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Abstract

There is an adjunction between monoids in a monoidal category and strong
monads over it. This dissertation examines this adjunction and its vari-
ants. In particular we extend it to an equivalence between Frobenius
algebras in a monoidal category and strong Frobenius monads over it.
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Chapter 1

Introduction

The language of (symmetric) monoidal categories has been used in quantum informa-
tion theory in the program of categorical quantum mechanics (see e.g. [2]). Within
this framework one can define a category-theoretical notion of a Frobenius algebra.
A Frobenius algebra consists of a single object equipped with both a monoid and
comonoid structure such that these two structures interact in the right way. Frobe-
nius algebras turn out to be important as they can for example be used to characterize
orthogonal bases in Fhilb [6].

Our main results (theorem 8.2 and corollary 8.4) allow one to view Frobenius
algebras from a different yet equivalent point of view, as certain kinds of monads,
namely strong Frobenius monads. Hence everything that can be done with Frobenius
algebras can be done with monads of this sort instead. This ties well with so-called
monadic computation (see e.g. [14] and follow-up work) where monads are used to
model sequential computation in functional programming.

It is part of category theorists’ folklore that for any (symmetric) monoidal category
C there is an adjunction between monoids in C and strong monads over C, and
commutativity is preserved by both of these functors (see e.g. [18]). Dually there is a
similar adjunction between comonoids and costrong comonads. We extend this to an
equivalence between Frobenius algebras in C and strong Frobenius monads over C.

Another way to think of this result is as an analogue to the Eilenberg-Watts the-
orem ([7] and [17]) of homological algebra. When restricted to endofunctors, this
theorem characterises cocontinuous functors as those that arise as tensoring with a
fixed monoid. Our result characterises functors that arise as tensoring with a Frobe-
nius algebra. In a sense, the main result is simultaneously more and less general than
the Eilenberg-Watts theorem. It is more general since it holds in any monoidal cate-
gory and not just in Abelian ones (see [8] for another categorical generalisation). This
is fortunate as the usual proof of the Eilenberg-Watts theorem works for cancellative

1



semirings and cancellative semimodules but fails when trying to extend it further to
arbitrary semirings. On the other hand it is also less general in that we restrict our
attention to functors that arise as tensoring with a fixed Frobenius algebra instead of
an object of a more mundane kind.

It is well known that adjoint pairs of functors give rise to monads, and in fact
every monad can be seen as arising this way. This leads one to ask if something
similar can be said about the Frobenius case. Ross Street [16] showed that Frobenius
monads correspond exactly to ambijunctions, i.e. adjoint pairs of functors where both
functors are both left and right adjoints to each other.

In chapter 2 we develop the necessary background of monoidal categories, while
in chapter 3 we recap the necessary backround on monads. Chapter 4 introduces the
adjunction between objects and strong functors. All other adjunctions examined here
build on top of this or its dual. After this we prove the results concerning monoids
and strong monads in chapters 5 and 6. Chapter 7 examines the dual versions of
these, while the final chapter presents the Frobenius version of this adjunction, which
turns out to be an equivalence. The proof of lemma 2.17 is in the appendix, as the
proof is tedious and not central to the text.

The language used is that of traditional category theory. In particular, most of
the proofs are done by chasing diagrams instead of using the graphical calculus of
monoidal categories (see [15]) or the language of string diagrams. The main reason for
doing so is notational uniformity. This comes at a cost: the graphical calculus is quite
efficient when reasoning within a monoidal category, and it would have streamlined
and clarified some of the proofs. In particular the proof now relegated to the appendix
would have been much simpler in this notation. Likewise the fact that most structure
is preserved when an object A is considered as a functor − ⊗ A is almost trivial
graphically – just do the relevant operations ”on the side”.

However, the algebraic proof of this isn’t significantly worse, and for many other
results in this dissertation the graphical calculus wouldn’t have been useful at all. The
reason for this is that besides the monoidal structure we often reason about functors
and natural transformations, and the graphical calculus doesn’t handle this that well.
While string diagrams are efficient when reasoning about the latter, they have trouble
interacting with the monoidal structure. There are graphical approaches trying to
combine the two (e.g. [12] and [13]), but they also have their disadvantages when
using them to carry out the reasoning at hand. Hence it seems prudent to use just the
traditional diagrams so as to be able to stick to a single notation troughout and not
to have to worry about soundness and completeness properties. The only exception
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to this is the use of the free monoidal category construction, which we use as a source
of examples. When discussing this construction we use the graphical calculus freely.
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Chapter 2

Monoidal categories

Definition 2.1. A monoidal category consists of the following data:

• An underlying category C

• A functor C ×C → C, which write in infix notation as (C,D) 7→ C ⊗D and
(f, g) 7→ f ⊗ g. C ⊗ D is called the tensor product of C and D, and likewise
f ⊗ g is called the tensor product of f and g.

• An object I ∈ ob(C), called the tensor unit

• Natural isomorphisms α, λ and ρ with components

αA,B,C : A⊗ (B ⊗ C)→ (A⊗B)⊗ C,

λC : I ⊗ C → C, ρC : C ⊗ I → C.

The components of α are called associators, the components of λ are called left
unitors and the components of ρ are called right unitors.

This data must satisfy two axioms. First of all, the following pentagon diagram must
commute for all objects A,B,C and D:

A⊗ (B ⊗ (C ⊗D)) A⊗ ((B ⊗ C)⊗D) (A⊗ (B ⊗ C))⊗D

(A⊗B)⊗ (C ⊗D) ((A⊗B)⊗ C)⊗D

αA,B,C⊗D

idA ⊗ αB,C,D

αA⊗B,C,D

αA,B⊗C,⊗D

αA,B,C ⊗ idD
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The following triangle diagram must commute for every object A and B:

A⊗ (I ⊗B) (A⊗ I)⊗B

A⊗B

αA,I,B

idA ⊗ λB ρA ⊗ idB

When there is no risk of confusion, we speak of a monoidal category C instead of a
monoidal category (C,⊗, I, α, ρ, λ). If it so happens that all the natural isomorphisms
required from a monoidal category are in fact identities, we say that the monoidal
category in question is a strict monoidal category.

Besides the triangle and the pentagon diagram there are many other diagrams one
can build out of α, λ, ρ and their inverses. The reason to choose these two as axioms
for a monoidal category is that everything else you might want to hold follows from
them. The so-called coherence theorem states roughly that every diagram built out of
α, λ, ρ, id and their inverses by composition and tensoring commutes in any monoidal
category. This isn’t the exact statement, as for example it might happen in some
monoidal category that some objects in the diagram might be equal ”by accident”
and thus yield a non-intended counterexample. While proving the commutativity of
certain diagrams we use the coherence theorem rather freely. For the exact statement
and proof, see [11, section VII.2]

Sometimes the tensor product not only has a unit, but is also commutative. The
following definition captures this:

Definition 2.2. A symmetric monoidal category is a monoidal category C equipped
with a natural isomorphism γ with components γA,B : A⊗ B → B ⊗ A that satisfies
γB,A ◦ γA,B = idA⊗B for every A,B ∈ ob(C), and also for all objects A,B and C the
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following hexagon diagram commutes:

(A⊗B)⊗ C C ⊗ (A⊗B)

A⊗ (B ⊗ C) (C ⊗ A)⊗B

A⊗ (C ⊗B) (A⊗ C)⊗B

αA,B,C

idA ⊗ γB,C

γA⊗B,C

αC,A,B

αA,C,B

γA,C ⊗ idB

There is also a version of the coherence theorem for symmetric monoidal categories.
Formulating it exactly is slightly trickier, since for example even though γA,A and
idA⊗A have the same domain and codomain we don’t expect them to be equal in
general. If one thinks of γA,B as exchanging A and B, then one more or less expects
every two maps built with the same codomain and domain from the structural natural
transformations and identities to agree whenever the two maps agree on which object
was permuted where. That is, whenever the resulting permutations on objects agree,
the maps should as well. We also use this version of the coherence theorem as needed.

Here are some standard examples of (symmetric) monoidal categories:

• The category Set of sets, with cartesian product as the tensor product and a
fixed singleton {∗} as its unit.

• Various categories of ”sets with extra structure”, e.g. topological spaces Top,
groups Grp and posets Pos with the the cartesian product giving the tensor
product. In fact, every category with binary products and a terminal object
can be given the structure of a monoidal category.

• The category Rel, the objects of which are sets and morphisms are relations.
Again equipped with cartesian product as the tensor product.

• The category Vectk of vector spaces over a field k, with the tensor product of
vector spaces as the monoidal tensor functor

• The category Hilb of (complex) Hilbert spaces, where the tensor product of
Hilbert spaces is the monoidal tensor.
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Given any categories C and D, we denote the category of functors C → D by
[C,D]. There is an obvious binary operation on objects of [C,C], namely composition
(G,F ) 7→ G ◦ F . We would like to extend it into a functor [C,C] × [C,C] → C,
resulting in a monoidal category. The morphism part of this is a special case of the
following:

Definition 2.3. Given functors F,G : C → D, H,K : D → E and natural transfor-
mations σ : F → G, τ : H → K, the Godement product of σ and τ is defined by the
equation

(τ ∗ σ)C = τG(C) ◦H(σC) (= K(σC) ◦ τF (C))

In this situation, τ ∗ F means τ ∗ idF and likewise H ∗ σ means idH ∗ σ.

The following two lemmas (or variants thereof) concerning properties of the Gode-
ment product are standard, see e.g [4, chapter 1.3]. We provide proofs for the sake of
self-containment.

Lemma 2.4. In the above situation τ ∗σ is a natural transformation H ◦F → K ◦G

Proof. The naturality asserts that the outer rectangle in the diagram

HF (C) HG(C) KG(C)

HF (D) HG(D) KG(D)

HF (f)

H(σC)

H(σD)

HG(f)

τG(D)

τG(C)

KG(f)

commutes. But the square on the left commutes as σ is natural, and the one on the
right commutes as τ is.

