Lagrangians with $(2,0)$ Supersymmetry

Neil Lambert

M-Theory and Mathematics Abu Dhabi, 29 January 2020
N.L. 1908.10752
E. Andriolo, N.L. and C. Papageorgakis: to appear

Outline

- Introduction
- An Abelian 6D action with $(2,0)$ Supersymmetry
- Geometrical properties
- Hamiltonian
- Sources
- Supersymmetry
- Reduction on a circle
- Reduction on a Riemann Surface
- A non-Abelian Action with $(2,0)$ Supersymmetry
- Conclusions

Introduction

Understanding M5-branes is a major challenge. It is a defining issue in M -Theory and it is important for QFT more generally.

We don't expect to have a traditional Lagrangian description:

- Modular anomalies = violation of diffeomorphism
- ‘Tachikawa’ test (twisted compactification of $S U(2 n)$ theory leads to $S O(2 n+1)$)
- No marginal deformations or even discrete limiting theories
- Reduction to 5D gives $g^{2} \propto R$ not $g^{2} \propto 1 / R$
- No family of interacting renormalizable Lagrangians with Energy bounded from below.
- Difficulties with self-duality of the three-form and two-form gauge theory

But we are here because we like a challenge (or are stubborn)

On the other hand without some kind of Lagrangian or Hamiltonian construction it is difficult to see how to find a workable formulation of the $(2,0)$ theory or understand its robust relations to lower dimensional gauge theories.

Several proposals involve Lagrangians/Hamiltonians e.g.:

- DLCQ based on Instanton Quantum Mechanics
- Deconstruction based on 4D $\mathcal{N}=2$ SCFT Lagrangians
- 5D super-Yang-Mills as $(2,0)$ on S^{1} of any radius.
- Various novel Lagrangians in 5D and/or 6D e.g. [Saemann's talk]

Maybe we have to learn how to piece these together to get a complete picture.

In this talk we will construct Lagrangians in six-dimensions with $(2,0)$ supersymmetry.

A recent general approach due to Sen offers a new window to self-duality and diffeomorphims which we will look through.

We will largely put aside all the no-go statements above and see how far we get. If only to test the boundaries. As with M2-branes one may hope that two M5-branes are more amenable than three or more ('Tachikawa Test').

The hope is that we will find interesting things and novel mathematics that are relevant to M-theory.

An Abelian (2,0) Action

In flat Minkowski space the action is
$S=\int\left(\frac{1}{2} d B \wedge \star_{\eta} d B-2 H \wedge d B-\frac{1}{2} \partial_{\mu} X^{I} \partial^{\mu} X^{I}+\frac{i}{2} \bar{\Psi} \Gamma^{\mu} \partial_{\mu} \Psi\right)$

- $H=\star_{\eta} H$
- H equation of motion sets $d B=\star_{\eta} d B$
- B equation of motion sets $d\left(H+\frac{1}{2} d B+\frac{1}{2} \star_{\eta} d B\right)=0$
- and hence $d H=0$

So two closed self-dual three-forms: H and

$$
H_{(s)}=\frac{1}{2}\left(d B+\star_{\eta} d B\right)+H
$$

Key idea [Sen]: ensure $H_{(s)}$ decouples.

We want to keep B decoupled, even from the metric:

$$
\begin{aligned}
S=\int(& \frac{1}{2} d B \wedge \star_{\eta} d B-2 H \wedge d B+H \wedge \tilde{\mathcal{M}}(H) \\
& \left.-\frac{1}{2} d X^{I} \wedge \star_{g} d X^{I}+\frac{i}{2} \bar{\Psi} \Gamma_{\mu} d x^{\mu} \wedge \star_{g} \nabla \Psi-\frac{1}{5} R X^{I} X^{I}\right)
\end{aligned}
$$

Now we find

$$
d(H-\tilde{\mathcal{M}}(H))=0
$$

and we define $\tilde{\mathcal{M}}$ so that

$$
H_{(g)}=H-\tilde{\mathcal{M}}(H)=\star_{g} H_{(g)}
$$

$H_{(g)}$ plays the role of the physical \star_{g}-self-dual three-form. One can also introduce sources for $H_{(g)}$, keeping $H_{(s)}$ decoupled we will not consider this here but it can be included.

