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G-SMOOTHING THEORY

R. LASHOF AND M. ROTHENBERG

Introduction. If G is a finite group then smoothing theory [L3] for topological
manifolds can be carried over to G-smoothing theory for G-manifolds with only
small changes.

1. Replace vector bundles by G-vector bundles. A G-vector bundle is a vector
bundle p: E — X such that £ and X are G-spaces and p and the O-section s are
G-maps, and G acts on E through vector bundle maps. The tangent bundle of a
smooth G-manifold is a G-vector bundle.

2. Replace R" bundles by G-R" bundles. If M is a G-manifold then the tangent
microbundle is a G-microbundle. However to prove a G-Kister theorem that G-
microbundles contain G-R” bundles unique up to equivalence one needs to know
that the G-microbundle is locally equivalent to a G-vector bundle. This will be
true if M is locally G-smoothable in the sense of Bredon [B1]. It is easy to show that
a G-manifold M is locally smoothable if its tangent microbundle is locally linear.
A standard construction gives classifying spaces for G-vector bundles and G-locally
linear R” bundles.

3. G-isotopy extension theorem. Let M be a locally smoothable G-manifold and
K © M a G-invariant compact subspace. Consider the semisimplicial complex
E(K, M) of G-embeddings f: 4 x U —» 4 x M, fcommuting with projection on
the i-simplex 4, when U is a G-neighborhood of K and we identify f and f:
4 x U - 4 x M if they agree on some smaller neighborhood of K. Then r:
Homeo(M) — E(K, M) is a fibration, where H(M) is the ss-complex of G-homeo-
morphisms of M. This may be proved using the work of Siebenmann [S1].

4. G-immersion theorem. Let M be a locally smoothable G-manifold. For H =« G
let My = (xe M|G, is conjugate to H). Let MH = fixed point set under H.
MH is a locally flat submanifold. Let M = GMH.

LEMMA. Let (H ), be the orbit types of M. For each je J, let [M| i € I(})] be the
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G-components of MH7). The minimal elements of this partially ordered set under
inclusion are the topologically closed G-components of the My, and hence are
G-submanifolds.

DEerFINITION (BIERSTONE). A smooth G-manifold is said to have a good handle-
bundle decomposition if there is a normal direction in each handle bundle on which
G acts trivially.

THEOREM (BIERSTONE). A smooth G-manifold has a good handle-bundle decomposi-
tion if and only if the minimal elements of the (M) are nonclosed (as manifolds).

DEerFNITION. If a locally smooth G-manifold M has nonclosed minimal elements
in (M), we say that M satisfies the Bierstone condition. Bierstone [B2] proves a
G-Gromov Theorem for smooth G-manifolds satisfying the Bierstone condition.
In particular, he proves

THEOREM. I(M™, N#) -4 R(TM, TN) is a homotopy equivalence when M satisfies
the Bierstone condition, (M, N) is the space of G-immersions and R(TM, TN) is
the space of G-vector bundle maps.

A topological version of this is true for locally smoothable G-manifolds where
R(TM, TN) is G-R» bundle maps and the spaces are treated semisimplicially. This
uses the G-isotopy extension theorem above.

5. G-smoothing up to sliced concordance. As in the case G = (e), the immersion
theory has the immediate consequence that if M is a locally smoothable G-manifold
satisfying the Bierstone condition, then the sliced concordance classes of G-smooth-
ings of M are in 1-1 correspondence with the isotopy classes of reductions of its
tangent bundle to a G-vector bundle. Two smoothings M,, Mzof M are said to be
sliced concordant if there exists a smoothing (M x I), of M x Isuch that the
projection /I, on I is a submersion (and hence /I;71(¢) is a smooth submanifold for
each rel)and (M x 0), = M,, (M x 1), = Mj.

Gerald Anderson [A1] also outlines a proof of the result along the same lines but
he does not mention the G-isotopy extension theorem and may have a different
argument in mind.

6. G-engulfing theorem. In order to pass from a smoothing theory up to sliced
concordance to a general smoothing theory up to isotopy. one uses an engulfing
lemma (this is where the 1estriction n # 4 comes into ordinary smoothing theory).

THEOREM. Let M be a compact smooth G-manifold and h:M x R — V=1 be a
G-homeomorphism onto a smooth G-manifold such that h)/M x 0 and h|oM x R
are smooth. Then if for each H = G, dim VH # 4, there is a G-diffeomorphism
fiM x R— Vsuchthat f|{M x 0 = h|M x 0and f|0M x R = h|oM x R.