Lemma 2.5. (i) If F : C→ D and G : D→ E, then idG ∗ idF = idG◦F

(ii) If F,H,L : C → D, G,K,M : D → E are functors and σ : F → H γ : H → L,
τ : G→ K and δ : K →M are natural transformations, then (δ ∗ γ) ◦ (τ ∗ σ) =

(δ ◦ τ) ∗ (γ ◦ σ)

(iii) If G,F : C→ D and σ : G→ F , then σ ∗ idC = σ = idD ∗ σ.

(iv) If F,H : B→ C, G,K : C→ D and L,M : D→ E are functors and γ : F → H,
σ : G → K and τ : L → M are natural transformations, then τ ∗ (σ ∗ γ) =

(τ ∗ σ) ∗ γ
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Proof. Just calculations with the definitions:

1. For any C ∈ ob(C),

(idG ∗ idF )C = (idG)F (C) ◦G((idF )C) = idGF (C) ◦ idGF (C) = idGF (C) = (idG◦F )C

2. For any C ∈ ob(C),

((δ ∗ γ) ◦ (τ ∗ σ))C = ((δ ∗ γ)C ◦ (τ ∗ σ)C

= δL(C) ◦K(γC) ◦ τH(C) ◦G(σC)

= δL(C) ◦ τL(C ◦G(γC) ◦G(σC)

= (δ ◦ τ)L(C) ◦G((γ ◦ σ)C)

= ((δ ◦ τ) ∗ (γ ◦ σ))C

3. For any C ∈ ob(C),

(σ ∗ idC)C = σidC(C) ◦ F (idC) = σC = idG(C) ◦ idD(σC) = (idD ∗ σ)C

4. For any B ∈ ob(B),

(τ ∗ (σ ∗ γ))B = τKH(B) ◦ L((σ ∗ γ)B)

= τKH(B) ◦ L(σH(B) ◦G(γB))

= τKH(B) ◦ L(σH(B)) ◦ LG(γB))

= (τ ∗ σ)H(B) ◦ LG(γB)

= ((τ ∗ σ) ∗ γ)B

1. and 2. show that composition of functors and the Godement product of natural
transformations is a functor [C,C]× [C,C]→ C. Even more is true:

Proposition 2.6. [C,C] is a strict monoidal category if tensor product is taken to
be composition on objects and the Godement product on morphisms.

Proof. By the previous lemma, ◦ is associative and has a unit, namely idC. Taking
identity transformations of the appropriate type gives us all the data required of a
strict monoidal category. As the natural tranformations in question all are identities,
all the triangle and pentagon diagrams commute.
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Another example that will be useful later on is that of a free monoidal category.
Our development of the notion follows closely that of [1]:

Definition 2.7. Given a category C, the free monoidal category generated by C is
denoted by C∗. It has as its objects all tuples (A1, . . . An) of objects of C, including
the empty sequence which we denote by I. Given objects Ā := (A1, . . . An) and
B̄ := (B1, . . . Bm), the set of morphisms Ā→ B̄ is given by

homC∗(Ā, B̄) =

{
∅ if m 6= n

{(f1, . . . fn) : fi ∈ homC(Ai, Bi)} otherwise

Composition of morphisms is done pointwise. The tensor product is given by con-
catenation, i.e. (A1, . . . An) ⊗ (B1, . . . Bm) = (A1, . . . An, B1, . . . Bm) on objects and
(f1, . . . fn)⊗ (g1, . . . gm) = (f1, . . . fn, g1, . . . gm) on morphisms. This makes C∗ into a
strict monoidal category.

One can represent a morphism f̄ = Ā→ B̄ pictorially by drawing the individual
morphisms next to each other:

B1 B2 . . . Bn

A1 A2 . . . An

f1 f2 fn

The word ’free’ in ’free monoidal category’ is there for a reason. It comes from this
construction having a similar universal property as say free groups: write i : C→ C∗

for the obvious inclusion. IfD is any monoidal category and F : C→ D is an arbitrary
functor, then there is a unique monoidal functor F̂ : C∗ → D satisfying F̂ ◦ i = F .

A nice concequence of this is that endofunctors on C and natural transformations
between them lift to C∗. As we haven’t defined monoidal functors, we don’t take this
route. Instead, we define the lift explicitly.

Definition 2.8. If F : C→ C is a functor, define F ∗ : C∗ → C∗ by F ∗(A1, . . . An) =

(F (A1), . . . F (An)) on objects and by F ∗(f1, . . . fn) = (F (f1), . . . F (fn)) on mor-
phisms. If σ : F → G is a natural transformation, then define σ∗ : F ∗ → G∗ by
σ∗
Ā

= (σA1 , . . . σAn).

Clearly this operation is a functor [C,C]→ [C∗, C∗]. Furthermore it is clear from
the definitions that (σ ∗ τ)∗ = σ∗ ∗ τ ∗. This observation will be useful later.

In the monoidal category of Hilbert spaces one can take adjoints of morphisms.
The properties of this are captured in the abstract concept of a dagger:
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Definition 2.9. A dagger on a category C is a contravariant functor † : C→ C that
is the identity on objects, and satisfies † ◦ † = idC. We write f † for its action on
morphisms.

Given a dagger † : C→ C, an isomorphism f is unitary provided f † = f−1.
A monoidal categoryC equipped with a dagger is called a dagger monoidal category,

if all the components of α, ρ and λ are unitary and (f⊗g)† = f †⊗g† holds for all mor-
phisms f and g. A symmetric monoidal category with a dagger is dagger symmetric
monoidal in case it is dagger monoidal and γ is unitary.

Besides Hilb, also Rel can be given the structure of a dagger symmetric monoidal
category, when we define the dagger of a relation to be its inverse.

Given a dagger † on C, we would like to make [C,C] into a dagger monoidal
category. An obvious way to try to do this would be to apply the dagger pointwise
to natural transformations, i.e. if σ : F → G in [C,C], define σ† by (σ†)C = (σC)†.
However, it’s not clear that this results in a natural transformation. The solution is
to take the subcategory of [C,C] on which this works:

Definition 2.10. Given a dagger † on C, let [C,C]† be the full subcategory of [C,C]

that has as its objects those functors F : C → C that commute with †, i.e. satisfy
F (f †) = (F (f))† for all morphisms f .

Indeed this does work: if σ : F → G is a natural transformation and F and G

commute with the dagger, then σ†, defined by (σ†)C = (σC)† is a natural transforma-
tion G→ F . To see this, consider a morphism f : C → D in C. As σ is natural, the
diagram

G(C) F (C)

G(D) F (D)

G(f †)

σC

σD

F (f †)

commutes. As † is involutive and F and G commute with it, applying † to this
diagram results in the commutative diagram

G(C) F (C)

G(D) F (D)

G(f)

σ†C

σ†D

F (f)
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proving that σ† is natural. As all the other properties required from a dagger follow
from † : C → C having those, the assignment (σ : F → G) 7→ (σ† : G → F ) is a
dagger on [C,C]†.

If F and G commute with the dagger, so does G ◦F . Thus ◦ makes [C,C]† into a
monoidal category. Consider two natural transformations σ : F → G, τ : H → K in
[C,C]†. Then

(τ ∗ σ)†C = ((τG(C) ◦H(σC))† = H(σ†C) ◦ τ †G(C) = (τ † ∗ σ†)C

so that (τ ∗ σ)† = τ † ∗ σ†. As the associators and unitors are identities, they are
unitary pointwise. Hence we have proved that

Proposition 2.11. [C,C]† is dagger monoidal.

One of the motivating reasons of coming up with the concept of a monoidal cate-
gory in the first place is that we can then define monoids in them:

Definition 2.12. A monoid in a monoidal category C consists of an object M ∈
ob(C) and morphisms m : M ⊗M →M , u : I →M such that

m ◦ (idM ⊗m) = m ◦ (m⊗ idM) ◦ αM,M,M

and
m ◦ (idM ⊗ u) ◦ ρ−1

M = idM = M ◦ (u⊗ idM) ◦ λ−1
M .

The morphism m is called the multiplication of the monoid, and u is called the unit
of the monoid. We speak of the monoid M instead of the monoid (M,m, u), when
there is no risk of confusion.

If we’re working in a symmetric monoidal category, a monoid M is called commu-
tative in case m ◦ γM,M = m.

In Set, monoids in the above sense correspond to monoids in the usual sense, and
commutativity in the above sense is just commutativity as usual. In Top monoids
are topological monoids.

As is usual in category theory, the monoids come with a notion of morphism
between monoids:

Definition 2.13. Given monoids (M,mM , uM) and (N,mN , uN) in C, a morphism
f : M → N is a monoid homorphism from the monoid M to the monoid N , provided
the equations f ◦ uM = uN and f ◦mM = mN ◦ (f ⊗ f) hold.
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Obviously idM is a monoid homomorphism M → N . Furthermore, if f : M → N

and g : N → O are monoid homomorphisms, then g ◦ f ◦ uM = g ◦ uN = uO and
g ◦ f ◦mM = g ◦mN ◦ (f ⊗ f) = mO ◦ (g ⊗ g) ◦ (f ⊗ f) = mO ◦ ((g ◦ f) ⊗ (g ◦ f)),
showing that g ◦ f is also a monoid homomorphism. Hence we get a category:

Definition 2.14. Given a monoidal categoryC, the category Mon(C) has monoids in
C as its objects, monoid homomorphisms as its morphisms and it inherits composition
of morphisms from that of C. If C is also symmetric, then cMon(C) is the full
subcategory of Mon(C) having commutative monoids as its objects.