Geometrical Properties

Thus the metric dependence of the forms is contained in $\tilde{\mathcal{M}}$
To define $\tilde{\mathcal{M}}$ we have the following requirements

- $\tilde{\mathcal{M}}(H)=-\star_{\eta} \tilde{\mathcal{M}}(H)$
- $H_{1} \wedge \tilde{\mathcal{M}}\left(H_{2}\right)=H_{2} \wedge \tilde{\mathcal{M}}\left(H_{1}\right)$
- $\tilde{\mathcal{M}}(Q)=0$ for $\star_{\eta} Q=-Q$
- if $H=\star_{\eta} H$ then $H-\tilde{\mathcal{M}}(H)=\star_{g}(H-\tilde{\mathcal{M}}(H))$

To construct $\tilde{\mathcal{M}}$ we consider a basis of three-forms

$$
\begin{gathered}
\left\{\omega_{+}^{A}, \omega_{-A}\right\} \\
\star_{\eta} \omega_{+}^{A}=\omega_{+}^{A}, \quad \star_{\eta} \omega_{-A}=-\omega_{-A}
\end{gathered}
$$

and hence we have, for some $\tilde{\mathcal{M}}^{A B}$,

$$
\tilde{\mathcal{M}}\left(\omega_{-A}\right)=0, \quad \tilde{\mathcal{M}}\left(\omega_{+}^{A}\right)=\tilde{\mathcal{M}}^{A B} \omega_{-B}
$$

Next we consider a basis of \star_{g}-self-dual three-forms:

$$
\varphi^{A}=\mathcal{N}^{A}{ }_{B} \omega_{+}^{B}+\mathcal{K}^{A B} \omega_{-B} \quad \varphi^{A}=\star_{g} \varphi^{A}
$$

and define

$$
\tilde{\mathcal{M}}^{A B}=-\left(\tilde{\mathcal{N}}^{-1}\right)^{A}{ }_{C} \tilde{\mathcal{K}}^{C B}
$$

so that if $H=H_{A} \omega_{+}^{A}$ then

$$
\begin{aligned}
H_{(g)} & =H-\tilde{\mathcal{M}}(H) \\
& =H_{A} \omega_{+}^{A}-H_{A} \tilde{\mathcal{M}}^{A B} \omega_{-B} \\
& =H_{A} \omega_{+}^{A}+H_{A}\left(\tilde{\mathcal{N}}^{-1}\right)^{A}{ }_{C} \tilde{\mathcal{K}}^{C B} \omega_{-B} \\
& =H_{A}\left(\tilde{\mathcal{N}}^{-1}\right)^{A}{ }_{B} \varphi^{B} \\
& =\star_{g} H_{(g)}
\end{aligned}
$$

Thus we have a map

$$
\mathfrak{m}(H)=H-\tilde{\mathcal{M}}(H) \quad \mathfrak{m}(H)=H_{(g)}
$$

from \star_{η}-self-dual forms to \star_{g}-self-dual forms

There is a novel invariance under diffeomorphisms.

Consider $x^{\mu} \rightarrow x^{\mu}+\xi^{\mu}(x)$. Some calculations show that
$\delta_{\xi} \tilde{\mathcal{M}}(H)=\frac{1}{2}\left(1-\star_{\eta}\right)[\xi(H)-\xi(\tilde{\mathcal{M}}(H))+\tilde{\mathcal{M}}(\xi(H))-\tilde{\mathcal{M}}(\xi(\tilde{\mathcal{M}}(H)))]$
where $\xi(H)=\frac{1}{2} \nabla_{\mu} \xi^{\lambda} H_{\lambda \nu \rho} d x^{\mu} \wedge d x^{\nu} \wedge d x^{\rho}$.
So $\tilde{\mathcal{M}}$ transforms a bit like a connection: if it vanishes in one frame it need not vanish in others.

In terms of the map \mathfrak{m} we can write this as

$$
\delta_{\xi} \tilde{\mathcal{M}}(H)=\frac{1}{2}\left(1-\star_{\eta}\right) \mathfrak{m}^{-1}(\xi(\mathfrak{m}(H))
$$

How do B and H transform: They look like differential forms but they don't transform as differential forms: pseudo-forms.

Keep $H_{(s)}$ invariant:

$$
\delta_{\xi} H=-\frac{1}{2} d \delta_{\xi} B-\frac{1}{2} \star_{\eta} d \delta_{\xi} B
$$

Invariance of the action, up to a total derivative, determines:

$$
\delta_{\xi} B=i_{\xi} H_{(g)}=\frac{1}{2} \xi^{\lambda} H_{(g) \lambda \mu \nu} d x^{\mu} \wedge d x^{\nu}
$$

and hence

$$
\begin{aligned}
\delta_{\xi} H_{(g)} & =\delta_{\xi} H-\tilde{\mathcal{M}}\left(\delta_{\xi} H\right)-\delta_{\xi} \tilde{\mathcal{M}}(H) \\
& =-\xi\left(H_{(g)}\right)-i_{\xi} H_{(g)}-\frac{1}{2}\left(1+\star_{\eta}\right) i_{\xi} d H_{(g)}+\tilde{\mathcal{M}}\left(i_{\xi} d H_{(g)}\right)
\end{aligned}
$$

We only recover the usual tensor transformation of $H_{(g)}$ on on-shell.

