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Introduction
In commutative geometry, ”spaces” are understood either as
— locally ringed topological spaces (otherwise called geometric spaces), or as
— sheaves of sets on the category of affine schemes endowed with an appropriate

topology. Here appropriate topology varies from the Zariski topology ([DeG, I.3.11]) to a
flat (fpqc, or fppf) topology. In the case of the fpqc topology, spaces can be identified
with functors X from the category CRings of commutative unital rings to Sets which
preserve finite products and such that the diagram X(R) −→ X(T ) −→−→ X(T ⊗R T ) is
exact for any faithfully flat ring morphism R −→ T . Respectively, commutative schemes
are defined either as locally ringed spaces which are locally affine, or as sheaves of sets
obtained by glueing affine schemes (i.e. representable functors) for Zariski topology.

Only comparatively few of the known examples of what might be regarded as non-
commutative analogues of schemes, or formal schemes, can be realized as ringed spaces,
like D-schemes of Beilinson-Bernstein [BB], [BD], ”virtual” noncommutative formal spaces
introduced by Kapranov [Ka], and affine noncommutative schemes of P. Cohn [C]. Usually
noncommutative analogues of schemes appear as

— categories (regarded as categories of quasi-coherent sheaves) over a base category,
like the Proj of a graded noncommutative ring (see [M1], [V1], [V2], [A2], [AZ], [OW],
and a number of other works) and the flag variety of a quantized enveloping algebra (see
[LR2], [R3]),

— or functors from the category Algk of associative unital k-algebras to Sets, like
projective spaces introduced in [KR1] and different Grassmannians and flag varieties con-
structed in [KR2].

We study the categorical approach to spaces in [KR3]. The purpose of this paper is
to provide a geometric background for a number of examples of noncommutative spaces of
the second type, i.e. spaces defined as functors Algk −→ Sets.

We define the category Affk of noncommutative affine k-schemes as the category
of representable functors from Algk to Sets. Thus Yoneda imbedding R 7−→ Algk(R,−)
induces an equivalence between Affk and the category Algopk opposite to Algk. A flat cover
on Affk is given by a finite set {A −→ Ai | i ∈ J} of flat algebra morphisms such that the
corresponding morphism A −→

∏
i∈J Ai is faithful. Flat covers play an important role in

noncommutative setting due to the fact that the flat descent holds in the noncommutative
case providing means for studying categories of quasi-coherent sheaves (this is used in
[KR1]). But, in general, flat covers do not form a pretopology: the invariance under a base
change fails. This leads to a weaker version of a (pre)topology based on the notion of a

Q-category (here ’Q’ stands for ’quotient’). By definition, a Q-category is a pair, Ā
u∗
−→
←−
u∗

A,

of functors such that the functor u∗ is fully faithful and left adjoint to u∗, which implies
that A is a quotient category of Ā and u∗ is a localization functor. Both Grothendieck
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sites and Grothendieck pretopologies can be viewed as Q-categories. For any category C,
we have a Q-category CA = (CĀ ⇄ CA) of functors on A with values in C. In particular,
we have the Q-category of presheaves on a Grothendieck site, or a pretopology.

The main basic notion in this formalism is the notion of a sheaf: given a Q-category

A = (Ā
u∗
−→
←−
u∗

A), an object x of the category A is called an A-sheaf if the canonical map

Ā(ȳ, u∗(x)) −→ A(u∗(ȳ), x), g 7−→ η−1
x ◦ u∗(g), (1)

is an isomorphism for all ȳ ∈ ObĀ. Here ηu is an adjunction isomorphism IdA
∼−→ u∗u

∗.
In the case of the Q-category of presheaves on a Grothendieck site, or a Grothendieck

pretopology, we recover sheaves in the usual sense.
Flat covers on Affk give a rise to a Q-category, and noncommutative spaces represent

sheaves of sets on this Q-category. Similarly to the commutative case, thus defined ’spaces’

are identified with functors Algk
X
−→ Sets which preserve finite products and such that

the natural diagram

X(R) −−−→ X(T ) −−−→−−−→ X(T ⋆R T ) (2)

is exact for any faithfully flat ring morphism R −→ T . Here T ⋆RT is a traditional notation
for the fiber coproduct T

∐
R T in the category of associative unital rings. One can show

that all representable functors are spaces, i.e. the category Affk of noncommutative affine
k-schemes is a full subcategory of the category of ’spaces’.

As in commutative case, fpqc covers are not always the best choice, and there are
noncommutative versions of other types of covers on the category of noncommutative affine
schemes which are used to define other categories of ’spaces’. For instance, smooth covers
seem to be a more sensible choice for a big part of examples we consider (in [KR] and
[KR2]). These covers form a Q-category, but, in general, not a pretopology.

There is another interpretation of Q-categories illustrated by the following example: A
is the category CRings of commutative unital rings, Ā the category of (commutative) ring
epimorphisms with a nilpotent kernel, the functor A → Ā maps any ring to the identical
endomorphism of this ring, and Ā → A maps a ring epimorphism S → R to its target,
R. In this case, sheaves (resp. monopresheaves) on A turn out to be formally étale (resp.
formally unramified) functors CRings −→ Sets; and epipresheaves (defined in 3.1.4) are
formally smooth functors. This example suggests that Q-categories might be regarded also
as ”categories of thickennings”. An appropriate (not quite obvious) choice of a Q-category
produces a noncommutative version of formally étale, formally unramified, and formally
smooth functors.

The paper is organized as follows.
First three sections contain preliminaries on Q-categories. In Sections 1 and 2, we

define a Q-category and morphisms of Q-categories and give a number of examples. In
Section 3, we introduce the notions of a sheaf, a monopresheaf and an epipresheaf in a
Q-category and illustrate these notions using examples of Section 2.

In Section 4, we interpret epipresheaves, monopresheaves and sheaves of sets on a
Q-category as resp. formally smooth, formally unramified, and formally étale functors. In
this case, the Q-category is thought as the Q-category of thickennings.

2



Most of Section 5 is dedicated to definition and basic properties, and some examples
of formally smooth, formally unramified and formally étale morphisms of presheaves of sets
on a Q-category. We introduce locally finitely presentable morphisms and define smooth
(resp. unramified, resp. étale) morphisms as locally finitely presentable morphisms which
are formally smooth (resp. formally unramified, resp. formally étale). We define open
immersions as smooth monomorphisms and obtain general properties of open immersion
as a consequence of those of smooth morphisms.

In Section 6, we introduce formally A-infinitesimal morphisms (which might be re-
garded as formal thickenings of spaces) as the dual notion to that of formally A-smooth
morphisms. We make one more step giving a symmetric form to the duality between
formally smooth and formally infinitesimal morphisms. Curiously, this leads to the in-
terpretation of separated (resp. universally closed, resp. proper) morphisms of schemes
as formally unramified (resp. formally smooth, resp. formally étale) morphisms for an
appropriate choice of the class of formally infinitesimal morphisms of schemes.

In Section 7, we discuss closed immersions and separated morphisms.
The second part of the work is dedicated to noncommutative locally affine spaces

and schemes. In Section 8, we introduce locally affine spaces and schemes. With any
Q-category, we associate another Q-category of a ’topological nature’ called a quasi-cosite.
We define ”A-spaces” as sheaves of sets on the quasi-cosite associated with A. For any
quasi-topology on the category of A-spaces, we define locally affine spaces and schemes
in the most direct way. Starting with another Q-category, A1 = (Ā1 ⇄ A) (having the
same underlying category A) regarded as a Q-category of thickennings, we define three
natural quasi-topologies in which covers are sets of resp. A1-smooth morphisms, A1-étale
morphisms, and A1-open immersions.

In Section 9, we consider basic applications of this formalism. We recover commutu-
tative schemes and algebraic spaces taking as A the Q-category of commutative rings with
fpqc cocovers. This means that A is the category of commutative rings and objects of Ā
are finite conservative families of flat ring morphisms. And Ā1 is the category of ring sur-
jective morphisms with a nilpotent kernel. An appropriate noncommutative generalization
of this setting produces (via the formalism of Section 8) the notions of noncommutative
schemes and algebraic spaces.

Section 10 is devoted to the noncommutative Grassmannian which is one of important
examples of a noncommutative locally affine space.

The paper has two appendices. The first appendix contains some complementary facts
about Q-categories. In Appendix 2, we discuss finiteness conditions.

A considerable part of this manuscript was written while the second author was visiting
Max-Planck Institute für Mathematik in Bonn during the summer of 2001. He would like
to thank the Institute for excellent working conditions.

The work of the second author was partially supported by the NSF grant DMS-
0070921.
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I. Q-categories and sheaves.
Q-categories were introduced (initially in [R5]) as a milder version of Grothendieck

sites. We define noncommutative spaces as sheaves on Q-categories. Another interpreta-
tion of Q-categories leads to (a generalization of) the notions of formally smooth, formally
unramified, and formally étale morphisms which play a significant role in this work and
its sequals. We establish, among other things, the following dictionary:

sheaves of sets (on Q-categories) ←→ formally étale spaces
monopresheaves of sets ←→ formally unramified spaces

epipresheaves of sets ←→ formally smooth spaces

Thus, formally étale (resp. formally unramified, resp. formally smooth) morphisms might
be regarded as relative versions of sheaves (resp. monopresheaves, resp. epipresheaves) on
a Q-category.

1. Q-categories. A Q-category is a pair of functors Ā
u∗−→ A

u∗

−→ Ā such that the
functor u∗ is fully faithful and left adjoint to u∗. We shall regard functors u∗, u

∗ as resp.

direct and inverse image functors of a morphism Ā
u
−→ A and write this data as Ā

u
⇄ A.

A morphism from a Q-category Ā
u
⇄ A to a Q-category Ā′

u′

⇄ A′ is a triple (Φ, Φ̄, φ),

where A
Φ
−→ A′ and Ā

Φ̄
−→ Ā′ are functors and φ is a functor isomorphism Φu∗ −→ u′∗Φ̄.

The composition of two morphisms, is defined by

(Φ′, Φ̄′, φ′) ◦ (Φ, Φ̄, φ) = (Φ′Φ, Φ̄′Φ̄, Φ̄′φ ◦ φ′Φ)

For a universum U, we denote by QCatU, or simply by QCat, the category whose

objects are Q-categories Ā
u
⇄ A such that A and Ā belong to CatU.

1.1. Remark. Since the functor u∗ is fully faithful, the direct image functor u∗ is

a localization. A morphism (Φ, Φ̄, φ) from Ā
u
⇄ A to Ā′

u′

⇄ A′ is defined uniquely up to

isomorphism by the functor Ā
Φ̄
−→ Ā′ and the compatibility of Φ̄ with the corresponding

localizations (expressed by φ).

In fact, the isomorphism Φu∗
φ
−→ u′∗Φ̄ induces an isomorphism Φ −→ u′∗Φ̄u

∗. This
follows from the fact that, since the functor u∗ is fully faithful, an adjunction morphism

IdA
ηu−→ u∗u

∗ is an isomorphism. The isomorphism φ is equivalent (after replacing Φ by
u′∗Φ̄u

∗) to the canonical morphism

u′∗Φ̄u
∗u∗ −→ u′∗Φ̄ (1)

induced by an adjunction morphism u∗u∗
ǫu−→ IdĀ. The compatibility of Φ̄ with localiza-

tions means exactly that (1) is an isomorphism.

1.2. The 2-category of Q-categories. The category QCat is the category of
1-morphisms of a 2-category, QCat2: given a pair of 1-morphisms (Φ, Φ̄, φ), (Ψ, Ψ̄, ψ)
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from Ā
u
⇄ A to Ā′

u′

⇄ A′, a 2-arrow from (Φ, Φ̄, φ) −→ (Ψ, Ψ̄, ψ) is a pair of morphisms,

Φ
α
−→ Ψ, Φ̄

ᾱ
−→ Ψ̄ such that the diagram

Φu∗
φ

−−−→ u′∗Φ̄

αu∗

y
y u′∗ᾱ

Ψu∗
φ

−−−→ u′∗Ψ̄

commutes.

1.3. Induced Q-categories. Fix a Q-category A = (Ā
u
⇄ A). Let Φ : B −→ A be

a functor. Let B̄ denote the fiber product of B
Φ
−→ A

u∗←− Ā. Recall that objects of B̄
are triples (x, α, ȳ), where x ∈ ObB, ȳ ∈ ObĀ, and α is an isomorphism Φ(x) ∼−→ u∗(ȳ).
Morphisms are defined in an obvious way. There are natural projection functors

B̄
Φ̄

−−−→ Ā, (x, α, ȳ) 7−→ ȳ, and B̄
u
Φ∗

−−−→ B, (x, α, ȳ) 7−→ x.

We define a functor B
u∗

Φ

−−−→ B̄ by x 7−→ (x, ηuΦ(x), u
∗Φ(x)). It follows that uΦ∗ ◦u

∗
Φ
=

IdB and u∗
Φ
◦ u

Φ∗(x, α, ȳ) = (x, ηuΦ(x), u
∗Φ(x)). We have a canonical morphism

ǫuΦ
(x, α, ȳ) = (idx, ǫu(ȳ) ◦ u

∗(α) : u∗
Φ
◦ u

Φ∗(x, α, ȳ) −−−→ (x, α, ȳ)

functorial in (x, α, ȳ). Hence ǫuΦ
= {ǫuΦ

(x, α, ȳ)| (x, α, ȳ) ∈ ObB̄} is a funcrtor morphism
u∗

Φ
◦ u

Φ∗ −→ IdB̄. One can see that ǫuΦ
and the identical functor IdB −→ IdB = u

Φ∗u
∗
Φ

are adjunction morphisms for the pair of functors u
Φ∗, u

∗
Φ
. In particular, the functor

B
u
Φ∗

−−−→ B̄ is fully faithful.
Notice that u∗ ◦ Φ̄(x, α, ȳ) = u∗(ȳ), and Φ ◦ u

Φ∗(x, α, ȳ) = Φ(x). Thus

φ(x, α, ȳ) = α : Φ ◦ u
Φ∗(x, α, ȳ) = Φ(x) −−−→ Φ(x) = u∗ ◦ Φ̄(x, α, ȳ), (x, α, ȳ) ∈ ObB̄,

defines a functor isomorphism Φ ◦ u
Φ∗

φ
−→ u∗ ◦ Φ̄.

Altogether, we have obtained a Q-category AΦ = B = (B̄
u
Φ

⇄ B) induced by the
functor Φ and a canonical Q-category morphism (Φ̄, φ,Φ) : B −→ A.

1.3.1. Two special cases. Let A = (Ā
u
⇄ A) be a Q-category. For any object

x of the category A, we have the categories A/x and x\A and the canonical functors
A/x −→ A ←− x\A. We denote the corresponding induced Q-categories resp. by A/x
and x\A .

1.4. Qo-categories. A Qo-category is a pair of functors Ā
u∗−→ A

u∗

−→ Ā such
that the functor u∗ is fully faithful and a right adjoint to u∗. In other words, the data

Ā
u∗−→ A

u∗

−→ Ā is a Qo-category iff the dual data, Āop
uop∗−→ Aop

u∗op

−→ Āop is a Q-category.
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All facts and constructions on Q-categories (resp. Qo-categories) have their dual versions
which will be used when needed.

2. Examples of Q-categories and Qo-categories. Given a category A, there
are two families of basic examples of Q-categories (resp. Qo-categories) having A as the
underlying category:

– the Q-category of cosieves on A (cf. 2.1) and its Q-subcategories,
– dually, the Qo-category of sieves on A and its Qo-subcategories (among them

Grothendieck sites with the base A);
– the Q-category (resp. the Qo-category) of morphisms in A (see 2.5) and its Q-

subcategories (resp. Qo-subcategories).
Our main class of examples are Q-categories of functors on a Q-category (or Q-

categories of presheaves on a Qo-category) (see 2.6).

2.1. The Q-category of cosieves. Fix a category A. Let SA denote the category
of cosieves on A defined as follows. Objects of SA are pairs (x,R), where x ∈ ObA and R

is a cosieve in x\A. Morphisms from (x,R) to (x′, R′) are given by arrows x
f
−→ x′ such

that R′
f ⊆ R. Here R′

f is a cosieve in x\A whose objects are all pairs (v, ξ ◦ f) such that

(v, ξ) ∈ ObR′. There is a functor A
u∗

−→ SA which assigns to each object x of A the pair
(x, x\A). The functor u∗ is fully faithful and has a canonical right adjoint,

SA
u∗

−−−→ A, (x,R) 7−→ x.

This defines a Q-category of cosieves, SA⇄ A.
Cosieves in x\A are in a natural one-to-one correspondence with subfunctors of the

functor A(x,−). Thus the Q-category of cosieves is isomorphic to a Q-category, Ā ⇄ A,
defined as follows. Objects of Ā are pairs (x,R), where x ∈ ObA, R is a subfunctor of

A(x,−). Morphisms from (x,R) to (y, S) are morphisms x
f
−→ y such that the functor

morphism A(y,−)
A(f,−)
−−−→ A(x,−) induces a morphism S −→ R of the subfunctors. The

functor u∗ maps a pair (x,R) to x. The functor u∗ assigns to any object x of A the pair
(x,A(x,−)).

2.2. Quasi-(co)sites and (co)sites. Let A be a category, and let T be a map
which assigns to every object x of A a set T(x) of subfunctors of A(x,−) which contains
A(x,−) itself. We shall identify the pair (A,T) with the full Q-subcategory ĀT ⇄ A of
the Q-category SA ⇄ A of cosieves objects of which are all pairs (x,R), where x ∈ ObA
and R ∈ T(x).

We call the pair (A,T) a quasi-cosite if two conditions hold:
(a) for any pair R, R′ ∈ T(x), R ∩R′ ∈ T(x),
(b) if R ∈ T(x) and R′ is a subfunctor of A(x,−) containing R, then R′ ∈ T(x).
Quasi-sites correspond to quasi-cosites on the dual category Aop.
Grothendieck sites are quasi-sites. Recall that a site is a pair (A,T), where T is a

topology, i.e. a map which assigns to each x ∈ ObA a set T(x) of subfunctors of A(−, x)
(called refinements of x) satisfying the conditions:
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(i) for any R ∈ T(x) and any arrow f : y −→ x, the subfunctor Rf = R×A(−,x)A(−, y)
of A(−y) is a refinement of y (i.e. it belongs to T(y).

(ii) If R ∈ T(x) and R̃ is a subfunctor of A(−, x) such that R̃f ∈ T(y) for any

f ∈ R(y), y ∈ ObA,, then R̃ ∈ T(x).
Q-categories dual to Grothendieck sites are called cosites. The Q-category of cosieves,

(SA ⇄ A) and its Q-subcategory Adis = (Ādis ⇄ A), where Ādis is formed by all pairs
(x, x\A), x ∈ ObA, are two extreme examples of cosites.

Cosites might be regarded as a topology in terms of “closed sets”. If (Ā
u
⇄ A) is a

cosite, then A might be viewed as the category of closed sets of a would-be space.

2.3. A quasi-cosite associated with a Q-category. Fix a Q-category (Ā
u
⇄ A).

To any ȳ ∈ ObĀ, we assign the category ȳ\u∗ of pairs (f, x), where f is a morphism

ȳ −→ u∗(x). The functor u∗ induces a morphism, Φ∼ = (Φ, idu∗
, IdA), from A = (Ā

u
⇄ A)

to the cosite SA ⇄ A. Here Φ is a functor Ā −→ SA which assigns to any object ȳ of Ā

the pair (u∗(ȳ), Rȳ), where Rȳ denotes the cosieve in u∗(ȳ)\A formed by all (v, u∗(ȳ)
ξ
→ v)

such that ξ = η−1
u (v) ◦ ξ̄ for some ȳ

ξ̄
−→ u∗(v). The quasi-cosite, TA = (TA ⇄ A),

associated with A is the smallest quasi-cosite containing the image of the functor Φ. The
triple (IdA,Φ, id) is a canonical morphism from A to the Q-category (SA⇄ A) of cosieves
on A.

2.3.1. Note. If A is a quasi-cosite, then TA is naturally isomorphic to A. Dually,
with every Qo-category A, one can associate a quasi-site which is naturally isomorphic to
A if A is a quasi-site.

2.3.2. Proposition. Suppose A has the property:

(*) for any ȳ ∈ ObĀ and any morphism x
f
−→ u∗(ȳ), there exists a morphism x̄

f̄
−→ ȳ

and an isomorphism u∗(x̄)
α
−→ x such that u∗(f̄) = f ◦ α.

Then the quasi-cosite associated with A is a cosite.

Proof is left to the reader.

2.4. Quasi-(co)sites and (co)covers. Let τ be a function which assigns to each

object, x, of the category A a family, τx, of sets of arrows to x which contains {x
idx→ x}.

This data defines a category, Aτ , whose objects are all pairs (x,U), where x ∈ ObA, U ∈ τx;

we shall call them covers. Morphisms from (x,U) to (y,V) are morphisms x
f
−→ y such

that for any arrow xu
u
→ x in U there exists an arrow yv

v
→ y in V and a morphism

xu
guv
−→ yv such that f ◦ u = v ◦ guv. The functor Aτ −→ A which assigns to every pair

(x,U) the object x and to every morphism (x,U)
f
−→ (y,V) the morphism x

f
−→ y is a

right adjoint to the fully faithful functor A −→ Aτ which maps every object x of A to
(x, {idx}). This defines a Qo-category Aτ = (Aτ ⇄ A).

Consider the quasi-site TAτ associated with Aτ . The functor Aτ
Φ
−→ TAτ assigns to

every cover (x,U) the pair (x,RU), where RU is the sieve associated with the set of arrows
U : it consists of all arrows to x which factor through some of the arrows of U .
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If for any morphism y
f
−→ x and any U ∈ τx, there exists V ∈ τy such that f is a

morphism (y,V) −→ (x,U), then the quasi-site associated with Aτ is a site. In particular,
if τ is a Grothendieck pretopology, we obtain this way the site associated with τ .

2.4.1. Covers. Let A = (Ā
u
⇄ A) be a quasi-site. A set of arrows U = {xi → x| i ∈

J} in A is called a cover (or an A-cover) of x, if the pair (x,RU), where RU is the sieve
associated to U , is an object of Ā.

It follows from the definition of a quasi-site that
(i) every set of arrows to x which contains a cover is a cover;
(ii) if U and U ′ are covers of x, then U ×x U ′ = {xu ×x xv −→ x | u ∈ U , v ∈ U ′} is a

cover of x, provided the pull-backs xu ×x xv exist for all u ∈ U , v ∈ U ′.

2.5. The Q-category and the Qo-category of morphisms of a category. Fix
a category A. Consider the category A2 objects of which are morphisms of the category

A, and morphisms from x
f
→ y to x′

f ′

→ y′ are commutative squares

x
g

−−−→ x′

f
y

y f ′

y
h

−−−→ y′

(1)

Denote by u∗ the functor A −→ A2 which assigns to any object x of A the object

x
idx−→ x and to any morphism f the corresponding commutative square. The functor u∗

is fully faithful and has a right adjoint, u∗, which maps any object x
f
→ y of A2 to x

and any morphism (1) to x
g
→ x′. In fact, u∗u

∗ = IdA, and there is a natural morphism

u∗u∗
ǫu−→ IdA2 which assigns to any object x

f
→ y of the category A2 the morphism

x
idx
−−−→ x

idx

y
y f

x
f

−−−→ y

from u∗u∗(x
f
→ y) to (x

f
→ y). One can see that IdA

id
−→ u∗u

∗ and ǫu are adjunction
morphisms.

Dually, the functor u∗ has a natural left adjoint, u!, which assigns to any object x
f
→ y

of A2 the object y and to any morphism (1) the morphism y
h
→ y′.

2.5.1. Q-subcategories of (A2 ⇄ A). Let Ā be a full subcategory of the category A2

which contains all objects x
idx−→ x. Then the functor u∗ takes values in the subcategory Ā,

hence it induces a structure of a Q-subcategory, A = (Ā
u
⇄ A), of the Q-category A2 ⇄ A.

The functor u! : A
2 −→ A induces a functor Ā −→ A left adjoint to u∗.

2.5.2. Q-categories with a functor u! and the Q-category of morphisms.

Let A = (Ā
u
⇄ A) be a Q-category such that the functor u∗ has a left adjoint, u!. Then
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there is a canonical morphism u∗
ru−→ u! equal to the composition u∗(η

!
u ◦ ǫu) ◦ ηuu∗. Here

IdĀ
η!u−→ u∗u!, IdA

ηu−→ u∗u
∗, and u∗u∗

ǫu−→ IdĀ are adjunction morphisms. Thus we have
a canonical morphism (ΨA, idu∗

, IdA) : A −−−→ (A2 ⇄ A), where the functor ΨA assigns

to any object, ȳ, of Ā the canonical morphism u∗(ȳ)
ru(ȳ)
−−−→ u!(ȳ).

On the other hand, there is a canonical morphism from the Q-category A to the Q-
category of cosieves SA⇄ A defined in 2.3. Notice that for any ȳ ∈ Ā, the category ȳ\u∗

is isomorphic to the category u!(ȳ)\A. Two morphisms, g1, g2 : u!(ȳ) −→ x define the
same object of the sieve Rȳ (cf. 2.3) iff the square

u∗(ȳ)
ru(ȳ)
−−−→ u!(ȳ)

ru(ȳ)
y

y g1

u!(ȳ)
g2
−−−→ x

(1)

is commutative. Suppose u!(ȳ)
∐
u∗(ȳ)

u!(ȳ) exists, and let p1, p2 be canonical coprojections

u!(ȳ)
−−−→
−−−→ u!(ȳ)

∐
u∗(ȳ)

u!(ȳ). Then the commutativity of (1) means that g1 = g ◦ p1 and

g2 = g ◦ p2 for a uniquely determined morphism u!(ȳ)
∐

u∗(ȳ)

u!(ȳ)
g

−−−→ x.

The following is one of our main examples of a Q-category with the functor u!.

2.6. The Q-category of infinitesimal algebra epimorphisms. Let A be the
category Algk of associative unital k-algebras, and let Ā be the full subcategory of the
category Alg2k of k-algebra morphisms whose objects are epimorphisms with a nilpotent
kernel.

2.6.1. Note. The commutative version of 2.6 (i.e. A is the category CAlgk of commu-
tative algebras and Ā is the subcategory of CAlg2k whose objects are commutative algebra
epimorphisms with nilpotent kernel) can be interpreted as the category of infinitesimal
extensions of affine schemes over k.

