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Outline of Synthetic Differential Geometry

F. William Lawvere

[Initial results in Categorical Dynamics were proved in 1967 and presented in a series of
three lectures at Chicago.  Since that time a flourishing branch of it called Synthetic
Differential Geometry has given rise to four excellent textbooks by Kock, Lavendhomme,
Moerdijk & Reyes, and Bell.  To help make this subject more widely known and to
further encourage its application, I gave some talks in February 1998 in the Buffalo
Geometry Seminar.  The following outline with 7 appendices was distributed as seminar
notes.  I have made a few corrections now (Nov. 1998), such as switching some A’s and
B’s.  But I have added Appendix 8, concerning the interesting work circulated in October
1998 by Kock & Reyes, in which they verify my main claim and also make several further
observations.]

A cartesian closed category is one having exponential or internal hom

right adjoint to cartesian product:

There is a natural bijection   

  

X → YA

A × X → Y

between the indicated sets of maps, for all X.  It follows that this bijection is

mediated by natural transformations

X 
λX →  (A ×  X)    A

A ×  YA εY →      Y

for each A.  It also follows that the exponential is a contravariant functor of

the given A;  i.e. given a map  A α →      B, there is an induced natural map in

the opposite direction

YB αY →      YA

in the same category.  Calling ‘points of X’ the figures of shape  1  in X, i.e. the

maps 1  →  X where  1  is the terminal object, it follows in particular that the

points of an exponential YA indeed do parameterize the maps  A → Y, and



that εY  acts as ‘evaluation’, etc. (Recall the computer philosophy, according to

which a stored program is merely a special sort of data.)

The induced maps may be seen as a special case of the fact that for any

three objects there is in the category a ‘composition’ map

YX  ×  ZY →      ZX

However, cohesiveness and variability of the objects in general comes from

the figures of more general shape than punctural.  The category  X/S, where  S

is a given object of  X,  has as objects the objects of  X  further structured by a

given map to  S, and as morphisms has commutative triangles over  S  in  X.

This is the usual geometric way of dealing with families of spaces

parameterized by  S, namely the spaces in the family are the fibers of the

structural map;  the forgetful functor   X/S  →   X  takes the total space of the

family.  Note that the identity map  1S  is the terminal object of   X/S  so that a

‘point’ in the latter category is ‘the locus of a moving point’ in the view of the

original  X.  There is the functor

 X  
(  )S →       X/S,

assigning to each  X  the ‘constant family’  X  ×  S  proj →      S  (all of whose

fibers are  X);  this functor is not full, since even between two constant

families of spaces there are usually many non-constant S-parameterized

families of maps.  Indeed, it is easily seen that there is a bijection

 X  (S,YA) = (X/S) (AS ,YS)

between hom sets, i.e. that the S-figures in YA are just the maps ‘from A to Y’,

but in X/S.

A locally cartesian closed category X is one in which each of the

categories X/A is cartesian closed;  since products in  X/A are just the fiber

products over  A  in   X, that is easily seen to be equivalent to the requirement

that for each map  A α →      B, the pullback functor   α∗: X/B  →   X/A  has a

right adjoint, often denoted by  ∏A/B when  α  is understood.



Spaces of intensive (contravariant) or extensive (covariant) variable

quantities on  X  are seen to partake of the same kind of cohesion/variation as

the domain spaces  X  by using the cartesian closed structure.  Thus for a given

rig  R  in  X,  RX =   F(X)  is another rig in    X (i.e. continuous, smooth,

bornological, etc.).  Using the action of the multiplicative monoid  R  on  RX.

one can carve out from  RRX
  (using an equalizer) the subobject  HomR(RX,R)

=  M(X)  which plays the role of ‘distributions of compact support’ on  X. (In

the smooth  X , the homogeneous maps are usually automatically linear.)

The above method of obtaining the infinite-dimensional spaces of

analysis from the finite-dimensional ones of geometry, is in principle well

known.  Implicit for 300 years and explicit for at least 30 is also (see my 1968

paper on ‘diagonal arguments’ or Michor and Kriegl’s recent AMS book, but

also see Fox, Brown, Kan, Steenrod much earlier for the sequentially

continuous and simplicial cases)  the fact that even these infinite-

dimensional spaces  W  are determined by their categories  Xfin/W  of finite-

dimensional figures.  For example, if  S  is a 1-dimensional segment, then a

figure of shape  S  in  W  could also be called a path , and in fact many spaces

are essentially path-determined.  The maps in the category of small figures in

W  are commutative triangles in   X
S’     →                S

 

W

and determine all significant ‘incidence relations’ among figures.  The

adequacy of small figures in  W  means that a map   W  -------->  R  is

determined by the functor it induces from the category of small figures in  W

to the category of small figures in  R, for any space  R.  The mathematically

reasonable condition on any proposed determination of ‘small spaces vs.

general spaces’ requires this adequacy for all W.

