We hence have:

Triviality (2.10): For any connecred space X

$$
\mathrm{SK}_{\mathrm{n}}^{0}(x)=S K_{\mathrm{n}}^{\mathrm{O}} \oplus 2 \text {-torsion, }
$$

where $S K_{n}^{0}$ is \mathbb{Z}, given by euler characteristic, in even dimensions and zero otherwise.

THEOREM (2.11): The argumentation $\cdot \varepsilon^{g G}: S_{k}^{0}(B C) \longrightarrow S K_{d}^{0}$ is an isomorphism for $G=\left(\mathbf{z}_{2}\right)^{k}, O(k), S O(k),\left(S^{\prime}\right)^{k}, U(k), S(j\langle k), S p(k)$, and products of these groups.

The proof is by showing that one can generate $\mathcal{X}_{\neq}(B G)$ as a \mathcal{X}_{x}-module, and hence $\overline{\mathrm{SK}}_{\mathrm{k}}^{0}(\mathrm{BC})$ as an $\overline{\mathrm{SX}}_{\mathrm{k}}^{0}$-module by singular manifolds (M, f), where M is a product of real and complex profective spaces. Lema (1.5) iii) and iv) then shows $\varepsilon: \widetilde{\mathrm{SK}}_{\star}^{0}$ (AG) $\longrightarrow \overline{\mathrm{SK}}_{\star}^{0}$ is an isomorphism, so the theorem follows by (1.1).

It is convenient to work with vector bundles having O as structure group rather than with singular manifolds in bG. If $\omega=\left(n_{1}, \ldots, r_{k}\right)$ is a tuple of positive integers. Let ξ_{w} be the bundle $\xi_{n_{1}} \times \ldots \times \xi_{n_{k}}$ over

LEMAS (2.12): The following bundles represent a generating set of $\partial Z_{夫}$-module $\partial X_{A}(B G)$:
i) the bundles ξ_{a} for $G=\left(\mathrm{X}_{2}\right)^{\mathrm{k}}$,
ii) the buadles ξ_{w} with $n_{1} \geq \cdots \geq n_{k}$ for $G=O(k)$,
iii) the bundles $\xi_{\mathbb{W}} \oplus \operatorname{det} \xi_{\omega}$ with $n_{1} \geq \cdots \geq n_{k}$ for $G=50(k+1)$.

In cases i) and ii) the generating set is even a base.

Proof: The analogon of Theorem (2.3) holds in the non-orieated case (see for instance Conner and Floyd [10], Theorem 8.3). Hence we need only show that under the canoaical may

$$
\mu: \partial K_{\pi}(B G) \rightarrow H_{*}\left(B G ; \boldsymbol{a}_{2}\right)
$$

the set in question goes over to a generating set or base of $H_{*}\left(B C ; Z_{2}\right)$.
The proof of i) is completely analogous to Lemma (2.4) and therefore also left as an exercise.

For i $^{\text {i }}$) recall that $H^{*}\left(B O(k) ; \mathbb{Z}_{2}\right)$ is the polynomial ring $\mathbf{z}_{2}\left[W_{1}, \ldots, w_{k}\right]$ in the Stiefel-whitney classes. In fact the inclusion $\left(z_{2}\right)^{k}(O(k)$ induces an inclusion $H^{*}\left(B O(k) ; \mathbb{Z}_{2}\right) C H^{*}\left(B\left(\mathbb{Z}_{2}\right)^{k} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}\left[t_{1}, \ldots, t_{k}\right]$ and w_{i} is the $i-t h$ elementary symatric polyromáal in $t_{1}, \ldots, t_{k^{*}}$ For $a=\left(n_{1}, \ldots, n_{k}\right)$ with $n_{1} \geq \cdots \geq n_{k}$ let s_{w} be the smallest symmetric polynomial in the t_{i} containing the monomial ${ }^{t_{i}} \mathrm{I} \ldots t_{k} k$. The s_{W} clearly form a base of $H^{*}\left(B O(k) ; \mathbb{N}_{2}\right)$. On the other hand the homology class represented by the bundle ξ_{ω} is ($\left.f_{\omega}\right)_{*} \sigma_{\omega}$, where $f_{\omega}: p_{\omega} \longrightarrow \operatorname{Bo}(\mathrm{k})$ is the classifying map for $\xi_{d y}$ and σ_{ω} the fundamertal \mathbf{x}_{2} homology class of $P_{\omega^{\prime}}$ A trivial computation shows

$$
\left\langle s_{\omega^{\prime}}\left\langle\mathrm{f}_{\omega}\right)_{\lambda^{*}} \sigma_{\omega}\right\rangle=\left\langle\mathrm{f}_{\omega^{ \pm} \omega^{\prime}}^{ \pm}, \sigma_{\omega}\right\rangle=\left\{\begin{array}{l}
1, \omega=\omega^{\prime} \\
0, \omega \neq \omega^{\prime}
\end{array}\right.
$$

so the set $\left\{\left(f_{\omega}\right)_{\pi} \sigma_{\omega}\right\}$ is the basis of $H_{7}\left(\operatorname{Bo}(k) ; \mathbb{R}_{2}\right)$ dual to $\left\{s_{\omega}\right\}$.
iii) Let γ^{k} be the universal h^{k}-bundle ovar $\operatorname{Bo}(\mathrm{k})$. Then $\gamma^{k} \oplus$ det γ^{k}
is orientable, fence has a classifying map $g: B O(k) \longrightarrow B S O(k+1)$. Now $\mathrm{H}^{*}\left(\mathrm{BSO}(\mathrm{k}+\mathrm{L}) ; \pi_{2}\right)=\mathbb{Z}_{2}\left[\mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{k}+1}\right]$ and

$$
8^{*}: \mathrm{H}^{\star}\left(\mathrm{BSO}(\mathrm{k}+1) ; \mathrm{u}_{2}\right) \longrightarrow \mathrm{H}^{\star}\left(\mathrm{BO}(\mathrm{k}) ; \boldsymbol{x}_{2}\right)
$$

is given by $g^{*}\left(w_{i}\right)=w_{i}+w_{i} w_{i-1}$ For $i \leq k$ and $g^{*}\left(w_{k+1}\right)=w_{1} w_{k}$. Since these elements are algebraically independent, g^{\star} is infective, Thus g_{k} is surjective and case iii) follows from ii). Q.E.D.

Theorem (2.11) is hence proved for $G=\left(a_{2}\right)^{k}, O(k)$, So(k). If Yw is the complex analogon of the bundle $\xi_{d p}$ then Lema (2.12) and its proof carry over to $G=\left\langle S_{i}^{\prime}\right\rangle^{k}, V(k)$ and $S U(k)$ if one replaces \bar{S}_{w} by hew everywhere, Also a proof similar to the proof of i iis) above shows that $\gamma C_{k}(B S p(k))$ has a generating set represented by the bundles $\eta_{w} \oplus \eta_{w^{\prime}}$. This proves (2.1I) for ($\left.S^{\prime}\right)^{k}, \mathrm{U}(\mathrm{k})$, $\mathrm{SU}(\mathrm{k})$ and $\mathrm{Sp}_{\mathrm{p}}(\mathrm{k})$.

Finally if $X_{\dot{\lambda}}\left(B G_{i}\right)$ is generated by singular manifolds $\quad\left(M_{i}, f_{i}\right)$ and $\mathcal{J U}_{*}\left(B G_{2}\right)$ by singular manifolds $\left(N_{i}, g_{i}\right)$, then $X_{k}\left(B\left(G_{1} \times G_{2}\right)\right.$) is generated by the singular manifolds $\left(M_{i} \times N_{j}, f_{i} \times g_{j}\right)$. If the M_{i} and N_{j} are products of projective spaces, then so are the $M_{i} \times N_{j}$. Hence (2.II) also holds for products of the groups listed.

CHAPTER 3: Equivariant SK

In this chapter G always denotes a compact Lie group and G-manifolds are manifolds with smooth G-actions. We are interested in invariants for equivariant cutting and pasting of closed G-manifolds. As usual, the Grothendieck greup of n-dimensional G-manifolds modulo the relations given by cutting and pasting gives a universal such invariant. We denote this group by $\mathrm{sk}_{\mathrm{G}, \mathrm{n}}^{0}$ (respectively $\mathrm{SK}_{\mathrm{G}, \mathrm{n}}^{\mathrm{SO}}$ in the oriented case).

The calculation of equivariant SK-groups is made difficult by the fact that we no longex have Theorem \{1.1). In this chapter we calculate $S K_{G, n}^{0}$ up to 2-torsion. To state and prove the result it is convenient to have the language of "slice types" which we therefore recall briefly. For details see Jänich [12], §ु4.

If H is a closed subgroup of G and V a snooth H-manifold, then $G X_{H} V$ denotes the fibre bundle over G / H with fibre V, associated to the principal H -bundle $\mathrm{G} \longrightarrow \mathrm{G} / \mathrm{H}$. Recall that $\mathrm{G} \mathrm{X}_{\mathrm{H}} \mathrm{V}$ is GXV factored by the equivalence relation: $(g, x) \sim\left(g h, h^{-1} x\right)$ for $h \in H$. With the G-setion induced by Ieft maltiplication $G X_{H} V$ is a G-manifold,

If V is a vector space and the H-action is given by a representation $\sigma: H \longrightarrow G L(V)$ then we also write $G X_{H} \sigma$ for $\& X_{H} V$.

A slice type for G is a conjugacy class in G of pairs $\{H,(\sigma))$, where H is a closed subgroup of G and (σ) an equivalence class of real representations of 6 . The slice type represented by (H, σ) is denoted by $[\kappa, \sigma]$. One checks that $[H, \sigma]=\left[H^{\prime}, \sigma^{\prime}\right]$ if and only if $G X_{H} \sigma$ and $G X_{H}{ }^{\prime} \sigma^{*}$ are isomorphic G-manifolds.

If M is a Gmanifold and $x \in M$, then the slice type at the point x
is $\left[G_{x}, \sigma_{x}\right]$, where σ_{x} is the representation of the isotropy subgroup G_{x} normal to the oxbit through x (the "slice representation"). Slice type determines the local structure of M completely, for the "slice theorem" states (see for instance Jänich [12], p. 3).

