
Sheaves on Manifolds

Achim Krause, Thomas Nikolaus

January 7, 2024

Contents

1 Overview of the course 3
1.1 The six functors on spaces . 3
1.2 Efimov K-theory . 9
1.3 Completed Cosheaves . 10

2 Categorical structures 12
2.1 Presentable ∞-categories . 12
2.2 Compactly assembled ∞-categories . 21
2.3 Proof of Theorem 2.2.11 . 26
2.4 Properties of compactly assembled ∞-categories 37
2.5 The category of presentable ∞-categories . 41
2.6 The category of compactly assembled ∞-categories 42
2.7 Limits of compactly assembled categories . 46
2.8 Tensor product on PrL . 53
2.9 Dualizable stable ∞-categories . 58
2.10 H-unital ring spectra . 66
2.11 H-unital Morita Theory . 73
2.12 The symmetric monoidal structure on PrLca. 82

3 Interlude: Non-unital ∞-categories 88
3.1 Definition of non-unital ∞-categories . 89
3.2 Colimits . 93
3.3 Filtered non-unital categories . 94
3.4 H-unital categories . 96

4 Continuous K-Theory 98
4.1 Connective algebraic K-theory . 98
4.2 Non-connective algebraic K-Theory . 103
4.3 The continuous Calkin category . 105
4.4 Efimov K-theory . 105
4.5 The K-theory of Sheaves . 105

1

5 Six functors 106
5.1 Internal Frobenius algebras . 106
5.2 Locally rigid ∞-categories . 107
5.3 Verdier Duality . 107

Literature

These are lecture notes for a course given in the winter semester 2023/24 at Münster uni-
versity. They are currently work in progress and will be updated continually. Below we list
some relevant literature for the course. This will also be expanded over time.

1. [Lan21] for a lot of the ∞-categorical basics we will rely on.

2. [Lur18, Appendix D.7 and Section 21.1.2] for details on dualisable and compactly
assembled ∞-categories.

3. [Cla14] for more details on dualisable and compactly assembled categories, including
the intrinsic characterisation and applications.

4. [MFO22, K-theory of inverse limits, by A. Efimov] for K-theory of dualizable cate-
gories.

5. [Lur17a, Appendix A.1] for the shape of a topos.

6. [Sch23] for a general discussion of six-functor formalisms.

2

Chapter 1

Overview of the course

The main goal of this course is to describe the six-functor formalism and Verdier duality for
topological spaces using newly introduced concepts from∞-category theory. We will also try
to shed now light on some classical aspects, like shape theory and Kashiwara-Shapira’s Ind-
sheaves from this perspective. If time permits we will also discuss the theory of microsupport.
On a technical level the course will mostly deal with these new ∞-categorical concepts. We
will also explain how to apply these concepts to algebraic K-theory and explain recent results
of Efimov and Bartels–Nikolaus.

The course is aimed at graduate students and postdocs and we will require a solid knowl-
edge of ∞-category theory. While we will recall some concepts that we need (such as pre-
sentable ∞-categories) we assume that the reader is familiar with the basic concepts, such
as limits and colimits, adjunctions and the Yoneda lemma. We also assume that the reader
is familiar with the ∞-category of spectra, that will be crucial later in the course. Let us
start by giving an overview some results and topics covered in the course.

1.1 The six functors on spaces

Let us first describe the six-functor formalism that we are after. Let X be a locally compact
Hausdorff space. Then we can consider the ∞-category

Shv(X;DZ)

of sheaves on X with values in the ∞-categorical derived category of Z. Concretely such a
sheaf is given by a functor

F : Open(X)op → DZ

which satisfies descent, i.e. F(∅) = 0, for two open sets U, V ⊆ X we have that

F(U ∪ V) //

��

F(U)

��

F(V) // F(U ∩ V)

3

is a pullback and that for an increasing union of open subsets {Ui}i∈I indexed by a filtered
poset I the map

F

(⋃
i

Ui

)
→ limI F(Ui)

is an equivalence in DZ. Note that everything we say in this chapter will be more generally
true for sheaves with values in any presentable, stable ∞-category in place of DZ, but for
concreteness we stick with DZ here.

Remark 1.1.1. The ∞-category Shv(X;DZ) is closely related to the derived category
D(Shv(X,Ab)) of sheaves of abelian groups on X, but generally not equivalent. The latter
is a Bousfield localization of Shv(X;DZ), more precisely it is equivalent to the ∞-category
of hypersheaves on X. If X is paracompact and has finite covering dimension, then the two
∞-categories are equivalent though.

The category DZ has some extra structure, namely it has a symmetric monoidal structure
⊗ given by the tensor product of sheaves. This is defines as the sheafification of the pointwise
tensor product of functors. It turns out that this is a closed symmetric monoidal structure,
that is for any pair of sheaves F ,G on X there exists another sheaf Hom(F ,G) ∈ Shv(X;DZ)
with the universal property that maps H → Hom(F ,G) in Shv(X;DZ) are naturally the
same as maps H ⊗ F → G. The functors ⊗ and Hom are functors number 1 and 2 in our
six-functor formalism. Now for any continuous map f : Y → X we have the pushforward
functor

f∗ : Shv(Y ;DZ)→ Shv(X,DZ) (f∗F)(U) = F(f−1(U)) .

For example for f : Y → pt we have that Shv(pt,DZ) = DZ and f∗F = F(Y) is given by
global section and thus also written as Γ(F). This functor has a left adjoint

f ∗ : Shv(X,DZ)→ Shv(Y ;DZ)

given by pullback of sheaves. Concretely (f ∗F) is given by the sheafification of the presheaf
U 7→ colimV⊇f(U) openF(V). For example if f : U → X is the inclusion of an open set, then
f ∗F is simply the restriction of F to opens in U and thus sometimes written as F|U . For
the inclusion f : {x} → X of a point the pullback f ∗F is the stalk and written as Fx. For
the projection f : X → pt the pullback f ∗C for C ∈ DZ is given by the constant sheaf with
value C, that is the sheafification of the presheaf that is constant with value C. We shall
also write this as C.

The functors f ∗ and f∗ are functors 3 and 4 of the six functors. Finally for a map
f : Y → X there is also the functor

f! : Shv(Y,DZ)→ Shv(X,DZ)

of proper pushforward defined as

(f!F)(U) = colimK⊆f−1U s.t. K→U proper fib
(
F(f−1U)→ F(f−1U \K)

)
.

4

If f : Y → pt then we have that

f!F = colimK⊆Y compact fib (F(Y)→ F(Y \K))

is given by ‘global sections with compact support’ and written as Γc(F). There is a natural
map

f!F → f∗F

which is immediate from the definitions (as the map from the fibre to the first term) and
which is an equivalence if f is proper.

Proposition 1.1.2. If i : U → X is the inclusion of an open set, then the functor i! is given
by ‘extension by zero’, that is i!F is the sheafification of the presheaf

V 7→

{
F(V) V ⊆ U

0 else

Theorem 1.1.3 (Proper Base change). If we have a pullback diagram of locally compact
Hausdorff spaces

Y ′ g′
//

f ′

��

Y

f
��

X ′ g
// X

then for F ∈ Shv(Y,DZ) we have that

g∗f!(F) ≃ f ′
! g

′∗(F).

In particular we have for f : Y → X and x ∈ X that

(f!F)x = Γc(i
∗F)

for i : Yx → Y the inclusion of the fibre of the point. The functor f! is functor number 5 and
it turns out that it has a mysterious right adjoint

f ! : Shv(X;DZ)→ Shv(Y ;DZ) .

which is functor number 6 and called the exceptional inverse image functor. In general the
functor f ! is tricky to describe, but if f : U → X is the inclusion of an open subset then
f ! = f ∗ as one easily sees from Proposition 1.1.2 since extension by zero is more or less by
definition left adjoint to f ∗. We can summarize the situation by saying that we have for
f : Y → X that

1. f! = f∗ if f is proper

2. f ! = f ∗ if f is an open immersion.

5

We claim that properties (1) and (2) already uniquely determine the adjunction (f!, f
!) for

all maps f provided we also require functoriality, that is (fg)! = f!g!. To see this we use the
following assertion:

Lemma 1.1.4. Every map f : Y → X of locally compact Hausdorff spaces can be factored

as Y
i−→ Y

p−→ X where i is an open immersion and p is proper.

Proof. We take the one point compactification Y ′ of Y . Then we consider the graph of f
inside of Y × X and take its closure Y inside of Y ′ × X. The projection Y → X is then
proper, and the inclusion Y → Y open.

Now for a given factorization we have that

f! = p!i! = p∗i!

where i! is left adjoint to i
∗. This uniquely determines the functor f!.

Remark 1.1.5. One can wonder whether this is well-defined and how coherently this defini-
tion can be made. It is a remarkable observation by Gaitsgory-Rozenblyum and Liu-Zheng
as well as Mann that one can in fact use this as a definition of f! and produce a highly
coherent six functor formalism using that.

Remark 1.1.6. The ∞-category Shv(X;DZ) for course makes sense for every topological
space X, the conditions of being locally compact Hausdorff are not needed for that. The
adjunction f ∗ ⊣ f∗ also makes sense in this generality for each continuous map. However for
the adjunction f! ⊣ f ! to be defined and well behaved one then needs conditions on the map
f that are automatically satisfies in the LCH case: it needs to be locally proper, see [SS14].

There is another way to recover the adjunction f! ⊣ f ! from the adjunction f ∗ ⊣ f∗ which
is more categorical in nature than the geometric construction given above.

Let us describe the idea, which will be the central theme of this lecture course. For every
presentable, stable ∞-category C there is a ‘dual’ category C∨. One of the central themes
of the first few weeks of the lecture will be to study this duality and particularly which
categories are ‘dualizable’ (meaning that C ≃ (C∨)∨). The dual of the category of sheaves on
a locally compact Hausdorff space is the∞-category coShv(X;DZ) of cosheaves with values
in DZ, that is functors

F : Open(X)→ DZ

which satisfy ‘codescent’, that is F(∅) = 0, for two open sets U, V ⊆ X we have that

F(U ∩ V) //

��

F(U)

��

F(V) // F(U ∪ V)

6

is a pushout and that for an increasing union of open subsets {Ui}i∈I indexed by a filtered
poset I the map

colimI F(Ui)→ F

(⋃
i

Ui

)
is an equivalence in DZ.

Theorem 1.1.7 (Lurie, Verdier duality). There is a canonical equivalence

D : Shv(X,DZ) ≃ coShv(X,DZ)

sending F ∈ Shv(X,DZ) to the cosheaf

U 7→ Γc(F |U) .

Here we have used the functor f! implicitly in this equivalence, namely to define Γc. But
we will see in the lecture course that this self-duality of Shv(X,DZ) is a completely intrinsic
property of the symmetric monoidal ∞-category Shv(X,DZ): it is a locally rigid category.
The rough idea is that for locally rigid categories C there is an equivalence to C∨ informally
induced by passing to internally dual objects. We will make this rigoros later in the course.

The point now is that for a continuous map f : X → Y the adjunction f ∗ ⊣ f∗ dualizes
to an adjunction on the categories of cosheaves:

f+ : coShv(X) //
oo coShv(Y) : f+ .

Concretely the functor f+ is given by f+(F)(U) = F(f−1(U)). Now using the duality of
Theorem 1.1.7 for X and Y we get an induced adjunction between Shv(X) and Shv(Y).
This is the adjunction f! ⊣ f !. Said more abstractly: the adjunction f! ⊣ f ! is the dual to
f ∗ ⊣ f∗ using the fact that categories of sheaves are canonically self-dual. The self-duality
is induced by the tensor product.

Using the six functor formalism we we can define sheaf cohomology, compactly supported
sheaf cohomology, sheaf homology and locally finite sheaf homology (aka Borel Moore ho-
mology) of a locally compact Hausdorff space X with coefficients in Z as

H∗(X,Z) := p∗p
∗Z H∗

c (X,Z) := p!p
∗Z

H∗(X,Z) = p!p
!Z = p+p

+Z H lf
∗ (X,Z) = p∗p

!Z

where p : X → pt is the unique map to the point and Z denotes the constant sheaf/cosheaf
with value Z ∈ DZ on the point. 1 For the definition of homology it is maybe useful to
think in terms of cosheaves using the (−)+ ⊣ (−)+ adjunction to be convinced that this is
a reasonable definition of homology. We will see that homology and cohomology are dual
to each other as a consequence of the general properties of the six functor formalism. More

1We are slighly conflating the object of D(Z) and its homology here for the purpose of exposition. We
should really write the (co)chains instead of (co)homology.

7

precisely if X is locally nice (e.g. a CW complex) then cohomology is the dual of homology.
In general locally finite homology is the dual of compactly supported cohomology, e.g. for
the Cantor set where the first statement fails (see next Section).

This generalizes as follows: we define the dualizing sheaf of X as ωX := p!(Z) . Then we
can define a functor:

D : Shv(X;DZ)→ Shv(X;DZ)op F 7→ Hom(F , ωX)

and we refer to DF as the Verdier dual of F . The functor D is left adjoint to Dop, that is

MapShv(X;DZ)(F , DG) ≃ MapShv(X;DZ)(G, DF)

but generally the map F → D2F is not an equivalence (it is for many sheaves though, such
as p∗Z on nice spaces X). While mysterious on the sde of sheaves, under the equivalence
to cosheaves, Hom(−, f !(Z)) corresponds to Hom(−, f+(Z)), i.e. the dual of global sections.
This means that under the equivalence Shv(X;DZ) ≃ coShv(X;DZ) the functor D sends a
sheaf to the pointwise dual if the associated cosheaf. Using this we find that:

Proposition 1.1.8. We have for F ,G ∈ Shv(X;DZ) and C ∈ DZ:

p∗DF = Dp!F
Hom(F , DG) = Hom(G, DF)

p!DC = Dp∗C

Example 1.1.9. Combining the first and last assertion of Proposition 1.1.8 we obtain that

p∗p
!DC = Dp!p

∗C

for any C ∈ DZ . Specifically for C = Z this shows the claim we already made above,
namely that locally finite homology is always the dual of compactly supported cohomology.

Applying the first assertion to F = Dp∗C and also using the third we get

p∗D
2p∗C = Dp!p

!DC .

If we assume that p∗Z agrees with its bidual (which is the case for sufficiently nice spaces
such as CW complexes), then this yields the claim that the homology considered above is
indeed a predual of cohomology.

Again we shall see that all these things make sense in an arbitrary locally rigid ∞-
category. Verdier duality becomes particularly useful when we understand the dualizing
complex:

Theorem 1.1.10 (Poincaré duality). Let X be a (homology) manifold of dimension n. Then
p!(−) is equivalent to p∗(−)⊗ ωX and ωX is locally equivalent to Z[n].2

2More precisely it is given by the n-fold shift of the orientation sheaf.

8

1.2 Efimov K-theory

For any small stable ∞-category C there is an algebraic K-theory spectrum3. We assume
that the small stable ∞-categories are idempotent complete and denote the ∞-category of
small, idempotent complete stable ∞-categories by Catperf∞ . Then K-theory is a functor

K : Catperf∞ → Sp

where Sp is the ∞-category of spectra. We will review the definition of K-theory in the
lecture. For a ring R we shall write K(R) := K(DperfR).

A dualizable stable∞-category on the other hand is a presentable stable∞-category, i.e.
a large category. One key fact is that there is a functor from small stable ∞-categories to
dualizable ones, which sends C to its Ind-category Ind(C). Morally this freely adds filtered
colimits (equivalently infinite sums) to C. This defines a full faithful embedding

Ind : Catperf∞ → Catdual∞

where the target is the category of dualisable, stable ∞-categories whose definition is the
first major goal of the course. For example Ind takes the perfect derived∞-category DperfR
of any ring R (or more generally qcqs scheme) to the derived∞-category D(R). As we have
mentioned before, the object Shv(X,DZ) for a locally compact Hausdorff space is an object
in Catdual∞ . It does not lie in the image of Ind as we will also see. Other examples of objects
of interest in Catdual∞ are the categories of nuclear modules associated with analytic rings as
defined by Clausen-Scholze.

Theorem 1.2.1 (Efimov). There is a functor

Kcont : Catdual∞ → Sp

that extends K-theory, i.e. such that Kcont ◦ Ind is equivalent to K-theory. This functor
sends Verdier sequences to fibre sequences and is essentially uniquely determined by these
properties.

This result now allows us to take K-theory for the interesting categories such as sheaves
or nuclear modules. It also shows that Kcont(DR) = K(DperfR) = K(R). For the former the
foundational result of Efimov is the following:

Theorem 1.2.2 (Efimov). For any locally compact Hausdorff space X there is an equivalence

Kcont(Shv(X,DZ)) ≃ Γc (X,KZ) .

Here KZ is the constant sheaf on the K-theory spectrum KZ of the integers, considered
as an object of

Shv(X, Sp)

3For the experts: we always mean non-connective K-theory here

9

and we use that for sheaves of spectra there is an analogous six functor formalism as for
sheaves with values in DZ. If we denote the map X → pt by p we can also write Γc (X,KZ)
as p!p

∗(KZ). We refer to this spectrum as the compactly supported KZ-cohomology of X.
If X is compact then this is the equivalent to the cohomology

Γ (X,KZ) = p∗p
∗KZ

Here we have to be careful though, since this is sheaf cohomology. If we allow arbitrary
compact Hausdorff spaces this might behave quite differently than the KZ cohomology of
the associated anima Sing(X) ∈ An. For example the Cantor set X has for any spectrum E
that

Γ (X,E) =
⊕
ω

E and ESing(X) =
∏
ω

E .

However, if the space X is sufficiently nicely behaved, e.g. a CW-complex, then this distinc-
tion goes away. Slightly more generally we will see that for any topological space X that
is locally of constant shape (we will explain what that means) there is an associated anima
Shape(X) ∈ An such that

Γ (X,E) ≃ EShape(X)

Being locally of constant shape for X is equivalent to the assertion that the functor

p∗ : Shv(pt; An)→ Shv(X,An)

admits a left adjoint p♮ (recall that it always admits a right adjoint p∗). This condition and
its analogue for sheaves of spectra will play a crucial role for us. We will see that in the
stable case the left adjoint p♮ is automatically given by p!(−⊗ ωX).

Remark 1.2.3. If one is willing to work with pro-anima instead of anima then one can in fact
define Shape(X) for any locally compact Hausdorff space X and get Γ (X,E) ≃ EShape(X).

1.3 Completed Cosheaves

The ∞-category Catdual∞ of dualisable, stable ∞-categories has a lot of interesting structure
which we will study in the lecture.

• Catdual∞ has all colimits and limits.

• There is the notion of Verdier sequences or short exact sequence that behaves a lot like
short exact sequences of abelian groups.

• Every object C ∈ Catdual∞ admits a 2-term ‘resolution’ by compactly generated stable
∞-categories, that is for fixed C ∈ Catdual∞ there is a short exact sequence

0→ C → D → E → 0

with D and E compactly generated. Concretely we can choose D to be Ind(Cω1) and
E as Ind(Calkcont). We will explain what that means in the course.

10

In some sense we can think of compactly generated stable ∞-categories as ‘injective
objects’ in Catdual∞ .4 In this sense we have an injective resolution and then for example
the continuous K-theory functor Kcont : Catdual∞ → Sp of Efimov is defined using these
resolutions, i.e. it is a sort of right derived functor of K : Catperf∞ → Sp.

• Catdual∞ has a tensor product ⊗ that make it symmetric monoidal. For example we have
that Shv(X; Sp) ⊗ Shv(Y ; Sp) ≃ Shv(X × Y ; Sp). One can study dualisable objects
within Catdual∞ and these turn out to be exactly the smooth and proper dualisable stable
∞-categories. The category Shv(X) is proper under very mild conditions on X but
essentially never smooth.

• Since Catdual∞ has a tensor product we can speak about commutative algebra objects in
Catdual∞ . These are symmetric monoidal, presentable, stable ∞-categories with specific
properties. Among those we will study a subclass called (locally) rigid categories. This
notions extends the notion of rigidity for small symmetric monoidal categories. We will
see that Verdier duality essentially is the statement that Shv(X; Sp) is locally rigid for
any locally compact Hausdorff space X. It is rigid precisely if X is compact.

• The tensor product is closed, that is there is an inner hom Homdual(C,D) for any pair of
stable, dualisable ∞-categories. In general this inner hom is a bit hard to understand,
but again one can use injective resolutions to get a handle on it. Specifically the ∞-
categories of nuclear modules of Clausen-Scholze can be seen to be (a slight variant of)
the inner hom in dualisable category between well-understood categories, e.g.

Ñuc(Zp) ≃ Homdual
DZ
(
(DZ)∧p ,DZ

)
≃ limdual

n→∞D(Z/pn)

We will specificially study

ĉoShv(X;D) := Homdual(Shv(X; Sp),D)

the ‘dual’ of the stable ∞-category of sheaves. We will give a concrete description of

ĉoShv(X;D) and relate it to Ind-sheaves (which are an ∞-categorical version of Kashiwara-

Shapiras Ind sheaves). The main result about ĉoShv(X;D) is the following:

Theorem 1.3.1 (Bartels–Efimov–Nikolaus). We have that Kcont(ĉoShv(X;DZ)) is the lo-
cally finite K(Z)-homology of X (aka. Borel-Moore homology), that is:

Kcont(ĉoShv(X;DZ)) ≃ p∗p
!KZ

for p : X → pt.

4We will see that there is in fact a better notion of injective, but for the purpose of this introduction
thinking if injective resolutions gives a good intuition.

11

Chapter 2

Categorical structures

2.1 Presentable ∞-categories

Presentable ∞-categories are big categories (all sets, all modules, etc.), that are in a sense
still generated by small objects.

Definition 2.1.1. Let κ be a regular cardinal (e.g. κ = ω, the first countable ordinal, or
κ = ω1, the first uncountable ordinal).

1. An ∞-category I is κ-filtered if any map K → I from a κ-small simplicial set extends
over the right cone K ∗∆0 → I.

2. For an∞-category C with small colimits, an object X ∈ C is κ-compact if the canonical
map

colimi∈I MapC(X, Yi)→ MapC(X, colimi∈I Yi)

is an equivalence for any κ-filtered small I and any functor Y : I → C. We write Cκ
for the full subcategory on κ-compact objects.

We also call a functor I → C with I kappa-filtered a κ-filtered diagram in C, speak of
κ-filtered colimits, etc. If κ = ω, we simply say filtered and compact.

Example 2.1.2. 1. The κ-compact objects in Set are precisely the κ-small sets, i.e. those
with cardinality smaller than κ. The collection of κ-small subsets of a given set S forms
a κ-filtered category, since the union of less than κ many κ-small subsets of S is still
κ-small (this is where regularity of κ enters).

2. Similarly, κ-compact objects in Mod(R) are modules with a presentation with less than
κ many generators and relations, and retracts of those.

3. κ-compact objects in D(R) are those which are equivalent to complexes of projectives
with less than κ many generators in total.

12

4. κ-compact objects in An, the ∞-category of anima (homotopy types) are those anima
which can be represented by simplicial sets with less than κ many nondegenerate
simplices (or CW complexes with less than κ many cells), and retracts of those.

Lemma 2.1.3. 1. In An, κ-small limits commute with κ-filtered colimits.

2. κ-small colimits of κ-compact objects are again κ-compact.

Proof. The first statement is [Lur17b, Proposition 5.3.3.3], and is a special property of An
or more general ∞-topoi. As a quick reality check though, for a κ-small product we may
check that

colimi∈I
∏
j∈J

Xij →
∏
j∈J

colimi∈I Xij

is an equivalence: A point in the left term consists of a choice of i and for every j a point
in Xij. In the right term, we instead have for every j, a choice of point in Xi(j),j for some
i(j) depending on j. The former is more restrictive, but if I is κ-filtered and J κ-small, then
the i(j) have a common upper bound in I, so any point in the target really comes from the
source. (To turn this into a proof, we of course need to argue also about homotopies between
points etc.)