But exponentiation also provides, in another manner, the way to

determine the small (finite dimensional) spaces from the infinitesimal ones,

the essential goal of differential geometry and continuum physics !  This is

done by postulating that among the finite dimensional spaces there are some

‘amazingly tiny’ ones which in a suitable sense determine everything.

(Although papers in algebraic geometry refer to these as ‘zero-dimensional’, I



prefer to reserve that term for the much more restricted class of nearly

discrete objects, and consider that the a.t.o.m.s (=amazingly tiny object

models) have an ‘infinitesimal dimension’ in a sense which can be made

precise.)  All the cited books do this via a postulated rig object  R  (for

coordinatizing a line)  which is assumed to have enough nilpotent elements:

Defining  Dn ⊂→  R 
(  )n+1

0
 →→     R  to be subobject of  R  such that a figure  x in R

belongs to Dn  iff xn+1 = 0  (and  D = D1 for short), the key axiom is that the

map  Rn+1 →   RDn   (which parameterizes functions representable by n-th

degree polynomials) is an isomorphism.  Identifying D1-figures as tangent

vectors and hence XD1 →    X  as the tangent bundle of any space  X, we thus

have in particular that the tangent bundle of the line is 2-dimensional,

relative to R.  Since

(YA)D1  =  (YD1 )A

(we bypass Banach manifolds, etc. etc.) to arrive at the tangent bundle of any

function space, e.g. those where Y = R, A =  5  or  A = R5.

Since the tangent bundle is thus a representable functor, a vector field

X →  XD1  on  X  can equivalently be viewed as an infinitesimal action

D1 ×  X   →   X  (by the basic transformation of cartesian closure);  such always

automatically induces a derivation (in the Leibniz sense) of the function

algebra  RX.  Note that there is automatically a  space  Vect(X) of all vector

fields on  X, with its own intrinsic cohesion and variation, but that there is

also the (cartesian closed) category Vect(X) in which an object is a space

equipped with a given vector field and in which a morphism is an

infinitesimally equivariant map.  Restriction along the inclusion  D1  ⊂→  R

induces a functor
Flows (X) →    Vect (X)

whose adjoints help to organize thinking about actually solving the ODE

implicit in a given vector field.  (Here a flow means an action of the additive

monoid  R ).

Actually, D1 is a coordinatized bit of time,  D1 ≈ T1 , where the only

structure  T1  has is a unique point  1 o →      T1.  The axiom above implies

that T1T
1  contains  R  as a canonical retract and that the multiplication in  R

comes from the canonical monoid structure on  T1T
1  that any space of



endomorphisms has.  Each  Dn thus consists of those retardations whose n+1

iterate is the point in the instant. Thus one can actually reconstruct   R  and its

algebraic structure from the purely geometrical data of a cartesian closed

category with a given pointed object  T1 .

For any pointed object  T, TT  is canonically bipointed for there are the

names of both the identity map and the constant map.  These points are both

in the object  R, now defined to be the part of   TT  which consists of

0-preserving endomaps.  An important axiom is that the bipointed object  R

be a connected object.  Now we see that the finite dimensional spaces  Rn  are

all retracts of function spaces of ‘infinitesimal’ objects.

But in what sense are these a.t.o.m.s  T  really tiny?  There are several

answers, some based on the intrinsic Heyting logic of subobjects, etc.  A strong

condition (and amazingly, all this is actually concretely realizable) is that the

tangent bundle functor have a further right adjoint:

  

    

X→ Y1/T

XT → Y

This permits representation of differential forms as merely ‘functions’

X  →  R1/D  valued in a bigger fixed rig.  It also permits to show that the

category of 2nd order ODE’s is also locally cartesian closed (even a topos), as is

briefly seen as follows:

Given a map   A α →        B, one can consider the type of structure

which for any  X  would consist of a given map

XA   →   XB

which is a section of  αX  .  This may be thought of as a “B-tuple of A-ary

operations’ on  X  subject to one defining identical equation.  In case  A = 1,

such an  X →  XB  is equivalent to a pointed action  B ×  X  →  X  and it is

well-known that such actions constitute a new topos over which the original

one is ‘essential’.  In case B = D1, this topos consists of all first order ODE’s.

Even with A = 1 the property that  B  is an a.t.o.m. was important in Kock’s

proof of a theorem of Sophus Lie concerning the flow lines of an ODE.

