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Introduction

CFT’s are a central topic in String/M-Theory. Of particular note
are those above 4D where there are no standard techniques
available in general.

Various approaches: Bootstrap, Deconstruction, appeal to
String Theory ... DLCQ

On the one hand we have a rather formal abstract CFT’s: c.f. a
telephone directory

On the other hand there are reported sightings of a non-abelian
2-form in 6D [everyone here?]



How can we define these theories and relate them to the
well-known and loved geometrical structures of gauge theory?

In particular we know that a simple reduction on a circle leads
to a familiar 5D Yang-Mills description.

A key problem is the lack of a Lagrangian.

Even without asking for fancy symmetries or non-abelian
2-form connections there is no good ‘playground’ of UV
complete Lagrangians

i.e. what would such a theory look like? (c.f.
[Saemann,Schmidt,Wolf,...],[NL])



5D SYM is naively non-renormalizable (but perhaps is
non-perturbatively well-defined without new UV degrees of
freedom [Douglas],[ NL,Papageorgakis, Schmidt-Sommerfeld])

Yeah maybe but not so useful

Reduction on a null circle leads to a DLCQ description given by
quantum mechanics on instanton moduli space
[Aharony,Berkooz,Kachru,Seiberg, Silverstein]

Not very physical or satisfactory.

In either case instanton number corresponds to the KK
momentum of an emergent dimension but the non-compact 6D
theory is reached only in the limit of infinite coupling:

g2 = 4π2R → ∞



The null reduction of a Lorentzian theory gives a theory with
Schrödinger symmetry: translations in space and time,
rotations, boosts a Lifshitz scaling and a special conformal
transformation.

Familiar from condensed matter physics, e.g. [Son,...], where
the KK momentum is particle number.

The important point is that there exist UV complete 5D gauge
theories which flow in the IR to theories with Super-Schrödinger
Symmetry.

But:

• Correlation functions are not suppressed for spatial
separation.

• Reconstruction of the 6D theory is formal at best: first sum
over all instanton sectors and then take the limit R → ∞



Next we consider instead an Omega-deformed version with
SU(1, 3) spacetime symmetry

• Better behaved correlators
• Can reconstruct (in principle) non-compact 6D correlators
• A coupling constant 1/k appears and the 6D theory is at

k = 1.
• 5D analog of ABJM with OSP (6|4) symmetry where

non-perturbative effects enhance
SU(1, 3)× SO(5) → SO(2, 6)× SO(5)

• Weird and wonderful playground away from the familiar
homeland of Lorentzian geometry.

In short lots of fun!



The Big Picture
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Part I



Consider a 5D Bosonic gauge theory of the form

S =
1

2g2
tr

!
dtd4x (Fti)

2 − λ2(DiFij)
2 + . . .

One can consiter another gradient term (DiFjk)
2 but this is

equivalent to the one above up to total derivatives and a cubic
term Fij [Fjk, Fki]

This has a lifshitz scaling symmetry

t → ω−2t xi → ω−1xi

It is perturbatively renormalisable as the Ai propagator takes
the form e.g. [Horava][Iengo,Russo,Serone]

G ∼ 1

E2 − λ2p4



One can also imagine adding scalar and Fermions:

SX =
1

g2
Tr

!
DtX

†DtX − λ2
XD2X†D2X + . . .

Sψ =
1

g2
Tr

!
ψ†Dtψ − λ2

ψDiψ
†Diψ + . . .

Possibly in other representations of the gauge group.

Furthermore the β-function for g is negative [Horava][NL,Smith]

β(g) = −3

2

C2(G)g3

(4π)2λ
+

Tscalar(R)

2(4π)2λX

β(λ) =
13

3

C2(G)g2

(4π)2

So UV complete (sometimes) but non-Lorentzian



We claim that these theories cannot be made supersymmetric
or boost invariant (although theories exist with a scalar
supersymmetry) [NL,Smith]

But we can consider an RG flow induced by adding

M2(Fij + &Fij)
2

now M2 → ∞ in the IR

The IR dynamics is constrained to anti-self-dual gauge fields:

SIR =
1

2g2
tr

!
dtd4x (Fti)

2 − λ2
1(DiFij)

2 − 1

2
λ2
2(DiFjk)

2

+Gij(Fij + &Fij) + . . .