The second follows from the first: Let X : K → C be a κ-small diagramof κ-compact
objects, and Y : I → C a κ-filtered diagram. We may write

MapC(colimK Xk, colimI Yi)

≃ limK MapC(Xk, colimI Yi)

≃ limK colimI MapC(Xk, Yi)

≃ colimI limK MapC(Xk, Yi)

≃ colimI MapC(colimK Xk, Yi)

We will now see a way to freely adjoin κ-filtered colimits to a given category. Recall first
how to adjoin all small colimits:

Lemma 2.1.4. Let C be a small ∞-category.

1. The Yoneda embedding j : C → Fun(Cop,An) is fully faithful.

2. For any D with all small colimits, restriction along j induces an equivalence between

Funcolim(Fun(Cop,An),D)→ Fun(C,D)

where the left hand denotes small colimit-preserving functors. The inverse is given by
left Kan extension along j.

Proof. [Lur17b, Proposition 5.1.3.1 and Theorem 5.1.5.6]

13

This means that a colimit-preserving functor is determined by its restriction to the
Yoneda image, and any functor on the Yoneda image may be extended to a colimit-preserving
one by Kan extension. Note that j : C → Fun(Cop,An) does not preserve any nontrivial col-
imits, as colimits in the latter are formed pointwise.

Definition 2.1.5. For a small ∞-category C, we define Indκ(C) ⊆ Fun(Cop,An) as the
smallest full subcategory containing j(C) and closed under κ-filtered colimits.

Lemma 2.1.6. For any D with κ-filtered colimits, restriction along j induces an equivalence

Funcolimκ−filt(Indκ(C),D)→ Fun(C,D)

Proof. [Lur17b, Proposition 5.3.5.10]

Remark 2.1.7. In Indκ(C), we have objects jX for every X ∈ C, but also κ-filtered colimits,
so we may form

colimi∈I jXi

for a κ-filtered diagram I → C. Even if colimi∈I Xi exists, this does not agree with
j colimi∈I Xi, so we think of this as a new “formal” colimit we adjoin to Indκ(C). Map-
ping spaces may be computed as

MapInd(C)(colimi∈I jXi, colimi′∈I′ jYi′)

= limi∈I colimi′∈I′ MapC(Xi, Yi′).

It turns out that every object in Indκ(C) is in fact of the form colimi∈I jXi for some
filtered diagram I → C.

If C already admits κ-small colimits, there is another more intrinsic description of Ind(C).

Lemma 2.1.8. If C admits κ-small colimits, Ind(C) ⊆ Fun(Cop,An) consists precisely of
those functors Cop → An which preserve κ-small limits.

Proof. [Lur17b, Corollary 5.3.5.4]

Corollary 2.1.9. If C admits κ-small colimits, j : C → Indκ(C) preserves them.

Proof. If X : K → C is a κ-small diagram,

MapIndκ(C)(j colimk∈K Xk, F) = F (colimk∈K Xk),

and
MapIndκ(C)(colimk∈K jXk, F) = limk∈K F (Xk).

Since F ∈ Indκ(C) = Fun(Cop,An) preserves κ-small limits, these are equivalent.

14

This also leads to another universal property of Indκ: Adjoining all colimits, relative to
already having κ-small colimits. This is related to the fact that every colimit can canonically
be written as κ-filtered colimit of κ-small colimits, hence the heuristic

all colimits = κ-filtered colimits + κ-small colimits,

for example
all colimits = filtered colimits + small colimits,

Lemma 2.1.10. If C admits κ-small colimits, Indκ(C) admits all small colimits, and for any
D which admits small colimits, restriction along j gives an equivalence

Funcolim(Indκ(C),D)→ Funcolimκ−sm(C,D).

Proof. [Lur17b, Example 5.3.6.8]

A lot of categories in daily life are Ind of something. For example, every set is a filtered
colimit of finite sets, every group is a filtered colimit of finitely presented groups, every anima
is a filtered colimit of (retracts of) anima represented by finite simplicial sets. In all those
cases, we see that they are Ind of their compact objects.

Definition 2.1.11. We call a category C with small colimits κ-compactly generated if Cκ is
small, and the canonical κ-filtered colimit preserving functor

k : Indκ(Cκ)→ C

is an equivalence.

Lemma 2.1.12. For any C with κ-filtered colimits,

k : Indκ(Cκ)→ C

is fully faithful.

Proof. We need to check that

MapInd(C)(F,G)→ MapC(kF, kG)

is an equivalence for all F and G. For any G, the collection of F for which this holds is
closed under κ-filtered colimits since k commutes with colimits. So it suffices to check in the
case F = jX with X ∈ Cκ. But then the left hand side commutes with κ-filtered colimits in
G since these are formed pointwise, and the right hand side since kjX = X is κ-compact.
So we may assume G = jY , and the result follows from the fact that j is fully faithful.

Lemma 2.1.13. Let C be an ∞-category which admits small colimits and where Cκ is small.
The following are equivalent:

1. C is κ-compactly generated.

15

2. Every object of C can be written as small colimit of κ-compact objects.

3. If X → Y is a morphism in C such that

MapC(Z,X)→ MapC(Z, Y)

is an equivalence for every κ-compact Z, then X → Y is an equivalence.

Proof. We first show 1⇔ 2. Since k is fully faithful, k being an equivalence is equivalent to
k being essentially surjective. If every object X of C can be written as colimit colimK Zk of
κ-compact objects Zk, we may assume it to be a κ-filtered colimit of κ-compact objects by
rewriting it as colimK′⊆K colimK′ Zk, where K

′ ranges over the κ-filtered system of κ-small
simplicial subsets of K. If X = colimI Zi is a κ-filtered colimit of κ-compact objects, k
takes colimi∈I jZi to X. Conversely, every object in Indκ(C) is of this form, and so if k is
essentially surjective, every object in C is a κ-filtered colimit of κ-compact objects.

For 1 ⇔ 3, we have the restricted Yoneda embedding j′ : C → Indκ(Cκ) taking X 7→
MapC(−, X). (This is a κ-small limit preserving functor from Cκ,op → An, so lies in Indκ(Cκ).)
We claim that k is left adjoint to j′. Indeed, both MapInd(Cκ)(F, j

′X) and MapC(kF,X) are
κ-filtered colimit preserving functors Ind(Cκ) → Anop in F . So to produce an equiva-
lence between them, it suffices to do so on the image of j : Cκ → Ind(Cκ), and we have
MapInd(Cκ)(jZ, j

′X) ≃ MapC(Z,X) by the Yoneda lemma.
Fully faithfullness of k gives that

MapInd(Cκ)(F,G)→ MapC(kF, kG) ≃ MapInd(C)(F, j
′kG)

is an equivalence for any F , G. By Yoneda, this means that the unit G → j′kG is an
equivalence. If 3 is satisfied, j′ detects equivalences. Since the counit kj′X → X is taken
by j′ to the inverse equivalence to the unit j′X → j′kj′X, this means that kj′X → X is an
equivalence and so k is essentially surjective. Conversely, if k is an equivalence, of course its
adjoint j′ is too, and so in particular it detects equivalences.

The last criterion in particular is extremely useful. For example, we directly see:

Corollary 2.1.14. If C has small colimits and is κ-compactly generated for some κ, it is
also κ′-compactly generated for some κ′ > κ.

Definition 2.1.15. We call an∞-category presentable if it admits all small colimits, and is
κ-compactly generated for some κ.

Example 2.1.16. If D is presentable and C is small, Fun(C,D) is presentable (one may
check that if C is κ-small, κ-filtered colimits and κ-compact objects in Fun(C,D) are taken
pointwise).

For example, An is presentable, and so also PShv(X; An) is presentable for a topological
space X, since Open(X) is small.

16

So these are big categories which can in some sense be accessed by a small category.
(There is the weaker notion of accessible ∞-categories, where we only require existence of
κ-filtered colimits instead of all.) One of the main reasons for the importance of presentable
∞-categories is the following:

Theorem 2.1.17 (Adjoint functor theorem). 1. A functor C → D between presentable
∞-categories admits a right adjoint if and only if it preserves colimits.

2. A functor D → C between presentable ∞-categories admits a left adjoint if and only
if it preserves limits and κ-filtered colimits for some κ. (The latter condition is also
called accessibility of the functor.)

Proof. [Lur17b, Corollary 5.5.2.9]

For example, the adjoint functor theorem implies that the “diagonal” functor D →
Fun(C,D) admits a right adjoint if C is small and D presentable, hence that presentable
∞-categories also admit small limits.

A good notion of morphisms between presentable ∞-categories is given by pairs of ad-
joints.

Definition 2.1.18. PrL denotes the (big!) category whose objects are presentable ∞-
categories, and whose morphisms are left adjoint (or colimit-preserving) functors.

Equivalently, one may define PrR, and passage to the right adjoint gives an equivalence
PrL,op ≃ PrR.

To get more examples for presentable ∞-categories, we consider the following notion:

Definition 2.1.19. A (left) Bousfield localisation of an ∞-category C consists of a pair of
adjoint functors

C D
L

R

where R is fully faithful.

Of course, this data is determined already by one of the two functors, by uniqueness of
adjoints. It is therefore relatively easy to describe a Bousfield localisation of C, simply by
giving the full subcategory D.

MapD(X, Y)→ MapC(RX,RY) ≃ MapD(LRX, Y)

is an equivalence, so LRX ≃ X. An object Y lies in the essential image of R if and only if
Y → RLY is an equivalence. If W denotes the class of all morphisms in C which are sent
to equivalences in D by L, then MapC(−, Y) takes W to equivalences if and only if Y is in
the essential image of R: In one direction, this is just the equivalence, in the other, assume
that MapC(−, Y) takes W to equivalences, then this applies in particular to Y → RLY , so
the identity on Y factors through Y → RLY . But then Y → RLY → Y and, using the
adjunction, RLY → Y → RLY are both the identity and Y ≃ RLY .

17

Lemma 2.1.20. If

C D
L

R

is a Bousfield localisation, and W the class of morphisms in C which are sent to equivalences
under L, then precomposition with L provides an equivalence

Fun(D, E)→ FunW−loc(C, E)

where the right hand side denotes the full subcategory on functors taking W to equivalences.
The equivalence also restricts to an equivalence

Funcolim(D, E)→ FunW−loc,colim(C, E).

Proof. [Lur17b, Proposition 5.2.7.12]

This justifies the name localisation. We may similarly specify a Bousfield localisation
by providing a collection of morphisms W in C and letting D be the full subcategory on all
W -local objects, i.e. Y ∈ C where MapD(−, Y) takes W to equivalences.

Lemma 2.1.21. If W is a (small!) set of morphisms in C, C is presentable, and D the full
subcategory of W -local objects, then D is also presentable and a Bousfield localisation of C.
It is universally characterized by L inducing an equivalence

FunL(D, E)→ FunW−loc,L(C, E)

Proof. [Lur17b, Proposition 5.5.4.2(3) and Remark 5.5.1.6]

Example 2.1.22. For a space X, PShv(X; An) ⊇ Shv(X; An) is a presentable Bousfield
localisation: Sheaves are exactly those presheaves which are local with respect to the mor-
phisms

1. ∅ → j(∅)

2. j(U)⨿j(U∩V) j(V)→ j(U ∪ V)

3. colimi∈I j(Ui)→ j(
⋃
i∈I Ui)

which form a set.
Note that we see from this description also that colimit-preserving functors Shv(X; An)→

E are the same as W -local colimit-preserving functors PShv(X; An) → E , and hence the
same as functors Open(X) → E with F (∅) initial, F (U) ⨿F (U∩V) F (V) ≃ F (U ∪ V) and
colimI F (Ui) ≃ F (

⋃
Ui), i.e. cosheaves with values in E !

In fact, every presentable ∞-category is more or less of that form. One has:

Proposition 2.1.23. An∞-category C is presentable if and only if it arises as a presentable
Bousfield localisation of Fun(Cop0 ,An) for some small ∞-category C0.

18

Proof. If C is presentable, it is Indκ(Cκ) for some κ. But Indκ(Cκ) is itself a presentable
Bousfield localisation of Fun(Cκ,op,An): Since it can be described as full subcategory on
κ-small limit preserving functors, it consists of the objects local with respect to the maps

colimk∈K jXk → j(colimk∈K Xk)

for all κ-small diagrams in Cκ. These form a set. (Or more precisely, there is a set of
representatives up to equivalence.)

Remark 2.1.24. Exhibiting C as Bousfield localisation of Fun(Cop0 ,An) is a kind of generators-
and-relations presentation of C, since it says that colimit-preserving functors out of C are
determined by an arbitrary functor out of the small ∞-category C0 (the generators), such
that its colimit extension is taking the small class W (the relations) to equivalences.

Corollary 2.1.25. If C and D are presentable, the category

FunL(C,D)

consisting of left adjoint (i.e. colimit-preserving) functors is itself presentable.

Proof. FunL(C,D) is clearly closed under small colimits in Fun(C,D) and therefore admits
all small colimits. Writing C as presentable localisation of Fun(Cop0 ,An) at a set of morphisms
W , we see that

FunL(C,D) ⊆ Fun(C0,D)

is the full subcategory on functors whose colimit extension Fun(Cop0 ,An) → D takes W to
equivalences. If κ is bigger than the size of C0 and W , one sees that κ-filtered colimits and
κ-compact objects in are formed pointwise here. So the κ-compact objects form a small
category and FunL(C,D) is compactly generated.

This means that FunL(C,D) provides an inner Hom to the category PrL. We will see
later that there is a tensor product left adjoint to this Hom.

We close this discussion of presentability by an application of the adjoint functor theorem
regarding generators of a category.

Lemma 2.1.26. Let C be a presentable ∞-category and S a set of objects in C. Then the
following are equivalent:

1. The smallest full subcategory of C closed under small colimits and containing S is C
itself.

2. If X → Y is a morphism such that MapC(Z,X) → MapC(Z, Y) is an equivalence for
each Z ∈ S, then X → Y is an equivalence.

Proof. Let C0 ⊆ C be the smallest full subcategory of C closed under colimits and containing
S. Then C0 has arbitrary small colimits, and is κ-compactly generated where κ is such that
all objects of S are κ-compact. So it is presentable, and i : C0 → C has a right adjoint R.

19

Since i is fully faithful, X → RiX is an equivalence for each X ∈ C0, and Y ∈ C lies in C0 if
and only if iRY → Y is an equivalence. Now assume 2, this implies that R is conservative.
But R(iRY → Y) is the inverse to the unit RY → RiRY , so an equivalence, and so every
Y is in the image and C0 = C. Conversely, if 1 holds, i : C0 → C is an equivalence, so R is. If
X → Y induces an equivalence on MapC(Z,−) for all Z ∈ S, it does so for all Z ∈ C0 = C,
and Yoneda applies.

If the equivalent conditions of the Lemma hold, we say that S generates C. For example,
C is κ-compactly generated if and only if Cκ generates C.

Lemma 2.1.27. If for any Z ∈ S, also Z ⊗ Sn = colimSn Z ∈ S (for example if S is
closed under finite colimits), then S generates C if and only if the following holds: For any
morphism X → Y in C where in each diagram

A X

B Y

with A,B ∈ S, the dashed lift exists, X → Y is an equivalence.

Proof. If C is generated by S, maps out of S detect equivalences. Given X → Y with the
lifting condition, it therefore suffices that MapC(A,X) → MapC(A, Y) is an equivalence for
any A ∈ S. The lifting problem for the diagram

A⊗ Sn−1 X

A Y

translates to a lifting problem for the diagram

Sn−1 MapC(A,X)

pt MapC(A, Y).

If such lifts exist always, this means that all relative homotopy groups of the pair MapC(A,X)→
MapC(A, Y) are trivial, hence that this map is an equivalence.

Conversely, assume the lifting condition detects equivalences, and we need to prove that
then C is generated by S. So we need to prove that the MapC(A,−) together detect equiv-
alences. Let X → Y be a morphism inducing equivalences on all MapC(A,−). Since a
diagram

A X

B Y

20

is a point in the pullback Map(B, Y)×Map(A,Y) Map(A,X), but

Map(B,X) Map(A,X)

Map(B, Y) Map(A, Y)

is a pullback diagram since the vertical maps are equivalences, any such square admits a lift
B → X. But this means that X → Y satisfies the lifting condition, and so X → Y is an
equivalence.

2.2 Compactly assembled ∞-categories

Recall that an object X in an ∞-category C is called compact, if the functor

MapC(X,−) : C → An

commutes with filtered colimits. Here the convention is that if we drop the cardinal κ then
it is always implicitly assumed to be ω.

Let us instead call an object weakly compact if every mapX → colimi∈I Zi factors through
finite stage Zi, or equivalently:

Definition 2.2.1. X ∈ C is called weakly compact if

π0 colimi∈I MapC(X,Zi)→ π0MapC(X, colimi∈I Zi)

is surjective for any filtered diagram Z : I → C.

Lemma 2.2.2. If filtered colimits in C commute with finite limits, weakly compact objects
are compact.

Proof. Write Z = colimi∈I Zi. If X → Zi and X → Zj are two maps lifting the same X → Z,
they provide a map X → Zi ×Z Zj. Writing this as a filtered colimit of Zi ×Zk

Zj (over the
k ∈ I with i, j → k, we see that both maps become homotopic in some Zk. So the map is
actually bijective on π0. Now if we inductively know that

colimi∈I MapC(X,Zi)→ MapC(X, colimi∈I Zi)

is an equivalence on πk, for k ≤ n and any Zi, then for any f : X → Zi, we may form

Z ′
j = eq(X Zj) (indexed over Ii/), and since

MapC(X,Z
′
j) ≃ MapC(X,X)× Ωf MapC(X,Zj),

one deduces that the map for Z is even an equivalence on πk for k ≤ n+ 1.

We now would like to formulate a corresponding notion for morphisms.

21

Definition 2.2.3. A morphism f : X → Y in an∞-category is called weakly compact, if for
every morphism Y → Z = colimi∈I Zi where I is filtered the compositeX → Y → colimi∈I Zi
factors over a finite stage Zi0 → Z.

One could ask for a more structured version of this akin to the definition of compact
objects, i.e. that such a factorisation exists in families of maps in some sense.

Definition 2.2.4. A morphism f : X → Y is strongly compact if for every filtered colimit
Z = colimi∈I Zi there exists a lift as indicated:

colimiMapC(Y, Zi)

��

f∗
// colimiMapC(X,Zi)

��

MapC(Y, Z)
f∗

//

44

MapC(X,Z)

Note that this lift here is of course up to homotopy, so in the ∞-category of anima.

Clearly strongly compact implies weakly compact: In the definition of compact we just
ask for such a lift on a single point of MapC(Y, Z) and ignore the upper triangle. The converse
is (probably) not true in general, even if filtered colimits in C commute with finite limits.
We will however develop below the notion of compactly assembled categories, and somewhat
surprisingly will see that in those categories the two notions coincide.

Example 2.2.5. 1. Assume that a morphism X → Y factors over a weakly compact
object K ∈ C, i.e. is of the form X → K → Y . Then it is weakly compact. To see this
we simply observe that for a given morphisms Y → Z = colimi∈I Zi the composition
K → Y → Z already has to factor over a finite stage by weak compactness of K. In
fact, if K is compact, X → Y is even strongly compact, since we can get a lift in the
diagram by considering

colimiMapC(Y, Zi)

��

// colimiMapC(K,Zi) //

≃
��

colimiMapC(X,Zi)

��

MapC(Y, Z) //MapC(K,Z) //MapC(X,Z)

and noting that the morphism in the middle is an equivalence, so we get a lift by
following the inverse of this morphism.

2. If K is compactly generated, then the converse is also true, namely that the compact
morphisms agree with strongly compact morphisms and are precisely those which factor
over a compact object. To see this let f : X → Y be weakly compact. We write Y =
colimi∈I Yi as a filtered colimit of compact objects. Then the map f : X → Y factors
by definition of compactness as X → Yi → Y and this gives the desired factorization.

The whole idea of compact morphisms is to generalize the previous example to the non
compactly generated case. We will see that there are many ∞-categories which don’t have
many compact objects, but a lot of compact morphisms.

22

Example 2.2.6. Consider the category Open(X) of open subsets of a locally compact Haus-
dorff topological space X.1 Clearly the object X is (weakly or strongly) compact in this
category precisely if X is a compact topological space (and more generally an open U is
compact if and only if it is compact as a topological space). We claim that a morphism

U ⊆ V

in Open(X) is weakly compact precisely if there exists a compact subset K ⊆ X with
U ⊆ K ⊆ V .

Assume such aK exists. Then for every morphism V ⊆
⋃
Wi withWi a filtered system of

opens in X we find an i0 such that K and thus also U is already contained in Wi0 .
2 Assume

conversely that U ⊆ V is weakly compact and write V as a filtered union of compact
subspaces (which is possible by the assertion that X is locally compact). Then U already
lies in a finite stage and this gives us our K.

We have the following easy assertions:

Lemma 2.2.7. 1. An object X ∈ C is weakly/strongly compact iff the identity X → X
is weakly/strongly compact.

2. If f : X → Y is weakly/strongly compact then for arbitrary morphisms W → X and
Y → Z the composition W → X → Y → Z is also weakly/strongly compact.

Proof. 1. If X is weakly/strongly compact, X → X is weakly/strongly compact. It
remains to show that if X → X is weakly/strongly compact, X is weakly/strongly
compact. For the weak statement, observe that we directly see that any X → colimZi
factors through a finite stage, and for the strong statement, consider the diagram

colimMapC(X,Zi) colimMapC(X,Zi)

MapC(X, colimZi) MapC(X, colimZi)

which encodes directly that the dashed map is a homotopy inverse to the vertical map.

2. Given Z → colimI Ui, by weak compactness of X → Y we find a lift X → Ui of the
map X → Y → Z → colimI Ui. Precomposing with W → X, we get the desired lift
of W → Z → colimI Ui. The strong statement is similarly obtained by composing
diagrams.

Definition 2.2.8. We say that an object X of an ∞-category C is called weakly/strongly
compactly exhaustible if it can be written as a sequential colimit

X = colim (X0 → X1 → X2 → ...)

where all the transition maps Xi → Xi+1 are weakly/strongly compact.
1This is a presentable ∞-category!
2For this direction we don’t need locally compact and Hausdorff

23

Example 2.2.9. Consider the category Open(X) of a topological space X. An object U
in this category is weakly or strongly compactly exhaustible iff the space U is compactly
exhaustible in the usual sense of topology, that is there exists a sequence of compact topo-
logical subspaces K0 ⊆ K1 ⊆ ... ⊆ U with union U and such that each Ki is contained in
the interior of Ki+1.

Example 2.2.10 (Almost mathematics). Assume A is a local ring with maximal idealm ⊆ A
with m⊗LA m = m (for example m2 = m and m flat). The kernel of

Mod(A)→ Mod(A/m)

forms a full subcategory aModm(A) closed under colimits, generated by m. Compact objects
in aModm(A) are exactly the ones which are finitely presented as modules. By Nakayama,
these are all trivial, so there are no nonzero compact objects. However, in the example
A = Zp[p1/p

∞
] any of the inclusions pvm→ m with v > 0 factors through a finitely generated

free module pvA, and so is a (strongly) compact morphism. In particular, we may write m
as colimit of

pm ⊆ p1/pm ⊆ p1/p
2

m ⊆ . . . ,

so aModm(A) is generated by (strongly) compactly exhaustibles.

