Skyrmions and Rational Maps

Steffen Krusch

KIAS-Hanyang Joint Workshop on
Multifaceted Skyrmions and Effective Field Theory

October 27, 2004
hep-th/0210310



Outline of the talk

e Introduction to the Skyrme Model

e The rational map ansatz

e Quantization of Skyrmions

e Homotopy groups and rational maps

e Results



The Skyrme Model
e U :R*>— SU(2) such that U(oo) = 1.

e Topologically: U : §3 — S3, m3(S?) = Z.
Let Qp = {U : degU = B}

e Energy: E = [|dU|* +|dU AdU|* > B.

e Symmetry: SO(3) x SO(3) x R.
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Figure 1: The baryon density isosurfaces of the Skyrmions with B = 1—22 which are mini-
mum energy configurations (see table 1) within the rational map ansatz. Each corresponds
to a value of B = 0.035 and are presented to scale.
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Suspensions and the Rational Map Ansatz

e Suspension: Given an interval I = [0, 1], a manifold M
define SM =1 x M/({0} x M U{1} x M).

e Note: SS” = S™+1,

e Let R: S* — S? holomorphic, let Ratp = {R : deg R = B}.
(This implies R(z) = p(z)/q(z)).
e Define U =SR: S° — S%: (r,2) = (f(r), R(2)).
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e The rational map ansatz is a good approximation to the nu-
merical solutions. (Energy, symmetries. )

e This construction has nice properties with respect to homotopy
groups.



More Details about Rational Map Ansatz

e [nsert ansatz into E:

E:47r/('r f’2+23(f —|—1)sm2f—|—ISH;4f) dr,

2 dadz
(L+[22)*
e Minimize 7 on the space of rational maps. Then calculate f(r),
subject to f(0) = 7 and f(oo) =

where

dR
dz

o 1 1+ |z
4 1+ |R|?

e Good approximations for symmetries and energies of Skyrmions.

e The degree B:

f 21 dzdz
(14 |R|?)?
e Note:
dR
s x p'q — pq
Z

which is a polynomial of degree 2B — 2. Zeros correspond to
faces where the nucleon density vanishes and the energy density
is very low. (There are also polynomials whose zeros correspond
to edges and vertices.)



Examples of Rational Maps
e B =1 (The hedgehog)

R(z) ==z
has spherical symmetry.
e B =2 (The torus)
B(#) = &*
has the symmetries
R(e"z) =e”*R(2) and R oL
B z) R(z)
e B = 3 (The tetrahedron)
3iz? — 1
R(z) = V3iz

23 — \/3iz

has symmetries

R (%) _ % and R (_ij;rll) = _if;gz)ilr

e Use group theory to construct “very symmetric” Skyrmions.



The Finkelstein—Rubinstein Constraints

e How do you define a fermionic quantization only with scalar
fields?

e Note: m(Qp) = Zs.

e Define wave functions ¥ on covering space C'@ p:

Y CQp— C.
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o Tmpose 4(d1) = ~(d) i
e Action of symmetries SO(3) x SO(3) on ¥

exp (—iom - J) exp (18N - 1) %(q) = xrr ¥(d)-

1 if the induced loop is contractible,

h =
where XrFRr { —1 otherwise.

e Calculate xpr € m(Qp)?



Whitehead’s Theorem

e Theorem (Whitehead): Let FP(X,xy) be the space of
based maps f : S* — X such that f(1) = zg. Then the con-
nected components of FP(X, xy) are homotopy equivalent.

o It follows that the homotopy groups m;(Qp) are independent

of B.

o (Physical motivation: Physics should be the same if we add a
particle or antiparticle, provided it is far enough away.)

e Let Raty = {R € Ratp : R(c0) = 1}.

o Let Mp the space of continuous maps S? — S? of degree B
and M}, the space of based maps in Mp.

e Theorem (Segal): M}, and Rat’y are homotopy equivalent
up to B.
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Relationship between m;(Rat}) and m1(Q%)

e Theorem (Freudenthal): The suspension map m;(S™) —
Ti+1(S™) is an isomorphism for i < 2n — 1 and a surjec-
tion for i =2n — 1.

o my(S?) — m3(S®) is an isomorphism:

e [t follows that rational maps of degree B give rise to Skyrme
configurations of degree B.

o m3(S?%) — my(S?) is surjective:

e Note:
mi(Mg) = m3(5%) = Z

and

m(Qp) = my(S°) = Zo.

e Theorem (S.K.): The rational map ansatz induces a sur-
Jective homomorphism mi(Rat}) — m(Q%).
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Topology of Rational Maps

e Theorem (Segal): m(Raty) = Z and it is generated by
moving one zero once around one pole.

® (WI(RatB) = ZgB.)

e R € Rat} can be written as

. B
Prap 2P+ tag H z— 2

R(z) = - '
(2) 28 +bp_12571 4 + b ig=1”  Pi

e Given a loop L that moves zeros z; and poles p; around the
complex plane as a function of ¢ € [0, 9], let

5= [ HA_SN

1,]= 1O

e Lemma: N(L) is a homotopy invariant and counts the
number of times zeros move around poles. Therefore, N(L)
provides an isomorphism m(Raty) — Z.
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A Formula for N(L)

e Consider the axially symmetric map

_zB—b
2B 4p

R(z)
for b # 0.

e Rotation by a around the z3-axis
z = 2.

e [sorotation by 8 around the X;j-axis

cos(3/2)R — isin(53/2)

o —18in(B/2)R + cos(8/2)

e Calculate N:

B

e Lemma: The formula holds for general R € Ratp.
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Calculation of Groundstates

e Recall m(Qp) = Zy. Note: m1(Ratp) = Z.

e Theorem (S.K., 2002):
The homomorphism m(Ratg) — m1(Qp) is surjective.

e Recall: exp (—ian - J)exp (—ifN - I)¥(q) = xrr ¥(q).
o xrr = (—1)", where N = £(Ba — ).

e SO(3) x SO(3) action commutes with energy E.

Invariant subspaces are labelled by J and I. | ] ]3 L>IIIg VD

e Approximation: The ground state for given B occurs for the
lowest values of I and J which are compatible with the FR
constraints.

e Count number of the irreducible representation y pp using rep-
resentation theory.
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Results

e Calculate FR constraints from the rational map ansatz.

e Assume wave function has the same symmetry as the classical
minimal energy configuration.

e The isospin I3 measures the difference between the numbers of
protons and neutrons. (#p = B/2 + I3 and #n = B/2 — I3)

e Calculate groundstates |J, I) for B=1,...,22.
1: |3,3) corresponds to H.
e B =2: |1,0) corresponds to the deuteron $H.
e B =23: |3,3) corresponds to 3He.
e B =4: |0,0) corresponds to the alpha particle 3He.

e For B = 8,12,16,20 the ground state is |0,0) in agreement
with experiment. These states are particularly stable.

e ['or B = 5 my calculations disagree with experiments. (How-
ever, there is no stable nucleus with B = 5.)

e For odd B my calculations also disagree with experiment for
B=17,9,11,13,17 and 21.

e For even B my calculations disagree with experiment for B =
10, 18 and 22.
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