∼=
1

2g2
tr

!
dtd4x (Fti)

2 +Gij(Fij + &Fij) + . . .



Similarly deforming scalars

S
(M)
X =

1

g2
Tr

!
DtX

†DtX −M2DiX
†DiX − λ2

XD2X†D2X

In the IR we are pushed onto the surface

DiX = 0

and as a result the scalars are frozen. However, in this case we
can introduce a new scalar

φ = MX

with Lifshitz dimension 2. Now the action is

S
(M)
X =

1

g2
Tr

! "
1

M2
Dtφ

†Dtφ−Diφ
†Diφ− λ2

X

M2
D2φ†D2φ

#

we would then expect the IR theory to be described by

S
(IR)
X = − 1

g2
Tr

!
Diφ

†Diφ



Such theories admit a symmetry Boost:

t′ = t x′i = xi + vit

φ′(t′, x′) = φ(t, x)

A′
i(t

′, x′) = Ai(t, x)

A′
t(t

′, x′) = At(t, x)− viAi(t, x)

G′
ij(t

′, x′) = Gij(t, x) + 2v[iF|t|j](t, x)

The action then changes by

S′ = S +
vi

2g2

!
dtd4xεijklTr(FtjFkl)

= S +
1

2g2

!
v ∧ Tr(F ∧ F )

There is also a special Conformal transformation vi = ωxi

And can be made supersymmetric: super-Schrödinger



Integrate out Gij=⇒ Fij = −(&4F )ij =⇒Ai = Ai(x,m
α)

S =
1

2g2

!
dx−gαβ(m)∂−m

α∂−m
β + . . .

where mα are moduli and gαβ is the metric on instanton moduli
space:

gαβ = tr

!
d4xδαAiδβAi

c.f. DLCQ proposal
[Aharony,Berkooz,Kachru,Seiberg,Silverstein]

So the physics of the IR theory reproduces the DLCQ
description of 6D CFT’s on a compact null circle.



Part II



Conformal Null Compactification

Let us start by writing 6D Minkowski space in weird coordinates:

ds2M = −2dx̂+dx̂− + dx̂idx̂i

=
−2dx+(dx− − 1

2Ωijx
idxj) + dxidxi

cos2(x+/2R)

where Ω = &4Ω, Ω2 = −R−2I and

x̂+ = 2R tan(x+/2R)

x̂− = x− +
1

4R
xixi tan(x+/2R)

x̂i = xi − tan(x+/2R)RΩijx
j

and x+ ∈ [−πR/2,+πR/2]. Conformally rescale to

ds2 = −2dx+(dx− − 1

2
Ωijx

idxj) + dxidxi



Since x+ is a compact interval P+ is discrete (for certain
boundary conditions) and we diagonalize it.

What happens to the SO(2, 6) conformal symmetry?

SO(2, 6) −→$%&'
commutes with P+

SU(1, 3)⊕ U(1)$%&'
P+

where the generators are

P+ = P (6d)
+ + 1

4ΩijM
(6d)
ij + 1

8R2K
(6d)
− P− = P (6d)

−

Pi = P (6d)
i + 1

2ΩijM
(6d)
j− Mi+ = M (6d)

i+ − 1
4ΩijK

(6d)
j

B = −1
4RΩijM

(6d)
ij CI = 1

4η
I
ijM

(6d)
ij

K+ = K(6d)
+ T = D(6d) −M (6d)

+−

We also break 3/4 of the (conformal)supersymmetries:

16⊕ 16 → 8⊕ 16

ε+ x̂µΓµη → ε+ x̂µΓµη+ Γ+η+ = 0



Holographic Construction

[Pope,Sadrzadeh,Scuro] showed that AdS7 can be written as a
timelike U(1) Hopf fibration over (CP

3
:

ds2AdS7
= −1

4

"
dx+ + eφ

"
dx− − 1

2
Ωijx

idxj
##2

+ ds2!CP
3

Where (CP
3

is defined by the surface

−|Z0|2 + |Z1|2 + |Z2|2 + |Z3|2 = −1

in C1,3 and has a manifest SU(1, 3) symmetry.

