
Cohesive Toposes and Cantor's 'iaufcer Einsen'
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Some years ago I began an introductory course on Set Theory by attempt-
ing to explain the invariant content of the category of sets, for which I
had formulated an axiomatic description. I was concerned to present an
ideological vision of the significance of the objects of this category, which I
called abstract sets. I emphasized that an abstract set may be conceived of
as a bag of dots which are devoid of properties apart from mutual distinct-
ness. Further, the bag as a whole was assumed to have no properties except
cardinality, which amounts to just the assertion that it might or might not
be isomorphic to another bag. After hearing this description, John Myhill
(who attended the first few lectures) said to me: 'I have seen all this be-
fore.' 'Where?' I asked. 'In Cantor', came the reply. Later he brought
me his copy of Cantor's works with a note saying: 'See page 283 where
Cantor speaks of ". ..iaufcer Einseri".' (This unusual German expression
could mean roughly 'nothing but many units'.) Cantor speaks on the one
hand of 'Mengen' and, on the other, of 'Kardinaien'. Myhill had noticed
that Cantor's description of 'Kardinaien' and my description of 'abstract
sets' were essentially the same.

The term 'Mengen' is normally translated as 'sets', and of course every
book on set theory contains copious references to 'cardinals', but these
'cardinals' are completely different from those described by Cantor himself.
Moreover, 'Mengen' in Cantor's sense are not explicitly discussed at all in
these books. They must, of course, be implicitly present in order to justify
the claim that 'set theory' has a genuine relationship with mathematics, but
as theoretical objects in Cantor's sense they play no role. It seems then
that we, the mathematicians of this century, have neglected an important
component of Cantor's concept of set. How did this come about?

This omission may partly stem from overzealous 'guidance' on the part
of editors of collected works of great nineteenth century mathematicians. It
is natural, in the case of recondite original works, to follow the 'guidance'
of a knowledgeable editor. But the result can be misleading. Zermelo, the
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6 LAW VERE

editor of Cantor's works, asserts that, despite Cantor's greatness, his ac-
count of the passage to 'ivardinaien' is incorrigibly inconsistent, and that
in any case it is more important to proceed immediately to the arithmetic
of cardinals—cardinals, that is, in the contemporary sense. More precisely,
Zermelo says that this attempt to explain cardinals as the result of a process
of abstraction involving the 'iauter Einserf was 'not a happy one', because
these 'Einsen' must be different from one another, but how can they be dif-
ferent if they have no distinguishing properties? This contradiction, which
is really, as I will show, a contradiction in a productive sense, seems to
have led Zermelo to conclude that the whole concept is inconsistent, that
one cannot speak of cardinality in this manner, and, therefore, that if one
persisted in doing so it would not be possible to move forward to interesting
cardinality calculations—even though Cantor himself did exactly that!

Similar assertions of inconsistency and impossibility are footnoted to
some of the most interesting passages in H. Grassmann's collected works
by his editor E. Study. Thus when studying the works of the great mathe-
maticians of the last century we must strive afresh to find the core content
of their thought, without being prejudiced by the opinions of the editors of
their collected works, and others during the period after the last decade of
the century.

The word isomorphism has two kinds of meanings: First, in an actual
category some maps in particular might be invertible; second, an equiva-
lence relation among the objects is defined by the existence of isomorphisms
in the first sense. While Cantor of course used the second abstraction too
(as 'same cardinality'), he seems to have used the term Kardinale to de-
note a prior, more particular, abstraction in which an actual category of a
more purified nature is extracted from a richer one, accompanied by specific
connections between the two categories.

We know that the concept of equicardinality of 'Mengerf is somehow con-
cerned with a kind of isomorphism which in Cantor is called 'Machtigkeit',
that is, two 'Mengeri1 are of equal potency if there exists a bijection between
them. Now a very interesting point which emerges from a study of Cantor's
works is that he himself cites the origin of the word 'Machtigkeit' in the
work of the great Swiss geometer Jakob Steiner, who apparently used this
term to signify isomorphism in a different category, namely, the category of
algebraic spaces. In his 1850 work on conic sections, he uses the concept of
equal potency to explain how the ellipse is not equivalent to the parabola,
nor the parabola to the hyperbola, in an intrinsic geometric sense. These
are all objects in one simple category in which there are many different geo-
metric objects, over which there is defined a concept of isomorphism whose
invariants are just the usual geometric ones. Cantor himself asserts that
he lifted this concept of isomorphism from its geometric context in order
to arrive at his—necessarily more abstract—concept of isomorphism. This
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COHESIVE TOPOSES 7