THEOREM (slice theorem): There is a G-invariant open neighborhood of x in M which is G-diffeomorphic to $G X_{G_{K}} \sigma_{x}$.

There is a partial order on the set of all slice types for c given by: $[H, \sigma] \leq[\mathrm{U}, \mathrm{T}]$ means $[\mathrm{O}, \tau]$ is a slice type of the G-manifold $G X_{H} \sigma$. A family \mathfrak{F} of slice types for G will be called permissible if it contains with each $[H, \sigma]$ also each $[U, T]$ greater than $[H, \sigma]$, By the slice theorem, the family $\mathcal{F}(M)$ of all slice types of a G-manifold M is a permissible family.

If \mathcal{F} is a permissible Eamily of slice types, a G-manifold of type \mathcal{F} is a G-manifold M all of whose slice types are in \mathcal{F}. That is $\mathcal{F}(M) \subset \mathcal{F}$. Denote by $S K^{\circ}(G, \mathcal{F})$ the $S K$-group resulting from cutting and pasting 6 -manifolds of type \mathfrak{F}.

Examples. If $\mathcal{F}=\left\{\left[[e], \theta_{n}\right]\right\}$ where θ_{n} is the n-dimensional trivial representation, then $S K^{\circ}(\hat{G}, \mathcal{F})=S K_{R}^{0}(B G)$.
 mean $\operatorname{dim}\left(G x_{H} \sigma\right)$, then $S K^{0}(G, f)=S K_{G, n^{0}}^{0}$

If M is a cmanifold and $[H, \sigma]$ a slice type, define

$$
M_{[H, \sigma]}:=\left\{x \in M \mid\left[G_{x}, \sigma_{x}\right\}=[H, \sigma]\right\} .
$$

via the slice theorem $M_{[H, O]} C M$ is given locally by $G x_{H} \sigma_{0} C G X_{H} \sigma$, where
σ_{0} is the trivial component of σ, so $M_{[H, \sigma]}$ is a snooth submanifold of N. clearly $M_{[H, \sigma]}$ is a closed submanifold if $[H, \sigma]$ is a minimal element of $\mathcal{F}(M)$. Note that it aiso follows that any l-codmensional G-invariant submanifold $N(\mathbb{N}$ along which one can cut and paste M intexsects each ${ }_{[H, \sigma]}$ transversally, as G, and beace certainly also H, acts trivially nomal to N .
$M_{[H, \sigma]}$ fibres over $M_{[H, \sigma]}{ }^{G}$ with fibre G / H. By the above couments it follows that e[H, σ], defined by

$$
e_{[H, \sigma]^{(M)}}==e\left(M_{[H, \sigma]} / G\right),
$$

is an SK-invariant. It will turn out that the $e_{[H, \sigma]}$ give all equivariant sk-invariants up to 2-torsion. We first need a further definition.

Let $\pi: E \longrightarrow B$ be a differentiable G-vector-bundle over a differentiable manifold b. het $[H, \sigma]$ be a slice type for G. We say $\pi: E \rightarrow B$ has type $[H, \sigma]$ if just the points of the zerousection of E have slice type $[H, \sigma]$; that is, $E_{[H, \sigma]}$ is the zero-section $B C E$. The typical example of this is the norwal bundle $V\left(M_{[H, \sigma]}\right)$ of $M_{[H, \sigma]}$ in a G-mantfold M.

Equivariant cutting and pasting of G-vector-bundles of type $[\mathrm{H}, \sigma]$ whose bases are closed manifolds leads to an SK-group $\mathrm{SK}^{\mathrm{O}}[\mathrm{H}, \sigma]$.

Now let $\begin{aligned} & \text { 子r } \\ & \text { be an admissible fancilly of slice types for } G \text { and }[H, \sigma] \in \mathcal{F})\end{aligned}$ a minimal element in the partial ordering of \mathcal{F}. Then $\mathcal{F}^{\prime}=\mathcal{F}-\{[H, \sigma]\}$ is also an admissible family and we thave an obvious bomomorphism

$$
\mathrm{i}: \mathrm{SK}^{0}\left(\mathrm{G}, \mathfrak{\zeta}^{\prime}\right) \longrightarrow \mathrm{SK}^{\mathrm{o}}(\mathrm{G}, \mathfrak{F})
$$

Furthermore, if M is a G-manifold of type fin the minimality of $[H, \sigma]$ implies that $M_{[H, \sigma]}$ is closed, so $M \longmapsto v\left(M_{[H, \sigma]}\right)$ defines a homomorphism

$$
\mathrm{n}: \mathrm{SK}^{\circ}(\mathrm{G}, \mathcal{F}) \longrightarrow \mathrm{SK}^{\mathrm{O}}[\mathrm{H}, \sigma] .
$$

THEOREM (3.1): If \mathcal{F} is an admissible family of slice types, $[\mathrm{H}, \mathrm{a}] \in \mathcal{F}$ a minimal element, and $\mathcal{F}^{\prime}=\mathcal{F}-\{[\mathrm{H}, \mathrm{\sigma}]\}$, then the following sequence is split exact.

Proof: We first describe the splitting homomorphism d. Recall that for any manifold X the "double" $\mathscr{E} X$ is defined as $X \cup X$ pasted along the common boundary by the map $i d: \partial x \longrightarrow \partial x$. If E is a vector bundle of type $[H, \sigma]$, define

$$
d([E] \otimes \mathrm{I})=[\mathscr{D E}] \otimes \frac{1}{2},
$$

where $D E$ is the disc bundle of E. Clearly $n o d=i d$.
It follows that n is surjective. Since it is clear that i is injective and $n o i=0$, it only remains to show $\operatorname{Ker}(n)(\operatorname{In}(i)$.

Suppase $n([M])=0$. Let N be a small tubular neighborhood of $M[h, \sigma]$ in M, isomorphic to the normal bundle $\nu\left(M_{[H, \sigma]}\right)$ as a G-manifolit. Since $\mathrm{n}([\mathrm{M}])=0$, certainly $\mathrm{d} \circ \mathrm{n}([\mathrm{M}])=0$, that is $[\mathrm{X} \overline{\mathrm{N}}]=0$. But by cutting and pasting one has

$$
\begin{aligned}
2[\mathrm{M}] & =[\mathcal{Q}(\mathrm{M}-\mathrm{N})]+[\mathscr{N}] \\
& =[\mathcal{D}(\mathrm{M}-\mathrm{N})]
\end{aligned}
$$

in $S^{\circ}{ }^{\circ}(G, \mathcal{F})$, and the right hand side is clearly in Inti).

LEMMA (3.2): Assigaing co a G-vector-bundle $\varepsilon \longrightarrow B$ of type $[H, \sigma]$
the $S \mathrm{~K}-\mathrm{cl}$ ass $[8 / \mathrm{c}]$ defiaes an isomorphism

$$
S R^{0}[E, \sigma] \otimes \pi\left[\frac{1}{2}\right] \rightarrow S K_{p}^{0} \otimes x\left[\frac{1}{2}\right]
$$

where P is the dimersion of the trivial component of σ.

Proof: Write $\sigma=\sigma_{0} \oplus \sigma$, where σ_{0} is the trivial component of σ. The composite map $E \rightarrow B \rightarrow B / G$ identifies E as a fibre bundle over B / G with fibre $G X_{H} \sigma_{1}$ and stmacture group $\Gamma\left(\sigma_{1}\right)=$ Aut $_{G}\left(G x_{H} \sigma_{1}\right)$. Since $\operatorname{dim}(B / G)=\operatorname{dim}\left(\sigma_{0}\right)=p$, we heace have

$$
S K^{\circ}[H, \sigma]=\mathrm{SK}_{\mathrm{p}}^{\circ}\left(\mathrm{B} \mathrm{\Gamma}\left(\sigma_{1}\right)\right)
$$

so the lema follows from (2.10).
Remark: It is not hard to calculate the structuxe group $\Gamma\left(\sigma_{1}\right)$ explicitly. Since H is compact we can assurae $\sigma_{1}: H \longrightarrow O(k)$ is an orthogonal representation, and then

$$
\Gamma\left(\sigma_{1}\right)=N_{\operatorname{cxO}(\mathbf{k})}(\overline{\mathrm{H}}) / \overline{\mathrm{H}},
$$

where $\bar{H}=\left\{\left(h, \sigma_{1}(h)\right) \in G \times O(k) \mid h \in H\right\}$.

Now by Theoxem (1.3) it follows that $\operatorname{SK}^{0}[\mathrm{H}, \mathrm{o}]$ Q $\mathrm{Z}\left[\frac{1}{2}\right]$ is zero if $p=\operatorname{dim}\left(\sigma_{0}\right)$ is odd and is $\mathbb{Z}\left[\frac{1}{2}\right]$, generated by the bundte $g_{\sigma}=P_{p} \times\left(G X_{H} \sigma_{I}\right)$, if p is even. Thus by Theozem (3.1) and a trivial induction, $\operatorname{sk}^{\circ}(G, \mathcal{F}) ~(2)\left[\frac{1}{2}\right]$ is the free $\mathbb{Z}\left[\frac{1}{2}\right]$-module with basis $\left[\left[\Phi_{0 \varepsilon_{\sigma}}\right]\left[[H, \sigma] \in \mathcal{F}\right.\right.$, dim $\left(\sigma_{0}\right)$ even\}.

Conollaz (3,3): The SK-invariants $e_{[H, \sigma]}$ with $[H, \sigma] \in \mathcal{F}$ and dim(σ_{0}) even define an isomorphism

$$
\left(e_{[H, \sigma]}^{\infty i d): \operatorname{SK}^{0}(G, \mathcal{F}) \otimes z\left[\frac{1}{2}\right] \rightarrow \frac{11}{[H, \sigma]} \boldsymbol{x}\left[\frac{1}{2}\right]}\right.
$$

where the suar is over all $[H, \sigma] \in \mathcal{F}^{\prime}$ with $\operatorname{dim}\left(\sigma_{0}\right)$ even.