If one reverses all the arrows in the above, we get the notions of comonoid, homo-
morphisms between them and the category Comon(C). To be explicit, we have the
following:

Definition 2.15. • A comonoid in a monoidal category C consists of an object
M ∈ ob(C) and morphisms d : M →M ⊗M , e : M → I such that

αM,M,M ◦ (idM ⊗ d) ◦ d = (d⊗ idM) ◦ d

and
ρM ◦ (idM ⊗ e) ◦ d = idM = λM ◦ (e⊗ idM) ◦ d.

The morphism d is called the comultiplication of the comonoid, and e is called
the counit of the monoid. A comonoid M in a symmetric monoidal category is
called cocommutative in case γM,M ◦ d = d.

• Given comonoids (M,dM , eM) and (N, dN , eN) in C, a morphism f : M → N is
a comonoid homorphism from the comonoid M to the comonoid N , provided
the equations eN ◦ f = eM and (f ⊗ f) ◦ dM = dN ◦ f hold.

• Given a monoidal categoryC, the category Comon(C) has comonoids inC as its
objects, comonoid homomorphisms as its morphisms and it inherits composition
of morphisms from that of C. In case C is symmetric monoidal the category of
cocommutative comonoids is denoted by cComon(C).

Lastly, it is possible for an object to have both a monoid and a comonoid structure
on it. This isn’t particularly interesting in itself unless these structures interact
somehow. This leads to the concept of a Frobenius algebra:
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Definition 2.16. If (M,m, u) is a monoid in C, and (M,d, e) is a comonoid in C,
then (M,m, u, d, e) is a Frobenius algebra in C if it satisfies the Frobenius law :

(m⊗ idM) ◦ (idM ⊗ d) = (idM ⊗m) ◦ (d⊗ idM)

A Frobenius algebra in a symmetric monoidal category is called commutative in case
the underlying monoid is commutative and the underlying comonoid is cocommuta-
tive. If C is dagger monoidal, the Frobenius algebra M is a †-Frobenius algebra in
case d = m† and e = u†, i.e. the underlying comonoid is obtained by daggering the
underlying monoid. A Frobenius algebra is special if m ◦ d = idM . Notions such as
commutative dagger special Frobenius algebra mean exactly what one would expect
them to mean.

As an example, consider the category Rel with the † given by taking inverses of
relations. Let G be any group. View the multiplication m : G × G → G and the
function u : {∗} → G : ∗ 7→ 1G as relations. Then (G,m, u) is a monoid in Rel and
since Rel is dagger monoidal, (G,m†, u†) is a comonoid. It is easy to check that the
Frobenius law is satisfied, so that (G,m, u,m†, u†) is a dagger Frobenius algebra. It
is also special, and it is commutative in case G is commutative.

The obvious way of defining morphisms between Frobenius algebras is to con-
sider morphisms that are homomorphisms with respect to the underlying monoid and
comonoid structures. Call such a morphism a strict morphism of Frobenius algebras.
This notion is a bit too stringent, as witnessed in the following lemma.

Lemma 2.17. If f : M → N is a strict morphism of Frobenius algebras, then f is
an isomorphism in C and its inverse is also a strict morphism of Frobenius algebras

Proof. The proof is tedious, straightforward and not central to the text. Hence the
proof is in the appendix.

This means that if one uses strict morphisms to define the category of Frobenius
algebras in C, the resulting category would be a groupoid. To avoid this, we define
morphisms of Frobenius algebras as follows.

Definition 2.18. If (A,mA, uA, dA, eA) and (B,mB, uB, dB, eB) are Frobenius alge-
bras and f : A→ B, then f is a Frobenius homomorphism from A to B if f ◦mA =

mA ◦ (f ⊗ f) and (f ⊗ f) ◦ dA = dB ◦ f .
The category Frob(C) has Frobenius algebras in C as its objects, Frobenius ho-

momorphisms as its morphisms and it inherits composition of morphisms from that
of C.
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Chapter 3

Monads

Usually in introductory textbooks on category theory one defines monads and comon-
ads as certain kinds of endofunctors C → C. As [C,C] is a monoidal category, we
can define these and other notions using terminology we developed for monoidal cat-
egories.

Definition 3.1. • A monad on a categoryC is a monoid in [C,C], and Monad(C) =

Mon([C,C])

• A comonad on a category C is a comonoid in [C,C], and Comonad(C) =

Comon([C,C])

• A Frobenius monad on a category C is a Frobenius algebra in [C,C], and
FrobMonad(C) = Frob([C,C])

• A dagger Frobenius monad on a dagger categoryC is a dagger Frobenius algebra
in [C,C]†.

• A (dagger) Frobenius monad is special if it is special as a Frobenius algebra in
[C,C].

This definition gives rise to the usual notions of monad and co-monad. Unwinding
the definition, a monad is a functor T : C→ C together with natural transformations
µ : T ◦ T → T , η : id → T satisfying µ ◦ (µ ∗ T ) = µ ◦ (T ∗ µ) and µ ◦ (T ∗ η) =

µ ◦ (η ∗ T ) = idT .
One example of a monad on Set is given by the covariant powerset functor P ,

where µ is given by union and η is defined as ηA : a 7→ {a}.
We recall the definition of an adjoint pair of functors:
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Definition 3.2. An adjunction between two categories C and D consists of functors
two functors F : C → D, G : D → C and of two natural transformations η : idC →
G ◦ F ε : F ◦G→ idD such that the equations

idF = (ε ∗ F ) ◦ (F ∗ η)

idG = (G ∗ ε) ◦ (η ∗G)

hold. In this situation F is called the left adjoint and G is called the right adjoint. We
write this as (ε, η) : F a G or simply as F a G when η and ε are clear from context.

It is a standard result whenever we have an adjunction F a G we also have a
monad structure on G ◦ F given by (G ◦ F,G ∗ ε ∗ F, η). Furthermore, every monad
arises this way. One way of proving this is to consider the Kleisli category of a monad:

Definition 3.3. The Kleisli category of a monad (T, µ, η) onC, denoted byCT , has as
its objects those of C, and morphisms f : A→ B in CT are morphisms f : A→ T (B)

in C. Given two morphisms f : A → B and g : B → C in CT , their composite g ◦ f
in CT is defined to taking the composite

A T (B) T 2(C) T (C)
f T (g) µ

in C.

There are functors C→ CT and CT → C defined by

(A B) (A B T (B))
f f η

and

(A B = A T (B)) (T (A) T 2(B) T (B))
f T (f) µ

respectively, and these form an adjunction, the functorC→ CT being the left adjoint.
The proofs that CT is a valid category, that these operations are functors and adjoint
to each other, are all standard and can be found in any standard textbook on category
theory, see e.g. [5, chapter4].

The reason we introduced the Kleisli category is the following lemma.

Lemma 3.4. If T is a dagger Frobenius monad on C, then the dagger on C gives
rise to one on CT .
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Proof. Let (T, µ, η, µ†, η†) be a dagger Frobenius monad. We claim that the operation

(A T (B)) (B T (B) T 2(B) T (A))
f η µ† T (f†)

is a dagger on CT . It is contravariant on morphisms and the identity on objects, so
we just need to check that it is involutive and functorial. As T commutes with the
dagger, applying this operation twice to f : A→ T (B) results in the morphism

A T (A) T 2(A) T 3(B) T 2(B) T (B)
η µ† T 2(f) T (µ) T (η†)

To see that this equals f , consider the diagram

A T (A) T 2(A) T 3(B) T 2(B)

T (B) T 2(B) T 3(B)

T 2(B)

T (B)

f

η

η

id

T (f)

µ† T 2(f)

µ†

T (µ†)

id

µ

T 2(η†)

µ

T (µ)

T (η†)

(i) (ii) (iii)

(iv) (v) (vi)

Region (i) is just the naturality square of η. The commutativity of region (ii) follows
from the naturality of µ†. and (iii) is an instance of the Frobenius law of T . (iv) is
one of the monad laws and (v) one of the comonad ones. Finally, (vi) commutes by
naturality of µ. Hence the diagram commutes, proving the claim.

Next we check that this operation operation is functorial. First of all, identities
A→ A in CT are arrows η : A→ T (A) in C. This daggers to

A T (A) T 2(A) T (A)
η µ† T (η†)

which equals ηA since T (η†) ◦ T (µ†) = id by the comonoid axioms. Hence identities
are preserved.

To see that composition is preserved, consider morphisms f : A → T (B) and
g : B → T (C). Their composite is

A T (B) T 2(C) T (C)
f T (g) µ
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which daggers to

C T (C) T 2(C) T 3(C) T 2(B) T (A)
η µ† T (µ†) T 2(g†) T (f†)

.
On the other hand, the dagger of f is

B T (B) T 2(B) T (A)
η µ† T (f†)

and that of g is

C T (C) T 2(C) T (B)
η µ† T (g†)

and these compose to

C T (C) T 2(C) T (B) T 2(B) T 3(B) T 2(A)

T (A)

η µ† T (g†) T (η) T (µ†) T 2(f†)

µ

To see that these are equal, i.e. that the composite of the daggers equals the dagger
of the composite, consider the diagram

C T (C) T 2(C) T (B) T 2(B)

T 2(C) T 3(C) T 2(B) T 3(B) T 3(B)

T 2(B) T 2(A)

T (A)

η µ†

µ†

T (g†)

µ†

T (η)

T (µ†)
µ†

T (µ†) T 2(g†) T 2(η)

id
T (µ)

µ
T 2(f †)

T (f †)
µ

(i) (ii)

(iii)
(iv)

(v)

Now region (i) commutes by the associativity of the comonad. Commutativity of
(ii) follows from µ† being natural and (iii) is just the Frobenius law of T . (iv) is one
of the unit laws of the monad and (v) commutes as µ is natural. Hence the whole
diagram commutes, concluding the proof.
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Recall that a faithful functor is a functor U : C′ → C that is injective on hom-
sets, i.e. for every f, g : A → B U(f) = U(g) implies f = g. In this situation
we say that (C′, U) (or just C′ whenever U is obvious from context), is a concrete
category over C. The usual context for this is when every object of C′ is an object
of C with some extra structure and morphisms of C′ are morphisms of C preserving
this structure. Examples of this are various categories of sets with extra structure
(topological spaces, groups, etc.) together with the forgetful functors to the category
of sets. The standard reference for concrete categories is [3]. With this in mind, we
can define the following notion, used primarily to state the results obtained in this
dissertation succintly:

Definition 3.5. Let (C′, UC), (D′, UD) be concrete categories over C and D respec-
tively. We say that a functor F : C→ D can be lifted if there is a functor F ′ : C′ → D′

such that UD ◦ F ′ = F ◦ UC, i.e. the diagram

C′ D′

C D

UC

F ′

F

UD

commutes.
If (ε, η) : F a G is an adjunction, where F : C → D and G : D → C, we say that

the adjunction can be lifted to an adjuction between C′ and D′ if F and G can be
lifted to F ′ and G′ respectively and there are natural transformations η′, ε′ satisfying
UC(η′A) = ηU_C(A) and UD(ε′B) = εUD(B) forming an adjunction (ε′, η′) : F ′ a G′. In
case G′ and F ′ form an equivalence of categories, we say that the adjunction can be
lifted to an equivalence.