7. G-smoothing theorem.

THEOREM. Let M” be a locally smoothable G-manifold such that for any H = G,
dim MH # 4. Then the G-isotopy classes of G-smoothings of M are in 1-1 cor-
respondence with the isotopy classes of reductions of the tangent bundle to a G-vector
bundle. (If oM # @, we need dim(@M)H # 4.)

In terms of classifying spaces we have
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M—L.BTop,(G),

where ¢ and 7 are G-maps. Thus our problem reduces to G-obstruction theory.
This comes down to studying the obstructions to lifting the map on fixed point sets
for H = G.

[B Top,(G)]# is the disjoint union of B(Topg), where p: H — O(n) is a representa-
tion and Top? < Top, is the subgroup of homeomorphisms commuting with
o(h), he H. The sum is over one p from each Top, equivalence class of representa-
tions. The fibre of pZ: [BO,(G)}¥ — [B Top,(G)}¥ above x € B Top¢ is the disjoint
union of Top#'/0%" when p! is Top, equivalent to p and we pick one p! from each
0, equivalence class. For groups H of odd prime power order, Schultz has shown
that Top, equivalence implies O, equivalence and hence (p¥)~!(x) = Top%/O’.
In any case, our obstructions lie in the homotopy groups of Top?/08, p:H — O(n).

8. 7, Tops/Os, p semifree. We consider a stable representation a:H — O, <
0, < --- = 0,.,, where the action of H on S»~1is free.

THEOREM. There are fibrations (up to homotopy equivalence):

(1) Po(S"™*) — Tops.4/O%.x = TopPs 411/ O pi1s

(2) P(S"** mod S*¥) — Topy,,/Top, = Topy, 4.1/Tops+1,

(3) P«(S7™* mod S*) — Pa(S7t*) — P(S*),
where Pa(Smt%) < P(S"*) is the subgroup of pseudoisotopies (or concordances)
which commute with «.

THEOREM (D. ANDERSON AND W. C. HSIANG).
P(S*k mod S¥) ~ P,(L x RFY),

where P,(L x RFY) is the group of bounded pseudoisotopies of L x RFl L =
S 1/q.

THEOREM (D. ANDERSON AND W. C. HSIANG [A2]). Forn + k = 6, [[=II,(L).

K 120100, 0<i<k—1,
[KO[Z(H)L i=k-1,
Why(Il, i =k,

ILPy(L x Rk = 1

iy P(L x DY), iz k+ 1.

RemARKS. For I Abelian, K_s[Z(/])] = O for S > 1.

For /T Abelian + prime power order, K_{[Z(Il)] = O.

For [ cyclic of order p, K,[Z(I)] = class group of Q(e?=/?).

For ] finite K,[Z(IT)] is finite.

For [l free Abelian K,[Z(]T)] = 0.

The above results show that to compute /1, TopZ,,/O%,,, at least up to extensions,
one can either compute /I;,Top?/O* and work backwards or begin at JI;,Top%/O¢%
and work up. We have had some success in both approaches, but before stating the
results we first note an immediate consequence for stability of G-smoothings.

9. Stability theorems.
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DEFINITION. Let M be a G-manifold. M is said to have a spine of codim = r if
the cohomological dimension of M#/G < dim MH — r.

EXAMPLE 1. M x Rr, where G acts trivially on R’, has a spine of codim r.

EXAMPLE 2. If MH and 9M*H are noncompact for all H = G, then M has a spine
of codim = 1.

DEFINITION. Let #;(M) be the isotopy classes of G-smoothings of M. Let
Fc(M) be the isotopy classes of stable G-smoothings, i.e., of M x Rs, s arbitrarily
large. Let My =M — oM.

Consider the following statements:

A,: M spine codim r then #((M) — Z4(M) is epi,

B,: M spine codim r then & o(M) — (M) is bijective,

C,: M spine codim r then ¥ ¢(M) — F¢(M,) is epi.

THEOREM. Let M be a locally smoothable G-manifold, G finite and acting semi-

freely. Then if dim M — dim M¢ # 2 and dim M¢ = 5:

(1) If G is finite Abelian, then A,, Bs, C, are true.