2.6.2. The Q-category of thickennings of a scheme. A non-affine version of
the example 2.6.1 is the Q-category of thickennings of a scheme. Fix a scheme X. Let A
be the category of (Zariski) open subschemes of X, and Ā the category of thickennings:
objects of the category Ā are nilpotent scheme closed immersions U −→ T , where U is

any open subscheme of X. The fully faithful functor A
u∗

−→ Ā, U 7−→ (U
idU−→ U), is left

adjoint to the functor Ā
u∗−→ A sending an immersion U −→ T to U .

2.7. Q-categories of functors. Fix a category C. To any Q-category A = (Ā
u

⇄ A),

we assign a Q-category CA = (CĀ
Cu

⇄ CA). Here CA denotes the category of functors
A −→ C and Cu is a morphism with the inverse image functor

Cu∗ : CA −→ CĀ, F 7−→ F ◦ u∗,
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and the direct image functor Cu
∗

: G 7−→ G ◦ u∗. If C is the category Sets, we shall write

A∨ = (Ā∨
u∨

⇄ A∨) instead of SetsA = (SetsĀ
Setsu

⇄ SetsA).

3. Sheaves, monopresheaves and epipresheaves in a Q-category.

3.1. Definitions. Fix a Q-category A = (Ā
u
⇄ A).

3.1.1. A-sheaves. We call an object x of the category A an A-sheaf if the canonical
map

Ā(ȳ, u∗(x)) −→ A(u∗(ȳ), x), g 7−→ η−1
x ◦ u∗(g), (1)

is an isomorphism for any ȳ ∈ ObĀ. Here ηu is an adjunction (iso)morphism IdA −→ u∗u
∗.

We denote by FA the full subcategory of the category A generated by A-sheaves.

3.1.2. A-monopresheaves. We call an object x of the categoryA an A-monopresheaf,
or an A-separated presheaf, if the canonical map (1) is injective for any ȳ ∈ ObĀ. We denote
by MA the full subcategory of A formed by A-monopresheaves.

3.1.3. The canonical morphism ρu. Let x be an object of the category A such
that the functor A(u∗(−), x) is representable, i.e. A(u∗(−), x) ≃ Ā(−, u!(x)) for some
u!(x) ∈ ObĀ. There is a canonical morphism ρu(x) : u∗(x) −→ u!(x) corresponding to
the isomorphism η−1

u (x) : u∗u
∗(x) −→ x. It follows from the definitions that x is an A-

monopresheaf iff the morphism ρu(x) is a monomorphism. Note, however, that x can be a
monopresheaf without the functor A(u∗(−), x) being representable.

3.1.4. A-epipresheaves. We call an object x of A an A-epipresheaf if the functor
A(u∗(−), x) is representable and the canonical morphism ρu(x) : u

∗(x) −→ u!(x) (cf. 3.1.3)
is a strict epimorphism.

We denote by EA the full subcategory of the category A formed by A-epipresheaves.
It follows from 3.1.3 that an object x of A is an A-sheaf iff it is an A-monopresheaf

and an A-epipresheaf.

3.1.5. Dual notions. Let A = (Ā
u
⇄ A) be a Qo-category. We call an object x

of A a sheaf (resp. a monopresheaf, resp. an epipresheaf) in A if x is a sheaf (resp. a
monopresheaf, resp. an epipresheaf) in the dual Q-category A

op.

3.2. Sheaves and monopresheaves in A∧. Let A = (Ā
u
⇄ A) be a Q-category,

u = (u∗, u∗). And let A∧ = (Ā∧
û
⇄ A∧) be the corresponding Q-category of presheaves of

sets. Note that since u∗ is a right adjoint to u∗, the functor A∧ û∗−→ Ā∧, X 7−→ X ◦ u∗, is

a right adjoint to û∗. Thus, a presheaf Aop
X
−→ Sets is a sheaf iff the canonical morphism

û∗(X) −→ û∗(X) = X ◦ u∗ is an isomorphism. That is for any Y ∈ ObĀ, the canonical
morphism

û∗(X)(Y ) = Ā∧(Y, û∗(X)) ≃ co lim(V,ξ)∈A/XĀ
∧(Y, u∗(V ))−−−→Xu∗(Y ) = A∧(u∗(Y ), X)

(1)
is an isomorphism.
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Similarly, a presheaf Aop
X
−→ Sets is a monopresheaf iff the canonical morphism

û∗(X) −→ X ◦u∗ is a monomorphism. That is for any Y ∈ ObĀ, the canonical morphism
(1) is a monomorphism.

It follows that an object x of A is a sheaf (resp. a monopresheaf) in the Q-category
A iff the presheaf of sets A(−, x) is a sheaf (resp. a monopresheaf) in A∧.

3.3. Sheaves and monopresheaves in Q-categories of functors. Fix a Q-

category A = (Ā
ū
⇄ A) and a category C. For any pair of functors, Ā

Ḡ
−→ C and A

F
−→ C,

we have the canonical map

CĀ(Ḡ, F ◦ u∗) −→ CA(Ḡ ◦ u∗, F ), φ 7−→ Fη−1
u ◦ φu

∗, (1)

(cf. 2.7). By definition, the functor F is a CA-sheaf (resp. a CA-monopresheaf) iff the
morphism (1) is bijective (resp. injective) for any Ḡ.

3.3.1. Note. We shall usually call CA-sheaves (resp. CA-monopresheaves) sheaves
(resp. monopresheaves) on A with values in C.

3.4. Sheaves in A and sheaves on A. The following proposition shows that these
two notions are, in a sense, dual to each other.

3.4.1. Proposition. Let A = (Ā
u
⇄ A) be a Q-category such that the inverse image

functor u∗ has a left adjoint, u!. The functor A(x,−) : A −→ Sets is a sheaf (resp. a
monopresheaf) in A∨ = SetsA if and only if x is a sheaf (resp. a monopresheaf) in the

Qo-category A! = (Ā
uo

⇄ A).

Proof. We denote the functor A(x,−) by F .
(i) Suppose Ḡ = Ā(ȳ,−) : Ā −→ Sets for some object ȳ of Ā. Then by Yoneda’s

Lemma,

Ā∨(Ḡ, F ◦ u∗) ≃ F (u∗(ȳ)) = A(x, u∗(ȳ)) ≃ Ā(u∗(x), ȳ).

Here A∨ = SetsA.
(ii) Since the functor u∗ has a left adjoint, u!, we have G ◦ u∗ = Ā(ȳ, u∗(−)) ≃

A(u!(ȳ),−), hence

A∨(Ḡ ◦ u∗, F ) ≃ A∨(A(u!(ȳ),−), A(x,−))

and by Yoneda’s Lemma, A∨(A(u!(ȳ),−), A(x,−) ≃ A(x, u!(ȳ)). Thus we have a commu-
tative diagram

Ā∨(Ḡ, F ◦ u∗) −−−→ A∨(Ḡ ◦ u∗, F )

≀
x

x≀
Āop(ȳ, u∗(x)) −−−→ Aop(u!(ȳ), x)

(1)

in which vertical arrows are canonical isomorphisms. This shows that if the functor A(x,−)
is a sheaf (resp. a monopresheaf) of sets on the Q-category A, the object x is a sheaf in

the Qo-category A! = (Ā
uo

⇄ A).
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(iii) Any functor Ā
G
−→ Sets is a colimit of the diagram hĀ/G, where hĀ denotes the

Yoneda’s functor Āop −→ Ā∨, ȳ 7−→ Ā(ȳ,−). Thus, the canonical morphism

A∨(G,F ◦ u∗) −−−→ A∨(G ◦ u∗, F ) (2)

is isomorphic to the limit

lim
ȳ∈Ob(hĀ/G)

(
Āop(ȳ, u∗(x))

αȳ,x
−−−→ Aop(u!(ȳ), x)

)
. (3)

If x is a sheaf in A!, then all morphisms αȳ,x in (3) are isomorphisms, hence their
limit, (2), is an isomorphism.

Similarly, if x is a monopresheaf in A!, then all morphisms αȳ,x in (3) are monomor-
phisms, hence their limit, (2), is a monomorphism.

3.5. The functors u!C and (uC)!. Suppose the category C has small limits. Then

the functor Cu
∗

: CĀ −→ CA, G 7−→ G◦u∗, has a right adjoint, u!C , given for all ȳ ∈ ObĀ
and any F : A −→ C by

u!C(F )(ȳ) = lim(F ◦Gȳ), (1)

where Gȳ is the functor ȳ\u∗ −→ A, (x, ȳ −→ u∗(x)) 7−→ x. If C = Sets, we shall write
û! instead of u!Sets.

A functor F is a sheaf (resp. a monopresheaf, resp. an epipresheaf) iff the canonical
morphism F ◦ u∗ −→ u!C(F ) is an isomorphism (resp. a monomorphism, resp. a strict
epimorphism), i.e. for any ȳ ∈ ObĀ, the canonical morphism

F (u∗(ȳ)) −−−→ lim
V ∈Ob(ȳ\u∗)

F (V ) (2)

is an isomorphism (resp. a monomorphism, resp. a strict epimorphism).

3.5.1. Lemma. (a) A functor A
F
−→ C is a sheaf (resp. a monopresheaf) on the

Q-category A iff the functor
C(z, F−) : A −→ Sets

is a sheaf (resp. a monopresheaf) for any z ∈ ObC.

(b) A functor A
F
−→ C is an epipresheaf on A iff u!C(F ) exists and for any z ∈ ObC,

the functor C(F−, z) : A −→ Setsop is an epipresheaf.

Proof. (a) (i) Suppose first that C has limits of small diagrams. Since for any z ∈ ObC,
the functor C(z,−) preserves small limits, the morphism 3.5(2) is an isomorphism (resp.
a monomorphism) iff

C(z, F (u∗(ȳ))) −−−→ lim
V ∈Ob(ȳ\u∗)

C(z, F (V ))

is an isomorphism for all z ∈ ObC.
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(ii) In the general case, denote by F∧ the composition of the functor A
F
−→ C with

the Yoneda embedding C
h
−→ C∧. The functor F is a sheaf in CA iff F∧ is a sheaf in

(C∧)A. Since C∧ is a category with limits, the assertion follows from (i).
(b) We leave the argument to the reader.

3.5.2. The functor (uC)!. Fix a Q-category A = (Ā
u
⇄ A) and a category C.

Suppose the category C has small colimits. Then the functor

Cu∗ : CA −−−→ CĀ, F 7−→ F ◦ u∗,

has a left adjoint, (uC)!, given by

(uC)!(G)(x) = colim(G ◦ Fu∗/x),

where Fu∗/x is the canonical functor u∗/x −→ Ā, (ȳ, u∗(ȳ)→ x) 7−→ ȳ.
We shall write û! instead of (uSets)!.

3.5.2.1. Special cases. If the functor u∗ has a right adjoint, u!, then (uC)! is
isomorphic to the functor G 7−→ G ◦ u!.

If G = Ā(ȳ,−) for some ȳ ∈ ObĀ, then u!(G) ≃ A(u∗(ȳ),−).

3.6. Presheaves and sheaves on a Q-category with values in Sets. Let F be
a functor A −→ Sets. Then

û!(F )(ȳ) = lim
V ∈Ob(ȳ\u∗)

F (V ) ≃ A∨(Ā(ȳ, u∗(−)), F )

and û∗(F )(ȳ) = F ◦ u∗ ≃ A∨(u∗(ȳ), F ). Here A∨ denotes the category of functors from A
to Sets, and u∗(ȳ) (as any other object of A) is identified with the corresponding corep-
resentable functor, A(u∗(ȳ),−). The canonical morphism Ā(ȳ, u∗(−)) −→ A(u∗(ȳ),−)
induces a morphism

A∨(A(u∗(ȳ),−), F ) −−−→ A∨(Ā(ȳ, u∗(−)), F ). (1)

The presheaf F is a sheaf (resp. a monopresheaf, resp. an epipresheaf) iff the mor-
phism (1) is an isomorphism (resp. a monomorphism, resp. an epimorphism).

3.6.1. Note. The observation above extends to the case of presheaves with values
in a category C having small limits. In this case, the Q-category CA is equivalent to the
Q-subcategory CA

∨

cc of the category C(A∨)op formed by presheaves on resp. Ā∨ and A∨

with values in C having a right adjoint (cf. 2.10.2). For any presheaf F∨ : (A∨)op −→ C,
the canonical morphism Ā(ȳ, u∗(−)) −→ A(u∗(ȳ),−) induces a morphism

F∨(A(u∗(ȳ),−)) −−−→ F∨(Ā(ȳ, u∗(−))). (2)

The presheaf F∨ is a sheaf (resp. a monopresheaf, resp. an epipresheaf) iff the
morphism (2) is an isomorphism (resp. a monomorphism, resp. an epimorphism).
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3.7. Presheaves and sheaves on Q-categories with a functor u!. Let A =

(Ā
u
⇄ A) be a Q-category such that the functor u∗ has a left adjoint, u!. For instance,

A is a full Q-subcategory of the Q-category (A2 ⇄ A) of morphisms (cf. 2.5 and 2.5.1).
Denote by ru the canonical morphism u∗ −→ u!. For any category C, the functor Cu! is a

right adjoint to Cu
∗

. Thus, a functor A
F
−→ C is a sheaf (resp. a monopresheaf, resp. an

epipresheaf) on A iff the morphism

F ◦ u∗
F (ru)
−−−→ F ◦ u! (1)

is an isomorphism (resp. a monomorphism, resp. a strict epimorphism).
Denote by Σu the family {ru(ȳ) : u∗(ȳ) −→ u!(ȳ) | ȳ ∈ ObĀ} of morphisms of A. It

follows that the category of sheaves on A with values in a category C is isomorphic to the
category of functors Σ−1

u A −→ C, where Σ−1
u A is the quotient category by Σu.

3.7.1. Sheaves on Q-categories and localizations. Let Σ be a family of mor-
phisms of a category A containing all isomorphisms of A (or, at least, all identical mor-
phisms). Denote by AΣ the full subcategory of A2 formed by morphisms of Σ. This defines
a Q-subcategory, AΣ = (AΣ ⇄ A) of (A2 ⇄ A). Sheaves on AΣ with values in a category

C are functors A
F
−→ C which transform morphisms of Σ into invertible morphisms. In

other words, the category of sheaves on AΣ with values in C is isomorphic to the category
of functors from the quotient category Σ−1A to C.

3.8. Sheaves on Grothendieck sites. Below we show that (pre)sheaves on a site
can be realized as (pre)sheaves on the Q-category of the form AΣ (see 3.7.1) where Σ is
the class of covers of a pretopology; in particular, it satisfies (left) Ore conditions.

3.8.1. A Grothendieck pretopology associated with a quasi-(co)site. Let

(A,T) be a quasi-cosite. For any functor A
X
−→ Sets, we denote by T∨(X) the set of all

subfunctors, R, of X such that for any object x of A and any morphism A(x,−) −→ X , the

subfunctor R ×X A(x,−) of A(x,−) belongs to T(x). It follows that X
idX−→ X belongs to

T∨(X) and the function X 7−→ T∨(X) is invariant under a base change: for any morphism
Y −→ X and any R ∈ T∨(X), the subfunctor R×X Y −→ Y belongs to T∨(Y ). Thus, the
function T∨ is a pretopology on the category A∨ of functors A −→ Sets which we regard as
a Qo-category. Since any cover in this pretopology consists of one arrow, the Qo-category
(T∨ ⇄ A∨) is a Qo-subcategory of the Qo-category ((A∨)2 ⇄ A∨) of morphisms of A∨.

If (A,T) is a cosite, then the Yoneda embedding, Aop
hA
−→ A∨, determines a Q-category

embedding (T ⇄ A) −−−→ (T∨ ⇄ A∨)op.

Dually, if (A,T) is a site, then the Yoneda embedding, A
hA−→ A∧, induces a Qo-

category embedding (T ⇄ A) −−−→ (T∧ ⇄ A∧).

3.8.2. Proposition. Let (A,T) be a site, and let C be a category with small limits.
Then the Q-category of presheaves on (A,T) with values in C (which is, by definition,
the Q-category of functors on the Q-category (Top ⇄ Aop) with values in C) is naturally
equivalent to the full Q-subcategory of the Q-category of presheaves on (T∧ ⇄ A∧) formed
by those presheaves which preserve small limits.
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In particular, Aop
F
−→ C is a sheaf (resp. monopresheaf, resp. epipresheaf) iff the

corresponding presheaf on (T∧ ⇄ A∧) is a sheaf (resp. monopresheaf, resp. epipresheaf).

Proof. The assertion follows from Proposition II.1.3 in [GZ] (cf. 2.10.2). Details are
left to the reader.

3.9. Sheaves on a Q-category and sheaves on the associated quasi-cosite.

Let A = (Ā
u
⇄ A) be a Q-category, and let TA be the quasi-cosite associated with A (see

2.4). For any category C, the categories of sheaves (resp. categories of monopresheaves,
resp. categories of epipresheaves) on A and on TA with values in a category C are, usually,
quite different.

In fact, suppose the functor u∗ has a left adjoint, u!. Then sheaves (resp. mono-
presheaves, resp. epipresheaves) on A with values in the category C are precisely those

functors A
F
−→ C which map morphisms of Σu = {ru(ȳ) : u∗(ȳ) −→ u!(ȳ) | ȳ ∈ ObĀ} to

invertible morphisms (resp. to monomorphisms, resp. to strict epimorphisms) (cf. 3.7).
Suppose, in addition, that for any ȳ ∈ ObĀ, there exists a push-forward

u∗(ȳ)
ru(ȳ)
−−−→ u!(ȳ)

ru(ȳ)
y

y
u!(ȳ) −−−→ u!(ȳ)

∐
u∗(ȳ)

u!(ȳ)

Then a functor A
F
−→ C is a sheaf on TA iff for any ȳ ∈ ObĀ, the diagram

F (u∗(ȳ))
ru(ȳ)
−−−→ F (u!(ȳ))

−−−→
−−−→ F (u!(ȳ)

∐

u∗(ȳ)

u!(ȳ)) (1)

is exact (cf. 2.4).

3.9.1. Sheaves on the associated quasi-cosite: the general case. Suppose that
the Q-category A is arbitrary, but the category C has small limits. Then the category CA

can be realised as the Q-subcategory, C
(A∨)op

cc , of the category of presheaves on A∨ with

values in C (cf. 2.10.2). Let (A∨)op
F∨

−→ C denote a presheaf corresponding to a functor

A
F
−→ C. By 3.6.1, F is a sheaf on A iff for any ȳ ∈ ObĀ, the morphism

F∨(A(u∗(ȳ),−)) −−−→ F∨(Ā(ȳ, u∗(−))). (2)

induced by the canonical morphism Ā(ȳ, u∗(−)) −→ A(u∗(ȳ),−) is an isomorphism.

A functor A
F
−→ C is a sheaf on TA iff for any ȳ ∈ ObĀ, the diagram

F∨(A(u∗(ȳ),−)) −−−→ F∨(Ā(ȳ, u∗(−)) −−−→−−−→ F∨(Ā(ȳ, u∗(−))
∏

A(u∗(ȳ),−))

Ā(ȳ, u∗(−)))

(3)

15



is exact. If follows from the definition of the presheaf F∨ that F∨(A(u∗(ȳ),−)) ≃ F (u∗(ȳ)).

If the functors A(ȳ, u∗(−)) and Ā(ȳ, u∗(−))
∏

A(u∗(ȳ),−))

Ā(ȳ, u∗(−)) are representable, the

diagram (3) is equivalent to the diagram (1).
If C = Sets, then F∨(X) = HomA∨(X,F ) for any X ∈ ObA∨.

3.9.2. Note. Observe that the category of sheaves on A is a (stictly full) subcategory
of the category of sheaves on the associated quasi-cosite, TA.

3.9.3. Sheaves in terms of covers. Let A be a category, and let τ be a function
which assigns to every object x of A the family, τx of sets of arrows to x (called covers of
x, cf. 2.4) which contains {idx}. We call τ a quasi-pretopology if for any two covers U , V

and any two elements (xu
u
→ x) ∈ U and (xv

v
→ x) ∈ V, the pull-back xu ×x xv exists. We

shall identify the τ with the corresponding Qo-category Aτ = (Aτ ⇄ A) (cf. 2.4).

Suppose A = Aopτ = (Aτ ⇄ A)op for a quasi-pretopology τ . Let ȳ = (yi
φi→ y| i ∈ I) be

an object of Aτ (i.e. a cover; cf. 2.4.1) and x an object of A. Then Aop(u∗(ȳ), x) = A(x, y)

and Aopτ (ȳ, u∗(x)) = Aτ ((x
idx→ x), ȳ) =

∐
i∈I A(x, yi). Here coproduct is the coproduct in

Sets, i.e. the disjoint union. The canonical morphism

Aopτ (ȳ, u∗(x)) =
∐

i∈I

A(x, yi) −−−→ Aop(u∗(ȳ), x) = A(x, y)

maps each morphism x
fi−→ yi to the composition of fi and yi

φi−→ y. The equivalence
relation

(∐

i∈I

A(x, yi)
) ∏

A(x,y)

(∐

i∈I

A(x, yi)
)
⊆

(∐

i∈I

A(x, yi)
)∏(∐

i∈I

A(x, yi)
)

is defined correspondingly: a morphism x
fi−→ yi is equivalent to a morphism x

fj
−→ yj iff

φi ◦ fi = φj ◦ fj . It follows that
(∐

i∈I

A(x, yi)
) ∏

A(x,y)

(∐

i∈I

A(x, yi)
)
=

∐

i,j∈I

(
A(x, yi)

∏

A(x,y)

A(x, yj)
)
=

∐

i,j∈I

A(x, yi ×y yj).

Thus the diagram (2) in the case of a quasi-pretopology is (isomorphic to)

∐

i,j∈I

A(−, yi ×y yj)
−−−→
−−−→

∐

i∈I

A(−, yi) −−−→ A(−, y) (4)

Let F be any presheaf of sets on A. Then the functor A∧(−, F ) maps the sequence
(4) to the diagram

F (y) −−−→
∏

i∈I

F (yi)
−−−→
−−−→

∏

i,j∈I

F (yi ×y yj). (5)

Thus a presheaf F is a sheaf on the quasi-site TAτ associated with Aτ iff the functor
A∧(−, F ) maps the diagram (4) to an exact diagram.
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4. Formally étale, formally unramified, and formally smooth functors.

4.1. Example: (pre)sheaves on the Q-category of infinitesimal epimor-
phisms and formally étale functors. Let A be the category CAlgk of commutative
associative unital k-algebras, Ā a full subcategory of A2 whose objects are k-algebra epi-
morphisms with a nilpotent kernel. We denote by CAlginfk the corresponding full Q-

subcategory of (CAlg2k ⇄ CAlgk). We call CAlginfk the Q-category of commutative in-
finitesimal epimorphisms.

A functor CAlgk
F
−→ Sets is formally étale (resp. formally unramified, resp. for-

mally smooth) if the canonical morphism F ◦ u∗ −→ F ◦ u! is an isomorphism (resp. a
monomorphism, resp. a strict epimorphism). Comparing with 3.7, we obtain that F is
formally étale (resp. formally unramified, resp. formally smooth) iff it is a sheaf (resp. a

monopresheaf, resp. an epipresheaf) of sets on the Q-category CAlginfk .

4.2. A noncommutative version. Let A be the category Algk of associative
unital algebras over a commutative ring k, Ā a full subcategory of A2 whose objects are
algebra epimorphisms with a nilpotent kernel. We denote by Alginfk the corresponding

full Q-subcategory of (Alg2k ⇄ Algk). We call Alginfk the Q-category of infinitesimal
epimorphisms.

4.3. Proposition. Let a functor Algk
F
−→ Sets be corepresentable by a k-algebra R.

(a) The functor F is an epipresheaf on A iff the algebra R is quasi-free in the sense of
Quillen and Cuntz [CQ1]. The latter is equivalent to the condition: the R ⊗k Rop-module
Ω1
R|k of Keller differentials of R (which is the kernel of the multiplication R ⊗k R −→ R)

is projective.
(b) The functor F is a monopresheaf on A iff Ω1

R|k = 0.

Proof. A standard argument shows that F is an epipresheaf (resp. a monopresheaf)

iff for any k-algebra epimorphism S
φ
−→ R such that Ker(φ)2 = 0, there exists a splitting

(resp. at most one splitting), that is a k-algebra morphism R
ψ
−→ S such that φ◦ψ = idR.

(a) Thus F is an epipresheaf iff Ext2Re(R,M) = 0 for any Re-module M . Here Re

denote the k-algebra R⊗k R
op. Consider the long exact sequence

... −→ ExtiRe(R,M) −→ ExtiRe(R
e,M) −→ ExtiRe(Ω

1
R|k,M) −→ Exti+1

Re (R,M) −→ ...

corresponding to the short exact sequence 0 −→ Ω1
R|k −→ Re −→ R −→ 0. Since

ExtiRe(R
e,M) = 0 for all i ≥ 1 and all Re-modules M , ExtiRe(Ω

1
R|k,M) ≃ Exti+1

Re (R,M)

for all i ≥ 1 and all Re-modules M . In particular, Ext2Re(R,M) = 0 for all M iff
Ext1Re(Ω

1
R|k,M) = 0 for all M . The latter means precisely that Ω1

R|k is a projective
Re-module.

(b) Let R
ψ
−→ S be a k-algebra morphism such that φ ◦ ψ = idR. It gives a decom-

position of S into a semidirect product of R and an R-bimodule, M , with multiplication

defined by (r,m)(r′, m′) = (rr′, r ·m′ +m · r′). Any other splitting, R
ψ′

−→ S, is (idR, d),

where R
d
−→ M is a derivation sending k to zero. Thus, the set of splittings of φ is in
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one-to-one correspondence with DerR|k(M). But DerR|k(M) ≃ HomRe(Ω
1
R|k,M). Hence

φ is unramified iff Ω1
R|k = 0.

4.4. Formally A-smooth functors. Examples 4.1 and 4.2 suggest the following
interpretation of epipresheaves, monopresheaves and sheaves on a Q-category:

4.4.1. Definition. Let A = (Ā
u
⇄ A) be a Q-category. We say that a functor

A
F
−→ Sets is formally A-smooth (resp. formally A-unramified, resp. formally A-étale) if

it is an epipresheaf (resp. a monopresheaf, resp. a sheaf) on A; i.e. the canonical morphism

û∗(F ) = F ◦ u∗ −−−→ û!(F ) = lim
(V,ξ)∈Ob(ȳ\u∗)

F (V ) (1)

is a strict epimorphism (resp. a monomorphism, resp. an isomorphism).

