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Introduction
Understanding M5-branes is a major challenge. It is a defining
issue in M-Theory and it is important for QFT more generally.

We don’t expect to have a traditional Lagrangian description:

* Modular anomalies = violation of diffeomorphism

¢ ‘Tachikawa’ test (twisted compactification of SU(2n) theory
leads to SO(2n + 1))

¢ No marginal deformations or even discrete limiting theories
* Reduction to 5D gives g?> < Rnot g> < 1/R

¢ No family of interacting renormalizable Lagrangians with
Energy bounded from below.

e Difficulties with self-duality of the three-form and two-form
gauge theory

But we are here because we like a challenge (or are stubborn)



On the other hand without some kind of Lagrangian or
Hamiltonian construction it is difficult to see how to find a
workable formulation of the (2, 0) theory or understand its
robust relations to lower dimensional gauge theories.

Several proposals involve Lagrangians/Hamiltonians e.g.:

DLCQ based on Instanton Quantum Mechanics
Deconstruction based on 4D A/ = 2 SCFT Lagrangians
5D super-Yang-Mills as (2,0) on S! of any radius.

Various novel Lagrangians in 5D and/or 6D e.g.
[Saemann’s talk]

Maybe we have to learn how to piece these together to get a
complete picture.



In this talk we will construct Lagrangians in six-dimensions with
(2,0) supersymmetry.

A recent general approach due to Sen offers a new window to
self-duality and diffeomorphims which we will look through.

We will largely put aside all the no-go statements above and
see how far we get. If only to test the boundaries. As with
M2-branes one may hope that two M5-branes are more
amenable than three or more (‘Tachikawa Test’).

The hope is that we will find interesting things and novel
mathematics that are relevant to M-theory.



An Abelian (2,0) Action

In flat Minkowski space the action is
1 -
S = / GczB A*ydB —2H N dB — §6MX18“XI + %xpfﬂ@ﬂ)

® H=x,H
* H equation of motion sets dB = %,dB
* B equation of motion sets d(H + 3dB + % *pdB) =0
® and hence dH =0
So two closed self-dual three-forms: H and

1
H(S) = §(dB +*ndB) + H

Key idea [Sen]: ensure H ) decouples.



We want to keep B decoupled, even from the metric:
S = / (%dB/\*ndB—2H/\dB+H/\/\;l(H)

= %de Awgd X! + %@F“dx“ Awg VT — %RXI x")

Now we find
d(H - M(H)) =0
and we define M so that
Hg =H - M(H) = *gH g)

H,4) plays the role of the physical x,-self-dual three-form. One

can also introduce sources for H,), keeping H,) decoupled -
we will not consider this here but it can be included.



Geometrical Properties
Thus the metric dependence of the forms is contained in M

To define M we have the following requirements

M(H) = =% M(H)

Hy A M(Hz) = Hy A M(Hy)

M(Q) = 0for»,Q = -Q 5

if H =%, H then H — M(H) = ,(H — M(H))

To construct M we consider a basis of three-forms

A
{w—i- vw—A}
A A
KWy =W, *KpW_A = —W_A

and hence we have, for some MA5B,

Mw-a)=0,  M(wi)=MPBu_p



Next we consider a basis of x,-self-dual three-forms:

et = N gl + KBu_p ot = %0t

and define
MAB — —(N_I)Acl€CB
so that if H = Hw? then

Hy =H— M(H)
= HAwf — HA/\;lABw,B
= HAwfr‘ + Hy(N"HAKBw_p
_ HA(/\Til)ABgOB
= xgH )

Thus we have a map
m(H) = H— M(H)  m(H)= Hy

from x,-self-dual forms to x,-self-dual forms



There is a novel invariance under diffeomorphisms.

Consider z# — z# 4 ¢#(x). Some calculations show that

SeM(H) = %(1 — ) |E(H) — E(M(H)) + M(E(H)) = M(E(M(H)))
where ¢(H) = 3V, H), ,da A da¥ A daP.