(2) If further G is of prime power order, then A, By, C, are true.

(3) If further G is of prime order and the class group of Z[e?i/0(G)] =0 then A,,
B,, C, are true.

@) If G = Z,, Z3 then A, By, C are true.

10. Computation of II; Top?,,. First note that
II; Topg;., ~ II; Top, @ II; Top;;. ,/Top,.

Write T, = TopZ,, /Top,. Then
(a) One has an exact sequence, n + k = 6, k = 0:

0 — Iy A(L) = ey Tin, pin = Whi(ll) - LT  — LT3, ki
= KoZ(II) > e T3 = e Ty, o = KAlZUD] - -+

Here A(L) = block automorphisms of L = S7!/a. Also

H ifn=3,
Ly =<2Z ifn=2,
e ifn=1

(b) Forn + i = 5,i = 1, there is an exact sequence [A3] (L, = L U point)

= [2"U(Ly), G/Top] = L5(l) — IL[#(L)/A(L)]
- [2(L4), G/Top] — ... =[2(Ly), G/Top] — Z;(1I),

where #(L) is the space of homotopy equivalences of L and #5(/]) is the Wall
group. Thus (a) and (b) determine /;Topg,,/Top,, 0 < i < k, up to extensions,
n + k =z 6. (For i = 0, one needs a special argument.) For i = k + 1, we have

I Tops. [ Top, = My 1 A(L x DY),

where A(L x DFt1) = homeomorphism of L x D¢t! fixed on L x Sk Results
of Hatcher and Wagoner give results on /[A(L x D*1). The higher homotopy
groups are still unknown. However, for G-smoothing, G acting semifreely, this is
sufficient.
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11. Computation of II; Top*/0*, o(H) prime power.
THEOREM. If n + k = 8 and k = 5, there exists an exact sequence
— H,. (Ko) » Cit* — [Si+Top/Oly — H,ip1(Kg) =+

Here

(a) [Sz+*, Top/O] = equivariant homotopy classes of base-pointed maps =
stable H-smoothings of S7+* which give standard « action on D%t < S7ntk,

(b) We Crt if W is a smooth H-manifold, W homeomorphic to S**, WH
homeomorphic to S*. If x € W#, the action of H on W, is given by a. We can take
the H-connected sum along the fixed point set. Identify W = 0 if W = 9V where
0V is homeomorphic to D! and V# is homeomorphic to D»t1, C#+* is determined
up to extensions by homotopy groups of spheres and Wall groups, etc. (Rothenberg
[R1]). Cz+* is finitely generated, rank is known if H is cyclic.

(c) A differential d;: K, — K, can be defined so that d,d;; = 0. If o(H) is odd, it
is conjectured that d,(x) = x + (— 1)‘x. If this is the case then

Heven({f'o) = elements of order 2,
Hoau(Ko) = Ko/2K,.

THEOREM. There is an exact sequence

- [(Drt#+l x L, Sntk x L), (Top/O, )] - [Sz™*, Top/Oly — [S*, Top*/02]
- [(DrrHe X L’ Sn‘Hz—l X L), (Top/o, *)] —> e,

Thus II(Top*/0%) is finitely generated with rank = rank Cr+*,

1. G-bundles. Let p: E — X be a locally trivial bundle with fibre F and group A.
p is called a G-bundle, or more precisely a G-A bundle if E and X are G-spaces, p is
a G-map, and G acts on E through A-bundle maps. Two G-A4 bundles over X are
called G-A equivalent if they are A-equivalent via a G-equivariant map.

ExAMPLE 1. A G-vector bundle of dimension # is simply a G-L, bundle, L, the
group of linear isomorphisms of R”.

If p: E— XisaG-A bundle, G acts on the associated principal A-bundle P through
bundle maps. That is, G acts on the left and A acts on the right of P and these
actions commute. Conversely, if p: P — X is a principal G-4 bundle and A4 acts on
the left of F, then E = P x 4 F is a G-A bundle with fibre F. Two G-A bundles with
fibre F are G-A equivalent if and only if their associated principal G-A4 bundles are
G-A equivalent.