Proof: Let $\left[H^{1}, \sigma^{1}\right],\left[H^{2}, \sigma^{2}\right] \ldots$ be those $[H, \sigma]$ in \mathcal{F} with even dimensional trivial component, with indexing so chosen that $\left[H^{i}, \sigma^{i}\right] \leq\left[H^{j}, \sigma^{j}\right]$ implies $i \leq j$. ordex the basis of $\operatorname{Sk}^{\circ}(G, \mathcal{F}) \mathbf{x}\left[\frac{1}{2}\right]$ mentioned above correspond ingly, Now

$$
\left.e_{\left[H^{i}, \sigma^{i}\right]^{(\mathcal{M}} \mathrm{DE}}^{\sigma^{i}}\right)= \begin{cases}2 & \text { if } i=j \\ 0 & \text { if } i<j\end{cases}
$$

That is, the matrix of the map $\left(e_{[H, \sigma]} \otimes i d\right)$ with respect to the above basis is triangular with invertible diagonal entries, so the map is an isomorphism. Q.E.D.

The above corollary can also be formulated that the map

$$
E=\left(e_{[\mathrm{H}, \sigma]}\right): \mathrm{SK}^{\mathrm{O}}(\mathrm{G}, \vec{\xi}) \rightarrow \frac{11}{[\mathrm{H}, \sigma]} \pi
$$

(as usual $[H, C] \in \mathcal{F}^{\prime}$ with dim(o 0) even) is a modulo 2-torsion isomorphism. That is $\operatorname{Ker}(E)$ and $\operatorname{CoKer}(\mathrm{E})$ are 2-groups. Thus $\operatorname{Ker}(E)$ is the torsion subgroup of $\mathrm{SK}^{0}(\mathrm{C}, \mathcal{F})$ and its calculation would complete the calculation of $\mathrm{SK}^{0}(G, \mathcal{F})$. The calculation of CoKer(E) is equivalent to finding the relations between the $\mathrm{e}_{[\mathrm{H}, \sigma]}$ and would be in a sense a general Smith type theorem. Note that the $e_{i f} H, \sigma j$ with dim(σ_{0}) odd are not necessarily zero. However, they are linear combinations of the ${ }^{e}[0, \tau]$ with $[J, \tau] \geq[H, \sigma]$ and dim(τ_{0}) even.

Jänich [14] and Rowlett [17] have some further results on equivariant SK for $G=\mathbf{z}_{2}$. They both use different SK-relations and it turns out that what they are actually calculating is respectively $\mathrm{SK}_{\mathbf{z}_{2}}^{\mathrm{SO}} / \mathrm{J}$ and $\mathrm{SK}_{\mathbf{z}_{2}}^{0} / \mathrm{J}$, where J is the ideal generated by manifolds of the form $\mathcal{D} \mathrm{X}$, with X an oriented resp, arbitrary compact \mathbf{z}_{2}-manifold. Rowlett obtains complete results, however Jänich's result is not quite complete and is only modulo torsion.

Using these results, it is probably not too hard to obtain a complete calculation of $\mathrm{Sk}_{\mathbb{Z}_{2}}$ in both the oriented and unoriented case, using the following two remaxks:

Remark (3.4): $\overline{\mathrm{SK}}_{\mathrm{C}}$ is a quotient of $\mathrm{SK}_{\mathrm{G}} / \mathrm{J}$.
Remark (3.5): Since for finite G, bordism of G-manifolds is given by G-equivariant surgery, the analog of theorem (1.1) holds with I_{n} replaced by the subgroup of $S X_{n, G}$ generated by all effective linear G-actions on S^{n}.

CHAPCER 4: Controllable Invariancs

In this chaptex we discuss a generalization of the concept of SKinvariant, due to K. Jänich (unpublished).

Let $M_{I}=N U_{0} \sim W^{*}$ and $M_{2}=N U_{6}-W$, be two closed oriented manifolds obtained from each other by cutting and pasting via the diffeomorphisms $D, H^{\prime}: \partial N \rightarrow \partial N^{\prime}$. An invariant λ for closed oxiented manifolds (as usual additive with respect to disjoint union) is called SK-controllable if $\lambda\left(N U_{Q}-N^{\prime}\right)-\lambda\left(N U_{\phi}-N^{\prime}\right)$ only depends on the diffeomorphisms mot $: \partial N \longrightarrow \partial N^{+}$ and not on the chaice of the manifolds N and N^{\prime}. We then speak briefly of an SKK-invariaxt (SK-Kontrollierbar).

Clearly any SK-invariant is an SKK-invariant, and the SKK-invariant λ is an SK-invariant if and only if the "correction term"

$$
\lambda(\varphi, \psi):=\lambda\left(\mu_{\varphi}-N^{\prime}\right)-\lambda\left(N U_{\psi}-N^{\prime}\right)
$$

is always zero.
The above definition is obviously equivalent to the following: for any oriented manifolds $\mathrm{N}_{\mathrm{I}}, \mathrm{N}_{1}^{\prime}, \mathrm{N}_{2}, \mathrm{~N}_{2}^{\prime}$ with $\mathrm{ZN}_{1}=\partial \mathrm{N}_{2}$ and $\partial \mathrm{N}_{\mathrm{i}}^{\prime}=\partial \mathrm{N}_{2}^{\prime}$ and any orientation preserving diffeomorphisms $\varphi, y_{l}: \partial N_{1} \longrightarrow \partial \mathrm{~N}_{1}^{+}$one has

$$
\lambda\left(N_{1} U_{\varphi \varphi}-N_{1}^{\prime}\right)-\lambda\left(N_{1} U_{4}-N_{1}^{\prime}\right)=\lambda\left(N_{2} U_{\varphi}-N_{2}^{\prime}\right)-\lambda\left(N_{2} U_{1}-N_{2}^{\prime}\right)
$$

Thís makes it clear how one can define a "universal" SKK-group $\mathrm{SKK}_{\mathrm{t}}^{\mathrm{SO}}$, which gives the universal SkK-invariant for closed oriented n-manifolas; factor the semigroup $\pi_{n}^{S O}$ of diffeomorphism classes of closed oriented n-manifolds by all selations of the form

$$
\mathrm{N}_{1} \mathrm{U}_{\infty}-\mathrm{N}_{\mathrm{l}}^{\prime}+\mathrm{N}_{2} \mathrm{U}_{4}-\mathrm{N}_{2}^{\prime}=\mathrm{N}_{2} \mathrm{U}_{\infty}-\mathrm{N}_{2}^{\prime}+\mathrm{N}_{2} \mathrm{U}_{4}-\mathrm{N}_{1}^{\prime}
$$

and then ake the Grothendieck group of the result. One can make precisely the same definitions in the non-oriented case to obtain a graded group $\mathrm{SkK}_{{ }^{\circ}}{ }^{\circ}$. As usual, we drop the superscript in the oriented case and just write skK ${ }_{*}$ for $\mathrm{SKK}_{*}^{\mathrm{SO}}$.

THEOREM (4.1): a) Assigning to an oriented manifold M its bordism class in Ω_{t} is an $\$ K K-i n v a r i a n t$ and hence defines a surlective homomorphism $\mathrm{SKX}_{\star} \longrightarrow \Omega_{\lambda}$.
b) The analogous statement holds in the non-oriented case.

Proof: This is just Lemma (1.9) carried over to the (un)-oriented category, with $x=p t$.
K. Jänich (unpublished) had shown that for oxiented manifolds bordism class and euler characteristic give all SKX-invariants up to torsion. It turns out that there can be further torsion invariants; the following theorea gives a complete description of SKK-invariants.

THEOREM (4.2): Let $I_{n}\left(\operatorname{SKK}_{\mathrm{n}}\right.$ (resp. $\mathrm{I}_{\mathrm{n}}^{0}\left(\operatorname{SKK}_{\mathrm{n}}^{0}\right)$ be the cyclic subgroup generated by $\left[S^{n}\right]$. Then the sequences

$$
\begin{aligned}
& 0 \rightarrow I_{n} \rightarrow S K K_{n} \longrightarrow n_{n} \rightarrow 0 \\
& 0 \rightarrow I_{n}^{0} \rightarrow \text { SKK }_{n}^{0} \rightarrow \delta L_{n} \longrightarrow 0
\end{aligned}
$$

are exact. Furthermiore $I_{n}\left(I_{n}^{0}\right)$ is the quotient of z by the subgroup generated by euler characteristics of closed (n+1)-dimensional (un)-oriented manifolds, that is:

$$
\begin{aligned}
& \mathbb{I}_{\mathrm{n}} \cong \begin{cases}\mathbb{Z} & n \equiv 0(\bmod 2) \\
\mathbb{Z}_{2} & n \equiv 1(\bmod 4) \\
0 & n \equiv 3(\bmod 4)\end{cases} \\
& \mathbb{X}_{\mathrm{n}}^{0} \cong \begin{cases}\mathbb{Z} & n \equiv 0(\bmod 2) \\
0 & n \\
n & \equiv 1(\bmod 2)\end{cases}
\end{aligned}
$$

Proof: We shall first prove che exactness of the above sequences.
Suppose we have two oriented manifolds M_{1}^{n} and M_{2}^{n} which are cobordant. We molst show that in $S K_{n}$ they differ by a mottiple of $\left[S^{n}\right]$. We shall in fact prove more, namely

LERAM (4.3): Let Y be ant (un)-oriented bordism between M_{I}^{n} and M_{2}^{n}. Then in $\operatorname{skK}_{\mathrm{n}}$ (resp. $\mathrm{SKK}_{\mathrm{n}}^{\mathrm{O}}$)

$$
\left[M_{1}\right]=\left[M_{2}\right]-\left(e(Y)-e\left(M_{1}\right)\right)\left[s^{n}\right] .
$$

He have proved this lemma for SK_{n} as Corollary (1.8), so we need only show that wherever equality in S_{n} occurred in the proof of (1.8) it can be replaced by equality in $\mathrm{SKX}_{\mathrm{n}}$.