We can now compute the energy momentum tensor defined as the response to a variation in the metric:

$$
\begin{aligned}
T_{\mu \nu} & =-\frac{2}{\sqrt{-g}} \frac{\delta \mathcal{L}}{\delta g^{\mu \nu}} \\
& =-4 H \wedge \frac{\delta \tilde{\mathcal{M}}}{\delta g^{\mu \nu}}(H) \\
& =H_{\mu \lambda \rho}^{(g)} g^{\lambda \sigma} g^{\rho \tau} H_{\nu \sigma \tau}^{(g)}
\end{aligned}
$$

and the conserved energy (á la Noether):

$$
E=\int d^{5} x\left(-\frac{1}{2} H_{0 i j}^{(s)} H_{0 i j}^{(s)}-\sqrt{-g} g^{0 \mu} T_{\mu 0}\right)
$$

Notably $H_{(s)}$ has the wrong sign

We can also compute the Hamiltonian. To cut a longer story short (see [Sen]):

The fields are $B_{i j}, B_{0 i}$ and $H_{i j k}$. Only $B_{i j}$ has a conjugate momentum $\Pi_{i j}$. The others give constraints;

$$
\begin{aligned}
\partial_{i} \Pi_{i j} & =0 \quad \text { imposed by } B_{0 i} \\
\frac{1}{2} \varepsilon_{i j k l m} \Pi_{l m} & =H_{i j k}^{(g)}(H)+\frac{3}{2} \partial_{[i} B_{j k]}
\end{aligned}
$$

$$
\text { imposed by imposed by } H_{i j k}
$$

So we use the second equation to solve for $H_{i j k}$ and work with

$$
\Pi_{i j}^{ \pm}=\frac{1}{2}\left(\Pi_{i j} \pm \frac{1}{4} \varepsilon_{i j k l m} \partial_{k} B_{l m}\right)
$$

that satisfy

$$
\begin{aligned}
\left\{\Pi_{i j}^{ \pm}(x), \Pi_{k l}^{ \pm}(y)\right\} & = \pm \frac{1}{4} \varepsilon_{i j k l m} \frac{\partial}{\partial x^{m}} \delta(x-y) \\
\left\{\Pi_{i j}^{+}(x), \Pi_{k l}^{-}(y)\right\} & =0
\end{aligned}
$$

In particular we find

$$
\begin{aligned}
\Pi_{i j}^{+} & =-\frac{1}{2} H_{0 i j}^{(s)} \\
\Pi_{i j}^{-} & =\frac{1}{2 \cdot 3!} \varepsilon_{i j k l m} H_{k l m}^{(g)}=\frac{1}{2} \sqrt{-g} H_{(g)}^{0 i j}
\end{aligned}
$$

The hamiltonian is (at least if $g_{0 i}=0$)

$$
\begin{aligned}
H & =H_{+}+H_{-} \\
H_{-} & =\int d^{5} x-2 \Pi_{i j}^{+} \Pi_{i j}^{+} \\
H_{-} & =\int d^{5} x 4 \Pi_{i j}^{-} \partial_{i} B_{0 j}-\frac{2}{\sqrt{-g}} g_{00} g_{i k} g_{j l} \Pi_{i j}^{-} \Pi_{k l}^{-}
\end{aligned}
$$

which agrees with the energy E that we computed above.
In the end all the expressions for $T_{\mu \nu}$ and $\Pi_{i j}^{ \pm}$are what we would expect from an action of the form $-d B \wedge \star_{g} d B$.