In the usual context where concrete categories arise, the interpration for this is
that for every object of C equipped with the extra structure making it an object
of C′, the image of it under F inherits from this a structure making it an object
of D′, and morphisms respect the induced structure. In this context being able to
lift an adjunction means in addition to this that the natural transformations of the
adjunction respect the induced extra structure. Examples of this will be seen in
subsequent chapters.
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Chapter 4

The strength adjunction

As monoidal categories are categories with some extra structure, one might expect
that there are interesting classes of functors interacting with this structure in some
way or another. One such class is that of strong functors.

Definition 4.1. Given a monoidal category C, a strong functor C→ C is a functor
F : C→ C equipped with a natural transformation st with components

stA,B : A⊗ F (B)→ F (A⊗B)

which satisfies (F ∗ λ) ◦ st = λ and (F ∗ α) ◦ st ◦ (id⊗ st) = st ◦ α, or in diagrams,

I ⊗ F (A) F (I ⊗ A)

F (A)

λA

stI,A

F (λA)

and

A⊗ (B ⊗ F (C)) A⊗ F (B ⊗ C) F (A⊗ (B ⊗ C))

(A⊗B)⊗ F (C) F ((A⊗B)⊗ C)

αA,B,F (C)

idA ⊗ stB,C

stA⊗B,C

F (αA,B,C)

stA,B⊗C

must commute for every object A,B and C.
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A morphism of strong functors F,G : C→ C is a natural transformation σ : F →
G which satisfies σ ◦ stF = stG ◦ (id⊗ σ), ie. for which the diagram

A⊗ F (B) F (A⊗B))

A⊗G(B) G(A⊗B)

idA ⊗ σB

stFA,B

stGA,B

σA⊗B

commutes. We denote the category of strong functors C → C and their morphisms
by str(C).

Let T : C → C be a functor and η : idC → T a natural transformation. Then we
can use η to make T ∗ : C∗ → C∗ into a strong functor by setting stĀ,B̄ := ηĀ ⊗ idB̄,
so pictorially stĀ,B̄ is the morphism

T (A1) . . . T (An) T (B1) . . . T (Bm)

A1 . . . An T (B1) . . . T (Bm)

ηA1 ηAn id id

The first strength axiom is trivial as both maps evaluate to the identity on Ā, and
the other one boils down to the fact that

T (A1) . . . T (An) T (B1) . . . T (Bm) T (C1) . . . T (Ck)

A1 . . . An T (B1) . . . T (Bm) T (C1) . . . T (Ck)

A1 . . . An B1 . . . Bm T (C1) . . . T (Ck)

ηA1 ηAn id id id id

id id ηB1 ηBm id id

equals

T (A1) . . . T (An) T (B1) . . . T (Bm) T (C1) . . . T (Ck)

A1 . . . An B1 . . . Bm T (C1) . . . T (Ck)

ηA1 ηAn ηB1 ηBm id id
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As another example of a strong functor, consider an object C in a monoidal
category, and the functor −⊗C. If we set stA,B = αA,B,C , we have a map of the right
type. The first of the strength equations follows by coherence and the latter is just
the pentagon diagram, so this makes −⊗C into a strong functor. Given a morphism
f : C → D, the family (idA ⊗ f)A∈ob(C) is a natural transformation −⊗ C → −⊗D,
as ⊗ is a functor. To see that −⊗ f is a morphism of strong functors, note that the
diagram

A⊗ (B ⊗ C) (A⊗B)⊗ C

A⊗ (B ⊗D) (A⊗B)⊗D

idA ⊗ (idB ⊗ f)

αA,B,C

αA,B,D

idA⊗B ⊗ f

commutes as idA⊗B = idA ⊗ idB and α is natural. Hence we have a functor F : C→
str(C) defined by F(C) = − ⊗ C and F(f) = − ⊗ f . We also have a functor
G : str(C)→ C defined by G(F ) = F (I) and G(σ) = σI .

Theorem 4.2. F a G

Proof. As G ◦ F(A) is I ⊗ A, the natural transformation η := λ−1 is a natural
isomorphism idC → G◦F. We also need a natural transformation ε : F◦G→ idstr(C).
The components of ε are morphisms of strong functors of the form −⊗F (I)→ F (−).
Hence a natural candidate for εF is (F ∗ ρ) ◦ strF−,I , i.e. (εF )A is the composite
A ⊗ F (I) → F (A ⊗ I) → F (A). For every functor F , the map εF is a natural
transformation as it is a composite of natural transformations, so we just need to
check that it is a morphism of strong functors. As st−⊗F (I)

A,B = αA,B,F (I), we wish to
prove that the outer rectangle in

A⊗ (B ⊗ F (I)) (A⊗B)⊗ F (I)

A⊗ (F (B ⊗ I)) F (A⊗ (B ⊗ I)) F ((A⊗B)⊗ I)

A⊗ F (B) F (A⊗B)

idA ⊗ stFB,I

αA,B,F (I)

stFA,B⊗I

idA ⊗ F (ρB)

stFA⊗B,I

stFA,B

F (αA,B,I)

F (idA ⊗ ρB) F (ρA⊗B)
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commutes. The upper rectangle commutes as F is strong. To see that the lower rect-
angle commutes, note that the triangle inside commutes, as it is just F applied to a
diagram that commutes by coherence. The left half of the lower rectangle commutes
just because stF is a natural transformation. Hence the whole diagram commutes
and εF is a morphism in the category str(C). To see that ε defines a natural trans-
formation, let τ : F → G be a morphism of strong functors. Consider the diagram

A⊗ F (I) F (A⊗ I) F (A)

A⊗G(I) G(A⊗ I) G(A)

idA ⊗ τI

stFA,I

stGA,I

τA⊗I

G(ρA)

F (ρA)

τA

The square on the left commutes as τ is a morphism of strong functors, and the
square on the right commutes as τ is natural. As A was arbitrary, this means that
the diagram

F ◦G(F ) F

F ◦G(G) G

F ◦G(τ)

εF

εG

τ

commutes, so that ε is indeed natural.
Finally, we prove the equations showing that we have an adjunction.

(G ∗ ε) ◦ (η ∗G)F = G(εF ) ◦ ηG(F )

= F (ρI) ◦ stFI,F (I) ◦ λ−1
F (I)

= F (ρI) ◦ F (λ−1
I ) by the strength triangle

= F (λI) ◦ F (λ−1
I ) by coherence

= idF (I) = (idG)F
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(ε ∗ F) ◦ (F ∗ η)A = εF(A) ◦ F(ηA)

= F(A)(ρ) ◦ stF(A)

,I
◦ (−⊗ ηA)

= (ρ− ⊗ idA) ◦ α−,I,A ◦ (−⊗ λ−1
A )

= −⊗ idA by the triangle diagram

= idF(A) = (idF)A

We call this the strength adjunction. Our results consist of lifting this and its
dual in various circumstances.
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Chapter 5

Monads and monoids

It might so happen that the underlying functor of a monad is a strong functor. To
make this situation interesting, we have to require for the strength map to interact
with the monad structure. This results in the notion of a strong monad.

Definition 5.1. Let C be a monoidal category. Then a strong monad on C is a
tuple (T, µ, η, st) such that (T, µ, η) is a monad on C, (T, st) is a strong functor,
st ◦ (id⊗ η) = η and µ ◦ T (st) ◦ st = st ◦ (id⊗ µ), or in diagrams

A⊗B A⊗ T (B)

T (A⊗B)

ηA⊗B

idA ⊗ ηB

stA,B

and

A⊗ TT (B) T (A⊗ T (B)) TT (A⊗B)

A⊗ T (B) T (A⊗B)

idA ⊗ µB

stA,T (B)

stA,B

µA⊗B

T (stA,B)

commute. A morphism of strong monads is a natural transformation, which is a
morphism of the underlying monads and the underlying strong functors. We denote
the category of strong monads by strMonad(C).