fact is not to be found in any book I have seen (although it is emphasized
in a recent paper of Conn McLarty who noticed it independently). One
can say that here the concept of category is already present in embryonic
form, because there is an implicit unifying concept in the analogy between
algebraic spaces and abstract sets. Cantor actually says that his concept of
Machtigkeit is different, yet similar to that of Steiner. So one can reason-
ably speculate that had mathematicians studied Cantor more closely, they
might have discovered the theory of categories fifty years before Eilenberg
and Mac Lane. But the 'foundational' culture has somehow prevented even
those foundationalists who know something of Steiner from noticing the
significance of this connection.

Let us now turn to a more precise description of 'Mengerf and 'Kar-
dinaJen'. A 'Menge' has an underlying ensemble of points, but, more im-
portantly, it is both variable and cohesive, features not possessed by an
abstract set except in a degenerate way. Today, one habitually uses the
term 'topology', to indicate, for example, a cohesive structure possessed by
a line (on which might be defined, for instance, a function with a Fourier
expansion). Now of course the line possesses a topology in the usual sense,
but also present are many other similar structures better adapted to partic-
ular problems. Not only must one study these particular technically denned
structures, one must also have a general conception of spaces with cohesion.
It seems to me that, in his mathematical journey from number theory to
Fourier analysis to 'Mengerf to 'Jvardinaien', Cantor probably also thought
something similar to this:

Cohesion of a topological nature we may regard as an objective cohesion;
on the other hand, there is also cohesion of a subjective sort, arising from
my coming to know the points of a ''Menge1 in a certain way—for example,
as the values of a particular recursive function. That is, in my subjectiv-
ity, through the growth of my knowledge of a certain 'Menge', I may come
to know a certain point before I come to know another one. The succes-
sion of the appearances of the points does not usually have an objective
mathematical significance, but nonetheless may be of relevance in certain
contexts, for example, those involving calculation. This too is a type of
cohesion which we may call subjective. (A good example of a type of set
possessing subjective cohesion is that of recursive set, which is 'traced' by
various threads generated by particular recursive functions.) It seems that
both of these types of cohesion were recognized by Cantor: this is why he
used a double bar to indicate the double abstraction which may in general
be involved in passing from a cohesive Menge to its associated KardinaJe.

Let us suppose that M is a particular category of Mengen, for example,
one of the various categories of topological spaces, the category of recursive
spaces, one of the various categories of combinatorial spaces, etc. Cantor
says that we can take the 'pure' set of points of any such space, thus arriving
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8 LAWVERE

at a cardinal. A contemporary illustration of this process is provided by a
color television picture with its subtle contrast of color and detail furnished
by advanced technology. We can turn down the color knob and turn up
the contrast knob until nothing remains but stark white dots on a black
background with even, we may imagine, the outlines of figures suppressed.
The picture with all its beautiful colors is a iMengel: but in order to study
effectively a certain superficial (but necessary) aspect of the picture we may
be compelled to consider the 'bag' of dots or points obtained in the way we
have just described. In carrying out this process of abstraction one forgets
temporarily all beautiful particular features, in order to concentrate just
on the points, now deprived of qualities, yet still equinumerous with those
of the colored picture. The result still seems also to be a Menge, but a
Menge of a degenerate sort. Thus, we find that every cardinal gives rise to
a Menge of a type which we shall call discrete and that in fact we have a
pair of adjoint functors:

discrete

Thus a map from a cardinal K to the points of a Menge M is a map of
abstract sets, that is, a map of a completely general kind with no condition
of 'continuity' or preservation of cohesion: however, specifying such a map
is equivalent to specifying a continuous map from discrete(A') to M. The
continuous maps in the other direction are by no means arbitrary for most
M: for example, there will be no nonconstant M-maps M —> discrete(2)
if M is connected. In fact, for many M the foregoing clause serves well
as a definition of which objects M of M are to be regarded as connected,1

for the maps of M must preserve cohesion, and M may have a great deal
of cohesion, while of course 2 has none. Thus a nonconstant map of the
kind indicated is only possible if there is a break in the cohesion of M. A
nonconstant map to a discrete space, if we can find one, would be the surest
way of distinguishing two points of a given space. As is always the case
with adjoints, if we take the case in which K is points(M) and the map the
identity in K, we obtain a canonical map in M from discrete(points(M))