-2

So M transforms a bit like a connection: if it vanishes in one
frame it need not vanish in others.

In terms of the map m we can write this as

SM(H) = 51— xg)m ™ (€(m(H))



How do B and H transform: They look like differential forms but
they don’t transform as differential forms: pseudo-forms.

Keep H|,) invariant:
1 1
(SgH = ——dégB - = *77 d(sz
2 2
Invariance of the action, up to a total derivative, determines:
0¢B =icH g = f Hgyawdz! N dz”

and hence
0¢H gy = 6¢H — M(6c¢H) — 6 M(H)
. 1 : ~
= —&(Hg)) — igH(g) =5 (1 + xy)iedH g) + M (iedH))

We only recover the usual tensor transformation of H ;) on
on-shell.



We can now compute the energy momentum tensor defined as
the response to a variation in the metric:

2 oL
V=9 6"
oM
Sghv

(9) 7 17(9)
upg "9 Hyg

voT

T = —

=—4H A

(H)

and the conserved energy (a la Noether):

b= /d5 < UU 01] v gOMTO)

Notably H(, has the wrong sign



We can also compute the Hamiltonian.To cut a longer story
short (see [Sen]):

The fields are B;j, By; and H;j;,. Only B;; has a conjugate
momentum II;;. The others give constraints;
&-Hij =0
1 3
§5ijklmHlm = Hfjglz (H) + 5%‘37@
So we use the second equation to solve for H;;;, and work with
1 1
1155 = < ( ILij £ <€ jkimOk Bim
2 4
that satisfy

1 0
{105 (2), T (0)} = £ ik0m 5 0@ = )

{11} (), My (y)} = 0



In particular we find

(
I, = —§H0fj)

— 1 Oz
II —— ¢ _ S J
ij 2.3l z]klm klm -

The hamiltonian is (at least if go; = 0)
H=H,+H_
H_ = /d%—znjjng
s 2 —
_ = /d z Al 0; By — \/—_—ggoogz‘kgjlﬂijﬂkl
which agrees with the energy E that we computed above.

In the end all the expressions for 7}, and H;‘; are what we
would expect from an action of the form —dB A x,dB.



Sources
To include a source J we take

SH:/<%dB/\*ndB—2H/\dB
+(H+J+)AM(H+J+)+2H/\J_—J_/\J+>

and so
J
dH(g) =dJ
but still X ,
dH ) :d<§dB+§*ndB+H) =0

We find similar expressions for diffeomorphisms, hamiltonian
efc. as those above with



Supersymmetry
Recall our action is

1 )
S = / <§dB/\*ndB—2HAdB+HAM(H)
= %dXI Awgd X! + %@F#dx“ Asg VT — %RXI x")

This is invariant under (Ve = 3T, TV €)

oXT =ier’w
0By, = —iel,, U
3i

_ 3
OH )\ = —GF[H,,V,\}\I/—F 5. 3|€/w)\pm—77 “n nT’yeF sV

- —V”EF LA = o0 VYL T, ¥

43'

S0 =TrT19, X e + 3,F,WA(H — M(H))" e

In this case H(y) = 5dB + 5 *, dB + H is a singlet



Example: Reduction on S*
The simplest case to consider is 2° ~ 2® + [ and

(3 )
(N.B. R is dimensionless). A basis of three-forms is
wfr‘ = QA A da® + 07
w_g = Q4 ANdx® — %504
and x, self-dual three-forms are given by:
@A:QA/\das5+%*5QA

_R+1wA+R—1
2R T 2R

woA

so MAB = —(R—1)/(R+ 1)545.