4.4.2. A reformulation. One can, using isomorphisms

û!(F )(ȳ) ≃ A∨(Ā(ȳ, u∗(−)), F ) and û∗(F )(ȳ) = F ◦ u∗ ≃ A∨(u∗(ȳ), F )

(see 3.6), reformulate the notion of the formal A-smoothness as follows.

A functor A
F
−→ Sets is formally A-smooth iff the canonical map

A∨(u∗(ȳ), F ) −−−→ A∨(Ā(ȳ, u∗(−)), F ), g 7−→ g ◦ αȳ, (2)

is surjective for all ȳ ∈ ObĀ. Here u∗(ȳ) is identified with its image in A∨, i.e. the functor
A(u∗(ȳ),−) : A −→ Sets, and αȳ denotes the canonical morphism

Ā(ȳ, u∗(−)) −−−→ A(u∗(ȳ),−), h 7−→ ηu(−)
−1 ◦ u∗(h). (3)

A functor A
F
−→ Sets is formally A-unramified (resp. formally A-étale) iff the map

(2) is injective (resp. bijective) for all ȳ ∈ ObĀ.

4.5. Formally A-smooth, formally A-unramified, and formally A-étale ob-
jects. We say that an object x of the category A is formally A-smooth (resp. formally
A-unramified, resp. formally A-étale) if the functor A(x,−) : A −→ Sets is formally
A-smooth (resp. formally A-unramified, resp. formally A-smooth).

4.5.1. A-smooth, A-unramified, and A-étale objects. We say that an object
x of A is A-smooth (resp. A-unramified) if it is formally A-smooth (resp. formally A-
unramified) and finitely presented. The latter means that the functor A(x,−) preserves
colimits of filtered diagrams. We call an object x A-étale if it is both A-smooth and
A-unramified.

4.5.2. Example. Let A be the category of associative unital algebras over a com-
mutative ring k, Ā a full subcategory of A2 formed by all algebra epimorphisms. Then for
any projective k-module V , the tensor algebra, Tk(V ), of V is formally A-smooth. It is
A-smooth iff the projective k-module V is of finite type.

Note that there is only one (up to isomorphism) A-étale algebra: the ring k.
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4.6. Quasi-free and separable algebras. Let A be the category Assk whose
objects are associative k-algebras. Morphisms from a k-algebra R to a k-algebra S are
equivalence classes of algebra morphisms R −→ S by the following equivalence relation:

two algebra morphisms, R
f

−→
−→
g

S, are equivalent if they are conjugated, i.e. g(−) =

tf(−)t−1 for an invertible element t of S. Let Ā be the full subcategory of A2 formed by
the equivalence classes of algebra epimorphisms with a nilpotent kernel. We denote by
Assinfk the corresponding full Q-subcategory of (A2 ⇄ A).

Note that the restriction of the natural functor Assk −→ Assk to the subcategory of
commutative algebras is a strict fully faithful functor (’strict’ means that it is injective on

objects) which induces a strict fully faithful morphism CAlginfk →֒ Assinfk of Q-categories
(cf. 4.1).

Recall that a k-algebra R is called separable if R is a projective left Re-module,
Re = R ⊗k Ro. It follows from the exact sequence of Re-modules

0 −→ Ω1
R|k −→ Re −→ R −→ 0

that if R is separable, then Ω1
R|k is a projective Re-module, i.e. R is quasi-free [CQ1].

4.6.1. Proposition. Let R be an associative k-algebra.
(a) The following conditions are equivalent:

(i) The algebra R is formally Assinfk -smooth.
(ii) The left Re-module of Keller differentials, Ω1

R/k = Ker(Re → R), is projective.

(b) The following conditions are equivalent:

(iii) R is formally Assinfk -étale.

(iv) R is formally Assinfk -unramified.
(v) R is separable.

Proof. (a) Let S
φ
−→ R be a k-algebra morphism such that there exists a k-algebra

morphism R
ψ
−→ S right inverse to φ in the category Assk. The latter means, in particular,

that φ ◦ ψ is conjugate to idR; i.e. there exists an invertible element t of R such that for
any r ∈ R, φ ◦ ψ(r) = trt−1. The composition, ψt, of ψ with the inner automorphism
r 7−→ t−1rt is a right inverse to φ in the category Algk. This shows that R is formally
Assinfk -smooth iff it is formally Alginfk -smooth (cf. 4.2). The assertion follows from 4.3
(or [CQ1]).

(b) The implication (iii)⇒(iv) is true by definition.

(iv)⇒(v). Let M be an Re-module, S a semiproduct of R and M , S
φ
−→ R the

canonical epimorphism. It follows from (a) that any right inverse to φ in the sense of Assk

is conjugate to a right inverse, R
ψ
−→ S to φ in the sense of Algk. The morphism ψ is of

the form r 7−→ r+D(r) for some (any) derivation R
D
−→M which sends k to zero. If R is

Assinfk -unramified, the morphism ψ is equivalent to the morphism R −→ S, r 7−→ r. This
means that there exists an invertible element u of S such that ψ(r) = uru−1 for all r ∈ R.
The element u can be written as t(1R + z), where 1R is the unit of R, t is an invertible
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element of R, and z ∈M . Then

uru−1 = trt−1 + (tzt−1)(trt−1)− (trt−1)(tzt−1) (1)

In particular, φ ◦ ψ(r) = trt−1 for all r ∈ R. But φ ◦ ψ = idR, hence the element t is
central. Thus ψ(r) = r + ztr − rzt, where zt = tzt−1, i.e. D is an inner derivation. It is
known [CQ1] (and easy to prove) that R is a separable k-algebra iff any derivation of R
in any Re-module M is inner, hence the implication.

(v)⇒(iii). Let R be a separable k-algebra. Let T
φ
−→ S be a k-algebra morphism

with a nilpotent kernel and R
f
−→ S an arbitrary algebra morphism. It follows from the

argument in [CQ1] that any two liftings of f to a morphism R −→ T are conjugate by
an element t of T such that 1− t belongs to the kernel of φ, in particular it is nilpotent.
Conversely, such a lifting property implies that R is separable.

5. Formally A-smooth, formally A-unramified, and formally A-étale mor-

phisms. Fix a Q-category A = (Ā
u
⇄ A). Let X, Y be functors A −→ Sets.

5.1. Definition. We call a morphism X
f
−→ Y formally A-smooth if for any ȳ ∈ ObĀ

and for any pair of morphisms A(u∗(ȳ),−)
g
−→ Y, Ā(ȳ, u∗(−))

g′

−→ X such that the
diagram

Ā(ȳ, u∗(−))
g′

−−−→ X

αȳ

y
y f

A(u∗(ȳ),−)
g

−−−→ Y

(1)

commutes, there exists a morphism A(u∗(ȳ),−)
γ
−→ X such that γ ◦αȳ = g′ and f ◦γ = g.

In other words, the diagram

Ā(ȳ, u∗(−))
g′

−→ X

αȳ

y րγ

y f

A(u∗(ȳ),−)
g
−→ Y

(2)

commutes.

5.2. Definition. We call a morphism X
f
−→ Y formally A-unramified if for any

ȳ ∈ ObĀ and any pair of morphisms, A(u∗(ȳ),−)
g
−→ Y, Ā(ȳ, u∗(−))

g′

−→ X , making the

diagram 5.1(1) commute, there exists at most one morphism, A(u∗(ȳ),−)
γ
−→ X , such

that the diagram 5.1(2) commute.

5.2.1. Note. Any monomorphism X
f
−→ Y is formally A-unramified.

5.3. Definition. We call a morphism X
f
−→ Y formally A-étale if it is both formally

A-smooth and formally A-unramified.
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5.3.1. A reformulation. Consider the diagram 5.1(1). We have canonical, functorial
in ȳ and X isomorphisms

A∨(Ā(ȳ, u∗(−)), X) = A∨(û∗(Ā(ȳ,−)), X) ≃ Ā∨(Ā(ȳ,−), û!(X) ≃ û!(X)(ȳ)

and

A∨(u∗(ȳ),−), Y ) ≃ Y (u∗(ȳ)) = û∗(Y )(ȳ).

The commutative diagram

û∗(X)
û∗(f)
−−−→ û∗(Y )

α
û
(X)

y
y α

û
(Y )

û!(X)
û!(f)
−−−→ û!(Y )

(1)

induces a morphism

û∗(X) −−−→ û∗(Y )×
û!(Y )

û!(X) (2)

5.3.1.1. Proposition. (a) A morphism X
f
−→ Y is formally A-unramified (resp.

formally A-étale) iff (2) is a monomorphism (resp. an isomorphism).

(b) A morphism X
f
−→ Y is formally A-smooth iff for any ȳ ∈ ObĀ, the map

û∗(X)(ȳ) −−−→ (û∗(Y )×
û!(Y )

û!(X))(ȳ)

is surjective. In particular, (2) is an epimorphism.

Proof is left to the reader.

5.3.1.2. Corollary. Suppose Y ∈ ObA∨ is formally A-étale. Then a morphism

X
f
−→ Y is formally A-étale iff X is formally A-étale.

Proof. The morphism f is formally A-étale iff the square (1) is cartesian. In particular,
if the right vertical arrow of (1) is an isomorphism (which means exactly that Y is formally
A-étale), then the left vertical arrow of (1) is an isomorphism too, i.e. X is formally A-étale.

Conversely, if both vertical arrows of the square (1) are isomorphisms (i.e. both X
and Y are formally A-étale), then the square (1) is cartesian.

5.3.2. Formally étale morphisms and A-sheaves. Let ∗ denote the functor
which assigns to all objects of A a one element set – a final object of the category A∨.
For any X ∈ ObA∨, denote by πX the unique map X −→ ∗. It follows that X is formally
A-smooth (resp. formally A-unramified, resp. formally A-étale) iff the map X

πX−→ ∗ is
formally A-smooth (resp. formally A-unramified, resp. formally A-étale).

Thus, formally A-étale morphisms might be viewed as relative versions of sheaves of
sets on A .
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5.4. Proposition. (a) The composition of formally A-smooth (resp. formally A-
unramified, resp. formally A-étale) morphisms is formally A-smooth (resp. formally A-
unramified, resp. formally A-étale).

(b) Let X, Y, Z be functors A −→ Sets, and let X
f
−→ Y and Y

h
−→ Z be functor

morphisms.
(i) Suppose h ◦ f is formally A-unramified. Then f is formally A-unramified.

(ii) Suppose h is formally A-unramified. If X
h◦f
−→ Z is formally A-smooth (resp.

formally A-étale, then f is formally A-smooth (resp. formally A-étale).

(c) Let S ∈ ObA∨, and let (X, ξ)
f
−→ (Y, µ), (X ′, ξ′)

f ′

−→ (Y ′, µ′) be morphisms of
objects over S. The morphisms f, f ′ are formally A-unramified (resp. formally A-smooth,
resp. formally A-étale) iff the morphism f ×S f ′ : X ×S X ′ −→ Y ×S Y ′ has the respective
property.

Proof. (a) Suppose X
h◦f
−→ Z is formally A-smooth. Let

Ā(ȳ, u∗(−))
g′

−−−→ X

αȳ

y
y h ◦ f

A(u∗(ȳ),−)
g

−−−→ Z

(1)

be a commutative diagram. Since the morphism h is formally A-smooth, there exists a

morphism A(u∗(ȳ),−)
γ′

−→ Y such that the diagram

Ā(ȳ, u∗(−))
f◦g′

−→ Y

αȳ

y րγ′

y f

A(u∗(ȳ),−)
g
−→ Z

(2)

commutes. In particular, γ′ ◦ αȳ = f ◦ g′, i.e. the diagram

Ā(ȳ, u∗(−))
g′

−−−→ X

αȳ

y
y f

A(u∗(ȳ),−)
γ′

−−−→ Y

(3)

commutes. Since f is formally A-smooth, there exists a morphism γ : A(u∗(ȳ),−) −→ X
such that the diagram

Ā(ȳ, u∗(−))
g′

−→ X

αȳ

y րγ

y f

A(u∗(ȳ),−)
γ′

−→ Y

(4)

commutes. Combining (3) and (4), we obtain the commutative diagram

Ā(ȳ, u∗(−))
g′

−→ X

αȳ

y րγ

y h ◦ f

A(u∗(ȳ),−)
g
−→ Z
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Hence h ◦ f is formally A-smooth.

We leave to the reader the checking that if f and h are formally A-unramified (resp.
formally A-étale), then h ◦ f is formally A-unramified (resp. formally A-étale).

(b) (i) Suppose h ◦ f is formally A-unramified, and let

Ā(ȳ, u∗(−))
g′

−→ X

αȳ

y րγ

y f

A(u∗(ȳ),−)
g
−→ Y

be a commutative diagram. Then the diagram

Ā(ȳ, u∗(−))
g′

−→ X

αȳ

y րγ

y h ◦ f

A(u∗(ȳ),−)
h◦g
−→ Z

commutes. Since h ◦ f is formally A-unramified, the morphism γ is uniquely defined.

(ii) Suppose h is formally A-unramified and h ◦ f is formally A-smooth. Let

Ā(ȳ, u∗(−))
g′

−−−→ X

αȳ

y
y f

A(u∗(ȳ),−)
g

−−−→ Z

be a commutative diagram. Since h ◦ f is formally A-smooth, there exists a commutative
diagram

Ā(ȳ, u∗(−))
g′

−→ X

αȳ

y րγ

y h ◦ f

A(u∗(ȳ),−)
h◦g
−→ Z

Since h is formally A-unramified, g = f ◦ γ.
(c) The proof of the assertion (c) is left to the reader.

5.5. Corollary. Let X, Y, Z be functors A −→ Sets, and let X
f
−→ Y, Y

h
−→ Z be

functor morphisms. Suppose h is formally A-étale. Then h◦f is formally A-smooth (resp.
formally A-unramified, resp. formally A-étale) iff f belongs to the same class.

5.6. Proposition. Let A be a Q-category. Let X, Y, Y ′ be functors A −→ Sets and

Y ′ h
−→ Y

f
←− X functor morphisms. If X

f
−→ Y is formally A-smooth (resp. formally

A-nonramified, resp. formally A-étale), then the canonical projection X ×Y Y ′ f ′

−→ Y ′ is
formally A-smooth (resp. formally A-unramified, resp. formally A-étale).
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Proof. Set X ′ = X ×Y Y ′ and denote by h′ the canonical projection X ′ −→ X .
Consider a commutative diagram

Ā(ȳ, u∗(−))
g′

−−−→ X ′
h′

−−−→ X

αȳ

y
y f ′

y f

A(u∗(ȳ),−)
g

−−−→ Y ′
h

−−−→ Y

(1)

(a) Suppose f is formally A-smooth. Then there exists a morphism A(u∗(ȳ),−)
γ
−→ X

such that the diagram

Ā(ȳ, u∗(−))
h′◦g′

−→ X

αȳ

y րγ

y f

A(u∗(ȳ),−)
h◦g
−→ Y

(2)

commutes. By the universal property of the fiber product, there exists a unique morphism

Ā(ȳ, u∗(−))
γ′

−→ X ′ such that the diagram

Ā(ȳ, u∗(−))
g′

−→ X ′

αȳ

y րγ′

y f ′

A(u∗(ȳ),−)
g
−→ Y ′

(3)

commutes. This shows that the projection f ′ is formally smooth.

(b) Suppose the morphism X
f
−→ Y is formally A-unramified. And suppose that

there exists a morphism Ā(u∗(ȳ),−)
γ′

−→ X ′ such that the diagram (3) commutes. This
implies that the diagram (2), with γ = h′ ◦ γ′, is commutative. Since f is formally A-
unramified, the commutativity of (2) determines γ uniquely. By the universal property of
fiber product, the morphisms γ′ is uniquely determined by the morphisms γ and h, hence
f ′ is formally A-unramified.

(c) It follows from (a) and (b) that if f is formally A-étale, then f ′ is formally A-étale
too.

5.7. Definition. Let A = (Ā
u
⇄ A) be a Q-category, and let R, S be objects of

A. We call a morphism R
φ
−→ S formally A-smooth (resp. formally A-unramified, resp.

formally A-étale) iff the corresponding functor morphism, A(φ,−) : A(S,−) −→ A(R,−),
has the respective property.

5.7.1. A special case. If the functor u∗ has a left adjoint, u!, one can define
formally A-smooth, formally A-unramified and formally A-étale morphisms of A in terms
of the category A itself:

A morphism R
f
−→ S of A is formally A-smooth iff any ȳ ∈ ObĀ and a commutative

diagram of the form

u!(ȳ)
g′

←−−− S

α′
ȳ

x
x f

u∗(ȳ)
g

←−−− R

(1)
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(where α′
ȳ is the canonical functorial morphism) extends to a commutative diagram

u!(ȳ))
g′

←− S

α′
ȳ

x ւγ

x f

u∗(ȳ)
g
←− R

(2)

A morphism R
f
−→ S is formally A-unramified iff for any commutative diagram of

the form (1) there exists at most one morphism S
γ
−→ u∗(ȳ) such that the diagram (2)

commutes.

5.8. Formally smooth and formally étale morphisms of algebras. If A is
the Q-category Alginfk of 4.2, we call formally A-smooth (resp. formally A-unramified,
resp. formally A-étale) morphisms simply formally smooth (resp. formally unramified,
resp. formally étale). We have the following relative analogue of Proposition 4.6.2:

5.8.1. Proposition. Let R, S be associative k-algebras, and let R
φ
−→ S be a

k-algebra morphism.
(a) The morphism φ is formally unramified iff the morphism S⊗RS −→ S, s⊗t 7−→ st,

is an isomorphism, or, equivalently, Ω1
S|R = Ker(S ⊗R S −→ S) = 0.

(b) Suppose the k-algebra R is separable. Then the morphism R
φ
−→ S is formally

smooth iff Ω1
S|R is a projective left Se-module.

Proof. A standard argument shows that R
φ
−→ S is formally smooth (resp. formally

unramified) iff for any R-ring epimorphism T
α
−→ S such that Ker(α)2 = 0, there exists

an R-ring morphism (resp. at most one R-ring morphism) S
β
−→ T such that α ◦ β = idS .

(a) Let S
β
−→ T be an R-ring morphism such that α◦β = idS . It gives a decomposition

of T into a semidirect product of S and an S-bimodule, M , with multiplication defined by
(s,m)(s′, m′) = (ss′, s ·m′ +m · s′). Any other right inverse to α, is of the form (idS , D),

where S
D
−→ M is a derivation sending R to zero. The latter means precisely that D is

an Re-module morphism, Re = R ⊗k Ro. Thus, the set of splittings of α is in one-to-one

correspondence with the set DerS|R(M) of derivations S
D
−→ M which are Re-module

morphisms. But DerS|R(M) is naturally isomorphic to HomSe(Ω
1
S|R,M). Hence φ is

unramified iff Ω1
S|R = 0.

(b) Suppose the k-algebra R is separable, i.e. R is a projective Re-module. Then the
Se-bimodule S ⊗R S is projective.

In fact, for any Se-moduleM , there is a functorial isomorphism HomSe(S⊗RS,M) ≃
HomRe(R, φ∗(M)). Here φ∗ is the pull-back functor Se −mod −→ Re −mod induced by
the morphism φ. Since R is a projective Re-module and the functor φ∗ is exact, the functor
M 7−→ HomRe(R, φ∗(M)) is exact. Therefore the functor M 7−→ HomSe(S ⊗R S,M) is
exact, i.e. S ⊗R S is a projective Se-module.

By 4.6.1, the algebra R is separable iff it is Assinf -étale. The latter means that the
morphism k −→ R is formally Assinf -étale. If follows from 5.4(ii), that the morphism
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R
φ
−→ S is formally Assinf -smooth iff the composition of k −→ R and φ is formally

Assinf -smooth, i.e. the k-algebra S is formally Assinf -smooth. By 4.3 and 4.6.1, the
k-algebra S is formally Assinf -smooth iff it is formally smooth (i.e. Alginfk -smooth). On
the other hand, the algebra S is formally smooth iff Ext2Se(S,M) = 0 for any Se-module
M . Consider the long exact sequence

... −→ ExtiSe(S,M) −→ ExtiSe(S⊗RS,M) −→ ExtiSe(Ω
1
S|R,M) −→ Exti+1

Se (S,M) −→ ...
(1)

corresponding to the short exact sequence 0 −→ Ω1
S|R −→ S ⊗R S −→ S −→ 0. Since

S ⊗R S is a projective Se-module, ExtiSe(S ⊗R S,M) = 0 for all i ≥ 1 and all Se-modules
M . Therefore ExtiSe(Ω

1
S|R,M) ≃ Exti+1

Se (S,M) for all i ≥ 1 and all Se-modules M . In

particular, Ext2Se(S,M) = 0 for allM iff Ext1Se(Ω
1
S|R,M) = 0 for allM . The latter means

precisely that Ω1
S|R is a projective Se-module.

5.8.1.1. Corollary. Suppose R is a separable k-algebra. Then a k-algebra morphism

R
φ
−→ S is formally unramified iff it is formally étale.

Proof. By 5.8.1(a), R
φ
−→ S is unramified iff Ω1

S|R = 0. By 5.8.1(b), φ is formally

smooth iff Ω1
S|R is a projective Se-module. In particular, φ is formally smooth (hence

étale), if Ω1
S|R = 0.

5.8.2. Proposition. Let R, S be associative k-algebras, and let R
φ
−→ S be a

k-algebra morphism. The following conditions are equivalent:
(i) φ is formally unramified and flat.
(ii) φ is a flat monomorphism.
(iii) φ∗ is an exact localization.

If the conditions above hold, then
(iv) φ is formally étale.

Proof. (ii)⇒(i), because every monomorphism is formally unramified.
(i)⇒(iii). By 5.8.1(a), the canonical morphism S ⊗R S −→ S, s ⊗ t 7−→ st, is an

isomorphism. Since φ∗φ∗ ≃ (S ⊗R S) ⊗S − and IdS−mod ≃ S ⊗S −, this means
precisely that the adjunction morphism φ∗φ∗ −→ IdS−mod is an isomorphism. The latter
is equivalent to the full faithfulness of the direct image functor φ∗. By [GZ], Proposition
I.1.3, φ∗ is a localization.

(iii)⇒(ii) follows from the fact that any morphisms R
φ
−→ S such that its inverse

image functor, φ∗, is a localization, is an algebra epimorphism.

In fact, let S
f1
−→
−→
f2

T be a pair of algebra morphisms such that f1 ◦ψ = f2 ◦ φ, i.e. we

have the diagram of algebra morphisms over R:

S

f1

−−−→
−−−→
f2

T

φ տ րγ

R

(1)
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Here γ = f1 ◦φ. Applying to (1) first scalar restriction functor and then the functor φ∗φ
∗,

we obtain the diagram φ∗φ
∗(R) −→ φ∗φ

∗φ∗(S) −→−→ φ∗φ
∗γ∗(T ) which is isomorphic to the

diagram

φ∗φ
∗(R) −−−→ φ∗(S)

−−−→
−−−→γ∗(T ), (2)

because, due to the fact that φ∗ is a localization, φ∗ is a fully faithful functor, or, equiv-
alently, φ∗φ∗ ≃ IdS−mod. Notice that the morphism φ∗φ

∗(R) −−−→ φ∗(S) in (2) is an

isomorphism. Since it equalizes the pair φ∗(S)
−−−→
−−−→γ∗(T ), this pair is trivial. Hence the

initial pair of morphisms is trivial: f1 = f2.

{(iii),(i)} ⇒(iv). It suffices to show that if R
φ
−→ S is an exact localization, then φ is

formally smooth. A standard argument shows that a morphism R
φ
−→ S is smooth iff any

R-ring strict epimorphism (i.e. a surjection) T
g
−→ S such that the square of the kernel of

g is zero, has right inverse. Denote the kernel of g by J . Thus we have an exact sequence
of R-bimodules

0 −→ J −→ T −→ S −→ 0. (3)

Denote by Φ∗ the functor

Re −mod −−−→ Se −mod, M 7−→ S ⊗RM ⊗R S.

Notice that this functor is an exact localization having a (necessarily fully faithful) right
adjoint, Φ∗. In particular, it maps the exact sequence (3) into exact sequence. Applying
the functor Φ∗ to the diagram

0 −−−→ J −−−→ T −−−→ S −−−→ 0
տ ր
R

(4)

we obtain the diagram

0 −−−→ Φ∗(J) −−−→ Φ∗(T ) −−−→ Φ∗(S) −−−→ 0
տ ր
Φ∗(R)

(5)

Since Φ∗ is a localization, the natural morphism S −→ Φ∗Φ
∗(S) is an isomorphism,

Φ∗(R) = S ⊗R S ≃ S, and the k-algebra morphism Φ∗(φ) : Φ∗(R) −→ Φ∗(S) is an
isomorphism.

Note that J is an S-bimodule. This implies that Φ∗Φ
∗(J) ≃ J . Thus we have a

commutative diagram

0 −−−→ J −−−→ T −−−→ S −−−→ 0y
y

y
0 −−−→ Φ∗Φ

∗(J) −−−→ Φ∗Φ
∗(T ) −−−→ Φ∗Φ

∗(S) −−−→ 0
տ ր

S

(6)
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whose left and right vertical arrows are isomorphisms. Since both rows are exact sequences,
it follows that the adjunction morphism T −→ Φ∗Φ

∗(T ) is an isomorphism too, hence the
assertion.

5.9. Formally Assinfk -unramified and formally Assinfk -étale morphisms. The
following assertion is a relative version of 4.6.1.

5.9.1. Proposition. Let R, S be associative k-algebras, and let R
φ
−→ S be a

k-algebra morphism.
1) The following conditions are equivalent:

(i) The morphism φ is formally Assinfk -unramified.

(ii) Any derivation S
D
−→M which is an Re-module morphism is inner.

(iii) The canonical Se-module epimorphism S ⊗R S −→ S has a right inverse.
2) Suppose that the k-algebra R is separable. Then

(a) The morphism R
φ
−→ S is formally Assinfk -smooth iff Ω1

S|R is a projective
S-bimodule.

(b) The following conditions are equivalent:

(iv) The morphism φ is formally Assinfk -unramified.