The powerset monad on Set is strong: just define stA,B : A× P(B)→ P(A×B)

by stA,B(a,X) = {a} ×X. In fact, every monad on Set is strong.
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As another example, given a monad (T, µ, η) on C we can lift it to a strong monad
on C∗: as the operation (σ : F → G) 7→ (σ∗ : F ∗ → G∗) is functorial and preserves
the Godement product, (T ∗, µ∗, η∗) is a monad on C∗. We already know that setting
stĀ,B̄ = ηĀ ⊗ idB̄ makes T into a strong functor. To see that it also a strong monad,
note that the axiom concerning η and strength boils down to the fact that

T (A1) . . . T (An) T (B1) . . . T (Bm)

A1 . . . An T (B1) . . . T (Bm)

A1 . . . An B1 . . . Bm

ηA1 ηAn id id

id id ηB1 ηBm

equals

T (A1) . . . T (An) T (B1) . . . T (Bm)

A1 . . . An B1 . . . Bm

ηA1 ηAn ηB1 ηBm

To see that also the other axiom holds, note that

T (A1) . . . T (An) T (B1) . . . T (Bm)

T 2(A1) . . . T 2(An) T 2(B1) . . . T 2(Bm)

T (A1) . . . T (An) T 2(B1) . . . 2(Bm)

A1 . . . An T 2(B1) . . . T 2(Bm)

µA1 µAn µB1 µBm

T (ηA1) T (ηAn) id id

ηA1 ηAn id id
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equals

T (A1) . . . T (An) T (B1) . . . T (Bm)

A1 . . . An T (B1) . . . T (Bm)

A1 . . . An T 2(B1) . . . T 2(Bm)

ηA1 ηAn id id

id id µB1 µBm

because µ ◦ T (η) = idT by the monad axioms.
The rest of the chapter is dedicated to lifting the strength adjunction to one

between monoids and strong monoids. We begin with considering how to lift the
functor F.

Given a monoid (M,m, u) in C, is there a way to use m and u to get a (strong)
monad structure on the functor F(M) = −⊗M? As F(M) ◦F(M) = (−⊗M)⊗M ,
an obvious choice for the multiplication is µA := (idA ⊗m) ◦ α−1

A,M,M and for the unit
ηA := (idA ⊗ u) ◦ ρ−1

A . To see that this indeed gives a strong monad structure on
F(M), we need to check that the multiplication and the unit are morphisms of strong
functors, that the monad laws are satisfied and that the the monad structure interacts
with the strength giving us a strong monad. For the first one, it suffices to check that
α−1
−,M,M and ρ−1 are morphisms of strong functors, as we’ve already seen −⊗ f to be

a morphism of strong functors for any morphism f . As stG◦F = G(stF ) ◦ stG, this
boils down to checking that

A⊗ ((B ⊗M)⊗M) ((A⊗B)⊗M)⊗M

A⊗ (B ⊗ (M ⊗M)) (A⊗B)⊗ (M ⊗M)

idA ⊗ α−1
B,M,M

(αA,B,M ⊗ idM) ◦ αA,B⊗M,M

αA,B,M⊗M

α−1
A⊗B,M,M

and

A⊗B A⊗B

A⊗ (B ⊗ I) (A⊗B)⊗ I

idA ⊗ ρ−1
B

idA,B

αA,B,I

ρ−1
A⊗B
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commute, which follows from coherence.
Then we check the monad laws. Consider the diagram

(A⊗M)⊗ I (A⊗M)⊗M

A⊗M A⊗ (M ⊗ I) A⊗ (M ⊗M)

A⊗M

α−1

id⊗ u

ρ−1

id⊗ ρ−1

id

α−1

id⊗ (id⊗ u)

id⊗m

The triangle on the left commutes by coherence, the rectangle commutes as α−1 is
natural and the lower triangle commutes asM is a monoid. Hence the whole diagram
commutes establishing that µA ◦ (η ∗ F(M))A = (idF(M))A. As A was arbitrary, this
means that µ ◦ (η ∗ F(M)) = idF(M).

The diagram

(A⊗ I)⊗M (A⊗M)⊗M

A⊗M A⊗ (I ⊗M) A⊗ (M ⊗M)

A⊗M

α−1

(id⊗ u)⊗ id

ρ−1 ⊗ id

id⊗ λ−1

id

α−1

id⊗ (u⊗ id)

id⊗m

commutes for similar reasons, proving that the other unit law µ ◦ (F(M) ∗ η) =

idF(M) holds.
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To see that µ is associative, consider the diagram

((A⊗M)⊗M)⊗M (A⊗ (M ⊗M))⊗M (A⊗M)⊗M

A⊗ ((M ⊗M)⊗M) A⊗ (M ⊗M)

(A⊗M)⊗ (M ⊗M) A⊗ (M ⊗ (M ⊗M))

(A⊗M)⊗M A⊗ (M ⊗M) A⊗M

α−1

α−1 ⊗ id (id⊗m)⊗ id

α−1

id⊗ (m⊗ id)

α−1

id⊗m

id⊗ α−1

id⊗m id⊗ (id⊗m)

α−1

α−1 id⊗m

The rectangles in the bottom left and top right corners commute as α−1 is natural.
The rectangle in the upper left corner commutes by coherence, and the remaining
square by the associativity of m. Hence the whole square commutes, showing that

µ ◦ (F(M) ∗ µ) = µ ◦ (µ ∗ F(M))

i.e. that µ is associative. Thus F(M) is a monad.
To see that the monad is strong, we first check that st ◦ (id ⊗ η) = η. Consider

the diagram

A⊗B A⊗ (B ⊗ I) A⊗ (B ⊗M)

(A⊗B)⊗ I (A⊗B)⊗M
ρ−1

id⊗ ρ−1 id⊗ (id⊗ u)

(id⊗ id)⊗ u

α α

The triangle on the left commutes by coherence and the rectangle on the right by
naturality of α. Hence the whole diagram commutes showing that st ◦ (id⊗ η) = η.
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Then we prove that µ ◦ T (st) ◦ st = st ◦ (id⊗ µ) by considering the diagram

A⊗ ((B ⊗M)⊗M) (A⊗ (B ⊗M))⊗M ((A⊗B)⊗M)⊗M

A⊗ (B ⊗ (M ⊗M)) (A⊗B)⊗ (M ⊗M)

A⊗ (B ⊗M) (A⊗B)⊗M

id⊗ α−1

α

id⊗ (id⊗m)

α

id⊗m

α

α−1

α⊗ id

The upper rectangle commutes by coherence and the lower as α is natural. Hence
the outer rectangle commutes, implying µ ◦ T (st) ◦ st = st ◦ (id⊗ µ).

Furthermore, if f : M → N is a monoid homomorphism, then −⊗ f is morphism
of strong functors for which the diagrams

A A⊗ I A⊗M

A⊗N

ρ−1

id⊗ uN

id⊗ uM

id⊗ f

and

(A⊗M)⊗M A⊗ (M ⊗M)

(A⊗N)⊗N A⊗M

A⊗ (N ⊗N) A⊗N

(id⊗ f)⊗ f

α−1

α−1

id⊗mM

id⊗ fid
⊗ (f
⊗ f

)

id⊗mN

commute. This means that −⊗ f ◦ ηM = ηN and µN ◦ (−⊗ f)⊗ f = (−⊗ f) ◦ µM

so that − ⊗ f is a morphism of strong monads. Hence we’ve shown that the map
FMon defined by FMon(M,m, u) = (− ⊗M,µM , ηM , stF(M)) and FMon(f) = − ⊗ f is
a functor Mon(C)→ strMonad(C).

Going in the other direction we lift G by showing that for any strong monad
(T, µ, η, st) the mapsm := µI ◦T (ρT (I))◦stT (I),I and u := ηI define a monoid structure
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on T (I), and that for any morphism σ : S → T of strong monads, σI is a monoid
homomorphism. Essentially the monoid axioms follow from the monad ones.

We begin with the unit laws. Consider the diagram

I ⊗ T (I) T (I)⊗ T (I)

T (I ⊗ I) T (T (I)⊗ I)

T (I) T 2(I)

T (I)

λ

η ⊗ id

st

T (η ⊗ id)

T (ρ)

st

T (η)

id
µ

T (ρ)

The parrallelogram on the top commutes as st is natural. The triangle on the left
commutes as ρI = λI by coherence and T is a strong functor. The rectangle in the
middle commutes as ρ is natural. Finally, the triangle on the bottom commutes as T
is a monad. Hence the whole diagram commutes giving us

m ◦ (u⊗ idT (I)) ◦ λ−1
T (I) = idT (I)

For the other unit law, consider the diagram

T (I)⊗ T (I)

T (I)⊗ I T (T (I)⊗ T (I)

T (I) T 2(I)

T (I)

ρ

id⊗ η

η

η

id

st

T (ρ)

µ

The triangle on the top commutes as T is a strong monad. The rectangle in the
middle commutes as η is natural, and the triangle on the bottom commutes because
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T is a monad. Hence
m ◦ (idT (I) ⊗ u) ◦ ρ−1

T (I) = idT (I).

To claim that m is associative is to claim that the outer rectangle in the diagram

T (I)⊗ (T (I)⊗ T (I)) T (I)⊗ T (T (I)⊗ I) T (I)⊗ T 2(I) T (I)⊗ T (I)

T (T (I)⊗ (T (I)⊗ I)) T (T (I)⊗ T (I))

T 2(T (I)⊗ I) T (T (I)⊗ I)

T 3(I) T 2(I)

T 2(I) T (I)

T ((T (I)⊗ T (I))⊗ I) T 2(I)

T (T (T (I)⊗ I)⊗ I) T (T 2(I)⊗ I) T (T (I)⊗ I)

(T (I)⊗ T (I))⊗ T (I) T (T (I)⊗ I)⊗ T (I) T 2(I)⊗ T (I) T (I)⊗ T (I)

α

id⊗ st id⊗ T (ρ) id⊗ µI

T (id⊗ ρ)

µT (I)⊗I

µT (I)

µI

T (T (ρ)⊗ id) T (µ⊗ id)

st⊗ id T (ρ)⊗ id µI ⊗ id

st st

st

T (st)

T 2(ρ) T (ρ)

T (µI) TµI

T (α)

T (st⊗ id)

st

st

T (ρ)

T (ρ)

µIT (ρ)

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

commutes. Region (i) commutes as T is a strong functor. (ii) and (ix) commute
because st is natural. (iii) is just the fact that T is a strong monad. (iv) is an
instance of coherence. (v) commutes because ρ is natural and (vi) because µ is. (vii)
is associativity of the monad T and (viii) commutes because ρ is natural. Hence the
whole diagram commutes and thus m is associative.