1 This definition of connectedness is correct not only because it has useful technical
consequences, but more fundamentally, because it corresponds to an objective concept:
a 'Menge' possesses cohesion tn general, but might in particular have two parts, each
cohesive in itself, but with no cohesion 'between' them. In this situation there would
exist an M-map preserving all the cohesion there is to preserve, but mapping the two
parts to the respective points of the space discrete(2) whose cohesion is nil.
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COHESIVE TOPOSES 9

to M itself which may be regarded as the best possible approximation to
M 'from the left' given only its cardinality.

Now the 'points' functor also has a right adjoint, which is sometimes
called the codiscrete or chaotic functor. The chaotic and discrete spaces
determined by a cardinal are often completely different, so that, for exam-
ple, all M-maps chaotic(.ftTi) —> discrete(A'2) are constant, whereas the
M-maps in the opposite direction are (for two reasons) in exact correspon-
dence with the arbitrary K-maps Ki — \ K\.

M—>chaotic(JQ
points(M) — • K

Figure 1

Here the horizontal bar is an abbreviation to indicate that there is a natural
bijection between the M-maps with domain and codomain as indicated
above the bar and the K-maps indicated below the bar.

In general, a discrete space is completely deficient in its cohesion so that
each point remains forever itself and no motion is possible, i.e., no map from
a connected space to it can pass through two distinct points. By contrast, a
chaotic space is so excessive in its cohesion that any point can be moved to
any other point without any 'effort', that is, with no attention paid to the
nature of the space-'time' which might be used to parameterize the motion.
Thus we may say that points in a discrete space are distinct, while points
in a chaotic space are indistinguishable if chaotic spaces are connected.

Interesting categories of Mengen—combinatorial or bornological in na-
ture—can be found which are, in a certain sense,2 generated by the chaotic
objects only, despite the fact that they contain objects with arbitrarily
complicated higher connectivity properties. However, these are extreme
special cases and I want to continue for a while to discuss the more general
situation in which we are given an arbitrary category M of Mengen, itself
containing two opposed subcategories of discrete and codiscrete objects,
each essentially identical with a category K of Kardinalen (see Figure 2).
The two composite functors are both isomorphic to the identity of K:

points o discrete = IK = points o chaotic

That is, if to the canonical map discrete(points(M)) —> M we apply the

2 That is, for such special M, a knowledge of all the special maps chaotic(A') —> M
suffices to determine the arbitrary object M completely. This phenomenon has been
studied by topologists for over 50 years under the name 'simplicial complexes'.
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10 LAWVERE

functor 'points', we obtain an isomorphism of cardinals

points(discrete(points(M))) - ^ points(M).

Similarly, using the canonical map M —> chaotic(points(M)), applying
the same functor 'points' as before yields an isomorphism of cardinals

points(M) —¥ points(chaotic(points(M))),

even though the two original canonical maps themselves are usually very
far from being isomorphisms of Mengen. Thus the contradiction objecti-
fied in this system of adjoint functors explains the 'inconsistency' which

discr(K)

M oc 'M

codiscr(K)

0

Figure 2
blocked Zermelo's understanding. For the cardinal points(M) associated
with M is, as we have just seen, isomorphic both to the cardinal associated
with the space discrete(points(M)) and to that associated with the space
chaotic(points(M)): yet in the former all points are distinct, and in the
latter, indistinguishable.

The 'inconsistency' of diversity versus indistinguishability, of having a
definite number of points, and yet these points being indistinguishable by
any property, seemed to Zermelo an irresolvable contradiction. The ex-
plicit use of adjoint functors between categories finally enables its truly
productive nature to be revealed for all to see.3

3 There are also toposes in which there are few connected objects and in which
discrete(K) = codiscrete(A') for all K less than a measurable cardinal, and yet
'codiscrete jt discrete' is the main feature in the sense that maps from codiscretes de-
termine all objects: for example, the topos of bornological sets (in which linear algebra
becomes functional analysis).
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COHESIVE TOPOSES 11