Sources

To include a source J we take

$$
\begin{aligned}
S_{H}=\int & \left(\frac{1}{2} d B \wedge \star_{\eta} d B-2 H \wedge d B\right. \\
& \left.+\left(H+J_{+}\right) \wedge \tilde{\mathcal{M}}\left(H+J_{+}\right)+2 H \wedge J_{-}-J_{-} \wedge J_{+}\right)
\end{aligned}
$$

and so

$$
d H_{(g)}^{J}=d J
$$

but still

$$
d H_{(s)}=d\left(\frac{1}{2} d B+\frac{1}{2} \star_{\eta} d B+H\right)=0
$$

We find similar expressions for diffeomorphisms, hamiltonian etc. as those above with

$$
H_{(g)} \rightarrow H_{(g)}^{J}=H_{(g)}+J_{+}-\tilde{\mathcal{M}}(J)
$$

Supersymmetry

Recall our action is

$$
\begin{aligned}
S=\int(& \frac{1}{2} d B \wedge \star_{\eta} d B-2 H \wedge d B+H \wedge \tilde{\mathcal{M}}(H) \\
& \left.-\frac{1}{2} d X^{I} \wedge \star_{g} d X^{I}+\frac{i}{2} \bar{\Psi} \Gamma_{\mu} d x^{\mu} \wedge \star_{g} \nabla \Psi-\frac{1}{5} R X^{I} X^{I}\right)
\end{aligned}
$$

This is invariant under $\left(\nabla_{\mu} \epsilon=\frac{1}{6} \Gamma_{\mu} \Gamma^{\nu} \nabla_{\nu} \epsilon\right)$

$$
\begin{aligned}
\delta X^{I} & =i \bar{\epsilon} \Gamma^{I} \Psi \\
\delta B_{\mu \nu} & =-i \bar{\epsilon} \Gamma_{\mu \nu} \Psi \\
\delta H_{\mu \nu \lambda} & =\frac{3 i}{2} \bar{\epsilon} \Gamma_{[\mu \nu} \nabla_{\lambda]} \Psi+\frac{3 i}{2 \cdot 3!} \varepsilon_{\mu \nu \lambda \rho \sigma \tau} \eta^{\rho \alpha} \eta^{\sigma \beta} \eta^{\tau \gamma} \bar{\epsilon} \Gamma_{\alpha \beta} \nabla_{\gamma} \Psi \\
& -\frac{i}{4} \nabla^{\rho} \bar{\epsilon} \Gamma_{\rho} \Gamma_{\mu \nu \lambda} \Psi-\frac{i}{4 \cdot 3!} \varepsilon_{\mu \nu \lambda \rho \sigma \tau} \eta^{\rho \alpha} \eta^{\sigma \beta} \eta^{\tau \gamma} \nabla^{\omega} \bar{\epsilon} \Gamma_{\omega} \Gamma_{\alpha \beta \gamma} \Psi \\
\delta \Psi & =\Gamma^{\mu} \Gamma^{I} \partial_{\mu} X^{I} \epsilon+\frac{1}{3!} \Gamma_{\mu \nu \lambda}(H-\tilde{\mathcal{M}}(H))^{\mu \nu \lambda} \epsilon
\end{aligned}
$$

In this case $H_{(s)}=\frac{1}{2} d B+\frac{1}{2} \star_{\eta} d B+H$ is a singlet

Example: Reduction on S^{1}

The simplest case to consider is $x^{5} \sim x^{5}+l$ and

$$
g=\left(\begin{array}{cc}
\eta_{5} & 0 \\
0 & R^{2}
\end{array}\right)
$$

(N.B. R is dimensionless). A basis of three-forms is

$$
\begin{aligned}
\omega_{+}^{A} & =\Omega^{A} \wedge d x^{5}+\star_{5} \Omega^{A} \\
\omega_{-A} & =\Omega^{A} \wedge d x^{5}-\star_{5} \Omega^{A}
\end{aligned}
$$

and \star_{g} self-dual three-forms are given by:

$$
\begin{aligned}
\varphi^{A} & =\Omega^{A} \wedge d x^{5}+\frac{1}{R} \star_{5} \Omega^{A} \\
& =\frac{R+1}{2 R} \omega_{+}^{A}+\frac{R-1}{2 R} \omega_{-A}
\end{aligned}
$$

so $\tilde{\mathcal{M}}^{A B}=-(R-1) /(R+1) \delta^{A B}$.