Given a morphism σ : S → T of strong monads, we show that σI is a monoid
homomorphism. By definition σ ◦ ηS = ηT , so σI preserves the unit. Consider the
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diagram

S(I)⊗ S(I) S(S(I)⊗ I) S2(I) S(I)

S(I)⊗ T (I) T (S(I)⊗ I) TS(I)

T (I)⊗ T (I) T (T (I)⊗ I) T 2(I) T (I)

id⊗ σ

stS

stT

σ ⊗ id

σ

S(ρ)

σ

µS

T (σ ⊗ id)

T (ρ)

T (σ)

σ

stT T (ρ) µT

(i) (ii)

(iii) (iv)

(v)

(i) commutes as σ is a morphism of strong functors and (ii) because it is natural. (iii)
commutes because stT is natural and (iv) because ρ is. Finally, (v) comutes because
σ is a morphism of monads. Hence the outer rectangle commutes which means that

σI ◦mS = mT ◦ (σI ⊗ σI)

so that σI is indeed a monoid homomorphism.
Hence the map GMon defined by GMon(T, µ, η, st) = (T (I),m, u) and GMon(σ) =

σI is a functor strMonad(C) → Mon(C). Define η and ε as we defined them in the
proof of theorem 4.2. To see that they are natural transformations η : idMon(C) →
GMon ◦ FMon and ε : FMon ◦GMon → id, we only have to check that ηM is always a
monoid homomorphism and that εT is always a morphism of strong monads.

For the former, we wish to show that λ−1
M is a homomorphism from a monoid

(M,m, u) to the monoid GMon ◦ FMon(M). The latter has I ⊗M as its underlying
object, the map (idI ⊗ u)⊗ ρ−1

I as its unit and the composite

(I ⊗M)⊗ (I ⊗M) ((I ⊗M)⊗ I)⊗M (I ⊗M)⊗M I ⊗ (M ⊗M) I ⊗Mα ρ⊗ id α−1 id⊗m

as its multiplication. λ−1
M preserves the unit as λ−1

I = ρ−1
I due to coherence and

because
I M

I ⊗ I I ⊗M

λ−1
I

u

id⊗ u

λ−1
M
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commutes by naturality of λ−1. Furthermore, the top half of

M ⊗M (I ⊗M)⊗ (I ⊗M) ((I ⊗M)⊗ I)⊗M

(I ⊗M)⊗M

I ⊗ (M ⊗M)

M I ⊗M

m

λ−1 ⊗ λ−1

λ−1

λ−1

α

ρ⊗ id

α−1

id⊗m

commutes by coherence and the bottom half by naturality of λ−1 so that λ−1
M is

indeed a monoid homomorphism. Note that if one replaces λ−1 with λ throughout in
the previous two diagrams, they commute nevertheless. This means that λ is also a
monoid homorphism so that λ−1

M is in fact an isomorphism of monoids.
Then we show that εT is a morphism of strong monads. As we already know it

to be a morphism of the underlying strong functors, it suffices to show that it is a
morphism of monads. Given a strong monad (T, µ, η, st), the monad FMon ◦GMon(T )

has −⊗ T (I) as its underlying functor, the maps

(A⊗ T (I))⊗ T (I) A⊗ (T (I)⊗ T (I)) A⊗ T (T (I)⊗ I) A⊗ T 2(I) A⊗ T (I)
α−1 id⊗ st id⊗ T (ρ) id⊗ µ

as its multiplication and the maps (idA ⊗ ηI) ◦ ρ−1
A as its unit.

The small triangle on the right in

A A⊗ I A⊗ T (I)

A T (A⊗ I)

T (A)

id

ρ−1

η

id⊗ η

η
ρ st

T (ρ)
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commutes as T is a strong monad, the triangle on the left commutes by definition
and the parallelogram on the bottom commutes as η is natural. Hence the outermost
triangle commutes showing that the unit is preserved by ε. To see that this holds
also for the multplication, consider the diagram

(A⊗ T (I))⊗ T (I) A⊗ (T (I)⊗ T (I)) A⊗ T (T (I)⊗ I) A⊗ T 2(I)

T ((A⊗ T (I))⊗ I) T (A⊗ (T (I)⊗ I)) T (A⊗ T (I)) A⊗ T (I)

T 2(A⊗ I) T (A⊗ I)

T 2(A) T (A)

st

α−1

T (α−1)

id⊗ st

st

id⊗ T (ρ)

st
id⊗ µ

T (id⊗ ρ)

T (st) st

µ

T 2(ρ) T (ρ)

µ

T (ρ)

(v)

(i) (ii)

(iii)

(iv)

Region (i) commutes as T is a strong functor and (ii) because st is natural. Region
(iii) commutes as T is a strong monad, (iv) because µ is natural and (v) due to
coherence. Hence the whole diagram commutes which means that

(εT )A ◦ idA ⊗ (µI ◦ ρT (I) ◦ stT (I),I) ◦ α−1
A,T (I),T (I) = µA ◦ (εT ∗ εT )A

so that εT preserves the multiplication as well.
This shows that εT is a morphism of strong monads. We’ve shown that ε and η

are natural transformations η : idMon(C) → GMon ◦ FMon and ε : FMon ◦GMon → id,
and as they’re defined by the same equations as in the proof of theorem 4.2 the exact
same calculations show that we have an adjunction. Hence we’ve proved the following
theorem:

Theorem 5.2. The strength adjunction lifts to an adjunction between monoids in C

and strong monads on C.
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Chapter 6

Commutativity

In the case of symmetric monoidal categories, there’s also a notion of commutativity
for strong monads. Given a strong monad (T, µ, η, st), one can define a natural
transformation st′ with components of the form T (A) ⊗ B → T (A ⊗ B) by setting
st′A,B to be the composite

T (A)⊗B B ⊗ T (A) T (B ⊗ A) T (A⊗B)
γ st T (γ)

With this at hand, one can define two possibly different natural transformations with
components of the form TA⊗ TB → T (A⊗B):

dstA,B := µA⊗B ◦ T (st′A,B) ◦ stT (A),B

dst′A,B := µA⊗B ◦ T (stA,B) ◦ st′A,T (B)

A strong monad is called commutative if dst = dst′. Commutative monads corre-
spond to so-called monoidal monads, see. e.g. [9] and [10]. We prove next that
if T is commutative, then so is the monoid structure on T (I), and likewise if M is
commutative, then −⊗M is as well.

Theorem 6.1. If the monoid M is commutative, then so is the strong monad struc-
ture on −⊗M
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Proof. Consider the diagram

(A⊗MA)⊗ (B ⊗MB) ((A⊗M)⊗B)⊗MB (B ⊗ (A⊗MA))⊗MB

(B ⊗MB)⊗ (A⊗MA) ((B ⊗ A)⊗MA)⊗MB

((B ⊗MB)⊗ A)⊗MA ((A⊗B)⊗MA)⊗MB

(A⊗ (B ⊗MB))⊗MA (A⊗B)⊗ (MA ⊗MB)

((A⊗B)⊗MB)⊗MA (A⊗B)⊗ (MB ⊗MA) (A⊗B)⊗M

γ

α

α⊗ id

(γ ⊗ id)⊗ id

α−1

id⊗m
id⊗ γ

α

γ ⊗ id

α⊗ id

α−1 id⊗m

γ ⊗ id

where MA = MB = M , the subscripts being there just to keep track of where each
copy of M is sent by γ. The composite going through the top right corner is dstA,B,
and the other composite is dst′A,B, so it suffices to prove that the diagram commutes.
But the triangle commutes as M is a commutative monoid, and the rest commutes
by coherence.

Before we prove that commutativity of a strong monad T implies the commuta-
tivity of the induced monoid structure on T (I) we have the following lemma:

Lemma 6.2. For any strong monad T on a symmetric monoidal category

(i) T (ρA) ◦ st′A,I = ρT (A)

(ii) dstB,A ◦ γT (A),T (B) = T (γA,B) ◦ dst′A,B

(iii) T (ρI) ◦ dstI,I = µI ◦ T (ρT (I)) ◦ stT (I),I

Proof. For (i) consider the diagram

T (A)⊗ I I ⊗ T (A) T (I ⊗ A) T (A⊗ I)

T (A)

ρ

γ

λ

st

T (λ)

T (γ)

T (ρ)
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The leftmost and rightmost triangles commute by coherence and the one in the middle
as T is a strong functor. Hence the whole diagram commutes proving (i).

For (ii), consider the diagram

T (A)⊗ T (B) T (B)⊗ T (A) T (T (B)⊗ A) T (A⊗ T (B)) T 2(A⊗B)

T (A⊗B) T 2(B ⊗ A)

T (B ⊗ A)

γ st T (γ) T (st)

T (γ)

T 2(γ)µ

µ

The triangle on the right commutes by naturality of µ. Using the definitions of st′, dst
and dst one sees that the path along the top and right is dstB,A ◦ γT (A),T (B) and the
path along the left the left of the triangle is T (γA,B) ◦ dst′A,B, proving (ii).

Finally, to prove (iii), consider the diagram

T (I)⊗ T (I) T (T (I)⊗ I) T 2(I ⊗ I) T (I ⊗ I)

T 2(I) T (I)

st T (st′) µ

µ

T (ρ) T 2(ρ) T (ρ)

The triangle commutes by part (i) and the square as µ is natural. Hence the diagram
commutes proving (iii).