Thus we find (a,b,=1,2,3,4)

5 o o
/d RHabHab+4RHa5Ha5

+ ATT, 00 Bys + T3 (0a Bos — 353()&))

Let us set 95 = 0 and solve the B,5 constraint by

1
-

ab — _ZlgabcdacAd

and hence II ; is the conjugate momentum to A,:

{Aa(2), M5 (y)} = dapda(x — y)
Thus
0Aq = {Aq, H} = 8RII; + 10, Bos
and hence we arrive at 5D Maxwell:
~ =00AJ; — H_

= @ 4$ ((aOAa - laaB()E,)Q — (8aAb

— A%



Example: M5 on a Riemann Surface

Subject to suitable boundary conditions, corresponding to
intersecting branes, a single M5-brane wraps the
Seiberg-Witten curve [Witten] of the associated gauge theory:

s=X04+ix10 2= ot 4 ix® s =s(z;u)
where the v are moduli.

The induced metric on the M5-brane is

N4 0 0
g=10 0 (1+8383)/2)
0 (1+0s05)/2 0



The low energy dynamics for the scalars of the M5-brane
agrees with the SW effective action (m = 0,1,2, 3)
[Howe,NL,West]:

Sy = /d4:c/d2z Oms0™3
/d4 /d2 @% ud™

= / d*zIm(70,,a0™a)

Here A = (0s/0u)dz is the holomorphic one-form and

D D
da _ j{ y g _ j{ y o 0
du A du B da
However obtaining the correct vector equations knowing only
the equations of motion was quite involved [NL,West].



Now we can reduce the form part of action on the Riemann
surface ¥ defined by s(z)

We perform a standard KK reduction ansatz

H=FANI+FAD
B=CAY+CAY

where F =i x4 F and 9 = (du/da)\.

Since ¥ is non-compact the 0-form and 2-form terms in the
ansatz give divergent contributions and must be dropped.

For an H of this type «,H = H and hence M(H) = 0.



We find the four-dimensional form part of the action is
S = /((T_T> (dC A i % dC + 2F A dC — 2F A dC)

—&-j—T(—i*dC_'/\C/\da—i—Zf/\C/\da)
a

+ g(z’*dC/\C_'/\dd—kQ}"/\C_’/\dd))
The equations of motion are
0= (r—7)dC +dr AC —ix ((T—T’)dC’—l—dT/\C)
0= d((T — F)ixdC +2(r — 7)F5 +z‘*d7/\C’>
+d7 NixdC +2d7 N F
We can substitute the first equation into the second to find
d((t—=7)F)+dr N (F + %(i*dC—dC)) =0

This agrees with Seiberg-Witten if 7 = —1dC — % x dC.



A Non-abelian (2,0) Action
Next we want to construct a non-abelian (2,0) action.

We can construct a free theory by including a gauge field along
with a Lagrange multiplier term that imposes flatness:

1
5= / E<DB A*DB) — (H ADB) — - (D, X' D*X")
+ %@F@M +(F A W)]
where D =d — Aand F = dA — A A A with

6A, =0
SWonp(+) = 3iel),, (B, ¥, - | + il un, I (X, 0, -]



Here the matter fields take values in a vector space V and the
gauge field in a Lie-algebra G with a representation 7" on V.

® YV has an inner-product (-, -)
® G has an inner-product (-, -)

This leads to a three-algebra structure [Figueroa-O’Farrill, de
Medeiros]:
[ ]:VeVey -V

XY, 2] = S (X TN (Y) T (2)

r

which implies the combatability conditions

U, V,[X,Y, Z]] = [[U,V,X],Y, Z]+|X, U, V,Y], Z|+[X, Y, [U,V, Z]]



In order to construct interactions we consider the (2,0) system
of [NL,Papageogakis] and introduce a non-dynamical vector
field Y# with scaling dimension —1

D,)Y"=0 Y#,D,(-), T1=0 [Y* YV, -]=0
Here the three-algebra is totally anti-symmetric and so we take

V = R* leading to the gauge algebra su(2) ® su(2).