Let N and N^{\prime} be oriented manifolds with $\partial N=\partial N^{\prime}=2 p$, the disjoint union of two copies of a manifola P, and let $t: 2 P \longrightarrow 2 P$ be the iavolation exchanging these two copies. Suppose further that p bounds an oxiented manifold Q. Then by eefinition of $\mathrm{SKX}_{\mathrm{a}}$

$$
\left[\mathrm{MU}_{\mathrm{id}}{ }^{-\mathrm{N}^{+}}\right]+\left[2 Q \mathrm{~J}_{\mathrm{t}}-2 Q\right]=\left[2 Q \mathrm{U}_{i \mathrm{~d}^{-2}}-2 Q\right]+\left[\mathrm{NU}_{\mathrm{t}}-\mathrm{N}^{\prime}\right]
$$

so since $2 Q U_{t}-2 Q=2 Q_{i d}-2 Q$, we have

$$
\left[N U_{i d}-N^{\prime}\right]=\left[N_{t}-N^{\prime}\right] \text { in } \operatorname{SKK}_{n} .
$$

But in the proof of (1.8) only cutting and pasting of the above type occurted (namely the cutting and pasting (A) involved in surgery in the proof of iemma (1.6)), so the proof can be carried over to the sxk-case, as desired. The same arguments boid in the unoriented case.
Q.E.D.

To complete the proof of Theorem (4.2) we mast calculate the order of $\left[S^{n}\right]$ in $S_{n K}$ 〈resp. $\left.\mathrm{SKK}_{\mathrm{n}}^{\mathrm{O}}\right\rangle$. For n even, euler characteristic is an SKK invariant which is non-zero on the generator $\left[S^{n}\right]$ of I_{n} (resp. I_{n}^{0}), showing that $I_{n} \cong r_{n}^{0} \cong \mathbb{Z}^{2}$. We may hence assume n is odd, say $a=2 m-1$.

Observe first that Lemma (4.3) with $M_{I}=M_{2}=\Varangle$ and $Y=s^{2 m}$ shows that $\left[s^{2 m m l}\right]$ has ordex at most 2 in $S_{2 K K}^{2 m-1}$ and $S K K R_{2 m-1}^{0}$. Furthermore, if $\mathrm{M}^{2 \mathrm{ta}}$ is a closed manifold of odd euler characteristic, then lemm (4.3) with $M_{1}=M_{2}=\phi$ and $Y=M^{2 \mathrm{~m}}$ trow shows that $\left[S^{2 m-1}\right]=0$; we can take $M=P_{2 m}$ in the unoriented case, and for m even we can take $M=P_{n} \in$ in the oriented case. If hence only remains to show in the oriented case that $\left[S^{20-1}\right] j^{*} 0$ in $S_{K K}{ }_{2 m-1}$ for m odd. We shall prove this by showing that $\left[S^{2 \mathrm{~m}-1}\right]=0$ implies the existence of a closed manifold $\mathrm{m}^{2 \mathrm{~m}}$ of odd euler characteristic, which is impossible in the orientable category if m is odd.

Suppose therefore that $\left[s^{2 m-1}\right]=0$. By definition of $S K K_{2 m-1}$ this means that there exist orientable manifolds N_{i} and $N_{i}^{\prime}(i=1,2)$ with $\partial N_{1}=\partial N_{2}$ and $\partial N_{1}^{\prime}=\partial N_{2}^{+}$, and diffeomorphisms $\omega, 4: \partial N_{1} \longrightarrow \partial N_{1}^{\prime}$, such that

$$
s^{2 \pi-1}+\left\langle N_{1} U_{\varphi}-N_{1}^{\prime}\right)+\left(N_{2} U_{\varphi}-N_{2}^{\prime}\right)=\left(N_{2} U_{\varphi}-N_{2}^{\prime}\right\rangle+\left(N_{1} U_{\varphi}-N_{1}^{\prime}\right)
$$

For $i=1,2$, let Y_{i} be the union of $N_{i} \times[0,1]$ and $N_{i}^{\prime} \times[0,1]$ with the followiog identifications: for $x \in \partial N_{\bar{i}}$ identify $(x, t) \in \partial N_{i} \times[0,1 / 3]$ with $(\varphi(x), t\rangle \in \partial N_{i}^{\prime} \times[0,1 / 3]$ and $\langle x, t) \in \partial N_{i} \times[2 / 3,1]$ with $\langle\phi(x), t\rangle \in \partial N_{i} \times[2 / 3,1]$.

As in the proof of (1.9), after smoothing, $\partial \mathrm{y}_{i}=\left(\mathrm{N}_{\mathrm{i}} \mathrm{U}_{\text {ç }}-\mathrm{N}_{\mathrm{i}}^{\dagger}\right)+$
 joint union $Y_{2}+Y_{1}$ has boundary

$$
\begin{aligned}
\partial\left(Y_{2}+-Y_{1}\right) & =s^{2 m-1}+\left(N_{1} U_{\varphi}-N_{1}^{\prime}\right)+\left(N_{2} U_{\varphi}-N_{2}^{\prime}\right)+\left(\partial N_{1}\right)_{\varphi \psi}-1+ \\
& -\left(\left(\mathrm{N}_{1}^{U} U_{\varphi}-\mathrm{N}_{1}^{\prime}\right)+\left(\mathrm{N}_{2} U_{\psi}-\mathrm{N}_{2}^{\prime}\right)+\left(\partial \mathrm{N}_{2}\right)_{\varphi \varphi}^{-1}\right)
\end{aligned}
$$

Thus by pasting boundary components of $Y_{2}+-Y_{1}+D^{2 m}$ pairwise cogether we get a closed manifold $\mathrm{m}^{2 \mathrm{~m}}$, whose eulex characteristic is easily calculated to be 1-2e($\left.\partial N_{i}\right)$. Siace this is odd, the proof of Theorem (4.2) is completed. Q.E.D.

Remark: For unoriented manifolds, Theorem (4.2) shows that bordism class and euler characteriscic give all SkK-invariants.

For orientable manifolds one can show that Kervaire semi-characteristic,
defined by

$$
k\left(M^{4 k+1}\right)=\sum_{i=0}^{2 k} b_{i}(M) \quad \text { (modulo 2) }
$$

where the $b_{i}(M)$ are the betti numbers, is an SKK-invariant $S K K K_{4 \mathrm{~K}+1} \longrightarrow \mathbb{Z}_{2}$,
which splits the sequence (4.2). So bordism class, euler characteristic, and Kervaire semi-characteristic in dimensions 4 k+1 give all SKK-invariants for orientable manifolds.

We aketch a proof of the SKX-invariance of the Kervaire semi-character*
istic k. For any oriented manifold $Y^{2 m}$ an elementary homological argument using Poincare duality shows that

$$
k(\partial Y)=e(Y)=T(Y) \quad(\bmod 2)
$$

Assume m odd, say $m=2 k+1$, and apply this equation to the manifold Y used in the proof of (1.9). This gives

$$
k\left(M_{1} U_{\varphi}-M_{2}\right)-k\left(M_{1} U_{\psi}-M_{2}\right)-k\left(\left\langle\partial M_{1}\right\rangle_{\psi \varphi}-1\right) \equiv-e\left\langle\partial M_{1}\right) \quad(\bmod 2)
$$

which shows that k is an SKK-invariant with correction texm $k(\varphi, \psi)=$ $k\left(N N_{i p}-1\right)-e(N)$ (mod 2). A simple homological calculation puts this in the neater form

$$
k(q, \psi)=\operatorname{rank}\left(\left(\operatorname{LqP}^{-1}\right)_{*}-\dot{i d}\right) \quad(\bmod 2),
$$

where, since other dimensions pair off, we need ouly consider the middle dimension $\left({ }_{(\rho ⿻}{ }^{-1}\right)_{H}=H_{2 k}(\mathrm{~N}) \rightarrow \mathrm{H}_{2 k}(\mathrm{~N})$.

Bordism with Vector Fields.

Reinhart [16] introduced bordism with vector fields in order to make euler characteristic into a bordism invariant.

Let M_{1} and M_{2} be closed (oriented) manifolds. A vector-field bordism between M_{1} and M_{2} is a usual (oriented) bordism N between M_{1} and M_{2} together with a non-singular vector field on N which is the inward notmal on M_{1} and the outward normal on M_{2}.

It is well knowa (Reinhart, loc. cit.) that if N is connected, such a vector field exists on N if and only if $e\left(M_{1}\right)=e\left(M_{2}\right)=e(N)$.

THEOREM (4.4): Two (oriented) manifolds M_{1} and M_{2} are vector field cobordant if and only if they are equivalent in $\mathrm{SKK}_{\underset{\sim}{0}}^{0}$ (resp. SKK_). Thus one can identify $\mathrm{SKK}_{\mathrm{x}}$ with Reinhart's vector field bordism groups.

We prove only the oriented version, because the same arguments hold in the unoriented case.

We wast show that two oriented manifolds M_{L}^{n} and M_{2}^{n} represent the same class in SK_{n} if and only if there exists an oriented bordisa N between them with

$$
e\left(M_{1}\right)=e\left(M_{2}\right)=e(N)
$$

The sufficiency of this condition is immediate from (4.3), so it remains to prove the necessity. Suppose therefore that $\left[M_{1}\right]=\left[M_{2}\right]$ in $S K K_{n}$. Since euler characteristic is an SKK-invariant, $e\left(M_{1}\right)=e\left(M_{2}\right)$. Also the bordisw chasses are equal, so we can find a bordism Y between M_{1} and $M_{2^{*}}$. Lemma (4.3) implies that $\left(e(Y)-e\left(M_{1}\right)\left[s^{n}\right]=0\right.$, so for n even Theorem (4.2) shows that $e(Y)=e\left(M_{1}\right)$, and we can take $N=Y$ and are finished. For n of the form $4 k+1$ Theorem (4.2) shows that $e\left(M_{i}\right)-e(X)$ is even, so for arbitrary odd n we can certainly find a closed manifold M^{n+I} with $e\left(M^{n+1}\right)=e\left(M_{1}\right)-e(Y)$. In this case, the connected
sum of Y and M^{n+1} gives a boretism N of M_{1} and M_{2} with $e(N)=$ $e(Y)+e\left(M^{n+1}\right)=e\left(M_{l}\right)$, completing the proof.