In order to prove a covering homotopy property or to produce a classifying space
for ordinary bundles the local triviality property is essential. For G-4 bundles we
will need a G-local triviality condition for the same purpose. Before defining this
condition we recall the local structure of a completely regular G-space X (see Bre-
don [B1]): For any x € X there is a G,-invariant subspace V, containing x, called
a slice through x, such that ¢,: G x;_V, — X, ¢,[g, v] = gv is a homeomorphism
onto a G-invariant neighborhood of the orbit Gx. The G-invariant neighborhood,
GV, is called a tube about Gx. For any G-space X we define a G-chart to be a pair
(V, H) where H = G, Vis an H-invariant subspace of X and the map ¢: G x4V —
X, Jlg, v] = gv, is a homeomorphism onto an open set. (Note that ' need not be a
slice, i.e., H may not be G, for any x € V.) A G-atlas is a family {(V,, H,)} of G-
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charts such that {GV,} covers X. If X is paracompact, then any cover by G-invariant
open sets has a refinement which is a G-atlas.

We note that the preimage under a G-map of a G-chart is a G-chart. That is, if
(V,H)is a G-chart in X and f: Y —» X is a G-map, then f~Y(V, H) = (f~(V), H).
This means f~}(V) is H-invariant and G x 5 f~Y(V) ¢ G (V) = f(GV) is a
homeomorphism.

We now describe the appropriate generalization of product bundle: Let H = G
and p: H —» A be arepresentation. If A acts on the left of F and H on the left of V,
then H acts on V' x Fby h(v, y) = (hv, p(h)y). We denote by 12(V) the G-A4 bundle
over G x yz V with fibre F, given by p: Gx 5 (V x F) > G x4 F, plg, (v, )] =
[g, v]. (Note that p is trivial as an 4-bundle.)

DEFINITION. A G-A bundle p:E — X with fibre F is called G-A locally trivial (or
simply G-locally trivial if A is fixed) if there is a G-atlas {(V,, H,)} on X such that
E |G V, is G-A equivalent to 1#«(V,) for some representation p,:H, — A (under the
identification ¢,: G x gy V, — GV,).

If X is completely regular this is equivalent to Bierstone’s definition [B2]: For
each x € X, there is a G -invariant neighborhood U, such that p~I(U,) is G,-4
equivalent to U, x F with G, action h(u, y) = (hu, p(h)y), where ue U,, he G,,
yeFandp,: G, > A is arepresentation.

If p: E— Xis a G-A bundle and f: Y — X is a G-map the induced bundle f*(p):
f*E — Yis a G-A bundle. Further if p is G-A4 locally trivial, then f*(p) is G-A4 locally
trivial.

A G-A bundle is G-A locally trivial if and only if the associated principal bundle
is G-A locally trivial. ’

The following is essentially due to Bierstone and Wasserman.

THEOREM 1. Any G-L, bundle over a completely regular X is G-locally trivial.

PrOOF. Let p: E — X be the associated G-vector bundle. Let x € X and let
¢: U, x R* - p~}(U,) be a local trivialization.

We can assume U, is G,-invariant, since any neighborhood contains a G,-invari-
ant one as an L,-bundle. Define o, : G, —» L, by p(h)y = ¢;thp,y, heG,, y € R™.
Now let p:U x R — p~I(U) be the map obtained by averaging over G,; i.e.

1 _ —
Puy = W Z h—lgohu(px(h)y)9 ue Ux'

Then ¢, is linear, ¢, = ¢, and go(u, y) = ¢(gu, p(g)y), g € G,. Since ¢, = @, is
an isomorphism, ¢, is an isomorphism for u in some smaller G,-invariant neigh-
borhood U, = U,. Hence (plUx x Rn: U, x R - p~Y(U,)is a G,-L, trivialization,
and p is G-L, locally trivial. Q.E.D.

Just as for ordinary bundles, one may ask if a G-A4 bundle reduces to a G-B bundle,
B < A. If A/B has local cross-section in A, this is true if and only if the associated
G-A bundle with fibre A/Bhas a G-cross-section. A G-vector bundle over a paracom-
pact base can always be given a G-invariant Riemannian metric, and so reduces to
a G-0, bundie, O, the orthogonal group. This reduction is unique up to equival-
ence. In particular, if follows from Theorem 1 that G-O, bundles over paracom-
pact spaces are G-0O,, locally trivial.

DEFINITION 2. A G-A4 bundle p: E — X is called numerable if there is a trivializing
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G-partition of unity, i.e., there exists a G-partition of unity subordinate to a G-atlas
{(V,, H,)} such that E|GV,is equivalent to 1#«(V,), some p,: H, — A.