Thus we find $(a, b,=1,2,3,4)$

$$
\begin{aligned}
H_{-}=\int d^{5} x(& \frac{2}{R} \Pi_{a b}^{-} \Pi_{a b}^{-}+4 R \Pi_{a 5}^{-} \Pi_{a 5}^{-} \\
& \left.\quad+4 \Pi_{a b}^{-} \partial_{a} B_{b 5}+\Pi_{a 5}^{-}\left(\partial_{a} B_{05}-\partial_{5} B_{0 a}\right)\right)
\end{aligned}
$$

Let us set $\partial_{5}=0$ and solve the $B_{a 5}$ constraint by

$$
\Pi_{a b}^{-}=-\frac{1}{4 l} \varepsilon_{a b c d} \partial_{c} A_{d}
$$

and hence $\Pi_{a 5}^{-}$is the conjugate momentum to A_{a} :

$$
\left\{A_{a}(x), \Pi_{b 5}^{-}(y)\right\}=\delta_{a b} \delta_{4}(x-y)
$$

Thus

$$
\partial_{0} A_{a}=\left\{A_{a}, H\right\}=8 R l \Pi_{a 5}^{-}+l \partial_{a} B_{05}
$$

and hence we arrive at 5D Maxwell:

$$
\begin{aligned}
L_{-}= & \partial_{0} A_{a} \Pi_{a 5}^{-}-H_{-} \\
& =\frac{1}{8 R l} \int d^{4} x\left(\left(\partial_{0} A_{a}-l \partial_{a} B_{05}\right)^{2}-\left(\partial_{a} A_{b}-\partial_{b} A_{a}\right)^{2}\right)
\end{aligned}
$$

Example: M5 on a Riemann Surface

Subject to suitable boundary conditions, corresponding to intersecting branes, a single M5-brane wraps the Seiberg-Witten curve [Witten] of the associated gauge theory:

$$
s=X^{6}+i X^{10}, \quad z=x^{4}+i x^{5} \quad s=s(z ; u)
$$

where the u are moduli.

The induced metric on the M5-brane is

$$
g=\left(\begin{array}{ccc}
\eta_{4} & 0 & 0 \\
0 & 0 & (1+\partial s \bar{\partial} \bar{s}) / 2 \\
0 & (1+\partial s \bar{\partial} \bar{s}) / 2 & 0
\end{array}\right)
$$

The low energy dynamics for the scalars of the M5-brane agrees with the SW effective action ($m=0,1,2,3$)
[Howe,NL,West]:

$$
\begin{aligned}
S_{s} & =\int d^{4} x \int d^{2} z \partial_{m} s \partial^{m} \bar{s} \\
& =\int d^{4} x \int d^{2} z \frac{\partial s}{\partial u} \frac{\partial \bar{s}}{\partial \bar{u}} \partial_{m} u \partial^{m} \bar{u} \\
& =\int d^{4} x \operatorname{Im}\left(\tau \partial_{m} a \partial^{m} \bar{a}\right)
\end{aligned}
$$

Here $\lambda=(\partial s / \partial u) d z$ is the holomorphic one-form and

$$
\frac{d a}{d u}=\oint_{A} \lambda \quad \frac{d a^{D}}{d u}=\oint_{B} \lambda \quad \tau=\frac{d a^{D}}{d a}
$$

However obtaining the correct vector equations knowing only the equations of motion was quite involved [$\mathrm{NL}, \mathrm{West}$].

Now we can reduce the form part of action on the Riemann surface Σ defined by $s(z)$

We perform a standard KK reduction ansatz

$$
\begin{aligned}
H & =\mathcal{F} \wedge \vartheta+\overline{\mathcal{F}} \wedge \bar{\vartheta} \\
B & =C \wedge \vartheta+\bar{C} \wedge \bar{\vartheta}
\end{aligned}
$$

where $\mathcal{F}=i \star_{4} \mathcal{F}$ and $\vartheta=(d u / d a) \lambda$.

Since Σ is non-compact the 0 -form and 2 -form terms in the ansatz give divergent contributions and must be dropped.

For an H of this type ${ }_{{ }_{g}} H=H$ and hence $\tilde{\mathcal{M}}(H)=0$.

We find the four-dimensional form part of the action is

$$
\begin{aligned}
S_{H}=\int & ((\tau-\bar{\tau})(d C \wedge i \star d \bar{C}+2 \mathcal{F} \wedge d \bar{C}-2 \overline{\mathcal{F}} \wedge d C) \\
& +\frac{d \tau}{d a}(-i \star d \bar{C} \wedge C \wedge d a+2 \overline{\mathcal{F}} \wedge C \wedge d a) \\
& \left.+\frac{d \bar{\tau}}{d \bar{a}}(i \star d C \wedge \bar{C} \wedge d \bar{a}+2 \mathcal{F} \wedge \bar{C} \wedge d \bar{a})\right)
\end{aligned}
$$

The equations of motion are

$$
\begin{aligned}
0 & =(\tau-\bar{\tau}) d C+d \tau \wedge C-i \star((\tau-\bar{\tau}) d C+d \tau \wedge C) \\
0 & =d\left((\tau-\bar{\tau}) i \star d C+2(\tau-\bar{\tau}) \mathcal{F}_{\beta}+i \star d \tau \wedge C\right) \\
& +d \bar{\tau} \wedge i \star d C+2 d \bar{\tau} \wedge \mathcal{F}
\end{aligned}
$$

We can substitute the first equation into the second to find

$$
d((\tau-\bar{\tau}) \mathcal{F})+d \bar{\tau} \wedge\left(\mathcal{F}+\frac{1}{2}(i \star d C-d C)\right)=0
$$

This agrees with Seiberg-Witten if $\mathcal{F}=-\frac{1}{2} d \bar{C}-\frac{i}{2} \star d \bar{C}$.