Tangential Characteristic Numbers.

Jänich (unpublished) has shown for oriented manifolds that the index of an ellipic operator is an SKR-invariant. Here, a version of this theorem will be proved in a more genexal setting.

Let \bar{Y}_{n} be the universal bundle over $B S O(n)$ and γ_{n} the universal bundle over $B O(n)$. $B y \quad D \bar{Y}_{n}$ and S_{n} we denote the corresponding disc bundle and its boundary sphere bundle.

Let M be a closed oriented amanifold. The classifying map for the tangent bundle of M induces a map

$$
(\mathrm{tm}, \partial \mathrm{t} \mathrm{~m}) \longrightarrow\left\langle\overline{\mathrm{Y}}_{\mathrm{n}}, \mathrm{~s} \bar{Y}_{\pi}\right)
$$

where $t M$ is the tangent dise buncle of M. Since $t M$ has a natural stable almost complex structure, we obtain an element

$$
x(M) \in \Omega_{2 n}^{U}\left(\bar{O} \bar{y}_{n}, s \bar{y}_{n}\right)
$$

In the unoxiented case we obtain an element

$$
x(M) \in \Omega_{2 n}^{J}\left(D \gamma_{n}, S Y_{n}\right)
$$

LEMA (4.5): X defines a homomorphism

$$
x: \operatorname{SKK}_{\mathrm{n}} \longrightarrow \Omega_{2 n}^{\mathrm{v}}\left(\overline{\mathrm{D}}_{\mathrm{n}}, \mathrm{~S} \bar{\gamma}_{n}\right)
$$

respectively

$$
x: S K x_{n}^{O} \rightarrow \Omega_{2 n}^{d}\left(D \gamma_{n}, S \gamma_{n}\right)
$$

Proof: Suppose $\left[M^{n}\right]=0$ in $S k K_{n}$; we must show that $X(M)=0$. By Theorem (4,4) we can find an oriented manifold y with $\partial Y=M$ and a nonsingular vectox field 5 on Y which is the inward normal on M. Let t'Y be the disc bundle of the bundle obtained by splitting the line bundle corresponding to $\bar{\xi}$ off from the tangent bundle of Y, and $f:\left(t^{\prime} Y, \partial t^{\prime} Y\right) \rightarrow\left(\bar{Y}_{n}, S \bar{Y}_{n}\right)$ its classifying map. f is clearly a zero bordism of $X(M)$. The argument also holds in the unoriented case.

Now let h_{*} and h^{*} be corresponding homology and cohomology theories For which stably almost complex manifolds are oxientable. Then for any element $x \in h^{*}\left(0 \bar{\gamma}_{n}, \bar{\gamma}_{n}\right\rangle$ \{respectively $\left.x \in h^{*}\left\langle D y_{n}, S \gamma_{n}\right)\right\rangle$ we can consider the corresponding chazacteristic mumer of a singular stably almost complex manifold. To be precise we consider the homonorphisn

$$
\begin{aligned}
& \Omega_{ \pm}^{0}\left(\bar{D}_{n}, S \bar{\gamma}_{n}\right) \otimes h^{*}\left(D \bar{\gamma}_{n}, S \bar{\gamma}_{n}\right) \longrightarrow h_{s}(p t) \\
& \left.[\mathrm{N}, \mathrm{~g}] \quad \otimes \quad \mathbf{x} \quad \longleftrightarrow<g^{*} x,[\mathrm{~N}, \mathrm{\partial N}]_{\mathrm{h}}\right\rangle
\end{aligned}
$$

where $[N, \partial N]_{h}$ denotes the h_{f}-orientation class of N.

Definition: If M is a closed (un)-oriented manifold, che characteristic nurbers of $X^{\langle M}\left\langle\mathcal{A} \in \Omega_{2 n}^{U}\left(D \bar{Y}_{n}, S_{Y_{n}}\right)\right.$ (resp. $\in \Omega_{2 n}^{U}\left(D_{Y_{n}}, S Y_{n}\right)$) are called tangential characteristic numbers of M.

Example: As h^{*}, b_{*} we can choose (couplex) K-theory. If M is a manifold, then an etement $x \in K^{*}(t M, \partial t M)$ can be considered as a symbol of a (pseudo)-differential operator. $x,[t M, \partial t M]_{k}$ is then the index of this syubol. AB element in $K^{*}\left(\bar{D} \bar{Y}^{\prime}, S \bar{\gamma}_{n}\right)$ (resp. $K^{*}\left(D \gamma_{n}, S \gamma_{n}\right)$) can thus be considered as a "universal differential operator" which is deffaed on all n-dimensional (um)oriented manifolds. The index of such a "universal operator" is hence an skNjnvariant.

Other SK concepts have been considexed in the literature. In this chapter we show how they reduce to the concept of SK used here. For convenience we work in the oriented category; however, the discussion is also valid for manifolds with other structure, e.g., singular manifolds in a space X, tannifolds with (B, f)-structure, manifolds with a group action, etc.

A cutcing and pasting "relation" will always mean an equivalence relation \sim on the class of manifolds, compatible with disjoizt union + , and "cancellative." That is, for manifolds M, M ', N we require

$$
M \sim M^{\prime} \Longleftrightarrow N+M \sim N+M^{*} .
$$

Actually, to make our discussion valid also in the equivariant case it is convenient to define a further curting and pasting relation by addiag to the SK-relation that the double $\mathcal{E}=\mathrm{M} \frac{\mathrm{M}}{\mathrm{M}}$ of any compact manifold be equivalent to zero. Call this relation $\widetilde{S K}$. That is, for the corresponding graded groups,

$$
\widetilde{S K}_{\lambda}=\mathrm{SK}_{\star} / \mathrm{J}
$$

where J is the subgroup generated in $S K_{\star}$ by doubles of closed manifolds.

LEMAM (5.1): In the non-equivariant case $\widetilde{S K}=\widetilde{S K}$.

Proof: In fact we show this holds for any category of manifolds for which a suitable analog of Theorem (i.1) holds, i.e., bordisa is given by surgery, and spheres are doubles of discs.
$\overline{S K}_{N}=S K_{\pi} / L$, where I is the subgroup generated by manifolds which bound, and hence contains J. But by (1.1) I is already generated by spheres, and hence contained in J.

We consider the relation used by Jänich [14]. This relation is generated by setting any manifold of the form

$$
\begin{equation*}
M_{0} U_{\varphi_{0}}-M_{1}+M_{1} U_{1}-M_{2}+M_{2} \varphi_{2}-M_{0} \tag{1}
\end{equation*}
$$

equivalent to zero. Here $-M_{i}$ means M_{i} with reversed orientation and $\varphi_{i}: \partial M_{i} \longrightarrow \partial M_{i+1} \quad$ (indices moduLo 3) are diffeomorphisms.

THEOREM (5.2): Jänich's relation is the same as $\widehat{\mathrm{SK}}$, and hence the same
as $\overline{5 \bar{X}}$ in the non-equivariant case.

Froof: By cutting and pasting the above manifold (1) one obtains the union of doubles,

$$
\mathrm{M}_{0} \mathrm{U}-\mathrm{M}_{0}+\mathrm{M}_{1} \mathrm{U}-\mathrm{M}_{1}+\mathrm{M}_{2} \mathrm{U}-\mathrm{M}_{2}
$$

so $\overparen{\lessgtr K}$ implies Jänich's relation. On the other hand, putting $M_{0}=M_{\text {, }}$
$M_{1}=M_{2}=\phi, \quad$ in (1) shows that $M+(-M) \sim 0$. Now taking $M_{0}=M_{1}=M_{2}$, (1)
shows that $\mathscr{D} M_{0}+\varnothing M_{0}+\left(-D M_{0}\right\rangle \sim 0$, so $\mathscr{O} M_{0} \sim 0$. Finally, $M_{0}=M_{2}$ gives
$\left(M_{0} U_{\varphi_{0}}-M_{1}\right)+\left(M_{L} U_{\varphi_{2}}-M_{0}\right)+\infty M_{0} \sim 0$, whence $M_{0} \varphi_{\varphi_{0}}-M_{1} \sim M_{0} U_{\varphi_{1}}-M_{L}$. Hence Jänich's relation implies $\stackrel{\rightharpoonup}{\mathrm{KK}}$.

If one is interested also in compact manifolds with boundary, the most natural cutting and pasting relation seems to be the one generated by the relations

$$
\begin{equation*}
M_{0} \cup_{\varphi}-M_{1} \sim M_{0}+\left(-M_{1}\right), \tag{2}
\end{equation*}
$$

where φ pastes boundary components of M_{0} to boundary components of M_{1}. Call the corresponding graded group $A_{ \pm}$(the Grothendieck group of compact manifolds modulo these relations). This is the universal grosp for "additive" invariants of manifolds.

Clearty, for closed manifolds the above relations only generate the usual SK-relations, so the subgrovp of A_{t} generated by closed manifolds is just SK $_{\text {A }^{*}}$ Now let ${ }^{B}$, be the Grothendieck group of closed manifolds which bound, subject only to the relations $M+(-M)=0$. The torsion subgroup of B_{t} is thus 2-torsion generated by bounding manifolds which possess orientation reversing diffeomorphisms. There is an epimorphism $a: A_{\star} \longrightarrow B_{A-1}$ given by taking boundaries of manifolds. The following theorem is trivial.

THEOREM (5.3): The sequence

$$
0 \rightarrow \mathrm{SK}_{\star} \rightarrow \mathrm{A}_{\star} \rightarrow \mathrm{B}_{\mathrm{N}_{-1}} \longrightarrow 0
$$

is exact.

Thus "additive" invariants for compact manifolds reduce to the diffeomorphism types of their boundaries together with SK-invariants for closed manifolds, Observe that the above sequence does not split for n even, since $\left[s^{n}\right]=2\left[0^{n}\right\}$ in A_{*}, but $\left[S^{n}\right\}$ is an irreducible element of $S K_{*}=$ Ker a.