Bierstone [B3] proves that a G-locally trivial bundle over a paracompact base
satisfies the G-covering homotopy property. We generalize this slightly to:

THEOREM 2. A numerable G-A bundle satisfies the G-covering homotopy property.

To show this one follows the proof for ordinary numerable bundles as given in
Husemoller [H1], simply substituting G-partitions of unity for ordinary partitions
of unity. This comes down to showing that a G-bundle E over X x I, when G acts
trivially on the /-factor, is G-equivalent to E; x I, where E;, = E/X x (0). To see
that Husemoller's argument works one needs to observe the following lemma and
corollary.

LEMMA 3. Let X be a G-space and suppose X xI = (W, H), i.e., X x I may be
identified with G xy; W via [g, w] > gw. Then W = Wy x I, where W, =
W (X x(0).

Proofr. The map W, x I =« G x ; W =, G/H has image eH since G/H is discrete
and 7 is connected. Hence Wy x I = W. To see that W < W, x [ first note that
since X x (0) is G-invariant, X x (0) = G x; Wyand X x I = G x5 (W, x I).
Hence if we W, w = g(wy, t), some g € G, wy € W, t € I. Since (wy, t) e W, we must
have g € H; and g(wy, 1) = (gwy, ), gwg € Wy. Hence we Wy x Tand W= W, x I

COROLLARY 4. With X x I = (W, H) as in the above lemma, 15(W) = 14(W)
x I as a G-A bundle.

Of course, Theorem 2 has the:

COROLLARY 5. If p: E — X is a numerable G-A bundle and f;: Y; - X, i = 1, 2,
are G-homotopic G-maps, then f¥(p) and f¥(p) are G-A equivalent.

DEFINITION 3. A universal G-A4 bundle p:P — X is a G-A numerable bundle such
that G-A equivalence classes of G-4 numerable bundles over any G-space Y cor-
respond to G-homotopy classes, [ Y, X]¢, of G-maps of Y into X, the correspondence
being given by induced bundles.

Now for ordinary bundles a universal A-bundle is characterized as a numerable
contractible principal A-bundle [D1]. By a slight refinement of this argument one
may prove:

THEOREM 6. A numerable principal G-A bundle p: P — X is universal if and only
if it satisfies: For each H — G and representation p: H — A consider P as an H-
space under the action p — hpp(h)™', he H,p € P. Then

() PH#£ @.

(2) For any py € PH, P is H-contractible to py.

Proor. We first show the conditions are necessary:

(1) Consider the G-4 bundle z: G xy A - G/H, H acting through p:H — A.
Let e; € G, e;e A be the unit elements. Then [e;, e;] € G X 4 A and hle, e;] =
[A, e5] = [ey, p(h)es] = [ey, es]p(h). Since p is universal, there is a G-A4 bundle map
¢:G xy A— P. Then
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holey, e)] = §0(h[91, eg)) = §0([el: ez]P(h)) = (¢ples, eDp(h).

Hence ¢[e;, e;] € PH, and (1) is satisfied.

(2) Consider the G-4 bundle z: G x 5 (P x A) > G x y P, H acting on P as
above. Define the G-A bundle maps 4,: G x z (P x A)— P,i=0,1,by Ay[g,p,a] =
gpa and A[g, p, al = gpya, py € PH7. By the universality of P there is a G-4
homotopy A,: G x5 (P x A) » P, 0 < t < 1, between 4y and ;. In particular,
p = Aley, p, 2] is deformed to Ay[ey, py, e2] = py. But

Ader, hpp(h)~1, e5] = Afh, p, o(h)~'] = hi[ey, p, ezlo(h)~1.

Hence A, defines an H contraction of P to py.

The proof of sufficiency is just the same as in Dold [D1], except that we replace
the section extension property by the equivariant section property. In particular,
if p’: P > X' is a G-A bundle, G-4 bundle maps of P’ into P correspond to G-
sections of the associated bundle P’ x 4 P over X’ with fibre P. If p’ is numerable
and (V, H)is achart, P’ x 4 P|GV ~ G x ;(V x P). But G-sections of a bundle of
the form z: G x (V' x P)—> G x yz V are in 1-1 correspondence with H-sections
of #: V x P— V. The sufficiency follows from the H-contractibility of P. Q.E.D.