A Non-abelian $(2,0)$ Action

Next we want to construct a non-abelian $(2,0)$ action.
We can construct a free theory by including a gauge field along with a Lagrange multiplier term that imposes flatness:

$$
\begin{aligned}
S=\int & {\left[\frac{1}{4}\langle D B \wedge \star D B\rangle-\langle H \wedge D B\rangle-\frac{1}{2}\left\langle D_{\mu} X^{I} D^{\mu} X^{I}\right\rangle\right.} \\
& \left.+\frac{i}{2}\left\langle\bar{\Psi} \Gamma^{\mu} D_{\mu} \Psi\right\rangle+(\tilde{F} \wedge \tilde{W})\right]
\end{aligned}
$$

where $D=d-\tilde{A}$ and $\tilde{F}=d \tilde{A}-\tilde{A} \wedge \tilde{A}$ with

$$
\begin{aligned}
\delta \tilde{A}_{\mu} & =0 \\
\delta \tilde{W}_{\mu \nu \lambda \rho}(\cdot) & =3 i \bar{\epsilon} \Gamma_{[\mu \nu}\left[B_{\lambda \rho]}, \Psi, \cdot\right]+i \bar{\epsilon} \Gamma_{\mu \nu \lambda \rho} \Gamma^{I}\left[X^{I}, \Psi, \cdot\right]
\end{aligned}
$$

Here the matter fields take values in a vector space $\underset{\mathcal{V}}{\mathcal{V}}$ and the gauge field in a Lie-algebra \mathcal{G} with a representation \tilde{T}^{r} on \mathcal{V}.

- \mathcal{V} has an inner-product $\langle\cdot, \cdot\rangle$
- \mathcal{G} has an inner-product (\cdot, \cdot)

This leads to a three-algebra structure [Figueroa-O'Farrill, de Medeiros]:

$$
\begin{gathered}
{[\cdot, \cdot, \cdot]: \mathcal{V} \otimes \mathcal{V} \otimes \mathcal{V} \rightarrow \mathcal{V}} \\
{[X, Y, Z]=\sum_{r}\left\langle X, \tilde{T}^{r}(Y)\right\rangle \tilde{T}_{r}(Z)}
\end{gathered}
$$

which implies the combatability conditions

$$
\begin{gathered}
(\tilde{T},[U, V, \cdot])=\langle\tilde{T}(U), V\rangle=-\langle U, \tilde{T}(V)\rangle \\
{[U, V,[X, Y, Z]]=[[U, V, X], Y, Z]+[X,[U, V, Y], Z]+[X, Y,[U, V, Z]]}
\end{gathered}
$$

In order to construct interactions we consider the $(2,0)$ system of [NL,Papageogakis] and introduce a non-dynamical vector field Y^{μ} with scaling dimension -1

$$
D_{\mu} Y^{\nu}=0 \quad\left[Y^{\mu}, D_{\mu}(\cdot), .^{\prime}\right]=0 \quad\left[Y^{\mu}, Y^{\nu}, \cdot\right]=0
$$

Here the three-algebra is totally anti-symmetric and so we take

$$
\begin{aligned}
& 0=D^{2} X^{I}-\frac{i}{2}\left[Y^{\sigma}, \bar{\Psi}, \Gamma_{\sigma} \Gamma^{I} \Psi\right]+\left[Y^{\sigma}, X^{J},\left[Y_{\sigma}, X^{J}, X^{I}\right]\right] \\
& 0=D_{[\lambda} H_{\mu \nu \rho]}+\frac{1}{4} \varepsilon_{\mu \nu \lambda \rho \sigma \tau}\left[Y^{\sigma}, X^{I}, D^{\tau} X^{I}\right]+\frac{i}{8} \varepsilon_{\mu \nu \lambda \rho \sigma \tau}\left[Y^{\sigma}, \bar{\Psi}, \Gamma^{\tau} \Psi\right] \\
& 0=\Gamma^{\rho} D_{\rho} \Psi+\Gamma_{\rho} \Gamma^{I}\left[Y^{\rho}, X^{I}, \Psi\right] \\
& 0=\tilde{F}_{\mu \nu}(\cdot)-\left[Y^{\lambda}, H_{\mu \nu \lambda}, \cdot\right]
\end{aligned}
$$