Reducing on x+ the boundary metric at φ → ∞ is

ds2bdry =
eφ

4

)
−2dx+

"
dx− − 1

2
Ωijx

idxj
#
+ dxidxi

*

Putting M5-branes at φ = const and reducing on x+ leads to
the action we had before when φ → ∞.



Action

S =
k

4π2R
tr

!
d5x

+
1

2
F−iF−i −

1

2
D̂iX

ID̂iX
I +

1

2
FijGij

− i

2
Ψ̄Γ+D−Ψ+

i

2
Ψ̄ΓiD̂iΨ− 1

2
Ψ̄Γ+Γ

I [XI ,Ψ]

,

With all fields in the adjoint of the gauge group and

D̂i = Di − 1
2Ωijx

jD−

Fij = Fij −
1

2
Ωikx

kF−j +
1

2
Ωjkx

kF−i

Gij = (&4G)ij

Note that the hatted derivative has torsion: [D̂i, D̂j ] = ΩijD−

Symmetries: SU(1, 3), SO(5) R-Symmetry and 24
supercharges: Osp(6|4) and a topological U(1) J ∼ &tr(F ∧ F ).

(1, 0) versions of these actions also exist.



Correlation Functions

SU(1, 3)⊕ U(1) places non-trivial constraints on correlation
functions:

〈O(1)(x−1 , x
i
1) . . .O(N)(x−N , xiN )〉 = δ0,p1+···+pN

×
-

N.

a<b

(zabz̄ab)
−αab/2

"
zab
z̄ab

#(pa−pb)R/N
/

×H

"
|zab||zcd|
|zac||zbd|

,
zabzbczca
z̄abz̄bcz̄ca

#

Here αab are constants determined by the Lifshitz scaling
dimensions ∆a, pa/R are the P+ eigenvalues and

zab = x−a − x−b + 1
2Ωijx

i
ax

j
b +

i

4R
(xia − xib)(x

i
a − xib)

H is an undetermined function that appears at 3-points.



Instanton Operators

So far we have cheated a bit as none of the fields in the
classical Lagrangian carry any P+ charge.

Key observation: SU(1, 3) is only a symmetry up to boundary
terms which are non-zero if the instanton number changes.

Let us introduce local instanton operators:
!

Dϕ In1(x1)In2(x2) . . . InN (xN )
0
. . .

1
=

!

{(xa,na)}
Dϕ

0
. . .

1

where {(xa, na)} indicates that we integrate over all field
configurations where an instanton with instanton number −na is
created at the point xa = (x−a , x

i
a).

One can show that SU(1, 3)⊕ U(1) is restored as a symmetry
of the quantum theory and In(x) have charge n/R under P+.



Symmetry Enhancement

Note SU(1, 3)⊕ SO(5) is a Wick rotation of SU(4)⊕ SO(2, 3):

U(1)$%&'
topological

⊕SU(1, 3)$ %& '
Spacetime

⊕SO(5)$ %& '
R

←→ U(1)$%&'
topological

⊕SU(4)$ %& '
R

⊕SO(2, 3)$ %& '
Spacetime

In fact combined with the supercharges we find OSp(6|4) which
is the same supergroup as ABJM for M2-branes.

In ABJM
U(1)$%&'

monopoles

⊕SU(4)$ %& '
R

−→ SO(8)$ %& '
R

And we want

U(1)$%&'
instantons

⊕SU(1, 3)$ %& '
Spacetime

−→ SO(2, 6)$ %& '
Spacetime

So that in both cases

OSp(6|4) −→ OSp(8|4)



Reconstructing 6D

We now want to see if somehow we can reconstruct operators
and correlations functions which are those of a 6D theory with
SO(2, 6).