If we restrict our attention to a class of numerable G-4 bundles for which the
local trivializations are given by representations p in some designated subset S of
all representations, then a numerable G-A4 bundle with local trivializations in S
will be universal for the class of bundles if and only if (1) and (2) are satisfied with
respect to representations in S. In particular, we are interested in the case where S
consists of representations into some subgroup B = A. These bundles will be
denoted as G-(A4, B) bundles. We have in mind the case where A = Top,, the group
of homeomorphisms of R” fixing 0 € R” and B = O,,. The associated bundles with
fibre R” will be called locally linear G-R” bundles. In fact,a G-R” bundle p: E — X,
with X paracompact, will be locally linear if and only if for each x € X there exists
a G-invariant neighborhood U of x such that E|U is G-R” equivalent to a G-
vector bundle.

THEOREM 7. Universal G-(A, B) bundles exist (see Lu[L1]).

PrOOF. We first note some properties of infinite joins.

Mz P> X, i =1,2,3, ..., 1is any sequence of principal G-4 bundles then
the infinite join P = %; P;is a G-A4 bundle.

In fact a point in P is of the form ] A, p,, where 2; are the join coordinates, A, = 0
with only a finite number nonzero, and }] A, = 1. The actions of G and 4 on P are
given by g(33 A p)) = 23 A(gpy)and (35 A, pa = X, A;(p; a). Let z: P — X be the
quotient map under the A-action, i.e., X = P/A.

Then as shown in Husemoller [H1], 7 is a locally trivial, in fact numerable, A-
bundle. We will show

(2) If each 7; is a numerable G-(4, B) bundle, so is 7.

Consider a chart (V, H) = X,. Let W = {3} ;p;|; > 0 and p; € z;(V)}.
Then W is A-invariant and G~W = {2 A4pilA; > 0 and p; e 7;Y(GV)} is 4-
invariant. Also 7(GW) = Gr(W). Let W = z(W). Now r;: GW — p;, r (X A:p;)
= pj,is a G-4 map and induces a G-map 7;: GW — GV < X, with 77}(V) = W.
Hence (W, H)is achartin X.
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If P,|GV = 14(V), we claim P|GW = 1%(W). This is equivalent to showing that
if p;:V x A - z71(V) is an H-A equivalence with H-action h(v, a) = (hv, p(h)a),
then there is an H-A equivalence ¢: W x A —» W = g~ (W) with H-action h(w, a)
= (hw, p(h)a). Following Husemoller, define §: W — W, 53, A;p,) = X, Apa’l,
where ¢;'(p;) = (v, @). Then s is A-invariant and induces a cross-section s: W — w.
Define ¢: W x A — W by ¢(w, @) = s(w)a. Then ¢ is an 4-equivalence. To see
that ¢ is an H-A equivalence note that

hs(z(22 4:p))) = (22 Aip;) = 25 Ahpia
= 22 Ahp,p(h~Do(hyat = (5(23 A:hpio(h)1))o(h)
= (Shﬂ,'(Z tiz))p(h)y

i.e., hs(w) = (s(hw))o(h) and hp(w, a) = s(hw)o(h)a = ¢(hw, p(h)a). Hence P|GW =
1HZ(W).

pTaking an atlas of charts in each X, the reunion of all the corresponding charts
in X will be an atlas in X. Now the 4;: P — [0, 1], being A-invariant, induce 4;: X —
[0, 1]. Let g(x) = max(0, 2(x) — 23,4, (x)). Then {x;%(0, 1]} is locally finite and
v; = wi/ X3; u, is a locally finite partition of unity subordinate to {47! (0, 1]}. Let
{a*} be a partition of unity on X, subordinate to the trivializing atlas. Let 3% =
akoF;: 2740, 11— [0, 1], 7; as above. Then {3%,} is a partition of unity subordinate
to the trivializing atlas on X. Hence 7 is a numerable G-(4, B) bundle.

(3) For any representation p: H — B, PH = x,P¥ assuming P¥ # @, alli.