We’re now in a position to prove the following:

Theorem 6.3. If T is commutative, then so is the induced monoid structure on T (I)

Proof. By part (iii) of the previous lemma T (ρI) ◦ dstI,I equals the multiplication on
T (I) so it suffices to prove that T (ρI) ◦ dstI,I ◦ γT (I),T (I) = T (ρI) ◦ dstI,I . To do this,
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consider the diagram

T (I)⊗ T (I) T (I)⊗ T (I)

T (I ⊗ I) T (I ⊗ I)

T (I)

dst′

γ

T (γ)

T (λ)

dst

T (ρ)

The rectangle commutes by part (ii) of the previous lemma, and the triangle on the
bottom by coherence. Hence the diagram commutes. As λI = ρI by coherence and
dst = dst′ by commutativity of the monad T , this implies the desired result.

Corollary 6.4. The strength adjunction lifts to an adjunction between commutative
monoids and commutative strong monads.
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Chapter 7

Costrength

One can dualize essentially everything in the previous two chapters by replacing the
strength maps with costrength maps and reversing all the natural isomorphisms that
are part of the monoidal data. For example, we have the notion of a costrong functor:

Definition 7.1. Given a monoidal category C, a costrong functor C→ C is a functor
F : C→ C equipped with a natural transformation cst with components

cstA,B : F (A⊗B)→ A⊗ F (B)

for which the diagrams

I ⊗ F (A) F (I ⊗ A)

F (A)

λA

cstI,A

F (λA)

and

A⊗ (B ⊗ F (C)) A⊗ F (B ⊗ C) F (A⊗ (B ⊗ C))

(A⊗B)⊗ F (C) F ((A⊗B)⊗ C)

αA,B,F (C)

idA ⊗ cstB,C

cstA⊗B,C

F (αA,B,C)

cstA,B⊗C

commute for every object A,B and C.
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A morphism of costrong functors F,G : C → C is a natural transformation
σ : F → G such that

A⊗ F (B) F (A⊗B))

A⊗G(B) G(A⊗B)

idA ⊗ σB

cstFA,B

cstGA,B

σA⊗B

commutes. We denote the category of costrong functors C→ C and their morphisms
by costr(C).

Just as in the last chapter, for any object C the functor −⊗C is costrong. Hence
we have the functors Fc : C → costr(C) and Gc : costr(C) → C defined on objects
by Fc(C) = − ⊗ C and Gc : (F ) = F (I). Dualizing the proof of theorem 4.2 we
get the theorem below. Note that now the adjunction goes the other way around.
The reason for this is that while G ◦F is naturally isomorphic with idC, and likewise
for Gc ◦ Fc and idC , the natural transformation F ◦G → idstr(C) was defined using
the strength maps. With costrong functors, we get a natural transformation in the
opposite direction, with components cstF ◦ F (ρ−1

A ) : F (A)→ F (A⊗ I)→ A⊗ F (I).
The following theorem results:

Theorem 7.2. Gc a Fc

We call this the costrength adjunction.
Likewise one can dualize the notion of a strong monad. Here one has in fact several

choices: if one replaces the multiplication and unit in the diagrams of definition 5.1
with comultiplication and counit, one gets the notion of a strong comonad. If one
just replaces the strengths by costrenghts, one gets the notion of a costrong monad.
If one does both, one gets the notion of a costrong comonad. To illustrate this, we
give explicitly the definition of a costrong comonad:

Definition 7.3. A costrong comonad on C is a tuple (T, δ, ε, cst) such that (T, δ, ε)

is a comonad on C, (T, cst) is a costrong functor, and the diagrams

A⊗B A⊗ T (B)

T (A⊗B)

εA⊗B

idA ⊗ εB

cstA,B
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and

A⊗ TT (B) T (A⊗ T (B)) TT (A⊗B)

A⊗ T (B) T (A⊗B)

idA ⊗ δB

cstA,T (B)

cstA,B

δA⊗B

T (cstA,B)

commute.
A morphism of costrong comonads is a natural transformation which is a morphism

of the underlying comonads and the underlying costrong functors. We denote the
category of costrong monads by costrComonad(C).

Similarly as before, a comonad (T, δ, ε) on C lifts to a costrong comonad on C∗.
Reversing all the arrows, we can define functors FcoMon : Comon(C)→ costrComonad(C)

and GcoMon : costrComonad(C)→ Comon(C) by

FcMon(M,d, e) = (−⊗M,α−,M,M ◦ − ⊗ d, ρ− ◦ − ⊗ e, α−1
−,M,M)

FcMon(f) = −⊗ f

and

GcMon(T, δ, ε, costr) = (T (I), costrT (I),I ◦ T (ρ−1
T (I) ◦ δI , εI)

GcMon(σ) = σI

To see that these functors are well defined, one just reverses all the arrows in the
diagrams that showed that FMon and GMon were well defined. Similarly one just
dualizes the proof of theorem 5.2 to show that

Theorem 7.4. The costrength adjunction can be lifted to an adjunction between
comonoids and costrong comonads

Likewise, in a symmetric monoidal setting one has the maps cst′A,B : T (A⊗B) : T (A)⊗
B defined by γB,T (A) ◦ cstB,A ◦ T (γA,B) with which one can define two natural trans-
formations dcst, dcst′ as follows

dcstA,B : = cstT (A),B ◦ T (cst′A,B) ◦ δA⊗B
dcst′A,B : = cst′A,T (B) ◦ T (cstA,B) ◦ δA⊗B

A costrong comonad is called cocommutative in case dcst = dcst′. Reversing all the
arrows in the relevant proofs one notices that cocommutative comonoids yield cocom-
mutative costrong comonads and vice versa. Hence we have the following corollary.
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Corollary 7.5. The costrength adjunction can be lifted to an adjunction between
cocommutative costrong comonads and cocommutative comonoids.
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Chapter 8

Strength with Frobenius

One would expect that an analogue of the previous theorems should also hold for
Frobenius monoids in C and Frobenius monads equipped with an appropriate amount
of strength and (co)strength. The least amount of strength one might assume would
consist of having a Frobenius monad with strength and costrength morphisms making
the underlying monad strong and the underlying comonad costrong. Indeed, this
suffices to guarantee that the operation T 7→ T (I) takes the underlying monad to a
monoid and the underlying comonad to a comonoid. However, one should also show
that the Frobenius law is preserved. When proving this, stronger assumptions come
naturally into the picture. Hence we have the following definition:

Definition 8.1. A strong Frobenius monad on C is a tuple (T, µ, η, δ, ε, st) such that
st is a natural isomorphism, (T, µ, η, st) is a strong monad, (T, δ, ε, st−1) is a costrong
comonad and (T, µ, η, δ, ε) is a Frobenius monad.

A morphism of strong Frobenius monads is a natural transformation, which is a
morphism of the underlying Frobenius monads and the underlying strong and costrong
functors. We denote the category of strong Frobenius monads by strFrobMonad(C).

Analogously to previous chapters, we wish to define functors

FFrob : Frob(C)→ strFrobMonad(C)

GFrob : strFrobMonad(C)→ Frob(C)

such that FFrob(M) = − ⊗M and GFrob(F ) = F (I) on the underlying objects. As
everything else has already been checked, it suffices to prove that FFrob and GFrob

preserve the Frobenius law. To see that G does so, consider the diagram 8.1 If the
outer rectangle commutes, then GFrob preserves the Frobenius law. To see that it
indeed commutes, we note that region (i) commutes because T is a Frobenius monad,
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(ii) because δ is natural, (iii) because ρ−1 is natural, (iv) because st−1 is natural,
(v) is a consequence of T being a strong monad, (vi) commutes as ρ is natural, (vii)
and (viii) because st is natural, (ix) commutes trivially and (x) because st is natural.
(ii)’-(x)’ commute for dual reasons.

Consider now the functor FFrob. To see claim that it preserves the Frobenius law is
to say that for every A the outer rectangle in the diagram 8.2 commutes. To see that
it does, note that region (i) commutes because M is a Frobenius algebra. Regions
(ii) and (iii) commute because α−1 is natural and (iv) and (v) because α is. Finally,
(vi) and (vii) commute by the coherence theorem, showing that FFrob does indeed
preserve the Frobenius law.

What has been shown before implies that η := λ−1 is a natural transformation
idFrob(C) → GFrob ◦ FFrob, each component of which is in fact a strict morphism of
Frobenius algebras. Now consider the family of maps εT := (T ∗ ρ) ◦ strT−,I . We
already know that it is a morphism of the underlying monads and strong functors.
We check that it is also a morphism of the underlying costrong functors and of the
underlying comonads. As it is already a morphism of the underlying strong functors
and as for both of the functors − ⊗ T (I) and for T the strength and the costrength
are inverses of each other, it’s also a morphism of costrong functors. To show that ε
is a morphism of the underlying comonads, consider the diagram

A⊗ T (I)

T (A⊗ I) A⊗ I

T (A) A

stA,I id⊗ εI

εA⊗I

T (ρA) ρA

εA

The lower rectangle commutes because ε is natural and the triangle commutes
because T is a costrong monad and st is an isomorphism. Hence the whole dia-
gram commutes, showing that ε preserves the counit. To see that it preserves the
comultiplication, consider the diagram 8.3:

To assert that the outer rectangle in diagram 8.3 commutes is to claim that δ◦εT =

(ε∗ε)T ◦δ∗, where δ∗ is the comultiplication of −⊗T (I). In the diagram, (i) commutes
because T is a strong comonad, (ii) commutes by definition, (iii) commutes as st is
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A⊗ T (I) A⊗ T 2(I) A⊗ T (T (I)⊗ I) A⊗ (T (I)⊗ T (I))

A⊗ T 2(I) A⊗ T (T (I)⊗ I) (A⊗ T (I))⊗ T (I)

T (A⊗ (T (I)⊗ I)) T ((A⊗ T (I))⊗ I)

T (A⊗ T (I))

T (A⊗ I) T 2(A⊗ I)

T (A) T 2(A)

st

id⊗ δ id⊗ T (ρ−1) id⊗ st−1

id⊗ T (ρ)

id α

st

T (ρ)

T (st)

T 2(ρ)T (ρ)

δ

st

id⊗ st

T (α)

T (id⊗ ρ)

δ

(i)

st

(ii)

(iii) (iv)

(v)

(vi)

Figure 8.3: The diagram proving that ε preserves the comultiplication
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natural, (iv) because T is a strong functor, (v) by coherence and finally (vi) by
naturality of δ. Hence ε preserves the comultiplication.