Theorem (5.3) is due to Rowlett [17]. Actually Rowlett considers a
slightly different relation, namely

$$
\begin{equation*}
M_{0} U_{\varphi}-M_{1}+\left(-M_{0}\right)+M_{1} \sim 0 . \tag{3}
\end{equation*}
$$

Taking $M_{1}=\phi$ this implies $M_{0} \sim-\left(-M_{0}\right)$, so in particular relation (2) follows, as well as the relation

$$
\begin{equation*}
M_{0} U-m_{0} \sim 0, \tag{4}
\end{equation*}
$$

that is, doubles are equivalent to zero. Conversely (2) and (4) cleaxly iuply $M_{0} \sim-\left(-M_{0}\right)$, and hence imply (3). Thus Rowlett's relation (3) leads to the same results as relation (2) except that SK_{*} wust be replaced by $\widetilde{\mathrm{SK}}_{*}$.

We now return to a coment of chapter 1. As remarked in Chapter 1 , $5 \mathrm{~K}_{n}(\mathrm{X})$ is actually equal to the semigroup of singular n-manifolds in X modulo SK-equivalence. To assure this, the definition of SK-equivalence in Chapter I was slightly unaturaliy "stabilized" to make sure that it was cancellative. As recently remarked by Ed Miller, this is untecessary, in fact we have:

THEOREM (5.4): Two closed non-empty oriented singulat manifolds ($\mathrm{M}_{\mathrm{L}}, \mathrm{f}_{1}$) and $\left\langle\mathrm{M}_{2}, \mathrm{f}_{2}\right.$) in a connected space X are SK -equivalent and hence represent the same element of $S K_{k}(X)$ if and only if one is obtainable from the other by a sequence of cutting and pasting operations in X.

Of course the same holds in the unoriented category. To prove Theorem (5.4) let \sim denote the "unstabilized" Sk-relation; that is ($\left.M_{1}, f_{1}\right) \sim\left(M_{2}, f_{2}\right)$ means that $\left(M_{2}, f_{2}\right)$ results from $\left(M_{1}, F_{1}\right)$ by a sequence of cutting and pasting
operations in X. It is clearly sufficient to show that the semigroup $\gamma_{f} f_{n}(x) / \sim$ of singular $n \rightarrow$ manifolds in X modulo this relation is alrezdy a group, and hence equal to $\mathrm{SK}_{\mathrm{n}}(\mathrm{X})$.

Firstly, this semigroup has a zero, given by the class of $s^{1} \times s^{n-1}$. Indeed, we can cut $s^{1} \times s^{n-1}$ aloag s^{n-1} to get $I \times s^{n-1}$. Now given any (M, f) $\in M_{\mathrm{a}}(\mathrm{X})$, we can cut a small aisc D^{n} from M, paste $\mathrm{I} \times \mathrm{S}^{\mathrm{a}-1}$ to this disc as a collar, and paste the result back into M, showing that $(M, f)+\left(S^{1} \times s^{n-1}\right) \sim(N, f)$.

Secondly, the class of s^{n} has an inverse in this semigroup. Namely let q be the "sphere with two handles" obtained by remoring two discs from $S^{1} \times s^{n-1}$ and pasting the resulting two boundary components s^{a-1} together. By reversing this construction, clearly $p+s^{n} \sim s^{1} \times s^{n-1}$.

We now have all we need to repeat the proof of Corollary (1.8) and show that if $\left(M_{1}, f_{1}\right)$ is bordant to $\left(M_{2}, f_{2}\right)$ in X by a bordism Y, thed

$$
\left[M_{1}, f_{1}\right]=\left[M_{2}, f_{2}\right]-\left(e(Y)-e\left(M_{1}\right)\right\rangle\left[s^{n}\right]
$$

in $\partial f_{\mathrm{n}}(\mathrm{X}) / \sim$ It follows that any element $[\mathrm{M}, \mathrm{f}]$ of $\gamma_{\mathrm{n}}(\mathrm{X}) / \sim$ has en inverse, namely $[-\mathrm{M}, \mathrm{E}]-e(\mathrm{M})\left[\mathrm{S}^{\mathrm{n}}\right]$, so $\gamma_{\mathrm{n}} \mathrm{C}_{\mathrm{n}}(\mathrm{X}) / \sim$ is a group, as was to be shown.

Rearark: The relation of SK-equivalence as given in Chapter 1 can be simplified in another direction, which is, however, less interesting. Namely, (M_{1}, f_{1}) and $\left(M_{2}, f_{2}\right)$ are $S k$-equivalent if and only if there exists an (M, F) such that $\left(M_{2}, f_{2}\right)+(M, f)$ results from $\left(M_{1}, f_{1}\right)+(M, f)$ by a single cutting and pasting operation. We leave this as an easy exercise for the reader.

CHAPTER 6: Winkelnkemper's "Open Book Theorem

This chapter was written after the rest of the notes were completed, and discusses some SK-consequences of Eloar Winkelnkemper's "open book theorem" [20]. Maybe the main consequence for $S K$ is the theoren, which strongly supercedes Theorem (2.8) ini):

THEOREM (6.1): For any topological space X and all odd $n \neq 5$, $S_{n}(X)=0$. This is probably also true for $n=5$.

Let us first recall Winkeinkemper's definition of an "open book." Let V be a manifold with $\partial V \neq \phi$ and $h: V \rightarrow V$ a diffeomorphism with $h \mid \partial V=$ id. Form the mapping torus V_{h} (see Chapter 1) which has $\partial v_{h}=S^{I} \times \partial v_{\text {, }}$ and for each $x \in \partial V$ identify the paints $(t, x), t \in S^{l}$, to obtain a closed manifold M called an open book. The fibres of the mapping torus are the "pages" and the image of $s^{l} X$ av under the identification, which is a codimension 2 closed manifold diffeomorphic to ∂V is called the "binding." The binding is the boundary of each page.

In 1923, Alexander [1] proved: every orientable 3 -manifold is an open book. Finkelnkemper has extended this to the following powerful structure theorem for manifolds:

THEOREM (6.2) (Open Book Theorem): a) Every orientable closed manifold of dimension $n=2 k+1 \neq 5$ has an open book decomposition.
b) A clased simply connected manifold M of dimension $a=2 k>6$ has an open book decomposition if and only if $\tau(M)=0$.

In fact in the simply connected case, $n>6$, Winkelnkemper shows much more, namely, that the pages and binding can also be chosen simply connected with $H_{i}(V, \mathbf{z})=0$ for $i>\left[\frac{n}{2}\right]$. The latter implies that $h_{k}: H_{i}(v, \boldsymbol{z}) \rightarrow H_{i}(V, \mathbf{z})$ is the identity for $i<\left[\frac{n}{2}\right]$, and Winkelnkeaper also gives necessary and sufficient conditions that one can choose i to be the ideatity also for $i=\left[\frac{a}{2}\right]$.

The application to $S K$ is given by the following theorem. We first note a simple lema:

LEMMA (6.3): Let M^{n} be a closed connected orientable manifold. Then the following four conditions are equivalent:
i) For any map $f: M \rightarrow X$ of M into a space $X,[M, f]=0$ in $\overline{S N}_{n}(X)$;
ii) $T(M)=0$ and for any map $\mathrm{I}_{\mathrm{I}}: \mathrm{M} \longrightarrow \mathrm{X},[\mathrm{M}, \mathrm{f}]=[\mathrm{M}, \mathrm{N}]$ in $\mathrm{SK}_{\mathrm{n}}(\mathrm{X})$;
iii) $[M, i d]=0$ in $\overline{S K}_{n}(M)$;
iv) $T(M)=0$ and $[M, i d]=[M, *]$ in $S K_{n}(M)$.

THEOREM $(6,4)$: If M^{n} has an open book decomposition then each of the equivalent conditions of Lemma (6.3) holds.

Proofs: zemata (6.3): The equivalences i) \Longrightarrow ii) and iii) \Longrightarrow iv) are clear by observing that $[M, f]=0$ in $\overline{S K}_{n}(X)$ implies $[M, *]=0$ in $\overline{S K}_{n}(x)$ and applying Theorems (1,1b) and (1.3b). Trivially i) \Longrightarrow iii), and iii) \Longrightarrow i) follows from the fact that $[M, f] \in \overline{S k}_{n}(X)$ is the image of $[M, i d] \in \overline{S K}_{n}$ (M) under
the map $\overline{S K}_{n}(M) \longrightarrow \overline{S K}_{n}(X)$ induced by f.
Theorem (6.4); Suppose it has an open book decomposition given by typical page V and diffeomarphism $h: v \rightarrow V$. We shall prove $[M, i d]=0$ in $\overline{S K}_{\mathrm{n}}(\mathrm{M})$.

Cutting the mapping torus v_{h} along two fibres to get two copies of $V \times I$ induces a cutting of M (along a manifold diffeomorphic to the double of V into two pieces N and N^{\prime}, each of which is diffeomorphic to $V \times I / \sim$, where \sim identifies each $x \times I \quad(x \in \partial V)$ to a point 〔in fact N and N^{\prime} are still diffeomorphic to $V \times I$). Use a homotopy between id : V $\times \mathrm{I} \longrightarrow V \times \mathrm{V}$ and $V \times I \longrightarrow P C V \times I$, where P is the projection; to slide both N and N^{\prime} into a single page V of M and re-paste them there to get the double $E N$ mappiag into a page $V(M$. This mapping clearly exteads to a mapping of $N \times I$
 SK-operation to something which bounds in M, and is hence zero in $\overline{S K}_{n}(M)$. Q.E.D.

The open book theorem togethex with (6.4) cleaxly implies (6.1). There are other interesting implications. Recall that for any connected space X, the augmentacion $\varepsilon^{X}: S K_{\star}(x) \rightarrow S K_{*}$ and the map $\eta: S K_{\star}(x) \longrightarrow$ Ker ε^{X} given by

$$
r[M, f]=[M, f]-[M, *]
$$

define direct sum representation

$$
S K_{\neq}(x)=S K_{\star} \oplus \operatorname{Ker} \varepsilon^{x}
$$

Since SK_{*} is well understood, it is $\operatorname{Ker} \varepsilon^{X}$, and hence the elements $r[\mathrm{M}, \mathrm{f}]$, which interest us.