Let us return to the configuration depicted in Figure 1 . It is natural to
describe this configuration as an adjoint cylinder. Not only are the three
functors involved adjoint, in the sense explained, but moreover the two
composites at K are the identity. Such adjoint cylinders I propose as the
mathematical models for many instances of the Unity and Identity of Oppo-
sites: this may equivalently be regarded as a property of the single functor
'points', in view of the essential uniqueness of adjoints. That is, M unites
the discrete and codiscrete; K is a sub'object' of M in two opposite ways.
Recall that the term 'subobject' always implies an inclusion; if we ignore
the inclusion, we obtain K identically. The opposition here is expressed
precisely by the two opposite senses of adjointness; it does not mean that
the two sub'objects' are disjoint, since here they overlap in the two 'truth
values' 0, 1 (see Figure 2).

One can take this notion of Unity and Identity of Opposites further.
For after having grasped the basic features of Kardinalen, we can start
to re-examine Mengen, i.e., return to mathematics, equipped with more
precise tools.4 One now finds that there are often further adjoint cylinders
in between those depicted in Figure 1:

discrete! — T, l chaotic

Here the intermediate category L is less abstract than K and contains more
information about the 'real' objects in M. On the other hand, L is simpler
than M and perhaps more amenable to computation.

As an example of such an intermediate category, start with the three
element monoid

Ai = {1, do, di} didj = di i, j = 0,1

and consider the category KAi of right A i-sets. The objects of this cate-
gory are also known as reflexive directed graphs. We then have an adjoint

* Perhaps Cantor himself intended to do this, since at one point he suggests that the
difference between ponderable matter and ethereal matter might just be a question of
cardinality: a suggestion, which although probably inadequate,.does at least show an
intention that this abstract machinery should be applied to a pressing problem.

 at U
niversity of K

ent on O
ctober 7, 2011

philm
at.oxfordjournals.org

D
ow

nloaded from
 

http://philmat.oxfordjournals.org/


1 2 LAWVERE

cylinder:

/ ^ • J

discrete ( points )

^ ~ K

Here the points functor omits all the connecting arrows from a given graph
and adjointness forces the codiscrete graph on a given set of points to
have exactly one arrow connecting each ordered pair of points. The points
functor is actually representable by the graph possessing a single point and
only the degenerate arrow at that point, which can also be seen as a special
case of the left adjointness of the discrete graph. Given an interesting graph
X containing some information, any map of its points into the points of the
associated codiscrete graph can be uniquely extended to a graph morphism
from X itself because each arrow in X has exactly one place to go in the
codiscrete graph.

This example is worth a little more discussion since both K and KA> are
toposes. K forms a Boolean topos with truth value object QK = 2 = 1+1. It
is important to note that the fact that K is Boolean does not necessarily im-
ply that its objects are totally abstract sets, since when M is (the category
of Mengen associated with) algebraic geometry over a non-algebraically-
closed field, the natural base topos K is a Boolean topos involving actions
of the Galois group. (This summarizes part of Galois' great achievement.)

By contrast, the truth value object fi^, in KA> turns out to be a five-
element graph which cannot be disconnected as a sum in any non-trivial
way.

Given any subgraph A of any graph X, the arrows of X are partitioned into
five kinds relative to A: those which are totally or truly in A, those which
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COHESIVE TOPOSES 13

are completely outside A, those which enter A (as does x in the figure),
those which leave A, and those which make an excursion from A only to
return. The truth value object is in some sense the pure case in which all
these possibilities are realized by taking A to be the single point 'true'.
But on the other hand, for an arbitrary configuration A in an arbitrary X
there is a unique graph morphism 4>A to fiAl which maps A to 'true': the
characteristic morphism of A.

We can use the elements of il^1—the truth values—to start measuring
things. Consider for example the canonical map from any graph X to the
codiscrete graph on the points of X; its image is a subgraph A\ of the
chaotic graph which therefore has a characteristic morphism to fl^i •

canonical Chaotic(points( X ))

Since this particular subobject contains all points, the characteristic mor-
phism actually factors through the subobject il\ consisting only of the loop
at 'true' and 'true' itself. Thus an arrow of the chaotic graph is really just
any pair of points but it goes to 'true' iff there exists an arrow in X between
those points; otherwise it goes to the loop. So we have a 'measure' of the
presence of arrows in X.