(v) φ is formally Assinfk -étale.
(vi) S is a separable k-algebra (i.e. S is a projective Se-module).

Proof. 1) (i)⇔(ii). Let T be a semidirect product of S and an Se-bimodule M , and

let T
α
−→ S the natural projection, (s, z) 7−→ s. Any k-algebra morphism S −→ T which

is right inverse to α in category Assk is conjugate to a k-algebra morphism, S
β
−→ T ,

which is right inverse to α in Algk. Any such morphism β is of the form s 7−→ (s,D(s),

where S
D
−→ M is an S|R-derivation. If R

φ
−→ S is Assinfk -unramified, β is of the form

s 7−→ usu−1. The argument of 4.6.1 shows that this (together with the equality α◦β = idS)
implies that D is an inner derivation.

Conversely, if the morphism S
β
−→ T is given by s 7−→ (s,D(s)), where D is an inner

derivation, i.e. D(s) = s·z−z ·s for some element z ofM and all s ∈ S, then β(s) = usu−1,
where u = 1S − z).

(ii)⇒(iii). The functor DerS|R : Se − mod −→ Sets, M 7−→ DerS|R(M), is repre-
sentable by the Se-module Ω1

S|R = Ker(S ⊗R S −→ S). The canonical monomorphism

Ω1
S|R

iφ
−→ S ⊗R S induces a map

HomSe(S ⊗R S,M) −−−→ HomSe(Ω
1
S|R,M) (1)

Notice that HomSe(S⊗R S,M) ≃ HomRe(R, φ∗(M)), and HomRe(R, φ∗(M)) is nat-
urally isomorphic to the center, z(φ∗(M)) = {v ∈ M | r · v = v · r for all r ∈ R}, of the
Re-module φ∗(M). The composition of the bijection z(φ∗(M)) −→ HomSe(S ⊗R S,M)
and the map (1) assigns to each central element, z, of φ∗(M) the corresponding inner
derivation, s 7−→ s · z − z · s. Thus, each derivation of DerS|R(M) is inner iff the map (1)
is surjective. In the case M = Ω1

S|R, this implies the existence of an Se-module morphism
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S⊗RS
p
−→ Ω1

S|R such that p◦iφ = id. Or, equivalently, the canonical Se-module morphism
S ⊗R S −→ S has a right inverse.

The implication (iii)⇒(ii) follows from the argument above.

2) (a) A k-algebra morphism R
φ
−→ S is formally Assinfk -smooth iff it is formally

Alginfk -smooth. By 5.8.1, if R is a separable k-algebra, then φ is formally Alginfk -smooth
iff Ω1

S|R is a projective Se-module.

(b) By the argument of 5.8.1, if R is a separable k-algebra, then the Se-module

S ⊗R S is projective. By 1), the morphism R
φ
−→ S is Assinfk -unramified iff the Se-

module morphism S ⊗R S −→ S has a right inverse. Since S ⊗R S is projective, the
latter implies that S is a projective Se-module, hence (equivalently) Ω1

S|R is a projective

Se-module, i.e. the morphism φ is formally Assinfk -smooth. This proves the implications
(iv)⇒(v)⇒(vi)⇒(v). The implication (v)⇒(iv) is true by definition.

5.9.2. Corollary. The following conditions on a k-algebra morphism R
φ
−→ S are

equivalent:
(a) φ is formally Assinfk -étale.

(b) The adjunction morphism φ∗φ∗
ǫφ
−→ IdS−mod has a right inverse.

Proof. (a)⇒(b). By 5.9.1, the canonical Se-module epimorphism S ⊗R S
µ
−→ S has

a right inverse, S
tau′

−→ S ⊗R S. The morphism τ ′ defines a morphism, IdS−mod
τ
−→ φ∗φ∗.

The equality µ ◦ τ = idS implies that the composition of τ with the adjunction morphism,

φ∗φ∗
ǫφ
−→ IdS−mod is the identity morphism.

(b)⇒(a). Conversely, any morphism, IdS−mod
τ ′

−→ φ∗φ∗, is induced by an Se-module

morphism, S
τ
−→ S ⊗R S. The morphism τ ′ is a right inverse to the adjunction morphism

φ∗φ∗
ǫφ
−→ IdS−mod iff the composition of the bimodule morphism τ with the canonical

morphism S ⊗R S −→ S equals to idS .

5.10. Another description of the category Assk.

5.10.1. Proposition. Two k-algebra morphisms, R
φ

−→
−→
ψ

S, are conjugate iff the

corresponding inverse image functors, R −mod

φ∗

−−−→
−−−→
ψ∗

S −mod, are isomorphic.

Proof. (a) Suppose that ψ and φ are conjugate, i.e. there exists an invertible element,
t, of S such that ψ(r) = tφ(r)t−1 for all r ∈ R. For any R-moduleM = (M,m), we have
a commutative diagram

S ⊗kM
·t

−−−→ S ⊗k M

γψ

y
y γφ

S ⊗R,ψ M
λt
−−−→ S ⊗R,φM

(1)

Here ·t denotes the S-module morphism s⊗ z 7−→ st⊗ z for all s ∈ S, z ∈M ; γψ, γφ are
canonical epimorphisms.
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In fact, for any s ∈ S, r ∈ R, z ∈M , γψ(sψ(r)⊗ z) = γψ(s⊗ r · z), and ·t(s⊗ r · z) =
st⊗ r · z.

On the other hand, ·t(sψ(r) ⊗ z) = sψ(r)t ⊗ z = stφ(r) ⊗ z, and γφ(stφ(r) ⊗ z) =
γφ(st⊗ r · z). Since γψ is by definition the cokernel of two maps

S ⊗k R ⊗k M
ψl
−→
−→
ψr

S ⊗k M, s⊗ r ⊗ z
ψl7−→ sψ(r)⊗ z, and s⊗ r ⊗ z

ψr7−→ s⊗ r · z,

it follows the existence of a (necessarily unique) morphism S ⊗R,ψ M
λt−→ S ⊗R,φM such

that the diagram (1) commutes; i.e. λt is given by γψ(s⊗ z) 7−→ γφ(st⊗ z).

(b) Conversely, suppose φ, ψ are k-algebra morphisms such that there is a functorial
isomorphism u : ψ∗ ∼−→ φ∗. Identifying both φ∗(R) and ψ∗(R) with the left S-module S,
we obtain, in particular, an S-module morphism u(R) : S −→ S. Since S is a unital ring,

u(R) equals to s
·t
7−→ st for some t ∈ S. Since u is a functor morphism, for any r ∈ R,

u(R) ◦ ψ∗(·r) = φ∗(·r) ◦ u(R). This means that sψ(r)t = stφ(r) for any s ∈ S, hence
ψ(r) = tφ(r)t−1.

5.10.2. Corollary. The category Assk is isomorphic to the category whose objects
are associative k-algebras; morphisms are equivalence classes of k-algebra morphisms with
respect to the following relation: two k-algebra morphisms φ, ψ : R −→ S are equivalent iff
the inverse image functors φ∗, ψ∗ : R −mod −→ S −mod are isomorphic.

5.11. Formally A-open immersions. Let A = (Ā
u
⇄ A) be a Q-category, X, Y

functors A −→ Sets. We call a morphism X
f
−→ Y a formally A-open immersion if it is

a formally A-smooth monomorphism, or, equivalently, a formally A-étale monomorphism.

5.11.1. Proposition. (a) The composition of formally A-open immersions is a
formally A-open immersion.

(b) Let X −→ Y be a formally A-open immersion. For any morphism T −→ Y , the
canonical projection T ×Y X −→ T is a formally A-open immersion.

(c) Let S ∈ ObA∨, and let (X, ξ)
f
−→ (Y, µ), (X ′, ξ′)

f ′

−→ (Y ′, µ′) be morphisms of
objects over S. The morphisms f, f ′ are formally A-open immersions iff the morphism
f ×S f ′ : X ×S X ′ −→ Y ×S Y ′ is a formally A-open immersion.

Proof. The assertions (a), (b), (c) follow from the fact that both monomorphisms and
formally A-étale morphisms are stable under composition, base change, and fiber product
(see 5.4, 5.6).

5.11.2. Proposition. Let X
f1
−→
−→
f2

Y
h
−→ Z be a diagram of presheaves of sets on

Aop (i.e. functors A −→ Sets) such that h◦f1 = h◦f2. If the morphism h is A-unramified,

then the morphism Ker(f1, f2)
i
−→ X is a formally A-open immersion.
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Proof. Consider the diagram

Ā(ȳ, u∗(−))
g′

−−−→ Ker(f1, f2)

αȳ

y
y i

A(u∗(ȳ),−)
g

−−−→ X

f1

−−−→
−−−→
f2

Y
h

−−−→ Z

(1)

with commutative square. The diagram

Ā(ȳ, u∗(−))
f1◦i◦g

′

−−−→ Y

αȳ

y
y h

A(u∗(ȳ),−)
h◦f1◦g
−−−→ Z

commutes; and since h is unramified, there is at most one morphism A(u∗(ȳ),−)
γ
−→ Y

such that h◦γ = h◦f1 ◦g. Since h◦f1 = h◦f2, this uniqueness implies that f1 ◦g = f2 ◦g.

Therefore, there exists a unique morphism A(u∗(ȳ),−)
λ
−→ X such that g = i ◦ λ. This

shows that the monomorphism i is formally A-smooth, hence the assertion.

5.11.3. Corollary. Any section of a formally A-unramified morphism is a formally
A-open immersion.

Proof. Let Y
s
−→ X be a section of a formally A-unramified morphism X

f
−→ Y .

Then the morphism s induces an isomorphism Y −→ Ker(sf, idX). The assertion follows
now from 5.11.2.

5.11.4. Formally open immersions of affine schemes.

5.11.4.1. Proposition. Let A be the Q-category Alginfk of 4.2. Then the following

conditions on a flat k-algebra morphism R
φ
−→ S are equivalent:

(i) φ is formally A-unramified.
(ii) φ is formally A-étale.
(iii) φ∗ is a localization.
(iv) φ is a formally open A-immersion.

Proof. The equivalence of the first three conditions is the content of 5.8.2. By the
definition of a formally A-open immersion, (iv)⇒ (ii).

{(iii), (ii)} ⇒ (iv). By definition, R
φ
−→ S is a formally open A-immersion iff the

morphism of functors Algk(φ,−) : Algk(S,−) −→ Algk(R,−) is a formally étale monomor-
phism, or, equivalently, φ is a formally étale algebra epimorphism. It is étale by (ii). And
φ∗ ≃ S ⊗R − being a localization, implies that φ is an epimorphism (see the argument of
5.8.2, (iii)⇒ (i)).

5.11.4.2. Proposition. A flat k-algebra morphism R
φ
−→ S is a formally Assinfk -

open immersion iff the functor φ∗ is a localization.
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Proof. Suppose φ∗ is a localization. Then the adjunction morphism φ∗φ∗ −→ IdS−mod

is an isomorphism. Therefore, by 5.9.2, φ is formally Assinfk -étale. Let S
f1
−→
−→
f2

T be a pair

of algebra morphisms such that f1 ◦ φ is equivalent to f2 ◦ φ (i.e. both define the same
morphism in Assk). Then, by 5.10.1, (f1◦φ)

∗ ≃ (f2◦φ)
∗, or, equivalently, φ∗◦f1∗ ≃ φ∗◦f2∗.

Since φ∗ is a fully faithful functor, this implies that f1∗ ≃ f2∗, hence f1 and f2 define the
same morphism in Assk.

Conversely, suppose φ is a formally Assinfk -open immersion. In particular, it is a

formally Assinfk -smooth morphism. It follows from 4.3 and 4.6.1 that formal Assinfk -

smoothness is the same as formal Assinfk -smoothness.

5.12. Smooth, étale, and unramified morphisms. Open immersions.

5.12.1. Finitely presentable and locally finitely presentable morphism. Let
C be a category, C∧ the category of presheaves of sets on C (i.e. functors Cop −→ Sets).

Fix an object, Y , of C∧. We call a morphism X
f
−→ Y locally finitely presentable (resp.

locally of finite type) if for any filtered projective system D
D
−→ C/Y , the canonical map

colim C∧/Y (D, (X, f)) −−−→ C∧/Y (limD, (X, f)) (1)

is bijective (resp. injective). Here C/Y denotes the full subcategory of the category C∧/Y
whose objects are pairs (V, V → Y ) with representable V .

A morphism X
f
−→ Y is called finitely presentable (resp. of finite type) if for any

filtered projective system D
D
−→ C∧/Y , the canonical map

colim C∧/Y (D, (X, f)) −−−→ C∧/Y (limD, (X, f)) (2)

is bijective (resp. injective).
In order to avoid repetitions, we introduce intermediate notions. Fix a full subcategory

E of the category C∧ containing all representable functors. Let X, Y be objects of C∧. We

call a morphism X
f
−→ Y of E-finite type (resp. E-finitely presentable) if for any filtered

projective system D
D
−→ E/Y , the canonical map

colim C∧/Y (D, (X, f)) −−−→ C∧/Y (limD, (X, f))

is injective (resp. bijective).

5.12.2. Proposition. Let Σ1
E (resp. Σ0

E) denote the class of all E-finitely presentable
(resp. of E-finite type) morphisms of the category C∧.

(a) Both Σ0
E and Σ1

E are closed under composition and contain all isomorphisms.
(b) If the morphism f in the cartesian square

X ′
g′

−−−→ X

f ′
y

y f

Y ′
g

−−−→ Y
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belongs to ΣiE , then f
′ belongs to ΣiE , i = 0, 1.

(c) Suppose that X
f
−→ Y and Z

h
−→ W are morphisms over S which belong to ΣiE .

Then X ×S Z
f×Sh
−−−→ Y ×S W belongs to ΣiE , i = 0, 1.

(d) If the composition g ◦ f of two morphisms is E-finitely presentable and g is of
E-finite type, then f is E-finitely presentable.

Proof. (a) Let morphisms X
f
−→ Y

g
−→ Z belong to ΣiE . We claim that the composi-

tion X
gf
−→ Z belongs to the same class; i.e. for any filtered projective system D

D
−→ E/Z,

the canonical map

colim C∧/Z(D, (X, gf)) −−−→ C∧/Z(limD, (X, gf))

is injective if i = 0 and bijective if i = 1. First, consider the case i = 0.
Let (uν) and (u′ν) be two inductive systems of arrows D(ν) −→ (X, gf), ν ∈ ObD,

(i.e. gfuν = gfu′ν for all ν) such that the compositions of uν and u′ν with the canonical

morphism limD
pν−→ D(ν) are equal. With more reason, (fuν)pν = (fu′ν)pν . Since

Y
g
−→ Z is of E-finite type, fuµ = fu′µ for an appropriate µ. Replacing D by the

composition, Dµ, of D with the canonical functor µ\D −→ D, we can regard (uν) and
(u′ν) as inductive systems of arrows Dµ(ν) −→ (X, f), ν ∈ Obµ\D which equalize the

canonical morphism limD = limDµ
pν−→ Dµ(ν). Since X

f
−→ Y belongs to Σ0

E , there
exists λ such that uλ = u′λ; i.e. the systems (uν) and (u′ν) define the same element of
colim C∧/Z(D, (X, gf)).

Suppose now that the morphisms f and g belong to Σ1
E . Let D

D
−→ E/Z be a filtered

projective system, and let limD
h
−→ (X, gf) be an arbitrary morphism. Consider the

morphism limD
fh
−→ (Y, g). Since Y

g
−→ Z belongs to Σ1

E , there exists a unique element,
u, of colim C∧/Z(D, (Y, g)) whose image in C∧/Z(limD, (Y, g)) coincides with fh. Let
(uν) be an inductive system of arrows {Dµ(ν) −→ (Y, g)} representing the element u; i.e.
the diagrams

limDµ

h
−−−→ X

pν

y
y f

Dµ(ν)
uν
−−−→ Y

commute (here Dµ has the same sense as above). Since X
f
−→ Y belongs to Σ1

E , there is a
unique element of colim C∧/Y (Dµ, (X, f)) whose image in C∧/Y (limDµ, (X, f)) is given
by h. Here we use that limDµ = limD.

(b) Suppose that X
f
−→ Y belongs to Σ1

E . Let D
D
−→ E/Y ′ be a filtered projec-

tive system, and let limD = (V, V
v
→ Y ′). Fix a morphism (V, v)

h
−→ (X ′, f ′). Since f

belongs to Σ1
E , the morphism (V, gv)

g′h
−→ (X, f) is the image of a unique element, u, of

colim C∧/Y (g∗D, (X, f)). Here g∗D : D −→ C∧/Y is the diagram obtained by composi-
tion D with g. Let (uν) be an inductive system of arrows {g∗D(ν) −→ (X, f)} representing
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the element u. Then the diagrams

(V, gv)
h

−−−→ (X ′, fg′)

pν

y
y g′

g∗D(ν)
uν
−−−→ (X, f)

commute. By the universal property of cartesian squares, there exists a unique morphism

D(ν)
u′
ν−→ (X ′, f ′) such that uν = g′u′ν .

The proof of remaining assertions follows a similar routine. We leave the arguments
to the reader.

5.12.3. Definitions. Let A = (Ā
u
⇄ A) be a Q-category. Let X, Y be presheaves of

sets on Aop (i.e. functors A −→ Sets). We call a morphism X
f
−→ Y smooth (resp. étale,

resp. unramified) if it is locally finitely representable and formally smooth (resp. formally
étale, resp. formally unramified).

We call an A-smooth monomorphism an A-open immersion.

6. Formally smooth and formally infinitesimal morphisms. Let A = (Ā
u
⇄ A)

be a Q-category. We call a morphism U
φ
−→ T of presheaves of sets on Aop formally

A-infinitesimal if for any formally A-smooth morphism X
f
−→ Y and for any commutative

diagram

U
g′

−−−→ X

φ
y

y f

T
g

−−−→ Y

(1)

there exists a morphism T
γ
−→ X such that the diagram

U
g′

−→ X
φ
y րγ

y f

T
g
−→ Y

(2)

commutes.

6.1. Proposition. (a) Any split monomorphism (in particular, any isomorphism) is
formally A-infinitesimal.

(b) The composition of formally A-infinitesimal morphisms is formally A-infinitesimal.

(c) Let U
φ
−→ T be a formally A-infinitesimal morphism and U

ψ
−→ V any morphism.

Then the canonical morphism V −→ V
∐
U V is formally A-infinitesimal.

Proof. (a) Obvious.
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(b) Let U
φ
−→ T and T

ψ
−→ S be formally A-infinitesimal morphisms. And let

U
g′

−−−→ X

ψφ
y

y f

S
g

−−−→ Y

be a commutative diagram with f formally A-smooth. Since φ is formally A-infinitesimal,

there exists a morphism T
γ
−→ X such that the diagram

U
g′

−→ X
φ
y րγ

y f

T
gψ
−→ Y

commutes. Since ψ is formally A-infinitesimal, there exists a morphism S
γ′

−→ X such that
the diagram

T
γ
−→ X

ψ
y ր′

γ

y f

S
g
−→ Y

commutes.

(c) Consider a commutative diagram

U
ψ

−−−→ V
g′

−−−→ X

φ
y

y p1

y f

T
p2
−−−→ T

∐
U V

g
−−−→ Y

in which p1, p2 are canonical projections. Since φ is formally A-infinitesimal, there exists

a morphism T
γ
−→ X such that the diagram

U
g′ψ
−→ X

φ
y րγ

y f

T
gp2−→ Y

commutes. Due to the universal properties of fiber coproducts, the commutative diagram

U
ψ

−−−→ V

φ
y

y g′

T
γ

−−−→ X
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determines uniquely a morphism T
∐
U V

γ′

−→ X such that the diagram

V
g′

−−−→ X

φ
y

y f

T
∐
U V

g
−−−→ Y

commutes.

6.2. The Q-category A∨
A
. We denote by A∨

A
the full Q-subcategory, (A∨

A
⇄ A∨),

of the Q-category ((A∨)2 ⇄ A∨) of morphisms of A∨ (cf. 2.5), where A∨
A

denotes the
full subcategory of (A∨)2 whose objects are formally A-infinitesimal morphisms. It follows
from 6.1 that A∨

A
is a Q-category corresponding to a pretopology.

6.3. General pattern. Fix a category C and a family, M, of morphisms of C
containing all identical morphisms.

(i) We call a morphism X
f
−→ Y in C formally M-smooth if any commutative diagram

T
g

−−−→ X

φ
y

y f

S
g′

−−−→ Y

(1)

such that φ ∈M extends to a commutative diagram

T
g′

−→ X
φ
y րγ

y f

S
g
−→ Y

(2)

(ii) We call X
f
−→ Y formally M-unramified if for any commutative diagram (1) such

that φ ∈ M, there exists at most one morphism S
γ
−→ X such that the diagram (2)

commutes.

(iii) We call X
f
−→ Y formally M-étale if it is both formally M-smooth and formally

M-unramified.
We denote by Mfsm (resp. Mfnr, resp. Mfet) the class of all formally M-smooth

(resp. formally M-unramified, resp. formally M-étale) morphisms.

6.4. N-infinitesimal morphisms. On the other hand, given a class N of morphisms

of C, denote by Ninf the class of all morphisms T
φ
−→ S of C such that any commutative

diagram (1) such that X
f
−→ Y belongs to N extends to a diagram (2). Morphisms of

Ninf will be called N-infinitesimal morphisms.

6.5. Remarks. (a) Given a Q-category A = (Ā
u
⇄ A), take as C the category A∨ of

functors A −→ Sets, and set M = MA to be the family of morphisms {Ā(ȳ, u∗(−))
αȳ
−→
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A(u∗(ȳ),−) | ȳ ∈ ObĀ}. It follows from definitions that a morphism X −→ Y is formally
A-smooth (resp. formally A-unramified) iff it is formally MA-smooth (resp. formally
MA-unramified).

Similarly, the notion of an A-infinitesimal morphism is a special case of aN-infinitesimal
morphism for an obvious choice of the category C and the family of morphisms N; namely,
C = A∨, and N is the class of formally A-smooth morphisms.

(b) The main reason to introduce this setting here is the natural ”duality”

M 7−→Mfsm, N 7−→ Ninf .

If follows from definitions that M ⊆ Ninf iff N ⊆ Mfsm. In a more symmetric way,
the latter relations can be expressed as follows:

Any commutative diagram

T
g

−−−→ X

φ
y

y f

S
g′

−−−→ Y

such that φ ∈M and f ∈ N extends to a commutative diagram

T
g′

−→ X
φ
y րγ

y f

S
g
−→ Y

6.6. Proposition. Let M be a family of arrows of a category C.
(a) The class Mfsm (resp. Mfnr, resp. Mfet) of formally M-smooth (resp. for-

mally M-unramified, resp. formally M-étale) morphisms is closed under composition and
contains all isomorphisms of the category C.

(b) Let X
f
−→ Y, Y

h
−→ Z be morphisms of C.

(i) If h ◦ f is formally M-unramified, then f is formally M-unramified.

(ii) Suppose h is formally M-unramified. If X
h◦f
−→ Z is formally M-smooth (resp.

formally M-étale), then f is formally M-smooth (resp. formally M-étale).

(c) Let X
ξ
−→ S

ξ′

←− X ′ and Y
ν
−→ S

ν′

←− Y ′ be morphisms such that there exist

X×SX
′ and Y ×SY

′. Let (X, ξ)
f
−→ (Y, ν) and (X ′, ξ′)

f ′

−→ (Y ′, ν) be morphisms of objects
over S. The morphisms f, f ′ are formally M-smooth (resp. formally M-unramified, resp.
formally M-étale) iff the morphism f ×S f ′ : X ×S X ′ −→ Y ×S Y ′ has the respective
property.

(d) Let X
f
−→ Y

h
←− S be such a diagram that there exists a fiber product X ×S Y .

If f is formally M-smooth (resp. formally M-unramified, resp. formally étale), then the

canonical projection X ×S T
f ′

−→ T is formally M-smooth (resp. formally M-unramified,
resp. formally M-étale).
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Proof. The argument follows the lines of the proofs of 5.4 and 5.6.

6.6.1. Corollary. Let X
f
−→ Y, Y

h
−→ Z be morphisms of C. Suppose h is formally

M-étale. Then h ◦ f is formally M-smooth (resp. formally M-unramified, resp. formally
M-étale) iff f belongs to the same class.

6.7. Proposition. Let N be a family of arrows of C.
(a) Any split monomorphism (in particular, any isomorphism) belongs to Ninf .
(b) The class Ninf of N-infinitesimal morphisms is closed under composition.

(c) Let T
φ
←− U

ψ
−→ S be morphisms such that there exists T

∐
U S. If φ belongs to

Ninf , then the canonical morphism S −→ T
∐
U S belongs to Ninf .

Proof. The argument is similar to the proof of 6.1.

6.8. Example: separated, universally closed, and proper morphisms. Let A
be the category CAlgk of commutative k-algebras. Let Ā be the category of faithfully flat

k-algebra morphisms, A = (Ā
u
⇄ A) the corresponding full Q-subcategory of (A2 ⇄ A).

Spaces in the sense of Grothendieck, in particular schemes and algebraic spaces, are sheaves
of sets on the Q-category A.

Let M′
v be the family of canonical injections of valuation rings to their fields of frac-

tions; and let Mv denote the image of M′
v in the category A∨ of functors A −→ Sets.

6.8.1. Proposition. Let X
f
−→ Y be a quasi-separated scheme morphism. Then

(a) The morphism f is separated iff it is formally Mv-unramified.
(b) The morphism f is universally closed iff it is formally Mv-smooth.
(c) The morphism f is proper iff it is formally Mv-étale.

Proof. The assertions (a) and (c) are equivalent resp. to the Grothendieck’s criterion
of separatedness and properness (see EGA, Ch.II, 7.2.3 and 7.2.8). A proof of the assertion
(b) can be extracted from the argument of Theorem 7.2.8, EGA, Ch.II.

Standard properties of separated and proper morphisms become special cases of as-
sertions on formally M-unramified and formally M-étale morphisms (cf. 5.4 and 5.6):

6.8.2. Corollary. (a) Any monomorphism is a separated morphism.
(b) A composition of two separated (resp. proper) morphisms is separated (resp.

proper).
(c) Separated (resp. proper) morphisms are stable under base change.

(d) If X
f
−→ Y and Y

g
−→ Z are two morphisms such that g ◦ f is separated, then f

is separated.