Now choose a representative H from each conjugacy class of subgroups of G
and a representative p: H — Bfrom each A-equivalence class of representations of
H in B. Let {pg} be this set. Let Eg = G x 4, 4, pg: Hy — B, and let E = [ E;.
Let pg: G x g, A — G/Hp be the projection and p: E — [[5 G/Hj be || ps. Then E'is
a numerable G-(A4, B) bundle. Further for any subgroup H of G and representative
p: H - B, EH # (. Infact, [e;, eo] € G x g, A satisfies hley, e)] = [ey, es]os () and
[g, eo] satisfies ghg™![g, €3] = [g, eaxlpg(h), h € H. Finally [e,, a] satisfies hle;,a] =
[e1, ala1pg(h)a. So all subgroups and representatives have fixed points.

For each i, let P; = E and z;= p. Then P = x; P; satisfies property (1) of
Theorem 6. Now let p;;€ PH. Then pj belongs to some finite join *,., P¥ < P.Let
Pk = {3 2;p; € P|A;= 0 for i < k}. Then it is easy to construct (see [H1]) a G-A
deformation of P into P% For any representation p: H — B this deformation will
be in particular an H-deformation. Now py * P* = P and since py, is a fixed point,
the contraction of this cone to the vertex py will be an H-deformation. Hence P
satisfies (2) of Theorem 6, and P is universal. Q.E.D.

REMARK. If X'is a G-space and (¥, H) is a chart (i.e., G x 5y V —» GV is a homeo-
morphism) then (gV, gHg™!) is a chart with the same image (i.e., G X g, V —
GgV = GV is a homeomorphism). Further, the trivial G-4 bundle 14(V) over GV
is equivalent to lffé_-l) (gV), where ¢(g) means conjugation by g.

The next theorem gives information on the universal base space for G-(4, B)
bundles. In order to state it we need some notation: Let H = G. For any repre-
sentation p: H — B, let A? = {a € A|p(h)ap(h)'=a}. Then A¢ is a closed sub-
group of A. Let R be a collection of representations of H in B containing exactly
one representation from each A-equivalence class.
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THEOREM 8. Let w: P — X be a universal G-(A, B) bundle. Then X = [], pBA®
(disjoint union), where BA? is a universal base space for the topological group A°.

PROOF. Let PP = {pe P|hp = po(h), he H}.

(1) Pris nonempty and contractible (by Theorem 6).

(2) For any p € P, 7Y (zn(p)) () PP = pA®, i.e., h(pa) = (pa)p(h) < po(h) a =
pap (h) < p(h)a = ap(h).

(3) 7n(P?) = XH.

@) If xe X¥#, x e n(PP), some p € R.

In fact, by the remark above, there is a trivializing chart (V, H") with x € V and
P|IGV=18 (V) ¢: H - B.Now Hc G, < H'. Sincez 1 (V)= V x A with H’
action, A’ (v,a) = (W' v, p'(h)a); (x, e;) € V x Aand h(x, e;) = (x, ey)p’(h). Hence
x e w(P?) where p = p'|H. If p ¢ R, then c(a) - pe R, some a € A. But if pe Pe,
pa~! e P<@r Hence x € z(P*), some p € R.

(5) =| Pe is a locally trivial principal A¢-bundle and z(P?) is openin X*.

If x e 7 (PP), then we may choose a trivializing chart (¥, H') such that x € ¥ and
P|GV = 1,p: H - Band p'|H = p. Now if U = V [ X# we claim z~(U)
N PP=UxA° <V x A.Infact, 77 (U) = U x A with h'(u, a) = (W' u, p(h")a).
If (u, a) € P?, h(u, a) = (u, a) p(h) = (hu, p(h)a) = (u, p(h)a) by (3). Hence p(h)a =
ap(h) and a € A°. Since V'is open in X, U is open in X#. But (u, e;) e PPand U
7z(P?). Hence Pe is locally trivial and z(P?) is open in XH.

(6) (P?) N n(P") = B, 0,0 €R, 0 # 0.

If xez(P?) (| z(P?) and p e z1(x) () P?, then pae P”, some ae A. Hence
p = c(a) o p'. Contradiction.

By (1), (4), (5) and (6), #(P?) = BA° and X# = [],.p BA".

Notation. We will denote the classifying space for G-O(n) bundles by BO,(G) and
for G-(Top,, O,) bundles by B Top,(G). This last will cause no confusion because
only locally linear R#-bundles will be used. Note that since G-vector bundles are
locally linear R»-bundles, there is a G-map of BO,(G) into B Top,(G) defined up
to G-homotopy. More explicitly:

LemMA 9. If : E Top,(G) — B Top,(G) is a universal G-(Top,,, O,) bundle then
the quotient map q: E Top,(G) — E Top,(G)/0,, is a universal G-0,, bundle and we
can take BO,(G) = E Top,(G)/0,. With this choice BO,(G) is a numerable G-
(Top,,, O,) bundle over B Top,(G) with fibre Top,/O,,.