Clearly every compact object is (strongly) compactly exhaustible, but the converse does
not hold. We now can state the main result about compactly assembled ∞-categories:

Theorem 2.2.11 (Clausen, Lurie). For a presentable ∞-category C the following are equiv-
alent:

1. C is generated under colimits by strongly compactly exhaustible objects

2. Filtered colimits in C are exact and C is generated under colimits by weakly compactly
exhaustible objects

3. The colimit functor k : Ind(C)→ C admits a left adjoint

4. C is ω1-compactly generated and the colimit functor Ind(Cω1)→ C admits a left adjoint

5. C is a retract in PrL of a compactly generated ∞-category.

6. Filtered colimits in C distribute over small limits, i.e. we have

limK colimI F ≃ colimIK limK F

for K arbitrary and I filtered. 3

3Equivalently, it suffices to ask that filtered colimits commute with finite limits and distribute over small
products. The former is a version of Grothendieck’s AB5 axiom and the latter is a version of Grothendieck’s
AB6 axiom.

24

Here Ind(C) of the (locally small) category C is as in the small case just the full subcate-
gory of Fun(Cop,An) generated by representables under small filtered colimits. The universal
property holds as in the small case.

We will prove this result in the next section. But for the moment let us draw some
corollaries and give some examples.

Definition 2.2.12 (Lurie, Clausen). An ∞-category is called compactly assembled if it is
presentable and satisfies the equivalent conditions of Theorem 2.2.11.

Note that by Theorem 2.2.11 every compactly assembled ∞-category is ω1-compactly
generated. The converse is not true, but we have:

Example 2.2.13. Every compactly generated ∞-category is compactly assembled. This
follows by Theorem 2.2.11(5).

Example 2.2.14. The partially ordered set [0, 1] has all suprema and is therefore pre-
sentable. Its only compact object is 0, but it is compactly assembled: Every “positive length”
morphism is compact. Observe that Theorem 2.2.11 says that [0, 1] must be a retract of a
compactly generated category. Indeed, if C is the Cantor set, there is a surjective continuous
increasing map f : C → [0, 1], and an increasing map g : [0, 1]→ C with g(x) = inf f−1(x).
Both preserve suprema and are therefore morphisms in PrL, and f ◦ g = id. Finally, if we
think of the Cantor set as decimal numbers in base 3 all of whose digits are 0 or 2, compact
objects are exactly the ones that end in infinitely many 0’s, and these are dense, so C is
compactly generated.

Remark 2.2.15. A poset P that is compactly assembled as a category is classically called
a continuous poset, see [?]. In this case one says if x < y is compact that x is way below y.

This inspired Joyal and Johnston’s [?] 1-categorical treatment of compactly assembled
ordinary categories, which they call continuous categories (and drop the presentability con-
dition).

Example 2.2.16. The category of sheaves Shv(X,An) of anima on a locally compact
Hausdorff space is compactly assembled. We first claim that if U ⊆ V is an inclusion of
open subsets of X with a compact U ⊆ K ⊆ V in between, we have for a filtered colimit
F = colimi∈I Fi in Shv(X):

colimiMap(V ,Fi) colimi Γ(K;Fi|K) colimiMap(U,Fi)

Map(V ,F) Γ(K;F|K) Map(U,F)

≃

This immediately shows that U → V is strongly compact. As in example 2.2.9, this shows
that U for any compactly exhaustible open is weakly compactly exhaustible. In a locally
compact Hausdorff space, every point admits a neighbourhood basis of compactly exhaustible
opens (this inductively uses that if we have a compact K contained in an open U with
compact closure we may squeeze an open V with K ⊆ V and V ⊆ U in between). So U for
any open is a colimit of strongly compactly exhaustible objects, and the category Shv(X,An)
is generated by strongly compactly exhaustible objects.

25

Example 2.2.17. On the other hand, for a Hausdorff space X, Shv(X) is typically not
compactly generated. The functor Open(X) → Shv(X), U 7→ U , is accessible and limit-
preserving, so it has a left adjoint Shv(X) → Open(X), which takes a sheaf F to the
union of all opens U where F(U) is nonempty. As Open(X) → Shv(X) commutes with
filtered colimits, Shv(X)→ Open(X) preserves compact objects. So if Shv(X) is compactly
generated, so is Open(X), But U ∈ Open(X) is compact only if U is compact. If every open
is a union of open and compact subspaces, this means that X is locally profinite. Conversely,
if X is locally profinite, every open can be written as union of open and compact subspaces,
and so Shv(X) is generated by U for such subspaces, which give compact objects.

2.3 Proof of Theorem 2.2.11

In this section, we prove Theorem 2.2.11. We will roughly follow the strategy in the following
graph:

(1) (2)

(3)

(4)(5)

(6)
using (2)

2.3.1 1⇒ 2

Lemma 2.3.1. Assume that X ∈ C is strongly compactly exhaustible as witnessed by a
sequential colimit X = colimNXn. Let Y be the colimit of an arbitrary filtered diagram
Y = colimI Yi. Then we have that the colimit functor k : Ind(C)→ C induces an equivalence

MapInd(C)(colimN jXn, colim jYi)
≃−→ MapC(X, Y).

Proof. We have that MapC(X, Y) is given as the inverse limit of

...→ MapC(X2, Y)→ MapC(X1, Y)→ MapC(X0, Y) .

We can now use strong compactness of the morphisms to factor each of the maps in this
diagram as

MapC(Xn+1, Y)→ colimiMapC(Xn, Yi)→ MapC(Xn, Y).

Thus the limit agrees with the limit over

...→ Map(X2, Y)→ colimiMapC(X1, Yi)→ Map(X1, Y)→ colimiMapC(X0, Yi)→ Map(X0, Y)

which in turn agrees with the limit over

...→ colimiMapC(X1, Yi)→ colimiMapC(X0, Yi)

and thus the mapping space in the Ind-category.

26

Corollary 2.3.2. For a strongly compactly exhaustible object X the presentation as as a
sequential colimit X = colimXi is unique as an ind-object.

Proof. For two presentations we lift the identity to isomorphisms using the previous lemma.

Lemma 2.3.3 (1⇒ 2 in Theorem 2.2.11). If C is generated by strongly compactly exhaustible
objects, it is generated by weakly compactly exhaustible objects and filtered colimits in C are
exact.

Proof. Since strongly compactly exhaustible objects are in particular weakly compactly ex-
haustible, the only nontrivial implication to show is that filtered colimits in C are exact. If
K is finite and I is filtered, and F : K × I → C some functor, we need to show that

colimI limK F → limK colimI F

is an equivalence. Since strongly compactly exhaustible objects generate C by assumption,
it suffices to show that the above map induces an equivalence on MapC(X,−) for X =
colimNXn strongly compactly exhausted.

By Lemma 2.3.2, this yields the map

MapInd(C)(colimn∈N jXn, colimi∈I j limk∈K F (k, i))→ limk∈K MapInd(C)(colimn∈N jXn, colimi∈I jF (k, i))

which evaluates to

limn∈N colimi∈I limk∈K MapC(Xn, F (k, i))→ limn∈N limk∈K colimi∈I MapC(Xn, F (k, i))

which is an equivalence since in An, filtered colimits commute with finite limits.

2.3.2 2⇒ 3

In order to prove the existence of a left adjoint of the colimit functor k : Ind(C) → C, we
will see that it suffices to establish the analogue of for objects which are weakly compactly
exhausted, under the additional assumption that in C filtered colimits are exact.

For that, we will first recast the definition of weakly compact morphisms in terms of Ind,
and introduce a variant.

Lemma 2.3.4. A morphism X → Y in C is weakly compact if and only if for each Z ∈ Ind(C)
and any map Y → kZ, we have a lift in the following diagram.

jX Z

jY jkZ.

27

Proof. If Z = colimI jZi, kZ = colimI Zi. Since jX is compact in Ind(C), such a factorisation
is exactly the same as a finite stage i ∈ I and a factorisation

X Zi

Y colimI Zi.

in C.

Definition 2.3.5. Let K be some simplicial set, and X, Y ∈ Fun(K, C). We call X → Y
locally weakly compact if for any Z ∈ Fun(K, Ind(C)) we have a factorisation

jX Z

jY jkZ

in Fun(K, Ind(C)).

Remark 2.3.6. If Z is of the form colimI jZi, i.e. represented by a diagram Fun(K × I, C)
with I filtered, then

MapFun(K,Ind(C))(jX, Z) = colimj∈Fun(K,I) MapFun(K,C)(X,Zj(−))

where Zj(−) denotes the composite K
j,Z−−→ I × Fun(I, C)→ C.

So local compactness here means that X → Y → colimI Zi factors “locally” through a
finite stage.

Lemma 2.3.7. If X → Y in Fun(K, C) is locally weakly compact, then colimK X →
colimK Y is weakly compact.

Proof. We need to prove that for any Z ∈ Ind(C) we have a dashed lift in

j colimK X Z

j colimK Y jkZ.

By adjunction, this is the same as a dashed lift in

jX constZ

jY j const kZ,

which is a special case of local weak compactness.

28

Lemma 2.3.8. Assume in C, filtered colimits are exact. If K is n-dimensional and X → Y
in Fun(K, C) is the composite of n + 1 pointwise weakly compact maps, X → Y is locally
weakly compact.

Proof. We prove the following inductive version: Assume we have a mapX → Y in Fun(K, C)
and already a lift

jX Z

jY j colimZ

in Fun(K(n−1), Ind(C)), i.e. on the (n− 1)-skeleton. Then we claim that after precomposing
with a pointwise weakly compact map X ′ → X, we obtain a lift on all of K. The obstruction
to extending the above lift over K, i.e. over the remaining n-simplices, is as follows. For an
n-simplex k0 → . . .→ kn in K, we have an Sn−2 worth of maps jXk0 → colim jZkn , with a
provided homotopy identifying them on the colimit, i.e. a map

jXk0 → (colim jZkn)
Sn−2 ×(colimZkn)

Sn−2 colimZkn ,

which we need factor through colim jZkn . We may write this as a single map

Xk0 → ZSn−2

kn,i ×(colimZkn)
Sn−2 colimZkn = colimi→j Z

Sn−2

kn,i ×ZSn−2
kn,j

Zkn,j.

for some i. If we precompose with a levelwise compact map X ′ → X, we obtain a factorisa-
tion

X ′
k0
→ ZSn−2

kn,i ×ZSn−2
kn,j

Zkn,j → Zkn,j

for a single j, which factors the obstruction map

jX ′
k0
→ (colim jZkn)

Sn−2 ×(colimZkn)
Sn−2 colimZkn

through colim jZkn , proving existence of the desired lift.
By induction on the skeleta of K, this proves the full statement.

Corollary 2.3.9. Assume in C, filtered colimits are exact, and X• ∈ Fun(N, C) is a sequential
diagram of weakly compact morphisms. Then

π0MapInd(C)(colimN jXn, Y)→ π0MapC(colimNXn, kY)

is an equivalence for any ind-object Y .

Proof. Write Y = colimI jYi ∈ Ind(C), and let constY ∈ Fun(N, Ind(C)) be the constant
diagram. We also have jX• ∈ Fun(N, Ind(C)). The map jX•−1 → jX• is pointwise compact,
and since N is equivalent to a 1-dimensional diagram, jX•−2 → jX• is locally compact in
Fun(N, Ind(C)). So we have a lift in the diagram

jX•−2 constY

jX• const jkY,

29

where the bottom map comes from the map X• → kY = colimI Yi. The top map corresponds
to a map colimN jX•−2 → Y in Ind(C). Since colimN jX•−2 → colimN jX• is an equivalence,
this proves surjectivity.

For injectivity, we work with Fun(N×∆1, Ind(C)). Giving two maps colimN jX• → Y in
Ind(C) lifting colimNX• → kY = colimI Yi corresponds to a dashed lift in

jX• constY

jX• const jkY,

on restrictions to N×∂∆1. As in the proof of Lemma 2.3.8, this lift extends to all of N×∆1

after precomposing with jX•−2 → jX•. Under the adjunction between colimN and const,
this yields that any pair of maps colimN jX• → Y lifting the given colimNX• → kY is
homotopic (since jX•−2 → jX• is an equivalence under colimN).

Lemma 2.3.10. If X = colimXn is weakly compactly exhausted and filtered colimits are
exact in C,

MapInd(C)(colimN jXn, Y)→ MapC(colimNXn, kY)

is an equivalence for any Ind-object Y .

Proof. We claim the following general fact: Let F : C → D be a functor preserving finite
limits, and let X ∈ C be an object such that

F : π0MapC(X, Y)→ π0MapD(F (X), F (Y))

is an isomorphism for all Y ∈ C. Then

F : MapC(X, Y)→ MapD(F (X), F (Y))

is an equivalence for all Y ∈ C. To see this, we prove inductively that

F : πi(MapC(X, Y); f)→ πi(MapD(F (X), F (Y)); f)

is an isomorphism for all Y , f and i. Assume this is known for all Y , f and i ≤ n. Then for
some Y and f consider Y ′ = eq(f, f : X → Y). Since

Ωf MapC(X, Y)→ MapC(X, Y
′)→ MapC(X,X)

is a split fiber sequence (and same for the corresponding sequence in D), we have that F
gives a diagram of short exact sequences

0 πn+1(MapC(X, Y); f) πn(MapC(X, Y
′)) πn(MapC(X,X)) 0

0 πn+1(MapD(FX,FY); f) πn(MapD(FX,FY
′)) πn(MapD(FX,FX)) 0.

30

By assumption, the right vertical maps are isomorphisms, so also the left vertical map.
Since by Corollary 2.3.9, the π0 condition is satisfied in the present situation, the theorem

follows.

Corollary 2.3.11. If in C filtered colimits are exact, a morphism X → Y which factors as

X = X0 → X1 → . . .→ Y

with all Xn → Xn+1 weakly compact (i.e. into “infinitely many weakly compact morphisms”),
is strongly compact.

Proof. Let Z = colimi∈I jZi be some Ind-object. For some Y → kZ, we have

MapInd(C)(jY, Z) MapInd(C)(colim jXn, Z) MapInd(C)(jX, Z)

MapC(Y, kZ) MapC(colimXn, Z) MapC(X, kZ)

≃

Corollary 2.3.12. If in C filtered colimits are exact, weakly compactly exhaustible objects
are ω1-compact.

Proof. IfX = colimXn is weakly compactly exhausted, and colimI Yi is an ω1-filtered colimit,
we have

MapC(X, colimI Yi)

=MapInd(C)(colimN jXn, colimI jYi)

= colimI MapInd(C)(colimN jXn, jYi)

= colimI MapC(X, Yi)

since countable colimits of compact objects are ω1-compact.

Lemma 2.3.13 (2⇒ 3 in Theorem 2.2.11). If C is generated by weakly compactly exhaustible
objects and filtered colimits in C are exact, k : Ind(C)→ C admits a left adjoint.

Proof. By the pointwise criterion for existence of adjoints, it suffices to show that for each
X ∈ C, MapC(X, k(−)) is a representable functor Ind(C)→ An, i.e. there exists X ′ ∈ Ind(C)
with a equivalence

MapInd(C)(X
′, Y) ∼= MapC(X, kY)

natural in Y . The collection of X for which such X ′ exists is closed under colimits, since
limits of representable functors are representable. It also contains compactly exhaustible
objects by Lemma 2.3.10. So it contains every X ∈ C and the claim follows.

We also use the notion of locally weakly compact morphisms in Fun(K, C) to show the
following:

31

Lemma 2.3.14. If filtered colimits are exact in C, weakly compactly exhaustible objects are
closed under countable colimits.

Proof. Every countable colimit can be written as a sequential colimit of finite colimits:
Enumerating all simplices of a countable simplicial set K, the simplicial subset Kn ⊆ K
spanned by the first n simplices is finite, and so

colimK F = colimN colimKn F |Kn .

To prove closure under finite colimits it suffices to show closure under pushouts, since the
initial object is clearly compact. Given a diagram B ← A → C of weakly compactly
exhaustible objects, we may write A = colimAn, B = colimBn, C = colimCn, and then use
Lemma 2.3.10 to lift A→ B to a natural transformation An → Bi(n). Here we may assume
i : N → N to be cofinal, and hence reindex Bn to have an actual natural transformation
An → Bn, same for An → Cn.

We thus have a diagram B• ← A• → C•, i.e. a sequential diagram Fun(K, C) where
K = • ← • → •, consisting of pointwise weakly compact maps. Since K is 1-dimensional,
the composite of any two successive maps is locally weakly compact in Fun(K, C), and so
the composite of any two successive maps in B• ⨿A• C• is weakly compact. So B ⨿A C is
weakly compactly exhausted.

For sequential colimits we proceed analogously, applying Lemma 2.3.10 inductively to
write a sequential diagram A0 → A1 → . . . of compactly exhaustible objects as a sequential
colimit of sequential diagrams Ai = colimnAi,n where the maps Ai,n → Ai,n+1 are compact.
This has the diagonal entries as a cofinal subdiagram, and the maps between them are
compact since compact morphisms form a 2-sided ideal.

2.3.3 3⇒ 1 and 3⇔ 6

We now prove that if k : Ind(C)→ C has a left adjoint ȷ̂, C is generated by strongly compactly
exhaustible objects. To do so, we first derive basic properties of such a left adjoint, and then
characterize compact morphisms in terms of it.

Lemma 2.3.15. If k : Ind(C) → C admits a left adjoint, it is fully faithful, and id → k ◦ ȷ̂
is an equivalence.

Proof. We have adjunctions ȷ̂ ⊣ k ⊣ j, and j is fully faithful. Since the composite

MapC(X, Y)→ MapInd(C)(jX, jY) ≃ MapC(kjX, Y)

is composition with the counit kj → id, but also an equivalence, kj ≃ id.
We now get adjunctions

MapC(kȷ̂X, Y) ≃ MapInd(C)(ȷ̂X, jY) ≃ MapC(X, kjY) ≃ MapC(X, Y),

i.e. a natural equivalence X → kȷ̂X. Unwinding the equivalences above, we find that it
comes from the unit of the adjunction ȷ̂ ⊣ k.

32

Lemma 2.3.16. If k : Ind(C)→ C has a left adjoint, and X → Y is a morphism in C, the
following are equivalent.

1. X → Y is strongly compact.

2. X → Y is compact.

3. jX → jY factors through jX → ȷ̂Y → jY in Ind(C).

4. ȷ̂X → ȷ̂Y factors through jX in Ind(C).

Proof. If X → Y is strongly compact, it is also compact. Recall that a morphism X → Y is
compact if and only if for any Z ∈ Ind(C), we have a dashed lift in

jX Z

jY jkZ.

In particular, we may apply this to Z = ȷ̂Y to obtain a factorisation jX → ȷ̂Y → jY .
Finally, observe that X → Y is strongly compact if we find a lift in

MapInd(C)(jY, Z) MapInd(C)(jX,Z)

MapC(Y, kZ) MapC(X,Z)

We may replace the bottom line by MapInd(C)(ȷ̂Y, Z) etc. and use Yoneda to see that this is
equivalent to finding a lift in

jY jX

ȷ̂Y ȷ̂X.

By assumption, we are given a factorisation jX → ȷ̂Y → jY , making the top triangle com-
mute. The bottom triangle then commutes automatically, since we may apply the adjunction
and the canonical equivalences kj ≃ id ≃ kȷ̂ to translate into commutativity of the diagram

Y X

Y X.

id id

Similarly, if we are given a factorisation ȷ̂X → jX → ȷ̂Y , the other triangle of the diagram
commutes automatically using the adjunction k ⊣ j.

Lemma 2.3.17 (3⇔ 6 of Theorem 2.2.11). For presentable C, the following are equivalent:

33

1. k : Ind(C)→ C admits a left adjoint.

2. In C, filtered colimits distribute over small limits, i.e.

colimIK limK F ≃ limK colimI F.

3. In C, filtered colimits are exact and distribute over small products, i.e.

colim∏
J I

∏
J

F ≃
∏
J

F colimI F.

Proof. 1⇒ 2: If k : Ind(C)→ C admits a left adjoint, it preserves limits. Let F : K× I → C
be a diagram with I filtered. Then since limits and filtered colimits in Ind(C) are formed
pointwise, the Ind object limK colimI jF (k, i) agrees with colimIK j limK F (k, i), using that
filtered colimits distribute over small limits in An. Applying k and using the assumption
that it commutes with limits, we learn that

limK colimI F (k, i) ≃ colimIK limK F (k, i)

as desired.
2⇒ 3: If K is finite, the diagonal map I → IK is cofinal (this is essentially the definition

of filtered). So filtered colimits distributing over finite limits is equivalent to filtered colimits
commuting with finite limits. Distributing over products is of course also a special case.

3 ⇒ 1: Similar to 1 ⇒ 2, the condition 3 implies that k : Ind(C) → C commutes with
finite limits and products, so general limits. If C is κ-compactly generated, k : Ind(C) → C
factors through the restriction map Ind(C)→ Ind(Cκ). We have the diagram of adjoints

Ind(C) C

Ind(Cκ).

k

k

Limits in Ind(Cκ) are computed by embedding into Ind(C), taking the limit there, and
reflecting back using the restriction. Now k commuting with limits implies that Ind(Cκ)→ C
commutes with limits. It also commutes with colimits, so it admits a left adjoint by the
adjoint functor theorem, and so Ind(C)→ C has a left adjoint.

Lemma 2.3.18 (3 ⇒ 1 of Theorem 2.2.11). If k : Ind(C) → C admits a left adjoint ȷ̂, C is
generated by strongly compactly exhaustible objects.

Proof. Note that Lemma 2.3.17 above implies that filtered colimits in C are exact. So weakly
compactly exhaustible objects in C are closed under finite colimits by Lemma 2.3.14, and
agree with strongly compactly exhaustible objects by Lemma 2.3.16. So by Lemma 2.1.27,
it suffices to prove that if X → Y is a morphism in C such that

A X

B Y

34

admits a lift whenever A,B are strongly compactly exhaustible, then X → Y is an equiva-
lence. Since ȷ̂ is fully faithful, it suffices to check that ȷ̂X → ȷ̂Y is an equivalence in Ind(C).
Since Ind(C) is generated by the Yoneda image which is closed unter finite colimits, we need
to prove that any diagram

jA ȷ̂X

jB ȷ̂Y

admits a dashed lift, for arbitrary A,B ∈ C.
Now observe that Ind(C)∆1

is compactly generated (since objects of the form ∅ → jB
and jA → jA are generators by adjunctions, and are compact; also note that the compact
objects are exactly those of the form jA → jB). So any object F → G of Ind(C)∆1

is a
filtered colimit of arrows jA→ jB from C∆1

. Applying this to ȷ̂X → ȷ̂Y , we may write this
as

(ȷ̂X → ȷ̂Y) = colimI(jAi → jBi).

Next, observe that applying k yields

(X → Y) = colimI(Ai → Bi),

and applying (colimit-preserving) ȷ̂ again yields

(ȷ̂X → ȷ̂Y) = colimI(ȷ̂Ai → ȷ̂Bi).

So the canonical maps

colimI(ȷ̂Ai → ȷ̂Bi)→ colimI(jAi → jBi)→ (ȷ̂X → ȷ̂Y)

are equivalences. The map from jA→ jB above therefore factors as

jA ȷ̂Ai jAi ȷ̂X

jB ȷ̂Bi jBi ȷ̂Y

for some i ∈ I. We may apply this argument inductively to factor the original diagram as

jA0 ȷ̂A1 jA1 . . . ȷ̂X

jB0 ȷ̂B1 jB1 . . . ȷ̂Y.

The maps An → An+1 and Bn → Bn+1 here are compact, and the horizontal colimits here
agree with colimn ȷ̂An = ȷ̂ colimAn and ȷ̂ colimBn. Since ȷ̂ is fully faithful and we may lift
against strongly compactly exhaustible objects by assumption, we therefore find a compatible
lift colim ȷ̂Bn → ȷ̂X. Precomposing, we find a lift out of the original jB0 = jB.