Can we find further adjoint cylinders between abstract sets and graphs?
No, because graphs are one-dimensional. However, the graphs themselves
may well occur 'sandwiched' between abstract sets and some more complex
category M. The crucial condition for this to happen is the presence in M
of an object T which has exactly two points and three endomaps in M, for
then we can use T to initiate a deeper analysis of arbitrary objects M by
defining a T-edge of M to be any map T —> M, or, in other words, a point
of the function space M7'. In this way we define a functor from M to KAi
which in many cases will possess both left and right adjoints, giving rise to
an adjoint cylinder, and thus decomposing the cylinder structure of Mengen
over Kaidinaien into a stack of two adjoint cylinders. As a result, we can
obtain upper and lower 'bounds' on a Menge once we know its graph.

The method suggested by Cantor which we are trying to make explicit
here is roughly this: Among the many categories of cohesion and variation
rich with mathematical interest, let us sharpen in particular our knowledge
of the discrete and constant whose interaction with the rest serves as one
tool for studying them all. It can be used in conjunction with another
important tool as follows: If a certain small category A C M has been
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14 LAWVERE

somewhat understood, then maps T —> M for T in A, but M less known
can be reasonably deemed 'figures in M of shape T", and

points(MT)

is the cardinal of such figures, depending functorially on M, with the con-
travariant functorality in T giving the 'structure' of a right A-set expressing
incidence relations. Often the three adjoints emphasized above are joined by
a fourth, components H discrete H points H codiscrete , assigning to each
Meage M the cardinal representing its maps into discrete Mengen. But
then the 'higher connectivities' of M axe represented by components(MT)
for suitable T such as tori and spheres. For a category M in which variation
rather than cohesion is most important, the 'same' four adjoints relating it
to K are usually called rather

orbits H stationary H equilibria H chaotic,

where the last only sometimes exists.
The dialectic reflected in this method is that between imagined Being in

general with all its interlocking categories of cohesion and variation on the
one hand and the extreme special case of discreteness and constancy on the
other. Proper understanding of this dialectic may put into a different light
debates over 'foundational' questions such as whether there is an infinite
set of reals of cardinality less than the continuum, or whether there is a
large measurable cardinal. The answers are clearly no if we are pursuing
constancy toward an extreme, because Godel's L construction would oth-
erwise give us something still more constant. (It might seem that Godel's
L would rest, if anything does, on von Neumann's a priori e-chains, but
that was refuted twenty years ago by William Mitchell who showed how to
construct it from a suitable given category, structured only by composition
of maps; however, to my knowledge this has not been pursued since.) On
the other hand, the answer is clearly yes, the GCH is false, if we are con-
sidering almost any cohesive variable topos of independent mathematical
interest. Work of the past thirty years, starting with Cohen, showed that
the GCH and many similar constancy properties can actually fail even in
toposes where the variation is sufficiently hidden to escape detection by the
more obvious constancy indicators such as Booleanness and the axiom of
choice. There is a principle, elucidated over the past fifteen years, to the
effect that if a statement in internal logic can be refuted by cohesion and
variation, then it can also be refuted by variation alone; thus to deal with
cohesion itself, as in algebraic topology, requires going beyond the internal
logic.

Cantor's theory of Jaufcer Einsen may be compared with Galois' con-
tribution to algebraic geometry: The study of spaces denned by equations
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COHESIVE TOPOSES 15

and quantities varying over them had been much developed before him, but
Galois' incisive work on the case of zero-dimensional algebraic spaces be-
came indelibly intertwined with the subsequent continuing study of higher-
dimensional ones. Similarly, the very special Boolean toposes continue to
come up from both sides in the analysis of general toposes, further unfolding
the results of the method which Cantor envisioned.
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ABSTRACT. For 20th century mathematicians, the role of Cantor's sets has been
that of the ideally featureless canvases on which all needed algebraic and geomet-
rical structures can be painted. (Certain passages in Cantor's writings refer to
this role.) Clearly, the resulting contradiction, 'the points of such sets are distinct
yet indistinguishable', should not lead to inconsistency. Indeed, the productive
nature of this dialectic is made explicit by a method fruitful in other parts of
mathematics (see 'Adjointness in Foundations', Dialectics 1969). This role of
Cantor's theory is compared with the role of Galois theory in algebraic geometry.
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