PROOF. ¢ is a principal G-O, bundle. To see that it is G-locally trivial let (V, H)
be a trivializing chart for z. Then z7 ! (GV) ~ G x (V' x Top,),p : H - O,,, and
z(GV)/0, =~ G x g (V x Top,/0,). Now Top, — Top,/O, has local cross-
sections since O, is compact Lie. Since Top, and hence Top,/O,, is metrizable,
Top, is an H-0O,, locally trivial bundle over Top,/O,, and hence has a trivializing H
partition of unity. It is easy to see that this implies that ¢ is a numerable G-0,
bundle. Since E Top,(G) satisfies (1) and (2) of Theorem 6 as a G-(Top,,0,)
bundle it satisfies (1) and (2) as a G-O,, bundle and g is universal.

THEOREM 10. Let p,: BO,(G) —» B Top,(G) be the G-bundle of Lemma 9. For
any H = G, let pi: [BO,(G)}? — [B Top,(G)H be the restriction to fixed point sets.
Then pf is a numerable bundle such that the fibre over the component B Top, p: H —
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0,, of [B Top,(G)¥ is [[ s Tops/O4, where S consists of one representation
o1 H— O, from each O,-equivalence class which is Top, equivalent to p.

Proor. If z € E Top,(G) is such that q(z) € [BO,(G)]# = [E Top,(G)/0,}#, then
hz = zp'(h), ' : H— O, arepresentation. But if z(z) € BTop, o’ is Top, equivalent
to p (see step (6) of the proof of Theorem 8). Thus

p='(B Topg) N [BOG)}H = [] BOY,
oES
where BO? = (E Top,(G))?/0%,(E Top,(G))” = {ze E Top,(G)| hz = zp'(h)}. Since
foreach o' € S, B Topf = B Tops = (E Top, (G))”/Top4 and the quotient map is
a numerable bundle (see proof of Theorem 8), pZ| B Top# is a numerable bundle
with fibre [] < s Tops/04.

2. G-microbundles. Before defining G-microbundles we recall the definition of
microbundles without G-action.

DEFINITION 1. An R*microbundle g over X is a diagram of maps and spaces
X5 E -2 X such that ps = idy and there exist an open covering {U,} of X and
open embeddings ¢,: U, x R* - p~I(U,) such that

Ua x Rn
Sq / \pa
Uq Uq

s )4
r(Uy)

commutes, where 5,(x) = (x, 0) and p,(x, y) = x. y is called numerable if there
exists a partition of unity subordinate to {U,}.

If EVis a neighborhood of sX in E, X % E0 2, X is again a microbundle. How-
ever, E9 may not be a numerable microbundle even if Eis, as the following example
from [H2] shows:

ExAMPLE 1. Let X be a denumerable set and let x, € X be a fixed element. Define
a topology on X by requiring U < X to be open if U is empty or contains x,. Then
X is connected and so any continuous function f: X — R is constant. Consider the
trivial microbundle ¢: X % X x R-2 X, s(x) = (x, 0), p(x, r) = x. Writing
X={x,i=0,1,2;} let E° = X x R be the set E® = {J; x; x (=1/i, 1/i).
Then E° = | ); U; x (—1/i, 1/i), where U; = Xis the openset U; = {x;,0 = j<i}.
Hence E? is an open neighborhood of s(X) = X x 0. We claim E? is not a numer-
able microbundle. Suppose there existed a partition of unity {1,} and open em-
beddings ¢,: W, x R - p~(W,) N E% W, = A;%0, 1], such that pp, = p, and
¢a Sq = 5 as above. Define f,: W, — R by f(X) = prep.(x, 1). Then f, is a con-
tinuous positive function and so is f = YA, f,: X = R. Then on the one hand, f'is
a constant function, and on the other hand {(x, r)e X x R|r £ f(x)} must be in
E?°. Contradiction.

We will say that a neighborhood E° of sX in the numerable microbundle y:
X% E-2 Xis a microbundle neighborhood if X — E° £ X is a numerable
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