35

2.3.4 3⇔ 4⇔ 5

Lemma 2.3.19 (3 ⇒ 4 of Theorem 2.2.11). If Ind(C) → C admits a left adjoint, C is
ω1-compactly generated and Ind(Cω1)→ C admits a left adjoint.

Proof. By Lemma 2.3.18 and 2.3.3, C is generated by weakly compactly exhaustible objects
and filtered colimits are exact. By Corollary ??, this implies that C is generated by ω1-
compact objects. As in the proof of Lemma 2.3.17, this means that the colimit functor
Ind(C) → C factors through Ind(Cω1), and its left adjoint factors through Ind(Cω1) as well,
giving the desired adjoint.

Lemma 2.3.20 (4⇒ 5 of Theorem 2.2.11). If C is ω1-compactly generated and Ind(Cω1)→ C
admits a left adjoint, C is a retract in PrL of a compactly generated category.

Proof. k : Ind(Cω1) → C has a right adjoint given by the restricted Yoneda embedding j′,
which is fully faithful since C is ω1-compactly generated. As in the proof of Lemma 2.3.15,
this implies that the left adjoint ȷ̂ is fully faithful, and ȷ̂ ◦ k ≃ idC. This is the desired
retraction.

Lemma 2.3.21 (5⇒ 3 of Theorem 2.2.11). If C is a retract in PrL of a compactly generated
category, Ind(C)→ C has a left adjoint.

Proof. If C is compactly generated, it is of the form Ind(C0). In that case, a left adjoint can
be described as Ind(j), the Ind-extension of the functor C0 → Ind(Ind(C0)). Indeed, both

MapInd(C)(Ind(j)(−), Y), MapC(−, kY)

are functors C → Anop which preserve filtered colimits, and they agree on the objects coming
from C0, so we have the desired adjunction.

If more generally C is a retract of a compactly generated C ′, with both functors C i−→
C ′ r−→ C colimit-preserving, the functor k : Ind(C)→ C is a retract:

Ind(C) Ind(C ′) Ind(C)

C C ′ C

k

Ind(i) Ind(r)

k k

i

ȷ̂

r

36

Using the middle adjunction, we have the following composite for X ∈ C and Y ∈ Ind(C):

MapC(X, kY)

MapC′(iX, ikY)

MapC′(iX, k Ind(i)Y)

MapInd(C′)(ȷ̂iX, Ind(i)Y)

MapInd(C)(Ind(r)ȷ̂iX, Y)

MapC(X, kY)

i

≃

≃

Ind(r)

k

using that k ◦ ȷ̂ ≃ id. If all morphisms here were invertible, we would have exhibited
Ind(r) ◦ ȷ̂ ◦ i as left adjoint of k. We don’t have that, but the composite is still the identity.
So we have exhibited MapC(X, k(−)) as retract of MapInd(C)(Ind(r)ȷ̂iX,−). By Yoneda, this
shows that MapC(X, k(−)) is itself corepresentable, by a retract of Ind(r)ȷ̂iX, and so we
have that k admits a left adjoint.

2.4 Properties of compactly assembled ∞-categories

Having proved the equivalence of all characterisations of compactly assembled∞-categories,
we record a number of observations:

Proposition 2.4.1. In a compactly assembled ∞-category, the following are equivalent for
a morphism X → Y :

1. X → Y is weakly compact

2. X → Y is strongly compact

3. jX → jY factors over ȷ̂Y

4. ȷ̂X → ȷ̂Y factors over jX

5. ȷ̂X → ȷ̂Y is compact in Ind(Cω1).

Proof. The first four points are Lemma 2.3.16. For the last point, observe that Ind(Cω1) is
compactly generated, so ȷ̂X → ȷ̂Y is compact if and only it factors over some jZ. Since the
map ȷ̂X → jZ canonically factors through jX, this is equivalent to 4.

37

Definition 2.4.2. In a compactly assembled∞-category, we simply speak of compact maps
if one of the equivalent conditions of proposition 2.4.1 is satisfied. A (compactly) assembled
map X → Y is given by a compact map together with a lift jX → ȷ̂Y .

We write
Mapca

C (X, Y) := MapInd(C)(jX, ȷ̂Y)

for the space of compactly assembled maps.

Note that this is not a full subspace of MapC(X, Y), so for example a homotopy between
compact maps is more data than just a homotopy between the underlying maps.

Proposition 2.4.3. In a compactly assembled∞-category C, every compact morphism X →
Y factors as a composite of two compact morphisms X → Z → Y , and even extends to a
Q ∩ [0, 1]-indexed diagram Xα (with X0 = X and X1 = Y).

Proof. A compact map X → Y gives a map jX → ȷ̂Y . We may write ȷ̂Y = colimi∈I jYi as
a filtered colimit of representables. Applying k, we find that colimi∈I Yi ≃ Y , and applying
ȷ̂, we find that colimi∈I ȷ̂Yi ≃ ȷ̂Y , so

colimi∈I ȷ̂Yi → colimi∈I jYi → ȷ̂Y

are equivalences. Now the map jX → ȷ̂Y factors as

jX → ȷ̂Yi → jYi → ȷ̂Y,

which witnesses compactness of X → Yi → Y . For the second statement, observe that
Q∩ [0, 1] can be realized as ascending union of discrete subposets, where in each step we just
add finitely many points between two points. Beginning with {0, 1} and X → Y , we may
inductively extend over each of these discrete subposets, and then obtain a diagram indexed
over their colimit.

Example 2.4.4. In a general ∞-category, compact morphisms do not necessarily factor
through multiple compact morphisms. For example, consider the poset

N+ N× N+ {∞},

where N×N carries the canonical partial ordering (componentwise instead of lexicographical).
Then every subset has a supremum, so this is a presentable category. The morphism

(0, 0)→∞

is compact, since every family xi of elements with supremum ∞ contains elements from
N × N + {∞}, which receive a morphism from (0, 0). Since both (0, 0) and ∞ can be
expressed as suprema of elements strictly smaller than themselves, they are not compact.
Any factorisation of (0, 0)→∞ into two compact morphisms must therefore take the form

(0, 0)→ (a, b)→∞

with a > 0 or b > 0. But the morphisms (a, b)→∞ with a > 0 or b > 0 are never compact.
For example, if a > 0, we have ∞ = sup(0, n) but (a, b) ≰ (0, n) for any n.

So (0, 0)→∞ is an example of a compact morphism that cannot be factored into compact
morphisms.

38

Lemma 2.4.5. Every compact morphism X → Y factors as X → K → Y where K is
ω1-compact. We can even arrange it such that the morphisms X → K and K → Y are
compact.

Proof. Since the ∞-category is ω1-compactly assembled we can write Y as a filtered colimit
Y = colimYi with Yi ω1-compact. Since X → Y is compact it factors over a finite stage:
X → Yi → Y and we set K = Yi. This proves the first part.

For the second part we first factor X → Y as a composition of three compact morphisms
X → X0 → Y0 → Y using Proposition 2.4.3. Then we apply the previous consideration to
get a factorization X0 → K → Y0 and conclude since X → X0 is compact that also X → K
is compact and similarly for K → Y .

Proposition 2.4.6. In a compactly assembled ∞-category, the following are equivalent for
an object X:

1. X is weakly compactly exhaustible

2. X is strongly compactly exhaustible

3. X is ω1-compact

4. X may be written as colimit of a Q≥0-indexed diagram where all “positive length”
morphisms are compact

5. X may be written as colimit of a Q-indexed diagram where all “positive length” mor-
phisms are compact.

Furthermore, in any of the N, Q≥0 or Q-indexed diagrams above, we may choose all objects
to be ω1-compact.

Proof. Since strongly and weakly compact morphisms agree, 1. and 2. are equivalent. We
have also seen in Corollary 2.3.12 that compactly exhaustible objects are always ω1-compact.
Conversely, let X be ω1-compact. Write X = colimi∈I Xi where Xi are weakly compactly
exhaustible. Since the compactly exhaustible objects are closed under countable (i.e. ω1-
small) colimits by Lemma 2.3.14, we may assume I to be ω1-filtered here. But then the
identity on X factors through one of the Xi. So X is a retract of a compactly exhaustible
object, but retracts can be written as countable colimits as well.

If we have X = colim(X0 → X1 → . . .) compactly exhausted, we may first factor each
morphism into compact morphisms through ω1-compact objects, and hence assume that the
Xi are ω1-compact. Factoring, we may extend each Xi → Xi+1 to a Q ∩ [i, i + 1]-indexed
diagram of ω1-compact objects and compact morphisms, and therefore have extended the
diagram to a Q≥0 diagram with the same colimit. Finally, Q≥0 and Q contain each other as
cofinal subsets (Q>0 ⊆ Q≥0 is isomorphic to Q).

So we may view compactly assembled ∞-categories as a special kind of ω1-compactly
generated ones: The ones where in addition, every ω1-compactly generated object can be
compactly exhausted.

39

Lemma 2.4.7. Let D be a category with filtered colimits and C be compactly assembled. A
functor F : C → D commutes with filtered colimits if and only if its Ind-extension

Ind(C)→ D

is local with respect to ȷ̂X → jX. (I.e. takes those morphisms to equivalences)

Proof. If the Ind-extension F ′ : Ind(C)→ D of F : C → D is local, we have F ≃ F ′◦j ≃ F ′◦ȷ̂,
but the latter is a composition of two filtered-colimit preserving functors.

Conversely, assume F preserves filtered colimits. Writing ȷ̂X ≃ colimI jXi, we learn that
X ≃ colimI Xi by applying k, and

F ′(ȷ̂X) ≃ colimI F (Xi) ≃ F (X) ≃ F ′(jX)

by filtered-colimit preservation of F , so F ′ is local with respect to the morphisms ȷ̂X →
jX.

Proposition 2.4.8. If F : C → D is an arbitrary functor with C compactly assembled and
D admits all filtered colimits, the category of filtered-colimit preserving functors G : C → D
with natural transformation G → F admits a terminal object given by k ◦ Ind(F) ◦ ȷ̂. In
other words: the natural transformation

k ◦ Ind(F) ◦ ȷ̂→ F

is the filtered colimit assembly map.

Proof. Arbitrary functors C → D correspond to filtered-colimit preserving functors Ind(C)→
D. Filtered-colimit preserving functors C → D correspond to filtered-colimit preserving
functors Ind(C) → D which are local with respect to the maps ȷ̂X → jX. These form a
(big) left Bousfield localisation, where the left adjoint is given by restricting along ȷ̂ and
passing to the Ind-extension again. Applying this to the Ind-extension F ′ = k ◦ Ind(F) of
F , we obtain the Ind-extension of F ′ ◦ ȷ̂ = k ◦ Ind(F) ◦ ȷ̂ as claimed.

This way of passing from a functor to a colimit-preserving one in a universal way is in
general known as “assembly” of the functor, because the new functor is typically “assembled”
from the restriction of the old functor to some class of objects. For example, if C is even
compactly generated, the universal filtered-colimit preserving functor over F is just the Ind-
extension of F |Cω . The above formula describes the assembly of F as the unique filtered-
colimit preserving functor which is on compactly exhausted objects described by

colim(X0 → X1 → . . .) 7→ colim(FX0 → FX1 → . . .)

Corollary 2.4.9. For a compactly assembled category C, Mapca
C (X, Y) coincides with the

filtered colimit assembly of MapC(X,−).

40

Proof. The assembly of MapC(X,−) takes Y to

(k ◦ Ind(MapC(X,−)))(ȷ̂Y).

The functor k ◦ Ind(MapC(X,−)) : C → An is the Ind-extension of the functor MapC(X,−).
This coincides with MapInd(C)(jX,−) since it has the correct value on representables and
preserves filtered colimits in Ind(C). So the assembly takes Y to

MapInd(C)(jX, ȷ̂Y) = MapcC(X, Y)

as claimed.

2.5 The category of presentable ∞-categories

Lemma 2.5.1. PrL has small limits, and they are formed “underlying” (i.e. the forgetful
functor PrL → Cat∞ preserves limits). Analogously, PrR has small limits and they are
formed underlying.

Proof. [Lur17b, todo]

Corollary 2.5.2. Colimits in PrL are not formed underlying. Instead, they are formed
by passing to the opposite diagram of right adjoints (along the contravariant equivalence
PrL ≃ (PrR)op) and passing to the limit instead.

Example 2.5.3. Even though the coproduct C⨿D formed in Cat∞ is just the disjoint union,
C ⨿ D formed in PrL agrees with the product C × D, and more generally

∐
I Ci ≃

∏
I Ci for

any set I. An explanation for the different behaviour is that a presentable∞-category needs
to have small colimits, and in the disjoint union of C and D, we for example don’t have a
coproduct of objects coming from different components.

Definition 2.5.4. We write PrLκ for the (non-full) subcategory of PrL consisting of all κ-
compactly generated categories with morphisms given by left adjoint functors F : C → D
which take Cκ into Dκ.

Lemma 2.5.5. PrLκ is equivalent to the full subcategory of the ∞-category CatRex(κ)
∞ of small

categories with κ-small colimits, and κ-small colimit preserving functors spanned by the idem-
potent complete ∞-categories.4

Proof. The inverse equivalences are given by Indκ and (−)κ. [Lur17b, todo]

Lemma 2.5.6. For a pair of adjoint functors L : C → D : R, we have:

1. If the right adjoint R preserves κ-filtered colimits, L preserves κ-compact objects.

4Note that for κ > ω idempotent completeness is automatic since splitting idempotents can be achieved
by a sequential colimits, so in this case PrLκ ≃ CatRex(κ)

∞ . But for κ = ω this makes a difference.

41

2. If C is κ-compactly generated and L preserves κ-compact objects, R preserves κ-filtered
colimits.

Proof. IfX is compact andR preserves κ-filtered colimits, then MapD(LX,−) ≃ MapC(X,R(−))
commutes with κ-filtered colimits, so LX is compact. For the other statement, if Yi is a
κ-filtered diagram, to check that colimRYi ≃ R(colimYi) if C is κ-compactly generated, it
suffices to apply MapC(X,−) for κ-compact X, which leads to colimMapD(LX, Yi) on both
sides since LX is κ-compact.

Lemma 2.5.7. The forgetful functor PrLκ → PrL (and hence also the functor Indκ : Cat
Rex(κ)
∞ →

PrL) preserves colimits.

Proof. Let Ci → C be a colimit cone in PrL over a diagram in PrLκ. We need to prove
that it is a colimit cone in PrLκ. Passing to right adjoints, it suffices to check that the
limit of κ-compactly generated categories along κ-filtered colimit preserving right adjoint
functors is itself κ-compactly generated, and universal among κ-filtered colimit preserving
left adjoint functors into the diagram. The first statement follows since the right adjoint
functors out of the limit are jointly conservative, and so their left adjoints (which preserve
κ-compact objects) take generators to generators collectively. The other statement follows
since κ-filtered colimits and limits in the limit of categories are formed pointwise.

Example 2.5.8. For a ring R, we have the category of perfect complexes D(R)ω. We have
a functor BG→ CatRex

∞ encoding the trivial G-action on D(R)ω. By the above, its colimit is
given by the compact objects in the colimit of the trivial G-action on its Ind-category D(R),
viewed as diagram BG→ PrL. This limit may be computed as the limit of the right adjoint
diagram, which is the functor category Fun(BG,D(R)) ≃ D(R[G]). So the colimit of the
original diagram BG→ CatRex

∞ is D(R[G])ω.

Example 2.5.9. The functor PrLκ → PrL does not preserve limits. As an example, let κ = ω
and consider the pullback diagram

aModm(A) Mod(A)

0 Mod(A/m).

in PrL. This is not a pullback diagram in PrLω, as the top left corner is not even compactly
generated. (In fact, the pullback in PrLω is 0, as any compact-object preserving functor into
the kernel of Mod(A)→ Mod(A/m) is zero.) We will however see later that this is a limit in
the category of compactly assembled ∞-categories, but PrLca → PrL does also not generally
preserve limits.

2.6 The category of compactly assembled∞-categories

Proposition 2.6.1. 1. A filtered-colimit preserving functor F : C → D between com-
pactly assembled ∞-categories preserves compact morphisms if and only if it commutes

42

with ȷ̂, more precisely that the natural transformation ȷ̂ ◦ F → Ind(F) ◦ ȷ̂ makes the
diagram

Ind(C) Ind(D)

C D

Ind(F)

F

ȷ̂ ȷ̂

commute.

2. A colimit-preserving functor F : C → D between presentable ∞-categories, where C
is compactly assembled, preserves strongly compact morphisms if and only if its right
adjoint R commutes with filtered colimits.

Proof. For the first statement, first assume that F preserves compact morphisms. If X =
colimNXn is compactly exhausted, FX = colimN FXn is, too, and we have ȷ̂FX ≃ colim jFXn ≃
Ind(F) colim jXn ≃ ȷ̂X. So the canonical transformation

ȷ̂ ◦ F → Ind(F) ◦ ȷ̂

is an equivalence on compactly exhaustible objects, and since both functors commute with
filtered colimits, also general objects. Conversely, if F commutes with ȷ̂, a witness jX → ȷ̂Y
of compactness of X → Y is taken by Ind(F) to a morphism jFX → ȷ̂FY witnessing
compactness of FX → FY .

For the second statement, first assume that the right adjoint R preserves filtered colimits.
One may directly check from the definition of strongly compact morphisms that F preserves
strongly compact morphisms. Conversely, assume that F preserves strongly compact mor-
phisms. To check that

colimi∈I RZi → R(colimi∈I Zi)

is an equivalence for any filtered diagram, it suffices to check this after MapC(X,−) for a
strongly compactly exhausted X = colimn∈NXn. But we have

MapC(X, colimi∈I RZi) = MapInd(C)(colimN jXn, colimI jRZi)

= MapInd(C)(colimN jFXn, colimI jZi)

= MapC(FX, colimZi) = MapC(X,R colimZi).

Definition 2.6.2. A left adjoint functor between compactly assembled categories that satis-
fies the equivalent conditions of Proposition 2.6.1 is called compactly assembled. We denote
by PrLca the non-full subcategory of PrL spanned by the compactly assembled categories and
compactly assembled functors.

We note that since each compactly assembled category is ω1-compactly generated, and
compactly assembled functors preserve ω1-compact objects, we find that PrLca is actually a
non-full subcategory of PrLω1

. We have an equivalence

PrLω1
≃ CatRex(ω1)

∞

43

where the latter is the∞-category of small∞-categories that admit ω1-small (i.e countable)
colimits and functors that preserve them (see [Lur17b, Proposition 5.5.7.8]). The equivalence
is implemented by taking ω1-compact objects and vice versa by taking Indω1 . It follows that
we can think of PrLca also equivalently as some category of small categories. We would like
to make this perspective explicit now.

Definition 2.6.3. A small∞-category is called compactly assembled in the small sense if it
admits countable colimits and every object is a sequential colimit along compact morphisms5.
A functor between such is called compactly assembled in the small sense if it preserves ω1-
small colimits and compact morphisms. We denote the ∞-category of small compactly
assembled ∞-categories by Catca∞.

Proposition 2.6.4. We have an equivalence PrLca ≃ Catca∞.

Proof. If C is compactly assembled, then Cω1 admits countable colimits (this doesn’t use
anything), and all objects in Cω1 can be written as sequential colimit of ω1-compact objects
along compact morphisms by Proposition 2.4.6. So Cω1 is compactly assembled in the small
sense.

Conversely, assume C is ω1-compactly generated and Cω1 is compactly assembled in the
small sense. If X = colimXn is compactly exhausted in Cω1 , then

MapInd(Cω1)(colimn jXn, Y) ≃ MapC(colimnXn, kY).

Indeed, every Y in Ind(Cω1) can be written as ω1-filtered colimit of ω1-compact Y , and both
sides commute with ω1-filtered colimits in Y . So it suffices to check this for Y an ω1-compact
object in Ind(Cω1). These can always be represented as countable filtered diagrams, and the
same argument as used to prove Lemma 2.3.10 proves the above statement in that case. We
thus get a well-defined functor ȷ̂ : Cω1 → Ind(Cω1) taking a compactly exhausted colimXn

to colim jXn, and its Indω1-extension provides a functor C → Ind(Cω1) left adjoint to the
colimit functor.

We will not really use this perspective here, since we believe that in most examples of
compactly assembled categories, such as Shv(X), the presentable ∞-category is the more
natural object to define than its ω1-compact objects.

We have the full faithful inclusion functor

i : PrLω → PrLca

since every compactly generated∞-category is compactly assembled and the morphisms are
the same by Proposition 2.6.1.

Theorem 2.6.5. The category PrLca admits all colimits and the inclusion functor PrLca → PrL

creates colimits.

5Compact here is meant to be checked against all countable filtered colimits

44

Proof. Consider a diagram
I → PrLca i 7→ Ci

and take the colimit of the composition I → PrLca → PrL. We denote this colimit by C.
Equivalently, C is the limit of the right adjoint diagram in PrR. To argue that the original
diagram is a colimit in PrLca (i.e. that C is compactly assembled, it is a diagram of compactly
assembled functors, and is an initial such cone), we may equivalently check that the right
adjoint diagram is a limit diagram in the category whose objects are compactly assembled
∞-categories, and whose morphisms are filtered-colimit preserving right adjoint functors.

Since limits and filtered colimits in a limit of categories along such functors are formed
levelwise, the characterisation of compactly assembled categories from Theorem 2.2.11(6) is
obviously stable under limits along such functors.

Corollary 2.6.6. The functor (−)ω1 : PrLca → Cat∞ preserves ω1-filtered colimits.

Proof. This is true for the functor (−)ω1 : PrLω1
→ Cat∞ by [Lur17b, Proposition 5.5.7.11] and

since PrLca → PrLω1
preserves small colimits (as they are computed in PrL on both sides).

Example 2.6.7. The functor (−)ω1 : PrLca → Cat∞ does not commute with sequential
colimits. For example, let Cn =

∏n
i=1An. Then colimca

n Cn =
∏

N An has ω1-compact objects
given by

∏
N An

ω1 , which disagrees with colimn

∏n
i=1An

ω1 .

Example 2.6.8. Also, the functor (−)ω : PrLca → Cat∞ does not commute with ω-filtered
colimits. To see this, consider the following example of posets (found by Konrad Bals). Let

Pn = {±∞} ∪ {(x, y) ∈ R2 | y ≥ n},

With the componentwise order on R2, and ±∞ terminal and initial respectively. This
is presentable, as we have arbitrary suprema. The only compact object is −∞, as any
other object can be written as filtered colimit from strictly below, for example (x, y) =
colimN(x − 1

n
, y). So Pn is not compactly generated, but compactly assembled: Any of

the morphisms (x, y) → (x′, y′) with x′ > x and y′ > y, as well as any of the morphisms
(x, n)→ (x′, n) with x′ > x, are compact. The inclusion functors

R : Pn+1 → Pn

preserve suprema and infima, and so admit both adjoints. The left adjoint L : Pn → Pn+1 is
therefore compactly assembled (it is the map which “rounds up the y-coordinate to n+ 1”.
We have

colimn(. . .→ Pn
L−→ Pn+1 → . . .) ≃ limn(. . .← Pn

R←− Pn+1 ← . . .) ≃ {±∞}.

So in the colimit, both ±∞ are compact, even though only −∞ is compact in any of the Pn.

Theorem 2.6.9 (Ramzi). The ∞-category PrLca is itself presentable.