Now the flatness condition on \tilde{F} is replaced by $\tilde{F} \sim[Y, H$,
So we adjust the Lagrange multiplier term to

$$
\mathcal{L}_{\tilde{W}}=\langle H \wedge \tilde{W}(Y)\rangle+(\tilde{F} \wedge \tilde{W})
$$

where $\tilde{W}(Y)=\frac{1}{3!} W_{\mu \nu \lambda \rho}\left(Y^{\rho}\right) d x^{\mu} \wedge d x^{\nu} \wedge d x^{\lambda}$ and make a guess

$$
\begin{aligned}
S_{\text {guess }}= & \int\left[\frac{1}{4}\langle D B \wedge \star D B\rangle-\langle H \wedge(D B-\tilde{W}(Y))\rangle+(\tilde{F} \wedge \tilde{W})\right. \\
& -\frac{1}{2}\left\langle D_{\mu} X^{I} D^{\mu} X^{I}\right\rangle-\frac{1}{4}\left\langle\left[Y^{\mu}, X^{I}, X^{J}\right]\left[Y_{\mu}, X^{I}, X^{J}\right]\right\rangle \\
& \left.+\frac{i}{2}\left\langle\bar{\Psi} \Gamma^{\mu} D_{\mu} \Psi\right\rangle+\frac{i}{2}\left\langle\bar{\Psi} \Gamma_{\mu} \Gamma^{I}\left[Y^{\mu}, X^{I}, \Psi\right]\right\rangle\right]
\end{aligned}
$$

The matter terms clearly reproduce their correct equations.
This has introduced a source for H of the form $\tilde{W}(Y)$.

Alas this isn't quite right:

- self-dual part of $\tilde{W}(Y)$ is non-zero.
- $D^{2} \sim \tilde{F} \neq 0$

After some more guess work we find [NL]

$$
\begin{aligned}
S= & \int\left[\frac{1}{4}\langle\mathcal{D} B \wedge \star \mathcal{D} B\rangle+\frac{1}{6}\langle\mathcal{D} B \wedge D B\rangle+\frac{1}{4}\langle\tilde{W}(Y) \wedge \star \tilde{W}(Y)\rangle\right. \\
& -\langle H \wedge(\mathcal{D} B-\tilde{W}(Y))\rangle-\frac{1}{2}\langle(\mathcal{D} B-\star \mathcal{D} B) \wedge \tilde{W}(Y)\rangle+(\tilde{F} \wedge \tilde{W}) \\
& -\frac{1}{2}\left\langle D_{\mu} X^{I} D^{\mu} X^{I}\right\rangle-\frac{1}{4}\left\langle\left[Y^{\mu}, X^{I}, X^{J}\right]\left[Y_{\mu}, X^{I}, X^{J}\right]\right\rangle \\
& \left.+\frac{i}{2}\left\langle\bar{\Psi} \Gamma^{\mu} D_{\mu} \Psi\right\rangle+\frac{i}{2}\left\langle\bar{\Psi} \Gamma_{\mu} \Gamma^{I}\left[Y^{\mu}, X^{I}, \Psi\right]\right\rangle\right]
\end{aligned}
$$

Here $\mathcal{D}_{\mu}=\partial_{\mu}-\tilde{\mathcal{A}}_{\mu}(\cdot)$ with

$$
\tilde{\mathcal{A}}_{\mu}(\cdot)=\tilde{A}_{\mu}(\cdot)-\frac{1}{2}\left[B_{\mu \nu}, Y^{\nu}, \cdot\right]
$$

This reproduces all the equations of motion of the $(2,0)$ system.

In particular B and \tilde{W} can be removed from the equations for the remaining fields.