If  A  is an a.t.o.m., such a section of  αX  is equivalent to a map

X   →   XB/A  satisfying the one equation, which implies that the forgetful

functor  X α f* →        X  (from the category of prolongation structures being



considered,  back to the topos of spaces) thus has not only the ‘free’ left adjoint
f!  expected algebraically, but also ‘cofree’ right adjoint  f*  which in turn

implies in particular that  X α  is a topos.

The higher-order ‘monoids’ implicit in the above are not familar

because in the category of abstract sets there are no a.t.o.m.s, except  A = 1.  The

case of particular interest for physical dynamics is that where  α  is the

inclusionT1 ⊂→  T2  into a second-order instant (coordinatized by the

inclusion   D1 ⊂→  D2  into the space of  r  in  R  for which  r3  = 0).  A

structure in  X α is exactly a smooth prolongation of tangent vectors in a space

X  to 2nd order jets in X, i.e. a second order ODE or dynamical law on  X .

With the obvious definition of morphism, these therefore form a topos, by

the above argument.  Of course if  X  itself is a function space  EB, then among

the ingredients for a prolongation operator are differential operators

considered as maps;  in other words, these ODE’s include PDE’s as a special

case.

Actual motions which follow a given  α-dynamical law in  X  are to be

considered as morphisms  T  →   X  in  X α  where  T  is equipped also with

an  α-prolongation law modeling time;  for example, if  T  is coordinatized by

R  (usually not itself an a.t.o.m. if there is non-trivial Grothendieck topology

in the picture) there is the obvious prolongation structure given by

RD τ ⊂→        RD2  for which

τ (x,v)( t) = x + vt for all t3 = 0

i.e. ‘zero acceleration’.

APPENDIX   1

Figures as structure:  Graphs

A simple example of the role of figures in deriving the internal

structure of objects is provided by the ubiquity of (reflexive directed multi)

graphs.  If  1 →  →       I  is any choice of two distinct points in any chosen object

of any category  X, there is an induced functor, from  X, to the category of such

graphs:  each object  X of   X  has not only the set  X(1,X) of points, but the set

X (I,  X) of ‘directed edges’;  composition with the chosen points gives the

needed ‘source and target’ structure.  Any map  X  →   Y  in the category  X
induces a map of these graphs which preserves this source and target



structure, merely because of the associativity of composition.  In case  X  is a

topos and  I  is adequate, we can conclude that  X  is  the category of graphs if

moreover  I  has no endomorphisms other than the obvious three.

APPENDIX  2

Nilpotent Calculus

As engineers have implicitly known for centuries, the use of nilpotent

quantities is very effective in reducing differential calculus to high school

algebra.  For example, we can prove that the length  C(r)  of the boundary of a

disk is  2πr  if we define  π  to be the area of a unit disk, as follows:  By

homogeneity the area of a disk of radius  r  is  A(r) =  πr2  and the area of a

perturbed disk of radius  r + h  is  A(r+h) =  π(r + h)2.  Thus the area of a thin

strip around the boundary circle is

A(r + h) − A(r) =  π(2rh + h2) =  2πrh

where in the last step we interpret ‘thin’ to mean  h2 = 0.  But the same area is

also equal to   C(r) h, for all such h, and since there are enough of these

nilpotents to permit cancelling them from universally-quantified equations,

the result follows.

Similarly, one can prove for example that the electrical attraction of an

infinitesimal dipole is inversely proportional to the cube of the distance from

it.

APPENDIX  3

Higher  (and lower) connectivities

Basic topological intuition can be applied synthetically in terms of the

contrast between a category  X  of spaces with some cohesion and variability

and a category of sets  S  with none (or qualitatively less).  This applies not

only to smooth spaces, but also to continuous or combinatorial ones.

Namely, the points functor  X (1, - ) usually has a right adjoint (the inclusion

of codiscrete spaces)  and two successive left adjoints (the inclusion of discrete

spaces and the functor ‘set of components’ which represents the



attempts to map a given space to discrete spaces).  An object is ‘connected’ iff

its set of components is  1, i.e. iff its only maps to discrete spaces are constant.

The study of the set of components of the space  XS  of S-figures implies  the

homotopy and homology of  X.  (S ranging over reference spaces such as

spheres and balls).

Indeed, the needed set-theory  S  is best derived from  the geometry  X
by defining discrete spaces  to be those  C  for which  C  →  CS  is an

isomorphism for a few selected figure forms  S  which are considered to be

connected and which at least have no nontrivial coproduct decompositions.