As every component of both ε and η are strict morphisms of Frobenius alge-
bras, they are also isomorphisms by lemma 2.17. Hence both ε and η are natural
isomorphisms. We’ve in fact proved the bulk of our main result.

Theorem 8.2. The strength adjunction lifts to an equivalence between Frobenius
algebras and strong Frobenius monads.

Definition 8.3. In the symmetric monoidal setting, we call a strong Frobenius monad
commutative in case the underlying strong monad is commutative and the underlying
costrong comonad is cocommutative. If the underlying category is dagger monoidal, a
dagger strong Frobenius monad is a dagger Frobenius monad which is also strong and
for which st is unitary. Notions such as dagger strong commutative special Frobenius
monad mean what one would expect.

In a dagger monoidal category, for any object M the functor − ⊗M commutes
with the dagger. Furthermore st = α−,−,M is unitary. If M is a dagger Frobenius
algebra, the comonad structure is the dagger of the monad structure, so that −⊗M
is a dagger strong Frobenius algebra. Going in the other direction, if T is a dagger
strong Frobenius monad, the st being unitary and the underlying category being
dagger monoidal implies that the comonoid structure is the dagger of the monoid
structure, so that T (I) is dagger Frobenius.

Furthermore, if (M,m, u, d, e) is special, then for any A the diagram

A⊗M A⊗ (M ⊗M) (A⊗M)⊗M

A⊗M A⊗ (M ⊗M)

id

id⊗ d

id⊗m

id

α

α−1

commutes showing that −⊗M is special. On the other hand, if (T, µ, η, δ, ε, st) is a
strong special Frobenius monad, then the commutativity of the diagram

T (I) T 2(I) T (T (I)⊗ I) T (I)⊗ T (I)

T (I) T 2(I) T (T (I)⊗ I)

id

δ

µ

id

T (ρ)

T (ρ−1)

id

st−1

st
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implies that T (I) is a special Frobenius algebra.
These remarks, along with earlier results give us the rest of our main result:

Corollary 8.4. The strength adjunction lifts to an equivalence between special Frobe-
nius algebras and strong special Frobenius monads. If C is symmetric, the strength
adjunction lifts to an equivalence between commutative (special) Frobenius algebras
and strong commutative (special) Frobenius monads. If C is dagger monoidal, it
lifts to an equivalence between dagger (special) Frobenius algebras and dagger strong
(special) Frobenius monads. If C is dagger symmetric monoidal, it lifts to an equiva-
lence between commutative dagger (special) Frobenius algebras and commutative dag-
ger (special) Frobenius monads.

In definition 8.5 the assumption that st is a natural isomorphism might seem un-
reasonably strong. To show that one cannot hope to prove something like the previous
theorem, say with FFrob and GFrob forming an adjoint pair instead of an equivalence,
we proceed as follows: we discuss the strongest obvious weakening of definition 8.5,
and produce an example with that definition at play where the morphism ε fails to
preserve comultiplication. This means that the components of ε aren’t morphisms in
the relevant category. As the choice for the counit is unique once the functors are
chosen, we know that a similar adjunction fails with the weaker definition. Dually,
one could with more or less the same example show that the variant of ε using cst
instead of st fails to preserve the multiplication, so the adjunction fails either way.

The obvious weakening of definition 8.5 is the following:

Definition 8.5. A rather strong Frobenius monad on C is a tuple (T, µ, η, δ, ε, st, cst)

such that (T, µ, η, st) is a strong monad, (T, δ, ε, cst) is a costrong comonad and
(T, µ, η, δ, ε) is a Frobenius monad.

A morphism of rather strong Frobenius monads is a natural transformation, which
is a morphism of the underlying Frobenius monads and the underlying strong and
costrong functors. We denote the category of rather strong Frobenius monads by
rstrFrobMonad(C).

To produce a counterexample, consider a Frobenius monad (T, µ.η, δ, ε) on a cate-
gory C. As we’ve already seen, the monad part lifts to a strong monad on C∗ and the
comonad part to a costrong comonad. Furthermore, as −∗ is functorial and preserves
the Godement product, the Frobenius law is also preserved. Now, unwinding the
construction, the comultiplication on −⊗T ∗(I) has as its component on an object Ā
the identity on Ā, and on the other hand (εT )Ā = η(Ā). Hence the question whether
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ε preserves multiplication boils down to wether T (ηA) ◦ ηA = δA ◦ ηA. If for any A
this doesn’t hold, ε isn’t a morphism of the underlying comonads. If C is a monoidal
category and (M,m, u, d, e) is a Frobenius algebra for which u ⊗ u ◦ ρ−1

I 6= d ◦ u,
then it is easy to check that − ⊗M is such a Frobenius monad. Hence to provide
a counterexample it suffices to find such an Frobenius algebra. For this purpose, let
G be any non-trivial group, and consider the Frobenius algebra (G,m, u,m†, u†) in
Rel induced by the group structure. Then u⊗ u ◦ ρ−1

I is the relation {(∗, (1G, 1G))}
but m† ◦ u = {(∗, (g, g−1)) | g ∈ G} which is different as G is nontrivial, giving us a
counterexample.
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Appendix A

Strict morphisms are invertible

We prove lemma 2.17:

Proof. Let f : M → N be a strict morphism between Frobenius algebras (M,mM , uM , dM , eM)

and (N,mN , uN , dN , eN). Define g : N →M by

g := λM ◦ (eN ⊗ id) ◦ (mN ◦ id) ◦ α ◦ id⊗ (f ⊗ id) ◦ (id⊗ dM) ◦ (id⊗ uM) ◦ ρ−1
N .

We wish to show that

(i) f ◦ g = idN and g ◦ f = idM

(ii) eM ◦ g = eN and g ◦ uN = uM

(iii) g ◦mN = mM ◦ (g ⊗ g) and (g ⊗ g) ◦ dN = dM ◦ e

Of each of these three statements we just prove the first half, the other one being
similar. First we show that f ◦ g = idN by proving that the diagram A.1 commutes
Region (i) commutes by coherence. (ii) commutes because ⊗ is a functor C×C→ C.
(iii) commutes because f is a monoid homomorphism and (iv) because f is a comonoid
homomorphism. (v) commutes by functoriality of ⊗. (vi) and (vii) commute because
α−1 is natural. (viii) commutes because N is a comonad and (ix) is just the Frobenius
law of N . (x) commutes because α is natural and (xi) commutes because N is a
monoid. (xii) and (xiii) follow from the fact that ⊗ is a functor, and finally (xiv)
commutes as λ is natural.

Then we show that eM ◦ g = eN by proving that the diagram A.2 commutes. (i)
commutes because N is a monoid and (ii) as f is a monoid homomorphism. (iii)
commutes because ρ−1 is natural. (iv) commutes because M is a comonoid. The
commutativity of (v) follows from functoriality of ⊗. (vi) commutes because α is
natural and (vii) commutes by coherence. (viii) again is naturality of ρ−1 and (ix)
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Region Reason why commutes
(i) Coherence
(ii) λ−1 natural
(iii) Coherence
(iv) α−1 natural
(v) α−1 natural
(vi) α natural
(vii) M is a monoid
(viii) α natural
(ix) Functoriality of ⊗
(x) M is Frobenius
(xi) Coherence
(xii) α−1 natural
(xiii) α−1 natural
(xiv) α natural
(xv) α natural
(xvi) Functoriality of ⊗
(xvii) Functoriality of ⊗
(xviii) λ natural
(xix) Coherence

Table A.1: Table explaining why diagram A.3 commutes.

the functoriality of ⊗. (x) commutes as N is a comonoid and finally (xi) commutes
by naturality of λ.

Finally, we show that g◦mN = mM◦(g⊗g). Note that (g⊗g) = (g⊗idM)◦(idN⊗g).
Consider now diagram A.3. To see that it commutes, it suffices to check that each
numbered region of it commutes. This is done in table A.1.

Next we introduce some notation to avoid the cluttering of diagrams. Define An

and nA⊗B inductively for positive integers by

A1 := A 1A⊗B := A⊗B

An+1 := An ⊗ A n+1A⊗B : = A⊗ (nA⊗B)

For example, A⊗3 = (A⊗A)⊗A, and ⊗3A⊗B⊗2 = A⊗ (A⊗ (A⊗ (B ⊗B))). This
notation extends to morphisms in the obvious way. With this in mind, we turn our
attention to diagram A.4

Table A.2 explains why each numbered region of diagram A.4 commutes. Finally,
consider the diagram A.5. To prove that g ◦mN = mM ◦ (g ⊗ g) it suffices to prove
that this diagram commutes. But region (i) commutes as ρ−1 is natural and region
(ii) by functoriality of ⊗. (iii) and (vii) commute by coherence and (iv), (v) and (viii)
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Region Reason why commutes
(i) Frobenius law of N
(ii) α natural
(iii) Coherence
(iv) α natural
(v) Functoriality of ⊗
(vi) α−1 natural
(vii) N is a comonoid
(viii) f is a morphism of comonoids
(ix) α−1 natural
(x) N is a comonoid
(xi) Functoriality of ⊗
(xii) Functoriality of ⊗
(xiii) Functoriality of ⊗
(xiv) λ natural
(xv) Coherence
(xvi) λ natural
(xvii) Coherence

Table A.2: Table explaining why diagram A.4 commutes.

by naturality of α. (vi) follows from commutativity of diagram A.4 by tensoring on
the left with N . (ix) commutes because M is a monoid and (x) follows from the
commutativity of diagram A.3.
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