As remarked in Chapter 2 , if a manifold M is the base of a compact
fibre bundle with structure group G and non-multiplicative signature, and $f: M \rightarrow$ BG is the classifying map, then $[M, f] \neq[M, *]$ in $S X_{H}(B G)$, so $\eta[M, f]$ is non-trivial, in fact of infloite order, in Ker $\varepsilon^{B G}$. Thus by Lerma (6.3) $n[M, i d]$ has infinite order in Ker ε^{M}. Thus $n[M, i d] \in$ Ker ε^{M} gives an intrinsic obstruction to mitiplicativity of signature for arbitrary bundes over M. Two qatural questions arise:

Guestion 1: We bave seen that finite order of $n[\mathrm{~m}, \mathrm{id}]$ in $k e r \varepsilon^{\mathrm{M}}$ is sufficient for bundles over M to have multiplicative signature. Is it also necessary?

Question 2: By Theorem (6.4) triviality of [M,id] in $\overline{S K}(M)$ (which is equivalent to $\pi[M, i d]=0$ and $T(M)=0$) is necessary for h to have an open book decomposition. Is it also sufficient?

Atiyah's examples show that there are bundles with non-taultiplicative signature over any product M of orientable surfaces of sufficiently high genus. Hence $\pi[M, i d] \neq 0$ in $K e r \varepsilon^{M}$, so M has no open book decomposition. Thus the condition $\pi_{I}(M)=0$ in the open book theorem cannot be dxopped entirely. It was this remark, made by Elmax Winkelakenper (using a more direct argument) that led to this chapter.

APPENOIX 1: Cutting and Pasting of (B, f)-manifoles

by G. Barthel

Most of the preceding theory can be generalized to cutting and pasting of (B, f)-manifolds, so here we give a sumary of the generalization.

Let us briefly recall the definition of a (B, f) -structure on a manifold as given by Lashof $[3]$ (see also Stong [7]). Let $\langle B, f)=\left(B_{k}, f_{k}\right)$ be a sequence of fibrations $f_{k}: B_{k} \longrightarrow B O_{k}$ and maps $g_{k}: B_{k} \longrightarrow B_{k+2}$ such that all diagrams

commate 〈 j_{k} is the usual inclusion).
Any smooth imbedding $i_{k_{0}}: M^{n} \rightarrow R^{a+k_{0}} \quad$ of a compact smooth m-manifold yields imbeddings $i_{k}: M^{n} \rightarrow \sum^{n+2}, k \geq k_{0}$, by the inclusion of $i^{n+k_{0}}$ inco $\mathbf{B}^{\mathrm{n}+\mathrm{k}}$. The geometric normal maps $\nu_{k}: \mathrm{M} \rightarrow 8 \mathrm{O}_{\mathrm{k}}$ (taking $\mathrm{BO} \mathrm{K}_{\mathrm{K}}$ as an infinite Grassman manifold) of these imbeddings are related by $\nu_{k+1}=j_{k} \cdot \nu_{k}$. Given a $\left(B_{k_{0}}, f_{k_{0}}\right)$-structure on ($M, i_{k_{0}}$) (i.e., a homotopy class of liftings

of the normal map to $\left.\mathcal{B}_{k_{0}}\right\rangle$, one obtains a unique sequence $\xi=\left\langle 5_{k}\right\}_{k \equiv k_{0}}$ of ($\mathrm{B}_{\mathrm{k}}, \mathrm{f}_{\mathrm{k}}$)-structures on ($\mathrm{M}, \mathrm{i}_{\mathrm{k}}$).

Provided that k is sufficiently large, any two fmbeddings i_{k} and i_{k}^{\prime}
of M^{n} into $\mathbb{7}^{\mathrm{n}+\mathrm{k}}$ are regularly homotopic and any two regular homotopies are homotopic through regular homotopies of the given imbeddings. The induced homotopy of the normal maps yield by the homotopy lifting property for the maps f_{k} a one-one correspondence between (B_{k}, f_{k})-structures on (M, i_{k}) and (M, i_{k}).

Two sequences $\xi=\left\langle\xi_{k}\right\rangle_{k \geq k_{0}}$ and $\zeta=\left\langle\zeta_{\ell}\right\rangle_{\ell \geq \ell_{0}}$ belonging to embeddings $i_{k_{0}}: M^{n} \longrightarrow \mathbb{R}^{n+k_{0}}$ and $i_{\ell_{0}}^{\prime}: M^{n} \rightarrow E^{n+\ell_{0}}$ will be called equivalent if 5_{r} and ζ_{I} correspond by the above correspondence for some T. $A(B, f)$-structure on M is then defined to be an equivalence class of such sequences of (B_{k}, f_{k})-structures, and a manifold M together with a (B, f)-structure ζ is called a (B, f)-manifold.

If $\varphi: M^{\top} \longrightarrow M$ is a diffeomorphism, any (B, f) -structure on M induces one on M^{\prime}. An isonorphism of (B, f)-manifolds is a diffeomorphism inducing the given structare on the source M^{\prime}. This notion of induced structure and of (B, f)morphism can be extended to immersions with trivialized normal bundle, see Stong [7], p. 16, for details.

Let W^{n+1} be a ($\left.B, E\right)$-manifold with boundary. Imbed w^{n+1} in $w^{n+k} \times H_{+}$ such that \quad W lies in $\mathbf{m}^{n+k} \times\{0\}$ and W meets $\mathbb{m}^{n+k} \times\{0\}$ orthogonally along du. Then the $\left\langle B_{k}, F_{k}\right\rangle$-structure on W induces one on ∂W by restriction, called the boundary structure for a closed (B, f)-manifold M, the boundary structure on $\partial(M \times I)$ induces the given stucture on $M=M \times\{0\}$ and a structure on $M=M \times\{1\}$ called the opposite structure, briefiy denoted by $-M$.

Two closed (B, f)-nanifolds M and M^{\prime} are called bordant if $M+\left(-M^{+}\right)$ is a (B, f)-boundary. The (B, f)-bordism classes of closed n-dimensional (B, f)manifolds form an abelian group $f_{n}^{(B, f)}$ called the $n^{\text {th }}$ (B, f)-bordismigroup.

We remark that these groups are isomorphic to certain stable homotopy groups of appropriate Thon spaces (see [3], [7] For details). Furthemore, if a raultiplicative structure is given (defined by maps $B_{X} \times B_{S} \longrightarrow B_{I+s}$ such that the
projections f_{k} preserve products up to houctojy, $\mathrm{BO}_{\mathrm{r}} \times 80_{\mathrm{s}} \rightarrow 30 \mathrm{rts}$ being the usual maltiplication), we get a graded ring structure on $\Omega_{x}^{(B, f)}$, and the homomorphism $\Omega_{\star}^{(B, f)} \longrightarrow \mathcal{K}_{*}$ is a homomorphism of graded rings.

Suppose that a closed manifold M is the union of two bounded manifolds N and N^{*} pasted along the common boundary $\partial N=\partial N$. Then a given (B, f)structure on M induces (B, f)-stxuctures on N and N such that the boundary structures on ∂N and ∂N^{\prime} are opposite to each other. if $\phi: \partial N \rightarrow-\partial N^{\prime}$ is a (B, f)-isomorphism, the pieces \hat{N} and N^{\prime} may be pasted by of to give a new (B, f)-manifold M^{\prime}, and we say M^{\prime} has been obtained from M by an $S k$-operation. Note that in general the (B, f)-structure on M^{\prime} is not uniguely detennined by the (B, f)-manifolds $\mathrm{N}, \mathrm{N}^{*}$ and by 0 .

As in Chapter 1 , one defines an SK-group $S x_{n}^{(B, f)}$ as the Grothendieck group of closed n-dimensional (B, f)-manifolds modulo the relations given by SKoperations, $\overline{S K}_{\mathrm{n}}^{(B, f)}$ is then defined by factoring $\mathrm{SK}_{\mathrm{n}}^{(B, f)}$ by the bordism relation. If the (B, f)-structure is muttiplicative, then $S K_{*}^{(B, f)}$ and $\overline{S X}_{*}^{(B, f)}$ are greded rings, and the natural epimorphisms

$$
\mathrm{SK}_{\star}^{(B, f)} \longrightarrow \overline{\mathrm{SK}}_{*}(\mathrm{~B}, \mathrm{f})
$$

and

$$
\mathrm{N}_{\underset{N}{ }}^{(\mathrm{B}, f)} \longrightarrow \overrightarrow{S K}_{\mathrm{K}}(\mathrm{~B}, f)
$$

axe graded ring homomorphisms,

We first temark that without loss of generality we can assume the spaces
B_{k} to be connected. Collapsing the connected components of the fibres of $\mathrm{B}_{\mathrm{k}} \longrightarrow \mathrm{BO}_{\mathrm{k}}$ to points yields a connected covering of $\mathrm{B} \mathrm{O}_{\mathrm{k}}$, which mast be either
the trivial covering $\mathrm{BO}_{\mathrm{k}} \longrightarrow \mathrm{BO}_{\mathrm{k}}$, or the universal covering $\mathrm{BSO}_{\mathrm{k}} \longrightarrow \mathrm{BO}_{\mathrm{k}}$. Thus the fibres of B_{k} have at most two components, so there are at most two (B, f)structures on a point, and they are opposite to each other. The same holds for the spheres $s^{\text {r }}$ with boundary structures \{nduced from the disc $D^{\text {rit }}$, These structures on the sphere are isomoxphic by an orientation reversing diffeomorphism, so in fact there is only one such structure induced from the disc; we call it the point structure.