Consider the following scalar operator

O6d(x+, x−, xi) =
2

n∈Z
f(n)$%&'

arbitrary

e−inx+In(x−, xi) O(x−, xi)$ %& '
5D Operator

So that
[P+,O6d] = −i

∂

∂x+
O6d

(f(n) is a fudge factor since we don’t know enough about In)



We want Ô to have well-defined 6D scaling dimension w.r.t.:

D6d = x̂+∂̂+ + x̂−∂̂− + x̂i∂̂i

= sin(x+/R)∂+ +
3
x− − 1

4 sin(x
+/R)|.x|2

4
∂−

+ 1
2

3 3
1 + cos(x+/R)

4
xi + sin(x+/R)Ωijx

j
4
∂i

Now we know
5
In1(x1)O(1)(x1)In2(x2)O(2)(x2)

6
= δ∆1,∆2δ0,n1+n2d(∆1, n1)

× 1

(z12z̄12)∆1/2

"
z12
z̄12

#n1

Demanding 〈Ô(1)(x+1 , x
−
1 , x

i
1)Ô(2)(x+2 , x

−
2 , x

i
2)〉 scales

appropriately tells us
"
n+

∆

2

#
d̂(∆, n) =

"
n− ∆

2
+ 1

#
d̂(∆, n+ 1)

where d̂(∆, n) = f(n)f(−n)d(∆, n).



At least for ∆/2 integer the solution is

d̂(∆, n) =

7
8

9
C12

3n+∆
2 −1

n−∆
2

4
n ≥ ∆/2

0 n < ∆/2

for an unknown constant C12. Use this to choose the
coefficients f(n).

We can now compute the 2-point function

〈Ô(1)(x̂+1 , x̂
−
1 , x̂

i
1)Ô(2)(x̂+2 , x̂

−
2 , x̂

i
2)〉

where the 6D Minkowski space operator is

Ô(x+, x−, xi) = cos∆/2(x+/2R)$ %& '
conformal transformation

O6d(x+, x−, xi)



〈Ô(1)(x̂1)Ô(2)(x̂2)〉

= cos∆
0
x+
1

2R

1
cos∆

0
x+
2

2R

1 ∞2

n=∆/2

e−inx+
12/R

5
On(x

−
1 , x

i
1)O−n(x

−
2 , x

i
2)
6

= cos∆
0
x+
1

2R

1
cos∆

0
x+
2

2R

1
(z12z̄12)

−∆
2

∞2

n

e−inx+
12/Rd̂(∆, n)

"
z12
z̄12

#n

= C ′
12

:

;<
2R i

0
z̄12e

ix+
12/2R − z12e

−ix+
12/2R

1

cos
0
x+
1

2R

1
cos

0
x+
2

2R

1

=

>?

−∆

= C ′
12|− 2x̂+12x̂

−
12 + x̂i12x̂

i
12|−∆

= C ′
12|x̂12|−2∆

Which is the correct 6D Minkowskian SO(2, 6) correlator (also
works for 3-point correlators and specific choices of H)



DLCQ Limit
We can take a limit k → ∞ with R/k = R+ fixed.

Since Ωij → 0 we have x+ ∈ (−∞,∞). But we still only capture
discrete Fourier modes: ‘Ordinary’ null reduction

x+ ∼ x+ + 2πR+



The Action reduces to

S =
1

2πR+
tr

! +
1

2
F−iF−i −

1

2
DiX

IDiX
I +

1

2
FijGij

− i

2
Ψ̄Γ+D−Ψ+

i

2
Ψ̄ΓiDiΨ− 1

2
Ψ̄Γ+Γ

I [XI ,Ψ]

,

Still has 24 supersymmetries a topological U(1) but no SU(1, 3)
(all rotations, translations, boosts, and a Liftshitz scaling):
Super-Schrödinger Symmetry.