(e) If X
f
−→ Y and Y

g
−→ Z are two morphisms such that g is separated and g ◦ f is

proper, then f is proper.

(f) If X
f
−→ Y and X ′ f ′

−→ Y ′ are separated (resp. proper) morphisms over S, then
their product, f ×S f ′ : X ×S X ′ −→ Y ×S Y ′, is also separated (resp. proper).

6.8.3. Remarks. (a) One can introduce the notions of formally separated and for-
mally proper morphisms by omitting the condition that the morphism in question is quasi-
compact. In terms of the family Mv, a morphism is formally separated (resp. formally
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proper) iff they are formally Mv-unramified (resp. formally Mv-étale). It follows that the
assertions obtained from 6.8.1 and 6.8.2 by dropping the quasi-compactness condition and
inserting ’formally’ at appropriate places, are corollaries of 6.6.

(b) The notions of a (formally) proper morphism and a (formally) separated morphism
make sense for morphisms of arbitrary presheaves of sets on the category Aop, not only
for scheme morphisms, because the notions of a (formally) M-smooth and (formally) M-
unramified morphisms make sense for morphisms of presheaves of sets on Aop.

(c) At the moment, it is not clear what might be an adequate noncommutative version
of the family Mv.

7. Affine morphisms. Closed immersions. Separated morphisms and sep-
arated presheaves.

7.1. Representable morphisms. Let P be a class of morphisms of the category A
having the following properties:

(a) A composition of a morphism from P with any isomorphism belongs to P.

(b) If X
f
−→ Y is a morphism from P, then for any Z

g
−→ Y , there exists a fiber

product X ×Y Z and the projection X ×Y Z −→ Z belongs to P.

Let F, G be presheaves of sets. A morphism F −→ G is called representable by a
morphism of P if for any hX −→ G, the projection F ×G hX −→ hX is of the form hu for
a morphism u ∈ P. In particular, the functor F ×G hX is representable.

Denote by P∧ the class of all morphisms of A∧ representable by morphisms of P.
Clearly a morphism hX −→ hY belongs to P∧ iff it is of the form hw with w ∈ P.

7.1.1. Lemma. The class P∧ is invariant under the base change: if F −→ G belongs
to P∧ and H −→ G is an arbitrary morphism, then the projection H ×G F −→ H belongs
to P∧.

Proof is left to the reader.

7.1.2. Lemma. Let P and Q be classes of morphisms of the category A satisfying
the conditions (a), (b). Then

(i) The intersection P ∩ Q has the properties (a) and (b).
(ii) If P is closed under the composition, then P∧ has the same property.

Proof is left to the reader.

7.1.3. Standard examples. 1) The class M = M(A) of all monomorphisms has the
property 7.1(b) and is closed under the composition.

2) Same holds for the class Eu = Eu(A) of universal epimorphisms. Recall that a

morphism X
f
−→ Y is called a universal epimorphism if for any morphism V −→ Y ,

there exists a fiber product X ×Y V and the canonical projection X ×Y V −→ V is an
epimorphism.

7.2. Affine morphisms. Let A be a category with fiber products, and let P be the
class of all morphisms of A. In this case we shall call P-representable morphisms affine.
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It follows that a presheaf morphism F −→ G is affine iff for any object X of A and any
morphism hX −→ G, the presheaf F ×G hX is representable.

7.2.1. Lemma. Let A be a category with finite limits, and let G be a presheaf of sets
on a category A. The following conditions are equivalent:

(a) For any object X of A, any morphism hX −→ G is affine.
(b) The diagonal morphism G −→ G×G is affine.

Proof. (a)⇒(b). Let X be an object of A and hX
f
−→ G×G an arbitrary morphism.

Taking compositions of f with projections G × G ⇉ G, we obtain a pair of morphisms

hX

f1
−→
−→
f2

G. Their fiber product, hX ×G hX , is a part of the cartesian square

G
∆G
−−−→ G×Gx

x f1 × f2

hX ×G hX −−−→ hX × hX

The condition (a) implies that hX ×G hX is affine. Since hX −→ G × G is arbitrary, the
diagonal morphism ∆G : G −→ G×G is affine.

(b)⇒(a). LetX, Y be objects of A, and let hX −→ G←− hY be arbitrary morphisms.
Consider the cartesian square

G
∆G
−−−→ G×Gx

x
hX ×G hY −−−→ hX × hY

Since A has finite products, hX×hY is representable, hX×hY ≃ hX×Y . Since by hypothesis
(b) the diagonal morphism ∆G is affine, the presheaf hX ×G hY is representable too, hence
the assertion.

7.3. Strict monomorphisms and closed immersions. For a morphism Y
f
−→ X

of a category A, denote by Λf the class of all pairs of morphisms u1, u2 : X ⇉ V equalizing

f . A morphism Y
f
−→ X is called a strict monomorphism if any morphism g : Z −→ X

such that Λf ⊆ Λg has a unique decomposition g = f ◦ g′. It follows that any strict
monomorphism is a monomorphism. We denote the class of strict monomorphisms of the
category A by Ms(A), or by Ms. The class Es = Es(A) of strict epimorphisms is defined
dually.

Clearly the composition of a strict monomorphism with an isomorphism is a strict
monomorphism. If the category A has fiber products, then the class Ms = Ms(A) of strict
monomorphisms of the category A satisfies the condition 7.1(b) too.

In fact, consider the diagram

X ×Y V
p2
−−−→ V

p1

y
y g

X
f

−−−→ Y −−−→
−−−→ Z

(1)
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where Y ⇉ Z is an arbitrary pair of arrows from the class Λf of arrows equalizing f . But
then p2 is a universal arrow equalizing all pairs Λf ◦ g = {(u1g, u2g)| (u1, u2) ∈ Λf}.

7.3.1. Note. Suppose a morphism Y
f
−→ X is such that there exists a fiber co-

product X
∐
Y X . Then f is a strict monomorphism iff it is a kernel of the coprojections

Y −→−→ Y
∐
X Y . In particular, if the category A has fiber coproducts, then strict monomor-

phisms can be defined as morphisms X −→ Y such that the diagramX −→ Y −→−→ Y
∐
X Y

is exact.

7.3.2. Lemma. (a) If the composition, gf , of morphisms X
f
−→ Y

g
−→ Z is a strict

monomorphism, then f is a strict monomorphism.
(b) Any retraction is a strict monomorphism.

Proof. (a) If gf is a universal morphism with respect to the class of arrows

Λgf = {Z
u1
−→
−→
u2

V | u1gf = u2gf},

then f is universal for the class of arrows Λgf ◦ g = {(u1g, u2g)| (u1, u2) ∈ Λgf}.

(b) Let X
p
−→ Y is a retraction, i.e. there exists a morphism Y

e
−→ X such that

ep = idX . Then p is a kernel of the pair X
id
X
−→
−→
pe

X.

In fact, if Y
f
−→ X is a morphism equalizing the pair (idX , pe), then f = p◦ (ef); and

this decomposition is unique because p is a monomorphism.

7.3.3. Closed immersions of presheaves of sets. Let F, G be presheaves of sets
on A. We call a morphism F −→ G a closed immersion if it belongs to M∧

s , i.e. if it is
representable by a strict monomorphism. In particular, a closed immersion hX −→ hY of
representable functors is of the form hu, where u is a strict monomorphism.

7.3.4. Example. Let A be the category CAff/k of commutative affine schemes over
Spec(k). Then strict monomorphisms are exactly closed immersions of affine schemes. Let
X and Y be arbitrary schemes identified with the corresponding sheaves of sets on the
category C = CAff/k. Then a morphism X −→ Y is a closed immersion in the sense of
the definition 7.3.1 iff it is a closed immersion of schemes in the conventional sense.

This example shows in particular that a strict monomorphism of (pre)sheaves is not

necessarily a closed immersion. For instance, if X
f
−→ Y is a scheme morphism, the

diagonal morphism X
∆f
−→ X×Y X is a kernel of the natural pair of arrows X ×Y X ⇉ X ,

hence it is a strict monomorphism of sheaves of sets. But ∆f is a closed immersion (in the
sense of 7.3.2) only if the scheme morphism f is separated. Note that, in general, ∆f is
not even affine.

7.3.5. Example. Let R be an associative k-algebra and A the category (R\Algk)op

of noncommutative affine schemes over R. Let (S,R
s
−→ S) and (T,R

t
−→ T ) be R-rings

and (S, s)
f
−→ (T, t) and R-ring morphism. The corresponding morphism of affine schemes
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is a strict monomorphism iff the diagram T
∏
S T ⇉ T

f
−→ S is exact. The latter means

that S is the quotient of T by the two-sided ideal Ker(f).

7.4. Separated morphisms and separated presheaves. Let X, Y be presheaves

of sets on a category A. We call a morphism X
f
−→ Y separated if the canonical morphism

X
∆f
−→ X ×Y X is a closed immersion. We say that a presheaf X on A is separated if the

diagonal morphism X −→ X ×X is a closed immersion.
Let • denote the constant presheaf Aop −→ Sets with values in a one point set. Since

• is a final object of the category of presheaves of sets on A, a presheaf X is separated iff
the (unique) morphism X −→ • is separated.

II. Locally affine spaces and schemes. Grassmannians.
8. Locally affine spaces.

8.1. Spaces and covers. Fix a Q-category A = (Ā
u
⇄ A). Let TA be the associated

quasi-cosite (cf. 2.4). We call (the category of) sheaves of sets on TA (the category of)
A-spaces, or simply spaces if it is clear what is A. We denote by EspA the full subcategory
of A∨ formed by A-spaces, and by û+ the sheafification functor A∨ −→ EspA (a left adjoint
to the inclusion functor EspA −→ A∨).

If TA is a cosite, then (and only then) the sheafification functor is exact. Otherwise,
it is only right exact, as any functor having a left adjoint.

We call a space X affine, if X is corepresentable, i.e. X ≃ A(x,−) for some x ∈ ObA.
We are particularly interested in the case when the Q-category A is subcanonical, i.e. all
corepresentable functors are A-spaces.

8.2. Remark. In what follows, the Q-category A, or ruther the associated quasi-
cosite TA, is just a device serving to define the subcategory of spaces, EspA. We might
start with choosing somehow a strictly full subcategory, E, of the category A∨ such that
the inclusion functor E →֒ A∨ has a right adjoint, and declare E the category of Spaces
(cf. A1.10). The requirement that A should be subcanonical means that ObE contains all
corepresentable functors. Note, however, that this setting is not more general than the one
we started with: if we take as A the Q-category A∨ ⇄ E, the category EspA of A-spaces
coincides with E.

8.3. Affine τ -covers, locally affine τ -spaces, and τ -schemes. Let τ be a quasi-
topology on the category EspA of A-spaces.

We call a τ -cover {Xu
u
→ X | u ∈ U} affine, if all Xu are affine (i.e. corepresentable).

We call an A-space X τ -locally affine if it has an affine τ -cover.
We call the cover {Xu

u
→ X | u ∈ U} 2-affine if it is affine and for any u, v ∈ U , the

space Xu ×X Xv has an affine τ -cover.

A τ -cover {Xu
u
→ X | u ∈ U} will be called a Zariski affine τ -cover if it is affine and

consists of monomorphisms.
We call an A-space X a τ -scheme if it has a Zariski affine τ -cover.
A τ -cover {Xu

u
→ X | u ∈ U} will be called Zariski 2-affine if it is Zariski affine and

for any u, v ∈ U , the space Xu ×X Xv has a Zariski affine τ -cover.
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We denote by LAA,τ the full subcategory of EspA whose objects are τ -locally affine
A-spaces, and by SchA,τ the full subcategory of EspA whose objects are τ -schemes.

8.3.1. Note. Let {Xu
u
→ X | u ∈ U} be a 2-cover, and let {Xν

u,v

νu,v
−→ Xu×XXv | u, v ∈

U , ν ∈ Ju,v} be an affine cover of Xu ×X Xv, u, v ∈ U . We can associate with this data
the following diagram formed by affine spaces and their morphisms:

Xν
u,v

ւ ց
Xu Xv u, v ∈ U , ν ∈ Ju,v

(1)

Suppose the quasi-pretopology τ is such that all covers {Xu
u
→ X | u ∈ U} are strictly

epimorphic families of arrows, i.e.
∐
u∈U Xu −→ X is a strict epimorphism. Then the

space X is a colimit of the diagram (1). In particular, the space X can be reconstructed
from the local affine data given by the diagram (1).

8.4. Semiseparated and weakly separated covers and spaces. We call a cover
{Xu

u
→ X | u ∈ U}
– weakly separated if Xu and the pull-back Xu×X Xv are affine (i.e. corepresentable)

for all u, v ∈ U ,
– semiseparated if the space Xu and the morphism Xu

u
→ X are affine for all u.

Clearly semiseparated covers are weakly separated, and weakly separated covers are
2-covers; i.e. a space which has a weakly separated cover is locally affine. We call a
space which has a semiseparated (resp. weakly separated) affine cover semiseparated (resp.
weakly separated).

8.4.1. Proposition. Suppose that A = (Ā
u
⇄ A) is subcanonical (i.e. all corepre-

sentable functors A −→ Sets are A-spaces), and A has products. Then every separated
locally affine A-space is τ -semiseparated.

Proof. Let X be any separated A-space, not necessarily locally affine. By definition,
X is separated iff the diagonal morphism ∆X : X −→ X × X is a closed immersion,
i.e. it is representable by strict monomorphisms. The latter means that for any pair of

morphisms T
p1
−→
−→
p2

X with T affine, the canonical morphism Ker(p1, p2) −→ T is a strict

monomorphism of affine spaces (i.e. corepresentable functors; cf. 7.4). In particular, the

diagonal morphism ∆X is affine. Let T, V be affine A-spaces and T
f
−→ X

g
←− V arbitrary

morphisms. Consider the cartesian square

X
∆X
−−−→ X ×Xx

x f × g

T ×X V
j

−−−→ T × V

(2)

Since A has products, the product of corepresentable functors T and V is a corepresentable
functor. Since A is subcanonical, this product is an affine A-space. In particular, it
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coincides with the product T × V in the diagram (2) (taken in the category of A-spaces).

Since T × V is affine, the morphism T ×X V
j

−−−→ T × V is a strict monomorphism of
affine A-spaces. In particular, T ×X V is affine. This shows that any morphism from an
affine A-space to X is affine, hence the assertion.

8.4.2. Example: semiseparated schemes and algebraic spaces. Let X be a
(commutative) scheme, or an algebraic space. An affine cover {Ui

ui→ X | i ∈ J} is called

semiseparated if each morphism Ui
ui→ X is affine. A scheme (or algebraic space) is called

semiseparated if it has a semiseparated cover.

8.5. Natural quasi-topologies on EspA. Let P be a class of morphisms in EspA
which contains all identical arrows and is closed under the composition (that is P is a

subcategory of EspA having same objects as EspA). We call a set of arrows {Xu
u
→ X | u ∈

U} from a P-cover of X if
(i) it is strictly epimorphic;
(ii) all arrows of U belong to P.
’Strictly epimorphic’ means that the corresponding morphism

∐
u∈U Xu −→ X is a

strict epimorphism. This defines a quasi-topology, τP , on EspA. It remains to choose the
class P.

Let A1 = (Ā1 ⇄ A) be another Q-category with the same underlying category A
(thought as the Q-category of thickennings). Then we have the following choices:

– the class Pét (resp. P
f ét) of (resp. formally) A1-étale morphisms,

– the class Psm (resp. Pfsm) of (resp. formally) A1-smooth morphisms,
– the class Pzar (resp. Pfzar) of (resp. formally) A1-open immersions (cf. 5.12.3).

We denote the corresponding quasi-topologies resp. by τét, τf ét, τsm, τfsm, τzar, and
τfzar and call them resp. étale, formally étale, smooth, formally smooth, Zariski and
formally Zariski quasi-topology.

We call τzar-locally affine A-spaces A1-schemes.

8.6. Remark. Each of the classes, Pét, Psm, and Pzar is stable under a base
change. But, strict epimorphisms fail, in general, to be invariant under a base change,
hence τét, τsm, and τzar are not topologies usually. Same holds for formal versions of
these quasi-pretopologies.

Let P be closed under base change. We define a τPc -cover as a universally strictly

epimorphic set of arrows {Xu
u
→ X | u ∈ U} contained in P. This means that for any

morphism Y −→ X , the set of arrows {Xu ×X Y → Y | u ∈ U} is a τP -cover (i.e. is
strictly epimorphic). It follows that τPc -covers form a pretopology, and the corresponding
topology is the topology coinduced by τ , i.e. it is the strongest among those topologies
which are coarser than τ .

9. Commutative and noncommutative schemes and algebraic spaces.

9.1. Commutative schemes and algebraic spaces. Let A be the category CAlgk
of commutative k-algebras, Ā1 the full subcategory of A2 formed by k-algebra epimor-
phisms with nilpotent kernels, Ā the full subcategory of A2 formed by faithfully flat
morphisms. Then A-spaces are sheaves of sets on affine schemes endowed with the flat
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topology, i.e. spaces in the Grothendieck’s sense. And A1-schemes are usual commuta-
tive schemes. If τ = τét, then locally affine (resp. separated) spaces are Artin’s (resp.
separated) algebraic spaces.

9.2. Noncommutative schemes. Let A be the category Algk of associative k-
algebras, Ā1 the full subcategory of A2 formed by k-algebra epimorphisms with nilpotent
kernels, Ā the full subcategory of A2 formed by faithfully flat morphisms. The notion of
an A1-scheme is a natural noncommutative version of a scheme. If τ = τét (cf. 8.5), then,
by 5.11.4.1, locally affine A-spaces are, precisely, schemes (in the sense of 8.5).

9.3. Noncommutative algebraic spaces. Let A be the category Assk of as-
sociative k-algebras with morphisms defined up to conjugation (cf. 4.6). Let Ā be the
full subcategory of A2 formed by equivalence classes of faithfully flat algebra morphisms,
and let Ā1 be the full subcategory of A2 formed by equivalence classes (with respect to
conjugation, see 4.6) of k-algebra epimorphisms with nilpotent kernels. If τ is the étale
quasi-topology (cf. 8.5), then locally affine A-spaces in this setting seem to be an adequate
noncommutative version of Artin’s algebraic spaces.

Schemes and locally affine spaces with respect to the smooth quasi-topology are same
in the settings of 9.2 and 9.3.

9.4. Remark. The definition of Artin’s algebraic space obtained in 9.1 is more
general than the ones usually used. Usually some finiteness restrictions are imposed. For
instance, Knutson considers only quasi-compact quasi-separated algebraic spaces. And in
[A1], algebraic spaces are separated.

Similarly, in the noncommutative case, one can impose finiteness conditions, for ex-
ample consider quasi-compact and quasi-separated locally affine spaces and schemes (see
definitions in 8.2 and Appendix 2).

10. Vector fibers and Grassmannians.

Fix an associative unital k-algebra R. Let A be the category R\Algk of associative
k-algebras over R (i.e. pairs (S,R → S), where S is a k-algebra and R → S a k-algebra
morphism) which we call for convenience R-rings. We denote by Re the k-algebra R⊗kRo.

10.1. Vector fiber associated with a bimodule. Let M be a left Re-module.
We denote by V

R
(M) the ’spectrum’ of the tensor algebra T

R
(M) = ⊕

n≥0
M

⊗n

of the

Re-moduleM. HereM
⊗0

= R andM
⊗(n+1)

=M⊗RM
⊗n

for n ≥ 0.

10.1.1. Lemma. For any unital ring morphism R
ϕ
−→ S, there is a natural isomor-

phism

SpecS
∏

SpecR

V
R
(M) ∼−→ V

S
(ϕ̄∗(M))

over SpecS. Here ϕ̄∗(M)) = S ⊗RM⊗R S.

Proof. Consider arbitrary commutative square

SpecA −−−→ V
R
(M)y
y

SpecS −−−→ SpecR

,
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or, the corresponding commutative square of k-algebra morphisms

T
R
(M) −−−→ Ax

x

R
ϕ

−−−→ S

(1)

The algebra morphism T
R
(M) −→ A is uniquely determined by an Re-module morphism

M −→ A. The commutativity of the diagram (1) implies that the pair of morphisms
M−→ A←− S defines an Se-module morphism ϕ̄∗(M) = Se⊗ReM−→ A which, in turn,
uniquely determines a k-algebra morphism T

S
(ϕ̄∗(M)) −→ A. Therefore T

S
(ϕ̄∗(M)) ≃

T
R
(M) ⋆

R
S as algebras over S; hence the assertion.

10.1.2. Proposition. Let M be a left Re-module. The space VR(M) is locally of
finite type (resp. locally finitely presentable) over R iff the Re-module M is of finite type
(resp. locally finitely presentable).

Proof. Let A = R\Algk, and let D
D
−→ A be a filtered inductive system. Then we

have a commutative diagram of canonical morphisms

colim HomA(TR(M),D)
λ

−−−→ HomA(TR(M), colim D)

≀
y

y≀

colim HomRe(M,ΦRD)
λ̃

−−−→ HomRe(M,ΦR(colim D))

(2)

Here A
ΦR−→ Re−mod is the functor which maps a R-ring (S,R −→ S) to the left Re-module

S. The functor ΦR is a right adjoint to the functor

Re −mod
T
R−→ A, M 7−→ (T

R
(M), R→ T

R
(M).

The functor ΦR preserves colimits of filtered inductive systems, i.e. the canonical morphism
colim ΦRD −→ ΦR(colim D) is an isomorphism. Thus, the map λ̃ in (2) is the composition
of a canonical map

colim HomRe(M,ΦRD)
λ̂

−−−→ HomRe(M, colim ΦRD)

and an isomorphism HomRe(M, colim ΦRD)
∼

−−−→ HomRe(M,ΦR(colimD)). Together

with the commutativity of (2), this means that λ is injective (resp. bijective) iff λ̂ is
injective (resp. bijective). Therefore, the morphism VR(M) −→ Spec(R) is locally of
finite type (resp. locally finitely presentable) if the Re-module M is of finite type (resp.
locally finitely presentable).

Let now D̃
D̃
−→ Re −mod be a filtered inductive system. Let ExR denote the functor

Re −mod −→ A = R\Algk denote the functor which assigns to every left Re-module L
the pair (LR, R→ LR), where LR is the extension R by L. Then for every Re-module L,
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the composition ΦR ◦ ExR transfers L into R ⊕L. Taking in (2) D = ExR ◦ D̃, we obtain
(from the following (2) discussion) a commutative diagram

colim HomA(TR(M),D)
λ

−−−→ HomA(TR(M), colim D)

≀
y

y≀

colim HomRe(M,ΦRD)
λ̂

−−−→ HomRe(M, colim ΦRD)

(3)

If VR(M) is locally of finite type (resp. locally finitely presentable) over R, then the

map λ in (3) is injective (resp. bijective). And λ is injective (resp. bijective) iff λ̂ has the
same property. Since there are natural isomorphisms

colim HomRe(M,ΦRD) ≃ colim HomRe(M, R⊕ D̃)

≃ HomRe(M, R)⊕ colim HomRe(M, D̃)

and
HomRe(M, colim ΦRD) ≃ HomRe(M, colim (R⊕ D̃)

≃ HomRe(M, R)⊕HomRe(M, colim D̃)

compatible with the map λ̂ in (3), λ̂ is injective (resp. bijective) iff the canonical map

colim HomRe(M, D̃) −−−→ HomRe(M, colim D̃) is injective (resp. bijective). This
shows that if VR(M) is locally of finite type (resp. locally finitely presentable) over R,
then the Re-moduleM is of finite type (resp. locally finitely presentable).

10.2. A note on a base change. Fix an object S of a category E . Let E/S
fS−→ E

and E∧/S
f̂∗
S−→ E∧ be the forgetful functors. The functor fS induces a functor

f∗
S : E∧ −→ (E/S)∧, X 7−→ X ◦ fS , (1)

The functor f̂∗
S has a right adjoint

f̂S∗
: E∧ −→ E∧/S, X 7−→ (X × S,X × S → S). (2)

For every presheaf X on E , there is a natural isomorphism

f∗
S(X) ≃ Hom

E∧/S
(hS(−), f̂S∗

(X)), (3)

where the functor E/S
hS
−→ E∧/S is induced by the Yoneda embedding. In other words,

the functor f∗
S(X) is the restriction to E/S of a functor representable in E∧/S.

If a presheaf X on E is representable by an object X̄, and there exists a product X̄×S
in E , then the presheaf f∗

S(X) on E/S is representable by the object (X̄ × S, X̄ × S → S).
This situation is illustrated by 10.1.1. In the general case, we shall identify E/S with a
full subcategory of E∧/S and omit the embedding hS .
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10.3. Inner hom. Let M, V be left R-modules. Consider the functor

H
R
(M,V ) : R\Algk −−−→ Sets

which assigns to each algebra R
φ
−→ S over R the set Hom

S
(φ∗(M), φ∗(V )).

10.3.1. Proposition. Let M and V be left R-modules. For any unital ring morphism

R
ϕ
−→ S, there is a natural isomorphism

SpecS
∏

SpecR

H
R
(M,V ) ∼−→ H

S
(ϕ∗(M), ϕ∗(V ))

over SpecS (cf. 10.2(5)).

Proof. Consider a commutative square

SpecA
ξ

−−−→ H
M,V

γ
y

y

SpecS
φ

−−−→ SpecR

The morphism ξ corresponds to an element of H
M,V

(R → A), i.e. to an A-module epi-
morphism A ⊗R M −→ A ⊗R V . Since A ⊗R − ≃ A ⊗S (S ⊗R −), this epimorphism
defines an element of H

φ∗(M),φ∗(V )
(S → A) which uniquely determines a morphism

SpecA
ξ̄
−→ H

φ∗(M),φ∗(V )
over SpecS. This implies the assertion.

10.3.2. Lemma. If V is a projective R-module of finite type, then the functor
H
R
(M,V ) is representable.

Proof. In fact, for any algebra R
φ
−→ S over R, we have:

Hom
S
(φ∗(M), φ∗(V ) ≃ Hom

R
(M,φ∗(V )) = Hom

R
(M,S ⊗R V ).

If V is a projective R-module of finite type, then S ⊗R V ≃ HomR(V ∨, S), where V ∨

is the right R-module dual to V , i.e. V ∨ = HomR(V,R); and HomR(−,−) denotes the
functor of right R-module morphisms. Thus,

Hom
R
(M,S ⊗R V ) ≃ Hom

R
(M,HomR(V ∨, S)) ≃ Hom

Re
(M ⊗k V

∨, S)

and
Hom

Re
(M ⊗k V

∨, S) ≃ R\Algk(TR(M ⊗k V
∨), S),

hence the assertion.