It is invariant under $(2,0)$ supersymmetry:

$$
\begin{aligned}
\delta X^{I} & =i \bar{\epsilon} \Gamma^{I} \Psi \\
\delta B_{\mu \nu} & =-i \bar{\epsilon} \Gamma_{\mu \nu} \Psi \\
\delta \Psi & =\Gamma^{\mu} \Gamma^{I} D_{\mu} X^{I} \epsilon+\frac{1}{2 \cdot 3!} H_{\mu \nu \lambda} \Gamma^{\mu \nu \lambda} \epsilon-\frac{1}{2} \Gamma_{\mu} \Gamma^{I J}\left[Y^{\mu}, X^{I}, X^{J}\right] \epsilon \\
\delta H_{\mu \nu \lambda} & =\frac{3}{2}\left(1+\star_{\eta}\right) i \bar{\epsilon} \Gamma_{[\mu \nu} D_{\lambda]} \Psi-i \bar{\epsilon} \Gamma_{\rho} \Gamma_{\mu \nu \lambda} \Gamma^{I}\left[Y^{\rho}, X^{I}, \Psi\right] \\
\delta \tilde{A}_{\mu}(\cdot) & =i \bar{\epsilon} \Gamma_{\mu \nu}\left[Y^{\nu}, \Psi, \cdot\right] \\
\delta \tilde{W}_{\mu \nu \lambda \rho}(\cdot) & =3 i \bar{\epsilon} \Gamma_{[\mu \nu}\left[B_{\lambda \rho]}, \Psi, \cdot\right]+i \bar{\epsilon} \Gamma_{\mu \nu \lambda \rho} \Gamma^{I}\left[X^{I}, \Psi, \cdot\right]
\end{aligned}
$$

Note that this is a reducible representation of supersymmetry:

$$
\begin{aligned}
\mathcal{H}_{(s)} & =\frac{1}{2}(\mathcal{D} B-\tilde{W}(Y))+\frac{1}{2} \star(\mathcal{D} B-\tilde{W}(Y))+H \\
\tilde{\mathcal{A}}_{(s) \mu}(\cdot) & =\tilde{A}_{\mu}(\cdot)-\left[B_{\mu \nu}, Y^{\nu}, \cdot\right]
\end{aligned}
$$

are singlets.
The interacting part is five-dimensional: $\left[Y^{\mu} D_{\mu},,\right]=0$.
Coupling constant

$$
g^{2}=R_{5}\left(\frac{\left\langle Y_{\mu}, Y^{\mu}\right\rangle}{R_{5}^{2}}\right)
$$

Depending on the choice of Y one finds different five-dimensional theories.

- Y spacelike: (4+1)-dimensional super-Yang-Mills
- Y timelike: (5+0)-dimensional super-Yang-Mills
- Y null: novel non-Lorentzian theory $(G=\star G)$:

$$
\begin{array}{r}
S=\frac{1}{g^{2}} \operatorname{tr} \int d^{4} x d x^{0}\left(\frac{1}{2} F_{0 i} F_{0 i}+\frac{1}{2} F_{i j} G_{i j}-\frac{1}{2}\left(D_{i} X^{I}\right)\left(D_{i} X^{I}\right)\right. \\
\left.-\frac{i}{2} \bar{\Psi} \Gamma_{-} D_{0} \Psi+\frac{i}{2} \bar{\Psi} \Gamma_{i} D_{i} \Psi+\frac{1}{2} \bar{\Psi} \Gamma_{-} \Gamma^{I}\left[X^{I}, \Psi\right]\right)
\end{array}
$$

16 supersymmetries and 8 superconformal supersymmetries [NL, Owen][NL, Mouland].

Path integral reduces to instanton $\mathrm{QM}[$ Mouland]

An Ω-deformed version has an $S U(3,1)$ symmetry, 8 supersymmetries, 16 superconformal symmetries and an $A d S_{7}$ dual [NL, Lipstein,Richmond] [NL, Lipstein,Mouland,Richmond]

Conclusions

In this talk we adapted Sen's prescript for self-dual forms to the $(2,0)$ theory.

- Obtained a more geometrical formulation
- Obelian theory reproduces the dynamics of a single M5
- Presented an interacting non-abelian version which describes two M5-branes on an S^{1}

Comments

Interesting new geometrical structure for self-dual forms: $\tilde{\mathcal{M}}$. Diffeomorphisms are enabled unusually.

Extend to DBI-like M5's: Make $H-\tilde{\mathcal{M}}(H)$ non-linear? [Perry,Schwarz],[Howe,Sezgin West],[Pasti,Sorokin,Tonin]

Extend to $(1,0)$ theories [Sambtleben,Sezgin,Wimmer]
Is the appearance of a second connection
$\tilde{\mathcal{D}}_{\mu}=D_{\mu}-\frac{1}{2}\left[B_{\mu \nu}, Y^{\nu}, \cdot\right]$ suggestive of some 2-form structure?
Better understanding of modular anomalies vs diffeomorphisms?

\%