Integrate out Gij=⇒ Fij = −(&4F )ij =⇒Ai = Ai(x,m
α)

S =
1

4πR+

!
dx−gαβ(m)∂−m

α∂−m
β + . . .

where mα are moduli. c.f. DLCQ proposal
[Aharony,Berkooz,Kachru,Seiberg,Silverstein]



The correlation functions degenerate to Schrödinger ones: no
fall off at large spatial separation, e.g.:

5
O(1)

n O(2)
−n

6
∼

"
1

x−12

#∆

exp

"
in

2R+

|xi12|2

x−12

#

Our expression for higher point functions also reduces to known
results in Schrödinger invariant theories:

〈O(1)(x−1 , x
i
1) . . .O(N)(x−N , xiN )〉 = δ0,p1+···+pN

×
-

N.

a<b

"
1

x−ab

#αab

exp

"
in

2NR+
(pa − pb)ξab

#/

×H

"
x−abx

−
cd

x−acx
−
bd

, ξab + ξbc + ξca

#

where

ξab =
|xiab|2

x−ab



Three-Point Functions

Two-point functions are fixed by SU(1, 3) and hence agree with
those found by reduction of a 6D SCFT.

In Schrödinger theories the functional form of the three-point
function, i .e. H, can be determined if one operator has
dimension ∆ = d/2 = 2 [Golkar,Son].

This is not interesting for us as the only operators with ∆ = 2
are free: e.g. Tr(XI) and hence the three-point function
vanishes.

But following their argument we find something else.



Expand the OPE as

O2(x)O3(0) = C0(x)O1(0) + Ci
1∂iO1(0) + C2∂−O1(0) + . . .

Commute both sides with Mi+, re-expand and read off O1(0)
coefficient:

− (Mi+)∂ C0 −
1

2
∆3Ωijx

jC0 + ip3x
iC0 = −i

"
p1δij −

i

2
∆1Ωij

#
Cj
1

where

(Mi+)∂ =
3
1
2Ωijx

−xj − 1
8R

−2xjxjxi
4
∂− + x−∂i

+ 1
4(2Ωikx

kxj + 2Ωjkx
kxi − Ωijx

kxk)∂j

But for p1 = ±∆1/2R

"
p1δij −

i

2
∆1Ωij

#"
p1δij +

i

2
∆1Ωij

#
= 0



Thus we find a single differential equation for C0 alone:
"
δij ± i

1

2
Ωij

#"
(Mj+)∂ C0 +

1

2
∆3Ωjkx

kC0 − ip3x
jC0

#
= 0

This is solved by

C0 = z−
1
2∆3−Rp3C̃0(z̄)

For any anti-holomorphic function of z = x− + i
4Rx

ixi.

Furthermore scaling symmetry tells us

C0(λ
2x−,λxi) = λ∆1−∆2−∆3C0(x

−, xi)

which fixes

C0 = C

"
1

zz̄

#−∆1+∆2+∆3
4 0z

z̄

1−Rp3−1
4 (∆1−∆3+∆3)



So What: Look at 3-point function

lim
x→0

〈O(−p2−p3)
1 (y)O(p2)

2 (x)O(p3)
3 (0)〉

= lim
x→0

C0(zx0, z̄x0)〈O(−p2−p3)
1 (y)O(p2+p3)

1 (0)〉

= C11 lim
x→0

C0(zx0, z̄x0)

"
1

zy0z̄y0

#∆1
2
"
zy0
z̄y0

#−R(p2+p3)

= C11C lim
x→0

"
1

zx0z̄x0

#−∆1+∆2+∆3
4

"
1

zy0z̄y0

#∆1
2

×
"
zx0
z̄x0

#−Rp3−1
4 (∆1−∆2+∆3)"zy0

z̄y0

#−R(p2+p3)



On the other hand our general result tells us that:

〈O(−p2−p3)
1 (y)O(p2)

2 (x)O(p3)
3 (0)〉

=

"
1

zyxz̄yx

#∆1+∆2−∆3
4

"
1

zx0z̄x0

#−∆1+∆2+∆3
4

"
1

zy0z̄y0

#∆1−∆2+∆3
4

"
zyx
z̄yx

#R
3 (−2p2−p3)"zx0

z̄x0

#R
3 (p2−p3)"zy0

z̄y0

#R
3 (−p2−2p3)