10.3.3. Corollary. Let M be a left R-module and V a projective left R-module of

finite type. Then, for any unital ring morphism R
ϕ
−→ S, there is a natural isomorphism

S ⋆R T
R
(M ⊗k V

∨) ∼−→ T
S
(ϕ∗(M)⊗k ϕ

∗(V )∨)

48



over S. Here ϕ∗(V )∨ = Hom
S
(ϕ∗(V ), S) ≃ Hom

R
(V, S).

Proof. By 10.3.2, the functorH
R
(M,V ) is representable by the tensor algebra TR(M⊗k

V ∨) of the Re-module M ⊗k V ∨. In particular, the functor H
S
(ϕ∗(M), ϕ∗(V )) is repre-

sented by the tensor algebra of Se-module

ϕ∗(M)⊗k ϕ
∗(V ∨) = S ⊗RM ⊗k V

∨ ⊗R S ≃ Se ⊗
Re

(M ⊗k V
∨).

The assertion follows now from 10.1.1 (see also 10.2.1).

10.3.4. Corollary. Let M be a left R-module and V a projective left R-module of
finite type. If the R-module M is locally of finite type (resp. locally finitely presentable),
then the functor H

R
(M,V ) is locally of finite type (resp. locally finitely presentable) over

R. If V is a generator of the category R −mod, then the converse holds; i.e. the functor
H
R
(M,V ) is of finite type (resp. finitely presentable) over R iff the R-module M is of

finite type (resp. finitely presentable).

Proof. By 10.3.2, the functorH
R
(M,V ) is representable by the tensor algebra TR(M⊗k

V ∨) of the Re-moduleM ⊗k V ∨, i.e. H
R
(M,V ) ≃ VR(M ⊗k V ∨). If the R-moduleM is of

finite type (resp. finitely presentable), then the Re-module M⊗k V
∨ is of finite type (resp.

finitely presentable). If V is a generator of the category R−mod (that is HomR(V,−) is a
faithful functor), then the Re-module M ⊗k V ∨ is of finite type (resp. finitely presentable)
iff the R-module M has this property. The assertion follows now from 10.1.2.

10.4. The functor Gr
M,V

. Let A = R\Algk. Let M be a left R-module and V
a projective left R-module. Consider the functor Gr

M,V
: A −→ Sets which assigns

to any R-ring (S,R
s
→ S) (an object of A) the set of isomorphism classes of S-module

epimorphisms s∗(M) −→ s∗(V ) (here s∗(M) = S ⊗R M) and to any R-ring morphism

(S,R
s
→ S)

φ
−→ (T,R

t
→ T ) the map

Gr
M,V

(S, s) −−−→ Gr
M,V

(T, t)

induced by the inverse image functor S −mod
φ∗

−→ T −mod, N 7−→ T ⊗S N .

10.4.1. The functor G
M,V

. Denote by G
M,V

the functor A −→ Sets which assigns

to any R-ring (S,R
s
→ S) the set of pairs of morphisms s∗(V )

v
→ s∗(M)

u
→ s∗(V ) such

that u ◦ v = ids∗(V ) and acts naturally on morphisms. Since V is a projective module, the
map

π = π
M,V

: G
M,V

(S, s) −−−→ Gr
M,V

(S, s), (v, u) 7−→ [u], (1)

is a (strict) functor epimorphism.

10.4.2. Relations. Denote by R
M,V

the ”functor of relations” G
M,V

∏

Gr
M,V

G
M,V

. By

definition, R
M,V

is a subfunctor of G
M,V
×G

M,V
which assigns to each R-ring, (S,R

s
→ S),

the set of all 4-tuples (u1, v1; u2, v2) ∈ GM,V
× G

M,V
such that the epimorphisms u1, u2 :

s∗(M) −→ s∗(V ) are equivalent. The latter means that there exists an isomorphism
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ϕ : s∗(V ) −→ s∗(V ) such that u2 = ϕ ◦ u1, or, equivalently, ϕ
−1 ◦ u2 = u1. Since ui ◦ vi =

id, i = 1, 2, these equalities imply that ϕ = u2 ◦ v1 and ϕ−1 = u1 ◦ v2. Thus RM,V
(S, s) is

a subset of all (u1, v1; u2, v2) ∈ GM,V
(S, s)

∏
G
M,V

(S, s) satisfying the following relations:

u2 = (u2 ◦ v1) ◦ u1, u1 = (u1 ◦ v2) ◦ u2 (2)

in addition to the relations describing G
M,V

(S, s)
∏
G
M,V

(S, s):

u1 ◦ v1 = idS⊗RV = u2 ◦ v2 (3)

Denote by p1, p2 the canonical projections R
M,V

−−−→
−−−→ G

M,V
. It follows from the

surjectivity of G
M,V
−→ Gr

M,V
that the diagram

R
M,V

p1

−−−→
−−−→
p2

G
M,V

π
−−−→ Gr

M,V
(4)

is exact.

10.4.3. Proposition. If both M and V are projective modules of a finite type, then
the functors G

M,V
and R

M,V
are corepresentable.

Proof. (a) Suppose the R-module V is finite. For any algebra morphism φ : R −→ S,
we have the following functorial isomorphisms:

HomS(φ
∗(M), φ∗(V )) ≃ HomR(M,φ∗φ

∗(V )) = HomR(M,S ⊗R V ) ≃

HomR(M,HomR(V ∨, S)) ≃ HomRe(M ⊗k V
∨, S) ≃ R\Algk(TR(M ⊗k V

∨), S)

Here HomR(V ∨, S) is the (left) R-module of right R-module morphisms from V ∨ to S,
Re = R ⊗k Rop, and TR(M ⊗k V ∨) is the tensor algebra of the R-bimodule M ⊗k V ∨.

(b) The set G
M,V

(S) is the kernel of the pair of morphisms

HomS(φ
∗(M), φ∗(V ))×HomS(φ

∗(V ), φ∗(M)) −−−→−−−→ HomS(φ
∗(V ), φ∗(V )) (5)

where one arrow assigns to each pair (u, v) the composition, u ◦ v, of morphisms u and
v, and the other one maps each pair (u, v) to the identity morphism, idφ∗(V ). Since the
modules M and V are finite, we have canonical functorial isomorphisms:

HomS(φ
∗(M), φ∗(V ))×HomS(φ

∗(V ), φ∗(M)) ≃

HomRe(M ⊗k V
∨, S)×HomRe(V ⊗k M

∨, S) ≃

HomRe(M ⊗k V
∨ ⊕ V ⊗k M

∨, S) ≃ R\Algk(TR(M ⊗k V
∨ ⊕ V ⊗k M

∨), S)

and
HomS(φ

∗(V ), φ∗(V )) ≃ R\Algk(TR(V ⊗k V
∨), S)
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Thus, to the diagram (1), there corresponds a diagram

TR(V ⊗k V
∨) −−−→−−−→ TR(M ⊗k V

∨ ⊕ V ⊗k M
∨) (6)

of algebra morphisms. The cokernel, G
M,V

, of the pair of morphisms (6) corepresents the
kernel of the pair of morphisms (5). This proves the corepresentability of G

M,V
.

(c) A similar argument proves the corepresentability of RM,V . Details are left to the
reader.

10.4.3.1. Proposition. If M and V are projective R-modules of a finite type, then
the functors G

M,V
, R

M,V
, and Gr

M,V
are locally finitely presentable over R.

Proof. It follows from the argument of 10.4.3 that G
M,V

is isomorphic to the kernel
of a pair of arrows

VR(M ⊗k V
∨ ⊕ V ⊗k M

∨) −−−→−−−→ VR(V ⊗k V
∨) (7)

(see (6)). Since the R-modules M and V are projective of finite type, the Re-modules
V ⊗kV ∨ andM⊗kV ∨⊕V ⊗kM∨ are projective of finite type; in particular, they are finitely
presentable. Therefore, by 10.1.2, both functors in (7) are locally finitely presentable over
R. The kernel of a pair of arrows between locally finitely presentable over R functors is
locally finitely presentable over R; hence G

M,V
is locally finitely presentable over R. By

a similar reason the functor of relations RM,V is locally finitely presentable over R. Since
Gr

M,V
is a cokernel of a pair of arrows between locally finitely presentable over R functors

(see 10.4.2(4)), it is locally finitely presentable too.

10.4.4. Universality with respect to the base change.

10.4.4.1. Proposition. Let M, V be R-modules. For any unital k-algebra morphism

R
φ
−→ S, there is a natural isomorphism between the diagram

SpecS
∏

SpecR

(
R
M,V

p1

−−−→
−−−→
p2

G
M,V

π
−−−→ Gr

M,V

)
(1)

and the diagram

R
φ∗(M),φ∗(V )

p1

−−−→
−−−→
p2

G
φ∗(M),φ∗(V )

π
−−−→ Gr

φ∗(M),φ∗(V )
(2)

In particular, SpecS
∏

SpecR

Gr
M,V

is isomorphic to Gr
φ∗(M),φ∗(V )

.

Proof. Consider a commutative square

SpecA
ξ

−−−→ Gr
M,V

γ
y

y

SpecS
φ

−−−→ SpecR
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The morphism ξ corresponds to an element of Gr
M,V

(R→ A), i.e. to the equivalence class
of an A-module epimorphism A ⊗R M −→ A ⊗R V . Since A ⊗R − ≃ A ⊗S (S ⊗R −),
this epimorphism defines an element of Gr

φ∗(M),φ∗(V )
(S → A) which corresponds to a

morphism SpecA
ξ̄
−→ Gr

φ∗(M),φ∗(V )
over SpecS. The latter means that the diagram

SpecA
ξ̄

−−−→ Gr
φ∗(M),φ∗(V )

γ ց ւ
SpecS

commutes. This implies that SpecS
∏

SpecR

Gr
M,V

is isomorphic to Gr
φ∗(M),φ∗(V )

. Simi-

larly, one can show that SpecS
∏

SpecR

G
M,V

is isomorphic to G
φ∗(M),φ∗(V )

. It follows from

the universality of these constructions that the isomorphisms can be chosen in such a way
that the diagram

SpecS
∏

SpecR

G
M,V

−−−−−−−→ SpecS
∏

SpecR

Gr
M,V

y
y

G
φ∗(M),φ∗(V )

π
−−−−−−−→ Gr

φ∗(M),φ∗(V )

(3)

commutes. Notice that the functor SpecS
∏

SpecR− preserves fibered products. Since

R
M,V

= G
M,V

∏

Gr
M,V

G
M,V

, the diagram (3) induces an isomorphism

SpecS
∏

SpecR

R
M,V
−−−→ R

φ∗(M),φ∗(V )
.

Hence the assertion.

10.4.4.2. Proposition. Let M and V be projective left R-modules of finite type. And
let GM,V be a k-algebra representing the functor GM,V and RM,V a k-algebra representing

the functor R
M,V

. Then, for any unital k-algebra morphism R
φ
−→ S, there is a natural

isomorphism between the k-algebras

S ⋆R GM,V −−−→ Gφ∗(M),φ∗(V )
and S ⋆R RM,V

−−−→ R
φ∗(M),φ∗(V )

. (4)

Proof. By the part (b) of the argument of 10.4.3, the functor G
M,V

is the kernel of a
pair of arrows

H
R
(M,V )×H

R
(V,M) −−−→−−−→ HS

(V, V ). (5)
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By 10.4.4.3.2 and 10.4.4.3.3, all functors in this diagram are representable and satisfy the
desired property with respect to a base change. This implies the first isomorphism (4).
We leave to the reader establishing the second isomorphism.

10.5. Smoothness.

10.5.1. Proposition. Let M, V be projective R-modules of finite type. Then all
functors and all morphisms of the canonical diagram

R
M,V

p1

−−−→
−−−→
p2

G
M,V

π
−−−→ Gr

M,V
(1)

are smooth.

Proof. By 10.4.3.1, all functors in the diagram (1) are locally finitely presentable over
R. It follows from 5.12.2(d) that all morphisms of the diagram (1) are locally finitely
presentable. It remains to show that all functors and all morphisms of the diagram (1) are
formally smooth.

Fix an R-ring epimorphism T −→ S with a nilpotent kernel.
(a) By Yoneda’s lemma, a morphism Spec(S) −→ G

M,V
is uniquely defined by an

element of G
M,V

(S), i.e. by a pair of S-module morphisms

S ⊗R V
g
−→ S ⊗RM

h
−→ S ⊗R V (2)

such that h ◦ g = id. Since M and V are projective modules and the algebra morphism
T −→ S is an epimorphism, the diagram (2) can be lifted to a commutative diagram

T ⊗R V
g′

−−−→ T ⊗RM
h′

−−−→ T ⊗R Vy
y

y

S ⊗R V
g

−−−→ S ⊗RM
h

−−−→ S ⊗R V

Since V is a module of finite type and the kernel of the morphism T −→ S is nilpotent,
in particular it is contained in the Jacobson’s radical of T , the fact that the composition
h ◦ g is an isomorphism implies (by Nakayama’s Lemma) that h′ ◦ g′ is an isomorphism.
Set ḡ = g′ and h̄ = (h′ ◦ g′)−1 ◦h′. It follows that h̄ ◦ ḡ = idT⊗RV . Hence G

M,V
is formally

smooth.
(b) A morphism Spec(S) −→ Gr

M,V
is given by an element, ξ, of Gr

M,V
(S). Since

the map G
M,V

(S) −→ Gr
M,V

(S) is surjective, the element ξ is the image of an element,
ξ′, of G

M,V
(S). By (a), the element ξ′ can be lifted to an element, ξ′T , of GM,V

(T ). The
image of ξ′T in Gr

M,V
(T ) is a preimage of ξ.

(c) A morphism Spec(S) −→ R
M,V

is given by a pair of elements, (u1, v1), (u2, v2)
of G

M,V
(S) satisfying the following relations:

u2 = (u2 ◦ v1) ◦ u1, u1 = (u1 ◦ v2) ◦ u2 (3)
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in addition to the relations describing G
M,V

(S):

u1 ◦ v1 = id = u2 ◦ v2 (4)

(cf. 10.4.2). By (a), each of the pairs can be lifted to an element of G
M,V

(T ), resp. (u′1, v
′
1)

and (u′2, v
′
2). Set φ′ = u′2 ◦ v

′
1 : T ⊗R V −→ T ⊗R V . It follows that u′2 = φ′ ◦ u′1. Since

S ⊗T φ
′ = u2 ◦ v1 is invertible and the kernel of T −→ S is nilpotent, φ′ is invertible too.

This shows that the functor of relations, R
M,V

, is formally smooth.
(d) Consider the commutative diagram

G
M,V

π
−−−→ Gr

M,V

g
x

x g1

SpecS
φ̄

−−−→ SpecT

(5)

in which φ̄ is the morphism corresponding to a ring epimorphism φ : T −→ S with a
nilpotent kernel. The morphism g1 in (5) is uniquely defined by an element of Gr

M,V
(R→

T ), i.e. by a T -module epimorphism T ⊗RM
u
−→ T ⊗R V. By the same Yoneda’s lemma,

the morphism g in (5) is uniquely determined by an element of G
M,V

(S, s), i.e. a pair of
S-module morphisms

S ⊗R V
v′
−→ S ⊗RM

u′

−→ S ⊗R V

such that u′ ◦ v′ = id. The commutativity of the diagram (5) is equivalent to the commu-
tativity of the diagram

T ⊗R V T ⊗RM
u

−−−→ T ⊗R V

φV

y φM

y
y φV

S ⊗R V
v′

−−−→ S ⊗RM
u′

−−−→ S ⊗R V

(6)

in which the vertical arrows correspond to the ring epimorphism T
φ
−→ S, hence they are

epimorphisms. Since T⊗RV is a projective T -module and φM is a T -module epimorphism,
there exists a T -module morphism T ⊗R V

w
−→ T ⊗RM such that the diagram

T ⊗R V
w

−−−→ T ⊗RM
u

−−−→ T ⊗R V

φV

y φM

y
y φV

S ⊗R V
v′

−−−→ S ⊗RM
u′

−−−→ S ⊗R V

(6′)

commutes. Since T⊗RV is a projective T module of finite type, it follows from Nakayama’s
Lemma that u ◦ w is an isomorphism. Set v = w ◦ (u ◦ w)−1. Then u ◦ v = id and the
diagram

T ⊗R V
v

−−−→ T ⊗RM
u

−−−→ T ⊗R V

φV

y φM

y
y φV

S ⊗R V
v′

−−−→ S ⊗RM
u′

−−−→ S ⊗R V

(6′′)
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commutes. The pair of arrows

T ⊗R V
v
−→ T ⊗RM

u
−→ T ⊗R V (7)

is an element of G
M,V

(R→ T ) which corresponds to a morphism SpecT
γ
−→ G

M,V
.

Since the pair (7) is a preimage of the element T ⊗RM
u
−→ T ⊗R V of Gr

M,V
(R→ T )

corresponding to the morphism SpecT
g1
−→ Gr

M,V
(by definition of the morphism π), we

have the equality: π ◦ γ = g1. The commutativity of the diagram (6”) means exactly that
the diagram

G
M,V

g ր տγ

SpecS
φ̄

−−−→ SpecT

commutes.
(e) Since the morphism π in the cartesian square

R
M,V

p1
−−−→ G

M,V

p2

y
y π

G
M,V

π
−−−→ Gr

M,V

is formally smooth, the morphisms p1 and p2 are formally smooth (see 5.6).

We need a slightly stronger version of a part of Proposition 10.5.1:

10.5.2. Proposition. All morphisms of the canonical diagram (1) are coverings for
the smooth topology.

Proof. Let T
ξ
−→ Gr

M,V
be a morphism with affine T . Since the presheaf morphism

GM,V

π
−→ GrM,V is surjective, there exists a morphism T

ξ′

−→ GrM,V such that π ◦ ξ′ =

ξ. This implies that the canonical projection T ×
Gr
M,V

G
M,V

π′

−→ T has a splitting; in

particular, it is surjective. Since by 10.5.1, π is a smooth morphism, the projection π′ is
smooth too, hence the assertion.

10.6. A-Grassmannians. Let A = (Ā
u
⇄ A) be a Q-category, where A is the

category R\Algk of R-rings. We denote by GrA
M,V

the A-space associated with Gr
M,V

. We

call the functor GrA
M,V

an A-Grassmannian of the type (M,V ). In particular, Gr
M,V

is the
A-Grassmannian, where A corresponds to the discrete cotopology.

Suppose M and V are projective modules of finite type. Let G
M,V

and R
M,V

be k-
algebras corepresenting the functors resp. G

M,V
and R

M,V
. And let pi, i = 1, 2, be the

morphisms G
M,V
−→
−→ RM,V

corresponding to the projections R
M,V
−→
−→ G

M,V
.

If A is subcanonical, then the exact diagram (4) induces an exact diagram of A-spaces

RM,V

−−−→
−−−→ GM,V −−−→ GrA

M,V
. (7)
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10.6.1. Note. If A is a Q-category corresponding to a Grothendieck (pre)topology,
GrA

M,V
(S, s) might be described as the set of equivalence classes of quotients of S ⊗R M

which are locally isomorphic to S ⊗R V . Here equivalence is also understood as a local
isomorphism. If A does not correspond to a (pre)topology (more precisely, it is not stable
under an arbitrary base change), a naive interpretation of this description produces a map
from R-rings to Sets which, in general, is not functorial.

10.6.2. The Grassmannians Gr+
M,V

. Let M, V be projective left R-modules of

finite type. Let A be the category R\Algk; and suppose that Ā ⊆ A2 consists of all
faithfully flat algebra morphisms. We shall write in this case Gr+

M,V
instead of GrA

M,V
. The

canonical morphisms pi : GM,V −→ RM,V
, i = 1, 2, are faithfully flat. One can show that

the A-Grassmannian Gr+
M,V

is a locally affine A-space.

10.6.3. Noncommutative projective spaces. We shall write NPM instead of
Gr+

M,R1
and call it the noncommutative projective space of the R-module M . Here R1

denotes the free R-module of the rank one. This space was introduced and described in
[KR1] in the case when R is a field, hence M is a finite-dimensional vector space over R.

10.7. Smooth topology and Grassmannians. We denote by Gr
sm

M,V
the associated

with Gr
M,V

sheaf of sets for the smooth topology (cf. 8.6). It follows from 10.5.1 and 10.5.2
that the exact diagram (1) in 10.5.1 induces an exact diagram of sheaves

R
M,V

p1

−−−→
−−−→
p2

G
M,V

π̃
−−−→ Gr

sm

M,V
(1)

whose arrows are covers in the smooth topology (see 10.5.2). In particular, Gr
sm

M,V
is a

locally affine space with respect to the smooth pretopology.

10.8. Affine Zariski subschemes of a Grassmannian. Noncommutative Grass-
mannians are not schemes. But they have affine Zariski subschemes (constructed below)
which being restricted to commutative algebras produce a Zariski affine cover of the cor-
responding commutative Grassmannian (when it is not empty).

Fix an R-module morphism V
φ
−→M . For any R-ring (S,R

s
−→ S), consider the set

Fφ;M,V (S, s) of equivalence classes of all morphisms s∗(M)
v
−→ V ′ such that v ◦ s∗(φ) is

an isomorphism. Here two morphisms, s∗(M)
v
−→ V ′ and s∗(M)

v′
−→ V ′′, are equivalent

iff v′ = ψ ◦ v for some S-module isomorphism V ′ ψ
−→ V ′′.

10.8.1. Proposition. (a) The map (S, s) 7−→ Fφ;M,V (S, s) is naturally extended to
a subfunctor, Fφ;M,V : R\Algk −→ Sets, of the functor Gr

M,V
.

(b) Suppose that the R-module V is projective of finite type. Then the functor Fφ;M,V

is representable by an affine scheme and the morphism Fφ;M,V −→ Gr
M,V

is affine.

Proof. (a) (i) Fix an object (S,R
s
→ S) of R\Algk. If s∗(M)

v
−→ V ′ belongs to

Fφ;M,V (S, s), i.e. v ◦ s∗(φ) is an isomorphism, then for any morphism (S, s)
h
−→ (T, t), the

composition h∗(v) ◦ h∗s∗(φ) is an isomorphism, and h∗s∗(φ) ≃ t∗(φ). There is a natural
morphism Fφ;M,V −→ Gr

M,V
.
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(ii) Note that one can identify Fφ;M,V (S, s) with the set of all S-module epimorphisms

s∗(M)
v
−→ s∗(V ) such that v ◦ s∗(φ) = ids∗(V ). In fact, if s∗(M)

v′
−→ V ′ is such that

w = v′ ◦ s∗(φ) : s∗(V ) −→ V ′ is an isomorphism, then v = w−1 ◦ v′ has the required
property.

(iii) One of the consequences of the observation (ii) is that the canonical morphism
Fφ;M,V −→ Gr

M,V
is a monomorphism.

(b) There are two maps,

HomS(s
∗(M), s∗(V ))

αS

−−−→
−−−→
βS

HomS(s
∗(V ), s∗(V )),

defined by v
αS7−→ v ◦ s∗(φ), v

βS7−→ ids∗(V ). The maps αS and βS are functorial in (S, s),
hence they define morphisms, resp. α and β, from the functor

S 7−→ HomS(s
∗(M), s∗(V )) ≃ HomR(M, s∗s

∗(V )) = HomR(M,S ⊗R V )

to the functor

S 7−→ HomS(s
∗(V ), s∗(V )) ≃ HomR(V, s∗s

∗(V )) = HomR(V, S ⊗R V ).

(iv) Suppose now that V is a projective R-module of finite type. Then, by 10.3.2, the
first functor is representable by the vector fiber VR(M ⊗k V ∨) of the left Re-module M ⊗k
V ∨, and the second one is representable by the vector fiber VR(V ⊗k V ∨) of the projective
Re-module of finite type V ⊗k V ∨. Let α′ and β′ be morphisms from VR(M ⊗k V ∨) to
VR(V ⊗k V ∨) corresponding to resp. α and β. The functor Fφ;M,V is the kernel of the
pair (α, β), hence it is representable by the kernel, Fφ;M,V , of the pair (α′, β′).

(v) The functor morphism Fφ;M,V −→ Gr
M,V

is representable by an affine morphism;

i.e. for any R-ring (S,R
s
→ S) and any functor morphism h(S,s) −→ Gr

M,V
, the functor

R\Algk −−−→ Sets, (T, t) 7−→ Fφ;M,V (T, t)
∏

Gr
M,V

(T,t)

h(S,s)(T, t)

is representable by an affine subscheme of SpecS.
In fact, by the Yoneda’s lemma, any morphism h(S,s) −→ Gr

M,V
is uniquely de-

termined by an element of Gr
M,V

(S, s), i.e. by the equivalence class, [v], of a locally

split epimorphism s∗(M)
v
−→ V ′. The corresponding map h(S,s)(T, t) −→ GrM,V (T, t)

sends any morphism (S, s)
f
−→ (T, t) to the equivalence class [f∗(v)]. The fiber product

Fφ;M,V (T, t)
∏

Gr
M,V

(T,t)

h(S,s)(T, t) consists of all pairs (w, γ), where γ ∈ h(S,s)(T, t) and

[T ⊗kM
w
−→ T ⊗k V ] are such that w ◦ (T ⊗k φ) = idT⊗kV and w = γ∗(v). Since v and φ

here are fixed, the fiber product Fφ;M,V (T, t)
∏

Gr
M,V

(T,t)

h(S,s)(T, t) can be identified with
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the set of all morphisms (S, s)
γ
−→ (T, t) of R\Algk (i.e. k-algebra morphisms S

γ
−→ T

satisfying t = γ ◦s) such that γ∗(v◦(T ⊗kφ)) = idT⊗kV . In other words, this fiber product
is identified with the kernel of the pair of morphisms

h(S,s)(T, t)

α(T,t)

−−−→
−−−→
β(T,t)

HomT (T ⊗R V, T ⊗R V )

defined by

β(T,t) : γ 7−→ idt∗(V ) = id
T⊗kV

, α(T,t) : γ 7−→ γ∗(v) ◦ (T ⊗k φ).