45

The rest of the section will consist of a proof of this theorem. We consider the adjunction

PrLω
//

oo PrLω1
(2.1)

where the left adjoint is the inclusion and the right adjoint takes the ind-completion of the ω1-
compact objects. This follows since we have for C compactly generated and D ω1-compactly
generated:

Funω(C, Ind(Dω1)) ≃ FunRex(ω)(Cω,Dω1)

and
Funω1(C,D) ≃ FunRex(ω1)(Cω1 ,Dω1)

This two are now naturally equivalent since Cω1 is the free∞-category with ω1-small colimits
on Cω. (Cω1 ≃ Indω1

ω (Cω), which is obtained by closing representables in Fun((Cω)op,An)
under ω1-small ω-filtered colimits.) The adjunction (2.1) induces a comonad C on PrLω1

.

Proposition 2.6.10 (Ramzi). The inclusion functor i : PrLca → PrLω1
is comonadic and the

induced comonad is equivalent to the comonad C described above.

Proof. We first claim that the right adjoint functor of the adjunction (2.1) if composed with
the fully faithful inclusion PrLω → PrLca is left adjoint to the functor i : PrLca → PrLω1

. This
follows by verifying the universal property for C compactly assembled and D ω1-compactly
generated (TODO, actually not completely easy). Then it follows by abstract non-sense
that the two comonads agree and it only remains to check the comonadicity. Do this (follow
Maxime’s Lemma 3.6)

This roughly describes compactly assembled categories as ω1-generated categories with a
map D → Ind(Dω1) preserving ω1-compact objects, and some higher coherences. Of course,
this structure map is exactly ȷ̂.

Note that this gives a completely abstract characterisation of compactly assembled ∞-
categories. It also gives some justification to the name.

Proof of Theorem 2.6.9. It is coalgebras for some comonad. The comonad is accessible since
it is induced by an adjunction between the presentable ∞-categories PrLω and PrLω1

. Now it
follows from abstract nonsense that comodules for an accessible comonad on a presentable
∞-category are presentable. More precisely the ∞-category of comodules is a partially lax
limit and thus presentable by [Lur17b, 5.4.7.3., 5.4.7.11.].

2.7 Limits of compactly assembled categories

As a result of the presentability of PrLca we can deduce that it also admits all small limits.
But limits are in fact somehow hard to understand (presentability only gives an abstract
existence proof). In fact, the functor PrLca → PrL definitely does not preserve limits. It
can happen, that the presentable limit (e.g. an infinite product) of compactly assembled
categories is again compactly assembled. But it will generally still not agree with the limit
in PrLca.

46

If necessary we shall denote the limit in PrLca by limca and the limit in PrL (which agrees
with the limit in Cat∞) by lim to make clear what is meant.

The idea to understand limits in PrLca is due to Clausen and basically constructs some
sort of ‘right adjoint’ functor from presentable categories to compactly assembled categories.
One can think of this as some ‘compactly assembled core’ sitting inside of each presentable
category. Then the limit in PrLca is given by taking the limit in PrL and then taking this
‘core’.

Definition 2.7.1. 1. We call a class of morphisms S in a presentable ∞-category C an
ideal if for f, g, h composable in C and g ∈ S, we have fgh ∈ S.

2. For an ideal S, we write SQ for the sub-ideal of those morphisms f : X0 → X1 which
extend over a [0, 1]∩Q-indexed diagram all of whose nonidentity morphisms are in S,
and call SQ the factorizable morphisms in S. If S = SQ we call S factorizable.

3. We call an ideal accessible if there exists a cardinal κ such that each morphism in SQ

factors over a κ-compact object of C.

4. We call S a precompact ideal if it is accessible, contains the identity on the initial object,
and we have the following pushout conditition: Given a diagram F0 ← F1 → F2 of
functors [0, 1]∩Q→ C with all positive-length morphisms in S, the pushout F0⨿F1 F2

takes 0→ 1 to a morphism in S.6

Observe that compact morphisms in a compactly assembled category form a precompact
ideal (which is factorizable). In analogy with compactly exhaustible objects, we call an
object of Ind(C) S-exhaustible if it can be written as colimit

colimα∈Q jXα

of a Q-indexed diagram where all “positive length” morphisms are in S. (Observe that if
S is factorizable, these agree with the objects that can be written as colimit of N-indexed
diagrams where the morphisms are in S. In particular, in the compactly assembled case they
are exactly the objects which are of the form ȷ̂X with X compactly exhaustible.)

Note that the S-exhaustible objects only depend on SQ.

Lemma 2.7.2. Assume X = colimα∈Q jXα and Y are two S-exhaustible Ind-objects, and we
have a map X → Y of Ind-objects. Then we can represent Y = colimα∈Q jYα and X → Y
by a morphism of Q-indexed diagrams.

Proof. By cofinality, we haveX = colimn∈N jXn. Write Y = colimα∈Q jYα. From the formula
for mapping spaces in Ind(C), we find some f : N → Q and represent X → Y as natural
transformation jXn → jYf(n). We may assume f to be strictly increasing. Since all [a, b]∩Q
for a, b ∈ Q are isomorphic, we may reindex the diagram giving Y to assume f(n) = n.

6Of course, this directly implies that all positive-length morphisms lie in S, since the restriction to [a, b]∩Q
is again the same situation.

47

Now let g : Q→ Q be a morphism which takes (−∞, 0]∩Q isomorphically to (0, 1]∩Q,
and (n, n+1]∩Q isomorphically to (n+1, n+2]∩Q. The natural transformation jXn → jYn
gives (by pre- and postcomposing) rise to a natural transformation jXα → jYg(α). Restricting
Y• along g, we obtain the desired representative.

Lemma 2.7.3. For a precompact ideal S, S-exhaustible objects are closed under finite col-
imits.

Proof. The initial object is S-exhaustible, so we need to show that they are closed under
pushouts. Given a diagram B ← A → C of S-exhaustibles, Lemma 2.7.2 allows us to
represent them as Q-indexed diagrams compatibly. In the Q-indexed diagram representing
the pushout, we then have that every positive length morphism is in S by the axioms for
precompact ideals. So the pushout is itself S-exhaustible.

Theorem 2.7.4 (Clausen). Let C be a presentable ∞-category and S be a set of morphisms
in C. Then there exists a terminal compactly assembled∞-category (C, S)ca with a left adjoint
functor (C, S)ca → C which sends compact morphisms in (C, S)ca to morphisms in S.

(Meaning that functors D → C from compactly assembled D which take compact mor-
phisms in D to S, factor essentially uniquely through a compactly assembled functor D →
(C, S)ca.)

We will refer to (C, S)ca as the compactly assembled core of C with respect to S.

Proof. We first define (C, S)ca as a full subcategory of Ind(C) as the subcategory generated
under colimits by S-exhaustible objects, and (C, S)ca → C as the restriction of the “colimit”
functor.

Note the collection of S-exhaustible objects is small: We have a κ such that every mor-
phism in SQ factors over a κ-compact object of C. So every Xn → Xn+1 factors over a
κ-compact object of C.Thus every S-exhaustible object is also a colimit of a sequential di-
agram of κ-compact objects of C. Since Cκ is small by presentability, this shows that the
collection of S-exhaustible objects is small. It also shows that the S-exhaustible objects
lie in Ind(Cκ) ⊆ Ind(C). Since this inclusion is closed under colimits this also shows that
(C, S)ca ⊆ Ind(Cκ) and so it is a full subcategory of a presentable ∞-category generated by
a set of objects under colimits. As a result (C, S)ca is itself presentable.

Next we claim that (C, S)ca is compactly assembled. To do this, it suffices to prove that
the generators colimQ jXα are compactly exhaustible. Indeed, we claim that for each β ∈ Q,
the canonical map

colimQ<β
jXα → colimQ<β+1

jXα

is compact in (C, S)ca. It lies in (C, S)ca since the posets Q<β are isomorphic to Q (and
so these are both themselves S-exhaustible), and is compact since it factors through the
compact object jXβ in the ambient category Ind(C) which has the same colimits.

Now we need to prove that (C, S)ca → C takes compact morphisms into S. So let X → Z
be any compact morphism. We may factor it into two compact morphisms X → Y → Z,
and write Z = colimi∈I Zi as filtered colimit of S-compactly exhaustible objects, using that

48

S-exhaustibles are closed under finite colimits (Lemma 2.7.3). Compactness now gives us
factorisations as follows:

X colimQ<β
jZi,α

Y Zi = colimQ jZi,α

Z colimi∈I Zi
≃

Since the functor to C takes the top right vertical arrow into S (in C, it factors through
Zi,β → Zi,β+1), and S is an ideal, X → Z is taken into S.

Finally, we need to argue that postcomposition with (C, S)ca → C provides an equivalence
between compactly assembled functorsD → (C, S)ca and functorsD → C which take compact
morphisms into C. For that we observe that if we let C be the class of compact morphisms
in D, then

(D, C)ca

is the full subcategory of Ind(D) generated by, and hence coinciding with, the image of ȷ̂.
So for a functor D → C taking C into S,

(D, C)ca (C, S)ca

D C

≃

provides the compactly assembled functor D → (C, S)ca. Write FunL((D, C), (C, S)) for left
adjoint functors taking C into S, then the above diagram witnesses that the composite

FunL((D, C), (C, S))→ Funca(D, (C, S)ca)→ FunL((D, C), (C, S))

is an equivalence. Conversely, a compactly assembled functor D → (C, S)ca is uniquely
determined by the corresponding diagram above, so the other composite is also an equiva-
lence.

Addendum 2.7.5. If all morphism in S are strongly compact in C then (C, S)ca → C is
fully faithful.

Proof. In this case we see from Lemma 2.3.2 that for any pair of S-exhaustible objects in
Ind(C) the induced map on mapping spaces from k : Ind(C)→ C is fully faithful. It follows
that ((C, S)ca)ω1 → C is fully faithful and since it lands in fact in Cω1 the claim follows.

Addendum 2.7.6. If C is already compactly assembled and S contains all compact mor-
phisms in C, then (C, S)ca → C also admits a left adjoint and is a (left and right) Bousfield
localisation.

49

Proof. If S contains compact morphisms, ȷ̂X is S-exhaustible for any X ∈ C. Since ȷ̂ is even
left adjoint to k : Ind(C) → C, it is left adjoint to (C, S)ca → C. So (C, S)ca → C admits a
fully faithful left adjoint. It also admits a right adjoint, which is then also fully faithful.

Observe that the situation of Addendum 2.7.6 applies in particular to the class S of
all morphisms which factor over an ω1-compact object. In that case, (C, S)ca agrees with
Ind(Cω1), the functor to C is the colimit functor, and the fully faithful adjoints are our ȷ̂ and
j. One may think of Addendum 2.7.6 as describing a smaller version of this situation.

Lemma 2.7.7. (C, S)ca → C is an equivalence if and only if C is compactly assembled and
the following two classes of morphisms in C agree:

1. The compact morphisms.

2. Morphisms in SQ.

Proof. If the two classes of morphisms agree and C is compactly assembled, (C, S)ca → C
is fully faithful and essentially surjective since S-exhaustibles and compactly exhaustibles
agree. Conversely, denote the two classes of morphisms by C and SQ, and assume that
(C, S)ca → C is an equivalence. Then C is compactly assembled, since (C, S)ca is. Also,
compact morphisms are taken into S, and so C ⊆ S, and since compact morphisms can be
factored, also C ⊆ SQ.

This shows that every compactly exhaustible object is also S-exhaustible. So ȷ̂ : C →
Ind(C) takes values in (C, S)ca. As it is left adjoint to the colimit functor, which is an
equivalence by assumption, we get that ȷ̂ is the inverse equivalence. For a diagram Xα with
α ∈ Q and all nonidentity morphisms in S, we have

colimα∈Q jXα ∈ (C, S)ca,

and this is taken to colimXα in C by the colimit functor. Applying the inverse equivalence,
we learn

ȷ̂ colimXα ≃ colim jXα

for any Q-indexed diagram with nonidentity morphisms in S. Now let X0 → X1 be an
arbitrary morphism from SQ, and Xα with α ∈ [0, 1] ∩ Q an extension to a diagram with
nonidentity morphisms in S. In Ind(C), we have that jX0 → jX1 factors over

colimα<1 jXα ≃ ȷ̂ colimα<1Xα,

which shows that X0 → X1 is compact, finishing the proof.

Now we would like to explain how to compute limits in PrLca. To this end we assume that
we have a diagram

I → PrLca i 7→ Ci
and form the limit C = limi Ci of the underlying diagram in PrL. This limit is in fact
computed in Cat∞, so given as coCartesian sections of the Grothendieck construction of the
functor I → Cat∞. Now we have the limit projections

pi : C → Ci

50

and we may form a precompact ideal of “pointwise compact morphisms”:

Lemma 2.7.8. Let Ci be a diagram in PrL with precompact ideals Si and functors preserving
the precompact ideals. Then

S = {f : c→ c′ | pi(f) ∈ Si for all i}

forms a precompact ideal in the limit C.

Proof. Both the ideal condition and the pushout condition can be checked pointwise, since
the functors pj : lim

L Ci → Cj create colimits. For the accessibility condition, we need to show
that there exists κ such that for any diagram X : [0, 1]∩Q→ limL Ci where all pi(Xα → Xα′

for α < α′ are compact, X0 → X1 factors through κ-compact Y .
We take Y = colimα<1Xα. Since the pi create colimits, this colimit is formed pointwise.

Since a sequential colimit along compact maps is ω1-compact, all pi(Y) are ω1-compact. The
pointwise ω1-compact objects are contained in the κ-compact objects of limL Ci for some κ
depending only on the diagram, finishing the proof.

Proposition 2.7.9. The ∞-category (C, S)ca is the limit of the diagram I → PrLca. In
formulas

limca Ci = (lim Ci, S)ca

Proof. Compactly assembled morphisms D → (lim Ci, S)ca are the same as morphisms D →
lim Ci which take compact morphisms into S. By definition of S, this is the same as a
collection of compactly assembled morphisms D → Ci.

Note that this in particular shows that limca Ci is a full subcategory of Ind(lim Ci). This
will be important later on.

Example 2.7.10. We compute the limit of

. . .→ D(Z/pn)→ D(Z/pn−1)→ . . .

in PrLca which is called the ∞-category of nuclear modules over the analytic ring Zp and

denoted Ñuc(Zp). 7

In PrL, the limit is D(Z)∧p , the category of p-complete derived abelian groups (an object

X ∈ D(Z) is p-complete if X ≃ limNX/p
n. Equivalently, if lim(. . . X

p−→ X . . .) ≃ 0). Note
that this category is compactly generated: Shifts of Z/p are compact, and generate, since if
Map(Z/p[n], X) = 0 for all n, p : X → X is an equivalence, but under completeness, this
means X = 0. Also, the right adjoint functors D(Z/pn) → D(Z)∧p are just restriction, and
so commute with filtered colimits (since anything hit by restriction is already p-complete).
So the limit cone is in PrLca.

7There is a slight difference to the original nuclear category of Clausen-Scholze, which is why we include
the tilde in the notation. We will explain this sublety later.

51

However, D(Z)∧p is not the limit in PrLca (universality fails). Instead, the limit is given
by (D(Z)∧p , S)ca, where S is the class of morphisms X → Y such that all X/pn → Y/pn are
compact (over Z/pn).

This S contains identities on compact objects in D(Z)∧p (such as Z/pn), but it also
contains the identity on Zp. So jZp is among the S-exhaustibles. We also have more
surprising nontrivial objects in limcaD(Z/pn), for example the colimit

Qp = colim(jZp
p−→ jZp

p−→ . . .)

Note that in this case, we do actually have that

limcaD(Z/pn)→ limLD(Z/pn)

is a Bousfield localisation, related to the fact that the original limit cone was already in PrLca.
This localisation for example kills Qp.

There are some limits that are preserved by the functor PrLca → PrL and thus computed
as limits of underlying ∞-categories. An obvious such limit is the product C × D, which
agrees with the coproduct and which is computed underlying since compact morphisms in
the product are simply pairs of compact morphisms. That is, PrLca is semi-additive.

Example 2.7.11. For infinite products the map∏ca
Ci →

∏
Ci

is not an equivalence in general, even though the target is compactly assembled, since it is
also the coproduct in PrL and therefore also in PrLca. We claim that the compact morphisms
in
∏
Ci are given by those morphisms which are levelwise compact and finitely supported,

that is given by a morphism X → ∅ → Y almost everywhere. To see this we test against
levelwise colimits and the colimit

(Y0, ∅, ∅, ∅, ...)→ (Y0, Y1, ∅, ∅, ...)→ (Y0, Y1, Y2, ∅, ...) .

There are in general certainly a lot of levelwise compact maps, which are not finitely sup-
ported. Thus we are in the situation of Addendum 2.7.6 and we see that the functor∏ca Ci →

∏
Ci is a left and right Bousfield localization. The class of levelwise compact

morphisms is also factorizable, thus by Lemma 2.7.7 we see that the map∏ca
Ci →

∏
Ci

is an equivalence precisely if every levelwise compact morphism is already compact. This is
only the case if the product is finite (i.e. almost all of the Ci are given by the point).

52

2.8 Tensor product on PrL

As promised in the introduction, compactly assembled categories admit a further characteri-
zation as dualizable categories, with respect to a symmetric-monoidal structure on PrL. The
correct generality for this is in the stable setting, where the examples we care about take
place. In this section, we want to discuss the required tensor product on PrL and the notion
of stable∞-categories. This tensor product is due to Lurie [Lur17a] and generally all results
in this section are due to him.

Definition 2.8.1. For presentable C,D, E write FunbiL(C ×D, E) for the full subcategory of
the functor category consisting of all functors which are colimit-preserving in both variables
separately.

Definition 2.8.2. The tensor product of two presentable∞-categories C,D is a presentable
∞-category C ⊗ D together with a functor

C × D → C ⊗D

preserving colimits in each variable separately, such that precomposition induces an equiva-
lence

FunL(C ⊗ D, E)→ FunbiL(C × D, E)
for each presentable E .

As usual, the universal property makes this essentially unique if it exists. We will see
shortly that this is the case.

We also see directly that

FunL(C ⊗ D, E) ≃ FunbiL(C × D, E) ≃ FunL(C,FunL(D, E)),

so that the tensor product exhibits FunL as corresponding internal Hom. Since FunL(An, C) ≃
C, we see that An is the neutral element.

Example 2.8.3. If C = Fun(Cop0 ,An) and D = Fun(Dop
0 ,An), then

FunbiL(C × D, E) = FunL(C,FunL(D, E)) = Fun(C0,Fun(D0, E)) = Fun(C0 ×D0, E),

which agrees with FunL(Fun((C0 ×D0)
op,An), E). So we see that

C ⊗ D ≃ Fun((C0 ×D0)
op,An).

Example 2.8.4. Given a left Bousfield localisation C → C ′, where C ′ ⊆ C consists of the full
subcategory ofWC-local objects for some set of morphismsWC, and analogously for D → D′,
then

C ⊗ D → C ′ ⊗D′

is also a left Bousfield localisation, where C ′ ⊗ D′ can explicitly be described as the full
subcategory local with respect to WC ⊗ Dκ ∪ Cκ ⊗WD, with κ large enough that C and D
are κ-compactly generated.

Indeed, we have

FunL(C ′⊗D′, E) = FunbiL(C ′×D′, E) = FunbiL,WC⊗D−loc(C ×D, E) = FunL,WC⊗D−loc(C ⊗D, E)

53

Since we have seen that every presentable ∞-category can be written as Bousfield lo-
calisation of Fun(Cop0 ,An), the two examples combine to give existence of tensor products
generally. In fact, we can provide a more useful formula:

Lemma 2.8.5. C ⊗ D ≃ Funlim(Cop,D).

Proof. Writing C and D as left Bousfield localisations of Fun(Cop0 ,An) and Fun(Dop
0 ,An) with

respect to some generating equivalences, we have

Funlim(Cop,D) ⊆ Funlim(Fun(Cop0 ,An)op,D)
= Fun(Cop0 ,D)
⊆ Fun(Cop0 ,Fun(D

op
0 ,An))

= Fun((C0 ×D0)
op,An),

where both inclusions are characterized by locality conditions. Tracing these through to the
rightmost term, one sees that FunR(Cop,D) agrees with the full subcategory of Fun((C0 ×
D0)

op,An) on local objects, i.e. agrees with the left Bousfield localisation.

Proposition 2.8.6. For topological spaces X and Y we have Shv(X)⊗ Shv(Y) ≃ Shv(X ×
Y).

Proof. Shv(X) arises as Bousfield localisation of PShv(X) = Fun(Open(X)op,An), analo-
gously for Y . So Shv(X)⊗ Shv(Y) arises as Bousfield localisation of

Fun((Open(X)×Open(Y))op,An).

The locality condition is precisely descent in each variable. Since “boxes” U × V provide a
basis of the topology of X×Y , and the coordinatewise descent condition generates the same
Grothendieck topology, this agrees with Shv(X × Y).

Proposition 2.8.7. Shv(X)⊗ C ≃ Shv(X; C).

Proof. From Lemma 2.8.5, we get

Shv(X)⊗ C ≃ Funlim(Shv(X)op, C),

which is a full subcategory of Fun(Open(X)op, C) on functors whose extension in Funlim(Fun(Open(X)op,An)op, C)
satisfies a locality condition. Unwinding definitions, this full subcategory is precisely Shv(X; C).

Although Shv(X) for us means Shv(X; An), this allows us to approach sheaves with
values in various categories.

Example 2.8.8. Set is a left Bousfield localisation of An, at the classW of π0-isomorphisms.
This exhibits Set ⊗ Set as localisation of An ⊗ An ≃ An, and inspection shows that it is
again at the same class of morphisms, so Set⊗ Set ≃ Set. Consequently,

Shv(X; Set)⊗ Shv(Y ; Set) = Shv(X)⊗ Set⊗ Shv(Y)⊗ Set ≃ Shv(X × Y ; Set)

54

Lemma 2.8.9. Writing An∗ for the category of pointed objects Anpt/, we have

An∗ ⊗ C = C∗,

the category of pointed objects in C (slice under the terminal object). In particular, An∗ ⊗
An∗ ≃ An∗.

Proof. We may write An∗ as Bousfield localisation of An∆1

, consisting of the full subcat-
egory of An∆1

on all arrows whose first entry is pt. (The left adjoint An∆1 → An∗ takes
A → X to X/A). This exhibits Funlim((An∗)

op, C) as full subcategory of Fun(∆1, C) with
objects characterized by some locality condition. Unwrapping things, we exactly find the
full subcategory of arrows where the first entry is pt, i.e. C∗.

Definition 2.8.10. An ∞-category C is called stable if it has finite limits and colimits, a
zero object, and a square

A B

C D

is a pullback diagram if and only if it is a pushout diagram.

For example, this holds in derived categories. Conversely, stable ∞-categories behave a
lot like derived (or triangulated) categories, for example we can write pullbacks as fibers,
etc. It can be seen that the condition on squares is equivalent to the suspension (or shift)
functor Σ : C → C being an equivalence, where ΣX is defined by the pushout

X 0

0 ΣX.

A kind of universal example (in presentable stable categories) is therefore given as follows:

Definition 2.8.11. The category of spectra Sp is the colimit

colim(An∗
Σ−→ An∗

Σ−→ . . .)

in PrL.

Note that this colimit can be computed as limit in PrR of the right adjoint functors

lim(. . .
Ω−→ An∗

Ω−→ An∗),

i.e. explicitly a spectrum consists of a sequence of pointed anima Xn with equivalences
Xn ≃ ΩXn+1.

Lemma 2.8.12. 1. The canonical map An → Sp induces an equivalence Sp ≃ Sp⊗ Sp.
The inverse equivalence makes Sp into a commutative algebra in PrL.

55

2. A presentable category C is stable if and only if the canonical map

C → Sp⊗C

is an equivalence. This makes C into a module over Sp in PrL (with symmetric-
monoidal structure given by ⊗).