H

"
zyxzx0z0y
z̄yxz̄x0z̄0y

#

−→
x→0

"
1

zx0z̄x0

#−∆1+∆2+∆3
4

"
1

zy0z̄y0

#∆1
2
"
zx0
z̄x0

#R
3 (p2−p3)

×
"
zy0
z̄y0

#−R(p2+p3)

H

"
zx0
z̄x0

#



Comparing the two we can read off that

H

"
zx0
z̄x0

#
= C

"
zx0
z̄x0

#R
3 (−p2−2p3)−1

4 (∆1−∆2+∆3)

This agrees with the Fourier reduction of a 6D SO(2, 6)
correlator:
5
Ô(1)(x̂1)Ô(2)(x̂2)Ô(3)(x̂3)

6

=
Ĉ123

|x̂1 − x̂2|∆1+∆2−∆3 |x̂2 − x̂3|−∆1+∆2+∆3 |x̂3 − x̂1|∆1−∆2−∆3

Thus all 5D 3-pt correlators containing one operator with
p+ = ∆/2R are those of a 6D theory.



Conclusions

In this talk we discussed a novel class offield theories in
five-dimensions with a view to reconstructing 6D SCFT’s

Part I

• non-Lorentzian, UV complete 5D gauge theories
• No Supersymmetry or Schrödinger Symmetry at weak

coupling
• Can enhance to Super-Schrödinger in the IR



Part II

• Introduce an Ω-deformation and Super-Schrodinger
→ SU(1, 3)

• Notable control over correlation functions: including a
spatial fall-off

• Can reconstruct non-compact Lorentzian 6D correlation
functions

• Integrability? Formally a similar string background to
ABJM: AdS4 × CP 3 → S4 × (CP

3

• There is a 5D Yangian structure [Lipstein, Orchard]

Taking R → ∞, R+ = R/k fixed we recover a DLCQ picture
with Schrödinger symmetry.

• Loose the nice properties of correlation functions.
• Can’t readily reconstruct the non-compact theory



But there are big issues:

• Can we compute something six-dimensional?
• Need a better understanding of instanton operators
• When do we really reconstruct 6D SCFTs? Not all actions

we can write down should give such theories.

But there are also novel and interesting structures which we
hope to report following the next Pandemic.
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Instanton Worldlines

Gij appears as a Lagrange multiplier imposing

Fij = −(&4F)ij

For static configurations this is simply a well-known instanton:
Fij = −(&4F )ij .

But more generally we can solve this with an ’t Hooft ansatz

Âi = −1

2
ηIijσ

I ∂̂j lnΦ

provided
∂̂i∂̂iΦ = 0

where Âi = Ai − 1
2Ωijx

jA− and ∂̂i = ∂i − 1
2Ωijx

j∂−.

Remarkably it still linearizes



Smooth spherically symmetric solutions take the form

Φ = 1 +

! ∞

−∞

µ(τ)

|τ − z|2dτ z = x− +
i

4R
|.x|2

where µ(τ) > 0. Near xi = 0 we find

Φ =
4πR

|.x|2 µ(x
−) + finite

Leading to an instanton at the origin with size µ(x−)

So we have a theory of instantons with dynamical sizes.

Whenever µ(x−) = 0 the instanton shrinks to zero size and the
instanton number goes to zero.



But more generally we find solutions corresponding to a sum
over an arbitrary number of instantons each following an
arbitrary worldline (y−A(τ), y

i
A(τ))

Φ = 1 +

N2

A=1

!
dτ

µA(τ)

z(x, yA(τA))z̄(x, yA(τ))

These can be created and destroyed whenever µA(τ) = 0:

Turning points require µA(τturning) = 0 for finite action.



A typical contribution to the path integral involving instanton
operators looks like:

Furthermore once instanton operators are included the action
is only single-valued on configuration space if 2k ∈ Z