The morphisms β(T,t), α(T,t) are functorial in (T, t), and HomT (T ⊗k V, T ⊗k V ) ≃
VR(V ⊗k V ∨)(T, t). Hence the morphisms β = (β(T,t)), α = (α(T,t)) define a pair of arrows

SpecS

α′

−−−→
−−−→

β′

VR(V ⊗k V ∨), and the functor (T, t) 7−→ Fφ;M,V (T, t)
∏

Gr
M,V

(T,t)

h(S,s)(T, t)

is representable by the kernel of the pair (α′, β′).

10.8.2. Proposition. Let M
φ
−→ V be an R-module morphism, and let V be a

projective R-module of finite type. If M is a finitely presentable R-module (resp. an R-
module of finite type), then Fφ;M,V is locally finitely presentable (resp. locally of finite
type) over R.

Proof. By the part (iv) of the argument of 10.8.1, the functor Fφ;M,V is isomorphic
to the kernel of a pair of arrows VR(M ⊗k V ∨) −→−→ VR(V ⊗k V ∨) over R. By 10.3.4,
VR(V ⊗k V

∨) is locally finitely presentable over R, and VR(M ⊗k V
∨) is locally finitely

presentable (resp. locally of finite type), if the R-moduleM is finitely presentable (resp. of
finite type). The kernel of a pair of morphisms between locally finitely presentable functors
(resp. functors locally of finite type) is locally finitely presentable (resp. locally of finite
type); hence the assertion.

10.8.2.1. Corollary. Suppose M and V are projective R-modules of finite type.
Then the canonical morphism Fφ;M,V −→ Gr

M,V
is locally finitely presentable.

Proof. By 10.4.3.1, Gr
M,V

is locally finitely presentable over R, and by 10.8.2, Fφ;M,V

has the same property. By 5.12.2(d), the morphism Fφ;M,V −→ Gr
M,V

is locally finitely
presentable.

10.8.3. Proposition. Let M be a projective R-module and V a projective R-
module of finite type. Then Fφ;M,V is formally smooth over R and the canonical morphism
Fφ;M,V −→ Gr

M,V
is a formally open immersion.

If M is a projective module of finite type, then Fφ;M,V is smooth over R and the
morphism Fφ;M,V −→ Gr

M,V
is an open immersion.

Proof. (a) LetM be a projective R-module. Since by 10.5.1, Gr
M,V

is formally smooth
over R and the composition of formally smooth morphisms is formally smooth, the formal
smoothness of Fφ;M,V over R is a consequence of the formal smoothness of the canonical
morphism Fφ;M,V −→ Gr

M,V
.
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Fix an R-ring epimorphism (T, t)
α
−→ (S, s) with a nilpotent kernel which is a part of

a commutative diagram
h(S,s) −−−→ Fφ;M,V

α
y

y
h(T,t) −−−→ Gr

M,V

(1)

By Yoneda’s lemma, the morphism h(S,s) −→ Fφ;M,V in (1) is uniquely defined by an

element of Fφ;M,V , i.e. by an S-module morphism s∗(M)
u′

−→ s∗(V ) such that u′ ◦ s∗(φ) =
ids∗(V ) and morphism, and the morphism h(T,t) −→ GrM,V is uniquely defined by an
element of Gr

M,V
(T, t). The commutativity of (1) is equivalent to the commutativity of

the diagram

T ⊗R V
t∗(φ)
−−−→ T ⊗RM

u
−−−→ T ⊗R V

αV

y αM

y
y αV

S ⊗R V
s∗(φ)
−−−→ S ⊗RM

u′

−−−→ S ⊗R V

(2)

whose vertical arrows are induced by the ring epimorphism T
α
−→ S, hence they are

epimorphisms. Since T ⊗R V is a projective T module of finite type and the kernel of
T

α
−→ S is nilpotent, it follows from Nakayama’s lemma that u ◦ t∗(φ) is an isomorphism.

Set ũ = (u ◦ t∗(φ))−1 ◦ u. Then ũ ◦ t∗(φ) = idt∗(V ) and the diagram

T ⊗R V
t∗(φ)
−−−→ T ⊗RM

ũ
−−−→ T ⊗R V

αV

y αM

y
y αV

S ⊗R V
s∗(φ)
−−−→ S ⊗RM

u′

−−−→ S ⊗R V

(3)

commutes. The pair of arrows

T ⊗R V
t∗(φ)
−→ T ⊗RM

ũ
−→ T ⊗R V (4)

is an element of Fφ;M,V (T, t) which corresponds to a morphism h(T,t)
γ
−→ Fφ;M,V . It

follows from the construction that adjoining the morphism γ to the diagram (1) makes a
commutative diagram. This shows that the canonical monomorphism Fφ;M,V −→ Gr

M,V

is formally smooth, hence a formally open immersion.
(b) Suppose now that M is a projective R-module of a finite type. Then by 10.8.2,

the functor Fφ;M,V is locally finitely presentable over R, and by 10.8.2.1, the morphism
Fφ;M,V −→ Gr

M,V
is locally finitely presentable. Therefore, Fφ;M,V is smooth over R and

Fφ;M,V −→ Gr
M,V

is an open immersion.

10.8.4. Projective completion of a vector bundle. Let M ′ = M ⊕ V , and

let V
jV
−→ M ′ be the canonical morphism. The functor FjV ;M ′,V is isomorphic to the

functor which assigns to any R-ring (S,R
s
→ S) the set HomS(s

∗(M), s∗(V ) (cf. (ii) and
(b) in the argument of 10.8.1). The latter functor is representable by the vector bundle
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VR(M ⊗k V
∨). If the R-modules M and V (hence M ′) are projective of finite type, then,

by 10.8.3, we have a canonical affine open immersion VR(M ⊗k V ∨) −→ Gr
M′,V

.

In particular, if R = k, than taking V = R1 = k1, we obtain a canonical immersion
V(M) −→ PM⊕R1 . The projective space PM⊕R1 can be regarded (as in the commutative
case) as the projective completion of the vector bundle VR(M).

10.8.5. Zero section and the hyperplane at infinity. Let M, V be R-modules.

Set M ′ = M ⊕ V , and let V
p
V←−M ⊕ V

p
M−→ M be canonical projections. The projection

p
V

determines a canonical section SpecR −→ GrM ′,V which (following the commutative

tradition) will be called the zero section. The projection M ′
p
M−→ M induces a closed

embedding Gr
M,V
−→ GrM ′,V called the hyperplane at infinity.

10.9. Grassmannians are separated. Recall that a presheaf of sets X on a
category C is separated if the canonical morphism ∆X : X −→ X×X is a closed immersion
(cf. 7.3, 7.4). Here C is the category Affk/SpecR of affine k-schemes over R for some
associative k-algebra R. In other words, C = (R\Algk)op.

10.9.1. Proposition. For any pair M, V of projective R-modules of finite type, the
presheaf Gr

M,V
: (Affk/SpecR)

op = R\Algk −−−→ Sets is separated.

Proof. Let (S,R
s
→ S) be an R-ring, and let h(S,s)

u1

−−−→
−−−→
u2

Gr
M,V

be a pair of

morphisms over R. The claim is that the kernel of the pair (u1, u2) is representable by a
closed immersion of affine schemes.

Let s∗(M)
ξi−→ s∗(V ) be an epimorphism corresponding to ui, i = 1, 2. Since s∗(V )

is a projective S-module, there exists an S-module morphism s∗(V )
νi−→ s∗(M) such that

ξiνi = ids∗(V ). Set pi = νiξi. Then the diagram

s∗(M)

id

−−−→
−−−→

pi

s∗(M)
ξi
−−−→ s∗(V )

is exact. Consider the pairs of morphisms

s∗(M)

ξ1

−−−→
−−−→
ξ1p2

s∗(V ) and s∗(M)

ξ2

−−−→
−−−→
ξ2p1

s∗(V ). (1)

There exists a universal R-ring morphism (S, s)
ψ
−→ (T, t) such that the image by ψ∗

of each of the pairs (1) belongs to the diagonal. We leave to the reader arguing that the
morphism ψ is a closed immersion.
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Appendix 1: Complements on Q-categories.

A1.1. A Q-category and a Qo-category associated with a fully faithful
functor. Let G : A −→ B be a fully faithful functor.

A1.1.1. Denote by Ā the full subcategory of B objects of which are all y ∈ ObB
such that the functor B(G(−), y) : Aop −→ Sets is representable. Denote by u∗ the
corestriction of G to the subcategory Ā. Assigning to each y ∈ ObĀ an object, u∗(y),
which represents the functor B(G(−), y), determines a functor u∗ : Ā −→ A right adjoint
to u∗.

A1.1.2. Dually, let A be the full subcategory of B whose objects are all z ∈ ObB
such that the functor B(z, G(−)) : A −→ Sets is corepresentable. Let u∗ denote the
corestriction of G to A. The functor u∗ has a left adjoint, u!. The pair of functors u∗, u!
defines a Qo-category A⇄ A.

A1.1.3. Example. Fix a small category D. Let B be the category DA of functors
D −→ A. For any x ∈ ObA, denote by iDx the constant functor D −→ A, iDx (α) = idx for
all morphisms α of D. The map x 7−→ iDx defines a fully faithful functor, iD, from A to DA.
The category Ā of A1.1.1 is the full subcategory of DA formed by all functors D : D −→ A
such that lim(D) exists. The functor u∗ : Ā −→ A, a right adjoint to u∗ = iD|Ā, assigns
to each functor D of Ā its limit.

Dually, the category A of A1.1.2 is the full subcategory of DA formed by all functors

D′ : D
D′

−→ A such that colim(D′) exists. The functor u!, a left adjoint to u∗ = iD|A,
assigns to each functor D′ of A its colimit.

If the category A has limits and colimits of functors D −→ A, then Ā = DA = A.
In this case, we write u! instead of u!. The canonical morphism ru : u∗ −→ u! (cf. 2.5)
assigns to any functor D : D −→ A the natural morphism limD −→ colim D.

The simplest example of such situation is D = (· → ·) and A an arbitrary category.
We recover the Q-category (A2 ⇄ A) of morphisms of A (cf. 2.5).

A1.1.4. Example. Let A be a category. Denote by A·⇉· the category of functors
(·⇉ ·) −→ A. Let u∗ denote the functor A −→ A·⇉·, x 7−→ (x ⇉ x), where both arrows
are identical. Suppose that the category A has kernels of pairs of morphisms. Then the
functor u∗ has a right adjoint, u∗ : (x ⇉ y) 7−→ Ker(x ⇉ y). If the category A has
cokernels of pairs of arrows, u∗ has a left adjoint, u! : (x⇉ y) 7−→ Cok(x⇉ y).

A1.2. Fully faithful functors and presheaves of sets. For a category A, let A∧

denote the category of presheaves of sets on A, i.e. the category of contravariant functors
from A to Sets. Let g∗ : A −→ B be a functor. The functor g∗∧ : B∧ −→ A∧, X 7−→
X ◦ g∗, admits a right and a left adjoint, resp. ĝ∗ and ĝ∗.

(i) The composition of ĝ∗ with canonical embedding A →֒ A∧ is isomorphic to g∗. For
any presheaf X ∈ ObA∧, we have:

ĝ∗(X)(Y ) ≃ colim(V,ξ)∈A/XB(Y, g∗(V )). (1)

If the functor g∗ has a left adjoint, g!, then ĝ
∗ ≃ g∧! : Y 7−→ Y ◦ g!.
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(ii) The functor ĝ∗ is fully faithful iff the functor g∗ is fully faithful.

Thus, if (and only if) g∗ is fully faithful, the pair of functors A∧ ĝ∗

−→ B∧ ĝ∗
−→ A∧ forms

a Q-category.
(iii) Note that if the functor g∗ is fully faithful and has a left adjoint, g!, we recover a

special case of A1.1, when C = Sets.

A1.2.1. The dual picture. Let g∗ : A −→ B be a fully faithful functor. Applying
to the dual functor, g∗op : Aop −→ Bop the considerations of A1.1, we obtain a Qo-category
(Ā∨ ⇄ A∨) = (Ā∨ ⇄ A∨).

A1.3. The Q-category of presheaves of sets. Let A = (Ā
u
⇄ A) be a Q-

category, u = (u∗, u∗). It follows from A1.2 that the functor u∗ determines a Q-category

A∧ = (Ā∧
û
⇄ A∧), where û = (û∗, û∗). We call A∧ the Q-category of presheaves of

sets on A. The canonical (Yoneda) embeddings A →֒ A∧, Ā →֒ Ā∧ define a Q-category
embedding, hA : A −→ A∧, which we call Yoneda embedding too.

A1.3.1. The Q-category of presheaves of sets and the Q-category of func-
tors. Let C be a category with small colimits. For any category, B, the composition with
the Yoneda embedding, hB : B −→ B∧, induces an equivalence between the category CB

of functors B −→ C and the category CB
∧

c of functors B∧ −→ C having a right adjoint

(see [GZ], Proposition II.1.3). In particular, for any Q-category A = (Ā
u
⇄ A), the Yoneda

embedding hA : A −→ A∧ induces an equivalence between the Q-category of functors
CA and the Q-category CA

∧

c = (CĀ
∧

c ⇄ CA
∧

c ) formed by functors resp. Ā∧ −→ C and
A∧ −→ C having a right adjoint.

A1.3.2. The dual realization of the Q-category of functors. Suppose C is a
category with small limits. The category CB of functors B −→ C is isomorphic to the
category (Cop)B

op

. By (the dual version of) Proposition II.1.3 in [GZ], the composition
with the Yoneda embedding hB : Bop −→ (Bop)∧ = B∨ induces an equivalence between
the category CB and the category (Cop)B

∨

c of functors (B∨) −→ Cop having a right

adjoint. The category (Cop)B
∨

c is naturally isomorphic to the category C
(B∨)op

cc of functors
(B∨)op −→ C (i.e. presheaves on B∨ with values in the category C) having a left adjoint.

It follows that for any Q-category A = (Ā
u
⇄ A), the Yoneda embedding hA : Aop −→

A∨ induces an equivalence between the Q-category of functors CA and the Q-category

C
(A∨)op

cc = (C
(Ā∨)op

cc ⇄ C
(A∨)op

cc ) formed by presheaves on resp. Ā∨ and A∨ with values in
C having a left adjoint.

A1.4. The functor u! and the Q-category A
!. Denote by A! the full subcategory

of the category A whose objects are all x ∈ ObA such that the category u∗/x has a final
object, u!(x). The map x 7−→ u!(x) is extended to a functor, u! : A! → Ā, defined uniquely
up to isomorphism. If A! = A, then u! is a right adjoint to the functor u∗.

In the general case, let Ā! denote the full subcategory of Ā whose objects are all x̄ ∈ Ā
such that u∗(x̄) ∈ ObA!. Since the adjunction arrow ηu : IdA → u∗u

∗ is an isomorphism,

u∗(A!) ⊆ Ā!. Thus we have a Q-subcategory, A! = (Ā!
u

⇄ A!), of the Q-category A such
that the functor u∗ has a right adjoint, u! = u!.
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A1.4.1. Proposition. The functor u! is fully faithful, or, equivalently, a canonical
morphism ǫ!u : u∗u

! → JA! is an isomorphism. Here JA! denotes the inclusion functor
A! → A.

Proof. Passing to the Q-subcategory A!, we can assume that A! = A, hence JA! is the
identical functor A→ A. The functor u∗ is a localization (since it has a fully faithful left
adjoint). Therefore the functor u!, being a right adjoint to a localization, is fully faithful
([GZ], I.4).

A1.5. Sheaves in A!. There is a canonical morphism ρu : u∗|A! → u! corresponding
to the isomorphism η−1

u : u∗u
∗ → IdA. By definition, FA is the full subcategory of A!

whose objects are all x ∈ ObA! such that the canonical morphism u∗(x) → u!(x) is an
isomorphism. In particular, the category FA coincides with the category FA! of sheaves in
the Q-subcategory A! of A.

A1.5.1. Lemma. The following conditions are equivalent:
(i) FA = A.
(ii) The functor u∗ has a right adjoint, u!, and the canonical morphism u∗ → u! is an

isomorphism.
(iii) The functor u∗ has a left adjoint, u!, which is isomorphic to u∗.

Proof. The equivalence of (i) and (ii) follows from definitions.
(ii) ⇔ (iii). The isomorphism u∗ → u! induces an isomorphism of the corresponding

left adjoint functors, u∗ → u! (in particular, it induces the existance of a left adjoint, u!,
of u∗). Conversely, if u∗ has a left adjoint, u!, and the latter is isomorphic to u∗, then,
obviously, u∗ is a right adjoint to u∗, i.e. u

∗ ≃ u!.

A1.6. Note. Set (F̄A = u−1
∗ (FA). The Q-subcategory, (F̄A ⇄ FA), of A induced by

the inclusion functor FA→ A enjoys the equivalent properties of A1.5.1.

A1.7. The functor Hu. Fix a Q-category A = (Ā
u
⇄ A) such that the functor

u∗ has a left adjoint, u!, and the functor u∗ has a right adjoint, u!. Denote by Hu the
functor u!u

! : A −→ A. Let τu : IdA −→ Hu be the composition of the isomorphism
IdA −→ u!u

∗, the inverse to the adjunction isomorphism, ηu! : u!u
∗ −→ IdA, and the

morphism u!(ρu) : u!u
∗ −→ u!u

! = Hu, where ρu : u∗ −→ u! is the canonical morphism
(cf. A1.5).

A1.7.1. Proposition. The following conditions on x ∈ ObA are equivalent:
(a) x is an A-sheaf.
(b) The canonical morphism ρu(x) : u

∗(x) −→ u!(x) is an isomorphism.
(c) u!(x) ≃ u∗(y) for some y ∈ ObA.
(d) The morphism τ(x) : x −→ Hu(x) is an isomorphism.

Proof. (a)⇔(b) follow from definitions.
(b)⇒(c) is obviously true.
(c)⇒(b). If u!(x) ≃ u∗(y), then u∗u

!(x) ≃ u∗u
∗(y) ≃ y. By A1.4.1, the adjunction

morphism IdA −→ u∗u
! is an isomorphism. In particular, x ≃ u∗u

!(x), hence x ≃ y.
(b)⇒(d) by definition of the morphism τu.
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(d)⇒(b). One can check that u∗(τu) = λu ◦ ρu and u!τu = ρuHu ◦ λuu
!. Here

λu : IdĀ → u!u∗ is an adjunction morphism. Since τu(x) is an isomorphism, it follows
from the first equality that ρu(x) is a strict monomorphism, and from the second one, that
ρuHu(x), hence ρu(x), is a strict epimorphism. Thus ρu(x) is an isomorphism.

A1.7.2. Proposition. 1) Suppose u∗ has a right adjoint, u!. Then the following
conditions on x ∈ ObA are equivalent:

(a) x is an A-monopresheaf.
(b) The canonical morphism ρu(x) : u

∗(x) −→ u!(x) is a monomorphism.

(c) There exists a monomorphism, ξ : u∗(x) −→ u!(y), for some y ∈ ObA.
2) Suppose both functors, u! and u!, exist. If the morphism τ(x) : x −→ Hu(x) is a

monomorphism, then x is an A-monopresheaf. The converse is true under the condition
that the functor u! maps monomorphisms to monomorphisms.

Proof. 1) (a)⇔(b)⇒(c) follow from definitions.

(c)⇒(b). The morphism ξ decomposes uniquely as the canonical morphism ρu(x) :
u∗(x) −→ x and a morphism g : x −→ y. Since the composition g ◦ ρu(x) is a monomor-
phism, ρu(x) is a monomorphism.

2) Since u∗ is left exact (as a functor having a left adjoint), u∗(τu(x)) is a monomor-
phism, if τu(x) is a monomorphism. But u∗(τu(x)) = λu(x) ◦ ρu(x), hence ρu(x) is a
monomorphism.

By definition, τu = (ηu! )
−1 ◦ u!(ρu) (cf. A1.7). Thus, if ρu(x) is a monomorphism and

u! maps monoarrows to monoarrows, τu(x) is a monomorphism too.

A1.7.3. Lemma. If x is an A-epipresheaf (i.e. ρu(x) : u∗(x) −→ u!(x) is a strict
epimorphism, cf. 3.1.4), then τu(x) : x −→ Hu(x) is a strict epimorphism.

Proof. The functor u! maps strict epimorphisms to strict epimorphisms (as any functor
having a right adjoint). In particular, if ρu(x) is a strict epimorphism, then τu(x) =
ηu! (x)

−1 ◦ u!(ρu(x)) is a strict epimorphism.

A1.8. Sheafification functors. Let A = (Ā
u
⇄ A) be a Q-category, FA the category

of A-sheaves. A sheafification functor is a left adjoint to the inclusion functor FA →֒ A (if
any). We are interested here in the case of Q-categories CA and mostly for C = Sets. We
shall denote by F(A, C) the category of sheaves on a Q-category A with values in C. And
we shall write FA∨ in the case C = Sets.

A1.8.1. Existence.

A1.8.1.1. Lemma. Let A = (Ā
u
⇄ A) be a Q-category such that u∗ preserves limits

of certain type. Then the subcategory FA of sheaves in A is closed under limits of this type
(taken in A).

Proof. This follows from the characterization of objects of FA as those x ∈ ObA for
which the canonical morphism u∗(x) −→ u!(x) is an isomorphism and the fact that the
functor u! (defined on a full subcategory, A!, of A) preserves all limits (taken in A) of all
small diagrams D −→ A!.
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A1.8.1.2. Lemma. Let A = (Ā
u
⇄ A) be a Q-category such that A has small limits

and the functor u∗ preserves small limits. Suppose, in addition that for any object x of A,
there exists an A-sheaf, y, and a morphism x → y. Then the inclusion functor FA →֒ A
has a left adjoint.

Proof. The assertion follows from A1.8.1.1 and the Freyd’s criterion of the existence
of a left adjoint functor to an inclusion functor (cf. [GZ]).

A1.8.1.3. Corollary. Let A = (Ā
u
⇄ A) be a Q-category such that the functor u∗

has a left adjoint, u!, and A has small limits and a final object (the latter follows from the
existence of small limits if A is equivalent to a small category). Then there exists a left
adjoint to the inclusion functor FA →֒ A.

Proof. The existence of a left adjoint, u! to the functor u∗ garantees that u∗ preserves
limits. Let • denote the final object to the category A. Notice that any functor having a
left adjoint maps a final object to a final object. In particular, u∗(•) is a final objects of
Ā. This implies that u∗(•), ηu(•) is a final object of the category u∗/•, i.e. • is an A-sheaf.
Since, by definition, any object of A has a morphism to •, the conditions of A1.8.1.2 are
fulfilled, hence the assertion.

A1.8.1.4. Proposition. Let C be a category with small limits and a final object
(for instance, C = Sets, or C = k − mod for some ring k). Then for any Q-category

A = (Ā
u
⇄ A), the inclusion functor F(A, C) →֒ CA has a left adjoint.

Proof. Let • denote the final object of the category C. For any category B, the
constant functor with value in • is a final object of the category BC of functors from B to
C. The functor û∗ : F 7−→ F ◦ u∗ preserves small limits and maps the final object of the
category CA to the final object of CĀ. This implies, in particular, that the final object of
CA is a sheaf on A. The assertion follows from A1.8.1.2 and (the argument of) A1.8.1.3.

A1.8.2. Construction. The functor Hu is used to construct a sheafification functor.
We need the following technical fact.

A1.8.2.1. Proposition. Let A = (Ā
u
⇄ A) be a Q-category, such that both functors,

u! and u
! exist. Let τu : IdA −→ Hu = u!u

! be the canonical morphism (cf. A1.7.1). Then
Huτu = τuHu.

Proof. There is a commutative diagram of canonical morphisms

u!u
∗

u!η
∗
uu

∗

−−−→ Huu∗u
∗

η!u

y
x Huηu

IdA
τu
−−−→ Hu

ǫ∗u

x
y ηuHu

u∗u
!

u∗ruu
!

−−−→ u∗u
∗Hu

(1)

The upper diagram follows from the definition of τu (in A1.7.1), τu = u!ρu ◦ (η!u)
−1, and

the equality ρu = u!η−1
u ◦ η

∗
uu

∗. The diagram (1) provides two formulas for τu:
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(a) τu = η−1
u Hu ◦ u∗λuu

! ◦ (ǫ∗u)
−1

(b) τu = Huη
−1
u ◦ u!η

∗
uu

∗ ◦ (η!u)
−1.

Applying Hu from the left to the first expression and from the right to the second
one, we obtain respectively:

(a’) Huτu = Huη
−1
u Hu ◦ u!(u

!u∗ruu
! ◦ u!ǫ∗−1

u ) = Huη
−1
u Hu ◦ u!(u

!u∗λuu
! ◦ η∗uu

! =
Huη

−1
u Hu ◦ u!(u

!u∗λu ◦ η
∗
u)u

! since u!ǫ∗−1
u = η∗uu

!.
(b’) τuHu = Huη

−1
u Hu ◦ (u!η∗uu

∗u! ◦ η!−1
u u!)u

! = Huη
−1
u Hu ◦ (u!η∗uu

∗u! ◦ u!ru)u! =
Huη

−1
u Hu ◦ u!(η∗uu

∗u! ◦ λu)u! since η!−1
u u! = u!ru. Thus the right hand sides of (a’)

and (b’) coincide as claimed.

A1.8.2.2. Corollary. Under conditions of A1.8.2.1, Hn
u τuH

m
u = τuH

n+m
u for any

nonnegative integers m, n.

We call functors which map monomorphisms to monomorphisms monofunctors.

A1.8.2.3. Corollary. (a) Suppose Hu is a monofunctor and x ∈ ObA is such that
τu(x) is a monomorphism. Then τu(Hu(x)) is a monomorphism.

(b) Let u! be a monofunctor. Then the subcategory MA →֒ A of A-monopresheaves is
Hu(x)-invariant.

Proof. The assertion (a) is a consequence of the equality Huτu = τuHu.
(b) Since u! is a monofunctor, Hu = u!u

! is a monofunctor too. By A1.7.2, an object
x is an A-monopresheaf iff τu(x) is a monomorphism, hence the assertion.

We set τ1u = τu, and define morphisms τnu : IdA −→ Hn
u , n ≥ 2, by τnu = Huτ

n−1
u .

Let H∼
u denote the functor N −→ A, n 7−→ Hn

u , (n → m) 7−→ Hn
u τ

m−n
u . The colimit of

H∼
u (x) (when it exists) will be denoted by H∞

u .