0=D2x!— %[Y", O, 0,000 + Ve, X7, [Vy, X7, X1]]
1 i _
0= DpyHyup) + Juwrpor [ve,x! DTxT] + gEmApoT V7,0, 7V
0=T"D,¥ + T, Ty, X! ¥
0= F;w(') - [YAaH;u/)\a : ]



Now the flatness condition on F is replaced by ' ~ [Y, H, |

So we adjust the Lagrange multiplier term to
Ly =(HNWY))+ (FAW)

where W (Y) = £ W0, (Y?P)dz# A dz¥ A dz? and make a guess
Sguess :/

i(DB N*DB) — (H A (DB = W(Y))) + (F AW)

1
(DX DXT) — 2{[y*, XT, XNy, X1, X))

|@ [\')||—‘|—|

(\I/F“D ) + @Furf [yr X1 w)
The matter terms clearly reproduce their correct equations.

This has introduced a source for H of the form T (Y).



Alas this isn’t quite right:

e self-dual part of W (Y) is non-zero.
e D2 F#£0

After some more guess work we find [NL]
1 1 ~ -
S :/ [Z<DB AN*DB) + 6<DB N DB) + i(W(Y) AW (Y))

A(DB — W (Y))) — %<(DB —WDB) AW(Y)) + (F A T)

—(H
1
- 5 (DX DEXT) — 4<[Y“,X’,X"J[YM,XI,X"D
Ll
2

(ITHD, W) + @rﬂrf e \If])}
Here D, = 8, — A, (-) with

Au() = Au() = [BumY” -]



This reproduces all the equations of motion of the (2, 0) system.

In particular B and W can be removed from the equations for
the remaining fields.

It is invariant under (2,0) supersymmetry:
6XT = ier’w
0B, = —iel', ¥

1 1
60 =THT D, X e + WH#VAF“”Ae — 5rurf Tiye, X1, X7 e

SH, = 2(1 + # i€l |, Dy ¥ — ieD, T\ D [V 7, X1 0]
SA,(-) =iel,, [V, U, -]
SWowrp(-) = 3i€0 [Bag, ¥, - ] 4 i€l I (X1, 0, -]



Note that this is a reducible representation of supersymmetry:

1 ~ 1 ~
His) = Q(DB -W(Y))+ 3 *(DB-W(Y))+H
-’Zl(s)u() = A#() - [B#V’YV7 ’ ]
are singlets.
The interacting part is five-dimensional: [Y*D,,, , | = 0.

Coupling constant

2 <YM7Y“>
— Ry [/
g 5 < R?)

Depending on the choice of Y one finds different
five-dimensional theories.



* Y spacelike: (4+1)-dimensional super-Yang-Mills
e Y timelike: (5+0)-dimensional super-Yang-Mills
e Y null: novel non-Lorentzian theory (G = xG):

5= tr [ dwda® (EFOZ-FOI- + 5 FiCy — 3 (DiXT) (D7)

_? 5

. . L
—%xpr_poqf + %\I/FiDi\If +5Ur_rY[x7, @])

16 supersymmetries and 8 superconformal supersymmetries
[NL, Owen][NL, Mouland].
Path integral reduces to instanton QM[Mouland]

An Q-deformed version has an SU(3,1) symmetry, 8
supersymmetries, 16 superconformal symmetries and an AdS~
dual [NL, Lipstein,Richmond] [NL, Lipstein,Mouland,Richmond]



Conclusions

In this talk we adapted Sen’s prescript for self-dual forms to the
(2,0) theory.

e Obtained a more geometrical formulation
¢ Obelian theory reproduces the dynamics of a single M5

® Presented an interacting non-abelian version which
describes two M5-branes on an S!



Comments

Interesting new geometrical structure for self-dual forms: M.
Diffeomorphisms are enabled unusually.

Extend to DBI-like M5’s: Make H — M(H) non-linear?
[Perry,Schwarz],[Howe,Sezgin West],[Pasti,Sorokin,Tonin]

Extend to (1, 0) theories [Sambtleben,Sezgin,Wimmer]

Is the appearance of a second connection
D, =D, L[Bu,Y", -] suggestive of some 2-form structure?

Better understanding of modular anomalies vs
diffeomorphisms?
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