APPENDIX  4

Lie and the Discovery of a.t.o.m.s

Indeed, my ‘fractional-exponent’ definition of the a.t.o.m. property

above was based on a key discovery of my student Anders Kock which I was

able to correlate with work of my student Marta Bunge who had characterized

presheaf toposes.  Kock’s discovery was about what was needed to prove a

theorem of Sophus Lie concerning the space of flow lines of an ODE

D1  ×  X   →  →       X  →     X/D1

In computing such coequalizers, the fact that  D1  is internally projective is

crucial;  coupling that with the fact that  D1  is internally connected (i.e. that

(  ) D1  preserves sums), one sees that  (  ) D1   preserves colimits;  then the

special adjoint functor theorem (of one of my teachers, Peter Freyd) implies

the existence of the fractional exponents.

APPENDIX  5

Time Speed-ups and Coordinates

The sense in which the non-commutative monoid  TT  of time speed-

up (for the case  T = T1  of a first-order microspace with one point) is ‘just

slightly bigger’ than its commutative submonoid  R  of  0-preserving

elements, can be seen quite clearly in terms of a choice  T ≈ D1  of unit of time,



where  D1  is the subspace of the coordinatized line  R  whose figures are those

figures  t  of  R  for which  t2 = 0  with respect to the multiplication of  R.  For

then the elements of  TT  , in terms of the endomappings which they

parameterize, are easily seen to be pairs <a0, a1> in  R  for which

(a0)2 = 0, and a0 a1 = 0

Then, as usual, the elements  ai  can be figures of any shape  S, but we are

using the multiplication of  R ;  the (S-family of) endomorphisms of  T  which

the pairs parameterize are described by the formula

t   →   a0 + a1t

and the composition rule is the restriction to  D  of the substitution of one

affine-linear transformation into another, which could be called ‘the high-

school monoid’.  The inclusion  R  ⊂→  TT  is the part where a0 = 0, and a1

arbitrary, but  D  itself is a subspace (not a submonoid) in a perpendicular

direction where  a1  = 0.  It is then easy to see that all the invertible elements of

the monoid  TT  (for  T = T1) belong to the commutative group of invertible

elements of  R.  Disjoint from that, one can calculate, for example, the parts of

TT  whose elements  f  satisfy  f o f = 0, or  f o f o f  = 0.

Any tangent bundle  XT  obviously has a natural right action of  TT , not

only of the latter’s submonoid  R.

APPENDIX  6

Strong Adjoints versus General Exponents

Two endofunctors  F  and  U  of a cartesian closed category are strongly

adjoint iff there is a natural isomorphism

YFX  =  (UY)X

of function spaces, for all spaces  X,Y in the category.  Taking points of both

sides of the above isomorphism we obtain a natural bijection

  

FX → Y

X → UY



of map-sets, the usual notion of adjointness.  But the converse does not hold;

there may not exist any way of making some given adjoint pair strong.  For

example,  A × (  )  is strongly adjoint to  (  )A  for any fixed space  A, which is

one of the laws of exponential algebra which is true in any cartesian closed

category.  But if  T  is an  a.t.o.m., the adjointness of  (  )T  to  (  )1/T  is usually

not strong, unless  T = l .  We can measure ‘how strong is it?’ by considering

the subcategory  ST  (certainly including 1) of those test-figures  C  which

perceive it so;  that turns out to mean just that the canonical ‘inclusion of

constant figures (or zero tangent vectors)’

C  ≈ →      CT

is an isomorphism.  This is a special case of the idea of defining a subcategory

of ‘discrete’ spaces in terms of a whole category of spaces (as mentioned in

Appendix 3), which might be called the ‘microdiscrete’ case;  it turns out that

the inclusion  ST ⊂→  X  has a right adjoint, which may be considered as one

version of ‘the space of points’ of an arbitrary space, for indeed the composite

of these two adjoints is a kind of ‘0-skeleton’ endofunctor of  X  , with  sk0(X)

 ⊂→  X.  Given such an adjoint pair, we can define

X (A,Y) = sk0(YA)

and define a intermediate notion of S -strong adjointness.

Actually, a strongly adjoint pair of endofunctors is determined by a

single object  F1, since for all  Y

UY = Y(F1)

as is seen by substituting  X = 1  in the definition.  But for a given  S  →  ←      X ,
the  S -strong adjoint endofunctors in general form a larger category of

‘exponents’.  We consider these exponents as a category by considering as

morphisms the natural transformations betwen the left-adjoints, but the

exponents act as ‘exponents’ (also notationally) via the right adjoints;  this

acting is thus a right action.