A1.8.2.4. Proposition. Let A = (Ā
u

⇄ A) be a Q-category such that there exist
functors u! and u

!.
(a) Suppose u! commutes with colimits of functors N → A. Then object x of A has

an associate A-sheaf iff the object H∞
u (x) = colimH∼

u exists. In the latter case, H∞
u is an

A-sheaf associated to x.
(b) Let u! commute with colimits of monofunctors N → A. Then an A-monopresheaf

x has an associate sheaf iff the H∞
u (x) exists. In this case, H∞

u (x) is an A-sheaf associated
to x.

Proof. (a) Suppose H∞
u (x) exists. By hypothesis, the functor u! preserves the colimit

of functors N −→ A, in particular u! preserves the colimit of the functor H∼
u (x). But then,

since u! preserves all colimits, the functor Hu preserves colimit of H∼
u (x); i.e. the canonical

morphism colim(Hu ◦ H∼
u (x) −→ Hu(colimH

∼
u ) is an isomorphism. But, obviously, the

colimit of Hu ◦H∼
u (x) is naturally isomorphic to H∞

u (x). This implies that the canonical
morphism τu(H

∞
u (x)) : H∞

u (x) −→ Hu(H
∞
u (x)) is an isomorphism. By A1.7.1, this means

that H∞
u (x) is an A-sheaf.

Let x
f
−→ y be an arbitrary morphism of A such that y is an A-sheaf. By A1.7.1,

the canonical morphism τu(y) : y −→ Hu(y) is an isomorphism. This implies that H∞
u (y)

exists and the canonical morphism τ∞u (y) : y −→ H∞
u (y) is an isomorphism. Thus, the
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morphism x
f
−→ y is uniquely represented as the composition of τ∞u (x) : x −→ H∞

u (x)
and a morphism H∞

u (x) −→ y. Therefore H∞
u (x) is an A-sheaf associated to x.

(b) Suppose H∞
u (x) exists. Since x is an A-monopresheaf, the morphism τu(x) is

a monomorphism (cf. A1.7.2). It follows from A1.8.2.2 that all morphisms Hn
u τ

m−n
u :

Hn
u (x) −→ Hm

u (x) are monomorphisms. By hypothesis, the functor u! preserves the colimit
of monofunctors N −→ A, in particular u! preserves the colimit of the functor H∼

u (x).
Since u! preserves all colimits, the functor Hu = u!u

! preserves colimit of H∼
u (x); i.e. the

canonical morphism colim(Hu ◦ H∼
u (x) −→ Hu(colimH

∼
u ) is an isomorphism. A colimit

of Hu ◦H∼
u (x) is naturally isomorphic to H∞

u (x). By the argument (a) above, the object
H∞
u (x) is an A-sheaf associated to x.

A1.8.2.5. Proposition. Let A = (Ā
u
⇄ A) be a cosite. And let C be the category

Sets, or the category k −mod of k-modules. Then

(a) For any functor A
F
−→ C, the functor H

û
(F ) is an A-monopresheaf.

(b) If F is a monopresheaf, then H
û
(F ) is a sheaf associated with F .

In particular, for any functor A
F
−→ C, the functor H2

û
(F ) is a sheaf associated with

F .

Proof. In the case A is a cosite, the functor H
û
is isomorphic to the Heller-Row

functor, otherwise called ”+-construction” for which the assertion is a known fact.

A1.9. Subcanonical Qo- and Q-categories. We call a Qo-category A = (Ā
u
⇄ A)

subcanonical if every representable presheaf on A is a sheaf on the associated quasi-site.
A Q-category is called subcanonical if its dual Qo-category is subcanonical.

A1.9.1. Classical examples of subcanonical pretopologies. One of the most
important examples is the category of (commutative) affine schemes with the Zariski, or
étale, or fpqc pretopology. Recall that fpqc covers are families of affine scheme morphisms
{φi : Spec(Ri) −→ Spec(R)| i ∈ J} such that all inverse image functors φ∗i : R−mod −→
Ri−mod are exact, and the family {φ∗i | i ∈ J} contains a finite conservative (i.e. reflecting
isomorphisms) subfamily. In the case of Zariski topology, rings Ri are localizations at
finitely generated multiplicative sets and φi universal morphisms. In the case of étale
pretopology, all morphisms φi are étale.

It is well known that the fpqc topology is subcanonical. In particular, Zariski and
étale topologies are subcanonical.

A1.9.2. A standard noncommutative example. Fix an associative ring k and
take as A the category of rings over k, i.e. (unital) ring morphisms k −→ R. Objects of
the category Ā are faithfully flat morphisms, i.e. morphisms φ : R −→ T of rings over k
such that the inverse image functor φ∗ : R −mod −→ T −mod is exact and faithful. The

functor u∗ : Ā −→ A is defined by (R
φ
−→ T ) 7−→ R.

For a Q-category A, let TA denote the quasi-cosite associated with A (cf. 2.4 and
3.9).

A1.9.2.1. Proposition. (a) The Q-category A defined above is subcanonical.
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(b) For any ȳ ∈ ObĀ, the canonical morphism ru : u∗(ȳ) −→ u!(ȳ) induces a strict
epimorphism of the corresponding A-spaces.

Proof. The assertions follow from [R4], Proposition 4.3.2.

A1.9.3. Subcanonical Qo-categories in terms of covers. Consider a Qo-category
Aτ . We say that τ is subcaninical if Aτ is subcanonical.

Let τ be a subcanonical quasi-pretopology. Then (4) is an exact diagram of sheaves
of sets. Taking in (5) F = A(−, x), we obtain the diagram

A(y, x) −−−→
∏

i∈I

A(yi, x)
−−−→
−−−→

∏

i,j∈I

A(yi ×y yj , x). (6)

Since τ is subcanonical, the presheaf A(−, x) is a sheaf for any x ∈ ObA, i.e. the diagram
(6) is exact for any x ∈ ObA. But this means that the diagram (4) is an exact diagram of
sheaves for any ȳ ∈ ObAτ .

A1.9.3.2. Note. Suppose the object ȳ = (yi → y| i ∈ I) of Aτ is such that there
exist coproducts

∐
i∈I yi and

∐
i,j∈I yi ×y yj . Then the diagram (6) is isomorphic to the

diagram

A(y, x) −−−→ A(
∐

i∈I

yi, x)
−−−→
−−−→ A(

∐

i,j∈I

yi ×y yj , x). (7)

In this case, the condition “τ is subcanonical” implies the that the diagram

∐

i,j∈I

yi ×y yj
−−−→
−−−→

∐

i∈I

yi −−−→ y (8)

is exact. Conversely, if for any ȳ = (yi → y| i ∈ I) in T, the coproducts
∐
i∈I yi and∐

i,j∈I yi ×y yj exist and the diagram (8) is exact, then τ is subcanonical.

A1.10. Q-categories and sites.

A1.10.1. Topologies on a given category. Let A be a category. Consider the set
A∧
ex of strictly full subcategories B of A∧ (strictly means that any object of A∧ isomorphic

to an object of B belongs to B) such that the inclusion functor B →֒ A∧ has a left adjoint,
i∗B , which is left exact, i.e. it preserves finite limits. Since i∗B preserves all colimits, it is
exact. Recall the latter means that i∗B is a localization functor at a class of morphisms
which admit left and right fractions [GZ, I.3.4].

On the other hand, denote by Top/A the set of topologies on A. There is a canonical
map

Ψ : A∧
ex −−−→ Top/A (1)

defined as follows. To each subcategory B of A∧ such that the inclusion functor i∗ : B →֒
A∧ has an exact left adjoint, i∗ : A∧ −→ B, Ψ assigns a topology TB such that for any
object X of A, TB(X) consists of all subobjects R of A(−X) such that i∗(R →֒ A(−, X))
is an isomorphism.
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A1.10.2. Theorem (Giraud) The map (1) is a bijection. The inverse map assigns
to each topology T on A the corresponding subcategory of sheaves of sets on the site (A,T).

Proof. See [SGA4, Exp.II], Theorem 5.5.

A1.10.3. The case of arbitrary Q-categories. Denote by A∧
rex the set of all

strictly full subcategories of A∧ such that the inclusion functor B →֒ A∧ has a (not
necessarily exact) left adjoint, i∗B . Let B be a subcategory from A∧

rex. To any X ∈ ObA,
we assign the set ĀB(X) of all subfunctors R of A(−, X) such that i∗B(R →֒ A(−X))
is an isomorphism. Denote by ĀB the category whose objects are pairs (X,R), where
R ∈ ĀB(X). Morphisms from (X,R) to (X ′, R′) are given by morphisms f : X → X ′ such
that there is a commutative diagram

R →֒ X
g
y

y f

R′ →֒ X ′

(with uniquely defined arrow g). The composition is defined in an obvious way. There is
a natural fully faithful functor A −→ ĀB, X 7−→ (X,X), which is right adjoint to the
functor ĀB −→ A, (X,R) 7−→ X. This defines a Q-category AB = (ĀopB ⇄ Aop).

The map B 7−→ AB defines a functor

ΨA : A∧
rex −−−→ QCat/Aop (1)

Here QCat/Aop is the category whose objects are Q-categories of the form (Ā ⇄ Aop)
(with fixed A) and morphisms are morphisms of Q-categories identical on Aop.

Let A = (Ā⇄ Aop) be a Q-category. The map which assigns to the Q-category A the
subcategory SpA of A∧ formed by A-spaces defines a functor

ΦA : QCat/Aop −−−→ A∧
rex (2)

A1.10.4. Proposition. The functor ΦA is left adjoint to ΨA, and ΦA◦ΨA = IdA∧
rex

.

Proof. The functor ΨA ◦ΦA assigns to any Q-category A = (Ā⇄ Aop) the Q-category
associated with the category of A-spaces. The adjunction morphism,

IdQCat/Aop −→ ΨA ◦ ΦA

assigns to each Q-category A = (Ā ⇄ Aop) the canonical morphism A −→ ΨA(SpA)
which is identical on A and sends each ȳ ∈ Ā to the image of the canonical morphism
Ā(ȳ, u∗(−)) −→ A(u∗(ȳ),−).
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Appendix 2: Finiteness conditions.
In (commutative) algebraic geometry, there are essentially two notions of ”global

finiteness”: the notion of a quasi-compact morphism and the notion of a quasi-separated
morphism. These are derivatives of the notion of a quasi-compact object. In noncommu-
tative geometry, there is more than one meaningful interpretation of quasi-compactness
(like there is more than one meaningful interpretation of smoothness). By this reason,
we discuss here a relative version of a quasi-compact and a quasi-separated morphisms.
”Relative” means that they depend on a subcategory, P, thought as a category of ”quasi-
compact objects”. Notice that this relative version is mentioned in [SGA4, Expose VI,
Remarque 1.9.1].

A2.1. Setting. Fix a category B and its subcategory P such that any object of B
isomorphic to an object of P belongs to P. We shall sometimes assume that the following
condition holds:

(#) If Y
f
−→ X is a split monomorphism in B (i.e. g ◦ f = idY for some X

g
−→ Y )

and X ∈ P, then f ∈ P.

A2.2. Examples.

A2.2.1. Objects of finite type and finitely presentable objects. Suppose B

has colimits of filtered inductive systems. An object X of a category B is said to be of

finite type (resp. finitely presentable) if for any filtered inductive systeme D
D
−→ B, the

canonical map
colimB(X,D) −−−→ B(X, colimD) (1)

is injective (resp. bijective).
We denote by Bft the full subcategory of B formed by objects of finite type and

by Bfp its full subcategory formed by finitely presented objects. The following assertion
shows that the subcategories Bft and Bfp satisfy the condition A2.1(#).

A2.2.1.1. Lemma. Any retract of an object of finite type (resp. of a finitely pre-
sentable object) is of finite type (resp. finitely presentable).

Proof. Let X be of finite type, and let Y be a retract of X ; i.e. there exist morphisms

Y
φ
−→ X and X

ψ
−→ Y such that ψ ◦φ = idX . Let D

D
−→ B be a filtered inductive system.

Consider the commutative diagram

colimB(Y,D) −−−→ B(Y, colimD)

ψ•

y
y ψ•

colimB(X,D) −−−→ B(X, colimD)

(2)

in which vertical arrows are given by functor morphism

B(Y,−)
ψ•

−−−→ B(X,−), g 7−→ g ◦ ψ.

Since ψ ◦ φ = idY , φ• ◦ ψ• = idB(Y,−). In particular, vertical arrows in (2) are injective.
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(a) If X is of finite type, the lower horizontal arrow is injective. Therefore, the
canonical morphism colimB(Y,D) −→ B(Y, colimD) is injective, i.e. Y is of finite type.

(b) Suppose X is finitely presentable. Note that Y is a cokernel of the pair of mor-
phisms idX , φ ◦ ψ : X ⇉ X . Thus we have a commutative diagram

colimB(Y,D) −−−→ B(Y, colimD)

ψ•

y
y ψ•

colimB(X,D)
∼

−−−→ B(X, colimD)y
y

y
y

colimB(X,D)
∼

−−−→ B(X, colimD)

such that the vertical diagrams · → · ⇉ · are exact and two (lower) horizontal arrows
are isomorphisms. Therefore, the canonical morphism colimB(Y,D) −→ B(Y, colimD) is
bijective, i.e. Y is finitely presentable.

A2.2.2. Example: quasi-compact objects of a site and quasi-compact ob-
jects of a topos. Let B be a site. An object X of B is called quasi-compact if for any
cover {Xi → X | i ∈ J}, there exists a finite subset I of J such that {Xi → X | i ∈ I} is
still a cover.

Let B∼ denote the topos of sheaves of sets on B, and let h+ : B −→ B∼ be the
composition of the Ioneda embedding B −→ B∧, X 7−→ B(−, X), and the sheafification
functor B∧ −→ B∼.

A2.2.2.1. Proposition. An object X of B is quasi-compact iff its image, h+(X),
in the topos B∼ is of finite type (in the sense of A2.2.1).

Proof. The fact follows from [SGA4], Exp.VI, Proposition 1.2 and Theorem 1.23.

Notice that if B itself is a topos with the canonical topology, then the functor h+ is
a category equivalence. Therefore quasi-compact objects of a topos are exactly objects of
finite type.

It follows from A2.2.2.1 and A2.2.1.1 that for any site B, the class Bqc of quasi-
compact objects of B satisfies the condition A2.1(#).

A2.3. Weakly P-representable, P-quasi-separated, and P-coherent mor-

phisms. We call a morphism X
f
−→ Y of B weakly P-representable if for any commutative

diagram

Z
s

−−−→ X

t
y

y f

T
g

−−−→ Y

with T ∈ P, there exist a commutative diagram

Z ′
s′

−−−→ X

t′
y

y f

T
g

−−−→ Y
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and a morphism γ : Z −→ Z ′ such that t′ ∈ P, s = s′ ◦ γ and t = t′ ◦ γ.
We denote the class of all weakly P-representable morphisms of B by ΣP .

A2.3.1. Proposition. Suppose fiber products exist in B and the subcategory P

satisfies A2.1(#). Then a morphism X
f
−→ Y belongs to ΣP iff for any morphism T −→ Y

such that T ∈ P, the projection X ×Y T −→ T belongs to P. In other words, ΣP is the
class of P-representable morphism.

Proof. Suppose (X
f
−→ Y ) ∈ P, and let g : T −→ Y be a morphism with T ∈ P. By

definition, there exists a commutative diagram

Z ′
s′

−−−→ X

t′
y

y f

T
g

−−−→ Y

and a morphism γ : X ×Y T −→ Z ′ such that t′ ∈ P, s = s′ ◦ γ and t = t′ ◦ γ. Here
s, t denote the canonical projections T ←− X ×Y T −→ X . By the universal property
of fiber products, there exists a unique morphism φ : Z ′ −→ X ×Y T such that s′ = s ◦ φ
and t′ = t ◦ φ. Thus s = s ◦ φ ◦ γ and t = t ◦ φ ◦ γ which implies that φ ◦ γ = id. By (#),
X ×Y T −→ T is a composition of two morphisms of P, hence it belongs to P.

A2.3.2. P-quasi-separated morphisms. We call a morphism X
f
−→ Y P-quasi-

separated if for any pair of morphisms t1, t2 : T −→ X such that T ∈ P and f ◦ t1 =
f ◦ t2, any morphism g : Z −→ T which equalizes t1, t2 factorizes through a morphism
(g′ : Z ′ −→ T ) ∈ P such that t1 ◦ g′ = t2 ◦ g′.

Denote by ΣP
qs the class of all P-quasi-separated morphisms.

A2.3.3. Propostion. (a) Any monomorphism of B is P-quasi-separated.
(b) Suppose the P has the property A2.1(#) and X ×Y X exists. Then f ∈ ΣP

qs iff the

diagonal morphism, ∆X/Y : X −→ X ×Y X belongs to ΣP .

Proof. (a) If X −→ Y is a monomorphism, then the morphism ∆X/Y : X −→ X×Y X
is an isomorphism, hence the assertion.

(b) The argument is similar to that of A2.3.1.

A2.3.4. P-coherent morphisms. We call a morphism P-coherent if it belongs to
the class ΣP

coh = ΣP ∩ ΣP
qs.

A2.3.5. Proposition. (a) Any isomorphism is P-coherent.
(b) The classes ΣP and ΣP

qs are closed under composition. In particular ΣP
coh is closed

under composition.

(c) Let X
f
−→ Y and g : T −→ Y be morphisms such that X ×Y T exists. If f ∈ ΣP

(resp. f ∈ ΣP
qs, resp. f ∈ ΣP

coh), then the canonical projection X ×Y T −→ T belongs to
the same class.

(d) Let X
f
−→ Y, Y

g
−→ Z be morphisms.

(i) If g ◦ f ∈ ΣP
qs, then f ∈ ΣP

qs.
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(ii) Suppose g ∈ ΣP
qs. If g◦f ∈ ΣP (resp. g◦f ∈ ΣP

coh), then f ∈ ΣP (resp. f ∈ ΣP
coh).

Proof. (a) Obvious.

(b) (i) Let X
f
−→ Y

g
−→ Z

s
←− S be a diagram such that f, g ∈ ΣP and S ∈ ObP.

Let

W
φ

−−−→ X

ψ
y

y gf

S
s

−−−→ Z

be a commutative diagram. Since g ∈ ΣP , there exists a commutative diagram

W
φ

−−−→ X

ξ
y

y f

T
t

−−−→ Y

ψ′
y

y g

S
s

−−−→ Z

such that ψ′ ◦ ξ = ψ and T ∈ P. Since f ∈ ΣP , there exists a commutative diagram

W ′
φ′

−−−→ X

ξ′
y

y f

T
t

−−−→ Y

and a morphism γ : W −→ W ′ such that ξ = ξ′ ◦ γ, φ = φ′ ◦ γ and W ′ ∈ P, hence the
assertion.

(ii) Suppose morphisms X
f
−→ Y and Y

g
−→ Z are P-quasi-separated. Let

W
h

−−−→ T
t1
−−−→ X

h
y t2

y
y gf

T
t1
−−−→ X

gf
−−−→ Z

(1)

be a commutative diagram such that T ∈ P. Consider instead of (1) the commutative
diagram

W
h

−−−→ T
ft1
−−−→ Y

h
y ft2

y
y g

T
ft1
−−−→ Y

g
−−−→ Z

(1)

Since g ∈ ΣP
qs, the morphism h : W −→ T is a composition of a morphism (h′ : S −→

T ) ∈ P such that f ◦ t1 ◦ h′ = f ◦ t2 ◦ h′ and a morphism ξ : W −→ S. Since h equalizes
t1, t2, the morphism ξ equalizes t′1 = t1 ◦ h′ and t′2 = t2 ◦ h′. Since f is P-quasi-separated,
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ξ factors through a morphism (ξ′ : U −→ S) ∈ P such that t′1 ◦ ξ
′ = t′2 ◦ ξ

′. Thus
t1 ◦ (h′ ◦ ξ′) = t2 ◦ (h′ ◦ ξ′), hence the assertion.

(c) Let X
f
−→ Y, g : T −→ Y be morphisms such that X ×Y T exists. Suppose

f ∈ ΣP . Consider a commutative diagram

W
φ

−−−→ X ×Y T
t1
−−−→ X

ψ
y f1

y
y f

S
s

−−−→ T
t

−−−→ Y

(3)

such that the right square is cartesian and S ∈ P. Since f ∈ ΣP , there exists a commutative
diagram

W ′
φ′

−−−→ X ×Y T
t1
−−−→ X

ψ′
y

y f

S
s

−−−→ T
t

−−−→ Y

(4)

with ψ′ ∈ P and a morphism γ : W −→ W ′ such that φ = φ′ ◦ γ, ψ = ψ′ ◦ γ. If follows
from the universal property of fiber products that the diagram

W ′
φ′

−−−→ X ×Y T
t1
−−−→ X

ψ′
y f1

y
y f

S
s

−−−→ T
t

−−−→ Y

commutes.
The remaining assertions are proved in a similar way. Details are left to the reader.

A2.4. P-quasi-separated and P-coherent objects.

A2.4.1. Definition. We call an object X of B P-quasi-separated if any morphism
T −→ X with T ∈ P, belongs to ΣP .

A2.4.2. Definition. We call an object X P-coherent if it is P-quasi-separated and
belongs to P. We denote by Pcoh the full subcategory of P formed by P-coherent objects.

A2.4.3. Proposition. Let X
f
−→ Y be a morphism of B.

(a) If Y ∈ P and f ∈ ΣP , then X ∈ P.
(b) If Y is P-quasi-separated and X ∈ P, then f ∈ ΣP .
(c) If Y is P-coherent, then f ∈ ΣP iff X ∈ P.
(d) If Y ∈ P (resp. Y is P-quasi-separated, resp. Y is P-coherent) and if f ∈ ΣP

(resp. f ∈ ΣP
qs, resp. f ∈ ΣP

coh), then X ∈ P (resp. X is P-quasi-separated, resp. X is
P-coherent).

Proof. (a) Since Y ∈ P, X ≃ X ×Y Y ∈ P (see A2.3.1).
(b) Follows from definition.
(c) Follows from (a) and (b).
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(d) (i) Let Y and X
f
−→ Y be P-quasi-separated. Let S

g
−→ X be a morphism with

S ∈ P. Since Y is P-quasi-separated and S ∈ P, the composition f ◦ g belongs to ΣP . By
A2.3.5(d)(ii), g ∈ ΣP , hence X is P-quasi-separated.

Suppose Y and X
f
−→ Y are P-coherent. Then by (i), X is P-quasi-separated and by

(c), X ∈ P, hence X is P-coherent.

A2.4.4. Proposition. Subobjects of P-quasi-separated objects are P-quasi-separated.

Proof. Let Y
f
−→ X be a monomorphism, and let X be a P-quasi-separated object.

Let

Z
φ

−−−→ S

ψ
y

y s

T
t

−−−→ Y

be a commutative diagram such that S, T ∈ P. Since X is P-quasi-separated, there is a
commutative diagram

Z ′
φ′

−−−→ S

ψ′
y

y f ◦ s

T
f◦t
−−−→ X

with ψ′ ∈ ΣP and a morphism Z
h
−→ Z ′ such that φ = φ′ ◦ h, ψ = ψ′ ◦ h. Since f is a

monomorphism, the diagram

Z ′
φ′

−−−→ S

ψ′
y

y s

T
t

−−−→ Y

is commutative.

A2.5. P-constructible objects. Suppose the category B has a final object. An
object X of B is called constructible if it is coherent over a final object. We denote by
BP−cons the full subcategory of B formed by P-constructible objects.

A2.6. Finiteness conditions in a Q-category. Fix a Q-category A = (Ā
u
⇄ A).

A2.6.1. Lemma. Let ȳ ∈ ObĀ be such an object that u!(ȳ) exists. If ȳ is of finite
type (resp. finitely presentable), then u!(ȳ) has the same property.

Proof. Let D : D −→ A be a filtered inductive system. We have a commutative
diagram

colimA(u!(ȳ),D) −−−→ A(u!(ȳ), colimD))y
x

colimĀ(ȳ, u∗ ◦ D) −−−→ Ā(ȳ, colim(u∗ ◦ D))

(1)

Here the right vertical arrow is the composition of the canonical morphism

Ā(ȳ, colim(u∗ ◦ D)) −→ Ā(ȳ, u∗(colimD)) (2)
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and the isomorphism Ā(ȳ, u∗(colimD)) −→ A(u!(ȳ), colimD). Since u
∗ has a right adjoint,

it preserves colimits. In particular, the morphism (2) is an isomorphism. If ȳ is of finite
type (resp. finitely presentable), the lower horizontal arrow is injective (resp. bijective),
hence the upper one is injective (resp. bijective).

A2.7. Quasi-compact spaces and quasi-separated morphisms. Let A = (Ā
u
⇄

A) be a Q-category, and let τ be a quasi-topology on the category EspA of A-spaces (cf.
8.1 and 8.2). We call an A-space X τ -quasi-compact if any τ -cover of X has a finite
subcover. Denote by Kτ the full subcategory of the category EspA whose objects are τ -
quasi-compact spaces. Applying to the subcategory Kτ the formalism presented above, we
obtain the notions of weakly Kτ -representable, τ -quasi-separated, and τ -coherentmorphisms
and spaces (see A2.3, A.2.3.2, A2.3.4, A2.4).

A2.7.1. Proposition. (a) Any isomorphism is τ -coherent.
(b) The class of weakly Kτ -representable morphisms and the class of τ -quasi-separated

morphisms are closed under composition and base change. In particular, the class of τ -
coherent morphisms (which is the intersection of other two) is closed under composition
and base change.

(c) Suppose the composition g◦f of morphisms is a weakly Kτ -representable morphism
(resp. a τ -quasi-separated morphism). Then f is weakly Kτ -representable (resp. τ -quasi-
separated). In particular, if g ◦ f is τ -coherent, then f is quasi-coherent.

Proof. The assertion is a special case of A2.3.5.

A2.7.2. Proposition. (i) Let X
f
−→ Y be an A-space morphism. If Y is τ -

quasi-compact (resp. Y is τ -quasi-separated, resp. Y is τ -coherent) and if f is weakly
Kτ -representable (resp. f is τ -quasi-separated, resp. f is τ -coherent), then X is τ -quasi-
compact (resp. X is τ -quasi-separated, resp. X is τ -coherent).

(ii) Subspaces of τ -quasi-separated A-spaces are τ -quasi-separated.

Proof. The assertion (i) is a special case of the assertion (d) in A2.4.3. The assertion
(ii) is a specialization of A2.4.4.
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