Proof. Tensoring

Sp ≃ colim(An∗
Σ−→ . . .)

with C, we obtain

Sp⊗C ≃ colim(C∗
Σ−→ . . .).

If C is stable, we have C∗ ≃ C, and Σ is an equivalence, so in that case the colimit is just
C again. In particular, this applies to C. Conversely, Sp⊗C is stable, since the suspension
functor on it can be written as Σ⊗ idC, but Σ : Sp→ Sp is an equivalence.

Definition 2.8.13. We write PrLst for the full subcategory of PrL on stable presentable
categories.

By the above, these are exactly the modules over the idempotent Sp. In particular, it is
also symmetric-monoidal, with the same tensor product, and unit Sp.

Note that if C is stable, Cκ is also stable: It suffices to check that κ-compact objects are
closed under fibers, and if X → Y → Z is a fiber sequence, Σ−1Y → Σ−1Z → X is a cofiber
sequence. Conversely, if C is small stable, Indκ(C) is stable.

Examples of presentable stable∞-categories include derived categories of rings. We may
also think of Sp in such a way: Since Sp⊗ Sp ≃ Sp, Sp is an algebra object in PrL. This gives
Sp a symmetric-monoidal structure, whose unit is called S, the sphere spectrum. Explicitly,
it is the image of S0 under the canonical left adjoint An∗ → Sp. Since every object in a
symmetric-monoidal category is canonically a module over the unit, we have Sp ≃ Mod(S).

The right adjoint to the left adjoint functor Sp → D(R) corresponding to the unit
R[0] ∈ D(R) (which is strong monoidal) takes R[0] to an algebra object in Sp, known
as Eilenberg-MacLane spectrum HR. This right adjoint in fact induces an equivalence
D(R) ≃ Mod(HR).

Example 2.8.14. For commutative ring spectraR, S, one has Mod(R)⊗Mod(S) ≃ Mod(R⊗S
S). In particular, for ordinary rings R, S, we have D(R)⊗D(S) ≃ Mod(HR⊗S HS).

The tensor product of two Eilenberg-MacLane spectra is rarely itself Eilenberg-MacLane
(except in the rational case). So even if we only start with “ordinary derived categories”,
the tensor product in PrL leads us to more general ∞-categories. However, the functor
CRing → CAlg(Sp) taking an ordinary ring R to the Eilenberg-MacLane spectrum HR is
fully faithful (Eilenberg-MacLane spectra are in a sense discrete), and so we will sometimes
drop the H and view ordinary rings as ring spectra, i.e. as algebras over S .

Definition 2.8.15. If C is a commutative algebra in PrL, and D, E are modules over it, the
relative tensor product is defined as

D ⊗C E = colim(D ⊗ E D ⊗ C ⊗ E D ⊗ C ⊗ C ⊗ E . . .)

56

Lemma 2.8.16. For ordinary rings R, S, we have

D(R)⊗D(Z) D(S) = ModD(Z)(R⊗LZ S),

in particular, if R, S are Tor-independent, this simplifies to D(R⊗Z S).

Note that D(Z), as opposed to Sp, is not idempotent in PrL, as D(Z) ⊗ D(Z) ≃
Mod(HZ ⊗S HZ), but HZ ⊗S HZ is very different from HZ! So the D(Z)-linear tensor
product almost always differs from the underlying tensor product, and D(Z)-linearity is
really additionaly structure on a category, as opposed to stability.
D(Z)-linear categories often arise from so-called dg-categories, which are a version of

higher categories enriched in chain complexes rather than anima. Let us explain this enriched
perspective a bit. For an algebra C in PrL the unit functor An → C has a right adjoint
U : C → An that is lax symmetric monoidal.

Proposition 2.8.17. For a C-module D in PrL there is an extension

C
U
��

Dop ×D
MapD

//

MapCD

66

An

(2.2)

characterised by the universal property that

MapC(Z,MapC
D(A,B)) ≃ MapD(Z ⊗ A,B)).

for Z ∈ C and A,B ∈ D.
Proof. We define a functor

Dop ×D → Fun(Cop,An) (A,B) 7→ (Z 7→ MapD(Z ⊗ A,B))

and note that in fact it lands in Funlim(Cop,An) ≃ C. This then defines the desired functor
with the universal property. The commutativity of the triangle 2.2 follows since the functor
U is given under the equivalence Funlim(Cop,An) ≃ C by evaluation at the tensor unit of
C.

One can in fact also lift the composition of maps

MapC(b, c)×MapC(a, b)→ MapC(a, c)

to maps
MapC

D(b, c)⊗MapC
D(a, b)→ MapC

D(a, c) .

Details left for the reader, also see [?] for a highly coherent statement in the sense of enriched
categories.

In the case that C = Sp we get mapping spectra and for simplicity we write mapC(A,B)
for MapSp

C (A,B). In fact, for any small stable ∞-category C we get a mapping spectrum
functor

mapC : Cop × C → Sp

for example by restricting the mapping spectrums functor from Ind(C).

57

2.9 Dualizable stable ∞-categories

In this section we would like to analyse when objects in PrLst are dualisable. These will
exactly be the stable and compactly assembled ∞-categories. Recall that an object C in a
symmetric monoidal ∞-category category is called dualisable if there exists another object
C∨ and maps

ev : C∨ ⊗ C → 1 coev : 1→ C ⊗ C∨

such that the compositions

C coev⊗id−−−−→ C ⊗ C∨ ⊗ C id⊗ev−−−→ C

C∨ id⊗coev−−−−→ C∨ ⊗ C ⊗ C∨ ev⊗id−−−→ C∨

are both homotopic to the identity. If the ambient∞-category is closed symmetric monoidal,
then we have that C∨ has to be equivalent to Hom(C,1) and the map ev is the canonical
evaluation map Hom(C,1)⊗C → 1. In particular for the category PrLst the dual of an object
C has to be FunL(C, Sp).

Theorem 2.9.1 (Lurie). If C is stable and presentable, then C is dualizable in PrLst if and
only if it is compactly assembled.

Before we give the proof of this theorem we note that by a specialisation of Theorem
2.2.11 being compactly assembled for a stable ∞-category is equivalent to:

1. C is generated under colimits by weakly (strongly) compactly exhaustible objects

2. The colimit functor k : Ind(C)→ C admits a left adjoint

3. The colimit functor Ind(Cω1)→ C admits a fully faithful left adjoint

4. C is a retract in PrLst of a compactly generated, stable ∞-category.

5. Filtered colimits in C distribute over small products, i.e. we have∏
K

colimI F ≃ colim∏
K I

∏
K

F

for I filtered.

The slight changes follow since in stable ∞-categories colimits are automatically exact and
since Ind of a stable ∞-category is also stable.

Lemma 2.9.2.

1. If C0 is small stable, and D is presentable, Ind(C0)⊗D ≃ FunLex(Cop0 ,D).

2. If C0 is small stable, and D is presentable and stable, Ind(C0)⊗D ≃ FunL(Ind(Cop0),D).

58

Proof. For the first statement, we have

Ind(C0)⊗D ≃ Funlim(Ind(C0)op,D) ≃ FunLex(Cop0 ,D)

by the universal property of Ind.
If additionally D is stable,

FunLex(Cop0 ,D) ≃ FunRex(Cop0 ,D) ≃ FunL(Ind(Cop0),D)

Note that this implies

FunL(D, Ind(C0)⊗ E) ≃ FunL(D,FunL(Ind(Cop0), E)) ≃ FunL(D ⊗ Ind(Cop0), E).

This suggests that Ind(C0) is in fact dual to Ind(Cop0):

Lemma 2.9.3. If C0 is small stable, Ind(C0) is a dualizable object in PrLst, with dual Ind(Cop0).

Proof. We have an evaluation map, obtained as the functor

Ind(Cop0)⊗ Ind(C0) ≃ Ind(Cop0 ⊗Rex(ω) C0)→ Sp

which is the Ind-extension of the functor mapC0 : Cop0 × C0 → Sp (using that it is exact in
both arguments).

We also have a coevaluation map Sp → Ind(C0)⊗ Ind(Cop0) ≃ Ind(C0 ⊗Rex(ω) Cop0). Since
the target is stable, such a morphism is given by a single object. As objects are given by
finite-limit preserving functors (C0 ⊗Rex(ω) Cop0)op → An, i.e. functors Cop0 × C0 → An which
preserve finite limits in both arguments, this can again be given by MapC0 .

One may then check that the “snake identities” are satisfied, which we won’t do here.

Proof of Theorem 2.9.1. By the above, compactly generated categories are dualizable in PrLst.
Since compactly assembled categories are retracts of compactly generated categories, they
are also dualizable.8

Conversely, assume C is dualizable with dual C∨. With κ large enough so that C is
κ-compactly generated, we have that

Ind(Cκ)→ C

is a left Bousfield localisation. So also

Ind(Cκ)⊗ C∨ → C ⊗ C∨

is a left Bousfield localisation (see Example 2.8.4), in particular it is essentially surjective.
Since in PrLst, a functor out of Sp is given precisely by an object, this means the counit
Sp→ C ⊗C∨ lifts to Sp→ Ind(Cκ)⊗C∨. Under duality, this means that the identity C → C
lifts to a functor C → Ind(Cκ), i.e. that C is a retract of a compactly generated category,
finishing the proof.

8In general if the ambient category is idempotent closed or admits inner Hom’s then retracts of dualizable
objects are dualizable. This follows by simply using the ‘restricted’ evaluation and coevaluation maps.

59

Definition 2.9.4. We denote the category of dualisable, stable presentable ∞-categories
and compactly assembled functors by PrLdual.

Note that for a left adjoint functor between stable ∞-categories being compactly assem-
bled is equivalent to being strongly left adjoint, that is the right adjoint admits a further
right adjoint. This follows by Proposition 2.6.1 and the adjoint functor theorem since right
adjoint functors between stable ∞-categories automatically preserve finite colimits.

We recall that a Verdier sequence of stable ∞-categories

C → D → E

is a sequence that is a fibre and cofibre sequence in the category Catex∞ of stable∞-categories
and exact functors. Equivalently this means that C → D is fully faithful, the image is closed
under retracts in D and the functor D → E exhibits E as the Dwyer-Kan localization at
the morphisms in D whose fibre lies in C. (I.e. it is universal among functors taking those
morphisms to equivalences.) This Dwyer-Kan localization is also denoted as E/D and called
the Verdier quotient (it it is the cofibre of stable ∞-categories). Conversely

• every exact Dwyer-Kan localization p : E → D between stable∞-categories is a Verdier
quotient, i.e. sits in a Verdier sequence with C = ker(p).

• Every exact, full faithful functor C → D of stable ∞-categories whose image is closed
under retracts in D is a Verdier kernel, i.e. participates in a Verdier sequence C →
D → E with E = D/C.

We denote the ∞-category of small idempotent complete stable ∞-categories and exact
functors by Catperf∞ . Then a Karoubi sequence is a fibre and cofibre sequence in Catperf∞ .
Concretely that is a sequence

C → D → E
where C → D is fully faithful and the morphism D/C → E is an idempotent completion.
Note that generally a Karoubi sequence is not a Verdier sequence since D/C → E doesn’t
have to be essentially surjective (equivalently D → E is not essentially surjective.)

However, if C,D, E are all presentable and all functors are left adjoint, then a sequence

C → D → E

is Verdier if and only if it is Karoubi (where we apply the notion from Catperf∞ to the large

version Ĉat
perf

∞) if and only if D → E is a Bousfield localization with kernel C.

Example 2.9.5. A sequence C → D → E of small idempotent complete stable∞-categories
is a Karoubi sequence iff

Ind(C)→ Ind(D)→ Ind(E)
is a Verdier sequence, i.e. Ind(D) → Ind(E) is a Bousfield localization with kernel Ind(C).
Note also that in this case all the functors are strongly left adjoint, since they are compactly
assembled, so the right adjoint commutes with filtered colimits, but by exactness also with
finite colimits.

60

Definition 2.9.6. A functor of small, cocomplete∞-categories D → E is called homological
epimorphism if the induced functor

Ind(D)→ Ind(E)

is a left Bousfield localization. A map of ring spectra R → S is called homological epi-
morphism if the base-change functor Perf(R) → Perf(S) is a homological epimorphism,
equivalently if the base-change functor Mod(R)→ Mod(S) is a left Bousfield localization.

Note that by the last Example we have that Karoubi quotients are homological epis.

Lemma 2.9.7. For a map R→ S of ring spectra with fibre I the following are equivalent:

1. R→ S is a homological epimorphism.

2. The multiplication S ⊗R S → S is an equivalence.

3. We have I ⊗R S ≃ 0.

4. The map I ⊗R I → I induced by the multiplication is an equivalence.

Proof. The right adjoint to the base-change functor Mod(R) → Mod(S) is the restriction
functor. This is fully faithful if and only if the counit of the adjunction is an equivalence, i.e.
S ⊗R M → M is an equivalence for any S-module M . As we may write the left hand side
(S ⊗R S)⊗S M , it suffices to check this for M = S, i.e. that S ⊗R S → S is an equivalence.
This proves 1⇔ 2.

For the implication 2⇔ 3, we consider the fiber sequence

I ⊗R S → R⊗R S → S ⊗R S,

noting that S ≃ R ⊗R S → S ⊗R S splits the multiplication S ⊗R S → S. Finally, for the
implication 3⇔ 4, we consider the fiber sequence

I ⊗R I → I ⊗R R→ I ⊗R S.

We say that I is an idempotent ideal in this case. Note that (by viewing ordinary rings as
Eilenberg MacLane spectra), this contains the “almost mathematics” situation of a surjective
map of rings R → S with kernel a flat ideal with I2 = I, but also localisations of R, where
the fiber will typically be a derived object with π−1, see the Examples below.

Example 2.9.8. There are homological epimorphisms p : D → E between small stable
∞-categories, in fact between ring spectra, such that ker(p) → D → E is not a Karoubi
sequence. In fact, ker(p) might be zero. For example, if R is a local ring with flat maximal
ideal m with m2 = m, the kernel of Perf(R)→ Perf(R/m) consists of perfect complexes over
R which have zero base-change to R/m, but all of these are zero by Nakayama (cf. Example
2.2.10). This is still a homological epimorphism though.

61

Lemma 2.9.9. If

A F−→ B G−→ C

is a Verdier sequence, and either F or G admits a right adjoint, the other does, too, and

C RG−−→ B RF−−→ A

is again a Verdier sequence. The analogous statement holds for left adjoints.

Proof. If G admits a right adjoint RG, it is fully faithful, since G is a localisation. We define
a functor RF : B → A by

RF (b) = fib(b→ RG(G(b))),

noting that this lies in the kernel of G. One checks directly that this is right adjoint to F ,
since Map(F (a), RG(G(b))) ≃ Map(G(F (a)), G(b)) ≃ 0.

Conversely, assume we have a right adjoint RF to F . We define an endofunctor B → B
by taking b 7→ cofib(F (RF (b))→ b). This functor annihilates A, so factors uniquely through
a functor RG : C → B. We now have that G ◦RG ≃ id, and a cofiber sequence

F ◦RF → id→ RG ◦G,

from which we directly get that G→ G ◦ RG ◦G and RG → RG ◦G ◦ RG are equivalences,
proving the adjunction.

Finally, RF is a right Bousfield localisation since F is fully faithful, and RG is the inclusion
of its kernel, as the above cofiber sequence proves that an object is in the image of RG if
and only if it is in the kernel of RF .

Proposition 2.9.10. For every homological epimorphism D → E between small stable ∞-
categories the kernel

K = ker(Ind(D)→ Ind(E))

is dualisable. Conversely every dualisable, stable ∞-category arises in this way.

Proof. For a homological epimorphism between stable ∞-categories the functor Ind(D) →
Ind(E) is strongly left adjoint. This is for example because the functor is compactly assem-
bled, so its right adjoint preserves filtered colimits, and since everything is exact, all colimits.
It follows from the previous Lemma 2.9.9 that the functor

K → Ind(D)

is also strongly left adjoint. In particular, K is a retract of Ind(D) in PrL.
Conversely we can write a given dualisable stable ∞-category K as the kernel of the

projection
Ind(Kω1)→ Ind(Kω1)/K

where K → Ind(Kω1) is given by ȷ̂. This shows the converse. This quotient will be investi-
gated systematically in Section 4.3.

62

Definition 2.9.11. Let R→ S be a map of ring spectra with fiber I, and assume the map
S ⊗R S → S is an equivalence. Following the logic of Lemma 2.9.7, we may think of I as
an idempotent ideal in R, in some higher-algebraic sense9. Then we denote the kernel of
Mod(R)→ Mod(S) by Mod(R, I).

We shall see soon that in fact every dualisable, stable ∞-category is of this form. Note
that every map of pairs R → S to R′ → S ′ with ideals I, J induces a map Mod(R, I) →
Mod(S, J) which is strongly left adjoint. The latter fact can be seen using that compact
morphisms in Mod(R) are precisely given by those morphisms that factor in Mod(R) through
a compact object and the functor Mod(R)→ Mod(S) preserves compact objects.

Example 2.9.12. Let R be a ring spectrum with an element x ∈ π∗(R). Then there is a
localization R→ R[x−1] which universally inverts x. Note that in the absence of commuta-
tivity (or at least an Ore condition) this is a bit hard to describe explicitly. Nevertheless we
claim that R→ R[x−1] is a homological epimorphism.

To see this we consider the functor

Mod(R)→ Mod(R[x−1])

induced from base change along R → R[x−1]. The target can be identified with those R-
modules M on which x acts invertibly which follows from the universal property.10 This
functor is the Bousfield localization at the maps R

x−→ R given by right multiplication with
x (which are left R-module maps).

It follows that the kernel is generated by R/x, hence compactly generated. In the commu-
tative case, this subcategory can be explicitly descibed as those R-modules M with x-power
torsion homotopy groups. There are a number of classical notations for this category like
Mod(R)x-nil or Mod(R on R/x).

Example 2.9.13. Let A → B a surjective map of perfect Fp-algebras. Then A → B is a
homological epimorphism. This follows since

B ⊗A B

is itself a perfect animated ring (the Frobenius is the tensor product of the Frobenii). But
the higher homotopy groups of a perfect animated Fp-algebra are always trivial since the
Frobenius acts by zero on higher homotopy groups. So we only need to check that the map
out of the underived tensor product B ⊗A B → B is an isomorphism which is clear from
surjectivity of A→ B. This also works of A is only perfectoid (B still is a perfect Fp-algebra)
since again the tensor product B⊗AB ≃ B⊗̂AB is perfect which follows since it is perfectoid
and characteristic p.

9One can make this structure precise, but we won’t need it here, since we may equivalently characterize
it in terms of S

10Note that in general R → R[x−1] is not flat, even for ordinary rings [?]. Thus we have to take the
derived base change.

63

Example 2.9.14. If R is an ordinary commutative ring with flat ideal I with I2 = I,
D(R)→ D(R/I) is a homological epimorphism. It follows that the kernel

D(R, I) = ker(D(R)→ D(R/I))

is compactly assembled. This is the derived version of almost mathematics.

Example 2.9.15 (Wodzicki). Let A be a C∗-algebra with a closed ideal I ⊆ A. Then I is
idempotent. We will discuss this at length later.

Proposition 2.9.16. Consider a diagram

C
p
��

D q
// E

in PrLdual such that p : C → E is a left Bousfield localization (i.e. Verider quotient). Then
the pullback in PrLdual is equivalent to the pullback in PrL and the induced map C ×E D → D
is a left Bousfield localization as well.

Proof. Using the fact that C → E is a left Bousfield localization we can and will consider E
as a full subcategory of C of local objects. Thus we consider D → E as a functor D → C and
will implicitly use this perspective.

We consider the pullback C ×E D in PrL. This can explicitly be described as the ∞-
category of pairs of an object d ∈ D together with a morphism c → q(d) in C such that
c→ q(d) is a local equivalence. We claim that the right adjoint to the projection C×ED → D
is given by sending d ∈ D to the pair (d, idq(d)). This can easily be checked. Also clearly this
right adjoint is fully faithful. Thus we see that the functor p′ : C ×E D → D → D is also a
Bousfield localization. Note that so far we have not used that either the categories or the
functors are stable or even compactly assembled.

Now we use that we have a full inclusion

C ×E D ⊆ C
−→×ED

where the right hand side denotes the lax pullback, that is the ∞-category of all triples
consisting of objects d ∈ D, c ∈ C and a map q(d) → p(c). This inclusion is fully faithful
(the image consist of those object where the map is an equivalence) and colimit preserving.
We claim that the right adjoint is again colimit preserving, which then exhibits C ×E D as a
retract of C−→×ED. To see this we claim that the right adjoint is given by

(c, d, q(d)→ p(c)) 7→ (c×p(c) q(d), d)

and this functor clearly commutes with filtered colimits. To see this we simply verify the
universal property.

64

Thus in order to show that C×ED is dualisable it suffices to show that C−→×ED is dualisable.
Using a retract we can reduce to the case that all three are compactly generated. But then
it is easy to see that the lax arrow category is again compactly generated.

Finally we claim that a morphism in C ×E D is levelwise compact iff it is compact which
finishes the proof. We see since the inclusion

C ×E D ⊆ C
−→×ED

is strongly left adjoint, that the inclusion detects compact morphisms. Finally it is easy to
see that the compact morphisms in the lax pullback are precisely the levelwise compact.

Corollary 2.9.17. Assume that C → E is a Bousfield localization in PrLdual. Then the
kernel, that is the objects in C mapping to 0, is also dualisable and it is the fibre in dualisable
∞-categories.

Warning 2.9.18. If we have a Verdier sequence C → D → E with strongly left adjoint
functors, then if D is dualisable, then so are C and E since both are retracts of D in PrL.
But the converse fails: if C and E are dualisable, then D might not be dualisable.

We have the functor
Catperf∞ → PrLdual

sending C to Ind(C). This is fully faithful. Every object in the PrLdual is the kernel of a
Bousfield localization in PrLdual. In other words: everyone in PrLdual admits a ‘canonical’
resolution by objects in the essential image.

Construction 2.9.19. There is a functor (−)∨ : PrLdual → PrLdual such that the diagram

Catperf∞

op

��

// PrLdual

(−)∨

��

Catperf∞
// PrLdual

commutes. On objects this functor send C to the dual C∨ and an internal left adjoint functor
F : C → D is send to the dual of the right adjoint RF . This indeed gives a strongly left
adjoint functor: since F is left adjoint to RF internal to PrL we get that R∨

F is left adjoint
to F∨ inside of PrL and thus R∨

F lies in PrLdual.
The commutativity of the square then follows pointwise since the dual of Ind(C) is given

by Ind(Cop) and the dual of a morphism Ind(F) : Ind(C) → Ind(D) is given by restriction
along F op as one immediately verifies using the definition of the pairing. Now finally to see
that this square commutes as a square of functors of∞-categories we see that PrLdual → PrLdual
is an equivalences, since it is idempotent (one can skip the passing to the left adjoint step
to see this) and by the previous claim it restricts to an equivalence of the full subcategories
Catperf∞ . But the only non-trivial self equivalence of Catperf∞ is given by opping.

65

2.10 H-unital ring spectra

Recall from Lemma 2.9.7 that a map of ring spectra R → S is a homological epimorphism
preicsely if the corresponding fibre I is idempotent. In this section we shall highlight some
of the properties that this fibre has. First note that the fibre I is a non-unital ring spectrum.
A non-unital ring spectrum is an algebra for an operad, the non-unital version of E1. It has
been shown by Lurie that being unital is merely a property and not extra structure for a
ring spectrum, in other words: if a unit exists, then it is unique [Lur17a]. Also for every
non-unital ring spectrum A there is a unitalization A+ which is a spectrum is A ⊕ S and
the ∞-category of non-unital ring spectra is equivalent to the ∞-category of ring spectrum
augmented over S through the functor A 7→ (A+ → S).