E’  →   E  implies  YE   →   YE’

(YE1)E2  = YE1 . E2

for exponents  E  where the multiplication of exponents means their

composition considered as functors.  Thus for a cartesian closed category  X ,



X  itself is canonically embedded in its category of exponents, and indeed

A1  . A2   =  A1 ×  A2

for those special exponents which come from  X .  For any given a.t.o.m.  T,

the fractional exponent  B/T  is well-defined, for any object  B;  but for  T ≠ 1
the multiplication of these is no longer commutative.  Still more general

examples can be obtained by taking colimits of known exponents (which of

course actually involves taking the opposite limits of the corresponding right-

adjoints in the pairs).  For example, the sum of two exponents can be defined

via their right actions as

YE1 +E2  = YE1 ×  YE2

for all  Y, which obviously will agree with the coproduct of spaces  A1  + A2

for those ‘integral’ exponents coming from  X .
Call an exponent E=<E,F>strict  if  F itself has a further left adjoint E! ;

then F1=1 so that no nontrivial integral exponent is strict.

APPENDIX  7

Galilean Monoids

With respect to a given bifunctor ‘multiplication’ in a category, a

monad  is defined as in Eilenberg-Moore to be an object  E  together with a

given internal unit and a given ‘internal multiplication’ map

1  →  E, E .  E  →  E

(satisfying the associative and 2-sided unit laws), where  1  is the object acting

as unit for the functorial multiplication.  In case the multiplication functor is

merely the cartesian product in a category   X  which has such, monads are

usually called monoids .  The category of actions in  X of a given monoid in

X  is typically another cartesian closed category.  In case the category in which

we consider the monads is the category of exponents of a given category   X , it
seems reasonable to call such monads ‘Galilean monoids’.  They are a real

generalization of the monoids in  X , yet far more special than the usual



monads in the category of all endofunctors.  In particular, the category  X E  of

actions on ‘configuration spaces’ for a Galilean monoid  E  has both  left and

right adjoints (free and cofree) to the same forgetful functor   X  ←   X E , as

was proved by Eilenberg and Moore in 1965.  A strictly -generated  Galilean

monoid in  X is one generated by a pointed strict exponent 1  →  E.  If the

generating process in that case involves a filtered colimit in a topos X  then

the category  X E  of actions of  E  is not only a topos (in particular cartesian-

closed), but the functor “underlying  configuration space” will be a “local

geometric morphism” from X E  to X,  because the left adjoint aspect will be

lex. A distinct system of adjoints   is “equilibrium configurations”, X E  to X,
with trivial action and cotrivial action as left and right adjoints.

While 1st order ODE’s in X  and their equivariant maps constitute a

topos because they are just the actions of an ‘ordinary’ monoid infinitesimally

generated by  T1  ≈  D1  together with the constraint that the point of the

instant act as the identity, the 2nd order ODE’s in X  form a topos because they

are the actions of a strictly−generated Galilean ‘monoid’ infinitesimally

generated by the inclusion  T1 ⊂→ T2  (coordinatizable by   D1 ⊂  D2)  together

with the section constraint.

APPENDIX  8

(Additional comments added Nov. 4, 1998)

Recently Kock and Reyes verified my main claim in this outline,

namely that second-order ODE’s (and many similar prolongation structures)

in a given topos constitute another topos receiving an essential morphism

from the first, provided certain fractional exponents exist.  Rather than using

filtered colimits of fractional exponents as in the outline, their proof uses

general properties of Top/S  such as the existence of fibered products.  They

also emphasize that the particular “α-prolongation law modeling time” given

as a simple example at the end of the outline, namely a one-dimensional

interval with zero acceleration, does not represent all lawful motions.

Indeed, second order time, the object T representing as an abstract general the

concrete generality of all lawful motions in all objects of the topos  X α, is a

richer  “Algebra of Time” than just one-dimensional, as I pointed out in my

lectures of that title at the Hamilton Sesquicentennial (Dublin 1993) and at La

Sapienza (Rome 1995).  Even richer is Galilean time, the object serving the



analogous role in the category of dynamical systems, which are structures

involving a pair of second-order ODE’s on the same configuration space, one

of the pair being homogeneous to serve as the ‘inertial’ zero of specific force.

Precise descriptions of those representing objects are needed.

A further observation is suggested by my June 1998 talk ‘Why

functionals need analyzing’ to the Canadian Mathematical Society, where I

pointed out that solution-operators for boundary-value problems are also α-

prolongation structures.  Of course, the domain of α (i.e. the ‘boundary’ of the

codomain) is in such cases not usually an a.t.o.m.;  however, any topos is a

subtopos of another one in which any given object becomes an a.t.o.m., so

that the instrument whose development has been taken up by Kock & Reyes

may ultimately also shed light on those problems.