Corresponding to Theorems (1.1) and (1.2) of Chapter 1 we have the following results:

THEOREM 1: There is an exact sequence

$$
0 \longrightarrow Y_{n}^{(B, f)} \longrightarrow S X_{n}^{(B, f\rangle} \longrightarrow \widetilde{S K}_{n}^{(B, f\rangle} \longrightarrow 0,
$$

where $f_{n}^{(B, f)}$ is the cyclic subgrosp of $\mathrm{SK}_{n}^{(\mathrm{B}, f)}$ generated by the class $\left[\mathrm{s}^{\mathrm{n}}\right]$ of the sphere s^{n} with the point structure, and

$$
\begin{array}{ll}
I_{n}^{(B, f)} \cong z_{r} & n \cong 0(\bmod 2) \\
I_{n}^{(B, f)} \cong 0 \quad \text { or } \quad z_{2}, & n \equiv 1(\bmod 2) .
\end{array}
$$

If the fibres of B_{k} have two comected components, then the sequence splits for n even.

THEOREM 2: Let $F_{n}^{(B, f)}$ be the subgroup of $n_{n}^{(B, f)}$ of all elements representable by a manifold which fibres over s^{1}. Then

$$
0 \rightarrow F_{n}^{(B, f)} \longrightarrow n_{n}^{(B, f)} \longrightarrow \overline{S K}_{n}^{(B, f)} \longrightarrow 0
$$

is exact.

The proofs are as in Chapter 1 , with the following resexratinns: the connection between $S K$ and surgexy discussed in Chapter 1 goes through without change to prove Theorem 1 , however, the cutting and pasting Lema (I.5) needs additional conditions:

LGMAA 3: i) If the (B, f)-manifold M fibres over S^{1} then $[M]=0$ in $S K_{k}^{(B, f)}$.
ii) If M fibres over S^{n} with typical fibre F then $[M]=\left[S^{n} \times F\right]$ in $S K_{\hbar}^{(B, f)}$, where the structure on $s^{n} \times F$ is indsced from $D^{\text {or }} \times \mathrm{F}$. If the theory is maltiplicative, then F can be given a (B, f)-structure such that $[M]=\left[S^{n}\right][F]$ in $S_{*}^{(B, f)}$.
iii) If the (B, f)-structure is multiplicative and if there are (B, f)structures on $P_{n} C$ for all n, then for any (B, f)-manifold M fibred over $P_{a} C$ with fibre F,

$$
[M]=\left[P_{\mathbf{n}} \mathbf{C}\right][\mathbf{F}]
$$

holds in $\mathrm{SK}_{*}^{(B, f)}$, for a suitable (B, f) -structure on F.
iv) The same as ini) with $\mathrm{F}_{\mathrm{n}} \mathrm{I}$ instead of ${ }_{\mathrm{O}}^{\mathrm{C}} \mathrm{C}$.

COROLLARY 4. Under the assumption of part iii) above, $\left[s^{2 n+1}\right]=0$ in $s K_{2 n+I}^{(B, f)}, ~ s o ~ I_{2 n+I}^{(B, f)}=0$.

Theorem 2 is proved as in Chapter 1 , by showing that the (B, f)-bordism classes of two manifolds related by a siagle sk-operation differ by the class of a manifold which fibres over the circle. Note that two SK-operations may yield the same manifold fibering over the circle but with different (B, f)-structures, due to the non-uniqueness of (B, f)-structures under cutting and pasting mentioned earliex.

This means that the calculation of the SKX-groups of chapter 4 is not the same in the (B, f)-case: (B, f)-bordisal class needn't be an SKK-invariant. However, the class in $\Omega_{ \pm}^{(B, f)} / J$, where J is the subgroup generated by all (B, f)-structures on manifolds of the form $M \times S^{1}$, is an SKK-invariant, and the discussion of Chapter 4 goes through using this group in place of $\Omega_{\star}^{(B, f)}$.

As an example of (B, f)-SK we now calculate the SK-groups for weakly complex manifolds, obtaining the following resslt.

THEOREM 5: The rings $\mathrm{SK}_{*}^{\mathrm{U}}$ and $\overline{\mathrm{SK}}_{*}^{U}$ are isomorphic to $\mathrm{SK}_{夫}$ and $\overline{\mathrm{KK}}_{*}$ by the obvious homomorphisms.

Proof: By Lemma 3 and Corollary 4 we know that $\mathrm{SK}_{2 \mathrm{n}+1}^{\mathrm{U}}$ is isoanrphic to $\overrightarrow{S K}_{2 n+1}^{v}$, which is a quotient of $\Omega_{2 n+1}^{U}$. Now $\Omega_{ \pm}^{U}$ is known, namely, it is the integral polynomial ring $\mathrm{Z}\left[\mathrm{Y}_{0}, \mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots\right]$ on 2 i -dimensional generators Y_{i} that can be represented by certain linear combinations of products of complex projective spaces $P_{n} \mathbb{C}$ and hypersurfaces $H_{r, t}$ in $P_{r} \mathbb{C} \times P_{t} \mathbb{C}$ (Milnor, Novikov, Hirzebruch $[4],[5],[6],[1])$.

Hence the $\Omega_{2 n+1}^{J}$, and thus also the $\mathrm{SK}_{2 \mathrm{Zn+1}}^{\mathrm{U}}=\overline{S K}_{2 n+1}^{\mathrm{U}}$ aze zero, proving the theoren for odd dimensions.

In the even dimensional case we see that $\overrightarrow{S K}_{2 n}^{0} \longrightarrow \mathrm{SK}_{2 \mathrm{n}}$ is onto, as it maps generators onto genexators. By Leman 3 iii) these genexators may be chosen as products of complex projective spaces. Now one sees that Jänich's proof that $\left[P_{n+2} C\right]=\left[P_{n} C\right]\left[P_{2} C\right]$ in $\overline{S K}_{t}$ (given ina $[2], 2 .,(4 a)$) holds also in SK_{t}^{0} (where $\mathrm{P}_{\mathrm{n}} \mathrm{C}$ has its ustal weakly complex structure). Thus $\overline{\mathrm{SK}}_{4 \mathrm{k}+2}^{\mathrm{U}}$ is generated by products with at least one factor $\mathrm{P}_{1} \mathcal{E}$ and is hence zexo, while $\overline{S K}_{4 \mathrm{k}}^{\mathrm{J}}$ is generated by
 $\overline{S K}_{*}^{U}=\overline{S K}_{\lambda}$, and the 5 -lemma on

completes the proof.

Theorems 2 and 5 yield the characterization of weakly complex manifolds which fibre over the circle up to uaitary bordisa, namely, that signature vanishes.

BIBLIOGRAPHY

1. Hirzebruch, F. E., "Komplexe Mannigfaltigkeiten," proc. Intermat. Cong. Math., 1958, 119-136.
2. Jänich, K., "On invariants with the Novikov additivity property," Math. Aan., 184 (1969), 65-77.
3. Lashof, R., "Poincaré duality and cobordism," Trans. Amez. Math. Soc., 109 (1963), 257-277.
4. Mitnor, J., "On the cobordism ring Ω^{*} and a complex analogue, part 1 ," Am. J. Math., 82 (1960), 505-521.
5. Novikov, S. P., "Some problems in the topology of manifolds connected with the theory of Thom spaces," Dokl. Akad. Mauk SSSR, 132 (1960), 1031-1034, (Soviet Math Doklady 1, 717-720).
6. -_....... "Homotopy properties of Thom complexes," Mat. Sb. (N.S.), 57 (1962), 407-442 (Russian).
7. Stong, R. E., Notes on Cobordism Theory, (Princeton Univ. Press, 1968).

REFERENCES

[1] Alexander, J. H., "A lema on systems of knotted curves," Proc. Nat. Acad. Sci. + U.S.A., 9 (1923), 93-95.
[2] Atiyah, M. F., "The sigature of fibre bundles," global Analysis, papers in honot of K. Kodaira (Princeton, 1968), 73-84.
[3] \longrightarrow, and Singer, I. M., "The index of ellipeic operators III," Annals of Math., 87 (1968), 546-604.
[4] Borel, A., "Sur la cohomologie des éspaces fibrés princípaux et des éspaces homogènes des groupes de Lie compact," Annals of Math., 57 (1953), 115-207.
[5] Burdick, A. O., "Orientable manifolds fibred over the circle," Proc. Amer. Math. Soc., 17 (1966), 449-452.
[6] , "On the oriented bordism groups of \mathbf{z}_{2} " Proc. Amer. Math. Soc. (to appear).
[7] Cartan, H., and Eilenberg, S., Homological Algebra, (Frinceton, 1956).
[8j Conner, P. E., "The bordism class of a bundle space," Mich. Math. J., 14 (1967), 289-303.
[9] —, and Floyd, E. E., "Fibering within a bordism class," Mich. Math. J. 12 (1965), 33-47.
[10] and Differentiable Periodic Maps, Ergebnisse der Math. und ihrer Erenzgebiete (Berlia-Heidelberg, 1964).
[11] Hirzebruch, F., and Jänich, K., "Involutions and singularities," Proc, Internat. Coll. on Alg. Geom., Bombay, 1968, 219-240.
[12] Jänich, K., "Differenzierbare G-Mannigfaltigkeiten," Lecture Notes in Marhematics, 59 (Springer, 1968).
[13] ——" "Chaxaktexisiexung der Signatur von Mamigfaitigkeiten durch eine Additivitäts-Eigeaschaft," Inventiones Math., 6 (1968), 35-40.
[14] Janich, K., "On invariants with the Novikov additivity property," Math. Ann., 184 (1969), 65-77.
[15] Mosher, R. E., and Tangora, M. G., Cohomology Operations and Applications in Homotopy Theory, Harper and Row, (New York, London, 1968).
[16] Reinhard, 日. L., "Cobordism and the Euler number," Topology, 2 (1963), 173-178.
[17] Rowlett, R. J., III, "Additive invariants of manifolds with boundary," Thesis, University of Vixginia, 1970.
[18] Wall, C. T. C., "Determination of the cobordisa ring," Annals of Math., 72 (1960), 292-311
[19] Winkelnkemper, H. E., "On equators of manifolds and the action of θ^{n}," Dissertation, Priaceton University, 1970.
[20] \qquad Frinceton, 1972), see also Notices Amer. Math. Soc., 137 (April, 1972), p. A-463.