Definition 2.10.1. A non-unital ring spectrum A is called H-unital (homologically unital)
if the multiplication map

A⊗A+ A→ A

is an equivalence or equivalently if A+ → S is a homological epimorphism.

Example 2.10.2. Assume that A is unital. Then it isH-unital, since in this case A+ = A×S
and the augmentation is the projection to the second factor. This is clearly a homological
epimorphism.

Example 2.10.3. Assume that we have a filtered diagram i 7→ Ai of ring spectra that are
unital, but the transition maps might be non-unital. Then we call the colimit A = colimAi
in non-unital ring spectra a locally unital ring spectrum. We claim that A is H-unital. To
see this, observe that A+ ≃ colimiA

+
i as unital rings, and hence

A⊗A+ A ≃ colimAi ⊗A+
i
Ai ≃ colimAi ≃ A.11

For example we can consider the ring

M∞(R) = colimn→∞Mn(R)

of (∞×∞)-matrices over a given ring R in which almost all entries are zero.

Proposition 2.10.4 (Tamme). Assume that

R S

R′ S ′

is a pullback diagram, and R→ S is a homological epimorphism. Then

1. S ′ ≃ S ⊗R R′.

11The same argument works for sifted colimits. We thank Claudius Heyer for pointing this out.

66

2. R′ → S ′ is a homological epimorphism.

3. The square

Mod(R) Mod(S)

Mod(R′) Mod(S ′)

is a pullback, in particular the induced functor

Mod(R, I)→ Mod(R′, I)

is an equivalence, where I = fib(R→ S) = fib(R′ → S ′).

Proof. Let I be the fiber of the horizontal maps. Since R→ S is a homological epimorphism,
we have I ⊗R S ≃ 0 and thus

I ⊗R S ′ ≃ (I ⊗R S)⊗S S ′ ≃ 0.

From the fiber sequence
I ⊗R I → I ⊗R R′ → I ⊗R S ′

we thus learn I ⊗R R′ ≃ I. Now the fiber sequence

I ⊗R R′ → R⊗R R′ → S ⊗R R′

tells us that S ⊗R R′ ≃ S ′.
For the second statement, we observe

S ′ ⊗R′ I ≃ (S ⊗R R′)⊗R′ I ≃ S ⊗R I ≃ 0.

For the last statement, the functor Mod(R)→ Mod(R′)×Mod(S′) Mod(S) is fully faithful
for any pullback of rings, and admits a right adjoint taking a triple of M ∈ Mod(R′),
N ∈ Mod(S) and equivalence φ : S ′ ⊗R′ M ≃ S ′ ⊗S N to the pullback

P N

M S ′ ⊗R′ M,

viewed as R-module. To prove the claim it suffices to check that this right adjoint is conser-
vative. So assume P = 0, and base-change the above pullback diagram along R → S. We
have S ⊗R N ≃ N , S ⊗R M ≃ S ′ ⊗R′ M , and S ⊗R S ′ ⊗R′ M ≃ S ′ ⊗R′ M ≃ S ′ ⊗R′ M . So
we see that

S ⊗R P N

S ′ ⊗R′ M S ′ ⊗R′ M

is a pullback, hence N = 0. Thus S ′ ⊗R′ M = 0 and the above pullback also proves
M = 0.

67

Corollary 2.10.5. If R → S is a morphism of ring spectra whose fiber I is H-unital, then
R → S is a homological epimorphism and Mod(R, I) = Mod(I+, I). In particular the ∞-
category Mod(R, I) is independent of R.

Proof. Apply to the pullback square

I+ S

R S.

There is a sort of converse to the last proposition.

Proposition 2.10.6 (Tamme). Assume that

R S

R′ S ′

is a pullback diagram where all rings and the horizontal fibers are connective. Then if R′ → S ′

is a homological epimorphism, R → S is, too. In particular, if R → S is a homological
epimorphism between connective rings with π0(R) → π0(S) surjective, the fiber I of R → S
is H-unital.

Proof. By [Lur18, Proposition 16.2.2.1], the diagram

Mod(R)≥0 Mod(S)≥0

Mod(R′)≥0 Mod(S ′)≥0

F

F ′

is a pullback diagram12.
It follows then by abstract nonsense (as in the proof of Proposition 2.9.16) that the upper

map is also a Bousfield localization, thus by unfolding what that means that S ⊗R S ≃ S.
This shows the claim. Note that this also shows that in fact, the square of module categories
without passing to connective objects is a pullback by Proposition 2.10.4.

Example 2.10.7. The previous statement is wrong without connectivity assumptions. A
counterexample is k[x] → k[x±]: if the fibre I, which has π−1, was H-unital then we claim
that the square

Mod(k) //

��

Mod(k[x−1])

��

Mod(k[x]) //Mod(k[x±])

12This is wrong without the connectivity conditions on the rings and the fiber! Think of k = k[x]×k[x±1]

k[x−1], but the pullback on module categories is given by quasicoherent sheaves on P1.

68

would have to be a pullback (which it isn’t as argued in Footnote 12). To see this note
that if I was H-unital then the map k → k[x−1], which has the same fibre would be a
homomological epimorphism and thus Proposition 2.10.4 the square would be a pullback.

One can also give a concrete argument for the case k = Q, i.e. consider R = Q[x] and
S = Q[x±1]. The fiber I has homotopy groups given by Q[x±1]/Q[x] in degree −1. I is
H-unital if and only if I⊗I+ S = 0, which we may equivalently compute in the rational world
(i.e. I ⊗I⊕Q Q). This is computed as colimit of the semi-simplicial diagram

I I ⊗ I I ⊗ I ⊗ I . . . ,

i.e. it has a filtration with n-th associated graded given by I⊗(n+1)[n], which is concentrated
in degree −1. So the resulting spectral sequence degenerates and leads to a countably
infinitely dimensional π−1. In particular, I ⊗I+ S ̸= 0 and I is not H-unital.

Definition 2.10.8. For a ring spectrum A we define the category of H-unital modules over
A as

ModH(A) := Mod(A+, A) = ker(Mod(A+)→ Mod(S))

If A is H-unital then A ∈ ModH(A) and ModH(A) is a stable, dualisable ∞-category.
A map A → B of H-unital ring spectra induces a functor ModH(A) → ModH(B) which is
strongly left adjoint. The map A→ B is called Morita equivalence if the induced functor is
an equivalence.

A H-unital module is the same as a module M over A (which by definition means a
module over A+) such that

A⊗A+ M ≃M

One can define a tensor product for non-unital modules using semi-simplicial realisations.
Then this even reads as

A⊗AM ≃M .

However we warn the reader that one should be very careful with this semi-simplicial Bar res-
olution since tensoring over a non-unital ring can behave quite pathological and unexpected.
Therefore we prefer to write ⊗A+ instead.

Example 2.10.9. Assume that A is a unital ring spectrum. Then

ModH(A) = Mod(A)

since Mod(A+) = Mod(A)⊕Mod(S) and the map A+ → S induces projection to the second
summand.

But note that ModH(A) only depends on the underlying non-unital ring A. In particular
for a non-unital map φ : A→ B between unital rings we get an induced strongly left adjoint
functor

Mod(A)→ Mod(B)

which is somehow suprising. One can explicitly describe this functor also without reference
to H-unitality of course, namely this functor is induced by a B − A-bimodule by Morita

69

theory, see Proposition 2.11.1 in the next section for a quick recap. This bimodule is given
by the idempotent e = φ(1) in B. That is

Be := colim(B
·e−→ B

·e−→ B
·e−→ ...)

where this is a colimit in B−A-bimodules. Note that Be is a retract of B as a B-A-bimodule.

Example 2.10.10. Let R be a ring (spectrum) and consider the map

R→Mn(R)

where Mn(R) is the ring spectrum of n × n-matrices, i.e. endR(R
n). The map is given

by sending R to matrices where all terms are zero except the upper left corner. This is a
non-unital map. The corresponding idempotent e is given by the matrix with a 1 on the
upper left element and zero’s everywhere else. The corresponding submodule is given by Rn

as a Mn(R)-R-bimodule. We therefore see that the induced functor

Mod(R)→ Mod(Mn(R))

is an equivalence, i.e. that the map φ is a Morita equivalence.

Lemma 2.10.11. Let i 7→ Ai be a filtered diagram of unital rings along non-unital ring
maps with colimit A. Then the canonical functor

colim−−−→
PrLMod(Ai)→ ModH(A)

is an equivalence.

Proof. This canonical functor sits in a diagram

colim−−−→
PrLMod(Ai) //

��

ModH(A)

��

colim−−−→
PrLMod(A+

i)
//

��

Mod(A+)

��

colim−−−→
PrL Sp // Sp

We have that
A+ = colimA+

i

and thus that Mod(A+) = lim←−
PrRMod(A+

i) = colim−−−→
PrLMod(A+

i). Thus the lower two hori-
zontal functors are equivalences. The claim now follows from the assertion that the vertical
sequences are fibres sequences. Since this is clear for the right hand sequences we need to
argue why the left hand sequence is a fibre sequence, i.e. why taking the kernel commutes
with the filtered colimit. This however follows since the kernel of the left vertical map is the
cokernel of the right adjoint, since the map is an strongly left adjoint Bousfield localization
(seen by the fact that the lower maps are equivalences). Cokernels clearly commute with
colimits.

70

Example 2.10.12. We find that Mod(M∞(R)) ≃ Mod(R), that is the map R→M∞(R) is
a Morita equivalence.

Proposition 2.10.13. If A is locally unital (filtered colimit of unital rings along non-unital
maps) then ModH(A) is compactly generated. Conversely every compactly generated, stable
∞-category is equivalent to ModH(A) for some locally unital ring spectrum A.

Proof. For A = colimAi we get by Lemma 2.10.11 that

ModH(A) = colim−−−→
PrLMod(Ai) .

All the transition maps are strongly left adjoint, thus the colimit is also compactly generated,
see Lemma 2.5.7. Now for a general compactly generated, stable ∞-category C we choose a
set of compact generators {Xi}i∈I , that is

C = ⟨Xi | i ∈ I⟩

where the brackets denote the stable subcategory generated by the elements under colimits.
We then also have that

C = colimF⊆Ifinite⟨Xi | i ∈ F ⟩
and the subcategories CF = ⟨Xi | i ∈ F ⟩ admit by definition a finite set of generators
{Xi}i∈F . But then they also have a single generator XF :=

⊕
i∈F Xi and are therefore

equivalent to Mod(EF) where
EF = endC(XF)

is the endomorphism spectrum of XF . The maps CF → CF ′ for F ⊆ F ′ are induced from the
non-unital maps

EF → EF ′

which send an endomorphism f of XF to the endomorphism f ⊕ 0 of XF ′ = XF ⊕XF ′\F . In
particular we find that

C = colimPrL Mod(EF)

and so that
C = ModH(E)

where E = colimEF .

Remark 2.10.14. The non-unital ring spectrum E from the last proof can also be described
somewhat explicitly: the underlying spectrum is given by

E =
⊕
i,j

mapC(Xi, Xj)

The multiplication map E ⊗ E → E is induced by the maps

mapC(Xi, Xj)⊗mapC(Xk, Xl)→ E

which for j = k are given by composition (considered as an element of mapC(Xi, Xl)) and
for j ̸= k by the zero map.

71

Theorem 2.10.15. Every dualisable, stable ∞-category C is equivalent to ModH(E) for
some H-unital ring spectrum E.

Proof. We choose a set (Xi)i∈I of ω1-compact objects of C with the property that they
represent all equivalence classes of objects of Cω1 , and consider

E =
⊕
i,j

mapc(Xi, Xj)

where mapcC(X, Y) = mapInd(C)(jX, ȷ̂Y). We claim this is a non-unital ring. Indeed, consider
the localisation sequence

C ȷ̂−→ Ind(Cω1)→ Ind(Cω1)/C.
By construction, the objects jXi are compact generators of Ind(Cω1), and hence also of the
quotient Ind(Cω1)/C. By Proposition 2.10.13, this yields equivalences Ind(Cω1) ≃ ModH(E

′)
and Ind(Cω1)/C ≃ ModH(E

′′), where

E ′ =
⊕
i,j∈I

mapInd(Cω1)(jXi, jXj)

E ′′ =
⊕
i,j∈I

mapInd(Cω1)/C(jXi, jXj),

as well as a non-unital ring homomorphism E ′ → E ′′ (since the E ′ and E ′′ arose as colimit
of endomorphisms of

⊕
i∈I Xi).

Using the adjoints in the above Verdier sequence, one sees

mapInd(Cω1)/C(jXi, jXj) ≃ mapInd(Cω1)(jXi, jXj/ȷ̂Xj),

and so the fiber of E ′ → E ′′ is the E defined above. In particular, E inherits a non-unital
ring structure.

We now claim that E is H-unital. Assuming this, we get that E ′ → E ′′ is an H-epi, and
that ModH(E) ≃ fib(Mod((E ′)+)→ Mod((E ′′)+)). Since we also have a pullback

ModH(E
′) ModH(E

′′)

Mod((E ′)+) Mod((E ′′)+)

this identifies C ≃ ModH(E).
To see that E is H-unital, we need to check that the augmented semi-simplicial object

E E ⊗ E E ⊗ E ⊗ E . . .

exhibits E as colimit (as the left Kan extension of this diagram to ∆op is exactly the bar
construction computing E ⊗E+ E). For any object Y , we have a left E-module M(Y) =⊕

imapc(Xi, Y). We will show indeed that

M(Y) E ⊗M(Y) E ⊗ E ⊗M(Y) . . .

72

is a colimit diagram. Assume first that Y is ω1-compact, and write Y = colimn Yn along
compact maps. We may assume Yn to be ω1-compact, and hence Yn = Xin for some sequence
in. We choose witnesses jXin → ȷ̂Xin+1 representing these compact maps. We have a map

M(Xin)→ E ⊗M(Xin+1)

induced by S→ mapc(Xin , Xin+1). These satisfy the identities of an “extra degeneracy” up
to postcomposing with M(Xin)→M(Xin+1), i.e. we get a dashed lift in

M(Xin) |E ⊗M(Xin) . . . |

M(Xin+1) |E ⊗M(Xin+1) . . . |.

In the colimit, that means we have an equivalence

M(Y) ≃ |E ⊗M(Y) . . . |.

Since both sides commute with ω1-filtered colimits and Y was an arbitrary ω1-compact
object, this more generally follows for arbitrary Y , in particular for Y =

⊕
Xi, where we

have M(Y) ≃ E.

In particular we see that every dualisable category is an almost category Mod(R, I) with
I H-unital (so that the category doesn’t even depend on R).

Remark 2.10.16. We see that

2.11 H-unital Morita Theory

In this section we will analyse functors between categories of the form ModH(A) in terms of
non-unital ring spectra. Let us first recall and extend usual Morita theory for ring spectra.
For an ordinary land analogue see [?].

Proposition 2.11.1. 1. For unital rings A, B, we have

FunL(Mod(A),Mod(B)) ≃ BiMod(B,A).

2. For unital rings A, B, we have that MapRing(A,B) agrees with the space of pairs
consisting of a left adjoint functor Mod(A) → Mod(B) together with an equivalence
F (A) ≃ B. Equivalently a commutative diagram

An

Mod(A) Mod(B)

in PrL.

73

3. For H-unital rings A, B, we have that

FunLH(Mod(A),Mod(B)) ≃ BiModH(B,A),

where the right hand side is given by the full subcategory of B+-A+-bimodules which
lie in ModH(A) and ModH(B) when viewed as left or right modules.

4. For H-unital rings A, B where A admits a unit, MapRingnu(A,B) agrees with the space

of left adjoint functors F : Mod(A)→ Mod(B) together with maps F (A)
i−→ B

r−→ F (A)
exhibiting F (A) as retract of B.

Proof. For the first statement, observe that F (A) is a left B-module, but also has end(A)
acting by functoriality. As end(A) = A acting from the right, we have a B-A-bimodule
structure on F (A). As every map A → X gives a map F (A) → F (X), we have a natural
transformation

F (A)⊗A X → F (X),

which is an equivalence if F preserves colimits.
For the second statement, observe that for a ring homomorphism A→ B, the associated

functor Mod(A)→ Mod(B) is given by

B ⊗A −,

i.e. corresponds to the B-A bimodule B. Conversely, given a functor F with F (A) ≃ B as
left module, the functor provides a ring homomorphism

A→ endMod(A)(A)→ endMod(B)(B) ≃ B

which describes the right A-module structure on F (A). So ring homomorphisms correspond
precisely to functors with an isomorphism F (A) ≃ B.

For the third statement, observe that the Verdier sequence

ModH(A) Mod(A+) Mod(S)

exhibits ModH(A) as Bousfield localisation of Mod(A+) with kernel the modules restricted
along A+ → S. This means that exact functors ModH(A)→ C correspond to exact functors
Mod(A+)→ C which annihilate modules restricted from S. So left adjoint functors

ModH(A)→ ModH(B)

correspond to left adjoint functors

Mod(A)→ Mod(B)

which take values in Mod(B+) and annihilate modules restricted from S. Translated to
bimodules, the first condition just means S⊗B+ M ≃ 0. For the second it is necessary that
M ⊗A+ S = 0, but also sufficient, since if N is restricted from S, M ⊗A+ N ≃M ⊗A+ S⊗SN .

74

For the final statement observe that for a nonunital ring homomorphism A → B, the
restriction of the base-change B+ ⊗A+ − to ModH(A) and ModH(B) is computed as the
composite

ModH(A)→ Mod(A+)→ Mod(B+)→ ModH(B),

i.e. is given by the B+-A+-bimodule B ⊗A+ A. If A is unital, we have an A+-module homo-
morphism A+ → A exhibiting A as retract of A+, so B ⊗A+ A as retract of B. Conversely,
if F (A) is a retract of B, in particular of B+, we get a nonunital ring map

A→ endB+(F (A))→ endB+(B+) = B+

which lifts to the fiber of B+ → S. (The first map is unital, the second one is nonunital and
arises from the retraction).

Now we would also like to understand functors between dualisable stable ∞-categories
using zig-zag’s of maps of non-unital rings. As a warm up, we first prove a version for unital
rings.

Proposition 2.11.2. For A and B unital rings every strongly left adjoint functor F :
Mod(A) → Mod(B) is induced by a zig-zag A → C

≃←− B of non-unital maps, where C
is also unital and B → C is a Morita equivalence.

Proof. For a functor F we define

C := endB(F (A)⊕B)

Since F (A)⊕B is a compact generator of Mod(B) we have that

Mod(B) ≃ Mod(C)

induced by the map B → C induced by the split inclusion B → F (A) ⊕ B. Similarly we
have a map

A = endA(A)→ endB(F (A))→ endB(F (A)⊕B)

of non-unital rings which induces the functor F .

We would like to show a converse to the latter statement. To this end we note that there
is a natural notion of 2-morphisms between non-unital morphisms f, g : A → B where A
and B are unital. For simplicity lets first assume that A and B are discrete. Then such a
2-morphism is given by given by an element b ∈ f(1)Bg(1) such that

f · b ≃ b · g .

We claim that such a 2-morphism is the same as a natural transformation of the functors

Mod(A)→ Mod(B)

75

induced by f and g. This follows since by Proposition 2.11.1 and Example 2.10.9 such a
natural transformation is given by a B-A-bimodule map Bf(1) → Bg(1). Every left B-
module map Bf(1)→ Bg(1) is given by right multiplication with an element b ∈ f(1)Bg(1)
and this is a right A-module map precisely if for every a ∈ A we have that f(a)b = bg(a). Now
if A and B are not discrete anymore we find similar that the space of natural transformations
between the induced functors can be expressed as elements 13 b ∈ f(1)Bg(1) together with
an equivalence f · b ≃ b · g.

Using this notion of 2-morphisms we can define an (∞, 2)-category of unital algebras,
non-unital maps and 2-morphisms. We denote the∞-categorical core, i.e. the largest (∞, 1)-
category contained in this (∞, 2)-category by Algu2. Concretely the 2-morphisms in Algu2 are
given by elements b ∈ f(1)Bg(1) that are units in the sense that there exists a b′ ∈ g(1)Bf(1)
such that bb′ ≃ f(1) and bb ≃ g(1). Now we have a functor of ∞-categories

Algu2 → PrLω A 7→ Mod(A)

which sends the class of Morita equivalences W to equivalences of ∞-categories. Thus we
get an induced functor

Algu2[W
−1]→ PrLst,ω .

This functor lands in the full subcategory of PrLst,ω consisting of those compactly generated
∞-categories that admit a compact generator, aka monogenic ones.

Proposition 2.11.3. The functor Algu2[W
−1]→ PrLst,ω is fully faithful with essential image

the monogenic stable ∞-categories.

Note that this is a statement about∞-categories. Both categories extend in fact naturally
to (∞, 2)-categories and one could also make a (∞, 2)-categorical statement here. But we will
not attempt to formulate or proof such a statement here to avoid the use of DK-localizations
for (∞, 2)-categories.

Our proof of Proposition 2.11.3 relies on the following statement and will be given below.

Lemma 2.11.4. Let F : C → D be a functor of ∞-categories and W the class of morphisms
send to equivalences by F . Assume that for every pair of objects X, Y ∈ C the induced
functor

colim
Y

≃−→Ŷ
MapC(X, Ŷ)→ MapD(F (X), F (Y))

is an equivalence. Then the induced functor C[W−1]→ D is fully faithful.

Proof. Consider the left Kan extension functor L : Fun(C,An) → Fun(C[W−1],An) which
is left adjoint to the fully faithful restriction functor Fun(C[W−1],An) → Fun(C,An). By
general nonsense we have that for every fixed object X the corepresentable functor X ∈
Fun(C,An) is send by L to the corepresentable X ∈ Fun(C[W−1],An). For an arbitrary

object F ∈ Fun(C,An) we construct F̂ ∈ Fun(C,An)

F̂ (Y) = colim
Y

≃−→Ŷ
F (Ŷ)

13By an element in a spectrum A we mean a map S→ A or equivalently a point in Ω∞A.

76

and maps from F̂ into any functor G which lies in the image of the restriction

Fun(C[W−1],An)→ Fun(C,An)

(i.e. G sends W to equivalences) are equivalent to maps from F to G. Thus if F̂ has the

property that it sends W to equivalences, then F̂ = L(F).
We now apply this construction to X ∈ Fun(C,An) and the assumption of the statement

implies that
X̂ ≃ MapD(F (X), F (−))

indeed sendsW to equivalences. Therefore we have that X̂ is given by the left Kan extension,
that the mapping space in C[W−1] which finishes the proof.

Remark 2.11.5. A more explicit description of the colimit colim
Y

≃−→Ŷ
MapC(X, Ŷ) from the

previous statement is given as the geometric realization of the ∞-category of spans

X → Ŷ
≃←− Y .

This follows using that the ∞-category of such spans is the unstraightening of the functor(
Y

≃−→ Ŷ
)
7→ MapC(X, Ŷ) .

Proof of Proposition 2.11.3. We want to apply Lemma 2.11.4. To this end we have to show
that the functor

ZigZag(A,B)→ FunsL(Mod(A),Mod(B))≃ (2.3)

is an equivalence after realizing the source, which is the zigzag-category whose objects are
unital algebras. Morphisms are zigzags of the form A → C

≃←− B} with ≃ indicating that
the morphism is a Morita equivalence. A 2-morphism in this category is a diagram

C

��

A

88

&&

B

≃
ff

≃
xx

C ′

where the triangles can are filled by 2-morphisms in Algu2.
To see that (2.5) is an equivalence we use the construction from Proposition 2.11.2 to

produce a functor in the opposite direction:

FunsL(Mod(A),Mod(B))≃ → ZigZag(A,B) F 7→
(
A→ C(F)

≃←− B
)

where C(F) = endB(F (A)⊕B), which is clearly functorial in natural equivalences. 14

14Note that this functor in fact doesn’t use the 2-morphisms in Algu, so it lands in in the zigzag category
associated with the smaller ∞-category of unital algebras and non-unital maps.

77

Now by construction (see the proof of Proposition 2.11.2) we see that the composition

FunsL(Mod(A),Mod(B))≃ → ZigZag(A,B)→ FunsL(Mod(A),Mod(B))≃

is equivalent to the identity. It therefore remains to also show that the composition

|ZigZag(A,B)| → FunsL(Mod(A),Mod(B))≃ → |ZigZag(A,B)|

is homotopic to the identity. To this end, it suffices to construct a zigzag of natural mor-

phisms in ZigZag(A,B) from any span A
φ−→ C

ψ←− B to the induced span A → C(F)
≃←− B

with F the induced functor from the span. Let us first work out what C(F) is: by definition
it is given by endB(F (A)⊕B) where F is the functor

Mod(A)
φ∗
−→ Mod(C)

ψ∗
←− Mod(B)

induced from the span. Since the right hand functor is an equivalence we have

C(F) = endB(F (A)⊕B) ≃ endC(φ
∗(A)⊕ ψ∗(B))

with the maps A → C(F) and B → C(F) given by the maps A → endC(φ
∗(A)) → C(F)

and B → endC(ψ
∗(B))→ C(F). Recall that φ∗(A) is a retract of C and ψ∗(B) is a retract

of C as well (see Example 2.10.9). Thus we have maps of non-unital rings endC(ψ
∗(B))→ C

and endC(φ
∗(A)) → C as well as C(F) = endC(φ

∗(A) ⊕ ψ∗(B)) → endC(C ⊕ C) we now
consider the diagram in Algu2 given as

endC(φ
∗(A)⊕ ψ∗(B))

��

A
i0 //

i0
55

φ

**

endC(C ⊕ C) B
i1

oo

i1
ii

ψ
ttC

i1

OO

where i0 always denotes an ‘inclusion’ into the first summand (i.e. the map on endomor-
phisms obtained by the inclusion) and i1 the inclusion into the second summand. Note that
this a diagram of unital rings and non-unital maps except for the lower left triangle. This
does not commute, but we claim that there is a 2-morphism in Algu2 filing it. Concretely this
2-morphism is given by the element(

0 idC
0 0

)
∈ endC(C ⊕ C)

which conjugates one map into the other (and in fact lies in the correct summand of endC(C⊕
C)). Alternatively one can also consider the induced diagram on module categories and see
that it commutes (almost all the non-unital rings are generators of Mod(C)). The left
lower triangle commutes since both maps C → endC(C ⊕ C) induced the same functor, as
the corresponding bimodules are both given by C2 with left endC(C ⊕ C)-action and right
C-action. This finishes the proof.

78

Remark 2.11.6. Given the previous statement, one might ask to which extend the category
of spans A → C

≃←− B without the conjugation 2-morphisms already models the homotopy
type of the space

FunsL(ModH(A),ModH(B))≃,

that is whether the map from the realization of the category of these smaller spans to the
space of strongly left adjoint functors is an equivalence. The proof of the previous proposition
shows that this map admits a section. We however believe that it is not an equivalence, since
we believe that for A = B the two spans

A
id−→ A

id←− A A
i1−→M2(A)

i2←− A

are not equivalent in the realization of the smaller span category. Here i1 and i2 are the
inclusions into the upper left and lower right corner of matrices. But these spans both induce
the identity functor ModH(A)→ ModH(A).

More generally let us denote category of unital algebras and non-unital maps by Algu1.
We believe that the functor Algu1 → PrLst,mono which takes the ∞-category of modules is not
a Dwyer-Kan localization since we see no reason that the two maps

A→M2(A)

in Algu1 become equivalent in the DK localization at the Morita equivalences (we also can’t
prove the opposite though). However, our previous proof shows that the functor

Algu1[W
−1]→ Algu2[W

−1] ≃ PrLst,mono

admits a section.

Now we would like to turn to the case of locally unital rings.

Construction 2.11.7. For a locally unital ring spectrum A = colimAi we consider the
system of idempotents ei = f(1) in A. These define retract diagrams

Aei ↪−→ A↠ Aei

as left A-modules. Similarly we have retract diagrams

Aei ↪−→ Aej ↠ Ai (2.4)

for i → j in I. The system i 7→ Aei in fact forms a functor from I to the ∞-category of
retracts (where the morphisms are retract diagrams). Then we have that

eiAei = endA+(Aei)

are unital rings and the map eiAei → ejAej for i → j in I extends to non-unital ring map
using the retract diagram (2.4). We then have that A = colim eiAei, that is we may replace
the diagram Ai by the new diagram eiAei to obtain A as a colimit.

79

Now from an external perspective what we have done is the following: in the category
ModH(A) the object A is a generator, but not compact in general. However, we can write
the A-module A as a filtered colimit A = colimAei where all the maps are part of retract
diagrams and then we get that the non-unital ring A is given by

A = colim−−−→iendA+(Aei) .

But note that endA+(A) ̸= A. So this gives a way of recovering A from the category ModH(A)
together with the filtered diagram i 7→ Aei.

Finally note that if I = N, so that the diagram is sequential we can in fact write A as an
A-module as the direct sum

A =
⊕
i∈N

A(ei − ei−1) e−1 := 0

and so we see that A is then the countable sum of generators and we are exactly in the
situation of the proof of Proposition 2.10.13.

Proposition 2.11.8. For A and B locally unital every strongly left adjoint functor F :
ModH(A) → ModH(B) is induced by a zig-zag A → C

≃←− B of locally unital rings where
B → C is a Morita equivalence.

Proof. We consider the filtered diagrams

A = colimi∈I Aei B = colimj∈J Bej

in ModH(A) and ModH(B) as in Construction 2.11.7. We can assume without loss of gen-
erality that I = J , e.g. by passing to the product. Now we define

C := colimI endB+(F (Aei)⊕Bei)

where i 7→ F (Aei)⊕Bei also forms a retract style diagram in ModH(B). Again the elements
F (Aei) ⊕ Bei are compact generators since F is strongly left adjoint and the Bei already
form a generating set. Thus we have that

ModH(B) ≃ ModH(C)

induced by the map B → C induced by the split inclusion Bei → F (Aei) ⊕ Bei. Similarly
we have a map

endA+(Aei)→ endB+(F (Aei))→ endB+(F (Aei)⊕Bei)

which induces the functor F .

We would like to combine Propositions 2.10.13 and 2.11.8 into DK localization statement
similar to Proposition 2.11.3. To this end we define a 2-morphism between non-unital maps

80

f, g : A → B of non-unital ring spectra generally as a natural transformation of induced
functors

f ∗, g∗ : ModH(A)→ ModH(B) .

We will use this for H-unital and for locally unital ring spectra and using the invertible
2-morphisms define ∞-categories Alglu2 and AlgH2 . Again, similar to the case Algu2 these are
the (∞, 1)-cores of very natural (∞, 2)-categories which are the more canonical objects. But
for simplicity we will restriction to the ∞ = (∞, 1)-categorical realm here.

Theorem 2.11.9. The functors

Alglu2 → PrLω and AlgH2 → PrLdual .

given by ModH are Dwyer–Kan localizations.

In order to prove this Theorem we need the following auxiliary construction.

Construction 2.11.10. Let R be a non-unital ring spectra. We want to define another
non-unital ring spectrum Mn(R) of n × n-matrices over R. As a spectrum this is simply
given as Rn2

but we would like to give it a non-unital ring structure. To this end we consider
the unital ring spectra Mn(R

+) of n×n-matrices over the unitalizations R+ and Mn(S) over
the sphere.

The morphism R+ → S induced a map of ring spectra

Mn(R
+)→Mn(S)

and we define Mn(R) to be the fibre.

Lemma 2.11.11. 1. The map ik : R→Mn(R) given by inclusion into the k-th diagonal
entry is a Morita equivalence and all the functors

i∗k : ModR →Mn(R)

are equivalent.

2. If R is locally unital, then so is Mn(R).

3. If R is H-unital, then so is Mn(R).

Proof. TO BE WRITTEN

Proof of Theorem 2.11.9. Let us first prove the case of locally unital rings. We proceed
similar to the proof of Proposition 2.11.3, namely we want to apply Lemma 2.11.4. To this
end we have to show that the functor

ZigZag(A,B)→ FunsL(Mod(A),Mod(B))≃ (2.5)

81

is an equivalence after realizing the source, which is the zigzag-category whose objects are
locally unital algebras. We use the construction from Proposition 2.11.8 to produce a functor
in the opposite direction:

FunsL(Mod(A),Mod(B))≃ → ZigZag(A,B) F 7→
(
A→ C(F)

≃←− B
)

where C(F) = colim endB+(F (Aei)⊕Bei), which is clearly functorial in natural equivalences.
Note that we fix A = colimI Aei and B = colimI Bei once and for all. The composition

FunsL(Mod(A),Mod(B))≃ → ZigZag(A,B)→ FunsL(Mod(A),Mod(B))≃

is by construction equivalent to the identity and it remains to also show that the composition

|ZigZag(A,B)| → FunsL(Mod(A),Mod(B))≃ → |ZigZag(A,B)|

is homotopic to the identity. We proceed exactly as in the proof of Proposition 2.11.3 and

note that for a given ZigZag A
φ−→ C

ψ←− B we have that

C(F) = colim endB+(F (Aei)⊕Bei) ≃ colim endC+(φ∗(Aei)⊕ ψ∗(Bei))

and we consider the natural diagram

colim endC+(φ∗(Aei)⊕ ψ∗(Bei))

��

A
i0 //

i0
33

φ

++

M2(C) B
i1

oo

i1
kk

ψ
ssC

i1

OO

2.12 The symmetric monoidal structure on PrLca.

The characterisation of stable and compactly assembled categories as dualisable objects
suggests that the tensor product on PrL descends to one on PrLca, although it doesn’t directly
imply it (since it only works in the stable case, and doesn’t say anything about morphisms).
We first prove the following lemma:

Lemma 2.12.1. 1. A presentable category is compactly assembled if and only if we find
compactly generated C ′ and a pair of adjoint functors

C C ′
L

R

where both L and R are in PrL, and L is fully faithful.

82

2. A left adjoint functor F : C → D between compactly assembled categories is compactly
assembled if and only if we find a diagram

C C ′

D D′

F

L

R

F ′

L

R

where all morphisms are in PrL, C ′ and D′ are compactly generated, F ′ preserves
compact objects, and the left adjoint functors L are fully faithful.

Proof. We essentially know the first statement already: Retracts of compactly generated
categories are compactly assembled, and in the other direction any compactly assembled

category comes with the adjunction C Ind(Cω1)
ȷ̂

k
. Naturality of this also proves one

direction of the second statement, since compactly assembled F : C → D commutes with ȷ̂
and k.

For the final step, assume a diagram

C C ′

D D′.

F
L

R

F ′

L

R

The functors L have a filtered-colimit-preserving right adjoint, so they preserve compact
morphisms. They also detect compact morphisms: Since L is fully faithful and preserves
colimits, to test whether a morphism is compact in C (or D), we may test this after applying
L. Since F ′ preserves compact morphisms, this shows that F preserves compact morphisms.

Essentially, this lemma says that objects and morphisms in PrLca are characterized as
nicely controlled retracts of objects and morphisms in PrLω, formed in PrL, since fully faith-
fullness of L implies RL ≃ id. In general, it is probably wrong that arbitrary retracts of
morphisms in PrLω lie in PrLca, if we drop the adjointness.

Proposition 2.12.2. The tensor product of PrL restricts to a symmetric-monoidal struc-
ture on PrLca, characterized by corepresenting functors C × D → E which are “bi-compactly
assembled”: They preserve colimits in each variable, and take f × g to compact morphisms
whenever f and g are compact.

Proof. The tensor product of compactly generated categories is compactly generated. This
follows from the fact that CatRex(κ)

∞ also admits a tensor product (where κ-small colimit
preserving functors out of C0 ⊗ D0 correspond to functors out of C0 × D0 which preserve

83

κ-small colimits in each argument), see [?, Section 4.8.1] for a much more general statement.
By checking universal properties, one directly sees

Indκ(C0)⊗ Indκ(D0) ≃ Indκ(C0 ⊗Rex(κ) D0).

It follows that tensor products of compactly assembled ∞-categories stay compactly assem-
bled, due to the characterisation as retracts of compactly generated categories.

For morphisms, we argue similarly: A pair of adjoint functors C Ind(Cω1)
ȷ̂

k
where

the left adjoint is fully faithful stays such after tensoring with some E , since it is characterized
by natural transformations LR → id and id → RL, the latter of which is an equivalence.
Now take F : C → D compactly assembled and E compactly assembled. The previous lemma

gives adjunctions E E ′ , and

C C ′

D D′.

F F ′

with C ′,D′ and E ′ compactly generated, and F ′ compact-object preserving. Tensoring and
composing, we obtain a diagram

C ⊗ E C ′ ⊗ E ′

D ⊗ E D′ ⊗ E ′.

F⊗id F ′⊗id

This shows that F ⊗ id is also compactly assembled.

Finally, for the universal property, we consider C,D compactly assembled, and let C C ′
be an adjunction as above, analogously for D. In the diagram

C × D C ′ ×D′

C ⊗ D C ′ ⊗D′.

⊗ F ′⊗id

we see that the top horizontal inclusion takes a pair of compactly assembled morphisms to a
morphism in C ′×D′ factoring through a pair of compact objects. Since the bottom horizontal
functor detects compact morphisms, this shows that C ×D → C ⊗D takes pairs of compact
morphisms to compact morphisms. This also shows that a compactly assembled functor
C ⊗D → E gives rise to a “bi-compactly assembled” functor C ×D → E . Finally, we need to
prove that, given a functor C ⊗ D → E for which C × D → E is “bi-compactly assembled”,
the functor C ⊗ D → E is compactly assembled. Since such a functor in particular restricts
to a functor

Cω1 ×Dω1 → Eω1 ,

84

we obtain a diagram

C ⊗ D Ind(Cω1)⊗ Ind(Dω1)

E Ind(Eω1).

⊗

This exhibits the functor C ⊗ D → E as compactly assembled.

Corollary 2.12.3. For any compactly assembled ∞-category C and every locally compact
Hausdorff space X the ∞-category Shv(X; C) is compactly assembled.

Proof. According to Example 2.2.16 we find that sheaves of anima is compactly assembled.
Then the claim follows from the assertion that

Shv(X; C) = Shv(X; An)⊗ C

which is Proposition 2.8.7 combined with Proposition 2.12.2.

Lemma 2.12.4. For compactly assembled C,D, let S be the class of morphisms in FunL(C,D)
consisting of all η : F → G with the property that for any compact morphism X → Y in C,
we have that the composite F (X)→ G(Y) in the square

F (X) G(X)

F (Y) G(Y)

ηX

ηY

is compact. Then S forms a precompact ideal.

Proof. S is clearly an ideal and contains the identity on the initial object. The pushout
condition is also easily seen.

For the accessibility, we take a diagram of Fα, α ∈ [0, 1] ∩Q, such that for any compact
x → y and any α < α′, the composite Fα(x) → Fα′(y) is compact. We need to prove that
F0 → F1 factors through some κ-compact G where κ is independent of the choice of Fα.
We take G = colimα<1 Fα. For X ω1-compact, we may write X = colimXn along compact
maps. Using any sequence αn tending to 1 from below, we see that

G(x) = colimn Fαn(Xn)

is a sequential colimit along compact maps, hence ω1-compact. This proves that G takes ω1-
compact objects to ω1-compact objects. Since C is ω1-compactly generated, G is κ-compact
in FunL(C,D) for some κ only depending on the size of Cω1 .

Definition 2.12.5. For compactly assembled C,D, we define an internal Hom by

Homca(C,D) = (FunL(C,D), S)ca,

with S as above.

85

Lemma 2.12.6. This is actually an internal Hom, i.e.

Funca(C,Homca(D, E)) ≃ Funca(C ⊗ D, E).

Proof. By the universal property of compactly assembled cores, the left hand side agrees
with the full subcategory of FunL(C,FunL(D, E)) on all functors taking compact morphisms
into S, i.e. under the adjunction to FunbiL(C ×D, E) to all functors taking pairs of compact
morphisms to compact morphisms. But this is the same as Funca(C ⊗D, E) by the previous
lemma.

Example 2.12.7. The compact full subcategory of compact objects in Homca(C,D) agrees
with Funca(C,D). This is either seen by looking at Funca(An,Homca(C,D)) = Funca(An ⊗
C,D), or directly by observing that the compact objects of (C, S)ca are exactly given by those
objects of C whose identity lies in S, which in the case of Homca(C,D) gives exactly those
functors F ∈ FunL(C,D) which preserve compact morphisms.

Example 2.12.8. If C is already compactly generated, η : F → G in FunL(C,D) is in S if
and only if η : F (X)→ G(X) is compact for each Cω, i.e. S consists exactly of the pointwise
compact morphisms in FunRex(Cω,D). If D is also compactly generated, those are exactly
the morphisms which factor pointwise through a compact object. It does still not follow
that Homdual(C,D) agrees with Ind(FunRex(Cω,Dω), since such a natural transformation
does not necessarily factor through a pointwise compact functor. For C = Mod(A) and
D = Mod(B), FunL(C,D) = BiMod(B,A), and this unwinds to the following: S consists of
those morphisms of bimodules M → M ′ for which M ⊗A N → M ′ ⊗A N factors through a
compact B-module for each N , which does not necessarily agree with those M →M ′ which
factor through a B-A bimodule which is compact as B-module.

Proposition 2.12.9. The symmetric monoidal structure on PrLca induces a closed symmetric
monoidal structure on PrLdual such that the functor

−⊗ Sp : PrLca → PrLdual

is strong symmetric monoidal and such that the fully faithful inclusion PrLdual → PrLca is
closed, that is preserves inner homs.

Proof. One checks immediately that ⊗ and Homca restrict to stable compactly assembled
categories.

We will denote the inner hom in PrLdual also by Homdual to make clear that we are in the
stable setting (although it agrees with Homca).

Definition 2.12.10. A dualisable, stable ∞-category C is called smooth if the functor
Sp → C∨ ⊗ C is strongly left adjoint. It is called proper if the functor C∨ ⊗ C → Sp is
strongly left adjoint.

86

Proposition 2.12.11. The smooth and proper dualisable stable ∞-categories are precisely
the dualisable objects of PrLdual.

For a smooth and proper dualisable ∞-category C we have for any dualisable stable ∞-
category D

Homdual(C,D) ≃ Fun(Cop, Sp)⊗D

in particular the dual of C in PrLdual agrees with the dual in PrL.

Proof. The functor PrLdual → PrL is strong symmetric monoidal, thus preserves dualisable
objects, duals and inner homs out of dualisable objects.

Example 2.12.12. One interesting example is given as Homdual(Sp∧
p , Sp). We have FunL(Sp∧

p , Sp) =
Sp∧

p , for example since Sp∧
p is compactly generated and (Sp∧

p)
ω is the category of compact

p-power torsion spectra, which agrees with its opposite (along Spanier-Whitehead duality,
i.e. map(−,S)).

Indeed, the equivalence takes X ∈ Sp∧
p to the functor Sp∧

p → Sp taking Y 7→ fib(X⊗Y →
X ⊗ Y [1/p]).

From the above description of Homdual(Sp∧
p , Sp), we get that it is (Sp∧

p , S)
ca where S

consists of the class of morphisms X → X ′ for which X ⊗ Y → X ′⊗ Y is compact in Sp for
all compact p-power torsion spectra Y . Since those are generated as a stable subcategory
by S/p, it agrees furthermore with (Sp∧

p , S
′)ca where we take S ′ to be all X → X ′ where

X/p→ X ′/p is compact (yet another choice would be those where X/pn → X ′/pn is compact
for all n).

Recall that Ñuc(Zp) similarly consisted of (D(Z)∧p , S)ca for the class of morphisms X →
X ′ where X/pn → X ′/pn is compact for each n (and we could have shown that n = 1 suffices,
actually). So we define

Ñuc(Sp) := Homdual(Sp∧
p , Sp).

Note that we can’t directly write this as limit analogous to the Z case, since S/pn is not a
ring15. Similarly, we can’t write the Zp case as Homdual since we would need a D(Z)-linear
version of Homdual. This will be one of our next goals.

Note that the compact objects in Ñuc(Sp) are given by the full subcategory of Sp∧
p on

those X where X/p is compact. These agree with the compact S∧
p -modules. However, we

also have objects such as

colimα∈Q j
⊕̂

n≥1
S∧
p ∈ Ind(Sp∧

p)

where the map from α→ α′ is given on the n-th summand by multiplication with p⌊α
′n⌋−⌊αn⌋.

This is an S-exhaustible object, hence an ω1-compact object in Ñuc(Sp∧
p), but it can’t be

written as colimit of compact objects since none of the maps factor through a compact
S∧
p -module.

15There is of course a free E1-ring S//pn, but this is yet another description, since Z//pn ̸= Z/pn even
over Z

87

Bibliography

[Cla14] Dustin Clausen. Efimov K-theory. https://www.youtube.com/watch?v=

tAaNWeokpBA, 2014. Lecture recording (YouTube).

[Lan21] Markus Land. Introduction to Infinity-categories. Springer Nature, 2021.

[Lur17a] Jacob Lurie. Higher algebra. https://www.math.ias.edu/~lurie/papers/HA.

pdf, September 2017.

[Lur17b] Jacob Lurie. Higher topos theory, September 2017.

[Lur18] Jacob Lurie. Spectral algebraic geometry. https://www.math.ias.edu/~lurie/
papers/SAG-rootfile.pdf, February 2018.

[MFO22] MFO. Non-commutative geometry and cyclic homology. http://publications.
mfo.de/handle/mfo/3971, 2022.

[Sch23] Peter Scholze. Six-functor formalisms. https://people.mpim-bonn.mpg.de/

scholze/SixFunctors.pdf, 2023.

[SS14] Olaf M. Schnürer and Wolfgang Soergel. Proper base change for separated locally
proper maps, 2014.

88

https://www.youtube.com/watch?v=tAaNWeokpBA
https://www.youtube.com/watch?v=tAaNWeokpBA
https://www.math.ias.edu/~lurie/papers/HA.pdf
https://www.math.ias.edu/~lurie/papers/HA.pdf
https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf
https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf
http://publications.mfo.de/handle/mfo/3971
http://publications.mfo.de/handle/mfo/3971
https://people.mpim-bonn.mpg.de/scholze/SixFunctors.pdf
https://people.mpim-bonn.mpg.de/scholze/SixFunctors.pdf

	Overview of the course
	The six functors on spaces
	Efimov K-theory
	Completed Cosheaves

	Categorical structures
	Presentable -categories
	Compactly assembled -categories
	Proof of Theorem 2.2.11
	Properties of compactly assembled -categories
	The category of presentable -categories
	The category of compactly assembled -categories
	Limits of compactly assembled categories
	Tensor product on PrL
	Dualizable stable -categories
	H-unital ring spectra
	H-unital Morita Theory
	The symmetric monoidal structure on PrLca.

	Interlude: Non-unital -categories
	Definition of non-unital -categories
	Colimits
	Filtered non-unital categories
	H-unital categories

	Continuous K-Theory
	Connective algebraic K-theory
	Non-connective algebraic K-Theory
	The continuous Calkin category
	Efimov K-theory
	The K-theory of Sheaves

	Six functors
	Internal Frobenius algebras
	Locally rigid -categories
	Verdier Duality

